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SECTION I

STEREOCHEMISTRY OF ALLENES

Introduction

In 1874 van't Hoff (4) predicted, as a corollary 

of his hypothesis about the tetrahedral nature of the Car­

bon atom and the source of optical activity in carbon com­

pounds, that an allene of the type I must show optical 

activity. Because the terminal substituents of I lie in

a a a a
\ / \ /c=c=c c=c=c/ \ / \b - b b b

la lb

planes perpendicular to each other, la and its mirror image 

(lb) are not superimposable and therefore must display op­

tical activity (3.) .

All attempts to prove this.prediction failed until, 

almost simultaneously, Maitland and Mills (5) in Great Brit­

ain and Kohler, Walker, and Tishler (6.) in this country 

reported verifications of van't Hoff's prediction: Kohler's

group synthesized and resolved the allenic acid li; Maitland

1
i
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and Mills obtained the allenic hydrocarbon III in an opti­

cally active state by a partial asymmetric synthesis.

;c=c=c / \ c=c=c/ \
c o 2c h2c°2h

II III

In 1951 Bijvoet, Peerdeman, and van Bommel (9.)

determined the absolute configuration of (+)-tartaric 

acid by studying the anomalous X-ray diffraction pattern 

of the dihydrate of its sodium rubidium salt. Using the 

configurations of Emil Fischer's convention, the anomalous 

diffraction patterns for the (+) and (-) salts were predic­

ted with the aid of quantum mechanics. The pattern observed 

for the salt of (+)-tartaric acid corresponds with that of 

the convention adopted by Emil Fischer.

Thus, the absolute configuration of any compound 

that had been correlated chemically with tartaric acid be­

came known and interest in absolute configurations rapidly 

developed. Prelog (18) developed a theory of asymmetric 

synthesis, which can be used to predict absolute configur­

ations, based on conformational analysis of the transition 

state. This method was used to show that the convention
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3

for steroids, in which the ©(-substituents lie below and 

the ^-substituents above the plane of the paper, is correct. 

The use of optical rotatory dispersion for correlating con­

figurations has been developed by Djerassi (27) and for 

six-membered ring ketones it can even be used to predict 

absolute configurations without the need of comparison with 

another asymmetric center of known configuration.

These techniques have been used to determine the 

absolute configurations of at least two classes of compounds 

that do not have asymmetric atoms but whose optical activity 

is due to molecular asymmetry, i.e., compounds whose whole 

molecule rather than one specific atom has an asymmetric 

configuration. These two classes are the optically active 

biphenyls and the allenes.

In 1958 Mislow (10) determined the absolute confi­

guration of the biphenyl IV by a Meerwein-Pondorf-Verley 

reduction of the ketone IV with (+)-pinacolyl alcohol. It 

was assumed that the enantiomer of IV which was reduced 

faster was that one in which there was less steric repul­

sion in the transition state between the _t-butyl group of 

the pinacolyl alcohol and the phenyl group of the biphenyl. 

The configuration of this ketone was later confirmed (11) 

by optical rotatory dispersion correlation with santonide
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(V), whose absolute configuration was obtained independently.

0 0

«0Z N Q2
CHj

0

IV v

In the field of allenes, E. R. H. Jones (12) was

the first to report a chemical correlation of an allene 

with a compound of known configuration and thus to deter­

mine the configuration of an allene. The reaction involved 

in his work was the conversion of Via to Vlb through a six- 

membered ring transition state, similar to the Claisen re­

arrangement .

At about the same time, Eliel (13) proposed an assign 

ment of the absolute configuration of the allene VIII. This

(ch3)2c=ch-o (c h3)2c-ch=o

H-C=C-C — H C=C=C-^H
\
CH3 H

R- (+) -Via R- (-) -Vlb
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5

allene was synthesized stereospecifically by Landor and 

Taylor-Smith (14) from the alcohol VII. Using Brewster's 

rules (15), Eliel proposed the S configuration for VII and, 

asserting that the reaction with thionyl chloride, regard­

less of whether it was SNi' or SN2', would give the same 

product, he deduced, from these considerations, that (+) - 

3-methyl-3-t-butyl-l-chloroaliene has the (R) configuration.

HC=C C (CH_) _ H »c (c h qU\/ \ /c c=c=c/\ / \HO CH3 Cl CH3

S-(+)-VII R-(+)-VIII

Agosta (16) has determined the absolute configuration 

of glutinic acid (XXII) by a Diels-Alder reaction with cy- 

clopentadiene and degradation of the resulting bicyclo de­

rivative to norcamphor dinitrophenylhydrazone (XXIII).

i no2

/ \H C02H

R-(+)-XXII (+)-XXIII

Gianni (17) attempted to determine the absolute 

configuration of the optically active allene (II) by a 

chemical correlation with ©(-naphthylmandelic acid (X) .
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He converted the allene II by a stereospecific in­

ternal cyclization to the lactone (IX) containing an asym­

metric atom but failed to attain the desired degradation 

to X. He did find, however, that the optical rotatory dis­

persion curves of the lactone IX and the diol obtained from 

it by lithium aluminum hydride reduction displayed Cotton 

effects similar to (+) -o<-naphthylmandelic acid (X) and as­

signed the configuration on this basis.

Gianni attempted to convert the allene II to o^-naphthyl- 

mandelic acid (X) by chemical means.

of the allene, which has no asymmetric carbon atom, to a 

compound containing an asymmetric carbon atom which is simi­

lar to that of «<-naphthylmandelic acid. This conversion must

Br

II0
IX X

Background

As support for his assignment of configuration,

A necessary step in such a scheme is the conversion
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take place in a manner such that the spatial relationship 

between the asymmetric arrangement of the allene molecule 

and that of the newly formed asymmetric carbon atom can be 

clearly and unequivocally understood. This situation was 

realized in the lactonization of the allene. Since the 

terminal substituents of the allene lie in planes perpen­

dicular to each other and cannot rotate freely, the carboxyl 

oxygen in a given enantiomer can approach the other terminal 

carbon from only one side and can only form one enantiomer 

of the bromolactone IX. That is, the allene II in the "R" 

configuration must give the lactone IX in the "R" config­

uration.

would require that the lactone IX be degraded to a compound 

whose absolute configuration is known. In this particular 

situation, the end product would have been o^-naphthylmandelic 

acid, whose absolute configuration was established by Prelog.

Br

COCHLCCLH

C _H C-H, C^HL C

0

R-II R-IX

Following the first step, the chemical correlation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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(18). This direct correlation was never attained because 

of difficulties in the cleavage of the carbon-carbon double 

bond in the lactone ring. Even when the lactone ring was 

cleaved by lithium aluminum hydride reduction of the lactone 

function, the double bond was unaffected by ozone. The 

difficulty of ozonolysis of this double bond was attributed- 

to its steric protection by the bulky groups surrounding it. 

More vigorous conditions of ozonolysis or of oxidative clea­

vage brought on the destruction of the naphthalene nucleus.

Preliminary Investigations

The failure of Gianni1s attempt to degrade the allene 

to <X-naphttoylmandelic acid prompted a search for an alternate 

pathway for the determination of the absolute configuration 

of this allene.

One of the first thoughts involved conversion of 

°<-naphthylmandelic acid to tKe allene. If the acid could 

be converted to the allene by a pathway such that the stereo­

chemistry of each step was known, then the absolute config­

uration of the allene could be inferred from that of the 

acid.

Another idea involved the conversion of both the 

o<-naphthylmandelic acid and the allene to a common product,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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both conversions taking place by paths whose stereochemistry 

is known in every step.

Each of these possibilities was considered and dis­

carded for the following reasons. First, the preparation 

and resolution of the <*-naphthylmandelic acid were not high 

yield processes (17). Even after several crystallizations 

the acid had only a low optical rotation and the values 

reported in the literature did not give promise of obtain­

ing a material of high optical purity or of high rotation. 

Second, there is a great chance of racemization of the acid 

in any reaction attempted on it because of the ease of ion­

ization of the hydroxyl group. Third, an undetected anchi- 

meric effect might cause retention of configuration at the 

asymmetric center when inversion is anticipated.

The apparent solution to the problem was found in 

the synthesis of both the allene and the c^-naphthylmandelic 

acid from the same starting material by reaction paths that 

would allow one to derive the absolute configuration of the 

allene from that of the starting material and that of the

starting material from the known absolute configuration of
/

the o^-naphthylmandelic acid.

Landor (14) demonstrated that an allene could be
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synthesized stereospecifically from an acetylenic alcohol 

by reaction with thionyl chloride. The reaction was pre­

sumed to take place by either an SNi' or an SN21 reaction.

HCSC C(CH ) SOC1 H-C=C C(CH )\/  1 \/
A  cls AHO CH3 ^S-0 CH3

0
S-(+)-VII

H C(CH0)\ /c/
3 3

C=C=C s\
Cl c h3

R—(t) —VIII

R—(t)—viii + so2

An SNI reaction is excluded by the fact that the allene 

obtained is optically active and the SNI mechanism involves 

a carbonium ion intermediate which would cause the loss of 

stereochemical integrity. In the SNi' reaction the cyclic 

transition state allows one to deduce the stereochemistry 

of the allene if one knows the stereochemistry of the opti­

cally active acetylenic alcohol. In the case of the SN2' 

reaction, Stork and White (19) have shown that the displac­

ing ion approaches the substrate from the same side as that 

from which the leaving group departs. Consequently, which­

ever mechanism prevails, SNi' or SN2', the stereochemical
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relationship between the starting acetylenic alcohol and 

the final allene will be the same. Eliel (13) used this 

same reasoning to deduce'the absolute configuration of the 

allene VIII.

In this particular situation the appropriate acet­

ylenic alcohol is phenyl-^naphthylphenylethynyl carbinol 

(XI). The absolute -configuration of the alcohol XI is ob­

tainable if it can be converted to o^-naphthylmandelic acid 

while maintaining stereochemical integrity. The triple

C H C C-C H*. C H CO H6 5. / 6 5 6 5. j 2/ D D OS*V V/\ /\
°<-C10H7 °H *-C10 <  °H

XI X

bond provides the functional jroup upon which to work in 

order to perform this conversion. A simple oxidative clea­

vage of this bond would perform this conversion in one step 

without disturbing the asymmetric center. Several oxidiz­

ing agents are obvious potential reagents for this purpose: 

ozone, peroxyacids, permanganate, osmium tetroxide.

The resolution of the alcohol appeared to present 

no particular problem. The alcohol has been synthesized 

in a simple reaction from the sodium, lithium, and Grignard
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reagents derived from phenylacetylene reacting with phenyl- 

o^-naphthyl ketone. The hydrogen phthalate ester would be 

easily obtainable and this could be resolved in the usual 

manner by fractional crystallization of a salt of this ester 

with an optically active base such as brucine.

The actual conversion of the racemic alcohol XI 

to the allenic bromide XII was brought about by phosphorus 

tribromide.

C_H_ CSC-CH PBr- C H_ C_H_6 5, / 6 5  3 6 5  / 6 5\/  » \ /c c=c=c/\ / \ 
°<-C10H7 °H °<-C10H7 Br

XI XII

The product of the reaction showed in its infrared spectrum 

the absorption band expected for an allene. Confirmation 

of the structure of the allenic bromide was obtained by 

conversion to the allene carboxylic acid XIII by carbona- 

tion of the Grignard reagent formed from XII.

C6H5 /C6H5 “» <ether> C6H5 ,C6H5\  / 2. C02 \ /
C=C=C 3. HCI C=C=C/ \  *■ / \«-C10H7 Br ”<-Cl0H7 C02H
XII XIII
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The acid was identical to a sample of the allene carboxylic 

acid obtained from Gianni.

Difficulty in the oxidative cleavage of the acety­

lene alcohol XI was anticipated. The ozonolysis of a triple 

bond is more difficult than that of a double bond (39).

Gianni (17) found, in addition, that the naphthalene nucleus 

of the lactone IX was more readily attacked than the double 

bond when it was subjected to ozonolysis conditions.

The resolution of the alcohol, which was not expec­

ted to present any difficulties, forced a re-appraisal of 

the goal of this project. The hydrogen phthalate ester, 

which was necessary for the resolution, could not be syn­

thesized. The usual procedure for such a synthesis is 

treatment of the alkoxide of the alcohol with phthalic an­

hydride. Several methods of making the alkoxide were tried 

in the anticipation that some form of the alkoxide would 

react with phthalic anhydride. Only the alcohol and phthalic 

acid could be obtained from various reaction mixtures. The 

alkoxide was formed by reaction of the alcohol with ethyl 

magnesium bromide, with lithium hydride powder, with a lith­

ium hydride dispersion in mineral oil, with lithium metal 

dispersed in mineral oil, and with sodium amide. In all 

cases, when the reaction mixture was hydrolyzed after
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allowing powdered phthalic anhydride to stir overnight with 

the alkoxide, the alcohol was recovered.

In all these attempts to synthesize the ester, the 

reaction mixture was heterogeneous since neither the alkox­

ide nor phthalic anhydride is appreciably soluble in ether.

It was observed during'the synthesis of the alcohol that 

the reaction mixture immediately before hydrolysis was ho­

mogeneous, indicating that the alkoxide as it is formed in 

this reaction is soluble in ether. Consequently, instead 

of hydrolysis of this mixture, phthalic anhydride which is 

slightly soluble in ether was added to see if the hydrogen 

phthalate ester could be formed in a homogeneous medium.

The product that was obtained from this reaction was found 

to be not the expected hydrogen phthalate nor the acetylenic 

alcohol, but the allenic bromide XII.

A deeper investigation of this reaction showed that 

indeed the lithium alkoxide had been formed from the phenyl­

ethynyl lithium and ©<-naphthophenone. Hydrolysis of a portion 

of the reaction mixture at this point produced the alcohol, 

showing that the allenic bromide did not form until after 

the phthalic anhydride had been added. This suggests that 

the alkoxide does react with the phthalic anhydride to form 

as an intermediate the salt of the phthalate ester. The
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phthalate ion which is a good leaving group, might be dis­

placed from this intermediate by the strongly nucleophilic 

bromide ion, which is present in the solution from the first 

step of the reaction sequence, the formation of phenyllithium.

C.HcBr + 2Li 6 5

C>H_Li + C^H_C=CH £ 5 6 5

-» C^HcLi + LiBr 6 5

C^H- + CrH_C=CLi 6 6 6 5

C.H.CsCLi + ofClnH -CO-C.H- 6 5 10 7 6 5 C6H5X
c

<*•C]_0H7/ Li

CcH_ CcH_ Br6 5V / 6 5\ / <--
C C-C„H

°<-C10H7

c=c=c / \Br
C

^  / V  - ■- °<-cioh7 °-cor x ° r  Ll

XII

Alternatively, an ionic mechanism can be pictured, in which 

the asymmetric carbon atom becomes ionized upon the departure 

of the phthalate ion and a bromide ion attacks the terminal 

acetylenic carbon atom to form the allenic product. Because 

of the resonance stabilization of the carbonium ion by the 

phenyl and o<-naphthyl groups and by propargyl-allenic resonance,
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the latter mechanism is more probable.

The facility with which this phthalate ester decom­

poses is shown by the fact that the phthalate ion, a doubly 

negative ion, is formed in ether-benzene solvent, a rela­

tively non-polar solvent. The ease of displacement of the 

phthalate group by a nucleophile suggested that the ester 

might not be obtainable because of its instability. Even 

if it were obtainable, the nitrogen base used to resolve it, 

being a good nucleophile too, would probably displace the 

phthalate group instead of forming a salt.

For these reasons: the inability to obtain the hy­

drogen phthalate ester; the probability that the ester even 

if obtained could not be resolved; and the anticipated dif­

ficulty in oxidative cleavage; it was decided to change to 

a substrate without the «=<-naphthyl group for the continua­

tion of this project. If, using an alternate substrate, 

reagents and conditions were found that might be applicable 

to this system, then it could be returned to at a later date. 

At the time, at least, it seemed that the o(-naphthyl group 

was preventing the completion of the project.

In the choice of an alternate system, several factors 

of importance were considered. If the carbon atom adjacent
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to the carbinyl carbon of the alcohol contains a hydrogen 

atom, there is great danger that dehydration might take 

place leading to an enyne or to a Rupe rearrangement. 

Similarly, if there is a hydrogen atom in the correspond­

ing location in the allene, then there is a great possibil­

ity that the allene might rearrange to a conjugated diene.

In either event optical activity would be lost. To circum­

vent these difficulties a system was needed that contained 

no hydrogen atoms in the positions beta to the hydroxyl 

group. Three alternative groups present themselves as 

likely candidates: ^-naphthyl, phenyl, and t-butyl. The

j8-naphthyl would probably present the same difficulties 

that were encountered with the «^-naphthyl. If a phenyl 

group were used in place of the o£-naphthyl, the resulting 

alcohol would not be capable of displaying optical activity. 

The _t-butyl group is not as susceptible to oxidation as the 

c^-naphthyl and the alcohol would be capable of displaying 

optical activity. An important point in favor of the t- 

butyl group is that the absolute configuration of the acid 

XIV is known (18) and that of the alcohol XV can be deter­

mined. The new substrate for the investigation then was 

phenyl-t-butylphenylethynyl carbinol (XV).
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The same considerations that applied to the ctf- 

naphthyl substituted alcohol apply also to the t-butyl 

substituted alcohol. Its stereospecific conversion to the 

allenic bromide should give an allene of known configura­

tion. Likewise, the oxidative cleavage of the alcohol will 

not disturb the asymmetric center of the molecule. In addi­

tion to these necessary features, the absence of the naphtha- 
/

lene nucleus would eliminate the complications in the oxida­

tion reaction.

The starting material of the new system, 4,4-dimethyl- 

1,3-diphenyl-l-pentyn-3-ol (XV), was originally characterized 

by Willemart (8.) . He reported that the treatment of pivalo­

phenone with the phenylethynyl Grignard reagent gave the best 

yields of the alcqhol XV. In view of the poor results ob­

tained in this laboratory with the phenylethynyl Grignard 

reagent and the much better results with phenylethynyllithium, 

it was decided to use the latter for the synthesis of the 

starting alcohol. The alcohol was prepared in this way in
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46% yield. The high solubility of the alcohol in all the 

common organic solvents made its crystallization difficult, 

but cooling to -78° in hexane gave satisfactory results.

Willemart (8>) reported that the alcohol is converted 

to the corresponding acetylenic chloride by the action of 

PCl.j» Since the rearrangement to the allenic halide is 

necessary for this work, and since Wotiz (20) had shown 

by infrared analysis that the substance that Ford, Thomp­

son, and Marvel (21) thought was the acetylenic bromide 

(XXI) was actually the allenic bromide (XVI) , the reaction 

of this alcohol with PBr^ was immediately investigated.

C>H_ C=C—C_H_ C_H_ . CH-6 5  / 6 5  6 5. / 6 5\  / 65 6 \  / c c=c=c/\ / \ 
(CH3)3C Br <CH3 >3C Br

XXI XVI

The infrared absorption spectrum of the reaction product 

showed clearly that an allene structure was present: the 

absorption band at 1950 cm  ̂is attributed to the stretch­

ing of the cumulative double bonds of the allene. The 

absence of the acetylenic absorption at 2200 cm  ̂ suggests, 

although it does not prove, the absence of the triple bond. 

In addition, there is a strong absorption band at 848 cm ^
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which is attributed to the allenic carbon-to-bromine bond.

Having shown that the alcohol could be converted 

to the allenic halide, the optically active alcohol was 

then needed to test the stereospecificity of the reaction. 

The hydrogen phthalate ester (XVII) of the alcohol XV was 

synthesized directly from the lithium alkoxide formed from 

phenylethynyllithium and pivalophenone without isolating 

the alcohol. The infrared spectrum, carbon-hydrogen anal­

ysis, neutralization equivalent, and saponification equiv­

alent were all consistent with the structure assigned to

In addition, hydrolysis of the ester gave phthalic acid 

(identified by melting point and conversion to the anhydride) 

and the acetylenic alcohol XV (identified by melting point 

and infrared spectrum compared to an authentic sample).

XVII
C H C=C-C H 6 5 6 5

C

(CH3)3C 0 , Li.+

0 c
2. HCL

XVII
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Since it had been observed in the ©(-naphthyl system 

that the phthalate intermediate was directly transformed 

into the allenic bromide, a similar type of reaction was 

sought in this instance. Treatment of the ester with lithium 

bromide in ether at room temperature for five days did not 

bring about a reaction. Phosphorus tribromide did, however, 

give an oil whose infrared spectrum was identical to that of 

the allenic bromide XVI.

Several attempts were made to resolve the phthalate 

ester by fractional crystallization. The phthalate ester 

and brucine were mixed in a ratio of 2:1 in hope that at 

least a partial resolution could be obtained by preferen­

tial formation of one salt. Since the desired salt did 

not precipitate, the solvent was removed by evaporation, 

leaving an oil. The ether soluble portion of this oil was 

dextrorotatory. Both the soluble and the insoluble portions 

of this oil had spectra that were identical to each other 

and different from both brucine and phthalate ester. The 

brucine salt of the phthalate ester was obtained as an oil, 

which was crystallized by trituration with ether. No satis­

factory solvent system was found, however, for the fractional 

crystallization of the salt. Addition of iso-propyl ether 

to a solution of the salt in carbon tetrachloride caused the
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crystallization of four fractions of salt, all of which had 

the same specific rotation within experimental error. Slow 

evaporation of the solvent from a solution containing equi- 

molar amounts of the phthalate ester and cinchonine again 

gave no indication of salt formation but yielded only an 

oil. Simultaneously, other observations, which are reported 

in detail in the second part of this thesis, led to a change 

in emphasis of the research and these attempts at resolution 

were abandoned.

As a part of this investigation, the degradation 

of the alcohol XV to t-butylmandelic acid (XIV) was attempted. 

Two oxidizing agents were used: ozone and peroxyacid; and an 

alternate path was tried.

Ozonolysis of the alcohol gave two products, one 

of which could be identified as benzoic acid. The other 

product, also acidic, was not the expected t.-butylmandelic 

acid as shown by its infrared spectrum. To confirm this, 

jt-butylmandelic acid was synthesized by an alternate path 

and was shown to be different from this new product. Al­

though the new product was not obtained in sufficient quan­

tity to allow a complete elucidation of its structure, the 

following information was obtained. Its empirical formula

is C H 0 , as deduced from carbon-hydrogen analysis. Its 19 20 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



23

infrared spectrum indicated the presence of the following 

groups: carboxylic acid (1700 cm ; unconjugated carbonyl 

(1720 cm ; t-butyl (1365 and 1395 cm . From this in­

formation, the structure appears to be XVIII, although the 

manner of its formation from XV by a simple path cannot be 

visualized.

CcH_ C(CH_)_ 6 5 ^  3 3
C

' /\CrH_ CO-CO H 6 5 2

XVIII

In an attempt to circumvent the abnormal ozonolysis 

of the triple bond, the acetylenic alcohol was reduced with 

lithium aluminum hydride. Acetylenic alcohols of this type 

are reduced by lithium aluminum hydride to the correspond­

ing trans olefinic alcohol (XIX) (39). Using a twenty-fold 

excess of lithium aluminum hydride, a product was obtained 

which was shown to be a mixture of XIX and the corresponding 

saturated alcohol. Repetition of this reduction using a 

five-fold excess of lithium aluminum hydride gave a product

H CrH_\ / 65C6\ AC H

(c h3)3c OH 
XIX
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that had the characteristic infrared absorption band of a 

trans olefin at 965 cm  ̂and the ultraviolet absorption 

band of the styrene chromophore at 252 mp (£=15,500). The 

intensity of the styrene chromophore, in addition, is al­

most the same as that of phenyl styryl carbinol. The re­

ductive hydrolysis of the ozonide of this material had a 

definite odor of benzaldehyde, but neither benzaldehyde 

nor t-butyl mandelic acid (XIV) could be isolated from it. 

Young, et al., (28) reported the abnormal ozonolysis of 

allylic alcohols with loss of the allylic carbon atom.

This route was not considered promising, then, for the de­

gradation of the acetylenic alcohol to t-butylmandelic acid.

At this point a new oxidizing reagent was tried in 

the hope of finding a pathway to the cleavage of the triple 

bond without disturbance of the adjacent asymmetric carbon. 

The work of Schlubach and Franzen (22) on the oxidation of 

acetylenic compounds suggested that a peroxyacid might prove 

to be an appropriate reagent.

Because of the difficulties noted in previous work 

with the sterically hindered triple bond of XV, it was de­

cided to use at the start the strongest of the peroxyacid 

oxidizing agents known, peroxytrifluoroacetic acid. This 

acid is commonly used in solution in anhydrous methylene
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chloride (the peroxyacid decomposes at higher temperatures 

and in the presence of water) in the presence of solid anhy­

drous disodium phosphate (to reduce the acidity of the reac­

tion medium). From the acidic portion of the reaction product, 

there were obtained small amounts of benzoic acid and phenol. 

The non-acidic portion of the reaction product (which was 

not basic but neutral) was shown to contain several compounds 

which are described in the second part of this thesis. The 

main points to note here are that the reaction is vigorous 

and complex.

Since peroxytrifluoroacetic acid is a very strong 

oxidizing agent, a weaker one of the same type was tried; 

peroxyacetic acid. . Using peroxyacetic acid (dissolved in 

acetic acid) similar results were expected and found, except­

ing that the reaction proceeded more slowly and there was no 

apparent tar formation. Among the products isolated were com­

pounds with the formulas C29H20°2 an(̂  C19^20°3* T^e comPoun<̂  

C19H20°2 WaS extremely interesting because a destruction of 
the t,-butyl group was indicated. The nature of this compound 

and its formation are described in the second part of this

paper. The compound C H 0 , whose structure is XX, is im-±y zu o
portant bpcause it can potentially be cleaved to give the 

desired t-butylmandelic acid.
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Q O

C/\
(c h3)3c oh

XX

At this point a review of the situation was called 

for. The oxidative degradation of the acetylenic alcohol 

appeared to be very promising because of the isolation and 

identification of the compound, C^9H2q03. A variety of oxi­

dizing agents are available and under varying conditions one 

was certain to bring about the cleavage of this compound to 

t-butyl mandelic acid. In addition, there was good reason 

to believe that the conversion of the acetylenic alcohol to 

the allenic bromide could be brought about stereospecifically 

and that the allenic halide could be converted to the cor­

responding carboxylic acid without loss of activity. In fact, 

vinyl halides have been converted to the corresponding acids 

through the use of Grignard reagents and lithium reagents.

The situation with respect to the resolution of the alcohol 

was different, however, since continuing efforts had not suc­

ceeded in giving results either as far as obtaining a nicely 

crystalline salt or providing a solvent system that would 

allow the recrystallization of the salt.

\/
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Taking into consideration these difficulties and the 

opportunity opened up by the discovery of the peroxyacid re­

action of studying a new reaction, which appeared to involve 

an unusual rearrangement, it was decided at this point to 

discontinue the allene studies and to examine the reaction 

of this acetylenic alcohol with peroxyacids in greater detail.

'
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SECTION II

PART II - THE REACTION OF PHENYL(PHENYLETHYNYL)- 

t-BUTYL CARBINOL WITH PEROXYACIDS

Introduction

The first report of any studies of the action of 

peroxyacids on acetylenic compounds appeared in 1930. 

Boeseken and Slooff (23) investigated the reaction between 

peroxyacetic acid and several acetylenic compounds. They 

concluded that monosubstituted acetylenes reacted only slug­

gishly with peroxyacetic acid but that disubstituted acety­

lenes readily underwent oxidative cleavage* They pictured 

the reaction in the following manner.

R-C=C-R » R-C=C-R — > R-C-CH-R > R-C-C-R — > 2 R-C0oHI I  I I I  I I IIHO OAc 0 OH 0 0

The diketone was considered to be a probable intermediate 

because of the fact that it reacted with the peroxyacid more 

rapidly than 'did the acetylene, forming the acid product 

quantitatively.

In the oxidation of stearolic acid (XXXVIII) they 

found that sixty percent of the stearolic acid was cleaved

28
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to azelaic (XXXIX) and nonanoic (XXIV) acids. Nine percent

ch3 (ch2) 7~c=c» (ch2) ?co2h — » ch3 (ch2) ?co2h + ho2c (ch2) 7co2h

XXXVIII XXXIX XXIV

of another (unidentified) monobasic acid was also obtained. 

The fact that not all of the acetylene is cleaved to the ex­

pected product indicates that an alternate reaction is taking 

place. In addition, the rapid and quantitative formation of 

products from the diketone indicates that forty percent of 

the time the diketone is not formed. Thus, there are two 

indications that more than one path for the oxidation is in­

volved in the reaction.

In 1952 Schlubach and Franzen (24) reported the re­

action between peroxyacetic acid and acetylenic hydrocarbons 

and concluded that two reaction paths were involved. One 

is the simple oxidative cleavage of the triple bond that 

Boeseken and Slooff had found. The other involves a rear­

rangement through presumed ketocarbene and ketene intermedi­

ates to a branched-chain acid. The similarity of this rear­

rangement to the Wolff rearrangement is obvious.

Further studies of this reaction by Franzen (25) 

indicated that three reactions, o^-oxidation, cleavage, 

and rearrangement, were taking place simultaneously. The
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following scheme shows the actual or possible reaction paths

RCH2-C-C-CH2R <- 

0 0

RCH2-C=C-CH2R-

V
RCH2-C-C-CH2R

RCH-C=C-CH R

OH

R-C.-C-C-CH2R

2 RCH2C02H

cleavage

rch2-q-ch=chp

RCH2-C-Q-CH=CHR

0

o(-ox id at ion

rch2-c=c=o

ch2r

(rch2)2ch-co2h

rearrangement

Two of these paths, those leading to the rearrange­

ment and to the cleavage reactions, involved an attack at 

the triple bond. Both of these reaction paths are easily 

understandable as proceeding through an actual or incipient 

ketocarbene intermediate. In fact, the -unsaturated 

ketone was isolated from the reaction mixture and shown to 

be an intermediate.

The third path, that leading to alpha oxidation, in­

volves an attack at the of methylene group: the intermediate
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acetylenic alcohol undergoes oxidation to the corresponding 

acetylenic ketone. In this case it is noteworthy that the 

o*(-methylene group is attacked by the electrophilic reagent 

while the triple bond is left untouched. An analogous situ­

ation is found in the allylic halogenation reactions of the 

free radical type. It seems unreasonable then that both an 

electrophilic attack at the unsaturated linkage and an attack 

(possibly free radical) at the ©^-hydrogen are taking place 

simultaneously.

The same workers (26) studied the reaction of acety­

lenic alcohols with peroxyacetic acid. Here again they found 

more than one reaction path: one path led to simple cleavage 

of the triple bond, the other to rearrangement without loss 

of carbon. In this case, however, both pathways began with 

attack at the triple bond; no product was found in which 

attack was at the ©(-position. The.products can be explained 

by an electrophilic attack at the triple bond with the actual 

or incipient formation of a ketocarbene. In one case, the 

carbene carbon is oxidized to a carbonyl function with pro­

ducts being formed by oxidative cleavage of the ©<-diketone.

In the other case, a Wolff-type rearrangement takes place, 

leading to a ketene intermediate, which, in the presence of 

the peroxyacetic acid, is oxidatively hydrolyzed. The final
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product of the rearrangement is an -disubstituted glyceric

acid.

C6H5
C .H -CH-C-CO  C Hc-CSC^-CH-C „H   >C.H_C0oH + C.H -CH-CO-H4 9 j j 2 6 5  l 4 9  6 5 2  4 9 |  2

OH OH OH OH

Background

As indicated in Part I of this paper, the reaction 

of phenyl (phenylethynyl) -t:-butyl carbinol (XV) with peroxy­

acids gave indications that an unusual reaction was taking 

place. The multiplicity of products immediately suggested 

that several competing reactions were involved. The two C 

products mentioned previously gave another indication of the 

uniqueness of the reaction.

The compound, C^9H20°3' w^ose structure was shown 
to be XX, is formed by a simple oxidation of the triple bond. 

In effect, an oxygen atom is added to each carbon of the 

acetylene with no change in the carbon skeleton.

C .H_ CcH_6 5 16 5ib b
-C(C

1 1 1  o o o:

C H -<C£C-«C-C (CH ) ,6 5 | 3 3 C H  -C-C-C-C(CH0)6 5 “ '
OH

XV XX

3' 3
H

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



33

The appearance of benzoic acid as a product can be explained 

by the cleavage of the triple bond, perhaps through this dike­

tone intermediate.

The compound C H O  was known from its infrared 1.7 Z\j z

spectrum to be a hydroxyketone. The manner in which one 

carbonyl oxygen could be added to the.alcohol XV was not 

apparent, as was the case with the compound C]ugH2 0°3 * s^nce 

the infrared spectrum of this compound (hereafter called 

compound A) did not give enough information to elucidate 

its structure completely, the proton magnetic resonance spec­

trum was obtained through the courtesy of Dr. Michael H. 

Gianni at the University of Notre Dame. It showed the pres­

ence of two nonequivalent methyl groups in contrast to the 

three equivalent ones of the 1;-butyl group. Obviously then, 

the jt-butyl group was destroyed in this reaction and isomer­

ization of the carbon skeleton has taken place without loss 

of carbon.

A third reaction is indicated by the presence of 

phenol among the reaction products. In this case, an attack 

at the hydroxylic carbon is indicated with subsequent clea­

vage of the carbon-phenyl bond.

/With at least three reaction path3 being indicated
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by the products of the reaction, a more detailed study of 

the reaction was undertaken.

The Reaction

The acetylenic alcohol XV was treated both with 

peroxytrifluoroacetic acid and with peroxyacetic acid.

The two reagents react in the same manner with the alco­

hol XV. The former is, however, a much more vigorous 

oxidizing agent and is completely used up within several 

hours, while the latter reacts more slowly and is still 

present after one week. In order to moderate the reac­

tion of peroxytrifluoroacetic acid, an insoluble inor­

ganic base, disodium phosphate, was added to the reaction 

mixture to decrease its acidity.

Two and one half molar equivalents of peroxytri- 

fluoroacetic acid, freshly prepared from trifluoroacetic 

anhydride and 90% hydrogen peroxide in methylene chloride, 

were added dropwise to a solution of the alcohol XV in 

methylene chloride. The reaction generated heat but the 

temperature did not rise above 42°, the boiling point of 

the solvent. After several hours, a negative test with 

starch-iodide paper showed that the peroxyacid was all 

consumed and that oxidation had ceased.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



35

Peroxyacetic acid was prepared by the addition of 

hydrogen peroxide to acetic anhydride without solvent. The 

reaction with the acetylenic alcohol was carried out by dis­

solving the alcohol in glacial acetic acid and adding to 

this three and one half molar equivalents of peroxyacetic 

acid solution. For several hours there was no evidence of 

reaction, after which the solution became pale yellow. Usu­

ally, after one to two days, a white flocculent precipitate 

formed, amounting to about 15% yield; this precipitate is

the compound, C H 0 , compound A. i.y Z\j z

Reaction Products

In the work-up of the reaction with peroxytrifluoro­

acetic acid the solid disodium phosphate was removed by fil­

tration. The filtrate was washed with water to remove the 

trifluoroacetic acid and then with dilute sodium bicarbonate 

to remove any strongly acidic products. Evaporation of the 

dried methylene chloride solution and crystallization of the 

residue from ether gave compound A. Evaporation of the fil­

trate from compound A and the crystallization of the residue 

from petroleum ether gave the compound, c^gH20O3' ^es;*-9 na^e<̂  

compound B. The remainder of the products were separated by 

chromatography on alumina or silica gel.
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Compound A usually precipitated from solution after 

about twenty-four hours when peroxyacetic acid was the oxi­

dizing agent. After this product was filtered off and washed, 

the rest of the products were obtained from the acetic acid 

by diluting the solution with a large amount of water and 

extracting the organic materials with ether. The ethereal 

solution was separated into an acidic fraction and a neutral 

fraction by extraction with dilute sodium hydroxide. The 

neutral fraction was further separated by chromatography on 

silica gel.

The chromatography of the neutral fraction in each 

case was performed in the same manner. Silica gel was used 

as the adsorbent and the material was eluted with solvent 

of varying composition. Whenever possible the fractions 

were taken by observing when the several colored bands were 

eluted from the column. . The elution was begun with pure 

petroleum ether and the polarity of the solvent was increased 

gradually by addition of diethyl ether until the solvent con­

tained 25% ether. In this way the neutral portion of the 

product was resolved into its components which were identi­

fied and which are described in the following paragraphs.

Pirst are described the products which were compared with 

known compounds; second, those which have been assigned struc­

tures from their physical (spectral) and chemical properties;
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and third, those for which only tentative structural assign­

ments can be made because they were not obtained in sufficient 

quantity or in sufficient purity to determine their structure.

Benzoic acid was isolated from the base soluble por­

tion of the reaction mixture. It was obtained as a crude 

solid with a light tan color, melting at 114-118°. Its iso­

lation was made difficult by the presence in the reaction 

mixture of large amounts of acetic or trifluoroacetic acid. 

Although the sample was not pure, its infrared spectrum com­

pared favorably with that of an authentic sample of benzoic 

acid.

A small amount of phenol was obtained as an oil.

It was identified by its odor and by the fact that it reac­

ted readily with bromine water to form a solid derivative. 

Again the sample was not pure but its infrared spectrum 

compared favorably with that of a pure sample of phenol.

A small amount of pivalophenone (phenyl-t-butyl ke­

tone) was obtained, insufficient to determine its boiling 

point or to prepare a derivative. The sample was suffi­

ciently pure that its infrared spectrum was identical to 

that of an authentic sample of pivalophenone.

Two of these three substances, benzoic acid and
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pivalophenone, besides being identified by comparison with 

known compounds, are reasonably expected products of this 

reaction: benzoic acid as a cleavage product and pivalo­

phenone as an oxidation product of the other cleavage product, 

t.-butylmandelic acid. The third product, phenol, however, 

was not anticipated as a product of the reaction. The manner 

of its formation will be described below.

All available evidence indicates that compound B,

C H 0_, has the structure XX. The data leading to the 1 ? ZO J
structural assignment are described here.

C6H5

c6H5-S1r<r c(CH3>3
0 0 OH 

XX

First, its analysis indicated that two oxygen atoms 

have been added to the acetylenic alcohol. The easiest way 

to account for them is by the addition of the two oxygen 

atoms to the triple bond. Second, the infrared spectrum 

indicated that there was in the molecule a hydroxyl function

and two carbonyl functions, one conjugated to an aromatic
-1 -1 ring (1665 cm ) and the other not conjugated (1705 cm ).

The characteristic absorptions of the jt-butyl group at 1365
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and 1395 cm  ̂were also present in the spectrum. Third, 

the proton magnetic rrafconance (PMR) spectrum showed three 

absorptions: ff=2.65, 7.58, and 8.95. These correspond to

the ten aromatic hydrogen atoms, the single hydroxylic hy­

drogen, and nine equivalent methyl hydrogen atoms of the 

jt-butyl group. All of this information quite clearly sup­

ports the assignment of the structure of this compound.

Compound A, C H_ 0 , was isolated from both the X y z u z

peroxyacetic and the peroxytrifluoroacetic acid reactions.

The structure XXV was assigned to this substance on the basis 

of its molecular formula, and its infrared and proton magnetic 

resonance spectra.

0
liCv OH

C6H5-C>H
ch2-c (ch3 ) 2

XXV

Carbon-hydrogen analysis and molecular weight deter­

mination showed that its molecular formula was c^9H2o°2‘

Its infrared spectrum showed absorption maxima at 3410 and 

1735 cm The PMR spectrum showed two non-equivalent methyl

groups: rf=Q.84 and 9.23. A saturated open-chain hydrocarbon
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having nineteen carbon atoms must have forty hydrogen atoms. 

For every double bond and for every ring in a carbon compound 

the number of hydrogen atoms is two less than in a saturated 

open-chain hydrocarbon with the same number of carbon atoms. 

Since compound A has twenty hydrogen atoms less than the 

saturated open-chain hydrocarbon, it follows that there must 

be ten double bonds and/or rings in the molecule. Each ben­

zene ring accounts for three double bonds and one ring; the 

carbonyl function, indicated by the 1735 cm  ̂absorption 

band accounts for one double bond. Since this makes a total 

of nine known double bonds and rings, the molecule of compound 

A must contain one or more ring or double bond but not both.

Since the starting acetylenic alcohol has the mole­

cular formula c^gH2 00, We must consider ways in which a 
single atom of oxygen can be added to it, perhaps with a 

change in the carbon skeleton, but without the loss or gain 

of any hydrogen atoms.

The simplest way to envision the addition of a single 

atom of oxygen is through a reaction similar to the epoxida- 

tion of an alkene. This reaction would give a product 

(XXVII) containing an un'saturated, three-membered, oxygen 

heterocyclic ring which would be called an oxirene or an 

"acetylene oxide". Franzen (25b) reported that he obtained
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<an acetylene oxide from the reaction Of peroxyacetic acid 

with di-n-butylacetylene and that its infrared spectrum 

contained both an acetylenic and a carbonyl absorption.

He reported later (25c), however, that his presumed acety­

lene oxide was actually a mixture of the di-n-butylacetylene 

and 4-decen-6-one. In addition to the fact that no oxirene 

compound has been isolated, this structure for compound A 

seems unlikely because of the conditions under which it is 

formed. In analogy to an ethylene oxide, an acetylene oxide 

would be expected to undergo an acid catalyzed ring cleavage, 

probably more readily. One would not expect to isolate it 

from acetic acid solution. Besides, the IR and PMR spectra 

cannot be reconciled with the acetylene oxide structure 

(XXVII). Elimination of the acetylene oxide structure as 

a final product isolated, however, does not preclude its 

existence as an intermediate. Schlubach and Franzen (24,

25, 26) presume this to be an intermediate in the reaction 

of acetylenes with peroxyacids. The susceptibility of the 

acetylenic bond to electrophilic attack and the electrophi-
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licity of peroxy acids both lead one to expect the point of 

initial attack to be the triple bond.

the infrared spectrum to be contained in a carbonyl group 

and in an alcohol. If it be assumed that the hydroxyl group 

of the product is the same one as in the starting alcohol, 

then the carbonyl oxygen must be attached to one of the car­

bon atoms that formerly made the triple bond. In this case, 

the other former acetylenic carbon atom would be left with 

two unshared electrons. If these electrons happen to be 

paired, this carbon atom has the "open sextet" of the classi­

cal Whitmore mechanism and a 1,2-shift of an adjacent group 

would be expected. The product of this reaction would be 

the ketene XXVIII.

Here again, the infrared and proton magnetic resonance 

spectra do not support this structural assignment and the 

fact that the product was isolated from acetic acid solution 

would lead one to expect not a ketene but an acid as the

The two oxygen atoms of compound A are known from

C-H

HO C H_ 6 5

XXVIII
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product of the reaction. Schlubach and Sfcsnaan (24, 25, 26) 

did isolate from their reaction mixtures acids formed by 

just such a reaction path. In one case the acid formed by 

simple hydration of the ketene was found and in another the 

acid from oxidative hydration (by peroxyacid or peroxide) 

of the ketene. Here again, the elimination of the ketene 

as the final product does not eliminate the possibility of 

its being an intermediate.

bond becomes dihydroxylated. This could take place through 

the acetylene oxide intermediate (XXVII) by ring cleavage 

by an acetate ion, the acetate group being subsequently hy­

drolyzed. This intermediate would then ketonize to an acyloin.

This of course requires that the original alcohol function 

be removed. That this hydroxyl should ionize is not un­

reasonable as it is a tertiary hydroxyl located alpha to

Another possibility to consider is that the triple

C..H -C=C-C-C (CH_)_ b 5 / i J J

OH c h3-co OH
or

CH_CO C H_3 | j 6 5
CH-C=C-C-C(CH_), 6 5 | | 3 3

0 OH
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a benzene ring. The carbonium ion thus formed could react 

in two ways. First, by an electrophilic attack at the ortho 

position of the gamma benzene ring, forming the indane de­

rivative XXIX. Alternatively, a Wagner-Meerwein rearrange­

ment might take place with the migration of one of the t-butyl

methyls to the ionized carbon atom. The newly formed car­

bonium ion could then cyclize to the tetralin derivative 

XXX or expel a hydrogen ion from a methyl group and form 

a terminal double bond (formula XXXI).

Structure XXXI can be eliminated on the basis of 

the lack of evidence for a double bond, least of all a ter­

minal double bond, which would give a clearly discernible

OH
Vo

C6H5. c(QH3)|

OH

OH 0 C£Hc 6 5

XXX XXXI
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and characteristic absorption in the infrared due to the 

out-of-plane bending of the terminal hydrogens. Structures 

XXIX and XXX are consistent with the infrared spectrum as 

far as the carbonyl and alcohol absorptions are concerned: 

the absorption at 1735 cm  ̂can be attributed to a five- 

membered ring ketone; the alcohol absorption is that of an 

intramolecularly hydrogen-bonded hydroxyl group. In addition, 

it is known that allenes containing aromatic substituents 

cyclize under acidic conditions to indene derivatives. Since 

it was obvious that more information was needed in order to 

elucidate the structure of compound A, it was decided to 

obtain its proton magnetic resonance spectrum.

Since the proton magnetic resonance spectrum dis­

tinguishes between hydrogen atoms in different parts of the 

molecule, it was anticipated that it would give valuable 

information toward the elucidation of the structure. Also, 

since the amount of energy absorbed is directly proportional 

to the number of hydrogen nuclei of a given type, the PMR 

Spectrum in effect counts the number of hydrogen atoms of 

each type and the areas under the curve for the various ab­

sorption peaks are in ratios of small whole numbers corres­

ponding to the number of hydrogens of different types. Thus, 

the PMR spectrum indicates not only the type of hydrogen
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atoms present, but also the number of each type. The PMR 

spectrum of the starting alcohol XV is shown in Figure 1. 

Figures 2 and 3 show the PMR spectrum of compound A in per- 

deuteroacetone and in pyridine, respectively.

The PMR spectrum of the starting alcohol is rather 

simple, having only three peaks. The starting alcohol XV 

has hydrogen nuclei in three different magnetic environments: 

the nine equivalent hydrogen nuclei in the t.-butyl group; 

the single hydroxylic hydrogen; and the ten aromatic hydro­

gens of the two phenyl rings. Since the three methyl groups 

of the jt-butyl group are attached to the same carbon atom, 

there is no difference between their magnetic environments 

and, since there is no hydrogen on the carbon adjacent to 

the three methyl groups (the central carbon of the t.-butyl 

group), there is no splitting of the absorption peak. Thus, 

the nine hydrogens on a t-butyl group appear in the PMR 

spectrum as a single absorption peak, and this at high field. 

The absorption due to the single hydroxylic hydrogen is un­

affected by neighboring hydrogen nuclei and appears as an 

unsplit peak in the center of the spectrum. The magnetic 

resonance of the aromatic hydrogens appears as a complex 

absorption, since each individual hydrogen nucleus is affec­

ted by the others in the same ring. The integrated area
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Figure 1.. Proton Magnetic Resonance Spectrum of Phenyl**
(phenylethyny 1)-t-buty 1 Carblnol (XV) in Carbon Disulfide..
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Figure 2. Proton Magnetic Resonance Spectrum of
Compound A (XXV) in dg-Acetone
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Figure 3. Photon Magnetic Resonance Spectrum
of Compound A In Pyridine..

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 3* Photon Magnetic Resonance Spectrum
of Compound A in Pyridine..
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the three methyl groups are not the same distance from the 

benzene ring at any given moment, over a finite period of 

time, because of rotation about the bond, the three methyl 

groups have a time-average equal distance from the phenyl 

group and thus are equivalent.

The strong absorption at 7=2.8 is undoubtedly due

to the aromatic hydrogens. The area under this peak is ten

relative to three for each methyl group. The absorption at

^=5.03 in d^-acetone is certainly the hydroxyl hydrogen.

That this is so is confirmed by the spectrum in pyridine

where the absorption is very broad at about '7=4.6. The

group at 7^=6.2 corresponds to one hydrogen; it is in the

range for methine hydrogens. The absorptions between 7=7

and 8 are in the range for methylene hydrogens. Although

the dc-acetone spectrum is beclouded in this region by d - o 4
acetone absorption, the pyridine spectrum shows this area 

clearly. Their presence provides a convenient explanation 

for the disappearance of the methyl group without the loss 

of the carbon atom; it has been changed into a methylene 

group.

The explanation of the splitting of these absorp­

tions follows somewhat along the same lines as that for the 

geminal methyl groflps". A phenyl group on the adjacent carbon
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atom, through the magnetic field generated by its circulat- 

ing pi-electron cloud, has a greater effect on the adjacent 

cis-hvdrogen than on the trans-hydrogen♦ Consequently, the 

two methylene hydrogens are not equivalent even though they 

are on the same carbon and they cause splitting of each 

other's absorptions. The absorptions are split further, as 

can be seen more clearly in the pyridine spectrum, due to 

the adjacent methine hydrogen, whose peak is split by the 

two methylene hydrogens.

Now by joining together the known fragments of the 

molecule in a manner which is most similar to the starting 

alcohol XV, the structure of compound A can be deduced. The 

methine and methylene carbons are adjacent as demonstrated 

by the PMR spectrum. The methylene carbon was formerly the 

methyl group of the t-butyl group and these must be adjacent. 

The next carbon is the carbinol carbon containing also a 

phenyl group. The other phenyl and the carbonyl groups 

account for the remaining carbon atoms. The carbonyl ab­

sorption in the infrared is that of a five-ring ketone; it 

completes the five-membered ring. The phenyl group is in 

the only vacant spot remaining: the methine carbon. The 

methine and carbonyl carbons are the former acetyllenic car­

bons. The structure of compound A is represented below.
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In addition to these compounds, there were two more 

which were not identified completely because they were not 

obtained in sufficient quantity or purity. One of these, 

designated compound E, was obtained from the chromatography 

as an impure oil and on attempted re-chromatography was lost 

completely. Its infrared spectrum, however, gave a clue to 

its identity because of the presence in it of two important 

bands; a strong one at 2190 cm  ̂and the other at about 1690 

cm The 2190 band is due to an acetylenic bond; in com­

parison with the acetylenic absorption of XV, it is greatly 

enhanced and thus cannot be attributed to some of XV as an 

impurity. Such an enhancement of an acetylenic absorption 

is generally attributed to conjugation with a carbonyl group. 

The carbonyl group is present as shown by the band at 1690 

cm "S this band is somewhat lower than that normal for a 

carbonyl due to the conjugation with the triple bond. It 

is assigned structure XXXII.
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C-H -C=C-CO-C(CH_)_ b d o o

XXXII

The last compound to be described, compound C, 

was not obtained in sufficient quantity to identify and 

its actual structure remains a mystery. It was obtained 

from the chromatography as a solid melting at 91°; carbon- 

hydrogen analysis indicates a structure C^gH^O, but this 

cannot be so, as indicated by the PMR spectrum, which dem­

onstrates the presence of two methyl groups, two aromatic 

rings, and another kind of hydrogen atom in the molecule. 

The methyl and phenyl hydrogens together add up to the 16 

which are indicated by the analytical data. There was not 

obtained sufficient material to purify it for additional 

analysis and tests to determine its identity.

Mechanism of the Reaction

As indicated earlier, the multiplicity of products 

of this reaction suggests that several competing reactions 

are taking place simultaneously. These reaction paths will 

be described in the succeeding paragraphs.

The first and perhaps the simplest reaction to en­

vision is a simple cleavage reaction of the triple bond.
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Products resulting from this type of reaction were reported 

by Schlubach and Franzen (26), who obtained the two acids 

that would be expected from a simple oxidative cleavage of 

the triple bond. The two acids that would be formed by a 

similar cleavage in the present case of compound XV are ben­

zoic acid and t.-butylmandelic acid (XIV) . The former of 

these was isolated from the reaction mixture and,

although the latter was not, it might reasonably be expec­

ted that under the conditions of the reaction the hydroxy- 

acid XIV might be further oxidized with loss of carbon to 

pivalophenone (XXVI), which was actually found among the 

products of the reaction. Compound XX is reasonably expec­

ted &s an intermediate in the oxidative cleavage of the 

triple bond. After an initial electrophilic attack on 

the triple bond by the peroxyacid, another similar electro­

philic attack can easily be seen as giving rise to the

XV M/
(c h3)3c-c o-c6h 5 + co2 + h 2o

XXVI
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diketone structure without disturbing any other part of the 

molecule. A similar intermediate was proposed by Schlubach 

and Franzen (25) and by Boeseken and Slooff (23) for the 

reaction of the same reagent with acetylenic alcohols. 

Criegee (30) reported that in the ozonization of acetyl­

enes, a diketone is one of the products that is formed.

Besides the reaction at the triple bond, there 

appears to be a reaction at the hydroxyl group also. It 

is known that peroxyacetic acid and water are in equilibrium 

with acetic acid and hydrogen peroxide. The analogous equi­

librium in the trifluoro system lies greatly to the right, 

pe r:oxytrifluoroacetic acid being destroyed by water.
1

CH3C03H + H20 CH3C02H + H202

CF3C03H + H20 CF3C02H + H202

A similar type of exchange reaction at the hydroxyl group

of the alcohol XV would bring about the formation of a

hydroperoxide at the quaternary carbon of XV. From this 

intermediate it is easy to picture a 1,2-shift of one of 

the groups attached to this quaternary carbon to the ad­

jacent oxygen with the expulsion of a hydroxide ion. There 

is formed simultaneously, of course, a carbonium ion which 

can pick up the hydroxide ion to form a hemiacetal.
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the presence of XXV in the reaction mixture, either as an 

intermediate or as a final product, a third pathway must be 

invoked. This reaction path must account for the destruc­

tion of a j:-butyl group, a rare event except for a Wagner- 

Meerwein rearrangement accompanying a dehydration or cycli- 

zation. Since no Wagner-Meerwein type products were found, 

an entirely different kind of reaction must be invoked. If, 

in addition, this reaction can be seen as proceeding through 

the same intermediate as one of the two mechanisms discussed 

above, then it will be the more reasonable. This situation 

is realized in the following mechanism.

C6H5
CcH_ -C= C-C-C (CH_) *5 5 i 3 3

OH

0 C H_/\ I65CrH _ - C =  C-C-C (CH-) b D | 3 J
OH

°6H5-C

OH

\ / CH -C

C-C6H5 «■

2 - K a y 2

C H_-C=C-C-C H_ 6 5 I 5 5

0 OH

c 3
A

'V
0 OH

c 6h 5-c-c-c-c6h5

c (CH3)3

The reaction is initiated through the same step as 

the cleavage reaction, with the exception that before the 

second mole of peroxyacid can attack the triple bond, the 

oxirene ring opens up to give a zwitterionic structure that 

is a resonance form of the well-known ketocarbene. Although
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the oxirene ring can open in two ways, the one shown is 

favored because the adjacent phenyl ring can stabilize both 

the positive charge of the zwitterionic form and the carbene 

form, while the alternate cleavage allows no stabilization 

of either resonance form. This oxirene intermediate has 

been invoked by Franzen as an intermediate in oxidations 

of triple bonds by peroxyacetic acid.

Franzen thought at one point that he had isolated 

an oxirene as an intermediate in the oxidation of di-n- 

butylacetylene, but reported subsequently that the material 

was actually an -unsaturated ketone. Since the acety­

lene oxide changes quite easily to the isomeric ketocarbene,

he also attempted to determine whether the two were in fact
14resonance forms by decomposition of C- labeled phenyl ben­

zoyl diazomethane. If they are actually resonance forms,

then the label would be distributed between the two central 

carbons; it was not.

II2 II
6

i

?2 S

* *
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The ketocarbene intermediate then leads to the final 

product XXV by an attack on one of the methyl groups of the 

t-butyl group. The cyclization takes place through the join­

ing of the carbene atom with the carbon atom of the methyl 

group. The resulting substance has a five-membered ring,

0 OH

c6H5-CH-ic-C6H5
CH—  C(CH3)2 

XXV

which, through the cis-trans relationship of its substituents, 

accounts for the difference in the geminal methyl groups in 

the molecule. This reaction also satisfactorily explains how 

one of the three methyl groups in the original molecule can 

disappear, without being lost to the molecule, by being trans­

formed into a methylene group.

For the actual cyclization step of this reaction, 

several mechanisms are possible: (1) by a carbene insertion

reaction, (2) by a hydride shift with the carbene carbon act­

ing as an electrophile, (3) by a proton shift with the carbene 

carbon acting as a nucleophile, (4) by a hydrogen radical 

shift with the carbene carbon acting as a radical. All four

0 OH

C_H -C— C— C-CcH_ 6 5̂1 i 6 5
I h-ch2-c (ch3)2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



62

mechanisms give rise to the same final product as is shown 

by the following scheme.

0 OH 0 OH

(1) C6H5-C— C— C-C6H5 insertion^ C^-CH-C-C-CgHg

h-c h2-c (ch3)2 ch2- c (ch3)2

XXV

0 OH 0 OH
II I II I(2) C H_-C— C— C-C H_ > C> Hj.-SH-C-C-C H -- > XXV6 5  •• i 6 5 6 5 + |

h -c h2-0(c h3)2 c h2-c (ch3)2

0 OH 0 OH

6 5 * | 6 5 6 5 +  | 6 5
h -c h2-c (ch3>2 -ch2-c (c h3>2

O OH O OH

(4) c6h 5-c- c- c-c6h5 — ^  c6h5-Sh-c-c-c6h 5---> XXV

H-CH2-C(CH3)2 CH2i(=H3)2

As evidence for these possible paths can be cited 

the following points from the literature.

Both Franzen, Schmidt, and Mertz (31) and Kirmse 

and Doering (32) have found that iso-propylcarbene under­

goes an intramolecular insertion reaction to methylcyclo- 

propane.
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II0

O-
XXXVII

(35) have shown that this is possible in acid solution.

The reaction of phenyl (phenylethynyl) -t,-butyl car- 

binol (XV) with peroxyacids can be seen then as proceeding 

through three pathways but as being initiated by reaction 

of the peroxyacid at one of two locations in the molecule: 

the triple bond or the hydroxyl function. In the case of 

reaction at the hydroxyl function, only one pathway is fol­

lowed but in the reaction initiated at the triple bond, two 

paths can be taken after formation of the oxirene. The 

scheme below depicts the several reaction paths.
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6**5

C6H5"C_C_(f"C ĈH3) 3

XX

C/.Hr.-C=C-C-C (CEL)

OH

XV

O

C — C-C-C (CH_)

OH

0

O-Oti
I '

C6H5-C5C-C-C6H5

OH

V
C6H5C02H +

C6H5

CH-J=C-C-C(CH )6 5 i 3 3
faOH

9 0HC H_-C— C— C-C H_ 6 5'* I 6 5
H-CH2-C(CH3) 2

c (c h3)3

C,H5-C«C-g“OH

I ~ '“ V  3
o

C6H5-C5C-C-C (c h3)3

XXXII

h o2c-c-c (c h3)3

OH

XIV

C6H5-C°-C(CH3)3

+ C,H.OH6 5

!C OH

XXVI
C6H5-CH C-C6Hs 

CH2-C(CH3)2

XXV
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SECTION III

EXPERIMENTAL 

Preparation of Pivalophenone

From Benzonitrile and the t-Butyl Grignard Reagent. 

In a 2 1. 3-necked flask equipped with a mechanical stirrer, 

a reflux condenser, and a dropping funnel was placed 24 g.

(1 g-atom) of magnesium and 200 ml. of ether. A solution 

of 92 g. (109 ml. y 1 mole) of t.-butyl chloride in 500 ml., 

ether was placed in the dropping funnel. The reaction was 

started in a test tube with several magnesium turnings, a 

few ml. ether, and a few ml. of t.-butyl chloride by scratch­

ing the magnesium with a glass rod. When the starter was 

reacting vigorously, it was added to the reaction flask and 

the jt-butyl chloride solution was added dropwise over the 

course of 2^ hours. Stirring was continued for 15 minutes 

after the end of the addition and 55 g. (0.53 mole) of ben­

zonitrile was added rapidly. The ether was distilled off 

and replaced with toluene and the solution was refluxed for 

two hours, after which time the reaction mixture was hydro­

lyzed with 200 ml. of 1:1 aqueous HC1. The aqueous layer 

was extracted with 2x50 ml. ether. The combined organic

66
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layers were dried (MgSO^) and distilled. The fraction boil­

ing up to 115° at atmospheric pressure was solvent. The 

remainder was fractionally distilled at reduced pressure 

to give 5.7 g. benzonitrile (b.p. 85.5-91°/22-26 mm.) and 

33.2 g. (40%) pivalophenone (b.p. ll7-118°/24-26 mm.).

From Pivalonitrile and the Phenyl Grignard Reagent. 

One mole of the phenyl Grignard reagent was prepared accord­

ing to the procedure of Organic Syntheses (1.) • To this 

ethereal solution was added 83 g. (1.0 mole) of pivaloni­

trile as fast as possible without causing flooding of the 

reflux condenser. The reaction mixture was stirred under 

reflux for 3 hours, during which time the yellow imine com­

plex precipitated. This mixture was then poured into 200 

ml. of 50% aqueous HC1 mixed with cracked ice and allowed 

to stand overnight. The aqueous layer was separated and 

extracted with 2x100 ml. ether. The combined ether layers 

were washed twice with water and saturated, aqueous sodium 

bicarbonate. The wet ether was treated with 10 g. of Norite 

at room temperature for 30 minutes and then filtered. The 

ether was dried over CaCl2 and distilled. After removal of 

most of the ether, vacuum was applied and the fraction boil­

ing at 97-100°/8~l0 mm. was collected. Yield: 133.5 g.

(82.5%); nj^ 1.5087. Pearson (_2) reports n ^  1.5082.
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Preparation of Phenyl(Fhenvlethynyl)-t-butyl Carbinol

From ..Pivalophenone and the Fhenvlethynyl Grignard 

Reagent. To the Grignard reagent prepared from 2.4 g. (0.1 

atom) of magnesium and 11 g. (0.1 mole) of ethyl bromide in 

50 ml. ether, was added 10 g. (0.1 mole) of phenylacetylene. 

The solution was stirred for two hours until evolution of 

ethane ceased. After the ether was replaced with dry to­

luene, 16.2 g. (0.1 mole) of pivalophenone was added and 

the mixture was stirred under reflux for four hours. The 

reaction mixture was hydrolyzed with 20 ml. of 1:1 hydro-* 

chloric acid. The aqueous layer was extracted with 2x25 

ml. ether. The combined organic layers were washed with 

dilute sodium bicarbonate and water and were dried. The 

solvent was evaporated to a yellow oil, which was crystal­

lized by dissolving in n-hexane and cooling to -80° in a 

dry ice-acetone bath. This treatment gave 10 g. of almost 

white crystals melting at 65-67°. The filtrate was evapor­

ated to a small volume and cooled to -80° giving an additional 

2.8 g.( melting at 65-68°, (Willimart (8_) reports 68-69°).

The total yield of 12.8 g. is 49% Of theoretical.

From Pivalophenone and Phenylethynyllithium. Fheny- 

llithium was prepared according to the method of Organic 

Syntheses (7.) using 3.5 g. (0.5 atoms) of lithium wire and
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40 g. (0.25 moles) of bromobenzene. Titration with 0.25 N 

HCl of the hydroxide generated by pouring an aliquot into 

water indicated a consistent yeild of about 0.2 moles (80%) 

of lithium reagent. To this was added 20 g. (0.20 moles) 

of phenylacetylene and, after stirring for ^ hour, 32 g.

(0.20 moles) of pivalophenone. Stirring was continued 

for six hours, after which time the reaction mixture was 

hydrolyzed with water and acidified with HCl. The aqueous 

layer was separated and extracted with 2x25 ml. of ether.

The combined organic layers were washed and dried (M. SO.) 

and the ether was evaporated. The oil which remained 

usually solidified overnight and the solid was recrystal­

lized from low-boiling petroleum ether. The yield was 60- 

65% of a white solid melting at 67-69°. The infrared spec­

trum (Nujol) showed a hydroxyl band at 3540 cm

Preparation of Phenyl(phenylethynyl)-t-butyl 

Carbinyl Hydrogen Phthalate

A solution of phenyllithium in ether was prepared 

according to the method of Organic Syntheses (7.) from 3.5 g. 

lithium wire (0.5 g-atoms) and 40 g. bromobenzene (0.25 moles). 

The concentration of phenyllithium was determined by adding 

an aliquot of this solution to water and titrating the base 

formed with standardized hydrochloric acid. The yield of
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phenyllithium prepared in this way was usually found to be 

about 75 to 80%. The yield of phenyllithium determined by 

this titration was used as the basis for determining the 

amounts of reagents added throughout the remainder of the 

preparation.

To this solution was added the calculated amount 

of phenylacetylene (usually about 20 g.# 0.2 moles). After 

the vigorous reaction stopped, the solution was heated and 

stirred for an additional 1 to 2 hours to insure completion 

of the reaction.

To the phenylethynyllithium solution was added the 

calculated amount of pivalophenone (usually about 32 g.) 

diluted with an equal volume of ether. This was heated 

under reflux for three hours. To the lithium alkoxide 

solution was then added the equivalent amount of phthalic 

anhydride (about 30 g.) ground to a fine powder. Since 

the anhydride dissolved slowly because of its low solubil­

ity in ether, the reaction mixture was stirred overnight. 

There was usually a precipitate formed during this time. 

Although it was never identified, it was presumed to be 

the lithium salt of the phthalate ester.

The mixture was hydrolyzed with 1:1 hydrochloric
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acid and the layers were separated. The aqueous layer was 

extracted once with 25 ml. ether. The combined organic 

layers were washed, and then extracted with 5% aqueous so­

dium bicarbonate. The aqueous phase was then washed once 

with ether and acidified with 5% hydrochloric acid. The 

oily solid was filtered and recrystallized from ether-hexane. 

The yield based on phenylacetylene was about 57% of material 

melting at 137-138°.

Analysis: Calc'd. for C27H2 404 : C-78.62% H-5.86% N.E. 412 

Pound: C-78.65% H-5.56% N.E. 399

Preparation of 1,3-Diphenyl-3-t-butyl-l-chloroallene

To a solution of 2.0 g* of phenyl(phenylethynyl)- 

t.-butyl carbinol in 15 ml. of petroleum ether (39-52°) was 

added 0.4 g. of phosphorus trichloride. After standing 

for five days at room temperature, the organic phase was 

decanted from the phosphorous acid which had formed. After 

the usual washing and drying, the solvent was evaporated 

leaving a viscous oil which failed to crystallize but whose 

infrared spectrum indicated an allene. About 500 mg. of 

this,.oil. was dissolved in a minimum amount of petroleum 

ether and chromatographed on alumina (27x150 mm.): elution

with 250 ml. of ligioin (60-90°) gave 220 mg. of oil; elution
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with 250 ml. of benzene gave 260 mg. of oily crystals.

Infrared absorption: 1948 cm  ̂ (allene).

Preparation of 1,3-Diphenyl-3-t-butyl-l-bromoallene

To a solution of 5.0 g. of phenyl(phenylethynyl)- 

t-bufcyl carbinol in 20 ml. of petroleum ether was added 

/ 2.0 g. of phosphorus tribromide. The solution \*/as allowed

to stand overnight, after which time the organic phase was 

decanted, washed, dried, and evaporated to an oil. Attempts 

to crystallize the material from petroleum ether, pentane, 

and acetone failed. About 500 mg. was dissolved in pentane 

and chromatographed on an alumina column (27 x 157 mm.). 

Elution with hexane and then with 90-10 hexane-ether gave 

only small amounts of oil. Elution with 70-30 hexane-ether 

gave 230 mg. of crystals that melted at 70-73°. Infrared 

absorptions: 1940-50 cm  ̂ (allene); 848 cm  ̂ (vinyl bromine).

Ozonolysis of Phenyl (phenyl.ethynyl) -jb-butyl Carbinol

Ozonized oxygen was passed through a solution of 

1.1 g. of the alcohol in 100 ml. of carbon tetrachloride 

and the emergent gas was passed through 200 ml. of a 4% 

solution of potassium iodide. Of a total of 9.2 mmole of 

ozone, 3.3 mmole (by titration with standardized sodium

i
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thiosulfate) was absorbed by the potassium iodide. The 

organic phase was extracted with 5% sodium hydroxide so­

lution, washed, dried and evaporated to an oil whose in­

frared spectrum compared favorably with that of the start­

ing material. The basic aqueous phase was washed once with 

ether, acidified with dilute hydrochloric acid, and then 

extracted with ether. The ether phase was dried (M^SO^) 

and evaporated to a red oil. Hexane was added to encourage 

crystallization. The solid was filtered and washed with 

cold hexane. The solid material was recrystallized from 

ether-hexane. Yield: 0.2 g.; m.p. 163.5-165° with gas

evolved; N. E. 292; IR: 2200-3600 cm  ̂ (carboxylic acid); 

1720-1705 cm  ̂ (carboxylic acid). The filtrate was concen­

trated and crystallized on standing. It was recrystallized 

from petroleum ether and melted at 113-118°. Its infrared 

spectrum is almost identical to that of benzoic acid.

Preparation of Fhenyl-o<-naphthvl Ketone

In a 1000 ml. Erlenmeyer flask, 56 g. (0.42 moles) 

of anhydrous aluminum chloride were added to 56 g. (0.40 

moles) of benzoyl chloride and the mixture was heated to 

hasten solution of the aluminum chloride. After cooling, 

the solution set to a glass. This was dissolved in 320 ml.
/

carbon disulfide and 51.2 g. (0.40 moles) of naphthalene
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was added in portions. The mixture was warmed to complete 

the reaction and then cooled to crystallize the complex.

The crystals were filtered and washed with carbon disulfide. 

The complex was decomposed by adding it to 1200 ml. of water 

containing 80 ml. of concentrated hydrochloric acid. The 

light tan crystals of the ketone were filtered, washed, 

and dried. Yield: 73.3 g. (79%); m.p. 77-78°. This pro­

cedure was taken from Fieser (36).

Preparation of Fhenyl-^naphthvlphenylethynyl Carbinol

Fhenyllithium (7.) was prepared from 3.5 g. (0.5 

moles) of lithium wire and 40 g. (0.25 moles) of bromoben- 

zene. To this solution was added 20 g. (0.20 moles) of 

ethynylbenzene rapidly enough to cause refluxing. The so­

lution was heated under reflux for an additional hour or 

until Gilman’s color test #2 (29) was negative. To this 

solution was added 46.4 g. (0.20 moles) of solid phenyl- 

o<-naphthyl ketone in two or three portions and the mixture 

was allowed to stir overnight. The reaction was hydrolyzed 

with 100 ml. of 3:1 hydrochloric acid. The organic phase 

was washed, dried, and evaporated to an oil. The oil was 

taken up in toluene; hexane was added to hasten crystalli­

zation. Three crops of the alcohol were obtained by con­

centration of the mother liquors. Yield: 36 g. (54%) ;
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m.p. 113-118°.

Preparation of 1,3-Diphenvl-l-o<-naphthyl-3-bromoallene

From 1-Benzoylnaphthalene, Phenylacetylene, Phtha- 

lic Anhydride, and Lithium Bromide. The preparation of 

phenyl-o^-naphthylphenylethynyl carbinol was repeated through 

the addition of the solid phenyl-^naphthyl ketone. Instead 

of hydrolysis at this point, 30 g. of phthalic anhydride was 

added and stirring was continued for three hours. The mix­

ture was hydrolyzed with ice water and the insoluble white 

precipitate was filtered. It melted at 133.5-136° with

decomposition and at 136-137.5° when inserted at 105°.
1 -1This material showed infrared absorption bands at 1950 cm

and 845 cm

From Phenvl-e*-naphthvlphenvlethvnvl Carbinol and 

Phosphorus Tribromide. A solution of 6.7 g. of phenyl-e<- 

naphthylphenylethynyl carbinol in 5 ml. of ether was added 

to a solution of 1.8 g. of phosphorus tribromide in 5 ml. 

of petroleum, ether. After standing at room temperature 

for one hour, water was added to destroy the excess PBr^ 

and to dissolve the phosphorous acid. The organic layer 

was separated, washed with water, and dried. Evaporation 

of the solvent left a residue that was recrystallized from
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acetone. It melted at 134.5-136.5° when inserted at 105°; 

the mixture melting point with the material prepared above 

was 134.5-137° and the infrared spectra of the two samples 

were identical.

Preparation of 1, 3-Diphenyl-3-c<-naphthyl 

allene-l-carboxylic Acid

A solution of 2.0 g. of the allenic bromide was 

dissolved in ether-benzene and added to 0.25 g. of magne­

sium in a 350 ml. three-necked flask. A starter, prepared 

in a test tube from magnesium, ether and ethyl bromide was 

added to the flask and the mixture was heated under reflux 

for three hours. The solution was then poured onto 25 g. 

of powdered dry ice and when the dry ice was all gone it 

was hydrolyzed with dilute hydrochloric acid. The ethereal 

phase was extracted with sodium hydroxide solution and the 

sodium hydroxide solution was acidified with 1:1 HCl. The 

acidic solution was extracted with ether and the ether was 

evaporated, being replaced with petroleum ether when the 

volume became small. The petroleum ether was evaporated 

to an oil which solidified on standing. The oily solid 

was washed quickly with cold ether in order to dissolve 

the oil and leave the solid behind. The solid melted at 

184-188°. (Gianni (17) reported a melting point of 192°
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for this material.) The infrared spectra of this material 

and of a sample obtained from Gianni were identical.

The Reaction of Phenyl (phenylethynyl) -jL-butyl 

Carbinol with Peroxvtrifluoroacetic Acid

To 5.1 g. of 90% hydrogen peroxide in a 250 ml.

Erlenmeyer flask containing 50 ml., of dichioromethane was

added 37.8 g. of trifluoroacetic.anhydride with cooling

in an ice bath. The disappearance of the second phase

signalled the completion of the reaction. This solution

(0.135 moles CF^CO^H) was added to a solution of 13.2 g.

(0.05 moles) of phenyl- (phenylethynyl) -t.-butyl carbinol

in 50 ml. of dichloromethane containing 30 g. suspended

anhydrous Na2HP04 over the course of 1% hours. This was

stirred for four hours with cooling in an ice bath. The

insoluble Na HPO. was filtered, washed with dichloromethane 2 4
and discarded. The filtrate was evaporated leaving an oily 

solid. The oily solid was taken up in ether and the insol­

uble material was filtered; evaporation of ether from the 

filtrate gave more of the same white solid; a third frac­

tion was obtained by evaporation of the filtrate. Total 

yield; 1.1 g. (8%); m.p. 175-176°. This is the material 

which is designated compound A (XXV).
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Analysis: Calc'd. for C H 0 : C - 81.39% H - 7.19%

Found: C - 81.11% H - 7.59%

Ether was added to the filtrate from compound A 

and it was washed with water and NaHCO^ solution to remove 

acids. After evaporating the ether to an oily solid, addi­

tion of petroleum ether and filtration gave 0.8 g. (5.4%) 

of.a light orange material, which was dissolved in ligroin 

(60-90°). The solution was concentrated by allowing it to 

evaporate slowly at room temperature. The solid which 

formed was filtered and washed with ligroin leaving 0.4 g. 

of solid melting at 111-112°. This solid was dissolved in 

glacial acetic acid and precipitated with water twice, fil­

tered, and washed with water to remove all the acetic acid.

Analysis showed it to have the formula C H 0 ; it wasiy j
designated compound B (XX).

Analysis: Calc'd. for C._H_n0 : C - 77.00% H - 6.80%iy zv o
Found: C - 76.76% H - 6.70%

The filtrate from compound B was evaporated and its 

infrared spectrum indicated a mixture of compounds contain­

ing hydroxyl, acetylenic and carbonyl functions. A 580 mg. 

portion of the filtrate was dissolved in petroleum ether 

and placed on an alumina column (17 x 200 mm.). It was 

eluted successively with:
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100 ml. petroleum ether;

100 ml. 5% ether - petroleum ether;

100 ml. 10% ether - petroleum ether;

100 ml. 15% ether - petroleum ether;

100 ml. 20% ether - petroleum ether.

Fifty-ml. fractions were collected. Fraction 4 contained

an oil (5.7%) whose infrared spectrum corresponded with 

that of pivalophenone. Fractions 7 and 8 contained com­

pound C (13.2%). They were combined and recrystallized 

from petroleum ether.

Analysis; Calc'd. for : C - 87.06% H - 6.49%'

Found; C - 87.22% H - 6.29%

As indicated on page 55 this formula is inconsistent with 

the FMR spectrum. No other fractions gave material and 

the column was eluted with ether; the total recovery of 

material was 247 mg. (42.5%).

One ml. of the filtrate was chromatographed on a 

silicic acid column (22 x 190 mm.; 40 g.; Mallinckrodt 100 

mesh, containing 20% H^O)• Elution was with 200 ml. of 

petroleum ether, then 10% ether - petroleum ether. Yellow- 

colored bands could be seen traveling down the column and 

fractions were collected visually, so that each band appeared
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in a different fraction. The first two bands were very 

close and together amounted to 1% of the total; they were 

not identified because of insufficient material. The third 

band (ca. 5%) was pivalophenone. The fourth band (54%) 

showed acetylenic, ethylenic, and carbonyl absorption in 

the infrared spectrum. Upon rechromatography of this ma­

terial on the same column using 3% ether - petroleum ether,
Jonly pivalophenone and compound C could be found; no evi­

dence of the acetylenic and ethylenic absorption bands 

could be found. The fifth band (9%) was compound C. The 

sixth band (22%) was compound B. The last band, eluted 

with ether, amounts to about 10% and it is compound A.

Reaction of Phenyl(phenylethynyl)-t-butyl 

Carbinol with Peroxyacetic Acid

A peroxyacetic acid solution was prepared by adding 

dropwise with cooling a mixture of 92 ml. of acetic anhy­

dride and 2 ml. of concentrated sulfuric acid to 30.9 g. 

of 90% hydrogen peroxide. The solution was analyzed by 

the procedure of Greenspan and MacKellar (37) and found 

to contain 0.45% hydrogen peroxide and 45.4% peroxyacetic 

acid (91% yield). Twenty ml. of the peroxyacetic acid so­

lution (0.12 moles) was added to a solution of 10 g. (0.034 

moles) of phenyl(phenylethynyl)-t-butyl carbinol. in 75 ml.
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of acetic acid and ten ml. of water. Sometimes compound A

precipitated from this solution after two days in approxi- 
»

mately 15% yield. If it did not precipitate, the solution 

was poured into 800 ml. of water and the oily solid that 

formed was collected and dissolved in ether. After drying 

of the ether over MgSO^, slow evaporation of the solvent k 

gave compound A in about 15% yield.

A solution of 100 mg. of compound A was dissolved 

in 20 ml. of glacial acetic acid and 23.8 mg. of chromium 

(VI) oxide was added to the solution. After two days at 

room temperature, the original brown color changed to green, 

indicating reduction of the chromium. The solvent was evap­

orated in vacuum and the residue was taken up with water, 

filtered, washed, and dried. A 90% yield of compound A 

was recovered.

The same 90 mg. of compound A was redissolved in

glacial acetic acid and another 23.8 mg. of chromium (VI)
ooxide was added. The solution was heated to 90 and the 

reduction of chromium was complete in less than 30 minutes. 

A similar work-up of the reaction mixture gave 80 mg. of 

compound A.

To 100 mg. of compound A dissolved in acetone was
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added 38 mg. of potassium permanganate and about 0.1 g. 

of MgSO^ dissolved in water. The mixture was allowed to 

stand at room temperature until the color of permanganate 

disappeared. The solvent was removed in vacuum and the 

residue was taken up with water, filtered, washed, and 

dried. About 75 mg. of compound A was recovered.

A solution of 67.3 mg. (0.240 mmole) of compound A 

in 20.0 ml. of a 0.145 N solution of lead (IV) acetate in 

glacial acetic acid was allowed to stand at room tempera­

ture for two days. To this was added 35 ml. of a solution 

containing 20 g. KI and 300 g. anyhdrous NaC^H^O^ per liter. 

The iodine generated was titrated with 23.98 ml. of 0.1014 N 

sodium thiosulfate solution. Thus 0.240 mmole of compound A 

consumed 0.237 mmole of lead (IV) acetate.

A solution of 100 mg. (0.35 mmole) of compound A in 

10 ml. of 0.145 N lead (IV) acetate (0.73 mmole) was allowed 

to stand overnight at room temperature. The reaction mixture 

was diluted with 100 ml. water and the aqueous mixture was 

extracted with ether. The ethereal solution was washed with 

water until the washes were neutral, dried over MgSO^, and

evaporated. The infrared spectrum of the residual oil showed
1

absorption bands that correspond to hydroxyl and apparently 

five or six carbonyl peaks between 1740 and 1660 cm The
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reaction obviously is more complex than the previously ob­

served consumption of one mole of lead (IV) acetate would 

lead one to believe.

To 400 mg. of compound A dissolved in anhydrous 

ether was added 300 mg. of lithium aluminum hydride. After 

48 hours the excess hydride was destroyed with water and 

the mixture was acidified with isl HC1. Evaporation of 

the dried ether solution gave 400 mg. of an oily solid that 

was recrystallized from benzene (m.p.: 156-157°). Its in­

frared spectrum and analysis correspond to the diol that 

would be formed by reduction of the carbonyl function of 

compound A.

Analysis: Calc'd. for C^9H22°2: C " B0.31% H - 7.86%

Found: C - 80.73% H - 7.64%

There was dissolved 97.2 mg. (0.347 mmole) of com­

pound A in 25.00 ml. of 0.135 N lead (IV) acetate (1.69

mmole). After one hour and after six hours, five ml. ali­

quots were removed. Twenty ml. of a solution containing 

20 g. KI and 300 g. anhydrous sodium acetate per liter were 

added to each aliquot and the iodine generated was titrated 

with 0.1022 N Na^S^O^* The titer values, 5.35 ml. and 5.40 

ml., respectively, indicated that 0.31 mmole of lead (IV)
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acetate were consumed. The remaining 15 ml. were poured 

into 100 ml. of water. The aqueous solution was extracted 

with ether and the ether was washed with NaHCO^ solution. 

The ether phase was dried and evaporated, leaving an oil 

whose infrared spectrum indicated broad hydroxyl and car­

bonyl absorptions.
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