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ABSTRACT

DEVELOPMENT OF TWO AUTOMATED FEED BUOYS 

FOR SUBMERGED FISH AQUACULTURE NET-PENS

by

Brett Fullerton 

University of New Hampshire, May 2007

Two prototype research feed buoys, designed with a feed capacity of a quarter-ton and one- 

ton respectively, were designed, modeled, constructed and field-tested to support raising 

aquaculture finfish in submerged cages at the University of New Hampshire’s Open Ocean 

Aquaculture Demonstration site. These two buoy systems consisted of a surface buoy, moorings to 

a submerged fish cage mooring, feed dispensing machinery, feed transfer hose and buoy telemetry 

and control systems. Numerical finite element analysis and physical model scale wave tank testing 

were performed on both feed buoys. Various mooring concepts were also tested. Both buoys were 

moored close to the aquaculture cages using compliant mooring members, which allowed motion 

through tidal, current and storm wave conditions. Feeding mechanisms consisted of feed dispensing 

equipment and centrifugal pumps to actively force a feed and seawater mixture down to fish in the 

submerged cages.

The first buoy, with a quarter-ton feed capacity, was battery-powered and recharged by 

both a wind generator and two solar panels. A control system managed the operation of the feed 

equipment, and telemetry sent diagnostic and system status information back to shore to the project 

manager. The quarter-ton feed buoy was deployed to the University’s aquaculture site in early 

December 2002. After correcting initial start-up problems, the buoy operated for many years 

enabling beneficial, metered and regular feeding to the caged fish.

xii
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To meet immediate needs of an expanding aquaculture operation, a larger one-ton capacity 

feed buoy was designed, built and deployed to the aquaculture site within a ten-month period. This 

buoy had a similar design to the quarter-ton feed buoy, but was scaled larger to hold a greater 

amount of fish feed. One significant innovation on this buoy was the onboard diesel generator, 

which was necessary to power industrial feed equipment, as well as to charge the buoy’s battery 

bank. In case of generator failure, the buoy’s control system received its own power from an 

internal battery bank, which was charged from solar panels and/or the generator.

The larger one-ton feed buoy was deployed to the aquaculture site in early December 2003 

and, after overcoming the complexity of remotely starting and controlling the diesel generator, the 

buoy supplied greater amounts of feed to the fish cages than was previously possible. After 

operating for just one year, the one-ton feed buoy sank during a Nor’easter storm in late December 

2004. On examination of the salvaged buoy seven months later, it appears a weld failure in the feed 

system was the root cause of flooding and the ultimate sinking of the buoy. Despite the unfortunate 

loss of the one-ton feed buoy, the research discussed in this thesis will likely serve as a basis for 

developing future commercial aquaculture feeding systems suitable for an open ocean environment.
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CHAPTER 1 -

INTRODUCTION

1.1 Purpose

As finfish aquaculture inevitably moves offshore away from sensitive and valuable 

coastal regions, one significant hurdle to successful open ocean finfish aquaculture is the ability 

to supply an adequate amount of feed to the caged fish in a scheduled and cost-effective manner. 

Feed and feeding schedules are both crucial factors to the viability and economics of raising 

healthy, marketable aquaculture finfish. For these reasons, two prototype feed buoys were 

developed by University of New Hampshire’s (UNH) Open Ocean Aquaculture (OOA) 

Demonstration Project to contain and dispense large amounts of pelletized fish feed to submerged 

cages, containing either haddock, halibut or cod fish species at the time. The two research 

prototype feed buoys were designed, modeled, fabricated and field-tested to support the UNH 

OOA project, a National Oceanic and Atmospheric Administration (NOAA) funded research 

project to study the feasibility of and promote an offshore aquaculture industry in the Gulf of 

Maine. The first feed buoy developed had a feed storage capacity of approximately 250 kilograms 

(approx. 550 lbs) and hence took the title of the “quarter-ton” feed buoy. This buoy was battery- 

powered with charging from both wind and solar power generation units. Based on the successful 

learning experience of this quarter-ton feed buoy design and deployment, a second feed buoy was 

developed to have a larger, one thousand kilogram feed storage capacity. This “one-ton” capacity 

feed buoy contained a five-kilowatt diesel generator to meet the feed system’s greater power 

demands. Control of the feeding systems, including frequency and volume of feed dispensed, was 

all accomplished remotely from a computer onshore. The feed buoys saved both time and money 

and were safer for researchers since they did not have to be onsite during feed times. Before the 

feed buoys were deployed feeding the caged fish was not always possible because of bad weather,

1
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personnel and boat schedules. Remote operation and communication to the feed buoys was 

achieved using radio telemetry systems between the buoy and a shore station. Once on shore, or 

vice versa, the signal traveled via the internet allowing access and control to the project manager 

virtually anywhere in the world.

1.2 Background

Current aquaculture practices and methods, such as the raising of farmed salmon in the 

Gulf of Maine, normally occur in bays and harbors relatively close to land and protected from 

damaging waves and current. The UNH OOA Demonstration Project was initiated in 1997 to 

research the feasibility and possible promotion of an offshore aquaculture industry in New 

England. The advantage of offshore finfish aquaculture is that abundant deep water and currents 

provide a cleaner and therefore healthier environment to raise fish, while at the same time, 

minimizing the environmental pollution and impact of fish farming. Since 1998, UNH has used 

the OOA Demonstration research site, seen in Figure 1, which is approximately ten kilometers 

from the New Hampshire coast and two kilometers south of Isles of Shoals of New Hampshire in 

the Gulf of Maine. Approximate coordinates of the UNH OOA Demonstration site are 42° 56.55’ 

North and 70° 37.94’ West.

Oapprox. location

Figure 1: NOAA chart #13278 (left) and aerial view from Google Maps (right) 
showing the relative positions of the permitted OOA site to the Isles of Shoals and the coast of NH.
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Permitted through the State of New Hampshire, this research site is used to explore the 

engineering, biological, environmental and operational aspects of offshore fish aquaculture 

(Muller, 2002).

To contain the aquaculture fish, two 600 m3 Ocean Technologies SeaStation™ cages 

(SS600) were deployed at the UNH OOA research site in 1999. (Fredriksson et al., 2000 and 

Baldwin et al., 2000). Each cage had its own independent grid mooring system as shown in the 

schematic of Figure 2. The mooring system was held in place by a total of eight one-ton 

embedment anchors, which had an average depth of 52 meters and a generous three-to-one scope. 

The fish cages were held in position by four bridle lines, which were attached to the comers of 

the submerged, square grid. Tension of the grid comer was maintained by submerged buoy floats, 

which averaged 18 meters in depth. Finally, the vertical position of the cage is held fixed by a taut 

pendant, which is attached to a dead weight on the bottom. These two central spar fish cages were 

the focus of an intense engineering and operational analysis for many years to prove that such 

systems could survive conditions of the open ocean. Numerical finite element analysis modeling 

and physical wave tank model testing were conducted to better understand submerged fish cage 

and mooring dynamics with the goal that suitable engineering methods and equipment could be 

developed to cost-effectively deploy open ocean aquaculture fish cage systems (Palczynski, 2000; 

Tsukrov et al., 2000; Tsukrov et al., 2003; Fredriksson et al., 2003).
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-1 1  m

52 m

Figure 2: Schematic of single cage grid mooring system

By the year 2003, the OOA project expanded with a larger Ocean Spar SeaStation™ 

3000 m3 (SS3000) central spar fish cage shown in Figure 3. This cage was added because the 

existing SS600 fish cages were considered small, due to the limited number of fish each SS600 

cage could contain. The motivation behind adding this additional cage was to increase the 

project’s finfish bio-mass closer to that of a commercial aquaculture scale so that a proper 

commercial economic assessment could be investigated. Although offshore aquaculture 

techniques and methods were being developed at a smaller scale, new engineering challenges 

existed, including feeding systems, which must be overcome to prove the viability of 

commercial-scale open ocean aquaculture.
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Figure 3: Schematic of SeaStation™ 3000 cage

To incorporate this new cage, the two individual fish cage grid mooring systems, which had been 

deployed at the OOA site since 1999, were dismantled and replaced by a new four-cage grid 

mooring system depicted in Figure 4.

Figure 4: Schematic of four-cage grid mooring system over seafloor topography.

The four-cage mooring also enabled the deployment of a possible fourth fish cage in the future 

should the OOA project grow larger (Fredriksson et al., 2004). However, along with greater fish

5
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populations and bio-mass, the immediate need for larger surface feeding platforms and feeding 

systems became apparent (Rice et al., 2003; Fullerton et al., 2004).

Supplying sufficient and regular doses of fish feed to species contained in a submerged 

aquaculture cage has always been a major challenge to successful offshore finfish aquaculture. It 

has been shown that a regular feeding schedule, along with ample amounts of feed, are crucial to 

the growth rate of cultured fish (Chambers, 2003). Conversely, any uneaten feed pellets that pass 

through the cage are a significant economic loss and introduce waste into the environment.

Dependable and automated feeding systems must be developed for open ocean aquaculture 

to grow and become a success. Such systems built for the open ocean environment and supplying 

feed to submerged fish cages were not commercially available at the time. This includes multiple 

components which make up the mechanical systems; many of which are commercial-off-the-shelf 

(COTS) products that are modified to work in the harsh offshore marine environment. Pioneering 

work in the concept design and development of offshore feeding has been reported by Willinsky 

et al. (1994, 1995, 1997). Offshore radio telemetry techniques have also been addressed by 

Kimura et al. (1993). Although specialized feed boats, buoys and barges are currently used in 

aquaculture farms, where large surface cage arrays are located in relatively sheltered waters, 

rather little research or work has been accomplished on feeding submerged cages in extreme 

offshore environments (Swanson, et al., 2004). Typically the companies who fabricate inshore 

and near-shore aquaculture feeding systems claim their commercial systems will handle offshore 

conditions; however, these designs are relatively untested and unproven for true open ocean 

environments. The location of the UNH OOA Demonstration site in the Gulf of Maine is capable 

of experiencing severe open ocean storm and wave conditions.

Gael Force Ocean Technologies, a Scottish company, builds large circular concrete feed 

buoys, called C-Cap buoys, shown in Figure 5. These systems have very large feed storage 

capacities between fifty and three hundred tons. However, as previously mentioned, these feed 

buoys are usually located in bays and harbors protected from large storm waves. Even if the C-

6
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Cap buoys could survive the OOA project’s site conditions, a shortcoming of this system is that 

the feed pellets are conveyed via high-velocity air forced through a floating PVC hose from the 

buoy to the surface cage. A sprinkler is used above the cage to spread feed through the air as it 

sinks inside the cage. Because the OOA fish cages are typically submerged, usually around ten 

meters to evade damaging surface wave energy, such an air-conveyed system would not work for 

the OOA project. It would be nearly impossible and impracticable to force air and feed down to 

the cage due to the pressure of seawater pushing against it. It was also well-known that air 

bubbles, usually from SCUBA divers, frightened the caged fish. A second disadvantage to the 

Gael Force feed system involved the risk that the hose at the surface may become entangled in 

boat traffic or among other feed hoses in varying surface conditions.

Figure 5: Gael Force C-Cap™ feed containers (Gael Force™ website)

Earlier in the UNH OOA project, without an automated way to feed caged halibut or 

haddock, fish were fed by hand with SCUBA divers sprinkling food pellets either outside or 

inside the submerged fish cage. A later solution, that did not require divers in the water, was via a 

three-inch flexible PVC hose bolted to the top of the fish cage. The other end of the hose was kept 

at the water’s surface with a mooring float. In order to feed the fish, the hose was pulled onboard 

a support vessel and connected to a gas-powered trash pump, which pushed water down through 

the hose to the cage. Feed pellets were added from a hopper into the stream of water and forced
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down to the submerged cage. This feeding method worked well in calm seas and has remained a 

backup method for feeding in case of a feed buoy system failure or clogged hose. The 

disadvantage to this method of feeding is that feed schedules depend greatly on the cooperation of 

decent marine weather, due to the exposed location of the OOA site. This severely restricts the 

window for feeding, which is particularly difficult during the winter months when marine sea 

conditions tend to be worse. During the winter months, it would be typical to feed the fish only 

once a week if at all. With the UNH vessels available, it is only possible to feed in Sea States two 

or less. This generally means waves less than 1.2 meters and winds forty kilometers per hour or 

less. Another disadvantage to manual feeding is that it is logistically dependent on the boat’s 

schedule and personnel availability.

To address the problem of feeding fish in submerged cages, the Massachusetts Institute of 

Technology (MIT) was tasked, with support from the UNH OOA project, to develop a 

submersible feeding system for the SS600 cages. The MIT system developed, known as the 

“Robo-Feeder”, was bolted directly to the top of the Sea Station™ fish cage platform as shown in 

Figure 6.

Hand grab

__________________

Refill opening

Foot rail

Access
/  panel

rui
S ea  Station 

platform

L
Figure 6: Schematic of MIT Robo-Feeder
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Using simple digital timers, the pneumatically-operated system would open a knife valve at 

the base of a feed hopper for a user-set time duration to dispense the desired amount of feed. 

Though the Robo-Feeder system worked in the laboratory, it was not reliable while at sea due to 

the frequency with which the system clogged. Also, despite the initial design criteria of being 

able to operate submerged, the components used in the Robo-Feeder were not meant to be fully 

submerged underwater. Ignoring this deficiency, the real limiting factor to the Robo-Feeder 

design was its small feed capacity. The prototype could only contain a maximum of one hundred 

kilograms of feed pellets.

Driven to alleviate the frequency of feeding trips to the aquaculture site and to overcome 

the shortfalls of the MIT Robo-Feeder, in 2000 the UNH OOA engineering group was determined 

to build its own feeding system for the open ocean environment. The initial design and concept of 

this surface feed buoy was generated and reported by Rice et al., (2003). UNH teamed with Matt 

Stommel, a commercial fisherman from Woods Hole, MA who had a personal interest in 

aquaculture. Matt Stommel fabricated the aluminum buoy structure over the winter of 2000 and 

2001. The buoy structure was then transported to the UNH Jere A. Chase Ocean Engineering 

(JACOE) high-bay, where it was outfitted with simple COTS equipment and tested in the JACOE 

six-meter deep tank. The buoy, shown in Figure 7, was deployed at the OOA site in late October 

2001 off the stem of the UNH RJV Gulf Challenger. (Note: the red anti-fouling paint in Figure 7 

marks the approximate waterline of the buoy, which was only inches from the buoy’s single side 

access hatch.)

This buoy’s feeding system, similar to the MIT Robo-Feeder, relied on gravity and sinking 

feed pellets to deliver feed to the submerged fish cage. Because the system lacked positive flow, 

the feed hose, which carried feed to the cage, would periodically become clogged. The frequency 

of blocked hoses, compounded by timer malfunctions, were setbacks to an operational feed 

system. Humidity inside the buoy also plagued the digital timers and feed equipment, which 

prevented the buoy from operating as it was intended. In late spring of 2002, after being deployed

9
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for seven months, the feed buoy mysteriously came loose from its mooring. The buoy drifted in 

the Gulf of Maine for several weeks before being reported to the US Coast Guard by a passing by 

fishing vessel.

Figure 7: Photo from the original quarter-ton feed buoy deployment
(prior to the author’s involvement)

It became apparent, after the drifting buoy was brought to Portland, Maine by the US Coast 

Guard in mid-July and retrieved by UNH, that a major overhaul to the buoy was necessary. The 

buoy’s hull and structure were in good shape, but a complete re-design of its interior workings 

and feeding system design was essential. The author’s involvement with the OOA feed buoy 

project began at this point.

1 0
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1.3 Objectives

To address the challenges of feeding finfish contained in submerged offshore aquaculture 

cages, the following objectives were pursued for the quarter-ton capacity feed buoy:

• modify the existing quarter-ton capacity feed buoy, particularly internal feed 
dispensing equipment and operation

• improve the three-point mooring design

• perform field-testing at the OOA site and troubleshoot any problems or
deficiencies

and for the one-ton capacity feed buoy:

• design a one-ton capacity feed buoy using knowledge and techniques learned 
from the previous quarter-ton buoy design

• apply finite element modeling techniques and conduct physical scale wave tank 
model testing

• design and analyze the buoy’s mooring system

• oversee construction of the one-ton feed buoy

• procure and install all the buoy’s mechanical components

• deploy the system at the OOA site for field evaluation and operational use

Generally these objectives were addressed in chronological order as written above; 

however, due to time constraints and aggressive deployment schedules, many objectives were 

worked on concurrently. The feed buoys described in this thesis may be regarded as a series of 

two feed buoys, each increasing in size and feed capacity as design methods and knowledge of 

the systems improved.

1 1
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1.4 Approach

The approach for developing both feed buoys began by defining general design criteria, 

such as feed capacity and system voltage. Since the quarter-ton buoy structure was already 

constructed, the design was constrained to working with available hull structure and refurbishing 

the buoy’s feeding systems. The one-ton capacity feed buoy, on the other hand, had to be 

designed completely from scratch and therefore had a greater all-encompassing scope compared 

to the quarter-ton feed buoy.

The general approach to designing the feed buoys was to first develop the general 

concept of the buoy; that is, design the basic generic hull shape, i.e. a discus, spar or boat hull or 

other intermediate shape. Once the hull shape was established, critical components, such as the 

feed hopper or feed hose connections, were located. After the general design of the buoy’s hull 

was determined, the hydrostatics for this design were to be investigated analytically. Through an 

understanding of the buoy’s hydrostatics, the layout of internal components like feed dispensing 

equipment, power supplies and circuit panel box, as well as ballasting could then be considered. 

As the buoy’s design was finalized, the arrangement of other internal components was 

investigated. During the buoy’s fabrication, concepts and methods for mooring the feed buoys 

were devised. Each mooring design underwent computer numerical and/or physical scale 

modeling techniques to test and validate the design. Results from numerical finite element (FE) 

modeling approximated the buoy and mooring system dynamic range of motion, mooring force 

loads and safety factors. This was an iterative process used to develop feasible mooring 

configurations and specifications. Physical modeling and wave tank testing was conducted to 

characterize the buoy’s heave and pitch response characteristics as well as to detect undesirable 

conditions not seen in numerical models, such as mooring line chaffing, “snap-loadings” or 

possible buoy and cage collisions. After finalizing the mooring design, focus was placed on
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procuring parts for the buoy and mooring in preparation for outfitting and eventually deploying 

the buoy.

The basic design concept behind both feed buoys was to store a large amount of dry, 

pelletized fish feed above the waterline in a well-ballasted, surface spar buoy. Feed was stored 

above the waterline in attempts to keep it as dry as possible and minimize the chance of getting 

wet, since wet feed clumps easily and is likely to clog the dispensing equipment. The spar buoy 

was perceived as the optimal design because its small waterplane area is thought to decouple the 

buoy’s excitation from the water’s surface effects, i.e. waves. Both UNH OOA feed buoys had a 

low center-of-gravity, spar-like design. Due to decoupling the wave response, spar buoys 

generally make good vertically stable platforms. This characteristic was deemed advantageous to 

the OOA project and its operation. For the OOA project, the ideal buoy platform would be stable 

in daily typical sea conditions, like short period, wind-wave chop. If the buoy were to heave or 

pitch excessively in such conditions, it would be considered unsafe for the support vessel and, 

most importantly, to personnel to work on or near the buoy. A stable platform was also necessary 

for good radio telemetry links to shore. Other generic buoy shapes were considered like the discus 

or boat hull; however, since these designs tend to contour wave slope and amplitude, they were 

not given much consideration (Berteaux, 1991).

One disadvantage to the spar buoy design is that certain frequencies can excite buoy 

resonances creating greater amplitudes than the amplitude of the wave itself. This characteristic 

of spar buoys can make mooring them difficult. Large and quick excitations can cause “snap- 

loading,” resulting in quick, high-tensile loads on the mooring and its components. Physical 

modeling techniques were essential to predict and possibly avoid the destructive events of snap- 

loading.

A second drawback to the spar buoy design is its limited interior volume. Due to the 

nature of the spar buoy’s small cross section, the diameter limits the amount of fish feed that can 

be stored. The feed capacity and interior space of these feed buoys was deemed adequate for the
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OOA project. However, it was noted that larger capacity feed buoys in the future would unlikely 

be able to store all the feed above the waterline and still remain a spar design. It is expected that 

larger feed buoys would have a more squat shape like the C-Caps buoys shown in Figure 5.

The following describes the approach that was used to dispense fish feed from the buoy. 

Feed pellets stored in the hopper were dispensed into a smaller hopper, which worked as a mixing 

chamber, where feed pellets mixed with seawater before being actively pumped down through a 

pipe in the center of the buoy. Leaving the buoy, the feed pellets and water mixture traveled 

through the feed transfer hose to the submerged fish cage. In an attempt to reduce the size of the 

centrifugal pumps, as well as to minimize the risk of clogging, the feed hose was as short and 

straight as possible to the fish cage. The short feed hose required that the buoy be positioned 

above and relatively close to the submerged cage. However, positioning the buoy too close would 

run the risk of its collision with the fish cage during storm conditions. To achieve the shortest 

feed hose possible and still minimize the chance for collision, each feed buoy was taut-moored to 

the submerged cage mooring grid using two or three compliant mooring members. With the 

robustness of the fish cage mooring, the buoy moorings were attached to grid comers of the cage 

moorings. Feed buoy moorings and their components were designed to be strong enough to 

survive severe storms, yet were sufficiently compliant not to damage the fish cage, its mooring 

grid or the feed buoy itself. Figures 8 and 9 show two schematics, an elevation and plan view, of 

the original single cage mooring grid used to moor the quarter-ton feed buoy. The quarter-ton 

capacity feed buoy had an elastic feed hose, which allowed the buoy to be positioned almost 

directly above the fish cage. The one-ton capacity feed buoy, on the other hand, because of its 

deeper draft, had to be moored further away from the fish cage it supplied. Later, when the 

individual cage mooring system was replaced with the four-cage mooring, shown in Figure 4, the 

quarter-ton buoy was transferred to this new cage mooring using the exact same arrangement as 

the single cage configuration.
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Figure 8: Elevation view of submerged cage and mooring grid at the OOA site (one of two at the site).
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Buoy

15 m

SS600 65 mGrid Line

Bridle Line

Anchor Line

(to chain and anchor)

Figure 9: Plan view of the submerged cage and mooring grid at the OOA site (one of two at the site).

Construction of both feed buoys took place in Woods Hole and Bourne, Massachusetts by 

Stommel Fisheries. Following completion of the buoy’s hull structure, each buoy was transported 

to UNH, where mechanical and electrical components were installed. Once ready for deployment,

15

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



the feed buoy was trucked from UNH to the NH Port Authority, where the buoy was floated pier- 

side until final installations and modifications could be completed. The UNH RJV Gulf 

Challenger, a 50-foot aluminum research vessel, was used to transport the buoys to the OOA 

research site. The quarter-ton feed buoy was small enough that it was carried on the stem of the 

Challenger. The one-ton buoy was too large to have on the deck of the boat, so it was towed to 

the site. Once at the OOA site, each buoy was connected to its moorings and the feed hose was 

attached to the cage. The buoys were then prepared for field testing and operation.

Lessons and experiences learned from the development of the quarter-ton capacity feed 

buoy had served as the basis for the one-ton feed buoy design and development. This thesis is 

organized in chronological order to focus on the development of the feed buoys and their systems. 

This arrangement also facilitates use of this thesis as a reference, because information about each 

buoy is grouped together. The modifications and re-deployment of the quarter-ton feed buoy are 

described in Chapters 2 through 6. The design development, construction and deployment 

evolution of the one-ton capacity feed buoy is contained in Chapters 7 through 11.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1 6



CHAPTER 2 - QUARTER-TON FEED BUOY

GENERAL DESIGN

2.1 Design Rational / Criteria

The quarter-ton feed buoy hull structure was taken from the existing feed buoy design 

described in Rice et al. (2003). Basic design criteria for the quarter-ton feed buoy included the 

ability to store and dispense dry fish feed while operating remotely at the OOA research site. The 

buoy should operate remotely without assistance between feed hopper refills and periodic 

maintenance trips to the buoy or cage. Feed storage and conveying equipment, power supplies, 

and control and communication systems were necessary for the buoy to function correctly and 

accomplish the objectives. These systems were all contained inside the structure of the feed buoy. 

Feed storage capacity for this buoy was approximately five hundred pounds and, hence, became 

known as the “quarter-ton” buoy. Because the feed was contained above the waterline, ballasting 

in the form of lead was necessary to lower the buoy’s center of gravity.

The quarter-ton feed buoy was built to supply a single six SS600 fish cage moored in a 

submerged mode approximately ten meters below the surface as seen in Figures 8 and 9. Because 

the fish cages were usually submerged, feed pellets had to be delivered to the cages by actively 

pumping seawater mixed with feed pellets to form a seawater-and-feed slurry. Conveying feed 

pneumatically, as practiced in commercial aquaculture farms, was not feasible for the UNH OOA 

project because the cages were submerged.

The quarter-ton feed buoy had a small waterplane area due to its spar-like buoy design, 

hence, the buoy lacked adequate reserve buoyancy to house the weight being added by the 

feeding system and power/control system upgrade. To overcome this buoyancy problem, an 

external flotation collar, discussed later on in more detail, was fabricated to slide over the outer
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diameter of the feed buoy. This foam collar provided enough additional buoyancy to the buoy to 

compensate for added weight, as well as provide an extra amount of reserve buoyancy. During 

construction of the buoy, described in Rice et al. (2003), the side access hatch was located lower 

than was originally planned, due to an interference with the main buoy flange. This created 

freeboard between the waterline and hatch of only a few inches.

2.2 Design Configuration

The external appearance and major dimensions of the feed buoy are shown in Figure 10 

(left), while the internal arrangement of the hopper, batteries, pumps and other internal systems is 

illustrated in Figure 10 (right). Major design parameters, such as general dimensions and weights, 

are summarized in Table 1.

1.52 m -►
feed hatch

5.:

side hatch

(waterline)
ballast bucket with 
740 kg lead bricks

Gilman Softlite® 
flotation Collar

Arvo-Tec 
drum feeder

washdowi
pump

feed hose 
connection

center feed pipe

ball valve

feed hopper

batteries

Figure 10: Schematic of buoy’s external features (left) and buoy’s cross-section showing internal feeding
systems (right)
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Table 1: Principal dimensions and weights of the quarter-ton feed buoy

Diameter 
(buoy structure)

1.52 m

Outer Diameter 
(flo tation  collar)

1.93 m

Overall Height
(excluding antennas)

5.20 m

Draft 3.40 m

Material aluminum

Feed Capacity >250 kg

Ballast Weight 740 kg

Overall Mass 2040 kg

Metacentric Height 0.488 m

ratio of feed capacity/ 
overall buoy mass 12.3 %

From the original construction of the buoy, described by Rice et al. (2003), the main body 

consisted of a 1.52 meter diameter aluminum cylinder. At the base of the main body, a scrapped

1.5 meter discus buoy hull was used. The discus buoy had both a top and bottom section. The 

bottom served as the bottom hull base of the buoy and the top created the false deck floor inside 

the buoy. Below the center of the main cylinder, a 0.610 m diameter pipe section extended 

approximately three meters downward to the open 1.067 meter diameter ballast “bucket”. This 

bucket held the buoy’s necessary ballast in the form of brick-shaped lead ingots. Due to concern 

over using lead as ballast and its close proximity to fish raised for human consumption, the lead 

ingots were rubber-coated with a product similar to Plastisol™. The coated lead bricks were 

arranged evenly in the four compartments of the bucket to ensure they would not slide around and 

change the weight balance. Also, to make sure the bricks would not fall out in case the buoy 

heeled over severely; the ingots were retained by an aluminum grate fastened over the top. The 

large pipe used between the main cylinder of the buoy and the ballast container was heavily 

gusseted with six supports to stiffen the structure.
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Supplemental and reserve buoyancy was provided by a 20.32 cm thick Softlite® foam 

flotation collar custom-built by the Gilman Corporation of Gilman, CT. Softlite® is a durable 

closed cell foam made of low-density Surlyn® ionomer material that is commonly used on 

navigational and research buoys, markers and fenders. The outermost layer of the flotation collar 

was heated, rolled and pressed by the manufacturer to create a hard, dense shell that increased the 

foam’s durability. A detailed CAD drawing of the buoy’s flotation collar can be found in 

Appendix A.

Because the design of the buoy positioned the feed hopper above the waterline, 

approximately 740 kilograms of lead ballast was used in the buoy’s lower ballast bucket. This 

significantly lowered the buoy’s overall center of gravity. Calculations of center of gravity, center 

of buoyancy, righting arms/moments and other hydrostatics using MathCAD® software can be 

found in Appendix B. The calculated center of gravity of the overall system, which had an overall 

mass of 2040 kg, was 14.4 centimeters below the center of buoyancy. These calculations yielded 

a metacentric height of 48.8 centimeters, indicating that a sufficient reserve righting moment was 

present. The extra buoyancy the flotation collar added and the calculated righting moment were 

viewed as essential features for survivability and safety of the buoy in the event of severe storms, 

icing conditions or loss of its watertight integrity. A more detailed look at the quarter-ton buoy 

hydrostatics is located in Appendix B.
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CHAPTER 3 - QUARTER-TON FEED BUOY

INTERNAL SYSTEMS

3.1 Feed Storage, Dispensing and Distribution

For the fish species being raised, feed pellets ranged from three to fourteen millimeters in 

diameter, depending on the species and their age or size. These pellets were loaded through the 

top center hatch of the buoy and were stored in the feed hopper shown in Figure 10. This custom- 

built feed hopper was made of Sun-Lite® fiberglass material and held up to 250 kilograms of 

feed. The buoy’s feed system assembly was made of multiple components as arranged in Figure

11. A four-inch manual Valterra knife valve was directly beneath the funnel opening of the feed 

hopper. This valve was necessary to hold back the feed in the hopper should the lower feed 

assembly or any components need to be disassembled and removed, i.e. to clear a clog or for 

periodic cleaning. The knife valve was normally left in the open position, but if necessary, was 

shut by sliding a manual T-handle. A rubber Femco coupling was used to increase the diameter 

from the four-inch knife valve above, to a larger diameter valve below. This valve was an Arvo- 

Tec rotary drum feeder that was used to dispense the desired amount of pellets per feeding from 

the feed hopper. The feeder/valve had interchangeable plastic drums with dispensing cups of 

various sizes cut around the solid cylinder. The feeder’s motor spun the drum at a constant rate. 

Thus, by changing the duration of feeding (and/or the cup size), a specific amount of feed will be 

dispensed from the feed hopper. Bench tests were conducted in the Jere A. Chase Ocean 

Engineering (JACOE) laboratory to determine the amount of seven millimeter diameter feed that 

was dispensed for the different dispensing cup sizes. This allowed the project manager to 

determine the time to run the feed system for the desired amount of feed. More information about 

this drum feeder/valve and its interchangeable dispensing cups can be found in Appendix C.
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After the drum feeder, pellets passed through a special PVC reducing coupling back to 

four inches diameter to a Hayward ball valve. This electrically-actuated ball valve was a critical 

piece of equipment that was programmed to open at the start of every feeding sequence and close 

at the end. This was an important step because the ball valve prevented seawater from entering 

the buoy in large seas and consequently soaking internal feed or other system components.

custom-built Sun-Lite®  
feed  hopper

Fernco 6 ” to 4 ” reducing 

coupling

Arvo-Tec drum valve

Valterra manual knife valve

K
bilge water outlet

wt
Hayward electrically-actuated  
ball valve

* Note the mixing chamber below 
is not shown.

Figure 11: Internal feed system components

The ball valve was also opened and closed multiple times during a feed cycle to prevent 

the dynamic head of the seawater pump from rising to the dispensing feeder/valve. This was a 

concern because the feeder was not sealed to pressure below and seawater and salt on the 

dispensing cups would likely make them sticky and clog more easily. Because the ball valve was 

cycled during feeding, pellets left the buoy in batches or slugs. Though clogging was an initial 

concern, the pump was powerful enough to keep the feed pellets moving through the hose and to 

the cage.
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Below the ball valve was a four-inch PVC ‘Y’ fitting, which served as a mixing chamber 

for the feed pellets and seawater to mix. Seawater was pumped in from the ‘Y’ and forced the 

water-and-feed slurry down through the buoy’s center feed pipe, then through the feed hose to the 

fish cage. The seawater pump was a Rule Industries Model 16A, 24 volts DC (VDC), general 

purpose pump. This centrifugal pump had a maximum-possible flow rate of 3700 gallons per 

hour (GPH), which is about 230 liters per minute. Experiments in the JACOE deep tank, 

replicating the buoy’s feeding system arrangement and fluid dynamic pressure head, yielded 

about 170 liters per minute (approximately 2700 GPH). More information and manufacturer’s 

specifications on this centrifugal pump can be found at: http://rule-industries.com/.

Other non-feeding equipment internal to the buoy and essential to its operation included 

two 24-VDC Rule Industries bilge pumps. These pumps each had a maximum flow rate of 1,100 

GPH and were mounted inside a 25-centimeter round bilge well, which was the lowest point 

inside the buoy for water collection. The size of the bilge pumps was increased from the buoy’s 

original deployment of 500 GPH to ensure that the bilge water was making it out of the buoy and 

at a quick rate. These bilge pumps featured automatic, computerized water-sensing, which meant 

a float switch was not required. An automatic bilge pump operates by turning itself on every 2/4 

minutes and, if resistance is sensed by spinning the impeller, i.e. meaning that water is present, 

the pump will continue to run until all the water is removed. As the bilge pump ran, bilge water 

was forced up one meter vertically through a one-inch flexible PVC hose and out the side of the 

buoy, approximately eighty centimeters above the buoy’s waterline. Due to the nature of the 

bilge area, containing spilled feed and debris, the screen filters on the bilge pumps had to be 

periodically checked and cleaned, if necessary, to ensure the pumps would operate efficiently 

when needed. Additional information on these bilge pumps can also be found at the company 

website mentioned above.
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3.2 Power Supply

The buoy was powered by two Lifeline 12-volt, 105 amp-hour batteries, which were 

connected in series to form a 24-VDC battery bank. The battery type selected was an absorbed 

glass-mat (AGM) battery. These batteries were chosen because they are completely sealed with 

little to no chance of battery acid spillage and minimal hydrogen or other chemical off-gassing. 

These features were ideal for the tight confined space inside the buoy. Note: the quarter-ton feed 

buoy had a single snorkel vent on top of the buoy, which was necessary for ventilation of the 

interior. This snorkel vent can be seen in Figure 10. More information on the buoy’s batteries is 

contained the Appendix D.

The charge on the buoy’s batteries was maintained by both solar and wind energy 

generation, shown in Figure 12. Solar panels provided electricity during sunny periods, while the 

wind generator provided electricity during times with moderate to heavy winds, particularly 

during the winter months. These two systems seemed to complement each other well, since 

typically when solar was strong, the wind was weak and vice versa. Two 60-watt BP solar panels, 

model SX-60U 12-VDC, and two SunSaver SS-20L-24V solar charge controllers were purchased 

from Atlantic Solar Products. The two solar panels were wired in series to generate 24-VDC. The 

wind generator, a Ampair Pacific 100 24-VDC, and its charge controllers were acquired from 

Jack Rabbit Marine. Both these electrical power generating systems provide a trickle charge to 

the 24-VDC battery bank maintaining them at a near full-capacity. In case the solar or wind 

power generation was not enough to keep the batteries charged, a backup set of charging cables 

was made to attach to the buoy’s charging circuit. This allowed for emergency charges of the 

battery bank via a tethered support vessel. The charging cables were used on occasion while 

working out a few initial bugs in the system; however since then the buoy’s own energy 

generation has been self-sustaining and the backup charging cables have not been needed.
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Figure 12: Buoy’s solar and wind power generation and telemetry antennas

3.3 Control and Telemetry

The quarter-ton feed buoy’s electronics and control system were designed and built primarily 

by Stanley Boduch with assistance from Jim Irish of the Woods Hole Oceanographic Institution 

(WHOI). Control of the quarter-ton feed buoy was handled by a Persistor Instruments CF-1 

microcontroller (MCU), which was programmed using Persistor’s PicoDOS functions and macros. 

More information on the Persistor CF-1 MCU can be found in Appendix E. This single board 

computer was mounted inside a watertight aluminum pressure cylinder, along with a load distribution 

panel. Both the pressure cylinder and the distribution panel are shown in Figure 13. A schematic 

diagram of the buoy’s instrumentation is shown in Figure 14. A flexible control system was designed 

to allow the MCU to control every aspect of the feeding operation as well as to monitor the system’s 

voltages and current drains. The controller was interfaced with two spread-spectrum radio systems to 

allow for land-based remote control and data acquisition. The first of these systems contained two 

900 MHz serial radios that allow for direct monitoring, telemetry and control of the CF-1 controller. 

An advantage to the CF-1 MCU was that the system was also programmed to allow for remote
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program upgrades and feeding schedules without the need to travel offshore. The second radio system 

included a set of 2.4 GHz, 802.1 lb radios, known as the popular Wi-Fi. These radios allowed for live 

video monitoring from two waterproof cameras used to view feeding behavior within the fish cage 

that the feed buoy was supplying. The two cameras were strategically placed; one camera viewed 

across the fish cage and the other looked upwards from the fish cage spar. Initially the second video 

system did not work from land; however, the video capability proved invaluable for monitoring while 

onboard a nearby research vessel. Underwater video allowed for observation of the aquaculture fish 

without needing SCUBA divers to enter to water.

Figure 13: Waterproof pressure cylinder (left) and distribution panel wiring (right)
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Figure 14: Block diagram of buoy’s instrumentation

Additional monitoring of the cage environment was done using a Sea-Bird Electronics 

SEACAT, a conductivity-temperature instrument. The SEACAT was installed on the center spar 

of the submerged fish cage. It interfaced with the CF-1 MCU system to allow fish biologists to 

monitor temperature and salinity from within the cage with a 15-minute sampling resolution. 

Both the SEACAT data and the cameras’ video stream were transmitted to the feed buoy via sets 

of copper wires embedded in the wall of the high-stretch feed hose. This custom-fabricated feed 

hose is discussed in greater detail in section 4.1. Telemetry proved to be very useful for acquiring
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remote feed buoy system data and environmental site data. It is recommended that a similar 

system be employed in future feed buoy systems.
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CHAPTER 4 - QUARTER-TON FEED BUOY

MOORING SYSTEM AND WAVE RESPONSE

4.1 Mooring Design and Motion Range Analysis

The quarter-ton feed buoy and its mooring system were both designed to restrain the 

buoy and still survive certain severe storm conditions predicted for the UNH OOA research site. 

These “worst-case” conditions included storm wave heights of nine meters combined with daily 

tidal fluctuations around three meters and a current of 1.0 m/s at the water’s surface down to 0.25 

m/s on the seafloor. These design parameters were determined by Fredriksson et al. (1998) and 

validated by actual measurements during an early March 2001 storm, which contained significant 

wave heights up to eight meters (Fredriksson, 2001). The ability to successfully moor the feed 

buoy was a challenging task due to the extreme design conditions and the unknown kinematics of 

two large bodies, the fish cage and feed buoy, responding dynamically to environmental forcing. 

Numerical finite element modeling and physical modeling techniques were employed to better 

understanding the systems’ behavior and dynamics. The resulting feed buoy mooring design 

consisted of an elastic feed hose, which was bolted directly to the top of the cage, and two very 

compliant rubber tethers connected to the fish cage mooring grid comers. A schematic of the 

quarter-ton feed buoy mooring is depicted in Figure 15. Originally designed for the single fish 

cage mooring, the same quarter-ton feed buoy mooring was used in the identical configuration on 

the expanded four-cage grid mooring deployed one year later. This four-cage mooring system is 

shown back in Figure 4.

The buoy’s feed hose, used to transfer feed from the buoy to the fish cage, was the main 

strength member of the mooring and was bolted directly to the top of the fish cage. This 

specialized hose was designed by Walter Paul of WHOI and built to UNH OOA specifications.
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The feed hose was made of a highly-stretchable, vulcanized rubber wrapped over spirally wound 

reinforcing nylon cords for strength. Vulcanization is the process of treating rubber using heat 

and sulfur to improve the rubber’s elasticity and strength. This specialized elastic feed hose could 

stretch up to 220% of its unstretched length before possibly causing damage to the hose. The feed 

hose had a safe working load of around 4.5 kilonewtons (kN) and an estimated ultimate breaking 

strength of 29.8 kN. The hose had an inside diameter of 7.62 cm and a wall thickness of 

approximately 1.60 cm in the middle compliant section. A cross-section of the feed hose 

construction, an estimated load-elongation curve and photos of its construction can be found in 

Appendices F and G.

elastic tethers
feed  hose

approx. 
North dir.

Figure 15: Compliant feed buoy mooring to SeaStation™ 600 m3 fish cage

Two pair of elastic mooring tethers were used to position the feed buoy to one side of the 

cage. This helped reduce the chance of collision between the feed buoy and cage. Each mooring 

tether consisted of two 2 Vi-cm (one-inch) diameter elastomeric members in parallel for part of 

the overall tether length from the grid comer to the buoy connection. The remaining length of 

mooring beyond the rubber tethers, was taken up by a braided marine Polysteel® rope with 

breaking strength of 89 kN. Polysteel® is an extruded copolymer fiber made of polypropylene and 

polyethylene. The stretch of this Polysteel® rope was negligible, however, since the rubber tether 

was the weakest link and extremely compliant. The force on a single elastomeric member should
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not exceed its safe working load of 890 N. More information on the quarter-ton feed buoy 

mooring and its specifications can be found in Appendices F, G and H.

Initial values and lengths for the mooring design were calculated by preliminary static 

and kinematic analyses using known site parameters and the design wave and tide conditions. 

Component lengths of the feed buoy mooring system were calculated to be slightly taut in the 

trough of the design wave at low tide and, at the same time, within the maximum operational 

limits for the hose and tethers on the crest of the design wave at a high tide. The mooring tethers 

could be made stiffer with more tethers in parallel; however, the trade-off would be reducing the 

range of motion of the buoy and greater mooring loads would be generated. Another option 

would be to shorten the length of the elastic tethers, possibly reduce slack or snapping tendencies; 

however this would increase the amount of pretension in the system and possibly damage the 

tethers when stretched to the maximum excursion of the buoy. The process of determining the 

ideal mooring tether lengths and stiffness therefore became an iterative one, where either forces 

in the system or range of motion were compromised. Finite element analysis allowed quick 

changes to the design parameters to be made, which enabled an optimal buoy mooring system to 

be identified. After evaluating several computer model predictions of the feed buoy/cage and grid 

mooring storm response, the final specifications and lengths of the feed buoy mooring system 

were determined. There were two eleven-meter mooring tethers in parallel with the remaining 

length to the buoy made of 20.1-meter braided Polysteel® rope. Details of the numerical computer 

modeling and physical wave tank testing are provided in the following sections 4.2 and 4.3.
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4.2 Finite Element Analysis

The quarter-ton feed buoy mooring design was modeled and simulations were performed 

by Oleg Eroshkin and Judson DeCew using the UNH finite element analysis program called 

Aqua-FE. The purpose of using the Aqua-FE program was: 1) to determine an optimal feed buoy 

mooring configuration and 2) to characterize its motion and forces to the system as it underwent 

average daily and design storm wave/current conditions. The Aqua-FE finite element computer 

program was developed primarily for, but not limited to, applications of the OOA project. The 

software development was described by Gosz et al. (1996) and Tsukrov et al. (2000, 2003). 

Validation studies involving comparisons between predictions, field observations and wave tank 

data were performed by Fredriksson (2001) and Fredriksson et al. (2003). The Aqua-FE model 

uses nonlinear Lagrangian formulations to account for large displacements of structural 

components, such as buoys or fish cages which are constructed of trusses and other structural 

elements. Fluid dynamic forces on structures are determined using the Morison equation, which is 

modified to represent relative motion between the element and the surrounding fluid. The 

Morison equation estimates combined fluid drag on the submerged object and the added mass of 

the object due to its surrounding entrained fluid. The Aqua-FE program had recently been 

modified to solve nonlinear equations for material behavior and motion. This was a significant 

improvement to modeling the high-stretch feed hose and elastic mooring tethers of the feed buoy 

mooring system. In building the finite element model of the feed buoy and its mooring, many 

decisions in the length, diameter and density of its comprising elements were made so that the 

computer model would have the same fluid drag, inertia and/or buoyancy as the as-constructed 

feed buoy design. Figures 16 and 17 are screen captures of the Aqua-FE finite element model.
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Figure 16: Modeling nodes in Aqua-FE
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Figure 17: Plan view of FEA model of the feed buoy/cage/mooring (left) and feed buoy/cage/mooring 
system responding to extreme storm conditions (right)

The dynamic performance of the feed buoy and various mooring designs were 

investigated for both typical daily and extreme environmental storm conditions. Average daily 

conditions were approximated to be wind waves of 1.20 meters and a 25 cm/s uniform-with-depth 

current. The extreme condition consisted of a nine-meter tall wave with a period of 8.8 seconds in 

combination with a 100 cm/s current at the surface and decreasing linearly to 25 cm/s at the 

ocean’s bottom. Again the design wave was based on wave statistics for the region in the Gulf of

33

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Maine as described by Fredriksson (1998). The current profile was inferred from measurements 

made at the OOA site, which were doubled to include a factor of safety for storm conditions. The 

modeled wave and current directions were collinear. Modeling tests were performed in 

perpendicular (from the left and right direction in Figure 17 (left)) and diagonal to the fish cage 

mooring grid

The results for the typical site conditions in Aqua-FE proved that the forces of the feed 

hose and tethers were well below their safe working levels and maintained a significant margin of 

safety. These results also showed that the position of the buoy to the cage was suitable in these 

conditions for feeding operations. And tension in the feed hose never went slack; suggesting that 

the chance of the feed hose getting kinked or forming a loop was reduced. Finally these average 

conditions tests showed that the feed hose would not stretch significantly enough to constrict the 

inside hose diameter. In larger storm conditions, it was expected that the inside diameter of the 

feed hose would constrict significantly as its length was stretched. Both of these situations had 

been a concern as they increased the risk of feed pellets becoming clogged in the hose.

In design storm conditions, the feed buoy invariably set back on the mooring due to the 

force of the current and drag of the wave’s water particles around the buoy. Once an equilibrium 

setback distance was achieved, the buoy’s motion nearly matched the trajectory path of the 

wave’s fluid particles; see Figure 18. These excessive buoy excursions induced large loads on the 

elastic tether and hose moorings. Figure 17 (right) is the same analysis of the buoy’s response to 

the design wave and current traveling from left to right on the page.
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Figure 18: Motion analysis of design wave in Aqua-FE

Maximum loads in the mooring tethers were 10.6 kN, and in the feed hose, 29 kN. This was well 

beyond the breaking strength of the tethers, by nearly twelve times, and only slightly greater than 

that of the stretch feed hose. Through more FEA testing, it was determined that increasing tether 

stiffness had no significant affect on the buoy’s movements and only further increased forces on 

the tether moorings.

Results from the finite element modeling effort indicated that the compliant mooring hose 

and tether concept, though excellent for positioning the feed buoy relatively close to the fish cage, 

was at risk for failure during large, but rare, storm events. The mooring system was sufficiently 

compliant, able to absorb large displacements; however through FEA modeling, it appeared not 

strong enough to withstand its worst-case design conditions. In view of the benefits the quarter- 

ton feeding system would have and the immediate need to feed haddock already occupying the 

SS600 fish cage, the risk of losing the feed buoy was assumed. FEA results were thought to be 

quite conservative and there was a low probability of encountering such a severe storm. It was 

further reasoned that, if the mooring should fail, the elastic tethers would break first, leaving the 

feed buoy anchored by just its feed hose. Since the feed hose was significantly stronger than the 

tethers, it was felt that unless the storm reached the conservative design conditions, the feed hose
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would likely survive the storm. The OOA project had a spare set of tethers, so that, once fair 

weather returned, the mooring tethers could easily be replaced onsite.

4.3 Physical Model Testing

To complement the computer finite element modeling effort, a 1:15.2 scale physical 

model of the feed buoy, shown in Figure 19, was built by for Froude-scaled wave tank testing. 

Froude scaling methods (see for example, Chakrabati, 1994) were used to model the buoy, its 

mooring and the environmental test conditions, which were acting on the system. FEA modeling, 

discussed in the previous section, was used to estimate the buoy’s response due to large storm 

wave and current conditions. The intent of wave tank testing was to examine the feed buoy’s 

seakeeping response over the spectrum of wave excitations as well as to provide a visual 

assessment of potential mooring problems, such as line snapping and chafing. At the 1:15.2-scale 

which the physical buoy model was built, the equivalent nine-meter design storm waves could not 

be replicated or generated by JACOE wave tank. Froude-scale physical modeling held an 

advantage over finite element modeling in that the physical modeling better represented the 

distribution of buoyancy, inertia and drag of the feed buoy. For this reason, the physical model 

was used to determine the system’s natural frequencies and other characteristics. Separate free- 

release tests for heave and pitch were conducted to establish heave and pitch natural frequencies 

and their respective damping ratios.

36

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Note: the small black squares are 

targets for the optical positioning and 

tracking system.

Figure 19:1:15.2 scale feed buoy physical model.

The buoy model and a previously built SS600 fish cage model, made by Michael 

Palczynski and shown in Figure 20, were used together for feed buoy and cage wave response 

experiments (Palczynski, 2000). The feed buoy and cage models were arranged in the wave tank 

to simulate the actual mooring configuration designs. A series of single frequency wave tests 

were carried out on the quarter-ton feed buoy and cage mooring in which the motion of the feed 

buoy was captured by a video camera. Post-processing of the video images focused on the buoy’s 

heave and pitch motions. Normalized results, presented in the form of response amplitude 

operators (RAO) or transfer functions, characterized the wave response over the wave frequency 

range.

Physical modeling experiments were conducted in the UNH JACOE 36.6 m long by 3.66 

m wide and 2.44 m deep wave and tow tank. The wave tank has the ability to generate waves 

with periods between 0.5 and 5.0 seconds and wave heights up to 36 centimeters (Michelin,

2000). Tank experiments were carried out adjacent to the side observation window, so an Optical 

Positioning Instrumentation and Evaluation (OPIE) system could view and record buoy motion.
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Figure 20: Physical modeling wave tank testing

As described by Michelin and Stott (1996), the OPIE system consists of a Pulnix® progressive- 

scan digital video camera that records images at a user-set frequency and a dedicated computer 

with frame-grabber and processing software programmed in MATLAB®. Small black target dots 

were placed on the white-painted model, and the model was illuminated with additional lighting, 

so that the black dots stood out from the lighter colored background. The software worked by 

tracking the black dots on each succeeding image. Each video recording was calibrated so the 

number of pixels could be converted to units of conventional distance. By knowing the distance 

and time, the MATLAB® program was able to calculate the displacements, velocities and 

accelerations of the tracked objects. All video images for the feed buoy experiments were 

recorded at the maximum thirty frames per second. Results of physical model testing are reported 

at full-scale values.

The free-release experiments were conducted only on the buoy model itself; that is, 

without mooring connections. For free-release tests, the buoy model was positioned 

approximately half a meter away and in front of the tank’s observation window. This distance
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was adequate for minimizing wave reflections from the buoy model to the window and back to 

the model. In heave tests, the model was raised millimeters from its equilibrium position, not 

breaking the same cross-sectional surface area, then released from rest. The model oscillated 

vertically with decaying amplitude as indicated in the typical free-release time series shown in 

Figure 21. Approximately twelve seconds of data was recorded, yielding approximately 360 

individual frames, to capture the decaying response. Pitch free-release testing was conducted in a 

similar manner to heave, except the model was tipped sideways (without changing its vertical 

elevation) and released from rest. At least three replicates of heave and pitch free-release tests 

were performed to ensure test consistency.
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Figure 21: Typical time series of free-release heave motion

Free release time series for heave and pitch were both analyzed assuming motion could 

be represented by the following linear, second order, damped harmonic oscillator equation,

x + 2£a>0x + co20x = 0 (1)
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for which x is the generic dependent variable (either heave displacement or pitch angle), C, is the 

damping ratio, and coo is the undamped natural frequency. Undamped radian frequency for heave 

and pitch may be expressed by

/V,  ̂ -  M  \B 'Sm .
\  o J  heave,pitch -tj 5 -t I r  \  )

1 %  f

respectively. In equation (2), p is the fluid density, g is the gravitational constant, S is the 

waterplane area, mv is the virtual mass, B is the buoyancy force, gm is the metacentric height and 

Iv is the virtual mass moment of inertia. Additionally, the virtual mass is defined as the sum of the 

actual mass and the added mass of the buoy. The undamped natural frequency (o0 is related to 

damped natural frequency ood according to

2n  2n  

Td a>0^ l - C

for which, Td is the damped natural period. For this linear model, the damping of the generic 

response over one period follows the relationship

=exp(CcooTd) (4)
x (t + Td)

In processing the free-release data, the damped natural period was found from corresponding zero 

crossings and the ratio of response over one period was evaluated. Equations (3) and (4) were 

then used to solve for damping ratio C, and undamped natural frequency coo- Virtual mass mv and 

virtual mass moment of inertia Iv were then determined using Equation (2). Parameters were 

averaged over the number of replicate time series, usually three replicates, and Froude-scaled up 

to full- scale values.

The heave damped natural period for the quarter-ton feed buoy was determined to be 2.35 

seconds. Since this result is somewhat shorter than the period range of the normal wave
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environment (3 to 10 seconds), wave-contouring behavior could be expected for vertical heave 

motion. The damping ratio of heave motion was 0.129, indicating moderate heave damping. The 

virtual mass was calculated to be 3,926 kg and is 192% of the actual buoy mass. The pitch 

damped natural period was 6.46 seconds putting the pitch resonance condition (buoy only) in the 

middle of the wave energy range during storms. The damping ratio of pitch motion was 0.0545 

indicating light pitch damping. The virtual mass moment of inertia was calculated to be 677 kg- 

m2. For the model, this was 198% of the actual mass moment of inertia. Results from the free- 

release experiments are summarized in Table 2. There was no attempt made to adjust heave or 

pitch frequencies by re-ballasting the buoy, since the reserve buoyancy and reserve righting 

moment attributes previously achieved were regarded as the highest priority for the buoy’s 

survivability.

Table 2: Quarter-ton buoy characteristics determined through physical modeling

Characteristic Value

Heave damped natural period, (Td) 2.35 sec

Heave damping ratio, (Q 0.129

Pitch damped natural period, (Td) 6.46 sec

Pitch damping ratio, (Q 0.0545

Actual mass, (m) 2045 kg

Virtual mass, (mv) 3926 kg

Percent of Virtual/Actual Mass 192%

Virtual mass moment of inertia, (Iv) 677 kg m2

Due to the wave tank’s width and depth limitations, the full-scaled fish cage mooring grid 

could not be modeled in the feed buoy wave response experiments. Instead, the grid comers were 

mounted to the tank walls using four wooden clamped fixtures. It was assumed that the feed 

buoy’s own dynamics would be most influenced by directly connected feed buoy mooring 

members, while fish cage mooring components, such as cage grid anchor lines, would play a 

diminished and negligible role on the feed buoy. The central spar fish cage model was anchored 

by its pendant weight to represent the cage in its submerged mode, as shown in Figures 20 and
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22. Bridle lines to the cage were connected to the grid comers; however these lines were slack 

like the actual fish cage bridle lines. The quarter-ton feed buoy model was moored to replicate the 

Figure 15 configuration with two tethers to the grid comers and an equivalently elastic feed hose 

connected to the top of the cage. Elastic string, purchased from a fabric store, was used to 

represent the tether and feed hose members. The elastic characteristics of these members were 

also Froude-scaled and carefully matched to correspond to the actual deployed feed buoy 

moorings. As an example, the effective spring constants (force/length) of the model were scaled 

to be (1/15.2)2 of the corresponding full-scale values.

Figure 22: Buoy and fish cage interaction wave tank experiments

To measure water surface elevation during wave experiments, a light, approximately 

five-centimeter diameter, Styrofoam ball, which had a small hole through it, was used as a float 

that slid along a taut, vertically-held fishing line. The Styrofoam float had a thin black stripe 

around it horizontally for tracking its motion with the OPIE system. The fishing line was 

positioned in the tank on nearly the same wave front plane as the feed buoy model when the buoy
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set back in the waves. It was presumed that conditions acting on the buoy were the same as on the 

float. Also, it was assumed that the float behaved as a near-perfect wave-follower and the fishing 

line had little to no frictional effects to dampen the float. Surface elevations, i.e. the wave 

conditions, were determined during post-processing separately from the buoy by tracking the 

float’s black strip.

Motions of the feed buoy model and the float, mentioned above, were recorded by the 

OPIE video system through the side window of the wave tank. Figure 23 contains one frame 

using OPIE, which shows the calibration circle, the wave-follower float and the buoy model’s 

two tracking targets. Regular, single frequency wave experiments were conducted at full-scale 

periods ranging from 2.4 -  14.7 seconds, thereby spanning the range of expected wave energies 

and bracketing the heave and pitch damped natural periods determined by the free-release tests. 

Experimental wave heights in the tank converted to full-scale ranged from 0.48 meter wind- 

waves to 4.80 meter moderate storm conditions.

Figure 23: Single frame of OPIE system’s tracking
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The response amplitude operator is the input/output relation of the forcing and response 

of the model either in heave, pitch or surge. RAOs are defined as:

M 0  ^

amplitudeforcing

Results for heave and pitch, normalized by dividing by wave amplitude, are shown in 

Figures 24 and 25. The heave response shows the resonance at the heave damped natural 

frequency of 0.426 Hertz with a drop-off in response at higher frequencies and wave contouring 

behavior at low frequencies. This suggests that the mooring does not significantly affect the 

buoy’s heave motions.

Pitch response, on the other hand, did not show a pronounced resonance at 0.155 Hz, the 

pitch damped natural frequency determined during free-release experiments. It was likely that the 

buoy’s mooring altered the feed buoy’s pitch response. Visual observations and analysis of the 

individual time series suggested that wave drag and inertial forces on the bucket, as well as 

mooring restraining moments on the bottom of the bucket, played a dominant role to the system. 

During the cycle of a passing wave, periodic hose slackness followed by snapping mooring lines 

was observed for all but the highest wave frequencies.
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Figure 24: Average heave response amplitude normalized by wave amplitude
(Heave RAO full-scale). Error bars indicate ±1 standard error (SE) = standard deviation / (# of replicates) 1/2.
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Figure 25: Average pitch response amplitude normalized by wave amplitude
(Pitch RAO full-scale). Error bars indicate ±1 standard error (SE) = standard deviation / (# of replicates) 1/2.
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CHAPTER 5 - QUARTER-TON FEED BUOY

CONSTRUCTION AND DEPLOYMENT

5.1 Structure Fabrication

Prior to the author’s involvement, the quarter-ton feed buoy shell was fabricated by 

Stommel Fisheries in Woods Hole, Massachusetts in the spring of 2001 (Rice et al., 2003). The 

buoy’s structure consisted of two major components: an upper and lower buoy section split by a 

flange above the waterline. This flange is shown in the schematic of Figure 10 or the photo of 

Figure 12. The upper buoy section extended from the flange to the buoy’s top deck; the lower 

section reached from the flange to the ballast container. Buoy parts were made of 5000- and 

6000-series aluminum alloys. These alloys were chosen for the feed buoy for their good corrosion 

resistance and ease of forming and welding. The two buoy sections bolted together with forty- 

eight ‘A-inch stainless steel bolts in the 1.75-meter outer diameter flange, approximately sixty 

centimeters above the waterline. The quarter-ton feed buoy has two Bomar hatches: one twenty- 

inch round hatch located on top to access the feed hopper and the other hinged 15” by 24” oval 

hatch located on the side to access the buoy’s interior. Both hatches were cast aluminum and 

watertight using four-dogs to compress the hatch’s seal against its aluminum frame.

The lower buoy section had the single access hatch to enter inside the buoy. Space inside 

the quarter-ton buoy was tight. The feed pipe and equipment used to dispense feed were located 

directly in the center of the buoy. Distribution and circuit panels were mounted between the 

framing of the buoy structure. A pressure cylinder, which contained the buoy’s onboard MCU 

computer and its own batteries, was strapped in vertically to the framing. Any free space inside 

the buoy was filled blocks of cut-to-fit Styrofoam billets, which were used as reserve buoyancy in 

case the buoy flooded. To keep the blocks in place, they were individually strapped between the

46

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



buoy’s frame sections using nylon webbing. Across from the access hatch on the deck floor was 

the bilge well, a built-in lowest spot to collect water inside the buoy. The discus shape at the base 

of the hull was salvaged from an old discus buoy. A void beneath the deck floor to the hull was 

pressurized and capped for additional buoyancy. A pressure gauge was added to monitor the 

pressure within the void cavity. If the pressure changed in this void, it could indicate a leak in the 

buoy and the buoyancy of this cavity would be lost.

The main spar of the buoy was the 0.610 meter (24-inch) pipe from the main body of the 

buoy to its base. Besides being structural for the buoy, the spar held the feed pipe, which 

transferred the feed from the buoy’s interior down to the feed hose connection. The spar was 

otherwise an empty void. At the base of the spar was a ballast container. This one-meter round 

compartment was divided into four sections to hold ballast in the form of lead bricks. The volume 

of the ballast containment was built to hold at least 750 kilograms of rubber-coated lead ballast.

The upper buoy housed the feed hopper cradled by a bolted aluminum-angle frame. 

Access to the feed hopper was located in the center top deck of the buoy. This 20-inch round 

hatch was the only access to the feed hopper. The wind generator mast slid into a welded post and 

was through-bolted to keep the wind turbine in place (see Figure 12). Solar panels were mounted 

in a frame that was bolted to welded pad-eyes on the top of the buoy. Since the solar panels 

extend over the edge of the buoy, a frame was built around the solar panels to protect them from 

possible collisions and damage from support vessels. Four cleats were spread across the top deck 

of the buoy to tie-up vessels. Also on the buoy’s deck was an inverted snorkel vent to allow air 

exchange/ventilation within the buoy’s interior.

5.2 Installation o f Internal Components

Internal components of the buoy consisted of multiple mechanical and electrical systems 

as shown on Figures 10, 11 and 14. Refer back to section 3.1 for a description of the mechanical 

systems, including all feed system components and bilge pumps. Installation of most internal
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components was done at the UNH JACOE laboratory prior to being deployed at sea. The quarter- 

ton feed buoy was small enough that it was placed in the JACOE deep tank and floated most of 

its time at UNH. Feed systems were fit-up inside the buoy, and if necessary tested to ensure 

proper operation. Prior to leaving JACOE, all feed systems were removed. This was done to 

prevent any damage while in transport, either on the road for eighteen kilometers or in the water 

as the buoy was brought thirteen kilometers to the OOA site. Once the feed buoy was moored at 

the OOA site, all systems were re-installed.

The electrical systems, outlined in sections 3.2 and 3.3, included the MCU single-board 

computer, the 24-volt battery banks, power generation equipment, two radio telemetry systems 

and all power control and distribution systems. The MCU computer and other circuit boards were 

built and tested at WHOI, then assembled into the waterproof pressure cylinder or watertight 

circuit panel cases arranged and built at UNH. Other electrical work conducted at UNH JACOE 

included routing all the wires and cables, installing the proper connectors, making penetrations 

through the buoy to pass cables and ensuring their watertightness, and then finally testing the 

systems. Like the mechanical systems, the electrical equipment was installed in JACOE to ensure 

proper fit and function, but for the most part, all the electrical components were removed again 

for transport.

5.3 Deployment

Deployment of the refurbished quarter-ton feed buoy began the first week of January 

2003. The feed buoy was loaded on a flat bed trailer at the JACOE building and was driven to the 

NH Port Authority under the Sarah Long Route 1 Bypass Bridge. With a hired crane service, the 

buoy was lowered from the pier to the stem of UNH’s R/V Gulf Challenger. The flotation collar 

of the buoy doubled nicely as a bumper between the hull of the Challenger and the buoy. After 

safely rigging the buoy for transport, the feed hose was bolted to the hose flange at the base of the 

buoy. The remaining feed hose was coiled and lashed onboard for the duration of the tow.
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Installing the hose was done pierside in order to spare one task that needed to be performed at 

sea.

On January 8, 2003, the quarter-ton feed buoy was brought to the OOA site for 

deployment, field testing and feeding operations. Full deployment of the buoy entailed 

transporting the buoy to the site, connecting its feed hose to the cage and the two mooring tethers 

from the buoy to the grid comers (see Figure 15), installing the internal equipment necessary to 

operate the buoy, and then installing the external equipment, including antennas, solar panels and 

the wind generator. Because it was the winter season with generally rough seas, it took 

approximately seven weeks to complete all of these steps.

The first day of deployment had an early start to get the buoy to the southern haddock 

cage and connect it to its mooring before the afternoon winds picked up. The R/V Gulf 

Challenger held position over the southern cage as the feed buoy was released from its stem. The 

feed hose was cut free from its lashings and divers took the free end of the hose to the top of the 

cage. The feed hose absolutely had to be connected first, because it was the main, and least 

compliant, part of the mooring. It was also necessary to attach the feed hose relatively close to 

low tide, due to the high spring constant and large tension it would take at high tide to get the 

feed hose attached. Predicted low tide at the nearby Isles of Shoals’ Gosport Harbor was 8:52 AM 

and high tide was 3:06 PM. Sunset was around 4:25 PM. Three divers brought the feed hose to 

the top connection on the submerged fish cage. Two divers muscled the hose in the general 

direction needed, while the third diver attached a come-along winch to bring the two bolted 

flanges together. Four 5/8-inch stainless steel bolts were used to finish the connection. After the 

feed hose was connected, the two elastic mooring tethers were connected to the respective 

northeast and southeast grid corners as shown in Figure 15. Compared to the feed hose, 

connecting the tethers was accomplished with relative ease. Again the come-along winch was 

used to draw the tethers to the grid comer shackle connections.
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Once the buoy was on its mooring, the focus shifted to installing the two large batteries. This was 

the first priority, so that the bilge pumps could run if needed. As expected, the seas had picked up 

in the afternoon, so that the R/V Gulf Challenger could not get close enough to the oscillating 

buoy for fear that it could strike the boat or someone aboard. It was unsafe to pass the buoy’s two 

32 kg batteries from the Challenger. To get the batteries to the buoy, the Challenger’s inflatable 

Zodiac was put in the water and was able to safely ferry the batteries and equipment to the buoy. 

The batteries were installed and connected, so that the bilge pumps could run overnight, if 

necessary.

The second day of deployment focused on installing the feed equipment and antennas.

The feed equipment was installed rather quickly in the morning; however the buoy would not 

fully run until the antennas for communication were connected. Note that individual components 

of the buoy could be operated from inside the buoy, but in order to operate the control system 

inside the pressure cylinder, communications must be made. The small Garmin GPS antenna was 

first to be installed, approximately two thirds up the mast. Next to be installed was the multi­

spectrum radio antenna. This was the antenna necessary for buoy communications. Figure 26 

shows the author installing a directional video antenna, which sent the video signal to a similarly 

looking receiving antenna at the Seacoast Science Center (SSC) in Rye, NH. However, due to 

increasing seas in the afternoon, that was all that was accomplished onsite that day. Installing 

solar panels, wind generator, telemetry, GPS and video relay antennas all occurred onsite.

On subsequent trips to the feed buoy, the feeding system installation was completed and a 

few bags of feed were added to the hopper. At this point testing of the feed system began. Divers 

around the fish cage reported that feed pellets were making their way through the feed hose and 

to the fish in the cage. Because of recent rough seas, the fish had not eaten in some time. 

Following this success, the feed hopper was filled with approximately eight bags, approximately 

200 kg, and daily, remotely-operated feeding cycles began.

50

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Figure 26: Installing the directional video antenna

Again, due to the season’s weather, it was weeks before the seas were calm enough to 

install the buoy’s solar panels and wind generator. In the meantime, the underwater video 

cameras had been mounted inside the fish cage. Though the video signal did not reach the shore 

as planned, the video was useful to have available when at or traveling to the OOA site. Because 

divers usually frighten the fish, the cameras were able to monitor the haddock’s behavior, 

particularly during feeding. This allowed the fish biologists to determine when the fish were done 

eating, so that wasted, uneaten feed was minimized. From this information the feeding cycle of 

the buoy was changed. Because the project did not have the Gulf Challenger scheduled on the 

day the seas calmed down, OOA project’s Bluefln jet boat was used to install these last remaining 

parts. Figure 27 is a photo of the completed buoy and the Bluefin taken later in the spring. Once 

the solar panels and wind generator were both installed, the deployment of the quarter-ton feed 

buoy was complete. At sea field trials began.
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Figure 27: Deployed quarter-ton feed buoy and UNH support vessel, Bluefin
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CHAPTER 6 - QUARTER-TON FEED BUOY

FIELD TRIALS

6.1 Field Trials

Prior to the installation of the solar panels and wind generator, the feed buoy had already 

begun feeding the haddock in the submerged cage. However, without the energy generating 

equipment, the buoy’s batteries were unable to automatically recharge. At this point most systems 

were performing as they were intended. Within one month of deployment, before the power 

generating equipment could be installed, a winter storm unfortunately coated the feed buoy with a 

thick and heavy layer of ice. The added weight of the ice and a damaged hatch, mentioned later, 

caused the feed buoy to take on water, and it slowly began to sink. The severity of the freezing 

spray ice and its affect on the feed buoy is shown in Figure 28 (left). Ice around the exterior of the 

buoy blocked the bilge water outlet, so that any seawater that had entered the buoy had no way of 

being pumped out.
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Figure 28: Freezing spray on the feed buoy

Freezing spray had never been observed on the first deployment of the quarter-ton feed 

buoy. The ice and its effect on the buoy had been unanticipated and therefore had not been 

designed for. Frozen seawater adds a significant amount of weight, particularly above the buoy’s 

center of gravity. If compounded by a full feed hopper and a leaky hatch or blocked bilge water 

outlet, the risk of losing the feed buoy is increased. The feed buoy’s righting moment and its 

newly installed flotation collar were instrumental to the buoy’s survival. With the flotation collar 

fully submerged, the buoy was not taking on any more seawater and was not sinking any further. 

The buoy had reached equilibrium. A gasoline-powered trash pump, the same used to feed the 

fish from the surface hose, was used in reverse from the support vessel to draw the water out.

Water inside the buoy had shorted the batteries and damaged other electrical components. 

When both batteries were replaced and the electrical circuits were fixed, the feed buoy seemed to 

be back in operation. However, increased humidity inside the buoy, due to the intake of seawater, 

caused the feed inside the hopper to become clumped together and form a rather solid mass. This 

was evident when disassembling the drum feeder’s dispensing cups as shown in Figure 29. The
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cups had become clogged with moistened feed that had turned into a thick paste. The contents of 

the feed hopper had to be shoveled out of the buoy through the top access hatch.

Figure 29: Clogged feed dispenser cups (left) and broken feed hose flange bolts (right)

When the multiple problems, all originating from the freezing spray, were fixed, the feed 

buoy resumed operation to provide feed pellets to the haddock in daily feed schedules. Regular 

nourishment was beneficial to the growth rate of the fish, which would be paramount for an 

actual commercial aquaculture venture (Chambers, 2003). Use of the quarter-ton feed buoy 

reduced the urgency and frequency of trips to the OOA site. Manual feeding was, however, still 

necessary for the halibut in the northern fish cage. Though the UNH OOA research site had 

perimeter buoys with radar reflectors to mark the comers of the site, the feed buoy established a 

significant presence to the aquaculture site. The location of the submerged southern fish cage was 

clear by locating the feed buoy. Without these surface buoys, the submerged fish cages would go 

unnoticed, though the site’s location was published in the Notice to Mariners.

Five months into the feed buoy’s operation at the OOA site, termination splices on the 

mooring tethers leading northeast, the dominant storm direction, were found to be overstretched, 

see Figure 30. The southwest tethers, for the most part, were undamaged. These mooring tethers 

had been in-use from January 8th, 2003 to June 10th, 2003 - a period of 153 days. The condition of 

the damaged tethers was discovered, prior to failure, when the feed buoy was taken off its
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mooring for the four-cage grid mooring expansion. Figure 30 shows a pair of tethers; the photo 

on the left is the northeast mooring and the photo on the right is the southeast mooring. The other 

ends of the tethers were in similar condition. The curling of the northeast tethers shows that the 

splice termination had slipped around the eye thimble, causing the curling effect. This is a telltale 

sign of the tether being overstretched. Built by David Wyman of Buoy Technology Inc., the tether 

splices were made by Scotch®-gluing the tethers around the thimble, then wrapping the splice 

with a heavy adhesive tape, similar in appearance to an electrical tape. The damaged feed buoy 

tethers were built properly, but they had simply been stretched greater than they were meant to. 

Since a spare full set of tethers was available at JACOE, the damaged tethers were replaced with 

new tethers and monitored for signs of overstretching.

Figure 30: Examples of the NE mooring terminations (left) and SE terminations (right)

Other difficulties in the field, which did not affect feed operations, included broken feed 

hose flange bolts, a damaged access hatch close to the waterline and a persistent grounding 

problem in the buoy’s charging circuit. The broken feed hose bolts were caused by approximately 

one year’s worth of cyclic wave loads on the 5/8-inch, 316 stainless steel bolts. These bolts 

fastened the feed hose flange and fish cage flanges together. Figure 29 (right) contains a photo of 

the four flange bolts. It appeared that two locknuts had backed off and stripped the last remaining 

screw threads on the pair of bolts on the left. Once one side of the flange was not held together,
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the other pair of bolts broke due to bending at their weakest spot, the transition between the 

thread and unthreaded shaft diameter. No damage to the feed buoy, the fish cage or the feed hose 

was caused by the hose separation. This issue was corrected by installing tougher coated marine- 

grade steel bolts of the same diameter as the previous softer stainless steel bolts. These fasteners 

may, however, be an item that needs to be periodically inspected and maintained.

The problem with the feed buoy’s damaged hatch was caused by a bullet, which created a 

significant dent in the hatch. The bullet’s impact near an edge warped the aluminum hatch, 

making it no longer watertight. This was the buoy’s single access hatch, which happened to be 

very close to the waterline. Waves slapping on the hatch was common, a near daily occurrence, 

and seawater entered the buoy. The amount of incoming water was small; however, this put a 

greater and unnecessary demand on the bilge pumps and the electrical and charging systems. It is 

assumed that the feed buoy was shot by a passing boat because it made a good target and not out 

of anger towards or in protest to the UNH OOA project.

Finally, the problem with the feed buoy’s charging circuit took some time to diagnose 

and correct. A slow drain of the buoy’s batteries destroyed one set of batteries by drawing their 

core charge below the batteries’ ability to recover and maintain a charge. This electrical drain was 

likely caused by the battery charging circuit for the wind and solar generators, which was not 

detecting the correct incoming voltage. This, and possibly stray electrical currents, prevented the 

circuit from charging the buoy’s batteries properly. Once the problem was pinpointed to the 

battery charging circuit, the circuit was replaced and the problem was solved.

GPS data from the feed buoy was averaged and broadcasted back to shore every hour. 

Figure 31 shows these hourly GPS positions over a thirty-day period. The quarter-ton feed buoy’s 

mean equilibrium position was determined to be 42° 56.547’ North and 70° 37.844’ West and a 

watch circle of around twenty meters was estimated. Outlying data may be explained by severe 

weather events and/or erroneous GPS signals for example. This information could be used to
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quickly inform researchers onshore whether the buoy’s mooring tethers or the feed hose had 

come loose in the event of a failure.
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Figure 31: Buoy's watch circle from GPS positions over a 30-day period

Ultimately the quarter-ton feed buoy proved to be a valuable asset to the OOA program, 

because the buoy provided regular and metered amounts of feed to the caged haddock with less 

time and effort by the OOA operations staff or project members. In the height of the busiest 

feeding schedule for the SS600 cage, when the fish were grown and the water was warm, the feed 

buoy’s hopper had to be refilled at least once a week. However, despite its small feed capacity, 

the quarter-ton feed buoy saved valuable time and expense by feeding the fish remotely. Based on 

this successful design, a larger one-ton capacity feed buoy and feeding systems were developed.

Buoy Motion from GPS
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CHAPTER 7 - ONE-TON FEED BUOY

GENERAL DESIGN

7.1 Design Rationale and Criteria

A second, larger research feed buoy was designed in the spring of 2003 specifically to 

feed thirty-five thousand young cod fish in a new and also larger submerged SS3000 fish cage. 

The immediate need for this larger buoy was driven by hungry fish already purchased and 

contained in a nursery pen within the cage. The nursery is simply finer netting lashed inside the 

cage to prevent the young fish from escaping or gilling themselves in one-inch-square fish cage 

netting. From the feed buoy’s initial design conception to its at-sea deployment, this feed buoy 

and internal systems were prepared and built in less than a single year. All together the feed buoy 

system consisted of a surface feed buoy, its moorings attached to the fish cage mooring grid 

corners, a feed transfer hose to the cage, industrial-sized feed dispensing equipment, and 

telemetry and control systems. It had been specified that this feed buoy be similar in design and 

operation to the quarter-ton capacity feed buoy, which had been proven to be a key improvement 

to consistent offshore submerged cage feeding. Design rationale and criteria for this buoy match 

those discussed in Chapter 2 for the quarter-ton feed buoy. The general design of the larger feed 

buoy was to increase the overall dimensions and scale of the quarter-ton feed buoy, and hence, 

increase its feed storage capacity. The hopper in the new feed buoy had a capacity of over two 

thousand pounds, and hence, became known as the “one-ton” feed buoy.

One major change to the feed buoy’s design was the onboard diesel generator, which was 

a necessity due to the system’s increased power requirements. It would have been nearly 

impossible to generate enough power via solar or wind generators and then store the DC power in 

large enough batteries. With the exception of a rotary airlock feed dispenser and two seawater
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pumps, all the buoy’s equipment was powered by 24-volts, similar to the quarter-ton feed buoy. It 

was also planned that the new one-ton buoy would serve as a platform for other aquaculture- 

related research, including an acoustical fish tracking system to monitor fish biology. The 

increased space inside the buoy would serve as a work and storage area for these projects. The 

one-ton capacity feed buoy described here can be regarded as the second buoy in a series of feed 

buoys under development as the UNH OOA project progresses towards a commercial scale.

7.2 Design Configuration

The external appearance and dimensions of the one-ton feed buoy are shown in Figure 32 

(left). The internal arrangement of the feed hopper, dispensing equipment, diesel generator, 

seawater pumps and other internal systems are illustrated in Figure 32 (right).
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Figure 32: General schematic of one-ton feed buoy’s external (left) and internal (right) features

6 0

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



The main compartment of the buoy consisted of a 2 '/2-meter diameter cylindrical body 

approximately five meters tall. This cylindrical body was split into two parts; the lower section 

made of steel, and the upper section made of aluminum. Plain carbon steel plate and angle was 

used for the lower buoy section, because it was less expensive than aluminum, more durable and 

its heavier weight down low lowered the buoy’s center of gravity. Aluminum was chosen to make 

the top of the buoy, primarily because it was lighter weight and had good corrosion resistance. A 

6000-series aluminum-alloy was used again because it was easy to form into curved buoy shapes 

and it had good machining and welding characteristics. Two access hatches on opposite sides of 

the aluminum cylinder allowed entry to the inner workings of the buoy. [Two hatches were also 

installed for safety should the diesel generator catch fire or to ventilate the buoy.] Again a single 

hatch centered on the top deck of the buoy was used solely for filling the feed hopper.

One important difference between the one-ton buoy design and the quarter-ton buoy was 

the removal of the large diameter center pipe. This pipe on the quarter-ton feed buoy was a sealed 

empty void, which undesirably lowered the center of buoyancy of the buoy. On the one-ton 

design, this pipe was removed and replaced by four small diameter pipes, which again connected 

the buoy to the ballast container.

Hydrostatic calculations were done again in MathCAD® and are shown in Appendix I. 

The buoy design was such that the center of gravity was significantly lower than the center of 

buoyancy, offering a substantial 1.20-meter metacentric height. Table 3 lists the principal 

dimensions and weight for the one-ton capacity feed buoy.
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Table 3: Principal dimensions and hydrostatic characteristics of the one-ton feed

Characteristic Value

diameter 2.2 m
overall height 

(not including antennas and ven t p ipe)
10.1 m

Fully-loaded draft 6.37 m
minimum draft

(w /o  consum ables feed  and fuel)
5.55 m

material of lower buoy section Steel

mass of lower buoy section 2,380 kg

material of upper buoy section Aluminum

mass of upper buoy section 465 kg

max. feed capacity 1,100 kg

mass of ballast 1,810 kg

overall mass 7,530 kg

metacentric height 1.20 m

ratio of feed capacity/overall buoy mass 14.6 %
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CHAPTER 8 - ONE-TON FEED BUOY

INTERNAL SYSTEMS

8.1 Feed Storage, Dispensing and Distribution

The description of feed storage and distribution will follow the sequence that feed pellets 

undergo from entering the buoy through the top feed access hatch to finally reaching the 

submerged fish cage. The feed hopper, cradled by a bolt-in aluminum frame shown in Figure 33, 

was located in the top portion of the buoy. This was done again to keep feed storage well above 

the waterline, in an attempt to keep the feed as dry as possible. Access to the feed hopper was 

strictly through the center hatch on the top deck of the buoy. Opening this hatch revealed a 

second plastic hatch below it, which was part of the COTS polyethylene feed hopper. COTS 

hoppers available did not possess ideal dimensions to fit into the feed buoy, so modifications 

were made to an ACE Roto-Mold feed/grain hopper. A CAD drawing of the hopper before 

modifications is shown in Appendix J.

The height of the hopper purchased, was too large for the space available in the buoy. 

Approximately 1.80 meters was removed from the height of the hopper’s center. The two parts of 

the hopper were plastic-welded back together on both the inside and outside. And since the COTS 

hopper came with only a side access hatch, an additional threaded hatch and hatch ring was added 

to allow on-center access to the hopper. The feed hopper held a maximum of 1,225 kg (approx. 

2,700 lbs) of feed pellets. It should be noted that initially feed pellets were loaded by hand 

through the feed access hatch on the top of the buoy. Thirty-two kilogram bags of feed were 

heaved by hand from a support vessel to the top of the buoy, where the receiver would slash open 

the bags to empty the contents into the hopper. This was not an easy task, due to the height of the 

buoy off the water and the weight of the feed bags. This loading procedure was only to be
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temporary since a specially-made cyclone decelerator was being built, which would convey feed 

pellets from the support vessel to the buoy via high-velocity air blowers. A MiniMo™ acoustic 

level sensor was used inside the feed hopper to estimate the amount of feed remaining without 

having to be onsite or opening the hatch. This sensor measured the distance from a known 

position above the feed, then using a formula for the geometry of the hopper, the amount of feed 

pellets in kilograms was determined. This data was relayed to shore as part of the feed buoy’s 

hourly data transmission.

manual 
knife valve

hopper framing

1/ 2 -hp motor on 
rotary airlock

rotary airlock

Figure 33: Upper feed assembly

Components in the upper feed assembly included: the feed hopper, a manual crank knife 

valve and a rotary airlock with its own '/^-horsepower (hp) motor, which dispensed discrete 

amounts of feed from the hopper. The upper feed assembly parts were suspended by the hopper 

frames. Immediately below the feed hopper was a six-inch manual knife valve. This maintenance 

valve was used to keep feed pellets in the hopper when disassembly of components below the 

knife valve was necessary, either to clear a clog or for routine cleaning. The knife valve operated 

by manually turning its handle open or closed. Although not originally in the feed system design,
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the knife valve could be left partially open to reduce and regulate the flow of pellets into the 

rotary airlock.

The rotary airlock was suspended beneath the manual knife valve. This industrial, six- 

inch round rotary airlock was made by the Prater Corporation. The airlock valve served two 

functions: 1) to dispense discrete amounts of feed from the hopper and 2) to seal feed in the 

hopper from seawater backing up in the feed assembly. Experience from the quarter-ton feed 

buoy showed that any moisture on the feed pellets turned it into a thick pasty substance that 

would easily clog the hopper and other moving parts. The rotary airlock was made of cast 316 

stainless steel material to handle the harsh saltwater environment inside the buoy. A Vz hp direct 

drive motor on the rotary airlock drove the eight vanes contained within the airlock housing. The 

rotary airlock and its motor are shown in both Figures 33 and 34. Information and specifications 

on the Prater Industries rotary airlock can be found in Appendix K.

Prater Industries 
rotary airlock

mixing cham ber

flex h ose  to ball valve 
(not show n below)

Figure 34: Lower feed mixing chamber
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The rotary airlock’s eight vanes rotate a constant ten revolutions per minute (rpm). 

Through experiments in the JACOE laboratory, this rotation yields approximately eighteen 

kilograms per minute. A variable speed motor controller for the rotary airlock was an optional 

accessory; however similar to the Arvo-Tec feeder, dispensing the desired amount of feed would 

be regulated by varying the duration of one feeding cycle. Accelerating the feeding cycle was not 

an option, since dispensing feed too rapidly could potentially produce a clog somewhere in the 

system, requiring a special trip to the buoy to clear the clog. Underneath the rotary airlock valve, 

the feed dropped into a specially-built stainless steel mixing chamber. As its description suggests, 

the mixing chamber was used to mix feed pellets with seawater prior to being pumped through 

the feed pipe and hose. Seawater was forced into the mixing chamber by two centrifugal pumps, 

which were piped together in parallel. These centrifugal pumps were mounted to a Vi-inch PVC 

plate, which was bolted to the subfloor of the buoy. The pumps had a constant supply of seawater, 

which was drawn from nearly one meter below the buoy’s waterline. Having a steady supply of 

water was necessary since these were not self-priming pumps. More information about these 

centrifugal pumps can be found in Appendix L. The water-and-feed slurry then travel down 

through the flex hose and ball valve. The flex hose was used to align and join the feed assembly 

to the buoy’s lower steel pipe. The electrically-actuated Hayward ball valve was the same as the 

quarter-ton feed buoy’s ball valve. After the ball valve, feed continued through the buoy’s center 

feed pipe and then into the one hundred meter long feed hose. An advantage to this feed system 

design over the quarter-ton feed buoy design was that feeding occurred continuously versus in 

slugs or small batches like the other buoy. This was due to the rotary airlock and mixing chamber 

being higher above the waterline that the dynamic pressure head did not reach as high. More 

information and discussion on the one-ton buoy’s feed hose is mentioned in section 9.1.

Other non-feeding equipment inside the buoy included two 24-volt bilge pumps made by 

ITT/Rule Industries. The primary bilge pump had a maximum flow rate of 1500 GPH and was 

able to automatically detect the presence of water without the use of a float switch. This was
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accomplished by computerized operation which sensed the resistance of the impeller if water was 

present. The second bilge pump did require a float switch and was backup to the primary bilge 

pump should it fail or its filter clog. This backup bilge pump had maximum flow rate of 2100 

GPH. Both bilge pumps were hose-clamped to a stud in the base of a thirty centimeter square 

bilge well. The bilge well was intentionally the lowest spot in the buoy to collect water and/or 

other debris. Once enough water was present in the well to start either bilge pump, water was 

forced through an inline check valve, which was necessary to prevent reverse flow through the 

second bilge pump. After the check valve, water was forced up nearly two meters vertically 

through a flexible PVC hose and out the side of the buoy through a pipe coupling. The bilge 

outlet was intentionally lower than on the quarter-ton feed buoy to prevent freezing spray from 

blocking its outflow.

Ventilation inside the buoy was a major safety concern because of the diesel generator 

and battery charging taking place inside. Air exchange was supplied either by two two-inch 

snorkels on the top deck of the buoy or by the hatches left open when personnel were present. 

Attached to the inside of one snorkel end was a Rule Industries 12-volt ventilation blower. On the 

other end of the blower was a three meter long flexible vinyl duct hose used to draw air from 

lower inside the buoy to the outside. This blower was controlled manually by a switch inside the 

buoy. More information on the bilge pumps, mentioned above, and the ventilation blower can be 

found at: http://www.rule-industries.com/.

8.2 Power Supply

As previously mentioned, power for the one-ton feed buoy was provided primarily by its 

own onboard diesel generator. A Northern Lights five-kilowatt generator supplied 220-volt AC 

power (or less, if necessary) to run the rotary airlock and seawater pumps as well as to charge the 

buoy’s battery bank. Figure 35 shows a photo of the installed diesel generator. The buoy’s
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batteries powered all the remaining 12- and 24-VDC equipment, including the ball valve, bilge 

pumps, lighting and ventilation. These batteries were again two 12-volt, 105 amp-hour, AGM 

type batteries from West Marine, which were connected in series to produce 24-volts.

Figure 35: Northern Lights 5 kW diesel generator

Since the generator ran on diesel fuel, a custom fuel tank was built into the structure of 

the feed buoy. The tank held just under eight hundred liters (around 210 gallons) of diesel fuel 

when filled. Two different methods were used to estimate the volume of diesel remaining inside 

the tank. The first used a MiniMo™ acoustic level sensor, which measured the distance from the 

sensor to the surface of the diesel. Since baffles were installed inside the tank, a relatively 

accurate estimate was made. This data was sent to shore via the buoy’s hourly data transmission, 

so the level of diesel fuel could be determined remotely. The second method for determining the 

tank’s level was through a clear PVC hose used as a sight-gauge.

The diesel generator selected was a water-cooled generator versus an air-cooled 

generator, because water-cooled was quieter and, with the abundant amount of cold seawater 

available, it would be a more efficient method for cooling the engine. Stommel Fisheries came up 

with the idea to use the buoy’s “legs”, its four pipes supporting the ballast container, to chill the 

generator’s cooling water. Two of the buoy’s legs were joined inside the ballast container by a
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two-inch steel pipe. Warm water exiting the generator traveled down one leg of the buoy and 

would return up the other leg and back to the generator. Cooling fluid was half antifreeze and half 

freshwater for a total volume of approximately 200 liters (55 gallons). A small expansion tank 

was installed above the generator to keep a supply of cooling fluid present and to provide a 

volume for the fluid to expand as it heated up. It was estimated that, if the generator’s coolant 

pump ran constantly, it would take just over one hour for cooling water to complete one cycle. 

This was deemed more than adequate time to cool the fluid. The exhaust of the generator was 

discharged from a flexible metal exhaust hose and pipe out the side of the buoy through a pipe 

coupling. Outside a stainless pipe exhaust pipe rose vertically above the top deck of the buoy. To 

prevent rainwater from entering the exhaust pipe, a 45-degree elbow was installed and the pipe 

end was undercut similar to many working boat exhausts. The interior exhaust piping was 

wrapped and taped with high-temperature resistant cloth to prevent anyone inside the buoy from 

getting burned by accidentally touching the pipe. For more information on the Northern Lights 

generator refer to Appendix M.

8.3 Control and Telemetry

Simultaneous to the effort of designing and building the one-ton feed buoy structure, 

Stanley Boduch, Jim Irish, as well as some WHOI staff, were working on the feed buoy’s control 

and telemetry systems. Stanley Boduch was the primary designer and builder of the buoy’s 

electrical systems, while Jim Irish and WHOI specialized in building the PLC unit and 

programming it to function and control other systems as desired. It was obvious adding the diesel 

generator for power also added new complexities to the control and electrical system of the buoy. 

For the quarter-ton feed buoy electronics, the feed programs were completely passive, meaning 

various aspects of operation did not have to satisfy specific conditions before proceeding with a 

different operation. For example, the seawater pump in the quarter-ton buoy did not check to see 

whether the ball valve was opened or not, prior to operating the pumps. This type of control,
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though simpler, was impossible to implement in the one-ton feeding system. This was mostly 

because the system had to be sure the generator was running before trying to operate the rotary 

airlock, for example. More data had to be acquired from multiple subsystems and analyzed 

properly in order to respond to various conditions that may exist. Incorporating this kind and 

amount of control into the system was one of the greatest hurdles to the design of the new control 

system.

In addition to the added complexity of the system, more safety precautions had to be put 

in place to keep its operators safe, since the generator was capable of producing voltages in 

excess of 240-volts AC. Such safety precautions include emergency shutoffs, accurate current- 

limiting circuits, wiring that complied with the 2003 National Electric Code (NEC), interior 

lighting, ventilation and a fire extinguisher. If a safety problem arose in the buoy, i.e. a circuit 

breaker tripped or an emergency stop was activated, this information was logged by the internal 

MCU computer and telemetered to shore. This allowed for a quick diagnoses and response if 

something in the buoy needed to be repaired.

The control system was designed and built to be modular. Due to the limited opening of 

the buoy’s hatches, electrical panels were sized to be able to fit, forcing the electrical system to be 

split into multiple smaller boxes and panels. A waterproof pressure cylinder, shown in Figure 36, 

was used again to house the Persistor CF-2 MCU and its own internal batteries, in case the buoy 

lost its other power supplies. The Persistor CF-2 controlled and acquired data from all subsystems 

and was interfaced to shore via 900 MHz, RS-232 spread-spectrum radio transceivers.
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Figure 36: Pressure cylinder assembly

Five circuit panels, shown below in Figure 37, were built and installed onto flexible 

Unistrut® connectors. The panels were as follows: 1) a data acquisition/control panel for 

acquiring and multiplexing all data and control information back to the pressure cylinder; 2) a DC 

distribution panel for control and distribution of all 12 Volt power along with diagnostic 

interfacing to relay information back to the data acquisition panel; 3) an AC distribution panel for 

control and distribution of all high voltage AC power again containing more diagnostic 

interfacing; 4) a generator control and data acquisition panel to control and acquire detailed 

information about the status of the generator; and 5) a battery charging panel to keep the 12-Volt 

battery banks charged. The electrical system has three isolated battery banks to keep its 

subsystems functioning independently, if one should fail. Additionally, the system has been pre­

wired for the addition of cage lighting and a host of biological monitoring equipment.
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Figure 37: Clockwise from top left: 2 of 5 circuit panels and pressure cylinder, electrical system 
undergoing pierside testing, AC distribution panel, and generator control/acquisition and battery

charging panels

The telemetry system allowed for full control and acquisition of all data from the buoy. 

Its manager had the ability to choose which days and hours they wanted the buoy to feed and to 

vary the rate at which the fish were fed. The control and telemetry system were developed to 

complement a web-based control center that allowed engineers/technicians, managers and certain 

personnel to be able to monitor and control every aspect of the operation.
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CHAPTER 9 - ONE-TON FEED BUOY

MOORING SYSTEM AND WAVE RESPONSE

9.1 Mooring Design and Motion Range Analysis

The one-ton feed buoy was designed and built specifically to feed the new, larger 

submerged SS3000 fish cage, which at the time contained cod fish. The newly submerged four- 

cage grid mooring, shown below in Figure 38, would be used to moor the one-ton feed buoy, 

rather than mooring the feed buoy on its own anchors. This was decided because of the cage 

mooring’s robustness and also for simplicity to minimize crossed or chafing mooring lines. Two 

different mooring designs for the one-ton feed buoy were investigated: 1) one concept with two 

high-stretch mooring tether-hoses, designed in collaboration with WHOI and 2) a second 

contingent configuration with two high-strength inelastic mooring lines each with a concrete 

center-weight to restore the buoy to its equilibrium position.

SHOT-S'TL'#,
C r q m  U n *  1 >— a — i nmgmmm SSi

Figure 38: Expanded four-cage grid mooring system
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The stretch tether-hose mooring design used two equal length, rubber tether-hoses, 

similar to the feed hose used for the quarter-ton feed buoy, to moor the one-ton feed buoy. The 

actual feed hose for the one-ton buoy would run slack from the buoy to the fish cage and would 

only provide mooring restraint in the most severe of conditions. The ideal position for a two-point 

mooring design was thought to be directly over the western submerged grid line of the new 

SS3000 cod cage, which the feed buoy would be supplying. Again this was to minimize the 

length of the feed hose to reduce the chance of the hose becoming clogged. The lower end of the 

buoy’s mooring tether-hoses would connect to the grid comer junctions, shown in Figure 39, 

where submerged grid comer buoys are located. The mooring tether-hoses were designed to have 

an unstretched length of 14.6 meters with the remaining distance to the feed buoy, roughly 18.8 

meters, made of high-strength, one-inch Yalon® rope.

Note: top of cage approx. 
10 m below the surface

rope

feed hose

SWmooring hose

Figure 39: Elevation view of the elastic hose mooring concept

The elastic mooring tether-hoses were designed to stretch up to 32.3 meters before damaging or 

possibly breaking the mooring hose. This was 220% of the tether-hose’s original 14.6-meter 

unstretched length. To prevent possible overstretching of the hose, in the case of the most severe 

storm conditions, the interior void of the tether-hose, a five centimeter inner diameter, would be 

packed with a 3/8-inch Vectran® rope. This high-strength, 12-strand rope would have a length of
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precisely thirty-two meters to prevent the hose from overstretching beyond its maximum 220% 

elongation. This was possible since the mooring tether-hoses would not be used to convey feed or 

any wiring unlike the feed hose. Figure 40 shows an exploded view of the flange tether-hose end 

showing from left-to-right: the strain-relief pipe, the neoprene gasket and the custom clevis pin 

end cap. The strain relief was ribbed so the molded rubber hose would remain in place when 

rubber was vulcanized to the metal fitting. One unanswered question in the mooring tether-hose 

design was whether or not to fill the tether-hose’s inner volume with freshwater prior to capping 

it. With either end uncapped or with air inside the tether-hose, the tether-hose’s inner diameter 

would decrease as the hose was stretched. However if the tether-hose was filled with water 

instead, it would likely not compress nearly as much since the water inside is incompressible.

This decision was to be made during pierside elongation tests to prove the design. More 

specifications on the stretch mooring tether-hoses can be found in Appendix N. Also refer to 

Appendix G for photos of the construction of the quarter-ton buoy’s feed hose.

Figure 40: Exploded view of mooring tether-hose end (left) and feed hose connection to the fish cage (right)

The feed hose for the one-ton feed buoy would be built similarly to the mooring tether- 

hoses, however without as much concern over its ability to stretch, since the feed hose was not 

designed to actually moor the feed buoy. The inner diameter of this feed hose was 7.6 centimeters 

(3.0 inches). Up to eighteen copper conductors were to be spiral wound and embedded within the
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many layers of rubber of the hose wall. At both ends of the hose, the conductors would appear 

outside the hose wall and with a short pigtail section they would be terminated with the 

appropriate connector. Feed hose conductors had been a large success on the quarter-ton feed 

buoy because it allowed the ability to transfer power to and receive data back from instruments or 

cameras within the fish cage. Conductors wrapped on the outside of the hose tend not to survive 

long term wear and abuse. The conductors for the one-ton buoy feed hose could be used for: 

underwater video cameras, underwater lighting, environmental monitoring equipment and 

possibly a Hydroacoustic Technology Inc. (HTI) acoustic fish monitoring system requested by 

the fish biologists. A potential usage list for these conductors is in Appendix N.

The majority of the design and analysis effort was focused on the WHOI mooring 

concept; however when it came time for the project to purchase the mooring and feed hoses, these 

major components were too expensive for the project and required a few months lead time to 

manufacture and perform necessary acceptance testing. Due to this setback, a second feed buoy 

mooring concept was developed in a short time. This contingent mooring design took advantage 

of the empty fish cage mooring, since only three out of the four cage moorings contained fish 

cages, as shown in Figure 41.
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Figure 41: Plan view of the alternate one-ton feed buoy mooring concept

Without compliant mooring members, a second method of providing a restoring force from the 

mooring was needed. The resolution was a two-point mooring spanning the fish cage square with 

the feed buoy located in the center. Its restoring force was provided by two cylindrical concrete 

blocks which had an average mass of 280 kg dry. In seawater, the concrete blocks provided a 

weight force of 1.47 kN on average. These weights would be attached at the mid-span point on 

each mooring line. A CAD schematic of this mooring concept can be found in Figures 41 and 42.
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Figure 42: Schematic of alternate one-ton feed buoy mooring concept

The following sections discuss the finite element analysis and physical model testing conducted 

on the two different mooring designs. The WHOI mooring tether-hose design was modeled and 

analyzed using finite element analysis and physical modeling techniques. The contingent mooring 

design with the concrete center weight was evaluated using physical modeling for observational 

purposes only. No FEA was performed on this mooring due to the lack of time and available 

personnel.

9.2 Finite Element Analysis

Finite element modeling and analysis was performed by Judson DeCew with assistance 

from both Igor Tsukrov and Oleg Eroshkin. The WHOI two-point mooring concept, consisting of 

two highly stretchable mooring tether-hoses, was analyzed using the previously described (see 

section 4.2) finite element program, Aqua-FE. In the model, mooring tethers were connected to 

grid comers of the cod cage mooring grid as shown in Figure 39. The same OOA site and design 

conditions were applied to the one-ton feed buoy as were used on the quarter-ton buoy. The 

design storm conditions were nine-meter, 8.8 second waves and a 1.0 m/s to 0.25 m/sec current 

decreasing linearly with depth. These conditions were applied to the numerical model from 

multiple directions to determine worst-case loading scenarios. These scenarios were either inline
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with the moorings or perpendicular or normal to the moorings. The direction normal to both 

moorings had a bow string effect on the mooring. Under these extreme conditions, forces on the 

tether-hose moorings remained below the minimum ultimate breaking load, 120 kN, of the 

mooring tether-hose with the elongation-stopping rope inside. Results from FEA analysis in 

Appendix N show this inline force is 23,600 pounds, which is approximately 105 kN. Figure 43 

(left) is a plan view of the four-cage mooring grid showing the one-ton mooring design. Figure 43 

(right) is an example of the FEA storm-wave simulation.

Figure 43: Top view of two-point mooring (left) and a FEA simulation in “storm” conditions (right)

9.3 Physical Model Testing

Early in the design and construction of the one-ton feed buoy, a 1:24 Froude-scale model 

was built in preparation for physical model testing similar to the experiments performed for the 

quarter-ton feed buoy in section 4.3. A photo of the one-ton buoy physical model is shown in 

Figure 44 (left). Physical modeling was conducted to help understand and characterize the one- 

ton feed buoy’s seakeeping abilities and dynamics. Experiments conducted on the buoy model, 

included heave and pitch free-release tests, wave response tests and other tests for observational 

purposes.

AquaFE Ocean Engineering/UNH
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In the first experiments performed on the buoy model, the buoy’s ballast weights were 

varied to determine an optimal amount of ballast for the buoy. By changing the ballast weight, 

heave and pitch resonant periods were both affected. All free-release experiments were conducted 

using the same equipment and procedures employed in the quarter-ton feed buoy experiments; 

refer to Section 4.3 for more information on the process and analysis performed for free-release 

testing. Images from OPIE were calibrated for distance and pixel size and were recorded at thirty 

frames per second. All results of physical model testing are reported at full-scale values.

Figure 44: Scale model of one-ton feed buoy (left), feed buoy and cage wave tank testing (right)

Small pieces of lead were either added or taken away to observe how these changes in 

ballast weight affected the heave or pitch damped natural periods. For an equivalent of 1,360 kg 

of lead, the heave damped natural period was measured around 3.50 seconds, while the pitch 

damped natural period was 8.90 seconds. Heave resonance was rather favorable, since the buoy’s 

maximum heave would occur in typical, low-amplitude, wind-wave conditions. Wave-contouring 

behavior would be expected for larger storm waves. Pitch tests, on the other hand, indicated a 

resonant condition precisely in the expected storm wave periods. This signified that the buoy 

would likely pitch severely in such conditions. As long as the buoy and its components survived
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excessive pitch in these conditions, this was not a safety concern, since UNH OOA operations 

were unlikely to take place in rough weather. Re-ballasting the buoy with 2,270 kg of lead, 

approximately 900 kg more than the previous experiment, reduced the resonant pitch period to 

6.20 seconds, while the heave natural period increased slightly to 3.70 seconds. Overall it was 

encouraging that re-ballasting the buoy had a significant affect on the results. Following other 

ballast weight tests, the buoy’s optimal ballast was determined to be around 1,800 kg. Through 

these experiments, the heave damped natural period was expected to be around 3.50 seconds and 

the pitch natural period around 8.30 seconds. A suggestion of drag-inducing baffles between the 

buoy’s pipe “leg” sections to dampen pitch motion was also tested. Experiments on these baffles 

turned out to increase pitch natural period an average of about half of a second. The increase in 

pitch appeared to be caused by the wave particle drag and the long moment arm from the baffles 

to the system’s center of gravity. Other feasible adjustments to the buoy appeared insufficient in 

shifting the pitch natural frequency away from the high-energy wave regime.

Later in the spring, the Dynamics of Moored Systems (OE 956 course) graduate students 

repeated free-release experiments of the ‘as-constructed’ feed buoy design. This was an exercise 

for the class and added repeatability and confirmation to the author’s earlier free-release tests. 

Following free-release tests, students in the course also performed wave response tests on the 

feed buoy and a Froude-scaled WHOI buoy mooring. Eight different wave heights and periods 

were used to determine the feed buoy’s heave, pitch and surge RAOs.

In preparation for OE 956 testing, the scale model was ballasted to represent the fully- 

loaded and as-to-be-deployed condition. Heave and pitch natural periods were determined from 

free-release experiments conducted on April 12, 2004 (McGillicuddy et al., 2004a) and are given 

in Table 4. Again a minimum of three replicates were performed for each test. Heave damped 

natural period was 3.5 seconds, which agreed with the results found earlier. The pitch damped 

natural period was 8.4 seconds; again putting the pitch resonance condition (buoy only) in the 

middle of the wave energy range during storms. Though attempts had been made while
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developing the design to alter pitch resonance by changing ballast and adding damping baffles, 

little advantage was deemed possible, and the maximized reserve righting moment attribute 

already achieved was regarded as the highest priority.

Table 4: One-ton buoy characteristics determined through physical modeling
Term Value

Heave damped natural period, ( T d ) 3.54 sec

Heave damping ratio, (Q 0.093
Pitch damped natural period, ( T d ) 8.38 sec

Pitch damping ratio, (Q 0.086
Actual mass, (m) 7,900kg

Virtual mass, (mv) 13,372 kg
Percent of Virtual/Actual Mass 169%

Wave response testing of the buoy model and its two-point compliant WHOI mooring 

took place on April 28th, 2004 (McGillicuddy et al., 2004b). This experimental setup is shown in 

Figure 44 (right). Due to tank width limitations, the entire buoy mooring and grid network could 

not be fully set up. Instead, the three mooring grid point attachments for the tether-hoses were 

mounted fixed at the tank walls. This assumed that feed buoy mooring dynamics would be most 

influenced by the directly connected, compliant members, while remote fish cage mooring 

components, such as grid anchor lines, would play a diminished role. A test plan for wave 

response testing is in Appendix O. Regular, single frequency wave tests were conducted to obtain 

normalized transfer functions in the form of RAOs. The maximum heave RAO (heave amplitude 

divided by wave amplitude) was 1.67 and occurred at the heave damped natural period of 3.5 

seconds. Maximum pitch RAO (pitch amplitude in degrees divided by wave amplitude) was 11.4 

degrees per meter and occurred at a period of 7.10 seconds. This is 1.3 seconds less than the 

expected pitch damped natural period of 8.4 seconds. This difference is likely due to the 

moorings effect on the feed buoy, since the damped natural period was determined without the
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mooring. RAO results revealed little to no danger to the buoy’s ability to survive predicted OOA 

site conditions.

For the author, additional objectives of wave response testing were to observe designed 

mooring configurations to check for snap and chafe situations. As seen in Figure 44 (right), the 

concern was whether the slack feed hose could possibly make contact with or chafe the 

submerged grid line when the wave direction was normal to the two mooring tether-hoses. The 

rubber mooring tether-hoses were designed with a stiff spring constant to minimize snap shock- 

loading on all mooring members. During these tests, no unusual buoy or mooring behaviors were 

visually observed.

Following OE 956 course experiments, the one-ton feed buoy model was used again to 

test the alternate feed buoy mooring configuration. These experiments were setup for 

observational purposes only. Despite the advantages of the two-point compliant WHOI mooring, 

the design was not implemented due to its cost and the delivery time of the mooring tether-hoses. 

When procuring the WHOI components before the scheduled installation date became doubtful, 

an alternate feed buoy mooring was devised. This system consisted of two low-stretch Polysteel® 

mooring lines with mid-span concrete weights used to provide a restoring force. A drawing of this 

mooring is shown in Figure 42. Using only the fish cage grid mooring, this mooring design was 

assembled in the wave tank to observe whether the center weight provided an adequate restoring 

force and watch circle. Once again no unexpected or disconcerting reactions were observed.

Other than by observation, it was never quantified how the mooring design affected the feed 

buoy’s heave or pitch responses or RAOs. Due to pressures to feed the cod fish, the feed buoy 

and its mooring were deployed without further model testing or discussion about delaying the 

installation.
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CHAPTER 10 - ONE-TON FEED BUOY

CONSTRUCTION AND DEPLOYMENT

10.1 Structure Fabrication

Stommel Fisheries was awarded the contract to build the one-ton feed buoy structure 

because of their knowledge of the OOA project, having built the first quarter-ton feed buoy. 

Stommel Fisheries was also the lowest-bid contractor out of three other quotes. Having recently 

purchased an old marina in Bourne, Massachusetts, Stommel Fisheries had the equipment and the 

facilities to handle construction of the one-ton buoy’s large steel and aluminum parts. With crude 

drawings and an understanding of the design, Stommel Fisheries began ordering material in late 

March 2003. Fabrication of the main steel structure began in April with the tapered discus hull of 

the buoy. Once the discus was built, including the small reserve buoyancy under the floor and a 

bilge well, the buoy’s “legs” were fit and welded into place with the ballast container. The photo 

in Figure 45 shows the buoy’s base, its legs and the ballast container at far right.

Figure 45: Buoy’s steel hull fabrication at Stommel Fisheries
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The 5.2 meter long legs were made of six-inch steel pipe, which supported the ballast 

container without adding unnecessary buoyancy like the smaller quarter-ton buoy design. This 

was done to lower the buoy’s center of gravity, while keeping its center of buoyancy as high as 

possible. The difference between center of gravity and center of buoyancy contributed to the 

length of the righting arm. The buoy’s legs penetrated the hull for both support and to use the 

pipe’s interior volume to contain coolant fluid for the diesel generator. Two of the buoy’s legs 

were joined inside the ballast container by a two-inch steel pipe. This was done so warm fluid 

would flow down one pipe leg, become cooled by the surrounding seawater and flow back up the 

other pipe leg. Enough volume of coolant fluid was contained in the pipes that the generator 

could run for hours with the coolant fluid remaining cold.

Simultaneously to the construction of the buoy’s hull and legs, the main cylindrical body 

of the buoy was fabricated as a separate piece. The body consisted of 3/16-inch thick steel plate, 

which was bent into place using a come-along winch and clamps. Once in position, the steel plate 

was tack welded and eventually permanently welded in place. The buoy’s round shape was 

maintained by 0.61 meter-spaced interior support framing. The photo in Figure 46 shows the 

framing looking inside the buoy. Other built-in internal parts are labeled in Figure 46.

Once this section was complete, the buoy’s hull and legs were stood upright. The main 

cylinder was lifted approximately six meters and placed on top of the hull. A welder, standing 

inside the main cylinder, welded the two sections together. Once the inside seam was welded, the 

exterior was also welded to ensure a solid connection between the two main structural 

components.
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Figure 46: Internal view of the main cylindrical body

The aluminum buoy section, seen in Figure 47, was built in the marina’s garage using a 

similar method to building the steel parts. This section contained the buoy’s two access hatches, 

framework to support the feed hopper, railings, appendages and feed hatch on the top deck. The 

three hatches, built by Bomar Pompanette LLC, were made of cast aluminum with aluminum 

mounting rings. The mounting rings were welded directly and flush to the buoy structure. These 

hatches were hinged and watertight by compressing the rubber gasket with four tie-down dogs. 

The two side access hatches were 24-inch square hatches and the top hatch for filling feed into 

the hopper was a twenty-inch diameter round hatch. All hatches were modified to make them 

lockable with a marine-grade padlock. This was necessary to prevent unwanted people from 

entering the buoy and possibly harming themselves or the buoy systems.
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Figure 47: Top aluminum buoy at Stommel Fisheries

After the final touches, including installing the external ladders, handholds and numerous 

mounting brackets, the two main steel and aluminum structures were trucked from Stommel 

Fisheries in Bourne, MA to the Aulson Company in Somersworth, NH. Aulson prepared the buoy 

for painting by sandblasting the steel to get rid of the rust oxidization and provide a profile for the 

paint to stick to. The aluminum, on the other hand, was cleaned and chemically etched prior to 

painting. Both components were primed and then painted using a two-part marine epoxy paint. 

The buoy’s area below the estimated waterline was painted with a red anti-fouling paint to inhibit 

marine algal growth. The photo in Figure 48 shows the steel buoy section with its yellow top coat 

and red anti-fouling layer. Following its painting in August, the buoy was transported to the UNH 

JACOE building in Durham, NH. The buoy spent two months in the exterior covered storage area 

of JACOE, where installation of most mechanical and electrical feed buoy components took 

place.
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Figure 48: Completing painting at the Aulson Company

10.2 Installation of Internal Components

Due to its bulky size and weight, the one-ton feed buoy was positioned outside the 

JACOE building in the exterior storage area shown in Figure 49. The purpose of having the feed 

buoy at UNH was to size, plumb and outfit all essential internal components. This work included 

installing the shutoff valves, bilge pumps and most of the equipment mentioned in section 8.1. A 

combined plywood and fiberglass grate deck was cut and installed. This false deck was used to 

free up precious floor space inside the buoy, but also kept people from stepping on and possibly 

damaging critical valves or fittings below the buoy’s waterline. Main seawater intake valves, two 

centrifugal pumps, the bilge pumps, and battery bank were all mounted below the deck floor of 

the buoy.

8 8
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Figure 49: Interior view of steel section (left) and aluminum upper (right) at UNH JACOE

Bumpers around the exterior of the buoy were necessary to prevent damage to the buoy 

or a support vessel. COTS docking bumpers were priced out, but due to their expense, a less 

expensive alternate was sought. Fourteen old truck tires, acquired from the UNH mechanic’s 

garage, were used instead. Holes were drilled through the tread of the tire and they were 

suspended with chain from gussets around the flange and support plates on the buoy’s base. The 

fourteen tires provided protection at a gunwale height around the entire buoy. These tire bumpers 

can be seen in Figure 50.

After being outfitted at UNH JACOE, the one-ton feed buoy was transported on 

November 5, 2003 to the New Hampshire Port Authority near the Sarah Long Route 1 Bypass 

Bridge, a twenty-three kilometer journey. Due to the buoy’s large diameter, a special “low boy” 

flatbed trailer, shown in Figure 50 (left), was necessary to meet state roadway height limits. Once 

at the Port Authority barge dock underneath the Sarah Long Bridge, the lower steel buoy section 

was lifted upright, so that the lead ballast bricks could be loaded. The photo in Figure 50 (right) 

shows the buoy upright, while ballast is being loaded. Slightly over two tons of lead bricks were 

arranged evenly in four compartment bays in the ballast container. A flat steel plate covered the
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ballast container so that it could not become dislodged or shift out of balance during transport to 

or while at the aquaculture site. Once fully loaded, the steel lower buoy section was lowered into 

the water on the comer of the barge dock. The buoy was tied off to the pier allowing for tidal 

height changes. The diesel generator, pressure cylinder and other bulky or heavy components 

were lowered into the buoy using the pierside crane.

Figure 50: Transport to NH Port Authority (left) and erecting buoy upright to the load ballast weight (right)

When the items inside the buoy were secured, a 0.64 centimeter thick, sixty-durometer 

mbber gasket was laid out and permanently glued using 3M 5200 Marine Adhesive. This gasket 

provided cushion and isolation between the two dissimilar metals. The buoy’s aluminum upper 

section was then placed on top of the floating steel section as shown in Figure 51. A pilot hole 

was located in the flange to ensure its correct orientation and spike wrenches were used to line up 

the bolt holes. Forty-eight 3/8-inch stainless bolts fastened the two buoy sections together.

The one-ton feed buoy was at the NFI Port Authority for one month, while other finishing 

touches and installations were performed. Other work consisted of piping the generator’s cooling 

and exhaust systems, installing the feeding system equipment, and all electronics and sensors on 

the buoy. The final part to be installed was the mixing chamber, since its size had to be precisely
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measured when all other components were installed. The buoy’s diesel tank was filled by a 

Hanscom delivery truck with approximately 650 liters of diesel fuel. The month at the NH Port 

Authority was used to test all mechanical and electrical components onshore before the buoy was 

towed to the harsh environment of the OOA site. First-time trials and testing included, for 

example: making sure the generator ran, its coolant fluid remained sufficiently cool and the 

battery charging worked correctly. Once this was accomplished, other systems, which relied on 

the generator for power, could also be tested. This included equipment like the rotary airlock and 

seawater pumps. Most systems worked when piped or wired correctly, but the true test was the 

system’s operation with the buoy’s own control system. Figure 37 is an example of some of the 

onboard electrical equipment that was tested at this time.

Figure 51: Joining together upper and lower buoy sections
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10.3 Deployment

The one-ton feed buoy was towed from the NH Port Authority to the aquaculture site 

over a two-day period starting on December 9th, 2003. Figure 52 shows the towing arrangement 

used by the R/V Gulf Challenger. Split over two days, the entire tow took approximately six 

hours, because the tow boat maintained a speed over ground of three knots or less to prevent any 

possible damage. The buoy was attached to a UNH boat mooring overnight at the Fort 

Constitution Coast Guard Station. An early start the next day was necessary to finish towing the 

feed buoy to the OOA site and get it securely connected to the feed buoy mooring.

Figure 52: Towing the one-ton feed buoy from NH Port Authority

Once at the OOA cage site, the feed buoy’s slack mooring lines without their center 

weights were connected to the appropriate diagonal grid comers. The center southwest comer was 

the first to be connected followed by the northeast comer. Once both lines were attached to the 

cage mooring, the mid-span mooring weights were connected to the center of each mooring line 

as shown in Figure 53. The Gulf Challenger hauled up the center connection of each mooring line
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and shackled the concrete restoring weight. The weights were then lowered until the tension of 

the haul line was slack, meaning the restoring weight had all been transferred to the buoy 

mooring. This procedure was repeated for the northeast comer. When completed, the one-ton feed 

buoy was moored on its own two-point mooring as shown in Figure 42.

Figure 53: Mid-span concrete mooring weight

The next task of the buoy’s deployment was to attach the flexible PVC feed hose from 

the feed buoy to the cod fish cage approximately one hundred meters away. The feed hose was 

coupled to the feed buoy’s southwest mooring line by tying them together with nylon rope. The 

feed hose was unrolled in one-hundred-foot sections, flooded with seawater for the hose to 

submerge and then carried off by SCUBA divers. The divers lashed the feed hose to the 

southwest mooring line using short sections of nylon rope. In the center where the concrete 

restoring weight was located, a sufficient amount of slack was given to the feed hose to allow for 

the rise and fall of the mooring lines without tensioning the inelastic feed hose. The feed hose was 

not meant to restrain the buoy at all. After the feed buoy mooring, the feed hose was laid out and 

tied along a bridle line to the rim of the fish cage. Three one-hundred-foot hose sections were

93

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



needed to reach the fish cage. At the end of the feed hose, a flanged end was installed and then 

bolted to the fish cage’s rim using the connector shown in Figure 38. The rim connection 

sustained the weight of the hose and relieved any tension from the fish cage, especially its nylon 

netting. After the rim connection, rigid PVC pipe replaced the flexible hose to the top of the 

cage, where the feed pellets were dispensed. The rigid pipe was lashed to one of the cage’s upper 

spoke lines, shown in Figure 3. A PVC elbow at the top of the cage diverted the feed through the 

net and into the cage. Although it was not ideal for the feed pellets to climb from the cage rim to 

the top of the cage, sufficient flow from the feed buoy’s two seawater pumps prevented feed 

pellets from settling and potentially clogging the feed hose. The rim connection and PVC pipe on 

the fish cage had been set up days ahead of the feed buoy deployment in order to save time for the 

buoy.

Unlike the quarter-ton feed buoy, the one-ton feed buoy deployment was accomplished in 

two days, including the tow from the NH Port Authority. This was possible because the feed buoy 

had been prepped for operation while at the Port Authority and did not require much setup in the 

field. The marine weather had also cooperated with the feed buoy deployment, which was an 

advantage. Following the buoy’s deployment to the OOA site, field trials for the one-ton feed 

buoy began.
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CHAPTER 11 - ONE-TON FEED BUOY

FIELD PERFORMANCE

11.1 Field Trials

Figure 54 shows both UNH OOA feed buoys deployed at the aquaculture site in early 

February 2004. Similar to the quarter-ton buoy, the one-ton feed buoy experienced a few initial 

start-up problems; however for this buoy all the problems resolved around remotely starting and 

operating the diesel generator. Problems with the generator included: improper grounding to the 

starter, an insufficient supply of fuel to the generator, seawater in the diesel tank, weakened 

starting batteries and possibly gelled diesel fuel due to the cold temperatures.

Figure 54: One-ton feed buoy (in foreground) and quarter-ton feed buoy at the UNH OOA site

During the first few weeks of deployment, the buoy’s generator would only start 

intermittently. This problem was pinpointed to a misleading grounding connection on the 

engine’s starter motor. Once corrected, the generator was plagued by other problems. Insufficient
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supply of diesel fuel to the generator was caused by a weak fuel pump on the generator. This 

pump lacked the suction to draw diesel fuel from the tank, particularly as the tank’s fuel level 

became lower. Compounding this, the colder weather caused the diesel fuel to gel or become 

thicker, despite the anti-gelling solution that had been added to the tank. To correct this, an inline 

12-volt fuel booster pump was installed. The booster pump was positioned closer to the diesel 

tank and would begin pumping prior to starting the generator to ensure that fuel was being 

supplied. As a result of working through the generator’s starting problems, the batteries had been 

drained sufficiently that they would no longer retain a decent charge. These batteries were 

replaced with new batteries. The final problem addressed in the field was that seawater had gotten 

inside the diesel tank spoiling the remaining fuel. Though the generator had its own water 

separator and two additional fuel filters/water separators had been added, a sufficient amount of 

seawater had entered the tank that the filters and separators would quickly become clogged. 

Seawater had entered the fuel tank through the fill pipe, which had a lockable cover that was not 

completely watertight. This cover was added to prevent someone from tampering with or stealing 

diesel fuel from the buoy. When waves were one-meter or larger, lapping up the side of the buoy, 

water passed through the cap/cover into the tank. This issue was fixed by replacing the cover with 

a non-locking threaded pipe cap. The remaining diesel in the tank was pumped out and replaced 

with new diesel fuel. Note: the diesel tank was drained multiple times to try to remove water that 

had gotten inside. An additional larger water separator was added, and a normal maintenance 

practice was started to drain the separator’s collection container. After correcting all of these 

problems, which took a few weeks because of the season and weather, the buoy was operational 

and supplying the cod fish with feed. During the time that the feed buoy was unable to operate, 

feed pellets had to be pumped down from the surface to the fish.

Like the smaller feed buoy, the one-ton feed buoy experienced accumulating freezing 

spray during the winter months. Fortunately, the two side access hatches were placed four feet off 

the waterline and the increased weight from the ice was negligible. Although this was a better
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design, it was also the height where much of the freezing spray accumulated, which made 

opening the hatches and accessing the buoy difficult. Figure 55 shows an OOA diver breaking 

away accumulated ice so that he could enter the buoy.

Figure 55: OOA project member breaks away freezing spray ice

Again after the start-up problems in the field were corrected, the one-ton feed buoy 

performed its designed function feeding the cod fish twice a day with larger volumes than 

previously available. As the cod fish grew and the waters became warmer in the summer, the 

volume of feed increased significantly, such that heaving bags of feed on top of the buoy became 

very laborious. In late spring 2004, the cyclone decelerator unit was delivered and installed on the 

feed buoy allowing feed to be transferred via a flexible hose from the support vessel to the buoy. 

The feed access hatch on top of the feed buoy was unhinged and removed. The cyclone 

decelerator clamped in the hatch’s place. The decelerator worked by transferring feed pellets into 

the top of the unit via high-velocity air. Air speed in the decelerator then dropped, allowing the 

feed pellets to fall down a hopper funnel into the storage hopper inside the feed buoy.
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Additionally, the performance of the onboard electrical system exceeded many 

expectations. The system’s flexibility and physical interior space allowed for several additions to 

the buoy, including adding an acoustic fish tracking system with its own battery charger and 

underwater fish cage lighting. Additional power outlets were installed to supply this new 

equipment. The purpose of the underwater lights, built by JT Electric of the Faeroe Islands, was 

to stimulate muscle growth and prevent fish sexual maturation by simulating extended periods of 

daylight during the short winter days. The two 120-VAC metal halide lights were mounted inside 

the fish cage and ran for six hours a day over two periods. This was deemed a big step towards 

developing a commercially viable aquaculture system, since fish cage lighting was being utilized 

at most major aquaculture operations.

The one-ton feed buoy proved to be an asset to the UNH OOA project, because it 

provided larger amounts of feed twice a day to the caged cod without the need to travel offshore 

to the site. This regular feeding proved beneficial to the growth of the fish. According to Howell 

(2005), the cod fish grew reasonably well, because of the regular feedings from the feed buoy and 

the underwater lights in the cage.

11.2 Modified Mooring

In late July 2004, after the author’s involvement with the project, the one-ton feed buoy 

was relocated from the empty fish cage bay to closer to the cod fish cage, which the buoy was 

supplying with feed. This was done to free up space in the cage mooring for an additional fish 

cage. The deployed mooring, shown in Figure 56, consisted of a single open-ended elastic WHOI 

tether-hose and two concrete center weights. The feed hose was again non-supporting and only 

used to carry feed to the fish cage. The elastic WHOI tether-hose was a spare from the original 

feed buoy (Rice et al., 2003). Because of the tether-hose’s short length, the remaining length to 

the feed buoy was created using Poly steel® rope. This configuration was analyzed using FEA
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techniques prior to its deployment and was deemed adequate for both the feed buoy and the fish

cage mooring.

Ballast Weight

Moonng 
Lines '

GrtdUrte.

Figure 56: Three-point one-ton feed buoy mooring

11.3 Winter Storm

On December 27, 2004 after being deployed for just over one year, a significant 

Nor’easter storm struck New England and ultimately caused the one-ton feed buoy to sink. The 

feed buoy’s last data transmission was received at 3:06 am local time on December 27, 2004. At 

this time, the buoy’s ‘wake-up’ signal was alarming, suggesting that the switch inside the buoy 

was being shorted by water. Figure 57 displays the month of December 2004 National Data Buoy 

Center (NDBC) significant wave height data for the following NDBC buoys: Portland, Boston, 

Stellwagen, Western Maine Shelf and Casco Bay. Figure 58 shows the locations of these buoys.
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Figure 57: NDBC wave height data for the month of December 2004
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The NDBC Boston buoy recorded the peak of the storm at 2:04 AM with a 4.81-meter significant 

wave height and a dominant period of 7.39 seconds. NDBC Portland had a peak at 12:11 AM 

with a height of 6.62 meters and 8.11 second period.

Six months later in July 2005, the US Coast Guard recovered the one-ton feed buoy from 

the ocean seafloor as a training exercise. The feed buoy was off-loaded at the Portsmouth Naval 

Shipyard’s (PNS) Coast Guard pier, where any recoverable equipment or parts were salvaged.

The remaining metal was scrapped by PNS. The buoy’s aluminum top structure appeared to have 

imploded as it was severely dented. This suggests that the buoy sank faster than air inside could 

escape. Upon investigation of the buoy’s interior, the most probable scenario for the cause of the 

buoy sinking is that a weld broke at the base of the feed hopper. This steel plate, which suspended 

the weight of the entire feed assembly, can be seen in Figure 33. The plate would have been a 

difficult spot to weld due to tight clearances between the plate and the hopper’s framing. Also, the 

builder likely did not know the weight this plate needed to support, so it was built undersized than 

it should have been. In large seas, the pitching motion of the buoy may have caused this weld to 

break, which caused the feed assembly to fall and likely dislodged or broke a watertight 

connection below the buoy’s waterline. The two bilge pumps were unable to keep up with the 

incoming seawater, thus the buoy sank. It is expected that the feed buoy may have pitched 

excessively in the storm, since the period of the storm waves closely matched the feed buoy’s 

pitch natural period. It is also suspected that the new feed buoy mooring, deployed six months 

earlier, was much stiffer than the two previous feed buoy mooring designs and did not allow a full 

range of motion of the wave’s excursion. The stiffness of the mooring was reported by two OOA 

projects members, who commented that the new mooring produced a tight buoy watch circle.
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CHAPTER 12 - CONCLUSIONS

12.1 Quarter-ton Capacity Feed Buoy

As the aquaculture industry moves away from sensitive near-shore farm sites, the 

development of new feeding systems that are both suitable and reliable for operation in the open 

ocean will be critical to the success of the offshore aquaculture industry. For the UNH OOA 

Demonstration project, the development of the quarter-ton capacity feed buoy was the first 

attempt to build a prototype offshore surface feeding buoy system. Despite its relatively small 

feed capacity, this feed buoy and its feeding system proved to be a considerable improvement and 

benefit to feeding submerged finfish aquaculture cages. Since this feeding system could be 

controlled remotely, it eased the pressure to go to offshore when the marine weather was bad or 

schedules were busy. The basis for the quarter-ton feed buoy system will likely aid in the 

development of future, larger open ocean aquaculture feed systems.

Both the quarter-ton feed buoy and its mooring operated for many years without a major 

failure. FEA modeling, as well as physical model tank testing, proved the buoy’s compliant 

mooring system design for normal use and identified tether weakness during extreme storms. The 

mooring positioned the feed buoy relatively close to the cage for feeding purposes, yet it also had 

the ability to absorb large excursions due to large waves, tides and currents. And the addition of 

the buoy’s flotation collar made it virtually unsinkable as was shown during the accumulation of 

freezing spray and ice. Three suggestions to improve upon the quarter-ton feed buoy design 

include: 1) strengthening the elastic mooring tethers to prevent overstretching, 2) using miniature 

waterproof load cells in physical model testing to better estimate mooring loads and 3) to increase 

the height above the waterline of the side access hatch.

The feed buoy’s internal systems also performed exceptionally well both mechanically 

and electrically. Feed dispensing and conveying equipment operated as was intended with
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relatively minimal necessary maintenance. Periodic maintenance included cleaning pre-filters on 

the bilge pumps and occasionally unclogging feed dispensing cups, which may have become 

blocked with moist feed, an inherent condition of the marine environment. The addition of the 

centrifugal pump used to force feed pellets and water through the hose was the major 

improvement over the earlier arrangement that made the feeding system work. The control system 

provided power and managed all operations of the feed equipment. Radio telemetry allowed data 

to be sent reliably to shore and commands were received back to the buoy. This flexible system 

could easily be reprogrammed to allow for immediate changes. The feed buoy was subject to 

intermittent electrical problems, though they were relatively minor issues for the harsh marine 

environment where the buoy was located and considering its damaged hatch.

On the initial deployment of the quarter-ton feed buoy, it was observed that the caged 

haddock had become accustomed to the daily feed cycles and distribution. The haddock would 

swarm around the feed hose outlet as soon as they heard the buoy’s seawater pump turn on. 

Lessons learned at the quarter-ton feed buoy scale were incorporated into the larger one-ton 

capacity feed buoy. Since the one-ton feed buoy could not supply multiple fish cages, the quarter- 

ton feed buoy would continue to be used by UNH OOA, until it could be replaced by a larger 

feeding system which could feed multiple cages. Until that time comes, the quarter-ton feed buoy 

will continue to be a ‘workhorse’ system for the OOA project able to supply feed to finfish in 

submerged aquaculture cages.
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12.2 One-ton Capacity Feed Buoy

Experience with the previous quarter-ton feed buoy served as the basis for design, 

construction and outfitting of the larger one-ton feed buoy. Prior knowledge and understanding of 

the buoys’ systems made building the second feed buoy quicker and easier than the quarter-ton 

feed buoy. However, despite their similarities, the one-ton feed buoy had a new level of 

complexity due to its physical size and weight. This impacted the ease of lifting, handling and 

transporting the buoy structure. Besides its size, the one-ton feed buoy had other new challenges, 

mostly related to remotely starting and controlling its onboard diesel generator. As the UNH 

OOA Demonstration Project expanded, its feeding systems had to also expand to accommodate 

the increased number of caged and hungry fish. The one-ton feed buoy was successful, as 

designed, in feeding a single SS3000 fish cage, which at the time contained thirty-five thousand 

cod fish. Though the buoy’s hopper held over one-ton of fish feed pellets, it was well known that 

this capacity would be quite undersized as the cod became adults and began to eat more. This was 

particularly true during the summer months when ocean water is warmer and the fish have a 

greater appetite. A basic calculation of what adult cod fish would eat, assuming their population 

remained roughly the same, determined that the one-ton capacity feed hopper would need to be 

filled every other day. Until the time came when a single large feeding system could replace these 

smaller systems, the one-ton capacity feed buoy would be operated at the OOA site. In the series 

of offshore feed buoy development, the one-ton feed buoy was one iteration closer to a 

commercial-sized, near-shore feeding system.

Numerical FEA and physical modeling both proved the WHOI hose mooring design; 

however due to its price, these mooring hoses were never implemented. The physical modeling 

effort was successful in determining the buoy design’s seakeeping characteristics and wave 

responses. This new buoy model contributed to the database of various buoy designs and their
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experimental wave responses. This knowledge of buoy shape factors will be useful for future feed 

buoy designs.

Mechanical systems of the one-ton feed buoy, including many pumps, valves and other 

components, performed exceptionally well. Seawater pumps were sufficient in their ability to 

convey feed pellets through an over one-hundred meter long hose without clogging. Ideally the 

feed hose should not have been this long, but it was a good test of the system. The buoy’s 

electrical system was a large success due to the design and implementation of these systems by 

Stanley Boduch and the programming knowledge of Jim Irish. This team developed and 

constructed every aspect of the electrical system from the MCU to the high power control relays 

and then communicated instructions on how each component had to be controlled. The control 

system was much more complex than expected, due to the amount of logic programming that was 

necessary to make the system autonomous.

The one-ton feed buoy had a significant amount of unused internal space, which led to 

criticism that the buoy could contain a larger feed hopper and hence a greater capacity of feed.

The location of the two side access hatches produced this space. Issues with the quarter-ton feed 

buoy’s hatch being centimeters off the waterline forced the design of the one-ton buoy to install 

the side hatches roughly 1.4 meters above the water’s surface. As shown in Table 3, with a total 

feed capacity of 1100 kg and an overall buoy mass of 7530 kg, the ratio of feed payload to overall 

buoy mass is 14.6 percent. The quarter-ton buoy, on the other hand, had a feed payload to buoy 

mass ratio of 12.3 percent. It is doubtful that the payload to overall mass ratio can be improved 

upon, using the feed-hopper-at-the-top configuration that was required in the one-ton design. 

Space inside the one-ton feed buoy allowed a person to stand without feeling unnecessarily 

cramped, and it allowed for additional fish monitoring equipment and other equipment to be 

installed.

The one-ton feed buoy was designed, model tested, constructed and deployed in a time 

period of around ten months. This short amount of time was due to the pressure on the OOA
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project to feed the already purchased and caged cod fish. The arrival of the cultured fish came 

prior to there being an available infrastructure to feed them. With OOA engineers and staff 

available at the moment, the one-ton feed buoy was built in short time. The feed buoy was 

deployed to the OOA site without a proper hazard or risk analysis being performed on the buoy’s 

structural, mechanical or electrical systems. Ultimately these reasons would have likely 

contributed to the loss of the feed buoy. It should also be noted that had the one-ton feed buoy 

been provided with positive buoyancy in the form of either foam or watertight compartments, it 

(like the quarter-ton buoy) would have at least floated and been repairable to operate once again. 

Finally, a suggestion for future buoy deployments is to not install them during the winter months 

when New England weather is at its worst. This makes inevitable first-time installation issues and 

problem troubleshooting more difficult than if the marine weather was not a factor.

The objective of the two automated feed buoys was to design and build reliable research 

prototype open ocean feeding systems that could supply fish feed pellets to submerged offshore 

fish cages. Such systems would ultimately save the aquaculture operation both time and money 

over other methods such as feeding by hand or from a support vessel. Despite the one-ton buoy’s 

larger feed storage capacity, this buoy was considered small for what is needed for a commercial 

scale venture. Based generally off the experiences of these feed buoys, a large twenty-ton 

capacity feed buoy is being developed and built in conjunction with OceanSpar LLC and a 

NOAA Small Business Innovative Research (SBIR) grant. The twenty-ton capacity feed buoy 

will be launched and deployed to the UNH OOA Demonstration Project site in the summer of 

2007.
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Appendix A -  Quarter-ton Feed Buoy - Reserve Flotation Collar

Built to UNH specifications in September 2002 by Gilman Corporation, Gilman, CT.

W g - HU

Figure Al: Supplemental flotation collar for the quarter-ton feed
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Appendix B -  Quarter-ton Feed Buoy - MathCAD-Calculated Hydrostatics 

H ydrostatics
U pdated F eed  B uoy Equilibrium C alculations

Fullerton 0 2 /0 3

C enter of Gravity C alcu lations ycg-W = ^  yj-AW

W eight C enter o f Gravity S o u rce  m easu rem en t

(to the nearest pound) (all referenced from the buoy's base)

buoy's bottom sh ell 

buoy's top shell 

ballast w eight 

floatation collar

feed  (incl. hopper) 

batteries 

electron ics  

wind generator  

so lar generator  

fittings, fa s ten ers, etc .

W b o t  :=  1 0 2 7 - lb  

W to p  :=  2 2 7 - lb  

W b a l la s t  :=  1 6 0 3  1b 

W f lo a t  :=  1 6 5 1 b

W f e e d  :=  5 3 0 - lb  

W b a t t  :=  2 8 0 - lb  

W e le c  :=  1 3 5 1 b  

W w in d  :=  4 4 - lb  

W s o ia r  :=  3 5  lb  

W m is c  :=  2 5 - lb

ybot := 92.5-in

yfeed := 189.5-in 

ybatt := 1 IS.O-in 

yelec := 136.0-in 

ywind :== 273.0-in 

ysolar := 202.0-in 

ymisc := 118.0-in

measured/MASSPROP

measured/MASSPROPyt0p := 183.3-in 

yballast :== 8.50-in measured/MASSPROP

yfloat := 129.7-in MASSPROP

measured / approx. 

measured / approx. 

measured / approx. 

measured / approx. 

measured / approx. 

measured / approx.

Subtotals

w eight of shell W s h e l l  :=  W b o t  +  W t0 p  +  W b a l la s t  +  W f l0 a t W s h e l l  =  3 0 2 2 1 b

w eight o f co m p o n en ts W c o m p  :=  W fe e d  +  W b a t t  +  W e i e c  +  W w in d  +  W s o ia r  +  W m is c

W c o m p  =  1 0 4 9 1 b
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Appendix B cont'd

Total

total buoy w eight W total := W shell +  W com p W total = 4071 lb

C enter of Gravity

CG of buoy's internal co m p o n en ts

yfeed‘Wfee(j + ybatt'Wbatt + yelec'Welec + ywind’Wwind + ysolar' W s0]a r  +  y m is c 'W m isc
ycomp ;-

W COmp

ycomp — 165.75 in 

(from the buoy's base)

CG of buoy's "shell"

ybot Wbot + ytop-Wtop + yballast'Wballast + yfloat'Wf]0at
yshell :~

W shell

yshell = 56.79 in 

(from the buoy's base)

ii t u  ycomp'Wcomp + yshell-Wshell
overall CG of buoy ycg : = ---------- -   ycg = 84.87 in

W total
(from the buoy's base)
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Appendix B cont'd

D eterm ining th e  W aterline Position:

den sity  o f sea w a ter Psw := 64.0-
lb

total volum e of 
d isp laced  sea w a ter ^displaced ;~

Wtotal
^displaced — 63.61ft

Calculating S u b m erged  V olu m es ( s e e  figure below )

outer diam eter o f th e  .
floatation collar °

density  o f lead Plead 711-
Jb

f t 3

volum e o f ballast

vo lu m e o f spar

V b a l la s t  :~
W b a l la s t

Plead

V Sp a r  := 7 t(1 2 in )2 102in

^ballast — 2.25 ft

V s p a r  = 26.7 ft

cb  o f spar y Spar := 54.5-in measured / approx.

volum e
of alum inum p ie c e s

V a lu m  2326-in

using MASSPROP of discus portion, ballast bin, etc.

V a lu m  = 135 f t

cb  o f alum , p ie c e s Yalum := 37.3-in measured / approx.

volum e o f d iscu s
3

Vdiscus := 8143in

cb  of d iscu s

volum e of cutout portion 
of foam

cb of cutout

ydiscus := 108.O in measured / approx.

Vcutout
u j

( OD^ 6.5 in-5.0 in 
2-ti- ---- ,---------------
. I  2 )  2 _

y c u to u t  :=  1 1 2 .0 - in + ■
2-5.Oin

V c u to u t  -  1 0 . 8 8 f t

ycutout = 115.33 in
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Appendix B cont'd

B uoy OD

cutout
d iscu s

spar

i i  
1 1 IIJ approx. w aterline locati

b ase lin e
1

location of waterline
V d is p la c e d  — ( V b a l la s t  +  V Sp a r  +  V a iu m  +  V c u to u t  +  V d is c u s )  „ „  . 

Y w l : = --------   1------------------------------------ r --------------------------------------------  +  5 .0 - in

„ f 0Di

y w l =  1 1 .7 5  in  

(from the bottom of the 5' OD cylinder)

115

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Appendix B cont'd

C enter of B uovancv

2

volu m e o f buoy's OD V o d  := (ywl -  5.0-in)
d isp laced  V 2 J

V0D = 17-71 ft

cb  o f buoy's OD y o o  := 117.0-in +
( y w l -5 .0 -in )

yOD = 120.37 in

cen ter  o f buoyancy

ycb :=
VOD-yOD + VCVitout'ycutout + Vbal last'y ballast + V SparySpar + V a)um yaium + V discus' ydiscus

V displaced

Ycb = 85.22 in 

(from the buoy's base)

cen ter  o f gravity Ycg = 84.87 ir

d istan ce  b etw een  cb  
and eg , (the "righting arm")

ybg := ycb -  ycg ybg = 0.35 in

M etacentric Height gm = — + bg (additive ybg term, s in c e  CB is a b o v e  CG)

m om ent of inertia I = 78.98 ft

m etacentric height gm : = ----------------- + ybg
^displaced

gm = 15.25 in
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Appendix B cont'd

Inclination E xam ple - du e to a force on th e  wind generator

upsetting m om en t = restoring m om ent 

F-d = W-gm-sin(0)

force o f wind 
(at 50 knots)

F w in d  50-lb

draft db := 112-in+ ywi

m om ent arm o f wind g en . d w in d  := ( d b  +  1 4 -f t )

a n g le  o f inclination 0 := asin
F w in d ' d w in d ^  

Wtotal gm )
0 = 13.59 deg

Inclination E xam ple # 2  - d u e to G len clim bing on the buoy  

w eight o f G len W gien := 200-lb (after eating so many donuts on the ride out!)

d istan ce (bot. to  G len) dgien 18 ^

^W gien'dgien^)
an g le  o f inclination 0 := asin

W t o t a l 'g m  j
0 = 44.1 deg
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Appendix B cont'd

B uoy's D ynam ic R e s p o n s e :

w aterplane area — (" I S = 31.5 fit

restoring con stan t c Psw'S'S c = 64869-
lb

sec

ad d ed  m a ss

for w aterp lane + ballast plate

madded :=
8 ( ODY
T Psw\~ T J

8 ( 41-in^3
r'Pswi - 2  )  J

madded = 62701b

virtual m a ss mv Wtotal + madded mv = 103411b

undam ped natural 
frequency

co0 = 2.5 Hz

um dam ped natural 
period

T o  :=
2-71

(Or
T0 = 2.51 sec

dam ping ratio C, := 0.88 (determined from free-release tests of the FB model)

dam ped natural 
frequency

®d := ®o•/"[ -  C cod = 1.19Hz

dam ped natural period Td :=
2-tc
cod

Td = 5.28 sec
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Appendix B cont'd

Flooding E xam ple #1 - C an th e  buoy sink?

diam eter inside buoy ID := 59.75-in

volu m e of a  battery
(Lifeline 12V 105 amp/hr) Vbatt := 807-in3

2
volum e of e le c . cylinder V cyi := it-(5-in) -ywi

2
volum e of inside buoy  
below  the w aterline Vinside := 7 1 'Ywl  (4 'Vbatt + V inside 

Vinside

equivalent diam eter D e q
f 4-Vinsi(je 

Ywl'ft
D,eq

w eight of w ater inside Winside := Psw  v inside Winside -

ch a n g e  in w aterline Aywl ;=
Winside

f  O D )

" I t ) Psw

Aywi

C alculating th e  vo lu m e o f reserve  buoyancy  foam

approx. volum e  
of foam  inside Vfoam ;= 3 -(l0 .5-16-48-in3) Vfoam

Vfoam

volum e of reserve  
buoyancy from collar Vcollar ;-

(  OD^i2 (  60-in^2
7t- -------- -  7 t - -----------

.  1 2 j  I  2  j  _

-(34.0-i n - y wj)

Vcollar : 

Vcollar :

volum e o f reserve  
buoyancy

V reserve Vfoam + Vcollar V*

Vr.

= 16.66 ft3 

= 124.62 gal

= 55.86 in

1066.151b

= 6.35 in

= 14 ft3 

= 104.73 gal

22.01 ft3 

164.64 gal

= 36.01ft3 

= 269.37 gal
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Appendix B cont'd

Flooding E xam ple # 2  - W ere th e  central sp ar to lo s e  its buoyancy

. . .  , . V ( jiSpiaced ~  (Vballast +  Valum  +  ^cu tou t +  V ( jiScus)
n ew  location o f waterline ywi : = ------------------------------------------       + 5.0-in

„ f OD̂
Y7 V

(sim ply rem oved  Vsparterm)
ywl = 21.92 in 

(from the bottom of the 5’ OD cylinder)

2

new  volum e o f V o d  := n -f— V ( y wl - 5 .0  in) V o d  = 44.42ft3
buoy's OD d isp laced  V 2  J

(ywl — 5.0-in)
n ew  cb  o f buoy's OD yOD := 117.0-in+ -    yOD = 125.46in

n ew  cen ter of b uoyancy

VoD-yOD + ^cutout'ycutout + Vballastyballast + Valumyalum + Vdiscus'Ydiscus
y cb  : = ------------------------------------------------------------- -------------------------------------------------------------------------

v displaced

(rem oved Vspar term ) ycb =  116.42 in

(from the buoy's base)

cen ter  of gravity (remains the same) ~~ 84.87 in

n ew  d istan ce  from ybg := y cb -  ycg ybg =  31 .55 in
cb  to eg, (the "righting arm")

M etacentric Height gm = ^  + bg (additive y bg term, s in c e  CB is a b o v e  CG)

m om ent o f inertia I := — I = 78.98ft4

m etacentric height gm : = -------- -̂-------+ ybg gm = 46.45 in
V displaced
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Appendix C -  Quarter-ton Feed Buoy -  Arvo-Tec Feed Dispenser

The Arvo-Tec T Dram feeder has a 
very high accuracy, whilst remaining 
at acomptitive price. The feeder is 
multifunctional and is suitable for start 
feeding in hatche ties to on-growing 
on tanks, ponds and cages.
Economical Granulate version 
available for small feeding 
applications.

6 I hop per

W h o le  f e e d e r  and 
b ra c k e t (code 1000)

Technical specifications:
• I, 6 & 101 tr&repareHt and 
50, 150 and 350 white krppeis 

■Standard motor 34 VAC, 7W, 1 or2 rpm 
■Graiule.(pelht size 0 3-6 mm 
■Minimum dose of 

0.3, 1,5,20,45 or 100 g 
■Strong 316stainless steel!) racket 
■Accuracy greater than 98 %

SO o r 150 I h o p p e r  with dosing  
unit (1010) 

a n d  g a lv an ised  s ta n d  (1054)

H inged b rack e t 
(code 1050)

S tro n g  m otor is 
s e a l e d  fo r marry y e a rs  
m a in te n a n c e  free  
o p era tio n

T h re a d e d  jo in t b e tw e en  
th e  d o s in g  unit a n d  big 
h o p p e rs

D osing  drum 
c a n  b e  r am oved  
vu ithou ttoo ls

M etal sp rin g  au tom atically  c le a n s  th e  do sin g  cups

P n eu m a ti c  s  pre ac e  r be low  th e  d o s in g  unit

Figure C2: Arvo-Tec Spec Sheet

Figure C3: Interchangeable dispenser cup sizes
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Appendix D -  Quarter-ton Feed Buoy - Lifeline Battery Specifications

From the Lifeline Battery website ('http://www.lifelinebatteries.com/marine.php'):

FAQ

Why Choose an AGM Marine Battery?

Absorbed Glass Mat (AGM) batteries include lead plates packed between silica-glass mats, 

which hold electrolytes in suspension. They have no input current limitations allowing them to 

recharge more quickly than flooded batteries, which typically accept about 35% of their ampere- 

hour rating, and Gel cells, that accept about 50%. At higher current loads AGMs also maintain 

usable system voltages for other high current, short duration loads as opposed to their 

counterparts, which become more inefficient during high current loads. AGMs also boast a longer 

lifespan than their counterparts, a deep-cycle flooded battery allows for 350 cycles at a 50 

percent discharge level and Gelcells allow for 750 cycles whereas an AGM offers up to 1000 

cycles at a 50 percent discharge level.

What is AGM and why do I need it in my Marine Battery?

AGM stands for Advanced Glass Matting and is the material used in high end marine batteries to 

separate the lead plates. AGM also is useful as its capillary action qualities provide abundant acid 

contact to the lead plates under extreme vibration, g loads, inverted installations, and more. AGM  

material simply allows some Marine Batteries to outperform those without due to it’s ability to 

suspend the plates in the sulfuric acid necessary to hold, charge, and discharge marine batteries.

Aren't AGM and GELCELL Marine Batteries both Maintenance Free and tolerant to deep cycling? 

AGM Marine Batteries are desirable because they are maintenance free due to the valve- 

regulated and pressure-sealed design. Like Gel cells they boast high tolerance to occasional 

deep discharges, excellent shock and vibration resistance, and broad operating temperatures. 

Here is where the similarities end, AGM Marine batteries have the advantage of being mountable 

in any orientation without capacity loss which Gel cells do no have.(gel cells will create air 

pockets and burn out the plates) AGMs also have the lowest internal resistance supporting 

numerous high demand loads and the fastest recharge times.
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Appendix D  (cont’d)

DEEP CYCLE MARINE BATTERY APPLICATIONS

Lifeline

Battery

Part

Number

Volts
Overall Dimensions 

Length Width Height 

in mm in mm in mm

•

Weight 

lb-kg

Cold Cranking 

Amps

0°
68° F 32° F

F

Ratedj 

C ap.: 

Amp. 

Hrs 

20 Hr 

Rate

Minutes of 

Discharge

25 15 8 

Amps Amps Amps

G P L -24T 12 v (11 .1 3 283: 6 .7 7 1 7 2 9 .2 5 2 3 5 5 6  ! 25 .5 ; 8 0 0 6 8 0 5 5 0  ! 8 0  ; 1 4 9  j 2 5 9 5 2 4

G P L -27T 12v 12.01 305) 6 .6 0 1 6 8 9 .2 5 2 3 5 6 5  ' 2 9 .5 8 4 5 7 1 5 5 7 5 ; 1 0 0  ; 1 8 6  j 3 2 4 6 5 5

G P L -31T 12v [12 .90 3 2 8 6 .7 5 1 7 2 9 .2 7 2 3 6 6 9 3 1 .4 8 8 0 7 5 0 6 0 0 1 0 5 19 5 3 4 0 6 8 8

G P L -4C 6 v j10 .2 7 261 7 .1 2 181; 1 0 .2 4 260; 6 6  ; 3 0 1 0 9 5 9 2 5  | 7 5 0  j 2 2 0  ; 492 1 8 5 6 1 6 9 2

G P L -4D A 12v 120.76 5 2 7 8 .7 0 2211 9 .4 4  | 2 4 0 j 135; 6 1 .2 1 5 9 5 1360) 1100; 2 1 0 ; 390 1 6 8 0  I 1 3 7 5

G PL -4D L 12v 2 0 .7 6 5 2 7 1 8 .7 0 221 9 .7 6  ;248; 135; 61 .2 : 1 5 9 5 1 3 6 0 1 1 0 0 2 1 0  ; 3 9 0  j 6 8 0 1 3 7 5

G P L -8D A 12v

COr̂oCM 527: 1 0 .8 9 2 7 7 9 .41 2 3 9 1 6 2 7 3 .6 1 9 7 5 1 6 7 5 1 3 5 0 2 5 5  ; 4 7 5  j 8 2 5 1 6 7 0

G PL -8D L 12v 2 0 .7 6 527;

05COoT“ 277 ; 9 .7 3  j2 2 0 1 6 2 7 3 .6 1 9 7 5 1 6 7 5 1 3 5 0 2 5 5  ;~ 4 7 5 | 8 2 5 1 6 7 0

G P L -U 1T 12v 7.71 19 6 5 .1 8 132) 6 .8 9  ; 1 7 5 2 4 1 0 .9 3 2 5 2 7 5 2 1 5 3 3  : 50 f 9 3 1 8 5

LIFELINE MARINE BATTERIES FEATURE:

W hy d o  s o  m an y  m arine and  RV e n th u s ia s ts  c h o o s e  L ifeline B atter ies  ex c lu s iv e ly  for their  
e x p e n s iv e  eq u ip m en t?  It probably  h a s  to  d o  with o n e  o f  t h e s e  r e a so n s ;
•  Aircraft c la s s  ce ll construction :
- L ow ers internal r e s is ta n c e  for h igh  rep ea ted  e n g in e  start current.
- W ith stan d s sh o c k  an d  vibration m u ch  b etter than flo o d ed  or g e lled  e lec tro ly te  d e s ig n s .
•  T w ice  a s  m an y  d is c h a r g e /c h a r g e  c y c le s  a s  th e  lead in g  g e l m arine battery ( s e e  chart).
•  F a ster  rech arge; n o  current lim itations with v o lta g e  reg u la ted  rech arging .
•  M uch b etter c h a r g e  reten tion  than  flo o d ed  cell ty p e s , e v e n  at high a m b ien t tem p era tu res.
•  Full r ech a rg e  after 3 0  d a y s  s to r a g e  in a  full d is c h a r g e  cond ition  7 7 °F  (25°C ).
•  S e a le d  con stru ction  with a b so r b e d  e lec tro ly te  - n o  sh ip m en t restrictions; su b m ersib le  w ithout 
d a m a g e ; install in a n y  position; n o  n e e d  for w atering; n o  corrosion  on  term in als.
•  C ell sa fe ty  v en t v a lv e s  - p r e ssu r e  regu la ted , n o n -rem o v a b le .
•  R u g g ed , non-m arring p o ly p ro p y len e  (cop o lym er) c a s e /c o v e r .
•  S a fe ty  - e v e n  during s e v e r e  o v erch a rg e  th e  LIFELINE AGM  MARINE battery p ro d u ces  le s s  
than  2%  h yd rogen  g a s  (4 .1%  is required for flam m ability in air).
•  Military ap p roved ; M anufactured  to  D O D  military sp ec ifica tio n s;
•  Lifeline M arine b a tter ie s  a re  not restricted  from sh ip m en t by air. P a s s e s  D O T 4 9  C F R  
S e c .1 7 3 .1 5 9 .
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Appendix D (cont’d)

Battery Capacity at Different Temperatures 
«•
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Achieving full capacity at a specified temperature is a function of charging voltage. Refer to the "Lifeline" Charge 

Voltage/Ambient Temperature Charging Curve to ensure your batteries are being fully charged.

Charge Voltage/Ambient Temperature Charging Curve
M tfatt

Tolerance +ML04V Sv»tem »

i f  A t
IBJB t Z S
m s ttz r
15.6 /  2,6

M 4fZ*

1Z2/Z2
1 2 .6 t Z1

NOTE: This graph depicts "Float Voltage". To determine "Bulk" Voltage charging rates add 1.0 Volts
to the float voltage setting.

Life Cycle Performance Against Leading Gel Cell Batterym  
m 
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Lifeline Marine and RV batteries consistently perform twice as long as Gel Cell Batteries
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Appendix E -  Quarter-ton Feed Buoy - Persistor Instruments CF-1 Specifications

From http://Persistor.com website:

68338 Based Computer Systems 

Persistor® CF1

The original CF1 was based on Motorola's MC68CK338, which Motorola 
discontinued in February 2001. We purchased enough parts to continue to 
be able to offer the CF1 in limited quantities to our original CF1 customers.

We recommend new customers choose the CF2 for embedded controller
and data logging applications. The 68332 based CF2 is a next generation The original CF1 is based on the 

discontinued M otorola MC68338.
replacement for the CF1, with as much functional and form duplication as 

was humanly possible.

If you have the CF1 designed into an application, please contact us with your anticipated needs as we 
continue to manage the end of life for the CF1 product.

Persistor Part Numbers

# PERCF1C Single Board Computer

"Motorola 68338 based Single Board Computer 

* 16MHz operation allows 2.5MIPS 

° 3.3 Volt operating voltage

"Built in power regulator accepts 3.6 to 20 volt input
o Low Current Capability:

<• <10uA Suspend
■ <250uA Nap (No Compact Flash Card)
«5mA to 50mA Run 

"Header accepts Type I (up to 512 MB) CompactFlash memory cards

11MB Flash 512KB SRAM, 8KB Virtual EEPROM

° Real Time Clock, RS-232 , 18 Digital I/O

° -40C to +80C Full Industrial Temperature Range
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Appendix F - Quarter-ton Feed Buoy - Feed Hose Cross Section

SIDE VIEW OF CONDUCTOR HOSE CONSTRUCTION
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Appendix F - Quarter-ton Feed Buoy - Feed Hose Elongation Curve

Load-Elongation Curve of UNH High Stretch Feed Hose (August 02)

7000

6000
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o  3000 w01
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60 120 1800 20 40 80 100 140 160 200

H ose Elongation (Compliant Section) in [%]

8-27-02/wp
Notes:
(1) This is a calculated behavior for the compliant (center) section of the feed  hose . The curve coincides with the m easured long-term load 
elongation behavior of the actual hose.
(2) The rubber hose wall supports the applied tension entirely up to a load of 1200 lbs (105 % stretch).
(3) Beyond 1200 lbs tension the reinforcing nylon cords are sharing the applied load with the rubber. At 1800 lbs (122% stretch) the cords 
are tensioned to 10 % of their breaking strength, at 2300 lbs (133 % stretch) to 20 %, and at 3100 lbs (145% stretch) to 30 percent, the 
maximum working load recomm ended.
(4) At 4200 lbs tension and 158 % stretch the cords are loaded to half of their strength, and around 6700 lbs and 170 % elongation the cords 
will break, leaving the rubber to stretch further, with the tension dropping to 2 ,000  lbs.
(5) The calculated behavior is determined with for the fluid filled and sea led  hose. If the h ose  ends are not sealed , the h o se  is expected  the 
stretch more under a given tension, since it can contract without the resistance of the water fill.
(6) With an assum ed overall length of 26 ft and 18 ft compliant center length the h o se  assem bly will stretch an additional 18.5 ft at 1200 lbs,
22 ft at 1800 lbs, and 16 ft at maximum work load. Al 30.6 ft stretch will break the hose.
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Appendix G -  Quarter-ton Feed Buoy -  W HOI Report on Feed Hose Construction

High Stretch Feed Hose with Embedded Conductors

Figure 11. Feed Hose manufacturing, applying rubber inner liner layer over steel 
mandrel

Figure 12. Feed Hose Manufacturing, applying rubber coated reinforcement layer.

Partial Copy of Annual WHOI Report to UNH December 2002
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Appendix H cont’d

Figure 13. Feed Hose Manufacturing, spiraling 121 conductor wire around hose body

Figure 14. Feed Hose Manufacturing, applying the first layer o f  rubber jacketing over 
conductor and reinforcement layers. A V2 inch thick outer jacket was built up to protect 
the conductors from  damage. The completed hose is wrapped with nylon curing weave 
and vulcanized (steam treated at over 300° F) to give it a tire-like toughness. The 
conductors on the fa r  right, located next to the coupling section o f  the hose, were left 
uncovered and grouped to form the electrical pigtails.

Partial Copy of Annual WHOI Report to UNH December 2002
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The completed hose was furnished with electrical connector pigtails at WHOI, see 
Figure 15. Special care was taken to assure their survival at sea.

Figure 15. Feed Hose is being furnished with Electrical Connector Pigtails at WHOI. 
Image shows connected electrical pigtails with plug-in connector before covering 
breakout area solidly with rubber and sealing tape.
The hose was pull tested and load cycled to 2,500 lbs maximum (for safety reasons), see 
Figure 16. Conductance was monitored on one wire during the test, and all wires were 
checked before and after the test, there was no change in nine conductors monitored.

Figure 16. Pull and Load Cycling Test o f Feed Hose with Monitoring o f Conductance

Partial Copy of Annual WHOI Report to UNH December 2002
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Appendix H -  Quarter-ton Feed Buoy - M ooring Specifications

Fullerton 10/02

Site Specifications Worksheet for the Feed buoy Mooring

General OOA Site Values:

Water depth = 170’ (52.0m) (@MLW)

Typical tidal elevation change = 10.0ft (3.0m)

Max. design wave height = 29.5ft (9.0m)

Max. design current = 3.3 ft/s (1.0 m/s) (@ surface)

FeedBuov:

Draft = 11.0ft (3.4m) (draft = the depth to hose/mooring attachments)

Weight = 45001b (-2050 kg) (fully loaded with 5001b fish feed)

Fish Cage (South'): (same as North cage)

Submerged depth = 31.0ft (9.5m) (@MLW)

Grid Comers: (NE and SE for FeedBuoy mooring)

Length grid to grid = 213’ (65.0m)

Ave. Depth = 60’ (18.3m) (@MLW)

Feed Hose:

Length (unstretched) = 26.0’ (7.9m)

Length of stretchable portion = 18.0’ (5.5m)

Spring constant (linear portion) = 65.4 lb/ft (97.3 kg/m)

Mooring: (* number of elastics and their lengths are due to change)

Number of mooring legs = 2 (NE and SE grid comers)

*Number of elastics per leg = 4

*Length of elastics (unstretched) = 36.0’ (11,0m)

Max. length elastic working strength = 250%

Spring constant individual elastics (linear portion) = 2.7 lb/ft (4.0 kg/m)

Length of braided rope = 65.6ft (20.0m)
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Appendix I - One-ton Feed Buoy - M athCAD Hydrostatics

Fullerton 0 1 /0 4

"As-Deploved" H ydrostatics for the O ne-T on-C apacitv F eed  B uoy

A bbreviations and Subscript N otations:

L = length 

W = weight 

V = volume 

p = density 

D — diameter 

OD = outerdiameter

y = distance(cg, cb) deployed December 5th, 2003

eg = center_of_gravity 

cb = center_of_buoyancy

D en sit ie s: 

sea w a ter

freshw ater

alum inum  6061

, , lb
steel P steel ^91 -

ft

lb
lead  P l e a d - 711' - ;

ft

lb
diesel Pfiiel = 7.96— -

gal

P s w  b 4  0-
ft

lb
P f w  :=  6 2 .4 -—  

ft

lb
Pal -

ff5
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Appendix I cont'd

C enter of Gravity C alculations

Ycg-W = ^ y j - AW

W  = w eight 
y = cen ter  of gravity

W eights and cen ter  of gravities are either: 
-know n/m easured  
-estim ated
-approxim ated through AutoCAD  
M A SS P R O P  function*

* MASSPROP is an AutoCAD function, which calculates 
geometric mass properties of the selected drawn objects. 
As long as objects are drawn accurately with proper 
dimensions and thicknesses, the MASSPROP results 
(volumes and center of gravities) are accurate.

top

bottom

referen ce b a se

Part Description

B uoy's External Shell:

buoy's bottom  shell 
(steel)

D efining or Calculating

. 3

R esu lts

V bot := 23392-in'

W bot P steel W bot

(MASSPROP)

W bot =  66471b

ybot := 216.3-in (MASSPROP)
Note: CG's of all components are 
taken about the feed hose flange.

length of pipe leg s Lpipes = 17-ft

ballast w eight W b a l la s t  s  4500-lb  (known)

Y b a lla s t := 9-in  (estimate)

height from the feed  h o se  
flange to the inside floor 
(a second reference)

h floor Lpjpes + 6-in  + hCOne +  12-in hfloor = 19.5 ft
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Appendix I cont'd

tire bum per w eight

buoy's top shell 
(aluminum)

B uoy's Internal C om p onents  

feed

feed  hopper
(500 gal., poly, tank w/ center lid)

fe ed  m ech an ism s
(rotary feeder/airlock, knife valve, 
pumps, and mixing chamber, etc.)

W tires := 14 (30-lb )  (estimate) W tjres = 4201b

Ytires := 23.5-ft

w hatches ;= 2-(52-lb) + 49-lb (known)

V t0p := 10022-in3 (MASSPROP)

Wtop := Pal mtop + Whatches Wf0p = 11331b

ytop • -  370.9-in (MASSPROP)

Wfeed := 2000-lb

yfeed -= hfloor + 132.0-in (MASSPROP)

W h o p p e r  := 2551b (know n)

yhopper := hfloor + 132.0-in (MASSPROP)

W a ir lo c k  := 185-lb (know n)

y a i r lo c k  := h f l o o r + 75-in (measured)

W k n if e  :=  1 5 - lb  (know n)

yknife := hfloor + 82-in (measured)

W p u m p s  :=  5 5 - lb  (know n)

ypumps ;= hfloor -  10-in (measured)

W m ix in g  := 35-lb (estimate)

ymixing := hfloor + 52-in (estimate)
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Appendix I cont'd

Wmech W a j r i o c k  + Wknife +  W p U r n p S +  W m i x i n g

Wmech =  2 9 0 1 b

Ymech :=
yairlock'W airlock + yknife'W knife +  ypumps'W pUmps +  ymixing-Wmixing

Wmech

y m ec h -h flo o r  = 4.71ft

electron ics
(pressure cylinder, circuit box, 
wiring, lights, stop switches, etc.)

W Cy l  := 85-lb (measured)

yCyl := hfloor +  10-in (estimate)

W box := 4 (251b) (estimate)

ybox := hfloor + 42- in (estimate)

Wmisc2 := 20-lb (estimate)

ymisc2 := hfloor + 26-in (estimate)

W e i e c  W Cy )  +  W f l o x  +  W m i s c 2 W elec =  2051b

yelec ;-
y c y l - W c y l  +  ybox'W box + ymisc2-W miSc2 

W elec

yelec -  hfloor — 2.26 ft

fittings, fa s ten ers, 
h o s e s ,  filters, e tc . W misc := 25-lb (estimate)

P ow er C om p onents

ymisc := h f l o o r  + 14-in (estimate)

generator  
(5kW Northern Lights)

W gen := 350-lb (known)

ygen := hfloor + 10.0-in (estimate)
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Appendix I cont'd

d ie se l fuel W f u e l  :=  P  f u e l '( 2 0 0 - g a l ) W f u e l =  159 2 1 b

batteries
(two 12 V AGM 105amp/hr) 
(one 12V MF starting battery)

y f u e l  :=  h f l o o r  + 18.0-in  (measured)

W b a t te r ie s  :=  2-(71-lb) +  37-lb (known/measured) W b a t te r ie s  =  1791b

Y b a tte r ie s  h fi0or — 1 0 - in  (estimate)

so lar pan els W s o la r  :=  3 0 - lb  (estimate)

Subtotal of W eights

y s o la r  := h f l 0 o r  +  17-ft (estimate)

w eight of buoy structure W s h e ll  :=  W b o t  +  W to p  +  W ti r e s  +  W b a l la s t W s h e l l  =  1 2 7 0 0 1 b

w eight of feed  
com p on en ts

W Co m p  W h o p p e r  +  W f ee(j  +  W m e c h  +  W e je c  +  W m i sc

Wcomp — 27751b

w eight of pow er  
com p on en ts

W p o w e r  W g e n  +  W f u e l +  W b a t te r ie s  +  W so la r

W p o w e r  =  21511b

C heck  of W eights The crane operator at the Port Authority said the aluminum buoy section  
w eighed -1 7 0 0  lb and the steel section 7200 lb.

Summing of the com ponents w eighed results:

W to p  +  W a i r lo c k  +  W k n if e  +  W h o p p e r  +  W s o la r  +  W m is c 2  =  1 6 3 8 1 b

W b o t  +  W t i r e s +  W p Ump s  +  W m is c  =  7 14 7  lb
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Appendix I cont'd

Condition#1 - fully-loaded

Total W eight:

m ax. buoy w eigh t W to ta l  :=  W s h e l l  +  W c o m p  +  W p0W e r Wtotal =  1 7 6 2 6  lb

Wtotal = 8.81 ton

C enter of Gravity C alculations

, ,  , it u ii« ybot'Wbot + ytop WtoP + ytires'Wtires + ballast'W ballast
CG o f buoy s  shell ysheii : = ------------------------ ----------------------------------------------------------

W s h e ll

y  s h e ll  =  1 3 .2 3  f t  

(from the feed hose flange)

CG of buoy's fe ed  com p on en ts

yfeed'Wfeed + yhopper'Whopper + ymech' Wmech + yelcc'We]cc + ymisc'Wmisc
ycomp ;-

W Comp

ycomp -  29.11 ft 

(from the feed hose flange)

CG of buoy's pow er com p on en ts

ygen' Wgen + yfuel'Wfhei + ybatteries'Wbatteries + ysolar'WSolar 
ypower := —

w power

ypower = 20.91 ft 

(from the feed hose flange)
overall CG of buoy

ysheii’ W shell + ycomp' W  comp + ypower W p o w e r  

YCg Wtotal

ycg = 16.67 ft 

(from the feed hose flange)
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Appendix I cont'd

C ondition#2 - no co m su m ab le s  (ie. feed  o r  fuel)

Total W eight:

Wempty := Wtotal — (W feed +  Wfuel) W empty =  140341b

Wcmpty =  7.02 ton

C enter of Gravity C alculations  

CG of buoy's feed  com p on en ts

Wcomp empty := Wcomp -  Wfeed 

Yhopper' Whopper +  Ymech' Wmech + Yelec'Welec + Ymisc'Wmisc
Ycom pem pty :~

W compem pty

ycom pem pty — 25.52 ft 

(from the feed hose flange)

CG o f buoy's pow er com p on en ts

Wpower empty := Wp0wer -  Wfucl

ygen'Wgen + Ybatteries'Whatterics +  Ysolar'Wsolar
Ypower_empty : = ------------------------- ----------------------------------------------

Wpower_empty

Ypower_empty -  20.67 ft 

(from the feed hose flange)

overall CG of "empty" buoy

Ysheii'Wshell + Ycompempty' W COmp_empty + Ypowerempty'W powerempty
Ycg empty •-

W,empty

Ycg_empty -  14.21 ft 

(from the feed hose flange)
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Appendix I cont'd

Calculating w eight per inch su b m erged

outer d iam eter o f buoy OD := 96-in

w eigh t of w ater  
per inch su b m erged

( 0DV
R  2 J  ^ s w

R = 268.08-
lb

m

ch a n g e  in w aterline 
with and without feed

Wfeed
R

= 7.46 in

ch a n g e  in w aterline 
with and without d ie se l fuel

Wfuel
R

= 5.94 in

total w aterline ch a n g e  
d u e to co n su m a b les

Wfeed WfUei
 + --------  = 13.4 in

R R

Total D isp lacem ent

total volum e of 
d isp laced  sea w a ter ^displaced :~

Wtotal

Psw
Vdisplaced -  275.4 ft 

^displaced = 2060 gal

with no Consumables Vdisplacedempty
W,empty

Psw
Vdisplacedempty — 219.28 ft

Vdisplaced_empty — 1640 gal

Calculating S u b m erged  V olu m es

Bottom  C on e o f Buoy

a n g le  of bottom  c o n e  0 cone = 45-deg

ch a n g e  in radius o f c o n e  Arcone = 12-in

overall height of bot. c o n e  hcone = Arcone tan(0cone)

imaginary;

Calculating the volume of cone 
minus imaginary cone

hcone — 12 in
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Appendix I cont'd

volu m e o f im aginary c o n e  V imag_cone := y  ~  Arcone) • ^  tan(0cone) -  Arcone-tan(0cone)J

Vimag cone -  28.27 ft

vo lu m e of bottom  c o n e  v c
1 f  o d Y  OD
T ' 7t’1 T )  ' T ' tan!(®cone) ”  ( V imag_cone)

cb  of bottom  c o n e  ycone := Lpipes + 5 3 % h COne (MASSPROP)

Support P ipe L eas

Vcone = 38.75 ft

#  o f ballast le g s
(weights incl. above in shell) N  := 4

outer diam eter o f p ip es ODpipes i— 6.625 in

su b . volum e o f su pports Vpipes := N
ODpipes V  , v

-  j  -^^pipes nconeJ Vpipes — 15.32 ft

cb  of support p ip es
vpipes

Ypipes — j

B allast W eight 

volu m e of ballast Vballast :~
Wballast

Plead
Vballast — 6.33 ft

other su b m erged  vo lu m es
(plate steel, mooring tabs, gussets, etc.)

volum e o f m isc. p ie c e s  V misc := 5500-in3 (estimate / MASSPROP) Vmisc — 3.18ft

cb  o f m isc. p ie c e s Ymisc :-
-pipes

volum e o f fully 
su b m erged  ob jects

Vsubmerged Vballast + Vpipes + Vcone + Vn

Vsubmerged -  63.58 ft
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Appendix I cont'd

Vsubmerged — 63.58 ft com pared  to th e  total volum e  
o f w ater d isp laced: Vdisplaced -  275.4ft

Determ ining th e  W aterline:

location of w aterline hwl :=
^displaced — Vsubmerged

n f  OD)2
I— J

hw] = 50.57 in 

(from the base of the 8' cylinder)

y-wl Lpipes + hcone + hwl ywl 22.21 ft 

(from the feed hose flange)

total draft d := yw]

without C o n su m a b les
(ie. feed and fuel)

hwl empty :=
V displacedem pty -  Vsubmerged

f  OD^2
TC * I ---------

I  2 )
hwl_empty -  37.17 in 

(from the base of the 8' cylinder)

ywl_empty Lpipes + h Cone + hwl_empty ywl_empty — 21.1ft 

(from the feed hose flange)

C enter of B u oyan cy  C alculations

volu m e of buoy's OD V o d  := n- 
disp laced

odY
2 )

hw l V q d  =  211.82 ft'5

cb  of buoy's OD yoD  := (ywl -  hwl) +
hwl

yOD = 241.28 in
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Appendix I cont'd

cen ter  of bu oyancy

Ycb -
V p p yO D  + Vballast-yballast + Vpipes'Ypipes + V cone'Ycone + Vmisc'Ymisc

V displaced

Ycb = 18.47 ft 

(from the feed hose flange)

without C on su m ab les V 0 D_empty := —  hwi_empty
(ie. feed and fuel) V 1 )

OdV
VQDempty — 155.7 ft

hwlempty
YOD_empty := “floor + ------ ------- yODempty = 252.59 in

_  VODempty'YODempty + Vballast'Yballast + Vpipes ypipes + V cone-ycone + Vmiscymisc
ycb_empty : = ------------------------------------------------- ------------------------------------------------------------------------

» displacedempty

ycb_empty -  18.72 ft 

(from the feed hose flange)

Hydrostatic R esu lts  with C onsum able^

location o f w aterline

overall draft

hwi = 50.57 in 

(from the base of the 8' cylinder)

d = 22.21ft

cen ter of gravity ycg = 16.67 ft 

(from the feed hose flange)

cen ter  of buoyancy yc b = 18.47 ft 

(from the feed hose flange)

d istan ce b etw een  cb  
and eg , (the "righting arm”) ybg ycb ~  ycg ybg = 21.6in 

ybg = 1.8 ft
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Appendix I cont'd

Hydrostatic Results w ithout Consumable^

location o f waterline h w le m p ty  — 37.2 in 

(from the base of the 8' cylinder)

cen ter  o f gravity Ycgem pty -  14.21 ft

cen ter  o f buoyancy Ycbem pty -  18.72 ft

d istan ce b etw een  cb  
and eg , (the “righting arm") Y bgem pty Ycb empty ”  Ycg empty Ybgem pty =  54.14 in  

Ybgem pty =  4.51 ft

M etacentric Height gm  =  +  bg (additive ybg term, since CB is above CG)

I  := - - T i- f— 1 I =  201.06ft4m om ent o f inertia i . -  - n - ,  —  ,4 y i )

m etacentric height gm : = --------- -̂--------+  ybg gm = 2.53 ft
V displaced

gm = 30.36 in

gmempty i—   •" Ybg_empty gmempty -  5.43 ft
V displacedem pty
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Appendix I cont’d

Buoy's Dynamic Response:

w aterplane area S := 7t
odY
2 )

S = 50.27 ft

restoring con stant c Psw'S'S c = 103503-
lb

ad ded  m a ss
(approximated)

ma :=

1
00 o

' d OJ
1

8 o ( 5'ft^3
_ 3 w \  2 )  _

+
_ 3 2 )  _ ma = 135891b

ad d ed  m a ss  
(experimentally)

madded 114.6%-Wtotal madded = 201991b

virtual m a ss mv := W total + mac)dcd mv = 378251b

undam ped natural 
frequency mv

co0 =  1.65 Hz

undam ped natural 
period

T0 :=
2-71

con
T o = 3.8 sec «

dam ping ratio C, := 0.10 (determined experimentally with scaled model)

dam ped natural 
frequency

®d := C0O-/T- cod = 1.65 Hz

dam ped  natural 
period

Td :=
2-7t

COd
Td = 3.82sec

144

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



R
eproduced 

with 
perm

ission 
of 

the 
copyright 

ow
ner. 

Further 
reproduction 

prohibited 
w

ithout 
p

erm
ission

.

Appendix J - One-ton Feed Buoy - Ace Roto-Mold Feed Hopper
JU G  NO.

1, SPECIFIC GRAVITY IS 1,75 
Z. 1 PIECE ROTATIONALLY MOLDED
3. TRANSLUCENT
4 . FDA A P P R O V E D  R E S IN
5. CALIBRATED IN GALLONS
6 . T H R E E  YEAR W ARRANTY
7. UV STABILIZED
8 . MIXER OR PUMP MOUNT 

ON REQUEST

STAND PART NO. CB2 6 0 0 -S T  
STAND WEIGHT 560 LBS.

14 GA SHEET METAL

a)a.a.ox
-a<Da)
Li.
2
O
£
oX
a>0 <
1

o
13QQ
"D
CD
CD

C0
1a>c

O

><'uca>o.
Q.<

^  //

U  GA. HR. 3" CHL.

3 ” CHL.

3 / 8  X 2 HR

12 1 / 2

16” LID

C B 2 6 0 0 -8 5 SH REV

in
LO

- 3 / 1 6  X 2  ANGLE
■3/16 X 1 - 1 / 2  ANCLES

OE500

0  2000

Q1500

O50Q
9 x 9  FLAT

— 1 j—  10 FLAT

REV

S C A L E

DESCRIPTION DATE APVD

N O N E
UOS DIMENSIONS ARE IN INCHES

G E N E R A L .  T O L E R A N C E S

1 .5% @ 68° F

DRAWN

DEAN
APPROVED

DATE

12-9-93
DATE

THIRD ANGLE PROJECTION

MATERIAL

HIGH DENSITY 
POLYETHYLENE

PART WEIGHT

5 0 0  LBS.

ACE ROTO MOLD
A DIVISION OF OEN HARTOG INDUSTRIES, INC.

PART NO. C B 2 6 0 0 - 8 5
SIZE

A
R E V

C B 2 6 0 0 - 8 5
.1 4 5



Appendix K -  One-ton Feed Buoy -  Prater Industries Rotary Airlock

PAV-6 C /S -3 0 4 -S S
Prater 6" Rotary Airlock - 304 Stain less Steel

The Basic Valve Consists Of A 304 Stainless Steel Body And End Plates
Square Inlet And Round Outlet - W ith Universal Flange
Flanges Custom Drilled To Customer's Pattern
End Plates Are Drilled And Tapped For Optional Air Purged Seals
8 Blade, 304 Stainless Steel, Open Ended Rotor With Welded Pocket
Bottoms
(2) Sealed Outboard Bearings - Lubricated For Life
Jack Bolt Floles Are Drilled In End Plates For Quick And Easy Removal
Operating Temperature Up To 500°F. With Standard Bearings
(2) Self Adjusting Packing Gland Assemblies
A Shaft Extension For A Drive On One Side Only

Description

Capacity:

Bearings:

Flousing:

Flanges:

Shaft:

Sound Level: 

Rotor:

Drive Includes:

Approximate 
Weights and 
Dimensions:

Theoretical: 0.15 cu. ft. (4.3 L) /rev.
Practical: 0.12 cu. ft. (3.4 L) /rev.

Type: Ball Bearing 
Size: 1.0" 25.4 mm 
Life Rating L-10: > 60,000 hrs 
Outboard Mounted: Yes

Material: 304 Stainless Steel 
Thickness: 0.38" x 0.31"; 9.5 x 7.9 mm

Square Outline: Drilled Round or Square 
Inlet Size: 6.0" 152 mm 
Outlet Size: 6.0" 152 mm 
Thickness: 0.31" 7.9 mm

Material: 304 Stainless Steel 
Drive Stub Shaft Dia.: 1.0" 25.4 mm 
Packing Seal: PTFE

< 75 db scale A

Type: Fabricated
Material: 304 Stainless Steel
Number of Blades: 8
Blade Thickness: 0.38" 9.5 mm
Design Radial Clearance: 0.004" to 0.006"

(At Operating Temp) 0.10 to 0.15 mm

0.5 Hp, 60 Hz, 3 Ph, 230/460 V. Motor. Motor 
Base, Gear Reducer, Chain Drive & OSHA Guard

Airlock Only
Length: 19.5" 495 mm 
Width: 10.0" 254 mm 
Height: 10.0" 254 mm 
Weight: 90 lbs 41 kg 
Shipping Weight: 120 lbs 55 kg

W ith Drive & S tandard  Guard
Length: 21.1" 536 mm 
Width: 27.6" 701 mm 
Height: 16.8" 427 mm 
Weight: 180 lbs 82 kg 
Shipping Weight: 210 lbs 96 kg

mATEtt
SKaasswsr1-^ .. t „

< —a—

j'. i t ;’f

*. .. **,| L Vtoak* I /f ::

Click For Drawing Detail.

DW G PDF

Download Download

Available O ptions

Air Purge Seals
Food Grade Seals
Food Grade White Epoxy

Shear Pins
Hiqh Temp. Bearings And 
Seals For Operation lo

Wear And Corrosion Resistant
Coatings
Inlet Baflle
Discharge Adapter
L-Slot Wear Bars
Vented Pockets
Reduced Size Pockets
Neoprene Flange Caskets

For full details and a complete list of 
options, contact vour Prater 
Representative.

1 4 6
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Appendix K cont'd - Prater Industries Vendor Drawing

P R A T E R
THE ASSOCIATED PEATEE COMPANIES

WPiClfr.................
S K - 4 0 0 0 - 4 7

P A V - 6 C / S  THRU PAV-1EC /S
STANDARD BOLT PATTERN

KEraw s. asm oouiir 
CKXRGt IL, AFP:

REFEPCMGl  DRAWING ONLY NOT TQ I E  USED FOR 
CONSTRUCTION UNLESS' CERT.tFIEB

CONFIDENTIAL K.V.

H DIA.
H DIA,

bound r e  sclmhe pmtekh
SQUARE <C) SQUARE <A3

d r iv e  mmim

SHAFT SHAFT F L A N G E  WEIGHT 
D IA . D I A . T H K . L B .

P A ¥ « #
C /S 6 1.0 6 9

1/2
7 /
I S

8
4
5/
16

19
a / a

10 8 
1 1 /1 6  1 1 /1 6

?
1 3 /1 6

2
1/4 1/2 2

1/2
5

1/4
2
1/2 5 10 1/4X

1/8 1 1 5/16 90

P A V -S
C/S S 12 8 11

3 /4
7/
16 ' S S

1/4
21 

1 j / 1 6
1 12  9 

1/4  11/16
b

1 3 /1 6
2

7 /f t- i u
1/2 3 6

1 /4 3 € 12 1 /4X
1 /B

1 1
3 /1 6

• 7 / 1 6 110

P A V -1 0
C / S

10 IS 10 1 4  , 
1 /4  !

7/
1 6

8 6 25
3 /1 6

1 4  11 
1 /B  1 /1 6

10
1 /B

3
1/4 1/2 3

1/2 !
7

3 /4
4 7

1/2
i s  j3 /8 X

3 /1 6
1

7/10
1

7/16 1/2 165

PAV-12 12 IB
.

12 17 1 7 i  

i 6  ,
12 5

1/B
29

15 /16. ...... . . . .... j
16  13

1 1 /1 6  1 /4  '1.......... .... ..
12 1 /2  |

7 /8 -| 3. I
3 / 8  '

9
1 /4 5  1

I 1

9
1/16

i s  ,
1/8  |

3/BX  
3 / 1 6  ,

1 1
1 5 /1 6  ,

" S /8  
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A ppendix L - O ne-ton  F ee d  B uoy -
S ea w a te r  Centrifugal P um p s

Centrifugal Transfer Pumps
For information about centrifugal transfer pumps, see page 281.

A dd itiona l inform ation: For additional information about the compatibility o f 32 common chemical* foi the pum p* on this page, go to our 
web site, www.mcmastcr.com, and search toi the number specified in the presentations below (fur example, 4320KAC), or rax us at 
630-782-3300 and request the number specified.

Type 316 Stainless Steel Centrifugal Pumps
Extremely resistant to corrosion, these pumps handle water as well as many acids, caustics, and chemicals. Pumps have 

an aluminum motor mount and a Type 316 stainless steel open impeller, except 4320X35, K36, K37, K38, and K39 have 
a closed impeller. Motors are totally enclosed fan-cooled (TEFC) and generate 3450 rpm. Rated for continuous duty. 
Pumps must be hardwired. Max. temp, is 300° F. Fluids must be compatible with wetted parts (materials in contact with 
solution). Wetted parts are carbon, ceramic, Type 316 stainless steel, and Viton. Motors are UL listed and CSA certified. 

iMu»«w<Mt»nM»rl»n»IEEH 4320KAC (See top o f  page for details)
I------------ PUMP PERFORMANCE------------1 Full r~  Connections,

g pm  <® ft. o f  h e a d  1 Shutoff, Load NPT female
  '  '  -----  ft. VAC Hzhp 20 ft. "  30 ft. 40 ft. 50 ft! ph. Amps Intake Discharge Each

Vi .. 29. .. ....23..... .... 10.... ...44....... .......115/230.... ....60........ .. 1.... .... 4.6/2.3.... .... w - .... V2" .......... 4320X32 $404.86
V? .. 36. .. ....30..... .... 22... ... 10.... ...54....... .......115/230... 60........ ....1.... .... 8 /4 ......... .... V4".... .... 'hi'.......... 4320X33. . 412.95
% 38... ....33..... .... 27.... ... 18.... ...59....... .......115/230... ....60........ ....1.... .... 8.6/4.3.... .... 3/4".... ...  ' / / ’ .......... 4320X34 . 421.05
V. .. 65.... ...53 ..... .... 38.... ... 20.... ...61....... .......115/230 ... ...60 ........ ..,.1.... .... 8.6/4.3.... ....IV4".... .... :</4".......... 4320X35 . 583.00

1 .. 83. .. 63..... .... 35.... ... 15.... ...59....... .......115/230 ... .60........ ....1.... ...10.4/5.2... . 1V2” . ....1V4"........... 4320X36 . 631.58
1 . 50. .. ...15 ..... ...34....... .......230/460... ...50/60... ....3.... .... 3.2/1.6 ... 1 ’/?” ... 1V4"........... 4320X61 . 615.38
IV? .. 98. .. ...83 ..... .... 60.... ... 30.... ...69....... ...... 230/460... ... 50/60 . 3 .... 4.2/2.1 .... 1'!/ ... ... 1 '/.."........... 4320X37 . 631.58
1V? .. 80. .. ....58..... . .. 20.... ...49....... .......230/460... ....60........ ....3.... .... 4.2/2.1 .... . .17?" ... ....1V4"............ 4320X65 . 615.38
2 .115.... ...90..... .... 54.... ... 10.... ...52....... .......230/460... ....60........ ....3.... .... 5.6/2.8. .. ....2"...... ....1 V?"........... ,  4320X63. . 728.74
? ...115... ... 90.... ...82....... .......230/460... ...50/60 3 . 5.6/2.8 ... . .2"...... . IV 2" .......... 4320X38 . 696.35
3 ...135.... ...115.... ...88....... .......230/460... ... 50/60 ... . 3... .... 8 /4 ......... ...21'...... 1 •/;•".......... 4320X39 . 696.35
3 ---------- ----------- ...125.... .... 95.... ...79....... .......230/460 ....60........ ....3.... .... 8 /4 ......... ....2"...... ...Vk"........... 4320X64 . 728.74

Cast Type 316 Stainless Steel Centrifugal Pumps
Because they are cast, the Type 316 stainless steel housings have thicker, stronger walls than machined housings for 

enhanced durability. Plus, they resist corrosion. Discharge adjusts to four different positions. Impellers are semi-open and 
Type 316 stainless steel. Motors are totally enclosed fan-cooled (TEFC) and generate 3450 rpm. Rated for continuous duty. 
Pumps must be hardwired. Max. temp, is 200° F. Fluids must be compatible with wetted parts (materials in contact with so­
lution). Wetted parts are carbon/ceramic, 18-8 and Type 316 stainless steel, and Viton. Motors are UL listed and CSA certified. 

EMflMf'BWmAHS'BBgBH 8124KAC (See top o f  page for details)
PUMP PERFORMANCE - Full • Connections, •

hp 10 ft.
gpm  @ ft. o f  head  

20 ft. 30 ft. 50 ft. 70 ft.
Shutoff,
ft.

VAC @ 
60 Hz ph.

Load
Amps

NPT female 
Intake D ischarge Each

Vs.., ....29....... ... 24.... 17 .. 45............. ...115/230.... ....1..... .... 7 /4 .... ....  3W ........ „ Vi".............. 8124X31 $360.44
Vs.... ....42....... ... 35.... ...25. ... 45............. ...115/230.... ....1..... .... 9 /5 ......... 1",............ „ 3/4" .............. 8124X32 . 404.73
3/4... ....47....... ... 40..... ...31. .. 48............. ...115/230.... 1 ....,9 /5 .... .... 1"............. „ 3/4" .............. 8124X33 . 424.58

1 ....... 69 ... 60.... 18 . 48.......... ..115/230.. . 1 12,6 .....11/4"......... . 1".................. 8121X34 450.55
1V2... ....71....... 62 V .......  7 ...... . 52 115/230 ....1.....; . 18/9 ..... 11A"........ .:, r .................. 8124X35 , 462 /6
IV 2 ... ....71....... 62 52 ........  7 ...... 52 ...230/460.... 3 .... 5 /3 ... ..... IV 4" .......... , 1 ".................... 8124X36, . 520.80
? ... 90.... 85 ........ 71....... .56...... ...110.............. ...115/230.... ....1 ...... ,2 2 /1 1 , ..... IV 2" ......... . 1 V4" .............. 8124X37 . 702.55
2 ... 90..... 85 ........ 71...........56...... ...110.............. ...230/460.... ....3..... .... 6 /3 ... ..... Vh".......... . 1 74"................ 8124X38 . 736.91
3 ... 103.... 99 ........ 88...... ....72...... ...130............. ....230............ ....1 ...... ... 16........ ..... IV 2" .......... „ 1V4" ............ ,8124X39 . 771.27
3 ....— ....... .1 0 3 .... 99 ........ 88....... 72...... ...130............. ...230/460.... ....3..... .... 8 /4 ... .....TVs".......... ,1V4".............. 8124X41 . 805.64

Self-Priming Type 316 Stainless Steel Centrifugal Pumps
After an initial fill of the pump casing, these pumps are self-priming to 6 ft. Plus, they have the chemical and corrosion 

resistance of a cast T^pe 316 stainless steel housing. Pumps have a centerline discharge to prevent stalling and a self­
cleaning semi-open Type 316 stainless steel impeller. Motors generate 3450 rpm. Pumps are rated for continuous duty 
and must be hardwired. Fluids must be compatible with wetted parts (materials in contact with solution). Wetted parts 
are carbon, ceramic, 18-8 and Type 316 stainless steel, and Viton. Motors are UL listed and CSA certified.

5 KAt

hp

Kfi'Mff.Tffi'UB'liBfBfKUfflai 99505KAC (See top o f  page for details)
— PUMP PERFORMANCE 1
gpm  <& ft. o f  head  Shutoff, VAC @
ft. 20 ft. 50 ft. ft. Motor A 60 Hz ph.

Full
Load
Amps

Max.
Temp.

Connections, 
NPT female 
Intake/D ischarge

Open Dripproof
Each

Vs ,3 6 , , ...24..... .44..... ..... ODP...... .....115/230,, , 1 ..... .... 8 /4 ..... ... 200° F ... „ „1 " ............... 99505X51 $523.09
V2 , ,4 5 , , ,3 5 ..... , 4 8 ..... ..... ODP...... .....115/230,, .1 ..... ....10/5...... ....200° F „ „1 " ............... 99505X53, 550.58
3/4 .,52.... ...42..... ... 10..... .54...... ...... ODP...... .....115/230,, .. 1 ..... ....13/7...... ....200° F „ , , 1 " ............... .............. 99505X55, 557.45
3A ,5 2 , , , 4 2 ..... ... 10..... , ,5 4 ..... ...... TEFC.... .....230/460,, . .3 ..... .... 3 /2 ..... ... 200° F... , ,1 " ............... 99505X63 631.56

1 ... 5 9 ,, ...50..... ... 24..... 60..... .......ODP...... .....115/230,, ... 1 ..... ....17/9...... ....200° F , „ r ............... 99505X57 572.73
1 „ 5 9 „ . ,5 0 ..... ... 24..... 60..... ...... TEFC.... .....230/460,, „ 3 ..... .... 4 /2 ..... ....200° F , ,1 " ............... 99505X65 637.64
V h ...66 ,, ,5 7 ..... ... 33..... .68..... .......ODP...... .....115/230,, „ 1 .... ....22/11. . ....200° F ... „ „1 " .............. 99505X59 581.89
V h ,6 6 ... ... 5 7 ...... ... 33..... 68..... ...... ODP....... .....230/460,, 3 ..... ..... 7 / 4 ...... ....2 0 0 ° r  „ ...A".............. 99505X61 644.51
V h ...66 ,, . ,5 7 ..... ... 33..... , ,6 8 ..... .......TEFC.... .....230/460,, , , 3 .... .... 5 /3 ..... ... 200° F ...A".............. 99505X67 660.55
2 66 58..... ... 32..... .68..... ...... TEFC.... .....230/460, .3 .... ..... 6 /3 ..... ... 2 0 0 ° r . ... 1".............. 99505X69. 679.64
A ODP=open dripproof; TEFC=totally enclosed fan-cooled.

Sanitary Type 316 Stainless Steel Centrifugal Pumps
For use in food, beverage, and other sanitary applications, pumps meet 3-A sanitary standard requirements for

product-contact surfaces. Pumps have a Type 316 stainless steel open impeller. Motors are totally enclosed fan-cooled 
(TEFC). Intake and discharge connections are 1V2" tube OD (tri-clamp style). Pump head rotates 360° for easy discharge- 
line connection. Rated for continuous duty. Pumps must be hardwired. Fluids must be compatible with wetted parts 
(materials in contact with solution). Wetted parts are Buna-N, PTFE, and Type 316 stainless steel. 

fcRffflfflMWl/llABilMTSfffl 49635KAC (See top o f  page for details)
r  PUMP PERFORMANCE 1 r ~  11 S /2 3 0  VAC, 6 0  Hz, 1 p h . — \ i— 2 3 0 /4 6 0  VAC, 6 0  Hz, 3  ph .

ten
hp_

I gpm  & ft. o f  h e a d  1
10 ft. 20 ft. 30 ft. 40 ft.

Shutoff,
ft. rpm

Max.
Temp.

Full Load 
Amps Each

Full Load 
Amps Each

V2  54........37........ _ ........  25............ 1725...... 225° F „„  7.5/3.9/3.7.....49635X21*.$921.11
 1....... ..... ........95......... 56....... _ .........40.............3450.... 225° F .11.8/5.9..........49635K35......  808.89
IV 2 ..._ .......... _ ....... 78....... 36.........47.............3450.... 225° F .... 15/7.5............. 49635K37......  861.11
 2......._ .......... _ ......._ ....... 87......... 62.............3450.... 225° F .... 9 .9 ................ 49635X39* 890.56
*  115-208/230 VAC. *  Supplied with 230 VAC only. A 208-230/460 VAC.

2 . 1/ 2/1  .... 
3.7/3.6/1. 
4.2/2.1 .... 
5.2/2.6....

49635X22A ,$927.99 
49635K34A... 788.06
49635X36..... 828.36
49635X38..... 854.10
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Appendix L cont'd - Chemical Compatibility of Feed Pumps

McMaster-Carr Supply Company Chemical Compatibility Information Disclaimer

This information was provided to McMaster-Carr by our suppliers to be used only as a general reference guide to aid in the 
selection of products in which chemical and material compatibility issues are a factor. This guide is not intended as a complete 
nor conclusive database and McMaster-Carr does not guarantee these ratings since the resistance of a material can be greatly 
affected by the temperature, consistency, and presence of other chemicals. Ultimately, the consumer must determine the chemi­
cal compatibility of an item based on the conditions in which the product is being used.

Key to Ratings Key to Numbers
A No Effect—Excellent chemical resistance. No performance degradation.
B Moderate Effect—Some chemical resistance. Some performance degradation. Shortening of product life.
C Not Recommended—Questionable resistance. Do not use.
D Information Not Available—No information available for this item.

1 Good from 40° to 200° F
2 Good up to 72° F
3 Rating for Ethylene Glycol

Cast Type 316 Stainless Steel Centrifugal Pumps
8124K31 8124K32 8124K33 8124K34 8124K35 8124K36 8124K37 8124K38 8124K39 8124K41

A cetone C C C C c C C C C C
Ammonium Hydroxide B (1) B (1) B (1) B (1) B (1) B (1) B (1) B (1) B (1) B(1)
Chlorine B (1) B (1) B (1) B (1) B(1) B(1) Bd) Bd) Bd) B(1)
Diesel Fuel C C C C C C c c c C
Gasoline C C C C C C c c c C
Glycol A (3) A (3) A (3) A (3) A (3) A (3) A (3) A (3) A (3) A (3)
Hydrochloric Acid (20%) C C C C C C C C C C
Hydrochloric Acid (37%) C C C C C C C C C C
Hydrochloric Acid (100%) C C C C c c C C C C
Isopropyl Alcohol C C C C c c c C c C
K erosene C C C c c c c C c C
Lacquer Thinner C C C c c c c C c C
Methyl Chloride C c C c c c c c c c
Methyl Ethyl Ketone (MEK) C c C c c c c c c c
Mineral Spirits c c c c c c c c c c
Nitric Acid (20%) A (1) Ad) A (1) A(1) A(1) Ad) A(1) Ad) Ad) A(1)
Nitric Acid (50%) A Cl) A (1) A (1) Ad) Ad) A(1) A(1) Ad) A(1) A(1)
Nitric Acid (concentrated) A (1) A (1) A (1) A d ) A (1) Ad) A(1) Ad) A(1) A(1)
Oil (Hydraulic) C C C c C c C c C C
Paint c C C c C c C c C C
Phosphoric Acid (<40%) c C C c C c c c c C
Phosphoric Acid (> or = 40%) c C C c C c c c c C
Seaw ater A (1) A (1) A (1) A (1) A(1) Ad) A (1) A (1) Ad) Ad)
Sodium Hydroxide (20%) B (1) B (2) B (2) B (2) B (2) B (2) B (2) B (2) B (2) B (2)
Sodium Hydroxide (50%) B (1) B (2) B (2) B (2) B (2) B (2) B (2) B (2) B (2) B(2)
Sodium Hydroxide (80%) B (1) B (2) B (2) B(2) B (2) B (2) B (2) B (2) B (2) B (2)
Sodium Hypochlorate C C C C C C C C C C
Sulfuric Acid (<10%) B (1) B(1) B(1) B(1) B (1) B (1) B (1) B(1) B(1) B(1)
Sulfuric Acid (10-75%) C C C C C C C C C C
Sulfuric Acid (75-100%) C C C C C C C C C C
Water A (1) A (1) A (1) A(1) A(1) Ad) Ad) A(1) Ad) A(1)
Xylene C C C c c c c c c C

M<MASTER-CARR Copyright © 2003 M cM aster-C arr Supply Com pany. All righ ts  reserved . D ocum ent 8124KAC
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Appendix M -  One-ton Feed Buoy - Northern Lights Diesel Generator

From the Northern Lights’ website (http://www.northem-lights.com/):

60 Hz /1800 rpm: 5 kW I 50 Hz 1500 rpm: 4.5 kW

Small marine gensets are asked to run reliably year after year, start ever larger electric motors and provide clean 
power for electronics. Yet many small 3600 rpm sets are built only to be small and light.

The M 673D is different. It runs at 1800 rpm, not 3600. During 2000 hours of operation the M 673D will turn 216  
million fewer revolutions than a 3600 rpm set. Its pistons will travel 38,522 fewer miles. Its cylinders will withstand 
108 million fewer detonations. Which engine do you think will give more years of reliable service?

The M 673D has a balanced Lugger three cylinder diesel instead of a rough two banger. Four plateform isolation 
mounts reduce vibration transmission even more. An air intake silencer/filter, cast valve cover and cast iron, wet 
exhaust system muffle engine noise. The cast-iron, freshwater colling system and gear driven seawater pump 
minimize troublesome belts, hoses and gaskets. Your service points are on one common side to streamline 
maintenance.

For maximum comfort afloat add a sound enclosure. Only 32.5 inches long, it fits your boat and it has powder- 
coated, aluminum panels with trigger latches to make routine maintenance, well, routine.

The generator end has a broad voltage capability in both 50 and 60 Hz operation. The automatic voltage 
regulator provides clean power and is powered by a special AC winding for faster response and better motor 
starting.

A  30 amp AC circuit breaker in the junction box protects your wiring. Safety shutdowns for low oil pressure, high 
coolant temperature and high exhaust temperature are standard.

The M 673D meets current emission standards. You, your moorage neighbors and the environment will all benefit.

1800 rpm reliability, low emissions, quiet operation and strong motor starting. All in one small package that fits 
your vessel and boating style. ___________________________________________________________
MODEL SPECIFICATIONS:

Cylinders: 3 inline 

Bore: 2.52 (64 mm)

Stroke: 41.1 cid (0.676 Itr) 

Aspiration: Natural 

Length: 27.08 in (688 mm) 

Width: 17.08 in (434 mm) 

Height: 19.5 in (494 mm 

Weight: 355 lbs (161 kg)

NOTE: Information, specifications, materials and dimensions 
subject to change without notice.
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Appendix N -  One-ton Feed Buoy - W HOI M ooring Specifications and AquaFE Results

M ooring Specifications:

Mooring hose. (x2):

inner Diameter (ID) = 2.0 in. 
outer Diameter (OD) = 3.2 in. 

overall unstretched length = 48 ft. 
max. stretched length = 106 ft.

Feed hose, (xl): in two 50 ft. sections 

inner Diameter (ID) = 3.0 in. 

outer Diameter (OD) = -4.2 in. 
overall unstretched length = 100 ft. 

max. stretched length =180 ft.

strain-relief end length (x2) = 4.5 ft. 

compliant (stretchable) length = 39 ft. 

max. working load = 3,300 lbf. 

min. breaking load = 7,200 lbf.

internal stop rope length =106 ft. 

Vectran 7/16” 12-strand braid 
max. working load = 4,000 lbf. 

min. breaking load = 20,000 lbf.

strain-relief end length -  to feed buoy (xl) = 4.5 ft. 

strain-relief end length -  midpoint (x2) = 4.5 ft. 

strain-relief end length -  to cage (xl) = 6.0 ft. 

compliant (stretchable) length = 80 ft. 

max. working load - 1,800 lbf.

min. breaking load = 6,700 lbf

Mooring rope. (x2):

length = 61.7 ft. (-60 ft. with shackles, etc.) 

Yalon 1” double braided or 8-plait nylon 
max. working load = 6,800 lbf. 

min. breaking load = 30,600 lbf.

AquaFE Modeling Results

Storm Condition Parameters 
Wave Height = 9 m 
Period = 8.8 sec 
Current = 1 to lA m/s at bottom

Watch Circle in Storm Conditions: 
55 ft. North or South 
128 ft East or West

Figure Nl, below, shows the expected 
watch circle of the one-ton feed buoy on the 

WHOI mooring hose mooring.
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Appendix N (cont’d) - AquaFE M odeling Results (cont’d)

Storm Conditions
2.3

Force in 1 ,000 ibf.

33.738.2

2.3. 6 .8 -

23.6

3.4

0.2

6.3 6.5

Figure N2: Storm Conditions inline with the FB Mooring

Storm  Conditions

3.6 15.3' 16.2

Force in 1 ,000 Ibf

7.26.7 6 .3

•33.7

14.2

2.2

19.6

16.4

Figure N3: Storm Conditions perpendicular with the FB Mooring
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Appendix N (cont’d) - Embedded Feed Hose Conductors

Roughly eighteen (18) l/8th-inch conductors can fit around a 3-inch ID feed hose

Conductors listed in order of priority

1) Underwater Video Cameras (3-4 cameras)

2) HTI Acoustics Fish Monitoring System (4 hydrophones)

3) Underwater Cage Lights (2 lights)

4) Environmental Data, i.e. SEACAT (2 instruments)

#2 #3

(
#4

if possib le

hot

12 aw g  
d

hot

12
shielded

neutral

lights 
12 
shielded

neutral

12 a w g  
shielded

common
ground

Figure N4: Proposed Feed Hose Conductor Usage
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Appendix N (cont’d) -  One-ton Feed Buoy-M ooring Hose Flange Design

Figure N5: Isometric of Mooring Hose Parts

4.75 
b o l t  c i r c le

(x4) 00.75 
noun~ting h o le s

Figure N6: Mooring Hose Cap (Part Number MH-2)
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Appendix O -  One-ton Feed Buoy - Sample W ave Tank Model Test Plan

Physical Modeling 1-ton Feed Buoy Mooring 

Test Plan

FB and SS 3000m3 cage scale (1:24)

FB two-point mooring: 3” ID elastic hose mooring

Free-Release Tests:

Theave = 0.72 sec (3.53 sec fs)

Tpitch = 1-51 sec (7.40 sec fs)

Regular (single frequency) Waves:

Test#

T (sec) 2.39 1.91 1.43 1.19 0.80 0.60 0.48

Tfs (sec) 11.7 9.4 7.0 5.8 3.9 2.9 2.3

L (m) 8.44 5.64 3.19 2.21 1.00 0.56 0.36

iff) 27.70 18.49 10.47 7.25 3.28 1.84 1.18
H (cm) 6.33 6.33 6.33 6.33 3.17 2.53 1.90

Hfs (m) 1.52 1.52 1.52 1.52 0.76 0.61 0.46

C (m/sec) 3.53 2.95 2.23 1.86 1.25 0.93 0.75

f (Hz) 0.42 0.52 0.70 0.84 1.25 1.67 2.08

OPIE Calibration: FB = 10cm 
circle = 9cm

Note: T = 2.8 sec. -> transverse tank wave
T = 2.0 sec. -> seiching in back of paddle

Test Notes: 

#1

#2

#3

#4

#5

#6

#7

#8

#9

#10
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