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ABSTRACT

CHARACTERIZING WINTER FLOUNDER (PSEUDOPLEURONECTES 
AMERICANUS) NURSERY AREAS USING OTOLITH MICROSTRUCTURE AND

MICROCHEMICAL TECHNIQUES

by

David Bailey 

University o f New Hampshire, September, 2013

A preliminary study, using young-of-the-year winter flounder from 12 nursery 

areas from New Jersey to New Hampshire, evaluated indirect and direct measurements o f 

nursery quality. Growth and condition indices (length d '1, weight d 1, Fulton's K and 

relative weight) were calculated from otolith microstructure to indirectly evaluate nursery 

quality. Boston Harbor, MA and Great Bay, NH were found to be the healthiest nurseries 

and the Niantic River, CT was found to be the least healthy nursery. In addition to these 

indirect indices, we conducted a study to determine the effectiveness o f  otolith 

microchemistry as a direct measurement of nursery habitat. Otolith elemental signatures 

were found to be site specific and vary on a small spatial scale (5-10km). Juveniles were 

classified back to natal nursery areas with 73% accuracy using otolith signatures. The 

indirect and direct measurements used in this study can be used to assess nursery habitat 

quality in the future.

x



INTRODUCTION

Nurseries

Estuaries and shallow marine coastal habitats have long been recognized as 

nurseries for fish. These nurseries supply adult fish to the offshore fisheries o f  many 

commercially important species (Beck et al. 2001). A nursery is a habitat where the 

growth and survival o f  juvenile fish is enhanced through favorable habitat quality. These 

habitats are favorable because they have abundant food sources, potentially lower 

predation, and higher water temperatures (Miller et al. 1991, Gibson 1994, Beck et al. 

2001). It is in these nurseries where fish mature beyond early life stages eventually 

leading to recruitment into the adult population. It is important to note that a habitat is 

only a nursery area if  its contribution o f  individuals that recruit into the adult population 

is greater, on average, than the contribution o f  other habitats (Beck et al. 2001). This 

means that not all juvenile habitats can be nurseries.

Even though estuaries and shallow marine coastal habitats are critical for 

sustaining fisheries, they are among the most threatened marine environments (Blaber et 

al. 2000). Anthropogenic disturbances to nursery areas have the potential to reduce 

juvenile fish growth and survival (Vasconcelos et al. 2007a). Anthropogenic disturbances 

including habitat alteration through agricultural, industrial, and engineering practices, 

pollution discharge, and heavy fishing pressure can all negatively affect the juvenile fish 

community within nurseries (Vasconcelos et al. 2007a). Reduced growth and survival in 

juveniles can have a cascading effects on the commercially important adult population 

(Desaunay et al. 2006, Hermant et al. 2010). Therefore, it is critical to maintain the
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highest quality nursery habitats to increase the probability o f  juveniles recruiting into the 

adult population. In order to maintain the highest quality nursery habitats a method for 

assessing nursery quality needs to be developed.

Winter Flounder

Certain stocks o f winter flounder, Pseudopleuronectes americanus, a demersal, 

right-eyed flatfish, use estuaries and shallow marine coastal habitats as nurseries. Due to 

their large range, New Jersey to Nova Scotia (Perlmutter 1947, Scott and Scott 1988), 

winter flounder are separated into stocks, a common fisheries science identification 

technique. Stocks are groups o f  fish with similar life history characteristics that are 

essentially self-reproducing (Hilbom and Walters 1992). In the US, winter flounder are 

managed as three distinct stocks: the G ulf o f  Maine (GOM), Georges Bank (GB), and 

Southern New England/Mid-Atlantic (SNE/MA) stocks (Brown and Gabriel 1998). The 

two stocks that use estuaries and shallow marine coastal habitats as spawning sites and 

nurseries are the SNE/MA and GOM stocks (Pereira et al. 1999). However, recent studies 

have found some GOM adults utilizing deeper coastal waters for spawning (DeCelles and 

Cadrin 2010, Fairchild et al. 2013), which could mean juveniles are using offshore 

nursery areas too.

Despite these recent findings, adult winter flounder from the GOM and SNE/MA 

stocks typically migrate inshore in the fall and early winter, and spawn in late winter and 

early spring (Pereira et al. 1999). Winter flounder generally exhibit a high degree o f site 

fidelity (Saila 1961, Phelan 1992), which is maintained by adults returning to natal areas 

and spawning adhesive demersal eggs (Pearcy 1962). Once hatched, larvae are pelagic, 

but due to their affinity to the benthos, are negatively buoyant and are able to regulate 

their vertical position in relation to the tide, resulting in high larval retention within



estuaries and coastal habitats (Pearcy 1962). This suggests that spawning and nursery 

areas are closely linked (Pearcy 1962).

Winter flounder larval development is temperature-dependent and increases with 

increasing water temperature (Laurence 1975). After ~60 days in the water column, the 

larvae go through metamorphosis and settle to the benthos as juveniles (Chambers and 

Leggett 1987). Settlement typically occurs in the spring and early summer (Colette and 

Klein-MacPhee 2002). Juveniles remain in nursery areas for the first two years before 

moving offshore (Pereira et al. 1999, Fairchild et al. 2009). The time spent in these 

nursery areas is critical because it supports the development beyond the early life stages, 

a time period where the mortality rate reaches 99% (Pearcy 1962). The year class 

strength o f winter flounder is determined primarily during these early life stages spent in 

the nursery (Sogard 1991).

As is the case with most commercially important fish species, winter flounder 

populations have declined dramatically over recent decades. Total commercial landings 

o f  winter flounder have fallen 89% from 1981 to 2010 ((NEFSC), 2011). Currently there 

is a federal winter flounder fishing moratorium for the SNE/MA stock and a 50 lbs. day '1 

limit in state waters, rendering what was historically the largest stock commercially 

inactive. The GOM stock is doing slightly better, with federal and state trips each limited 

at 500 lbs. day'1. The GB stock is currently the healthiest with federal trips limits at 1000 

lbs. One reason for these declines in winter flounder populations could be from negative 

effects on their nursery habitats. Although fishing regulations are essential for the 

management o f winter flounder, assessing the quality o f  the nursery habitat is also very

3



important. Assessing the quality o f  the nursery habitats will allow for better protection 

which could lead to increased recruits into the adult population.

Using Indices to Quantify Nursery Quality 

The numerous factors influencing nursery health, and the complex relationship 

among all the factors, make it difficult to quantify nursery quality directly (Gibson 1994, 

Adams 2002). Thus, the quality o f  a winter flounder nursery is typically measured by 

comparing indirect metrics such as growth and condition indices. Growth has been the 

main metric for assessing quality because survivorship has been linked to growth rates 

(Houde and Hoyt 1987). For example, with rapid growth fish can achieve refuge size 

quicker when experiencing size-dependent predation (Taylor 2003), increasing survival 

and fitness. Fast growth also provides a survival advantage, with larger fish having a 

lower over-wintering mortality (Sogard 1997). Condition indices have been linked to 

fitness, with the assumption that fish in better condition have an increased fitness 

(Murphy et al. 1991). Therefore, high quality nursery areas are those in which juvenile 

fish have increased growth and condition indices, indicating optimal natural 

environmental conditions and low anthropogenic effects (Gibson 1994).

Using Connectivity to Quantify Nursery Quality 

The only direct way to measure nursery quality is to quantify recruitment from 

indicidual nurseries into the adult populations. Unfortunately, the evidence to support 

successful recruitment has been indirect due to difficulties in obtaining juvenile 

movement data (Beck et al. 2001). Conventional tagging techniques to study juvenile 

movement suffer from multiple drawbacks including difficulty tagging small individuals, 

high mortality rates, and low tag return rates (Gillanders 2002). In the case o f winter 

flounder, typical tags used for small (YOY) juveniles are coded wire tags and visible
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implant elastomer tags (Fairchild et al. 2005, Sulikowski et al. 2006). Though coded wire 

and visible implant elastomer tags have been used successfully to track fish over months 

in relatively small estuaries (Fairchild et al. 2005), their usefulness in tracking fish over 

longer periods o f  time (years) in an expansive environment is questionable. Coded wire 

tags are not externally visible so unless dedicated scientific surveys exist, tagged fish will 

go undetected by fishermen. Visible elastomer tags fade over time or become occluded 

by the fish’s pigment making them hard to identity as the fish grow over time. Small t-bar 

tags, disc tags, and acoustic transmitters are used on larger (age 1+) fish (Fairchild et al. 

2013) but these tags also suffer from drawbacks. T-bar tag retention rates can be very low 

and disc tags are subject to being over grown as the fish grows. Acoustic transmitters 

may provide the most accurate movement data but they are expensive and unless 

receivers are placed in the correct locations, the movement o f  the fish may not be 

recorded. Transmitter signals may also be suppressed due to objects obstructing the 

signals pathway to the receiver causing loss o f  data, which is common for a demersal 

flatfish like winter flounder (Fairchild et al. 2013). Due in part to these difficulties, a new 

technique to assess fish population connectivity using otolith microchemistry has been 

developed.

Otoliths, found in the inner ear o f  fish, are structures composed o f calcium 

carbonate crystals. Otolith growth occurs daily and the newly deposited material creates a 

pattern o f daily growth rings. This newly deposited material also incorporates trace 

elements from the environment. Once the new growth is deposited, it is metabolically 

inert (it is neither reincorporated nor reworked), creating a pattern that is preserved for 

the life o f the fish (Campana et al. 2000). This pattern or otolith chemical signature may
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provide a natural tag for tracking where fishes have been (Gillanders and Kingsford 1996, 

Campana 1999, Campana and Thorrold 2001). Quantification o f connectivity using 

otolith elemental composition as a natural tag o f  a habitat enables the retrospective 

identification o f  nursery source(s) o f adult fish (Thorrold et al. 2001, Hamer et al. 2005, 

Brown 2006, Vasconcelos et al. 2011). These chemical tags are useful only if  nursery 

habitats impart distinct signatures. This study is the first to assess whether the nurseries 

used by winter flounder have distinct chemical signatures that can be traced into adult 

stocks.

Content

The first chapter indirectly evaluates the quality o f winter flounder nurseries 

across a latitudinal gradient using both growth and condition indices. The growth indices 

are calculated using otolith microstructure analysis and the condition indices are 

calculated using morphometric measurements. This helps us begin to determine where 

the healthier nurseries are located and what characteristics o f  an estuary or shallow water 

environment make it a favorable nursery.

The second chapter gauges the effectiveness o f  otolith microchemistry as a 

method for quantifying nursery and adult population connectivity in winter flounder. In 

order to determine its effectiveness, an extensive suite o f elements have been analyzed to 

determine: 1) if  elemental signatures are site-specific; 2) the spatial scale at which 

elemental heterogeneity exists; and 3) the accuracy o f  classifying fish to natal nursery 

areas.
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In future studies, the otolith chemical signatures determined in this study can be 

used to compare to adult populations o f  winter flounder to determine if  the healthiest 

nurseries, as identified in Chapter 1, are actually recruiting the largest number o f  fish to 

the fishery.
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CHAPTER I. GROWTH AND CONDITION OF YOUNG OF THE YEAR WINTER 
FLOUNDER {PSEUDOPLEURONECTES AMERICANUS) AS INDICATORS OF

NURSERY QUALITY

Introduction

Winter flounder, Pseudopleuronectes americanus, a demersal, right-eyed flatfish, 

is an important commercial and recreational species. It is distributed along the 

northwestern Atlantic, ranging from Georgia, USA to Labrador, Canada, but is most 

common from New Jersey to Nova Scotia (Scott and Scott 1988). Due to their large range 

and ecological, behavioral, and growth differences, winter flounder are managed as three 

distinct stocks in the US: the Gulf o f Maine (GOM), Georges Bank (GB), and Southern 

New England/Mid-Atlantic (SNE/MA) stocks (Brown and Gabriel 1998). As is the case 

with most commercially important fish species, winter flounder populations have 

declined dramatically over recent decades. Total commercial landings o f  w inter flounder 

have fallen 89% from 1981 to 2010 ((NEFSC), 2011). Although fishing regulations are 

essential for the management o f winter flounder, assessing the quality o f  the nursery 

habitat is also very important. With the exception o f  the GB stock, adult winter flounder 

migrate inshore to nursery habitats, estuaries and shallow coastal waters, in the fall and 

early winter to spawn in the late winter and early spring (Pereira et al. 1999). The 

juveniles remain in the estuaries and shallow coastal waters for their first two years 

before moving offshore (Pereira et al. 1999).

Estuaries and shallow coastal waters have been classified as essential fish habitat 

(EFH) for juvenile winter flounder. They serve as nursery areas that promote growth and 

survival because o f their abundant food sources, potentially lower predation, and higher
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water temperatures (Miller et al. 1991, Beck et al. 2001). These nursery areas support 

growth and survival beyond early life stages where the mortality rate is much higher, 

even up to 99% (Pearcy 1962). The year class strength o f winter flounder is determined 

primarily during early life stages (Sogard 1991) which occur in these nursery areas. 

Unfortunately, due to their near-shore location these nursery areas are susceptible to 

anthropogenic effects which can lead to habitat alteration, potentially threatening fish 

populations.

Habitat quality o f  nursery areas depends on both the natural environmental 

conditions and the anthropogenic effects on the habitat (Gibson 1994). Natural attributes 

that affect nursery habitat quality include the physiochemical conditions (e.g. 

temperature, salinity, dissolved oxygen; (Phelan et al. 2000)), food availability 

(Vanderveer et al. 1990), predator density (Gibson 1994, Burrows and Gibson 1995), 

habitat structure (Gibson and Robb 2000), and competition (Rooper et al. 2006). 

Anthropogenic factors that influence habitat quality include pollution, habitat alteration, 

and physiochemical alterations.

The numerous factors influencing habitat health, and the complex relationship 

among all the effects, make it difficult to quantify habitat quality directly (Gibson 1994, 

Adams 2002). One approach to describing nursery habitat quality is by using indirect 

metrics to compare habitats such as juvenile condition and growth indices. These indices 

assume that increased growth rates enable juvenile fish to spend less time in the most 

vulnerable size ranges (Taylor 2003), thus increasing survival and fitness; high quality 

nursery habitats are presumed to be habitats where growth or juvenile condition is higher 

(Vanderveer and Bergman 1987, Sogard and Able 1992, Gibson 1994, Ellis and Gibson
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1995). High quality nursery habitats, therefore, will contribute significantly more recruits 

into the adult population in comparison to nurseries o f  poorer quality (Power et al. 2007).

Both the condition and growth indices reflect the habitat in which the fish spends 

most o f its time. If a fish moves between nurseries these indices will not reflect just one 

habitat, and can be less useful. In the present study, the probability o f  movement between 

nursery areas is minimized by using young o f  the year (YOY) winter flounder which 

remain inshore for their first two years before moving offshore (Pereira et al. 1999, 

Fairchild et al. 2009). Thus the growth and condition indices in this study represent the 

quality o f  the nursery habitat, in which the fish has spent its entire life.

Although it is necessary to determine the quality o f nursery areas, it is also critical 

to understand the spatial differences in the timing o f life history events (e.g. hatch date, 

length o f larval phase, and time o f settlement). This understanding can be used to 

promote successful recruitment by indicating when and where habitat protection is most 

critical.

The goals o f  this study were to evaluate winter flounder nurseries across a 

latitudinal gradient by using otolith microstructure analysis and morphometrie 

measurements to: 1) calculate juvenile winter flounder condition and growth indices, and 

2) determine the time o f metamorphosis.
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Materials and Methods 

Field Sampling

Young-of-the-year (YOY) winter flounder were collected from 12 locations from 

Great Bay, NH to the Navesink River, NJ (Figure 1), between June and July 2012. Fish 

caught from the five G ulf o f  Maine and four Cape Cod sites were caught using a beach 

seine (17 m x 2 m; 6.35mm Delta mesh; swept area 550m2) and/or beam trawls (1.0 m 

width, 6 mm mesh). Fish were measured (Tl; mm), weighed (g), and given individual 

sample names after landing. Total length measurements were used to ensure that the 

collected fish were from the YOY cohort. Based on existing age and size frequency data, 

fish were thought to be in the YOY cohort if  T l < 90mm, according to Massachusetts 

Division o f Marine Fisheries winter flounder estuarine surveys (J. King, personal 

commun.). Actual age was later confirmed by counting daily otolith growth rings (see 

Results). Following initial measurements and cohort identification, fish were euthanized 

via cervical dislocation, transferred into individual labeled plastic bags, placed on ice, 

and transported back to the laboratory where they were kept frozen in a 0°C freezer until 

further analysis. Water quality parameters (salinity, temperature, and dissolved oxygen) 

were recorded prior to and upon the completion o f collecting in a specific area using a 

YSI 6920 sonde. Habitat type and benthic composition also were recorded at each site. 

Fish caught from Narragansett Bay, RI, Niantic River, CT, and Navesink River, NJ were 

caught by third party researchers during routine surveys using various collection 

techniques. Fish were frozen after collection and transferred to the University o f  New 

Hampshire (UNH). Once at UNH, fish were thawed, weighed (g), measured (T l; mm), 

and given individual sample names. Although the weighing procedure at these 3 sites
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varied from the other 9 sites, weighing after freezing was found to have no effect on the 

weights. Therefore weights were comparable across all nursery areas.

Condition Indices

The general well-being o f all fish was determined by calculating two similar 

morphometrie condition indices. The first, Fulton’s K, assumes that heavier fish at a 

given length are healthier. Fulton’s K was calculated using the formula, K = 100(W/L3), 

where W is the weight (mg) o f  the fish and L is the total length (mm). A relative weight 

condition index also was calculated because it does not assume isometric growth (growth 

is the same throughout the organism) and is not size dependent (Suthers 1998). The 

relative weight condition index assumes that fish that are heavier than expected for a 

given length are in better condition. Relative weight was calculated using the formula W r 

= W/Ws * 100, where W is the logio weight (mg) and Ws is the logio length-specific 

standard weight (mg) as predicted by a site specific length-weight regression representing 

all fish caught at a given location.

Growth Indices

Otolith Removal. Both sagittal otoliths were extracted using Teflon coated razors 

and plastic forceps, and right and left otoliths were separated based on position in the 

orbital. If there were any discrepancies as to which side they were removed from, they 

were separated according to the position o f the sulcus and the rostrum (Secor et al. 1993). 

Once separated, otoliths were cleaned in distilled water and stored in individual 1.5 ml 

micro-centrifuge tubes. Left otoliths, previously found to provide the best correlation
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between somatic and otolith growth (Sogard 1991), were used for microstructure 

analysis, and right otoliths were used for microchemical analysis.

Approximately 10 winter flounder from each estuary were examined by 

microstructure analysis (Table 1). The same fish also were used in a microchemical study 

(see Chapter 2). At estuaries where more than 10 winter flounder were collected, the 10 

fish with a length closest to the mean fish total length at the sampling site were chosen 

for analysis.

Otolith Preparation and Measurement. Left sagittal otoliths were mounted sulcus 

side up to glass microscope slides using clear Crystalbond™. Because o f  the concave 

shape o f the otoliths, mounting sulcus side up allowed the core to be polished before the 

outer edge. This prevented over sanding o f the thinner outer edge while enabling a 

greater amount o f  the thicker core to be removed. Mounted otoliths were polished by 

hand along the sagittal plane using a series o f  800 to 2200 grit wet sand paper. If 

polishing with the sulcus side up did not yield clear and visible daily rings, otoliths were 

flipped and polished using the same series o f sand paper. Once daily growth rings were 

clearly visible, otoliths were photographed at 400x magnification using an Infinity 

camera mounted to an Olympus CX41 compound microscope. Daily growth rings were 

counted from the photographs using ImageJ with the cell counter add-in. Counts were 

made, along the rostral axis when possible, from the anterior most accessory primordium 

to the edge. Counting in this manner provided an estimate o f  the date o f m id­

metamorphosis, because the accessory primordia appear at the midpoint o f  eye migration 

(Sogard 1991). When daily rings were not clear along the rostral axis, counting took 

place along the clearest axis. Daily growth rings were counted 3 times by the same
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reader; the final count was determined by the mean o f the three counts. Otoliths were 

eliminated whenever the counting precision (coefficient o f variation) was >5%. Daily 

rings from Narragansett Bay were not visible using this method or any other attempted 

methods, therefore Narragansett Bay fish were excluded from all analyses that required 

daily ring estimates (i.e. metamorphosis date and growth rate estimates).

Date o f  Metamorphosis and Growth Rate Estimation. Date o f  metamorphosis for 

each fish was estimated by subtracting the final daily ring count from the capture date. 

Since daily ring counts varied between fish within the same estuary, a mean 

metamorphosis date per estuary was calculated. Mean temperature experienced by the 

fish in the estuary post metamorphosis (i.e. the mean temperature from mean 

metamorphosis date per estuary to capture date) was calculated using a variety o f 

temperature data (Table 3). Individual post metamorphic fish growth rates (weight and 

length day-1) were calculated by dividing fish weight or length by the final daily ring 

count. Because temperature is the major abiotic environmental factor controlling growth 

(Gibson 1994), weight and length day-1 calculations were standardized for temperature 

(values were divided by mean temperature experienced by the fish in the estuary post 

metamorphosis). This removed the effect o f  temperature on growth rate indices, allowing 

the indices to reflect other factors within the estuaries that control growth rates.

Statistical Analysis

An analysis o f  variance (ANOVA) with a Tukey’s honestly significant difference 

(HSD) post hoc test was performed to identify differences in metamorphosis date, 

condition indices, and growth indices between estuaries. Principle component analysis
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(PCA) o f the condition indices and both growth indices (non-standardized and 

temperature standardized) were used to rank winter flounder nursery areas. Rank also 

was calculated by scoring each location (1-11 or 1-9; 1 = highest, 11 or 9 = lowest) based 

on the value o f  condition or growth indices. An average o f all four scores was taken and 

used as the overall quality ranking (1 = best, 11 or 9 = worst).

Results 

Correlations among the different indices

The relationship among all the indices and the TL was first examined as indices 

can be biased by size effects. All indices, except the relativized weight condition index, 

were significantly correlated to T L (Table 2). Though significant, Fulton’s K and length 

day"1 showed a relatively weak correlation (r2= 0.21 and 0.14, respectively). There were 

also significant correlations among the different indices (Table 2). Though correlations 

were significant between indices from the two different types (growth and condition), 

they were weaker than the correlation within index type.

Condition Indices

The Fulton’s K condition index varied between the 12 estuaries (ANOVA, d f  =

11, F ratio = 19.99, p < 0.0001); values ranged from 0.789 in theNiantic River to 1.10 in 

Boston Harbor (Figure 2). K values were higher in Boston Harbor, Great Bay, Navesink 

River, and Hampton-Seabrook than in Menemsha Pond and the Niantic River.

The relativized weight condition index varied between the 12 estuaries (ANOVA, 

d f = 11, F ratio = 20.95, p < 0.0001); values ranged from 98.02 in the Niantic River to
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101.90 in Boston Harbor (Figure 3). Relativized weight values were higher in Boston 

Harbor and the Navesink River than in Cotuit Bay and the Niantic River.

Date of Metamorphosis

The date o f metamorphosis varied between the 11 estuaries (ANOVA, d f = 10, F 

ratio = 3.01, p = 0.0024), and ranged from 3/19/12 in the Navesink River to 4/14/12 in 

Beverly Harbor (Figure 4). Fish from the Navesink River went through metamorphosis at 

an earlier date than fish from all other locations. The date o f  metamorphosis did not 

significantly vary between sample locations north o f  the Navesink River.

Growth Indices

Growth in length (length day '1) varied between the 11 estuaries (ANOVA, d f = 

10, F ratio = 6.91, p < 0.0001), and ranged from 0.54 mm day '1 in the Niantic River to 

0.89 mm day'1 in Cotuit Bay (Figure 5). Fish grew faster in Cotuit Bay than fish in 

Beverly Harbor and the Niantic River.

Growth in mass (weight d a y 1) varied between the 11 estuaries (ANOVA, d f  =

10, F ratio = 9.55, p < 0.0001), and values ranged from 0.01 g d ay 1 in the Niantic River 

to 0.03 g d a y 1 in Great Bay (Figure 6). Fish grew faster in Great Bay than fish in 

Menemsha Pond, Lagoon Pond, Beverly Harbor, and the Niantic River.

Growth Indices Standardized to Average Temperature

Length d a y 1 tem perature1 (mm d '1 T '1) varied between the 9 estuaries (ANOVA, 

d f = 8, F ratio = 13.54, p < 0.0001), and ranged from the 0.037 mm d '1 T '1 in the Niantic
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River to 0.069 mm d '1 T 1 in Waquoit Bay (Figure 7). Fish grew significantly faster in 

Waquoit Bay than fish in the Niantic River.

Weight day '1 temperature'1 (g d '1 T '1) varied between the 9 estuaries (ANOVA, d f 

= 8, F ratio = 9.90, p < 0.0001), and ranged from 0.066 mg d '1 T '1 in the Niantic River to 

0.26 mg d '1 T '1 in Waquoit Bay (Figure 8). Fish gained mass faster in Waquoit Bay and 

Great Bay than fish in Menemsha Pond and the Niantic River.

Estuary Ranking

A 2-axis PCA ordination o f the condition indices and growth indices explained 

92.4% o f the variation in the data, allowing the healthiest nurseries to be identified 

(Figure 9). Examination o f the ordination revealed that Great Bay ranked as the healthiest 

nursery and the Niantic River as the least healthy nursery. Several other healthy areas 

were identified but either had high condition or high growth indices values, but not both. 

Boston Harbor and the Navesink River were identified as healthy nurseries because o f 

high condition indices scores. Waquoit Bay and Cotuit Bay were identified as healthy 

nurseries because o f high growth indices scores.

A 2-axis PCA ordination o f  the condition indices and temperature standardized 

growth indices explained 91.7% o f the variation in the data, allowing only the worst 

nursery to be clearly identified (Figure 10). This was the Niantic River. The healthiest 

nurseries were not clearly identifiable because nurseries either had high condition indices 

or high growth indices but not both. The healthiest nurseries based on just condition 

indices were Boston Harbor, Great Bay, and the Navesink River. The healthiest nursery 

based on just growth indices was Waquoit Bay.
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The overall health o f the nurseries was ranked using mean scores o f  the condition 

indices and growth indices (Table 3), the lower the mean score the healthier the nursery 

area. The healthiest locations in descending order were Boston Harbor, Great Bay, 

Waquoit Bay, and the Navesink River. The least healthy locations in ascending order 

were the Niantic River, Menem sha Pond, Lagoon Pond, and Little Harbor.

In addition, the overall health o f the nurseries also were ranked using mean scores 

o f the condition indices and temperature standardized growth indices (Table 4), the lower 

the mean score the healthier the nursery area. Using these indices, the healthiest 

locations were Boston Harbor, Waquoit Bay, Great Bay, and the Navesink River, in 

descending order, and the least healthy locations were the Niantic River, Menemsha 

Pond, Cotuit Bay, and Little Harbor, in ascending order.

Discussion 

Using indices to determine nursery habitat quality

No single index is able to provide an accurate description of habitat quality 

(Gilliers et al. 2004). For instance, growth indices serve as long term indicators o f 

environmental conditions, influenced by environmental changes from m id­

metamorphosis to catch date. Alternatively, condition indices serve as short term 

indicators, measuring the well-being o f  the fish at the catch date, which reflect the current 

nutritional and energy status o f  the fish (Lambert and Dutil 1997). Used in conjunction, 

these two growth indices present a versatile indicator o f  habitat quality. In this study, the 

growth indices measured were length day '1 and weight day'1. The two condition indices 

measured were relativized weight and Fulton’s K. However, only the growth index,
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length day '1, and the condition index, relativized weight, were used to determine nursery

habitat quality in this study.

Though both growth indices showed a significant correlation to the total length, 

indicating a size effect bias, length day '1 was chosen over weight day'1 because o f  the 

weaker correlation. The relativized weight index was not significantly correlated to total 

length, indicating no size bias, therefore it was chosen over Fulton’s K which exhibited a 

slight size effect bias. In addition, the lack o f  correlation between relativized weight and 

length day '1 further illustrates the differences in which the two indices reflect temporal 

environmental conditions. These differences result in much different habitat quality 

ratings. The only nursery location that was similar between the two indices was the 

Niantic River, receiving a very poor quality rating in both.

In this study the overall quality o f  the nursery was interpreted by two methods: 1) 

using a rating system or 2) based on the PCA ordination, both o f which combine results 

from the two indices. The ranking system provides an ordinal habitat quality ranking, 

which does not indicate the strength o f  the scorer on both indices. It is the ranked average 

o f  both indices. The ordination displays habitat quality based on position on the axes.

PCA ordination, therefore, is more exclusive, only defining areas of high or low quality 

based on the distance o f separation from other locations, not ju st on integer ranking.

Using both classification methods, Great Bay was classified as the one o f  the healthiest 

nursery areas while the Niantic River was classified as the least healthy nursery. Other 

nursery areas were classified as high or low quality but were more variable between 

methods o f interpretation (Figure 9, Table 3).
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Environmental conditions affecting habitat quality

Though three distinct winter flounder stocks have been identified based on 

tagging, meristic and life history data (DeCelles and Cadrin 2011) and genetic differences 

have been found to occur on an estuary scale (Crivello et al. 2004), juvenile fish have 

been shown to exhibit strong phenotypic plasticity to cope with variable environmental 

conditions that overshadow parental effect o f  growth and condition (Fraboulet et al.

2010). Therefore in this study 1 assume that it is the environmental condition and not 

genetics driving the differences in indices between nursery areas. However, these factors 

driving the differences between nursery areas are not always clearly identifiable due to 

the complex and variable nature o f the areas (Vinagre et al. 2008). It also is unlikely that 

the same factors are driving differences in different nursery areas.

Although the factors controlling habitat quality were not directly measured in this 

study, several possible factors were identified. Potential important factors include 

resource availability, predators present, sediment type, physiochemical conditions, and 

anthropogenic factors. Prey quality and quantity are factors controlling growth (Neill et 

al. 1994, Vanderveer et al. 1994), and also play a role in habitat quality between the 

nursery areas (Sogard and Able 1992, Gibson 1994). Because juvenile flounder are 

general and opportunistic feeders (e.g. (Beyst et al. 1999, Amara et al. 2001), the caloric 

difference between prey may be a more influential factor affecting habitat quality than 

quantity o f  prey in these highly productive nursery habitats. Predators have been found to 

shape the size structure o f  winter flounder populations through size-dependent feeding 

(Taylor 2003). In areas o f increased predation it is therefore critical for the survival o f  the
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fish that nursery areas are the best quality to promote growth through this critical size 

period. Sediment type, particle size, and color also may affect growth and condition 

(Yamashita and Yamada 1999), as well as cryptic behavior essential for survival 

(Fairchild and Howell 2004). Sogard (1992) observed faster growth on coarser sediments, 

possibly due to increased prey detection and capture.

If prey is not limited then temperature is likely the m ost important factor 

controlling growth. Juvenile fish grow faster in warmer waters (Gibson 1994). However, 

fish are likely to exploit variations in the local environment, achieving growth rates above 

that o f  the average temperature in the nursery area (Gibson 1994). This can lead to bias 

when accounting for temperature in the growth indices, as was done in this study, 

because the measured temperature o f the nursery area is rarely the temperature 

experienced by the fish. This effect is increased if  the fish undertake daily tidal 

migrations within the nursery area as winter flounder do (Tyler 1971). Variation in 

salinity affects growth and condition because energy is required to regulate in response to 

the change (Evans 1980, Moyle and Cech 2004). Although salinity is thought to have a 

smaller effect on growth and condition than temperature (Gibson 1994), both should be 

considered when comparing nursery areas with different hydrologies. Oxygen depletion 

is unlikely to affect growth and condition in well-mixed habitats such as coastal and river 

locations. However shallow nursery areas, such as bays and ponds, may experience 

oxygen depletion, particularly in areas that are polluted or highly vegetated (Vanderveer 

and Bergman 1986, Dorel e ta l. 1991).

Exposure to pollution is inversely related to fish growth and condition (Rowe 

2003, Alquezar et al. 2006). This is a result o f  nutritional energy being devoted to
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combating stress instead o f  maintenance, growth, and reproduction (Adams 2002). It also 

makes fish more vulnerable to predation, physiological stress, and disease, potentially 

affecting not only individual fish, but the population as a whole (Adams 2002).

Understanding how these potential factors vary between estuaries is critical in 

identifying why the quality o f nursery areas differs (Sogard 1991, Sogard and Able 

1992). In order to link the quality o f nursery areas definitively to specific factors, the 

movement o f the fish within the nursery must be understood. This allows the 

environmental factors to be measured on a localized scale, thus accounting for the 

discontinuities in the environmental conditions exploited by the fish within the nursery 

areas. Relying on opportunistic environmental measurements may not actually reflect the 

conditions experienced by the fish resulting in potentially biased conclusions. For this 

reason, this study cannot definitively link the quality o f  the nursery area to specific 

environmental factors; it can only compare nurseries and determine which are healthier.

Growth Rate Comparison

The growth rates observed in this study (0.53 to 0.89 mm day'1) were at the higher 

range observed in previous winter flounder studies (Sogard 1991, Sogard 1992, Meng et 

al. 2000, Fairchild et al. 2005, Meng et al. 2008). In previous studies, growth rates were 

calculated using either otolith increment measurements or from caging experiments 

(Meng et al. 2000, Fairchild et al. 2005, Meng et al. 2008), whereas in this study, the 

length o f  the fish was divided by the age o f  the fish. All o f these methods have their 

downfalls. The use o f daily otolith increment measurements are justified only when there 

is a linear relationship between the size o f the fish and the size of the otolith (Campana
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and Neilson 1985); this assumes that all otoliths are the exact same shape from the core 

along the same axis. This assumption was not true in this study. It also proved difficult to 

polish all otoliths clearly along the same axis. Because otolith growth is less variable than 

somatic growth, estimating somatic growth from otolith growth yields inaccuracies 

during periods o f  rapid or slow somatic growth (Secor and Dean 1989). Growth rates 

calculated from cage experiments are slightly biased because fish movement is restricted 

and predators are excluded, both o f  which have the potential to affect growth rate. The 

growth rate calculated in this study (dividing age o f  fish by length) is subject to two 

errors: 1) the growth rate does not take into account growth prior to metamorphosis 

because daily increment counts were only made to the anterior most accessory 

primordium, thus overestimating the growth rate; and 2) since juvenile flounder growth is 

exponential, growth rate calculations are biased towards larger fish. These downfalls 

were somewhat remedied by conducting daily growth ring counts in the same manner at 

each estuary and by using fish o f similar sizes. When assuming 5 weeks o f  growth prior 

to metamorphosis (Bigelow et al. 1953), growth rates ranged from 0.38 -  0.64 mm day '1. 

This range is right in the middle o f  growth rates calculated by previous studies (Sogard 

1991, Sogard 1992, Meng et al. 2000, Fairchild et al. 2005, Meng et al. 2008).

Condition Comparison

The nursery areas sampled in this study had a  slightly lower range o f  Fulton’s K 

values (0.79-1.1) compared to other flatfish studies (Plante et al. 2005). This suggests 

that growth limitation may have occurred. In the common sole, Solea solea, a Fulton’s 

condition factor o f  <0.9 is an indicator o f starvation or food limitation in juveniles 

(Amara et al. 2007). Three nursery areas were below the 0.9 value - the Niantic River,
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Menemsha Pond, and Cotuit Bay - suggesting that fish may be suffering from starvation 

or food limitation. Whether starvation and food limitation was occurring at these sites 

could be clarified using gut content analyses or RNA/DNA ratio measurements. Since the 

relativized weight index is study specific, it cannot be compared to other studies in the 

same manner as Fulton’s K, but the strong correlation between the two suggests that the 

nursery areas are behaving similarly.

Differences in Settlement Time

Only the Navesink River in New Jersey had a significantly different time o f  m id­

metamorphosis; the timing o f  all o f  the other northern locations did not significantly vary. 

This variation likely is due to the increased warming o f  this southernmost site in relation 

to the northern sites. It was surprising that no differences were observed between the 

northern sites, even though there is a temperature difference along the latitudinal 

gradient. The lack o f  difference between the northern sites may be attributed to fish 

exploiting localized variations in their habitat (areas o f  higher or lower temperatures than 

average location temperatures). The time o f  metamorphosis is strongly influenced by 

temperature (Able and Fahay 1998), even more so than the size o f the fish (Chambers and 

Leggett 1987). This suggests that even if  spawning and hatch dates are similar in 

different nursery sites, settlement may still vary. To fully understand the differences in 

hatch date and length o f pelagic larval stage, daily otolith core ring counts should be 

made. Unfortunately, daily otolith core rings were not counted in this study due to 

difficulties in polishing which led to imprecision in counting them.
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Conclusion

Despite ever increasing fishing regulations, winter flounder populations are not 

rebounding. The collapse o f the winter flounder fishery has dramatic ecological and 

economic consequences, which is why it is important to understand the role o f  nursery 

habitat quality variations and how these variations affect recruitment into the adult 

population. First, it will be important to determine measurable indices, which will most 

effectively and accurately determine the best nursery habitats. In this study we have 

explored four different indices and revealed differences in habitat quality results 

depending on each o f these indices. Two o f the indices proved better indicators o f  habitat 

quality because they were less biased by size. Once these indices are determined, we can 

determine more easily on which nursery habitats to focus management efforts. 

Additionally it will be important to determine if these areas are contributing more new 

recruits to the adult population by using other methods such as otolith microchemistry 

analysis. Relative contribution then can be linked to measurable nursery area variability. 

Once a link between contribution and variability is identified, the best measurements can 

be used by managers to assess nursery health.
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Table 1. Sample size (n) and mean total length (LT) and mass (M) ± one 
standard deviation of winter flounder juveniles used for otolith 
microstructure analysis.

Location n
Mean Length 

(mm)
Mean Weight

(g)
Great Bay, NH 11 66.5 ± 0.88 3.12 ± 0.13

Little Harbor, NH 9 64.4 ± 0.88 2.45 ±0.11
Hampton-Seabrook,

NH 9 60.1 ± 1.51 2.21 ±0.21
Beverly Harbor, MA 7 49.0 ± 0.76 1.10 ± 0 .0 6
Boston Harbor, MA 10 52.9 ±3.58 1.80 ± 0 .4 6

Cotuit Bay, MA 8 59.5 ±  1.99 1.96 ± 0 .23
Waquoit Bay, MA 9 63.4 ± 1.49 2.4 ± 0.20
Lagoon Pond, MA 10 50.3 ±  0.78 1.23 ± 0 .06

Menemsha Pond, MA 11 50.6 ±  0.65 1.18 ± 0 .0 6
Niantic River, CT 12 48.1 ± 1.24 0.90 ± 0.08

Navesink River, NJ 11 54.4 ± 1.49 1.64 ±0 .13

Table 2. Determination coefficients (r2) between Fulton's condition index (K; 
mg mm3), relativized weight (RW), length day'1 (LD; mm day'1), weight day'1 
(WD; g day'1), total length (TL; mm), and weight (W; g).

K RW LD WD TL W
K 1 0.74* 0.09** 0.36* 0.21* 0.15*
RW 0.74* 1 0.03*** 0.06** >0.01 >0.01
LD 0.09** 0.03*** 1 0.54* .14* .15*
WD 0.36* 0.06** 0.54* 1 0.71* 00 o *

TL 0.21* >0.01 .14* 0.71* 1 .71*
W 0.15* >0.01 .15* .80* .71* 1

* p < 0.001, **p< 0.05, *** p < 0 .0 1 .
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Table 3. Temperature data from all sampling locations.
Metamorphosis to Catch 

Date
Temp @

Location______ Average Min Max____ Metamorphosis___________Source__________Instrument Interval

Great Bay, NH 16.9 8.9 25.6 9.5
National Estuarine 

Research Reserve System N/A
15 min 
data

Little Harbor, NH 11.9 6.6 17.8 6.8
University of New 

Hampshire Hobo 1 hr data
Hampton-Seabrook,

NH N/A N/A N/A N/A N/A N/A N/A
Beverly Harbor, 

MA 9.6 6.6 19.5 8.6
Massachusetts Division o f  

Marine Fisheries Hobo
15 min 
data

Boston Harbor, MA 13.6 7.7 20.3 8.1 NOAA Tides and Currents N/A 1 hr data

Cotuit Bay, MA 16.5 8.7 24.6 9.6
Cape Cod Cooperative 

Extension YSI Sonde
15 min 
data

Waquoit Bay, MA 17.7 10 3 26.6 113
National Estuarine 

Research Reserve System N/A
15 min 
data

Lagoon Pond, MA N/A N/A N/A N/A N/A N/A N/A
Menemsha Pond, 

MA 15.7 9.5 23.5 12 1
University ofN ew  

Hampshire Hobo 1 hr data

Niantic River, CT 14.8 8.7 20.0 9.1
Millstone Environmental 

Laboratory N/A Biweekly

Navesink River, NJ 15.2 8.0 27.2 8.9 NOAA Tides and Currents N/A 1 hr data

Table 4. Growth and condition rankings for each location. Ranking based on 
index score (1-11: best-worst). Overall rating based on the average of the 
four indices.

Location Length Day' 1 Weight Day1 Fulton’s K
Relativized

Weight
Overall
Rating

Boston Harbor, MA 3 4 1 1 1
Great Bay, NH 4 1 2 3 2

Waquoit Bay, MA 2 3 4 5 3
Navesink River, NJ 5 7 3 2 4

Cotuit Bay, MA 1 2 9 9 5
Hampton-Seabrook, NH 7 5 5 6 6

Beverly Harbor, MA 10 10 6 4 7
Little Harbor, NH 9 6 8 8 8
Lagoon Pond, MA 8 9 7 7 9

Menemsha Pond, MA 6 8 10 11 10
Niantic River, CT 11 11 11 10 11
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Table 5 Growth and condition rankings for each location. Ranking based on 
index score (1-11: best-worst). Overall rating based on the average of the 
four indices.

Location
Length Day'

oC-l
W eight

°C'
Boston Harbor, MA 4 5
Waquoit Bay, MA 1 1

Great Bay, NH 8 2
Navesink River, NJ 6 6
Beverly Harbor, MA 2 7

Little Harbor, NH 5 3
Cotuit Bay, MA 3 4

Menemsha Pond, MA 7 8
Niantic River, CT 9 9

Day'1 Relativized Overall
1_______Fultons K  W eight________R ating

1 1 1
4 5 1
2 3 3
3 2 4
5 4 5
6 6 6
7 7 7
8 8 8

9 9 9

Collection location Gear Used Tows CPUE
G re a t  Bay, NH Tra wi

Little Harbor.  NH Trawl
H am p to n -S ea b ro o k ,  NH Seine, Irawl

Beverly Harbor,  MA Seine
Litu« H arborBoston  Harbr, MA Traw

Cotu it  Bay, MA Seine
W a q u o i t  Bay, MA Seine, Trawl
Lagoon Pond, MA Seine, Trawl
M e n e m s h a ,  MA Seme

B oston  H arbor
N a rrag an se t t ,  Rl Seine
Niatic River, CT Trawl

Navesink, NJ

on Pond 
M enem sba Pond

N avesink  River

uoiteciion Locations
0 12 5 25 100

Kiln

Figure 1. Sample locations of winter flounder from estuaries in the northeast 
United States. Inset table contains collection information for each location. 
Fish: total number of winter flounder caught, Tows: total number of tows,
CPUE: catch per unit effort (# fish tow 1).
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Figure 2. Box plot of Fulton’s K values at each location. The center line of 
each box represents the mean, the top and bottom of the box indicate the 25th 
and 75th percentiles, respectively, and the whiskers indicate the range. Points 
denote outliers. Locations not sharing a letter are significantly different 
(p<0.05),(Tukey’s HSD). GBA: Great Bay, LTH: Little Harbor, HSE: 
Hampton-Seabrook, BEV: Beverly Harbor, BOS: Boston Harbor, COT: 
Cotuit Bay, WAQ: Waquoit Bay, LAG: Lagoon Pond, MEN: Menemsha 
Pond, NRB: Narragansett Bay, NIR: Niantic River, NAR: Navesink River.
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Figure 3. Box plot of relativized weight values at each location. The center 
line of each box represents the mean, the top and bottom of the box indicate 
the 25th and 75th percentiles, respectively, and the whiskers indicate the 
range. Points denote outliers. Locations not sharing a letter are significantly 
different (p<0.05),(Tukey’s HSD). GBA: Great Bay, LTH: Little Harbor, 
HSE: Hampton-Seabrook, BEV: Beverly Harbor, BOS: Boston Harbor, 
COT: Cotuit Bay, WAQ: Waquoit Bay, LAG: Lagoon Pond, MEN: 
Menemsha Pond, NRB: Narragansett Bay, NIR: Niantic River, NAR: 
Navesink River.
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Figure 4. Box plot of mid-metamorphosis date at each location. The center 
line of each box represents the mean, the top and bottom of the box indicate 
the 25th and 75th percentiles, respectively, and the whiskers indicate the 
range. Points denote outliers. Locations not sharing a letter are significantly 
different (p<0.05),(Tukey’s HSD). GBA: Great Bay, LTH: Little Harbor, 
HSE: Hampton-Seabrook, BEV: Beverly Harbor, BOS: Boston Harbor, 
COT: Cotuit Bay, WAQ: Waquoit Bay, LAG: Lagoon Pond, MEN: 
Menemsha Pond, NRB: Narragansett Bay, NIR: Niantic River, NAR: 
Navesink River.
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Figure 5. Box plot of growth rate length (mm day'1) at each location. The 
center line of each box represents the mean, the top and bottom of the box 
indicate the 25th and 75th percentiles, respectively, and the whiskers indicate 
the range. Points denote outliers. Locations not sharing a letter are 
significantly different (p<0.05),(Tukey’s HSD). GBA: Great Bay, LTH: Little 
Harbor, HSE: Hampton-Seabrook, BEV: Beverly Harbor, BOS: Boston 
Harbor, COT: Cotuit Bay, WAQ: Waquoit Bay, LAG: Lagoon Pond, MEN: 
Menemsha Pond, NRB: Narragansett Bay, NIR: Niantic River, NAR: 
Navesink River.
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Figure 6. Box plot of growth rate weight (g day1) at each location. The center 
line of each box represents the mean, the top and bottom of the box indicate 
the 25th and 75th percentiles, respectively, and the whiskers indicate the 
range. Points denote outliers. Locations not sharing a letter are significantly 
different (p<0.05),(Tukey’s HSD). GBA: Great Bay, LTH: Little Harbor, 
HSE: Hampton-Seabrook, BEV: Beverly Harbor, BOS: Boston Harbor, 
COT: Cotuit Bay, WAQ: Waquoit Bay, LAG: Lagoon Pond, MEN: 
Menemsha Pond, NRB: Narragansett Bay, NIR: Niantic River, NAR: 
Navesink River.
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Figure 7. Box plot of temperature relativized growth rate length (mm day'1 
°c ) at each location. The center line of each box represents the mean, the 
top and bottom of the box indicate the 25th and 75th percentiles, respectively, 
and the whiskers indicate the range. Points denote outliers. Locations not 
sharing a letter are significantly different (p<0.05),(Tukey’s HSD). Locations 
without a box did not have temperature time series data available. GBA: 
Great Bay, LTH: Little Harbor, HSE: Hampton-Seabrook, BEV: Beverly 
Harbor, BOS: Boston Harbor, COT: Cotuit Bay, WAQ: Waquoit Bay, LAG: 
Lagoon Pond, MEN: Menemsha Pond, NRB: Narragansett Bay, NIR:
Niantic River, NAR: Navesink River.

BC

AB
CD

BC
BC

CD
CD

GBA LTH HSE BEV BOS COT WAQ LAG MEN NRB NIR NAR

Location

34



R
el

at
iv

iz
ed

 
G

ro
w

th
 

Ra
te 

W
ei

gh
t 

(g 
da

y1 
V

)

0.005

0.0045 -  

0.004 -  

0.0035 -

0.003 -

0.0025 - 

0.002  -

0.0015 -

0.001 - 

0.0005 -

GBA LTH HSE BEV BOS COT WAQ LAG MEN NRB N1V NAV

Location
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) at each location. The center line of each box represents the mean, the top 
and bottom of the box indicate the 25th and 75th percentiles, respectively, and 
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Boston Harbor, COT: Cotuit Bay, WAQ: Waquoit Bay, LAG: Lagoon Pond, 
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CHAPTER II. ASSESSING VARIATION IN WINTER FLOUNDER 
(PSEUDOPLEURONECTES AMER1CANUS) NURSERY AREAS USING OTOLITH

MICROCHEMICAL SIGNATURES

Introduction

Winter flounder, Pseudopleuronectes americanus, a demersal, right-eyed flatfish, 

is an important commercial and recreational species. It is distributed along the 

northwestern Atlantic, from Georgia, USA to Labrador, Canada, but is most common 

from Nova Scotia, Canada to New Jersey, USA (Scott and Scott 1988). As with most 

commercially important fish species, winter flounder populations have declined 

dramatically over recent decades. Total commercial landings o f  winter flounder have 

fallen 89% from 1981 to 2010 (Murphy et al. 2011). Despite ever increasing fishing 

regulations, winter flounder populations are not rebounding. The collapse o f this fishery 

has dramatic ecological and economic consequences, and merits research to better inform 

conservation policy.

Due to their large range and ecological, behavioral, and growth differences, 

winter flounder are managed as three distinct stocks in the US: the G ulf o f  Maine 

(GOM), Georges Bank (GB), and Southern New England/Mid-Atlantic (SNE/MA) stock 

(Clark 1998). With the exception o f  the GB stock, adult winter flounder migrate inshore 

in the fall and early winter, and spawn in late winter and early spring (Pereira et al. 1999). 

The juveniles remain inshore for their first two years before moving offshore (Pereira et 

al. 1999). These inshore habitats serve as winter flounder spawning and nursery areas and 

have been classified as Essential Fish Habitat (EFH). They are extremely important to
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population sustainability. EFHs are critical for winter flounder because they can support 

the tenuous maturation beyond early life stages where the mortality rate can be as high as 

99% (Pearcy 1962). The year class strength o f winter flounder is determined primarily 

during these early life stages (Sogard 1991). It is therefore critical to develop a method 

for determining connectivity between adult populations and nurseries.

Understanding the connectivity between adult populations and nursery sources 

can help lead to more effective management and rebuilding o f  the fishery. However, 

determining population connectivity in the marine environment is difficult when using 

conventional tagging techniques. These techniques suffer from multiple drawbacks 

including difficulty tagging small juveniles, high mortality rates, and low tag return rates 

(Gillanders 2002). These difficulties have resulted in the development o f  new techniques 

to assess population connectivity.

Otoliths, found in the inner ear o f  fish, are structures composed o f  calcium 

carbonate crystals. Otolith growth occurs daily and the newly deposited material creates a 

pattern o f daily growth rings. This newly deposited material also incorporates trace 

elements from the environment. Once the new growth is deposited, it is metabolically 

inert (it is neither reincorporated nor reworked), creating a pattern that is preserved for 

the life o f the fish (Campana et al. 2000). This pattern or otolith chemical signature may 

provide a natural tag for tracking where fishes have been (Gillanders and Kingsford 1996, 

Campana 1999, Campana and Thorrold 2001). These natural tags have been used to 

differentiate individuals from a variety o f  systems: estuarine and riverine systems 

(Thorrold et al. 1998a, Thorrold et al. 1998b, Gillanders and Kingsford 2000, Gillanders

39



2002), coastal and open ocean systems (W arner et al. 2006, Correia et al. 2012), and 

rocky reefs (Gillanders and Kingsford 2000).

When examining the otolith microchemical composition o f the trumpeter, Pelates 

sexlineatus, Gillanders and Kingsford (2000) found differences in the elemental 

fingerprints (Sr, Ba, and Mn) within and among different Australian estuarine nursery 

habitats. These differences allowed juveniles to be classified back to their natal estuaries. 

By identifying differences in otolith signatures (Sr, Ba, Mg, Mn, Ni, Zn), Correia et al. 

(2012) were able to distinguish between blackbream, Spondyliosoma cantharus, from 3 

fishing grounds off the Portuguese coast. Using the chemical composition o f the otolith 

core they also were able to identify a common offshore spawning ground used by fish 

from all 3 fishing grounds.

Several otolith microchemistry studies have examined flatfish with similar life 

histories to that o f winter flounder (i.e., fishes that spawn inshore and have a juvenile 

nursery phase before recruiting to the offshore adult populations) (Brown 2006, 

Vasconcelos et al. 2007b). Examining the otolith elemental composition o f English sole, 

Pleuronectes vetulus, and the speckled sanddab, Citharichthys stigmaeus, Brown (2006) 

was able to classify fish to natal estuaries or coastal habitats along the California coast 

with 80% accuracy. The elements that were found to differ across the nursery areas were 

Sr, Li, Ba, and Mn. In a study conducted off the Portuguese coast, Vasconcelos et al. 

(2007b) were able to classify 3 different species o f  flatfish back to their natal estuary with 

70-93% accuracy. An extensive suite o f  elements (Li, Na, Mg, K, Mn, Ni, Cu, Zn, Sr, Cd, 

Ba and Pb) was analyzed to achieve such high accuracy. The elements used in the
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classification varied across flatfish species, with certain elements playing a more 

influential role in certain species.

Microchemical analysis has not been used for winter flounder to our knowledge 

except in an unpublished EPA study and a study by Pruell et al. (2011) in which natural 

tags were identified based on stable carbon and oxygen isotope ratios in the otoliths.

They concluded that the otolith carbon and oxygen ratios were not site specific but rather 

correlated to salinity and freshwater flux, respectively. Because winter flounder are 

euryhaline, inhabiting estuarine areas with salinity ranging from 5 to 33 ppt (Pereira et al. 

1999), it is difficult to use these isotopes; other elements need to be investigated. It is 

possible, however, that other elements may act as site-specific markers for winter 

flounder. If so, an elemental signature index o f  nursery areas based on otolith 

composition can be created. This index could be used for stock identification and to trace 

adults back to natal nursery areas. For w inter flounder, this would allow for the increased 

protection o f those nursery grounds that significantly contribute to the adult population, 

thereby potentially reducing early-stage mortality and increasing the resiliency o f  the 

adult population. Identifying the most successful nursery grounds is an important step in 

developing models o f  critical winter flounder nursery characteristics that may later be 

used in conservation policy.

In order to gauge the effectiveness o f  microchemistry as a management tool for 

winter flounder, we analyzed an extensive suite o f elements to determine: 1) if  elemental 

signatures are site-specific; 2) the spatial scale at which elemental heterogeneity exists; 

and 3) the accuracy o f classifying fish to natal nursery areas.
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Materials and Methods 

Field Sampling

Young-of-the-year (YOY) winter flounder were collected from 12 locations from 

Great Bay, NH to the Navesink River, NJ (Figure 11) between June and July 2012. Fish 

caught from the five G ulf o f Maine and four Cape Cod sites were caught using a beach 

seine (17 m x 2 m; 6.35mm Delta mesh; swept area 550m2) and/or beam trawls (1.0 m 

width, 6 mm mesh). Fish were measured (TL; mm), weighed (g), and given individual 

sample names after landing. Total length measurements were used to ensure that the 

collected fish were from the YOY cohort. Based on existing age and size frequency data, 

fish were thought to be in the YOY cohort if  T l  < 90mm, according to Massachusetts 

Division o f Marine Fisheries winter flounder estuarine surveys (J. King, personal 

commun.). Actual age was later confirmed by counting daily otolith growth rings (see 

Chapter 1). Following initial measurements and cohort identification, fish were 

euthanized via cervical dislocation, transferred into individual labeled plastic bags, placed 

on ice, and transported back to the laboratory where they were kept frozen in a 0°C 

freezer until further analysis. Water quality parameters (salinity, temperature, and 

dissolved oxygen) were recorded prior to and upon the completion o f  collecting in a 

specific area using a YSI 6920 sonde. Habitat type and benthic composition also were 

recorded at each site. Fish caught from Narragansett Bay, RI, Niantic River, CT, and 

Navesink River, NJ were caught by third party researchers during routine surveys using 

various collection techniques. Fish were frozen after collection and transferred to the
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University o f New Hampshire (UNH). Once at UNH fish were thawed then weighed (g), 

measured (TL; mm), and given individual sample names.

Approximately 15 fish from each estuary were examined by microchemical 

analysis (Table 6); the same fish also were used in a microstructure study (see Chapter 1). 

At estuaries where >15 fish were collected, the 15 fish with a total length closest to the 

average total length o f fish for that location were chosen for analysis.

Otolith Removal

Both sagittal otoliths were extracted using Teflon coated razor blades and plastic 

forceps. Right and left otoliths were separated based on position in the orbital. If  there 

were any discrepancies as to which side they were removed from, they were separated 

according to the position o f the sulcus and the rostrum (Secor et al. 1993). Once 

separated, otoliths were cleaned in distilled water and stored in individual 1.5 ml m icro­

centrifuge tubes. Left otoliths, previously found to provide the best correlation between 

somatic and otolith growth (Sogard 1991), were used for microstructure analysis, and 

right otoliths were used for microchemical analysis.

Microchemical Sample Preparation

All sample preparation, except for otolith weighing, was conducted in a positive- 

pressure, trace metal clean room with HEPA filtered air. Equipment and consumables 

used during preparation were acid cleaned prior to use by soaking in 20% hydrochloric 

acid at 60 °C for 4 days, followed by copious rinsing with 18.2 MQ/cm nanopure water. 

Otoliths were prepared in random order to eliminate any bias resulting from preparation 

(Hamer et al. 2003). Left sagittal otoliths were transferred into 2 ml microcentrifuge
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tubes filled with nanopure water and vortexed for 3 min to remove any adhering tissue. 

The nanopure water was then siphoned off and replaced with 1 ml o f 3% ultrapure 

hydrogen peroxide (Fisher Optima) to oxidize any remaining biological substances. The 

otoliths remained in hydrogen peroxide for 10 min at which point the hydrogen peroxide 

was siphoned o ff and the otoliths were triple rinsed with nanopure water. Otoliths then 

were stored in new 2 ml microcentrifuge tubes and were dried overnight in a laminar 

flow hood (Patterson et al. 1999). Once dry, otoliths were transferred to an acid cleaned 

weighing container (2 ml microcentrifuge cap) and weighed using a M ettler Toledo XP6 

microbalance to the nearest 0.0000 mg. Following weighing, otoliths were transferred 

back to microcentrifuge tubes, triple rinsed with nanopure w ater to remove any 

contamination from weighing, and dried overnight in a laminar flow hood. Otoliths then 

were digested overnight using a volume o f 25% ultrapure triple distilled nitric acid 

proportional to their weight (1 mg otolith: 259 pi microliters o f  acid). The volume o f acid 

added was adjusted based on otolith weight to maintain a constant concentration o f 

calcium in each sample so any matrix effect due to high calcium concentrations would be 

consistent between samples. Once completely digested, otolith samples were diluted to a 

final volume proportional to their weight (~1 mg otolith: 8.62 pi) with an ultrapure 2% 

nitric acid solution. Samples then were spiked with a ~2 ppb indium internal standard 

(Specpure) for determination o f element recovery rates.

Microchemical Analysis

Otolith microchemistry was analyzed by solution based inductively coupled 

plasma mass spectrometry (SB-ICP-MS) at the UNH ICP-MS Lab, Morse Hall, Durham, 

New Hampshire. Otoliths were analyzed using a Nu AttoM® double-focusing high-
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resolution magnetic sector mass spectrometer (Nu Instruments; vvwv\.nu-ins.com). The 

instrument was equipped with a micromist nebulizer, operating in self-aspirating mode 

(sample uptake rate 100 pi m in '1). Measurements were performed at either a low or 

medium resolution setting (m/Am= 300 or 3200, respectively), depending on the spectral 

interferences for each element. Ag(107), Ba(137), Ca<46) Cd(U1), Li<7) and Pb(208) were run at 

low resolution. Ca(42’43), Cu(63’65), Fe(57), Mg(24), Mn(55), Na(23), Sr<88), and Zn(66’68) were run 

at medium resolution. Instrument operating conditions are shown in (Table 7)

Initial trace element concentrations were quantified with an external calibration 

method with multi-element standards containing all o f  the elements o f  interest in the 

expected concentration range. Expected concentration ranges o f elements were based on 

a previous unpublished Environmental Protection Agency winter flounder 

microchemistry study (B. Taplin, personal commun). Initial concentrations were 

calculated for each element by regression analysis based on the drift corrected values 

determined by comparing a monitoring standard. Calibration curves were run at the 

beginning and end o f  each session, though regression analysis was based on the 

calibration curve at the beginning o f the day. Isotopes with a calibration curve r-squared 

value <0.950 were not included in subsequent analyses (Table 8). Most poorly calibrated 

isotopes likely suffered from an unresolved interference (e.g. Ca44) or were 

concentrations too close to the detection limit (e.g. Zn66,68). Instrument blanks o f  2% 

HNO3 were run prior to the calibration curves at the beginning and end o f  each day. The 

average detection limits were calculated for each element using the five sigma criteria 

(Table 8). Elements that had the majority o f values below the detection limit also were 

not used in subsequent analyses.
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Otoliths were analyzed randomly to eliminate any bias resulting from instrument 

drift (Hamer et al. 2003). Instrument drift was corrected off-line using linear interpolation 

between two multi-element standard monitoring solutions containing all elements o f 

interest (Rosenthal et al. 1999). The monitoring solution was run after every 4 otolith 

samples. This bracketing method allowed for correction o f each individual element. 

Determining the drift correction for each individual element is important because 

instrument drift does not occur at the same rate for each element. For quality control, 

precision, and accuracy checks, the NRC otolith certified reference material (CRM) 

FEBS-1 was analyzed after every 8 samples. Poor CRM recovery rates were observed 

when using initially calculated trace element concentrations; because o f this, a matrix 

correction was used to calculate final concentrations. Because the multi-element standard 

monitoring solution used to calculate concentrations was a synthetic solution, with a less 

complex matrix than an otolith, it is not surprising that a matrix correction was needed. 

The matrix correction was calculated using the slope o f  the constant calcium standard 

additions that were run at the beginning o f every run. Slope was calculated by plotting 

expected concentration vs. observed concentration. The matrix correction was not applied 

to any o f  the calcium values because calcium is the most abundant element and was 

within the certified range using the initial concentration values. Magnesium also was not 

matrix corrected because it was accidently omitted when preparing the constant calcium 

standard addition. Using the final concentration values with the matrix correction, many 

o f the elemental concentrations (Li7, Na23, Ca42 43’46, and Mn55) determined in FEBS-1 

were within the certified or ‘informational’ range; elements that were not within range 

(Mg24,Sr88, and Ba137) gave consistent concentrations between runs (Table 9) and so
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were included in the analysis. The accuracy o f  the drift correction was verified by 

examination o f the CRM and indium recovery rates spaced throughout a run. Precision of 

replicate analyses over the course o f  all runs o f  the individual elements ranged from an 

average o f 1.1 to 16.4% relative standard deviation (RSD) (Table 8), with elements with 

otolith concentrations closer to the detection limit giving the lowest precision.

Statistical analysis

Concentrations o f  trace elements were reported as pg element g '1 solution and 

then transformed to gg element g '1 otolith. Final elemental signatures were expressed as 

molar ratios (pmol element: m ol'1 Ca43) to account for fluctuations in the amount o f  

material analyzed and the loss o f material during the preparation process (Sinclair et al. 

1998). All data were generalized log transformed (B j j =  log(xjj + log''lnt(log(min(x)))) -  

Int(log(Min(x)))) in an attempt to improve normality and relativize the variation in molar 

ratios between elements. Despite the generalized log transformation there was still a 

slight deviation from the assumptions o f  normality; because o f  this, Bray-Curtis distance 

measures were used for all subsequent analyses. The Bray-Curtis distance measurement 

also was used because the molar elemental ratios did not vary linearly, which is an 

assumption that must be meet when using other distance measurements.

One-way ANOVAs and t-tests were performed between dates o f  analysis and 

elemental molar ratios to account for any variations between run dates. No significant 

differences between dates were detected for any element at any of the 12 locations; 

therefore no adjustments were made to account for the sampling day. To ensure that the 

size o f the otolith did not influence the variation in elemental chemistry (Fowler et al.
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1995), linear regressions between molar element:Ca ratios and otolith mass (g) were 

performed (Campana et al. 2000). A significant, albeit weak, relationship was found only 

between strontium concentrations and otolith mass (r = 0.0294, n = 199, p< 0.05). 

Although this relationship was found to be significant, no adjustments were made to the 

strontium concentrations due to the risk o f over correcting when using an adjustment 

based on a weak regression.

A non-metric multidimensional scaling (NMDS) ordination was used to examine 

similarities between fish. The appropriate number o f  dimensions was determined based 

on final stress results and the outcome o f the Monte Carlo test. The Monte Carlo test 

evaluated if  the ordination was stronger than expected by chance. Cluster analysis also 

was used to examine similarities and identify groupings o f juvenile w inter flounder based 

on elemental signatures; the flexible beta (b=-0.25) linkage method was used. Indicator 

Species Analysis (Dufrene and Legendre 1997) was used to investigate which elements 

defined different estuaries. A perfect indicator would be an element that was always 

present in an estuaiy and exclusive to that estuary, never occurring in other estuaries. The 

indicator species analysis calculated indicator values for every element in each estuary, 

based on the standards o f  a perfect indicator. A Monte Carlo test was used to determine 

the significance o f these indicator values.

To investigate if elemental signatures were estuary specific, a Multiple-Response 

Permutation Procedure (MRPP) with pairwise comparison was performed. This test was 

chosen for two reasons: 1) it does not require equal samples per estuary unlike a 

permutational multivariate analysis o f variance; and 2) it does not require distributional 

assumptions. Groups were defined by natal estuary. To address the problem o f increased
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type 1 error when making multiple pairwise comparisons, a Bonferroni correction was 

used when interpreting results o f pairwise comparisons. Therefore a p<0.004 was 

considered significant for all pairwise comparisons.

A quadratic discriminant function analysis (QDFA) with leave-one-out cross 

validation was used to test the ability o f  the otolith elemental signatures to classify 

juvenile winter flounder to their natal location. QDFA was chosen as the classification 

method because it does not require distributional assumptions (Krzanowski and 

Krzanowski 2000).

Results

The following elements were excluded because they failed to meet all o f  the 

quality control, precision, and accuracy checks: Ag(I07), Ca<44), Pb<208), Cu(63’65), Fe(56,57), 

and Zn<66,68). The remaining elements, Ba(l37), Li(7) Ca(43,46), Cd(U1), Mg(24), Mn(55), N a(23), 

and Sr(88), met all o f the quality control, precision, and accuracy checks, and were used in 

subsequent analysis. Ca43 was used to standardize all o f the medium resolution elements 

instead o f Ca42 or Ca44due to its high r-squared calibration curve values (Table 8). Ca46 

was used to standardize all the low resolution elements. Molar ratios o f  the elements 

included in the analysis were within the range o f  those reported in previous otolith 

microchemistry studies (Clarke et al. 2009) (Figure 12).

Otolith elemental signature grouping

A 2-dimensional NMDS ordination with a final stress o f  13.48 explained 91.7% 

o f the variation in otolith elemental signatures. The 1st dimension explained 60.5% o f the 

variation and the 2nd explained 31.1%. The Cape Cod, Gulf o f  Maine, and New Jersey
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fish separated from each other using the 2 dimensional ordination (Figure 13). The 

Narragansett Bay and Niantic River fish, however, were scattered amongst the Cape Cod 

and G ulf o f Maine fish. Ba/Ca, Mn/Ca, and Sr/Ca had the most influence on the 

ordination, with r2 values o f 0.59, 0.64, and 0.375, respectively. Examination o f  the 

ordination using the location centroids allowed for greater discrimination (Figure 14). 

The centroid ordination revealed that Rhode Island fish were most similar to the Cape 

Cod fish, specifically the Cotuit Bay fish, and that the Niantic River fish were most 

similar to the Gulf o f Maine fish, specifically those from Hampton-Seabrook. Fish from 

the same island, Martha’s Vineyard (i.e. Lagoon and Menemsha Ponds), ordinated 

similarly. In the Gulf o f Maine, Beverly Harbor and Great Bay were similar as were 

Little Harbor and Boston Harbor.

The cluster analysis identified five broad groups o f fish based on elemental 

signatures, using only 30% o f the elemental signature data (Figure 15). Two separate 

groups for both the Gulf o f Maine and Cape Cod locations and one Navesink, NJ group 

were identified. The Narragansett Bay, RI and Niantic River, CT fish were distributed 

throughout the Cape Cod and Gulf o f  Maine groupings. Exact location groups were not 

discernible even when including more o f the elemental signature data.

The Indicator Species Analysis found Ba/Ca, Mn/Ca, and Sr/Ca to be the only 

significant indicators o f specific estuaries (Table 10) although all had relatively low 

indicator values (<10). Ba/Ca was an indicator for Menemsha Harbor, Mn/Ca for the 

Navesink River, and Sr/Ca for Great Bay.
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Spatial differences in otolith signatures

Juvenile winter flounder otoliths showed significant geographical differences in 

otolith signatures throughout specific New England estuaries. Otolith elemental 

signatures were significantly different between locations (MMRP, A= 0.38, p< 0.0001). 

Comparing 66 possible estuary pairs using the conservative Bonferroni correction, there 

was a significant difference between 76% o f  them (n=50; Table 11). O f the 16 estuary 

pairs that were not significantly different, twelve were locations within the same broad 

group (i.e. Cape Cod/Gulf o f Maine) and generally were separated by a relatively small 

distance (<75 km). The four pairings that were not within the same broad location and 

were not significantly different were Hampton-Seabrook (NH) and the Niantic River 

(CT), Narragansett Bay (RI) and Waquoit Bay (MA), Narragansett Bay (RI) and Cotuit 

Bay (MA), and Boston Harbor (MA) and Cotuit Bay (MA).

Several geographic trends also were observed within the data (Figure 12). Mn/Ca 

values were highest in the Navesink River, NJ, with very little difference between all o f  

the other locations. Ba/Ca values were the highest at the two Martha’s Vineyard locations 

and relatively low at all other non-Cape Cod locations. Sr/Ca values were high at all Cape 

Cod locations and in Great Bay.

Classification of juvenile fish to natal habitat

Results o f the QDFA with leave-one-out cross validation showed that fish could 

be classified back to their natal location with 73% accuracy (Table 12). Misclassifications 

generally occurred at locations that were not statistically different in the MMRP pairwise 

comparison.

51



Discussion

Natal Classification

In this study, microchemical signatures o f  juvenile winter flounder otoliths 

showed significant differences between nursery locations along the northeast coast o f the 

United States. These microchemical signatures allowed juvenile winter flounder to be 

traced back to their natal nursery location with a classification accuracy o f  73%. This 

accuracy suggests that there is sufficient chemical variation between nursery areas on a 

relatively small scale (-5-10 km).

The classification accuracy achieved in this study is similar to other studies that 

have examined fish from near coastal habitats. Clarke et al. (2009) reported 70% and 

77% accuracy in the two years they examined Atlantic silverside, Menidia menidia, in 

similar, and in some cases the same, northeastern United States coastal habitats. While 

examining juvenile microchemical signatures o f red drum, Sciaenops ocellatus, from 

southeastern United States estuaries, Patterson et al. (2004) reported a classification 

accuracy o f  81%. Other studies have reported even higher classification accuracy, 

specifically in fish that have clear geographic areas in which various life-history stages 

take place, as is the case with winter flounder. A classification accuracy o f  90% was 

reported by Thorrold et al. (1998b) when examining the estuary-dependent weakfish, 

Cynoscion regalis. A classification accuracy o f  91% was reported by Walther et al. 

(2008) when examining the anadromous American shad, Alosa sapidissima. The 

classification accuracy reported in this study and the higher levels found in other studies 

is essential for using otolith microchemistry as an effective fisheries management tool.
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Spatial Differences

In order to use microchemical signatures as a fisheries management tool there 

must be variation between sites (Thresher 1999). These microchemical variations occur 

because o f environmental differences between locations. While these variations are 

essential for creating a distinct otolith signature, understanding the source o f  variation is 

not necessary for use as a fisheries management tool (Thresher 1999).

Though not necessary for use as a fisheries management tool, multiple studies 

have attempted to determine the causes o f otolith microchemistry variation. There are 

many environmental characteristics which affect the variation o f otolith microchemistry 

including concentration o f  the bioavailable forms o f  each element, salinity, temperature, 

fish age, ontogeny, physiology, growth rate, and metabolism (Elsdon and Gillanders 

2003, Milton et al. 2008, Silva et al. 2011). Also, nursery habitat quality can affect many 

o f these factors, which would lead to further variation. Fish also have been shown to 

adapt to their environment, leading to otolith microchemistry variations between 

nurseries (Conover et al. 2006). All o f  these factors make it difficult to know exactly how 

the environmental characteristics affect otolith microchemistry.

In our study we were particularly interested in Li, Ba, Mn, and Sr because they 

were significantly different between nursery locations. Multiple studies have measured 

the differences in these trace elements in relation to variations in environmental factors. 

For example, variation in incorporation o f Ba and Sr has been clearly linked to 

concentration o f the bioavailable forms o f  each element. Sr is influenced by water 

chemistry (Bath et al. 2000), diet (Kennedy et al. 2000, Buckel et al. 2004), and
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temperature (Martin et al. 2004). Also, the ambient concentration o f  Sr and Ba in near 

shore coastal habitats is largely dependent on river discharge, tidal stage, and the mixing 

pattern o f  the estuary (Coffey et al. 1997, Kraus and Secor 2004). Ba in inshore coastal 

habitats is linked to groundwater inputs as well (Coffey et al. 1997, Moore 1997, Shaw et 

al. 1998). The pH o f the river discharge and extent o f  the salt marsh in the area also plays 

a role in ambient Ba concentration. Mn concentrations vary between the otolith core and 

surrounding material suggesting an endogenous or ontogenetic effect (Brophy et al. 2004, 

Ruttenberg et al. 2005). While these are possible explanations for the variations o f these 

elements in our study, it cannot be confirmed without measuring each o f  these factors 

within each o f  our locations.

The small spatial scale differences ( 1 2 - 2 0  km) found in this study are similar to 

those identified in other studies. Thorrold et al. (1998a) identified small spatial scale 

differences within river systems when studying the American shad, Alosa sapidissima. 

Thorrold et al. (1998b) and Dorval et al. (2005) both observed small spatial scale 

differences within estuaries when studying weakfish, Cynoscion regalis. However,

Clarke et al. (2009) did not observe such small-scale differences between locations in 

Menidia menidia otolith microchemical signatures when examining similar locations to 

this study. However, they did observe small spatial scale differences (5-10  km) within 

locations (Clarke et al. 2009). It is likely that the small-scale differences observed in this 

winter flounder study and others are due to differences in water chemistry. Small-scale 

differences within locations were not observed in this winter flounder study because fish 

were collected within a small area at each location ( < 8 km), with the exception o f the 

Narragansett Bay where fish were collected -15  km apart. There was no variation in
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elemental signatures between the 3 collection locations within Narragansett Bay despite 

this distance. The lack o f variation between collection locations within Narragansett Bay 

could be a result o f  the small sample size analyzed at each collection location (~5 fish) or 

the homogeneity in water chemistry within Narragansett Bay. However, it is more likely 

that the lack o f variation is due to the small sample size and not the homogeneity in water 

chemistry because Narragansett Bay is such a variable and large ecosystem with many 

different watersheds and dynamic tidal exchanges. Further testing is necessary to 

determine if there is within location elemental signature variability in Narragansett Bay.

Temporal Differences

Temporal differences in otolith microchemistry have been observed, on various 

scales, in several studies (Gillanders 2002, Clarke et al. 2009) resulting in the inability to 

classify fish to specific areas using previously established elemental signatures. Also, 

temporal differences can be distinct for different elements; Warner et al. (2006) found 

yearly differences in Mg, Sr, and Pb, but not in Mn, Zn, and Ba when examining open 

ocean differences in kelp rockfish, Sebaster atrovirens, off the California coast. Temporal 

differences have not only been found on an annual basis but also on an interannual basis 

(Gillanders and Kingsford 2000). Like M. menidia (Clarke et al. 2009), winter flounder 

might exhibit annual variation in elemental signatures given that both species inhabit 

similar habitats in the same geographic range. The scale o f the temporal differences could 

have a drastic impact on the value o f  using microchemical analysis for natal nursery area 

identification.
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Temporal variation in elemental signatures cannot be fully understood without a 

clear understanding o f the factors influencing otolith incorporation in the first place, 

though the source o f the variation is most likely due to environmental variation. If there is 

no temporal variation in microchemical signatures, then the signatures can be used to 

classify natal nursery areas o f all year-classes. However, if  the signatures vary 

temporally, then the signatures are limited and only year-class specific. Further annual 

and interannual microchemical testing is required to identify the temporal stability in 

winter flounder microchemical signatures. This would allow for the best method o f 

analysis and implementation as a fisheries management tool. In this study, solution based 

inductively coupled plasma mass spectroscopy (SB-ICP-MS) was used but if  temporal 

variation occurs on an interannual basis, laser ablation inductively coupled plasma mass 

spectrometry (LA-ICP-MS) may be a more effective method to use. Unlike SB-ICP-MS, 

LA-ICP-MS does not require an entire otolith to be dissolved. Instead, a small portion o f  

the otolith is ablated. This allows for elemental analysis to occur at a specific time, 

whereas solution based samples the elemental composition o f  the entire life o f the fish.

Conclusion

Otolith microchemistry has the potential to be an effective tool to assess the 

connectivity among nursery areas and adult populations o f winter flounder.

Understanding this connectivity will provide information that is necessary for effective 

ecosystem-based management. In this study we found that otolith microchemistry o f 

winter flounder has the potential to be a useful technique, based on a natal classification 

accuracy o f 73%, but we also determined that there are some aspects that require further 

investigation prior to using it as a management tool. First, the temporal variation in the
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elemental signatures needs to be identified and the analysis method needs to be 

standardized. SB-ICP-MS was found to work well for analyzing whole juvenile otoliths, 

but for adult otoliths, the preparation will be labor intensive because they will need to be 

micro-milled to the juvenile core prior to analysis. LA-ICP-MS may be the better method 

when examining both juvenile and adult fish, and should be investigated in the future. 

This technique allows for precise otolith locations to be sampled when using either 

juvenile or adult fish, enabling elemental signatures to be derived from specific life stages 

with relative ease.

With further refinement o f  methods, an elemental signature index o f  nursery areas 

based on otolith elemental composition should be possible. This index then can be used 

for stock identification and to trace adults back to natal nursery areas. For winter 

flounder, this would allow for the increased protection o f those nursery grounds that 

significantly contribute to the adult population, thereby potentially reducing early-stage 

mortality and increasing the resiliency o f  the adult population. Identifying the most 

successful nursery grounds is an important step in developing models o f  critical winter 

flounder nursery characteristics that may later be used in conservation policy.
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Table 6. Sample size (n), mean total length (L t) ± standard error, and mean 
mass (M) ± standard error of winter flounder juveniles used for otolith 
microchemistry analysis from each sampling location.

Mean Length
Location__________n (mm)_______ Mean Weight (g)

Great Bay, NH 15 67.0 ± 0.7 3.19 ± 0.12
Little Harbor, NH 16 64.2 ± 0.5 2.45 ± 0.07

Hampton-Seabrook, NH 14 61.3 ± 1.2 2.29 ± 0 .1 4
Beverly Harbor, MA 16 55.1 ± 2.8 1.89 ± 0 .38
Boston Harbor, MA 20 60.8 ± 2.8 2.89 ± 0.40

Cotuit Bay, MA 20 57.3 ± 1.4 1.77 ± 0 .1 6
Waquoit Bay, MA 19 63.9 ± 1.1 2.53 ± 0 .1 6
Lagoon Pond, MA 19 49.9 ± 0.6 1.17 ±  0.05

Menemsha Pond, MA 17 50.8 ± 0.6 1.16 ± 0.05
Narragansett Bay, RI 15 64.8 ± 2.2 2.68 ± 0.29

Niantic River, CT 15 49.0 ± 1.2 0.96 ± 0.08
Navesink River, NJ 12 55.0 ± 1.4 1.68 ±0 .13

Table 7. Typical operating settings of the ICP-MS for otolith analysis.

Instrumental Parameter________________________ Set Point___________________
Resolution 300,3200
Forward Power 1200 W
Nebulizer Ar gas flow 26-30 psi
Auxiliary Ar gas flow 1 L/min
Coolant flow 13 L/min
Cones Ni sampler and skimmer
Acquisition method Magnetic jum p with electric scan over small mass range
Channels per mass 20
Number o f  cycles 3
Number o f sweeps 500
Dwell time 2ms
Data acquisition time < 120 sec
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Table 8. Quality assurance values from all ICP-MS runs.

Average Detection Limit Average R-squared 
Element______ Average RSD______________ (ug/L)__________ of Calibration Curve

Li(7) 1.7 8.57E-06 1.00
Na(23) 1.3 3.5E-04 1.00
Mg(24) 5.9 5.73E-05 1.00
Ca(42) 1.2 0.57 1.00
Ca(43) 1.1 0.56 1.00
Ca(44) 1.1 -0.53 0.89
Ca(46) 1.7 1.41E-01 1.00
Mn(55) 2.4 8.92E-06 1.00
Fe(56) 16.4 5.43E-05 0.91
Fe(57) 12.5 5.62E-05 0.93
Cu(63) 6.2 1.69E-05 0.96
Cu(65) 7.4 1.35E-05 0.97
Zn(66) 4.2 7.48E-05 0.98
Zn(68) 4.3 5.97E-05 0.98
Sr(88) 1.3 6.02E-03 1.00

Ag(107) 3.8 N/A 0.43
C d ( l l l ) 4.6 6.3E-07 1.00
Ba(137) 2.7 7.91 E-06 1.00
Pb(208) 2.7 2.19E-05 0.71

Table 9. Average CRM (FEBS-1) value and standard error for each run.

Certified Value 
o r Range (ppm)

R un 1 (n=8)
Average 

CRM Standard

Run 2 (n=10)
Average 

CRM Standard

R un 3 (n=12)
Average 

CRM Standar
(ppm) Error (ppm) Error (ppm) Error

Li(7) 0.305 ±0.044 0.23 0.00 0.27 0.00 0.25 0.00
Na(23) 2594 ± 161 2121.48 111.35 2380.52 40.13 2495.70 16.10
Mg(24) 23.6 ± 1.3 19.45 0.10 19.45 0.13 19.58 0.15
Ca(43) 383000± 14000 396997 3490 396159 1312 393680 2332
Ca(46) 383000± 14000 394471 1905 396924 1167 396538 4103
Mn(55) 0.686 ±0.016 0.75 0.10 0.79 0.02 0.74 0.05
Sr(88) 2055 ± 79 1986.29 14.73 1920.63 8.37 1933.21 9.04

Ba(137) 5.09 ± 0.23 3.75 0.04 3.76 0.03 3.59 0.07
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Table 10. Indicator Species Analysis. Asterisk denotes significant indicators.

Indicator
Element_______ Location_________Value_____p-value

Li/Ca Little Harbor 8.7 0.2641
Na/Ca Hampton-Seabrook 8.5 0.0956
Mg/Ca Beverly Harbor 8.5 0.1800
Mn/Ca Navesink River 9.8 <0.001*
Sr/Ca Waquoit Bay 9.1 <0.001*
Ba/Ca Menemsha Pond 9.0 <0.001*

Table 11. MMRP elemental signature pairwise comparisons. ** denotes 
significance using Bonferroni correction (p<0.004), NS denotes non­
significant values (p>0.004).

Great little Hampton- Beverly Boston Cotuft 1O*

Lagoon Menemsha Narragansett Nfontk: Ncvesin
Bay Harboi Seabrook Harbor Haibof Bay Bay Pond Pond Bay River River

Great Bay ** ** 4* mm *» mm *w ** «« «* ft*

tittle Harbor ** ** ft* NS ** mm m * *• mm mm **

Hampton-Seabrook *» **• NS NS *4 mm mm *-* n r NS »*
Beverly Harbor ft* ft* NS ** • ft • * ** ft* ** **

Boston Harbor ft* NS NS ** ft* mm »* ft* **

Cotuit Bay ft* ft* 44 ** ** NS mm ** NS «« *4
Waquoit Bay ft* *4 ** * * *m NS mm ** ft* ** ft*

lagoon Pond ft* ft* ** mm mm ** mm NS ft* ** ft*

Menemsha Pond *4 ft* 4* mm mm mm NS ft* ** ft*

Narragansett Bay ftft mm ** mm mm NS mm mm mm mm ft*

Niantic River •4 ** NA mm m* mm •* ** ** ft* ft*

Navesink River ** ** ft* mm mm mm mm ** ** ft* mm

Table 12. QDFA with leave-one-out cross validation. Rows are actual natal 
location of fish, columns are the predicted natal locations using the QDFA 
with leave-one-out cross validation.

Great Little Hampton- Beverly Boston Cotuit Waquoit Lagoon M enemsha Narragansett Niantic Navesin]
Bay Harbor Seabrook Harbor Harbor Bay Bay Pond Pond Bay River River

Great Bay 15 0 0 0 0 0 0 0 0 0 0 0
Little Harbor 0 14 0 0 1 0 0 0 0 0 1 0

Hampton-Seabrook 0 0 10 0 3 0 0 0 0 0 1 0
Beverly Harbor 1 0 1 9 3 0 0 0 1 1 0 0
Boston Harbor 1 2 0 0 15 1 0 0 0 0 I 1

Cotuit Bay 0 0 0 0 2 6 0 1 0 6 5 0
Waquoit Bav Q 0 0 1 0 0 14 1 1 1 0 0
Lagoon Pond 0 0 0 1 G 1 4 11 1 2 0 0

M enemsha Pond 0 0 0 0 0 1 1 0 15 0 0 0
Narragansett Bay 0 0 0 1 0 1 0 0 0 12 1 0

Niantic River 0 0 0 0 1 1 X 0 0 1 13 0
Navesink River 0 0 0 0 0 0 0 0 0 0 0 12
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Figure 11. Sample locations of winter flounder from estuaries in the 
northeast United States. Inset table contains collection information for each 
location. Fish: total number of winter flounder caught, Tows: total number 
of tows, CPUE: catch per unit effort (# fish tow'1).
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Figure 13. Non-metric multidimensional scaling ordination of winter 
flounder otolith microchemical signatures by area. Each point represents 
individual fish and symbols indicate area in which the fish were caught. Axis 
1 explains 60.5% of the variation and axis 2 explains 31.1 % of the variation. 
Joint plot contains elemental ratios that drive the ordination with r2 values 
of: Mn/Ca= 0.64, Ba/Ca=0.59, Sr/Ca= 038.
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Figure 14. Non-metric multidimensional scaling ordination of winter 
flounder otolith microchemical signatures by collection location. Crosshairs 
represent the centroid of each collection location. Axis 1 explains 58.0% of 
the variation and axis 2 explains 32.1% of the variation. Joint plot contains 
elemental ratios that drive the ordination with r2 values of: Mn/Ca= 0.64, 
Ba/Ca= 0.59, Sr/Ca= 038.
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Figure 15. Dendogram from cluster analysis of individual winter flounder otolith microchemical signatures. Five 
primary clusters are identified based on 30% of the variation.



CHAPTER III. CONCLUSIONS

Despite ever increasing fishing regulations, winter flounder populations are not at 

sustainable levels. This could be because the decline in fish populations is not solely from 

fishing pressure but also from changes to essential nursery habitats. The collapse o f  the 

winter flounder fishery has dramatic ecological and economic consequences which is 

why it is important to understand the role o f  nursery habitat quality variations and how 

these variations affect recruitment into the adult population. This study evaluated the 

effectiveness o f using indirect and direct measurements to determine nursery quality o f  

twelve nursery habitats from New Jersey to New Hampshire.

When using indirect indices, growth and condition, it is important to determine 

which indices will most effectively and accurately determine the quality o f  nursery 

habitats. This thesis explored four different indices - length day '1, weight day '1, Fulton’s 

K and relativized weight - and revealed differences in habitat quality results depends on 

each o f these indices. Two o f the indices proved better indicators o f habitat quality 

because they were less biased by size. These indices were Fulton’s K and length day '1 

and they indicated Boston Harbor, MA and Waquoit Bay, MA as the best nurseries and 

the Niantic River, CT as the worst nursery. N ot only were the best and worst winter 

flounder nurseries identified but also the most useful indices for determining which 

nurseries to focus manage efforts on in the future.
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Otolith microchemistry has the potential to be an effective tool to assess the 

connectivity among nursery areas and adult populations o f  winter flounder.

Understanding this connectivity will provide direct measurements to assess nursery 

habitat quality by determining which nurseries are contributing more new recruits to the 

adult population. Otolith microchemistry techniques can only be useful if  nurseries show 

distinct chemical signatures. In this study the otolith chemical signatures o f twelve 

nurseries were measured and differed enough such that fish could be classified with 73% 

accuracy to their natal nursery. This accuracy justifies further development o f  winter 

flounder otolith microchemistry as a tool to assess population connectivity.

Although otolith microchemistry will be a useful management tool, there are 

aspects o f this method that require further investigation. First, temporal variation in the 

elemental signatures needs to be identified. If  variations exist then nursery chemical 

signatures must be reevaluated at the scale o f  these variations. Regardless o f  temporal 

variations, otolith microchemistry can assess population connectivity as long as it is taken 

into consideration. In addition to determining temporal variations, otolith microchemistry 

also can be improved by using alternative methods o f  chemical analysis. For example, 

laser ablation inductively coupled mass spectrometry (LA-ICP-MS) would allow small 

scale finite time sampling o f the chemical signature along otolith growth. This will be 

especially useful when analyzing adult flounder otoliths by eliminating the difficulty o f  

isolating the juvenile core which is necessary for solution based ICP-MS.

In this thesis, indirect and direct measurements to measure nursery habitat quality 

o f winter flounder have been identified. These measurements indicated differences 

among estuaries and coastal habitats in the Northeast. While ideally resource managers
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would use both direct and indirect indices, because o f  the cost and time intensive 

requirements o f direct measurements, such as otolith microchemistry, it is likely that 

managers will have access to indirect measurements only. Therefore future research 

needs to focus on establishing a relationship between the direct and indirect 

measurements identified here. This can be done by first determining the natal 

contribution o f nurseries, and then comparing the most successful nurseries to the indirect 

indices to find which index most successfully classifies the best nursery. Establishing a 

relationship between recruitment and the indirect measurements will allow managers to 

make more accurate decisions with only indirect measurements.
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