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ABSTRACT

COVALENT ATTACHMENT OF A DIIMINE TRICARBONYL Re(l) CATALYST 

ON SOLID STATE NANO-MATERIAL SURFACES FOR SOLAR C 02

REDUCTION 

By 

He He 

University of New Hampshire, May, 2013

Reduction of carbon dioxide to useful chemicals and fuels is of significant 

interest. Transition metal complexes, such as tricarbonyl rhenium(l) compounds, 

are efficient molecular catalysts for photocatalytic carbon dioxide reduction. To 

improve the stability and catalytic activity of homogeneous catalysts, a 

mesoporous silica material, SBA-15, was synthesized and applied as catalyst 

support for immobilizing the tricarbonyl rhenium(l) compound via both covalent 

bonding and physical adsorption. The covalently bonded tricarbonyl rhenium(l) 

catalyst in SBA-15 exhibited excellent stability and good activity during the



photocatalytic reduction process, compared with its homogeneous counterpart 

and the physically absorbed one. Another solid-state nano-material, Kaolin, was 

also employed as a catalyst support for the covalent attachment of tricarbonyl 

rhenium(l) compound. The surface functionalized Kaolin displayed some new 

features in infrared studies due to the unique layered structure of Kaolin 

materials. These new features were further investigated with FTIR spectroscopy 

in the presence of a sacrificial electron donor. The synthesis and characterization 

of different microporous and mesoporous materials are also discussed.



CHAPTER 1

INTRODUCTION

1.1 Transition metal complexes as molecular catalysts for solar CO2 

reduction

With the continued industrialization and on-going growth of human 

population, energy consumption has been one of the most vital topics of the 2 1 st 

century. According to the International Energy Agency, the average energy use 

per person from 1990 to 2008 increased 10% while during that period the world 

population increased 27%. The primary energy sources are still fossil fuels such 

as petroleum, natural gas and coal. As a result of the combustion of fossil fuels, 

the emission of carbon dioxide has continued to rise in the past decades. This 

increasing of atmospheric carbon dioxide results in global warming and climate 

change, which significantly affect human beings’ living environment and the 

economic development. Governments, environmental protection organizations as 

well as scientists are devoted to looking for various methods to decrease the 

carbon dioxide content in the atmosphere. Besides all the efforts to cut down 

CO2 emission, one idea is utilizing CO2 , the abundant carbon source as a 

feedstock to synthesize useful chemicals or fuels such as CO, carboxylic acids, 

esters, methane, methanol and polymers. This is not only a way to reduce the
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atmospheric CO2 concentration, but also a solution for the energy crisis we are 

facing.

Although utilization of CO2 has a very brilliant future, the actual 

transformation procedure is full of challenges and obstacles. 1 For example, at the 

highest oxidation state of carbon cycle, CO2 is extremely stable with a very high 

C=0 bond energy of 799 kJ/mol. It is very hard to break the C=0 double bond or 

active the molecule either electrochemically or thermochemically. As a result, a 

huge amount of energy needs to be put into the reactions in the converting 

systems.2 Table 1.1 shows the energy barriers of reactions involving C 0 2 

conversion.

Table 1.1 CO2 Reduction Potentials2

Reaction E° (V) vs. SCE*

C 0 2 + 2H+ + 2e‘ -  HCO2 H -0.85

C 0 2 + 2H+ + 2e — H20  +CO -0.77

C 0 2 + 4H+ + 4e' 2H2 0+ C -0.44

C 0 2 + 4H+ + 4e' -► H2 0+ HCHO -0.72

C 0 2 + 6 H+ + 6 e' — H2 0+ CH3OH -0.62

C 0 2 + 8 H+ + 8 e 2H2 0+ CH4 -0.48

* E° potentials are reported at pH 7

The history of scientific studies on C 0 2 utilization can be traced back decades, 

but most of the methods are still cost prohibitive and have a long distance to 

practical applications. One way to reduce the cost is using a renewable energy 

source such as solar energy as input energy. Although solar energy has some



drawbacks such as regional limitation, seasonal availability and energy density 

issues, the benefits are still attractive because it is free, clean and will never dry 

up. To utilize solar energy for CO2 reduction, having a catalyst with 

photoresponse to solar light irradiation is a vital factor in the system, because 

photo-excited catalysts can undergo a charge separation process and transfer 

electrons in the reaction system. Accordingly, high oxidation state CO2 could be 

reduced to its lower oxidation states upon accepting of electrons. So the primary 

goal of our research is to develop highly efficient photocatalysts to absorb solar 

energy and lower the energy barriers of the CO2 reduction reactions.

In nature, metal complexes as enzymes or co-enzymes play an important 

role in biological processes. Chlorophylls, which include a family of magnesium 

porphyrin complexes, are extremely important in green plants photosynthesis. 

Coordination of inert molecules with metal complexes is an effective approach to 

activating chemically stable substances in order to produce desired reactions. 

Using transition metal coordination compounds as homogeneous catalysts for 

CO2 reduction has been intensively studied in the last 30 years. 3 ,4 ,5 ,6  CO2 is a 

linear molecule with two equivalent carbon-oxygen double bonds. By exciting the 

molecule to its lowest excited state or by attracting from electron donors, the CO2 

molecule’s configuration will be changed from linear to non-linear, thus we could 

expect CO2 molecule to display multiple coordination modes with transition metal 

complexes7: (I) metal donates electrons to the carbon orbital forms a metallo-acid 

derivative; (II) formation of a Tr-complex via C=0 double bond and (III) an oxygen 

atom in CO2 donates a lone pair of electrons to the empty orbital of metal (Figure

3



1 .1 ). Because C 0 2 molecules are poor electron donors but good electron 

acceptors, type I and II are the most common ways of C 0 2 molecules coordinate 

with metal complexes while the third type is less likely.

/ °
M: cC M**- :0=C=0

(I) (II) (III)

Figure 1.1 Three coordination types for C 02on a metal center

Up to now, reported transition metal complexes that have C 0 2 reduction activity 

include cobalt, nickel, rhenium, rhodium, platinum, iridium and ruthenium 

complexes. Based on their composition, these metal coordination compounds 

are usually grouped as: metal tetraaza-macrocyclic complexes; supramolecular 

complexes; metalloporphyrins and related metallomacrocycles and 

Re(CO)3(bpy)X-based compounds where bpy is 2,2’-bipyridine and X is Cl" . 2

Re’

CO
CO

Figure 1.2 Structure of a fac-Re(CO)3(bpy)CI, where bpy=2,2’-bipyridine
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In 1983, Hawecker and co-workers firstly reported a Re'(L)(CO)3X 

compound (Figure 1.2), where L= 4 ,4 ’-R2-2 ,2 ’-bipyridine (R= H or CH3 ) and X=CI' 

or Br*, as a photochemical CO2  reduction catalyst. 8 Since then tricarbonyl 

rhenium(l) based catalysts have been intensively studied. Among all the C 0 2 

reduction catalysts that have been investigated, Re'(L)(CO)3X exhibits the best 

reaction selectivity to produce CO and a high photochemical quantum yield, 

although the turnover number is relatively low due to the decomposition of the 

complex upon photo irradiation (the best reported value is 48 by Hawecker and 

co-workers8). The UV-Vis spectra indicate Re’(L)(CO)3X complexes can only 

absorb light with wavelengths under 380nm. To improve the absorption of visible 

light in the catalytic reaction, additional photosensitizers, usually polypyridyl 

ruthenium complexes, are added to the reaction system. 2 ,9 The advantage of 

polypyridyl ruthenium complexes as photosensitizer is Ru(bpy)32+ can absorb 

significant amount of visible light in a wide range and form an excited triplet state 

(3MLCT), which has much longer life time than the singlet excited state ( 1MLCT) 

of other metal complexes. 10 The long-lived excited state of Ru complexes 

enables the effective charge separation in the reduction system.

In the last 2 0  years, homogeneous photocatalytic CO2 reduction studies have 

greatly progressed. Ishitani and co-workers developed various homogeneous 

catalysts systems to improve the reactions activity. 4 ,9 ,11 However, the stability 

and quantum efficiency of currently available photocatalysts are still low. 

Moreover, most of the catalysts are very expensive transition metal compounds.
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Improving the catalyst stability under photocatalytic reaction condition is another 

challenge for us.

1.2 Nanoporous materials as molecular catalyst supports

Nano-materials are fascinating because at this small size scale, atoms 

and molecules interact and arrange in certain patterns, exhibiting unique 

properties that bulky materials do not have. Nanoporous material is one 

important subset of nano-materials that render a lot of superior properties due to 

high surface areas, ordered pore structures and uniform pore size. According to 

the definition of International Union of Pure and Applied Chemistry (IUPAC), 

porous materials are usually divided into three classes: (1 ) micropores are pore 

sizes less than 2  nm in diameter; (2 ) mesopores are pore diameters between 2  

and 50 nm and (3) macropores are pore diameters greater than 50 nm. 1 2 ,13  

Functional nanoporous materials usually have pore sizes between 1 to 100 nm 

and typically have porosities greater than 0.4 (porosity is the ratio of pore volume 

to the total volume of material). According to the materials chemical composition 

(organic or inorganic; metal or ceramic), their properties vary as well.

Nanoporous materials have various applications like separation, sensing, 

chromatography as well as catalysis. In this thesis, nanoporous zeolites and 

silica materials have been studied because besides the high surface areas and 

ordered porous structures, they are also non-toxic, chemically inert and thermally

6



stable, which make them the ideal candidates as catalysts or catalyst supports 

for our photocatalytic study.

1.2.1 Microporous zeolites (molecular sieves)

Zeolites are crystalline, microporous aluminosilicates, constituted of 

tetrahedral Si0 4  and AIO4  building blocks. Because of their molecular level 

porous structures they are also known as “molecular sieves”. According to the 

database of the Structural Commission of the International Zeolite Association 

(IZA-SC), 206 unique types of zeolites frameworks have been identified up to 

now and the most common types such as ZSM-5, Na-Y and Silicalite-1 have 

been synthesized and their surface areas and pore sizes are adjustable by 

manipulating synthesis conditions. 14 ,1 5 ,16 Figure 1.3 shows the crystal structures 

of ZSM-5 and Na-Y.

Figure 1.3 Illustrations of the structures of (a) NaY and (b) ZSM-5
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As mentioned before, zeolites are composed of tetrahedral silicon-oxygen and 

tetrahedral aluminum-oxygen units. SiC>4 units are electrically neutral since the Si 

exits in a 4+ oxidation state; however, AIO4  tetrahedra exhibit a negative charge 

because the Al exits in a +3 oxidation state. So in general, zeolite frameworks 

are electronic deficient and additional cations are often needed by the structures 

to compensate the positive charge deficiency to form charge-neutral frameworks. 

When these charge compensating cations are involved in ion-exchange 

processes, zeolites will exhibit some important properties for functional 

applications. For example, when protons as compensating cations adopted by 

the frameworks, zeolites exits as strong solid-acids. This property renders 

zeolites work as catalysts in various reactions.

1.2.2 Mesoporous silica

According to the IUPAC definition, mesoporous materials are materials 

with pore diameters between 2 and 50 nm. 13 Mesoporous silica is one of the 

most popular mesoporous materials, which have been tremendously developed 

in the last 20 years. The first procedure of mesoporous silica synthesis was 

invented in 1970s.18 In 1990, Japanese scientists Yanagisawa et al. synthesized 

the mesoporous silica nanoparticles, which were also produced by Mobil 

Corporation laboratories and named as Mobil Crystalline Materials or M41S.19 

The hexagonally packed rod-shaped silica, MCM-41 is one of the best known 

and intensively studied nanostructured silica in the M41S family. Other types like 

MCM-48 with a cubic pore symmetry and lamellar MCM-50 are also included in 

the M41S family.



In 1998, Zhao et al. in University of California, Santa Barbara invented a 

new family of mesoporous silica named as Santa Barbara Amorphous. 2 0  The 

most famous member in this family, SBA-15, has an ordered 2-dimentional 

hexagonal arranged pore structure that is very similar to the structure of the 

MCM-41. Compare to MCM-41 silicas, SBA-15 silicas usually have thicker silica 

walls and larger pore sizes. Using tri-block copolymers such as Poly (ethylene 

glycol)-poly (propylene glycol)-poly (ethylene glycol) as structure templating 

agents can produce mesoporous silicas SBA-15 with average pore diameters 

between 50-300 A. The pore walls of SBA-15 materials are remarkably thick 

(60-70 A), with micro pores inside them, which are connecting with the 

mesoporous structures20. These features make the SBA-15 materials more 

physically robust and structurally stable than the MCM-41 silicas. In Figure 1.4, 

the SEM images indicate a representative SBA-15 material’s particle size and 

morphology, while the TEM images reveal the pores’ structure. 2 0  The excellent 

properties of mesoporous silica materials such as remarkably large surface areas 

(could be greater than 1 0 0 0 m2/g), ordered mesoporous constructions and highly 

chemical and thermal stability bring about extensive applications of these 

materials, such as sorption, drug delivery, chromatography, separation and 

catalysis21. Moreover, the existence of surface silanol groups in mesoporous 

silicas, which renders them be capable of surface modification, has also attracted 

a lot of interests from researchers. In this thesis, SBA-15 silicas with various 

morphology and pore sizes are synthesized and applied in our photocatalytic 

CO2 reduction studies as a solid state catalyst support.

9



(D  (2)

Figure 1.4 (1) SEM of a rod-shaped SBA-15 with uniform particle size 

around 1 pm; (2) TEM images of four calcined SBA-15 silicas with different 

average pore sizes: (A) 60 A, (B) 89 A, (C) 200 A and (D) 260 A.20

1.3 Advantages of surface immobilization of molecular catalysts

Catalysis is extremely important in a lot of chemical procedures; pursuing 

“ideal catalysts” is always one of the central missions of researchers. Scientists 

have tried different approaches to improving catalysts’ quality in multiple aspects. 

As for homogeneous catalysis, modification of catalyst molecules by “tailoring” 

with functional groups or other molecules is a valid method to improve catalytic 

activity. For example, supramolecular complexes for photocatlytic CO2 reduction

10



are prepared by tailoring another complex (usually a photosensitizer) with a 

catalyst complex by covalent linkage to achieve significant activity 

enhancement. 9  Another effective way is mixing two different catalysts to form a 

bimolecular catalysis system to improve the catalysts’ performance. 2 2 However, 

modification of homogeneous catalysts is usually time consuming, costly, 

requiring strict reaction conditions and suitable reagents. In addition, the stability 

and lifetime of homogeneous catalysts are relatively low especially under harsh 

reaction conditions like high temperature, intense light irradiation or high acidity. 

For those very expensive catalysts, such as rhenium and ruthenium compounds, 

the question of how to improve these materials’ stability and recyclability is a 

critical challenge to researchers.

Surface immobilization of homogeneous catalysts with robust solid-state 

materials is an effective and commonly utilized method to deal with the 

drawbacks of homogeneous catalysts. Surface immobilization is attachment of 

molecular catalysts onto the surfaces of solid-state supporting materials in order 

to achieve enhancement in stability and catalytic properties. The primary surface 

immobilization methods include physical adsorption and covalent binding, each 

of the methods has advantages and disadvantages in specific aspects. In 

general, physical adsorption is the simplest and most economical way of surface 

immobilization, enabling catalysts to settle on solid-state surfaces under mild 

conditions without any chemical changes to either the catalysts or the supporting 

materials. Accordingly, it is possible to retain catalytic activity and other 

properties of the catalysts. However, the drawbacks of this method are also

11



significant. For example, the interaction between catalyst molecules and support 

materials is very weak so catalysts tend to leak from the supports especially 

under harsh conditions like high ionic strength, high or low pH, strong light 

irradiation, etc. Moreover, because there is no specific bonding between 

catalysts and surfaces, it is hard to control catalysts’ loading on surfaces. 

Consequently, another surface immobilization technique, covalent binding, was 

developed to solve the short comings of physical adsorption. This method 

involves covalent bonds forming between catalysts and supports via chemical 

reactions. As a result, catalyst molecules or their derivatives react with the 

surface functional groups such as surface hydroxyl groups to form covalent 

linkages between them, therefore, the catalysts are firmly attached on the 

surfaces through covalent bonds.

Although this technique has its own drawbacks such as the high cost, requiring 

strict reaction conditions and the possible loss of partial catalytic activity due to 

the chemical changes, it is still very attractive because of the superiority of the 

covalent bonding. With the strong covalent linkages, catalysts molecules are 

firmly fixed on the support surfaces, so there is no leakage of catalysts during 

reaction processes. The thermal and chemical stability of catalysts are improved 

as well, and moreover, material’s recyclability becomes feasible.

In recent years, investigating heterogeneous catalysts for photocatalytic 

CO2 reduction has led to a new research direction. By now, many heterogeneous 

catalysts for CO2 reduction have been investigated; they exhibit a lot of 

advantages in reactions that homogeneous catalysts do not have. For examples,

12



Ti02-based nanomaterials are robust and stable. 2 3 Surface-immobilized 

molecular catalysts have the merits of both homogeneous catalysis and 

heterogeneous catalysis. 2 4 Ishitani and co-workers have incorporated the Re(l) 

catalyst in an organic-inorganic hybrid periodic mesoporous organosilica to 

combine the advantages of the organic molecules and the ordered mesoporous 

structures.2 5  This present study investigated surface immobilization of a 

tricarbonyl Re(l) catalyst on mesoporous silica SBA-15 surface via both physical 

adsorption and covalent bonding to pursuing enhanced stability and activity of 

the catalysts. The covalent bonded catalyst exhibited excellent performance in 

the photo C 0 2 reduction reactions due to the improved stability and the derived 

functional group of the rhenium(l) catalyst molecule.

To further investigate how the supporting material’s structures affect 

properties and performance of the catalysts in the photocatalytic C 0 2 reduction 

process, a different structured nanomaterial, Kaolin was also employed in the 

surface immobilization with a tricarbonyl Re(l) complex for heterogeneous C 0 2 

reduction. Kaolin is a 1:1 dioctahedral aluminosilicate with layered crystalline 

structure. The chemical composition of kaolin is Al2Si2 0 s (OH)4 ,2 6 which 

indicates the existence of abundant hydroxyl groups in Kaolin. With one 

tetrahedral siloxane face linked through oxygen atoms to one octahedral gibbsite 

(AI(OH)3 ) sheet, the 1:1 layered structure is formed for Kaolin. The immobilization 

of a tricarbonyl Re(l) catalyst on Kaolin surface followed the same procedure as 

that for immobilization of Re (I) compound on silica SBA-15. The obtained Re(l)
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catalyst immobilized on Kaolin exhibited some interesting new features in the IR 

spectra.
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CHAPTER 2

EXPERIMENTAL 

2.1 Materials

Tetrapropylammonium hydroxide (TPAOH); Aluminum isopropyloxide; 

Tetraethyl orthosilicate (TEOS); ethanol; Poly(ethylene glycol)-poly(propylene 

glycol)-poly(ethylene glycol) (Pluronic P-123); Hexadecyltrimethylammonium 

bromide (CTAB); 2,2’-bipyridine-4,4'-dicarboxylic acid; thionyl chloride (SOCb); 

triethylamine (TEA); Triethanolamine (TEOA); 3-aminopropyltrimethoxysilane 

(APTMS); propylamine; pentacarbonyl chlororhenium(l); Acetonitrile and 

Dimethylformamide (DMF); Tris(2,2'-bipyridyl)dichlororuthenium(ll) hexahydrate 

were all obtained from Sigma-Aldrich and used without further treatment.

2.2 Instrumentation

Scanning Electron Microscope (SEM) images were taken by an Amray 

3300FE field emission SEM with PGT Imix-PC microanalysis system.

X-Ray Diffraction (XRD) patterns were obtained from a D/Max-2TB X-RAY 

DIFFRACTOMETER SYSTEM, Rigaku.
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UV-visible spectra were obtained on a Cary 50 Bio spectrophotometer fitted 

with a Barrelino diffuse reflectance probe using BaS0 4  as a standard and powder 

samples pressed on BaS0 4  pellets.

Infrared spectra were collected on a Nicolet 6700 FTIR spectrometer equipped 

with a Harrick Praying Mantis diffuse reflectance accessory, a three-window 

chamber and a DTGS detector and a Nicolet iS10 FTIR spectrometer equipped 

with attenuated-total-reflectance (ATR) accessory.

Surface area, pore size distribution and total pore volume of the synthesized 

microporous zeolites and mesoporous Si0 2  were measured on a NOVA 2200e 

surface area and pore size analyzer.

Elemental analysis was conducted using a Costech ECS4010 Elemental 

Analyzer interfaced to a DeltaPlus mass spectrometer via a Conflo III and a 

Varian Vista AX induced coupled plasma atomic emission spectrometer.

Gas Chromatography was measured on an Agilent 7820 GC equipped with a 

TCD detector and a 60/80 Carboxen 1000 column.

2.3 Synthesis 

Zeolite ZSM-5

To start the synthesis, 9 ml of 1 mol/L Tetrapropylammonium hydroxide aqueous 

solution, 6.4 mg sodium hydroxide, 204 mg Aluminum isopropyloxide, 5.2 g
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Tetraethyl orthosilicate, 8.9 ml of deionized water and 5.8 ml ethanol were mixed 

as reaction gel, kept stirred for 1 2  hours at room temperature, then the clear 

solution was transferred into a Teflon lined autoclave and heated at 165°C for 

120 hours. The autoclave was completely cooled down and centrifuged to 

recover the products. The products were washed with deionized water 5-6 times 

to get rid of the residual chemicals and dried at room temperature overnight. To 

remove the templates from the crystals, the dried products were calcined at 

600°C for 6  hours with oxygen flow.

Zeolite Silicalite-1

The reaction gel was obtained by mixing 9 ml of 1 mol/L Tetrapropylammonium 

hydroxide aqueous solution, 6.4 mg sodium hydroxide, Tetraethyl orthosilicate, 

8.9 ml of deionized water and 5.8 ml ethanol, stirred at room temperature for 12 

hours then transferred the solution into a Teflon lined autoclave, kept it at 165°C 

for 120 hours. Then the products were recovered by centrifuge after the materials 

were cooled down. This was washed with deionized water 5-6 times and dried at 

room temperature overnight. Then the materials were calcined at 600°C for 6  

hours with oxygen flow to remove the TPAOH templates in the particles.
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SBA-15 Silicas

For batch #1, the synthesis was started by dissolving 1 g of Pluronic P-123 

triblock copolymer in 37.5 ml of 1. 6  M aqueous HCI solution with stirring until all 

the polymers are dissolved, followed by adding 2.1 g of TEOS drop wise with 

vigorous stirring. The resulting gel was stirred at room temperature for 12 hour, 

then transferred to a Teflon-lined autoclave and heated at 180°C for 16 hours. 

After cooling down to room temperature, the product was covered by filtration, 

washed with deionized water several times to get rid of residual chemicals and 

dried at 60°C overnight. To remove the copolymer templates, the dried product 

was calcined in tube furnace with flowing O2 at 550°C for 6  hours.

The other batches of SBA-15 were produced by the same procedure as that for 

batch # 1 , but the composition of reaction gels and hydrothermal treatment 

temperature and time were varied (see table3.1).

Re-L-Si02

First, 52 mg of 2,2'-bipyridine-4,4'-dicarboxylic acid was refluxed under N2 in 5 ml 

of SOCb for 24 h and dried under vacuum to remove excess SOCI2 and any 

generated amounts of HCI or S 02. The resulting product, 4,4'- 

bis(chlorocarbonyl)-2,2'-bipyridine, was mixed with 0.12 ml of TEA and 0.074 ml 

of APTMS in 30 ml of chloroform and refluxed under N2 for 1 h. A solution of the 

synthesized 4,4'-bis(3 trimethoxysilylpropyl)amido-2,2'-bipyridine in chloroform 

was mixed with 100 mg of SBA-15 Si0 2 . The mixture was stirred for 2 days at
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room temperature before the functionalized Si0 2  was filtered and washed with 

chloroform, methanol, and diethyl ether, and dried overnight at 40 °C to form 

Si02-L. In order to synthesize Si0 2 -L-Re, 100 mg of S i02-L and 50 mg of 

pentacarbonyl chlororhenium(l) were dispensed in 40 ml of toluene and refluxed 

overnight. The final product was filtered, washed with toluene and 

dichloromethane, and dried overnight at 40 °C to yield a yellow powder.

Re + Si02

2 0  mg of the mesoporous Si02 was dispersed into a 40-ml solution of toluene 

containing 17 mg of Re-bpy and refluxed overnight. The product was filtered, 

washed with toluene and diethyl ether, and dried overnight at 40 °C to yield a 

slightly yellow powder, “Si0 2  + Re”.

Re-L-Kaolin

52 mg of 2,2'-bipyridine-4,4'-dicarboxylic acid was refluxed under N2  in 5 ml of 

SOCI2 for 24 h and dried under vacuum to remove excess SOCI2 and any 

generated amounts of HCI or SO2 . The resulting product, 4,4'- 

bis(chlorocarbonyl)-2,2'-bipyridine, was mixed with 0.12 ml of TEA and 0.074 ml 

of APTMS in 30 ml of chloroform and refluxed under N2 for 1 h. A solution of the 

synthesized 4,4'-bis(3 trimethoxysilylpropyl)amido-2,2'-bipyridine in chloroform 

was mixed with 100 mg of Kaolin. The mixture was stirred for 2 days at room
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temperature before the functionalized Kaolin was filtered and washed with 

chloroform, methanol, and diethyl ether, and dried overnight at 40 °C to form 

Kaolin-L. In order to synthesize Re-L-Kaolin, 100 mg of Kaolin-L and 50 mg of 

pentacarbonyl chlororhenium(l) were dispensed in 40 ml of toluene and refluxed 

overnight. The final product was filtered, washed with toluene and 

dichloromethane, and dried overnight at 40 °C to yield a yellow powder, Re-L- 

Kaolin.

2.4 Photocatalytic CO2 reduction test 

Surface functionalized SBA-15 Silicas

When comparing Si0 2 -L-Re with SiC>2 + Re in photocatalysis, 10 mg of surface 

functionalized Si0 2  were dispersed in a Pyrex test tube containing a 5-ml mixture 

of acetonitrile and TEA (4:1 acetonitrile-to-TEA volume ratio). Because of the low 

solubility of Re-L in acetonitrile, dimethylformamide was used as the solvent for 

comparison between Si0 2 -L-Re and Re-L, in whichIO mg of Si0 2 -L-Re or 3.2 mg 

Re-L were dispersed in a Pyrex test tube containing a 4-ml mixture of 

dimethylformamide and TEA (3:1 dimethylformamide-to-TEA volume ratio). The 

solution was bubbled with CO2 (99.999%, Airgas) for 2 0  min prior to 

photocatalytic testing. An ozone-free Xe lamp (Newport) equipped with an AM

1 .5 filter was used to simulate sunlight. Solar C 0 2 reduction was conducted at 

room temperature with the reaction solution being sealed and constantly stirred. 

Light intensity on the reaction suspension was measured to be 220 mW/cm2. The

20



head space above the reaction suspension was sampled with a gas-tight syringe 

at different time intervals for product analysis using an Agilent 7820 GC equipped 

with a TCD detector and a 60/80 Carboxen 1000 column.

Surface functionalized Kaolin and Aerosil 200 Silica

To investigate the photocatalytic activity of Re-L-Kaolin and Aerosil 200 Silica 

under visible light irradiation, 1 0 mg of the surface functionalized catalysts were 

dispersed in a Pyrex test tube containing a 4-ml mixture of dimethylformamide 

and TEA (3:1 dimethylformamaide-to-TEA volume ratio) and 5mg of Ru(bpy)32+. 

The solution was bubbled with C 0 2 (99.999%, Airgas) for 20 min prior to 

photocatalytic testing. A visible light with adjustable scales (Fiber- Lite) was used 

as light source to mimic sunlight. Solar C 0 2  reductions were conducted at room 

temperature with the reaction solution being sealed and constantly stirred under 

irradiation of different light intensities, which were measured to be 50 mW/cm2,

100 mW/cm2 and 150 mW/cm2, respectively. The head space above the reaction 

suspension was sampled with a gas-tight syringe at different time intervals for 

product analysis using an Agilent 7820 GC equipped with a TCD detector and a 

60/80 Carboxen 1000 column.
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CHAPTER 3

SYNTHESIS AND CHARACTERIZATION OF MICRO-POROUS ZEOLITES 

AND MESO-POROUS SILICAS

3.1 Synthesis of micro-porous zeolites and material characterization

As discussed in the previous section, nano zeolite materials with micro- 

porous structures have various applications due to the unique properties. 2 7 ,2 8 ,2 9 ,3 0  

Synthesis of zeolites usually involves hydrolysis of starting materials, adjusting 

pH of reaction gels and a hydrothermal step for nucleation and zeolite crystals 

growth.3 1 ,3 2 ,3 3 ,3 4  By adjusting composition of starting materials and hydrothermal 

conditions, different types of zeolites with varying morphologies and pore sizes 

could be obtained. 14 ,1 5 ,16

3.1.1 Synthesis of micro-porous zeolite ZSM-5

ZSM-5 (Zeolite Socony Mobil-5), is an aluminosilicate zeolite mineral 

belonging to the pentasil family of zeolites, with a MFI (mordenite framework 

inverted) type structure (Figure 3.1 )17. The chemical formula of ZSM-5 zeolite is 

NanAlnSig6-n0i92-16H20  (0<n<27). Several ZSM-5 synthesis methods have been 

reported by different researchers. 1 6 -3 5 -3 6 -3 7  Larsen and co-workers described a 

crystalline ZSM-5 synthesis procedure using template methods under
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hydrothermal conditions. 16 By modifying the ratio of starting materials in the 

reaction gel, nano crystalline ZSM-5 with uniform structure and size, as small as 

15nm could be obtained. 16 The molar ratio of Si/AI is 20 in this material, which is 

much lower than that in most of the other reported ZSM-5 zeolites, the high 

proportion of Al in the structure renders the hydrophilic property of the material 

and according ion exchange and catalysis capabilities.

5-1

Figure 3.1 MFI zeolite structure and a 5-1 subunit17

In general, the synthesis in this thesis followed Larsen’s procedure, 16 ,38

but the specific reaction conditions like temperature and reaction time were

adjusted to adapt to our own experimental facilities. To start the synthesis,

measured amount of starting chemicals were mixed as the reaction gel, in the

molar ratio: 9TPAOH: 0.16NaOH: Al: 25Si: 495H2 0: 100EtOH, where TPAOH=

Tetrapropylammonium hydroxide; Al= Aluminum isopropyloxide; Si= Tetraethyl

orthosilicate. The mixture was stirred at room temperature overnight to ensure
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aluminum isopropyloxide and tetraethyl orthosilicate completely hydrolyzed to 

isopropyl alcohol and ethanol, respectively. Next, the clear solution was 

transferred into a Teflon lined autoclave and kept at 165 °C for 120 hours for 

hydrothermal treatment. The synthesized ZSM-5 crystals were recovered by 

centrifugation and washed with deionized water at least 3 times to get rid of 

residual chemicals in the crystals, then dried at room temperature overnight and 

calcined at 600 °C for 6  hours with oxygen flow to remove the TPAOH template.

3.1.2 Synthesis of micro-porous zeolite Silicalite-1

Silicalite-1 is the pure silica analogous of ZSM-5 with MFI topology, there 

is no Al in the 5-1 pentagon building subunits which are connected to build the 

channels and interconnections of the 3D structure of zeolite crystals. 3 9  As shown 

in Figure 3.1, the 5-1 subunits represent the MO4  tetrahedral unites of zeolites, 

where M is Si or Al. Compare to ZSM-5, Silicalite-1 zeolite has a higher 

hydrophobicity and thermal stability because of no presence of Al in its structure, 

which also accounts for the electrical neutral property of Silicalite-1.

In this thesis, the synthesis of silicalite-1 also followed Larsen’s procedure, 3 8  

which is very similar to the method for synthesis of the ZSM-5. The only 

difference between these two methods is: there is no aluminum source in the 

synthesis gel of Silicalite-1. The starting materials for synthesis of Silicalite-1 are: 

9TPAOH: 0.16NaOH: 25Si: 495H20:100EtOH (molar ratio). Then the mixture 

undergoes a similar procedure as that for synthesis of the ZSM-5 to obtain the 

Silicalite-1 material.
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2.1.3 Characterization of nano-crystalline zeolites

To investigate the synthesized materials’ morphologies, particle sizes, 

crystal structures and surface areas, the calcined ZSM-5 and Silicalite-1 zeolite 

crystals were characterized by using Scanning Electron Microscopy, X-ray 

Diffraction and Nitrogen Adsorption Isotherms.

According to the SEM images (Figure 3.2), the average particle size of the 

synthesized ZSM-5 is around 200nm and most of the particles have a cubic 

morphology, while the particles of the Silicalite-1 have an average size about 

120nm, which are mostly spherical. The obtained zeolite sizes are much greater 

than the reported values by Larsen, which are 60nm and 20nm for ZSM-5 and 

Silicalite-1, respectively. It is not clear which synthesis factors caused this 

difference, one suggestion is the stirring speed of the crystals assembling step in 

my synthesis is slower than that used in the reported work. As a result, the 

template micelles are not well dispersed in the solution, so the silica species 

aggregated around the template micelles and formed much larger crystals than 

the well dispersed crystals. Higher room temperature in the starting materials 

hydrolysis step may also account for the formation of larger zeolite crystals, 

because higher temperature will accelerate the hydrolysis speed of aluminum 

isopropyloxide and tetraethyl orthosilicat. This means more aluminas and silicas 

are present in a shorter time; accordingly, larger clusters will be formed in the 

solution.
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Figure 3.2 SEM images of the calcined zeolites samples: (a) ZSM-5 (200nm) 

and (b) Silicalite-1 (120nm)

X-ray diffraction patterns of the synthesized zeolite materials were recorded over 

a 20  range from ETto 40°with a scanning speed of 2  per minute and a steep size 

of 0.05’, the X-ray source was operated at 35KV and 30mA. As shown in Figure 

3.3, the ZSM-5 has characteristic peaks at 8.91, 23.2and 23.5, while the Silicalite- 

1 has peaks at 8.0’, 8.5, 23.2 and 23.5*. Both the XRD patterns are consistent with 

the structures of ZSM-5 and Silicatlite-1, respectively.
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Figure 3.3 XRD patterns of the synthesized zeolite samples: (a) ZSM-5 and 

(b) Silicalite-1

To measure the total surface areas of the synthesized zeolites, the calcined 

products were measured on a Nova 2200e Surface Area & Pore Size Analyzer. 

By using BET method, surface areas were obtained from the nitrogen 

adsorption/desorption isotherms, which were 283 and 285m2/g for the ZSM-5

27



and Silicatlite-1 zeolites, respectively. The total surface areas are also smaller 

than the reported values of Larsen because of larger particle sizes.

3.2 Synthesis of meso-porous silica SBA-15 and material characterization

3,2.1 Synthesis of meso-porous silica SBA-15

As discussed in chapter 1, mesoporous silica SBA-15 is an excellent 

catalyst support due to the thermal and chemical stability. 2 5 ’4 0 ’41 Ordered porous 

structure and pore size that could reach as large as 30nm are ideal for 

immobilization of bulky metal complexes such as rhenium bipyridyl complexes in 

the pore surfaces. Since Stucky and co-workers invented the synthesis method 

of this material, 2 0  numerous synthesis works have been implemented by various 

researchers,4 2 ,4 3 ,4 4 ,4 5  although some specific reaction conditions or components 

of starting materials may vary, the synthesis mechanisms are the same. Scheme

3.1 illustrates the basic strategies of forming a silica material with ordered 

hexagonal porous structure.4 6
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Scheme 3.1 Mechanism for the formation of SBA-1546

The synthesis undergoes a two-step hydro-thermal pathway. The first step 

involves self-association of structure directing templates and assembling of silica 

species around the template micelles at a lower temperature, whereas the 

second step is the mesoporous structure expansion and silica wall consolidation 

process usually under a static condition with a higher temperature. In Stucky’s 

procedure, 2 0 the template is a triblock copolymer Poly(ethylene glycol)- 

poly(propylene glycol)-poly(ethylene glycol) (PEO-PPO-PEO). EO to PO ratio in 

the polymer affects the morphology of resulting products. Usually, templates with 

higher EO: PO ratios produce cubic mesoporous silicas, while polymers with 

lower EO: PO ratios and low concentrations (0.5-1 weight %) favor a p6mm 

hexagonal porous structure. Adding a co-template in the reaction gel will also 

change the product’s morphology.

29



In this thesis, the synthesis of the hexagonal mesoporous silica SBA-15 also 

followed the reported works of Stucky. 2 0 First, a template Poly(ethylene glycol)- 

poly(propylene glycol)-poly(ethylene glycol) (feed ratio EO: PO: EO is 20:70:20, 

average molecular weight is around 5800 ) and a silicon source tetraethyl 

orthosilicate were mixed in an acidic aqueous solution and kept stirred at a lower 

temperature (25-40°C) for mesoporous structure formation. Next, the cloudy 

mixture was transferred to a Teflon lined autoclave and aged at a higher 

temperature (80-230°C) for silica wall condensation. Resulting products were 

recovered by filtration and washed with deionized water, kept at 60°C overnight 

to get completely dried and calcined with O2  flow to remove the templates and 

form the porous structure.

To pursue SBA-15 silicas with desired morphology and ideal pore size as a 

catalyst support for our photocatalytic CO2 reduction study, several batches of 

SBA-15 were produced by manipulating the synthesis conditions and adjusting 

starting materials’ composition, as described in Table 3.1.
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Table 3.1 SBA>15 synthesis conditions

Batch
#

Starting Materials Stepl
(self

assembling)

Step2
(hydrothermal

treatment)

1
P-123 HCI(1.4M) TEOS 
1g 35ml 2.1g

Room temp. 
Stirring 1h

180°C, 5h 
230°C,2h

2
P-123 HCI(1.4M) TEOS 

1g 35ml 2.1g
Room temp. 
Stirring 1h

180°C
16h

3 P-123 HCI(1.4M) TEOS 
1g 35ml 2.1g

Room temp. 
Stirring 1h

100°C
24h

4 P-123 HCI(1.4M) TEOS 
1g 35ml 1.5g

Room temp. 
Stirring 12h

80°C, 10h 
120°C,12h

5

6

P-123 HCI(0.8M) TEOS 
1g 75ml 2.1g

P-123 HCI(0.8M) TEOS 
1g 75ml 2.1g

Room temp. 
Stirring 24h 
Room temp. 
Stirring 24h

100°C
48h

150°C
48h

7 P-123 CTAB HCI(1.3M) C2H5OH TEOS 
1g 0.1g 23ml 5ml 2.5g

Room temp. 
Stirring 1 h

180°C, 4h 
200°C,4h

8
P-123 CTAB HCI(1.3M) C2H5OH TEOS 

1g 0.1g 23ml 5ml 2.5g
Room temp. 
Stirring 12 h

80°C, 4h 
120°C,4h

3.2.2 Characterization of meso-porous silica SBA-15

To obtain the physical properties of the synthesized silica materials, they 

were characterized by using Scanning Electron Microscopy and Nitrogen 

Adsorption/desorption Isotherms. Figure 3.4 displays the SEM images of the 

SBA-15 samples and clearly indicates the particle shapes and sizes of different 

batches.
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Figure 3.4 SEM images of synthesized SBA-15(batch #1-8), scale bar in #3, 

4, 7, 8 represent 10pm, scale bar in #1, 2, 5, 6 represent 1pm
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Figure 3.5 illustrates the Nitrogen Adsorption/Desorption Isotherm of one of the 

synthesized SBA-15 silicas. By using BET method, the sample’s total surface 

area is derived from the linear range (P/P0from 0.05 to 0.30) of the adsorption 

isotherm, the total pore volume is calculated from the single point adsorption 

where P/Po= 0.99 and the pore size distribution and average pore radius are 

obtained from the desorption isotherm using BJH method.
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Figure 3.5 Nitrogen Adsorption/Desorption Isotherm of SBA-15 # 7, insert 

shows the pore size distribution
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Table 3.2 BET surface areas, average pore radius and total pore volumes of 

the synthesized silicas

Batch
#

BET surface area 
(m2/g)

Average pore 
radius(A)

Total pore volume 
(cm3/g)

1 226.3 44 0.55

2 326.1 48 0.94

3 327.2 27 0.44

4 846.9 34 1 . 2

5 479.0 27 0.99

6 357.1 49 0.99

7 510.3 47 1.5

8 864.6 24 1 . 2

According to the synthesis conditions shown in Table 3.1 and the coresponding 

products’ properties shown in Table 3.2, SBA-15 silica particles’ shapes and pore 

sizes are controllable in the synthesis; adjusting the composition of starting 

materials and reaction conditions will produce products with different physical 

properties. In general, higher temperature and longer reaction time for the 

hydrothermal treatment process result in larger pore sizes and thinner silica walls, 

because of protonation of the polymers or temperature-dependent hydrophilicity 

of the PEO-block. Lower molar ratio of silica source to template will generate 

silicas with larger pore sizes as well. Lower reaction temperatures decrease the 

particle size due to a slower aggregation speed of individual crystals, however 

longer reaction time is required to fulfill this procedure. Presence of a co-template, 

hexadecyltrimethylammonium bromide, in batch #7 and 8  changed the products’ 

particle shape from rod-shaped to spherical.



3.3 Conclusions

Micro-porous zeolites ZSM-5 and silicalite-1 were synthesized in aqueous 

solutions by using a hydrothermal method. The obtained ZSM-5 has a relative 

high Al/Si molar ratio in the MFI structure, which renders it good hydrophilicity. 

Particle size of the synthesized ZSM-5 and Silicalite-1 are 200nm and 120nm; 

surface area of the synthesized ZSM-5 and Silicalite-1 are 283m2/g and 285m2/g, 

respectively. Modification of the synthesis condition is necessary to acquiring 

zeolites with smaller particle sizes. Two-D hexagonal packed meso-porous silica, 

SBA-15, was also synthesized through a hydrothermal treatment, using triblock 

co-polymer, P123, as the structure directing templates. Meso-porous silicas with 

pore radii from 2.4nm to 4.9nm were obtained by adjusting the synthesis 

conditions, such as concentration and molar ratio of the starting materials, 

reaction time and temperature of the hydrothermal treatment. Particle size and 

morphology of the product are also controllable by manipulating these synthesis 

conditions.
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CHAPTER 4

SURFACE IMMOBILIZATION OF Re(BPY)(CO)3CI ON MESO-POROUS 

SILICA FOR SOLAR C 02 REDUCTION

4.1 Introduction

As discussed in chapter 1, molecular and supramolecular complexes of 

Ru, Re, Co, and Ni are homogeneous photocatalysts capable of mediating 

efficient multi-electron C 0 2 reduction. 2 ,1 1 ,4 7 ,4 8  However, the poor stability of most 

homogeneous photocatalysts under photochemical conditions limits applications 

and development of these catalysts. T i02-based heterogeneous photocatalysts 

are robust under photocatalytic reaction conditions2 3 ,4 9 ,50,51 but semiconductor 

surfaces are usually inefficient in catalyzing multi-electron C 0 2 reduction due to 

the prevailing charge recombination in semiconductor photocatalysts. Surface 

immobilization is a valid way to deal with these drawbacks. Surface-immobilized 

molecular catalysts have the potential to combine the advantages of 

homogeneous and heterogeneous catalysis. 2 4 ,5 2 Various approaches have been 

developed to immobilizing molecular catalysts on solid-state surfaces for 

photocatalysis, including photo C 0 2 reduction catalysis.5 3 ,5 4 ,5 5 ,5 6

In this present study, surface immobilized tricarbonyl Re(l)-bpy, where bpy=2,2'- 

bipyridine, 8  on mesoporous silicas, have been achieved via both covalent
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attachment and physical adsorption. Tricarbonyl Re(l) complexes have been 

covalently attached to titanium dioxide surface5 7 or supported in a 

polyoxometalate5 8  for photochemical studies. Rosenfeld and co-workers 

prepared a tricarbonyl Re(l) compound covalently attached to silica surface and 

further probed interfacial dynamics and structure of the surface immobilized Re(l) 

catalyst with ultrafast two-dimensional infrared vibrational echo spectroscopy. 59  

Recently, Wang et al. incorporated a tricarbonyl Re(l) complex in a highly stable 

and light-absorbing metal-organic framework, which showed significantly higher 

photocatalytic activity than the corresponding homogeneous complex. 6 0  Takeda 

et al. prepared a tricarbonyl Re(l) complex covalently anchored in a periodic 

mesoporous organosilica. 2 5 Enhanced C0 2 -to-CO conversion was achieved on 

the anchored Re(l) catalyst upon UV light activation of the organosilica and 

subsequent resonance energy transfer. It was further demonstrated that the 

mesoporous structure of the organosilica protected the Re(l) complex against 

photochemical decomposition.2 5  Microporous zeolites and mesoporous silicas 

have been employed as host materials for single-site titanium oxides2 7 ,2 8 ,6 1 ,6 2  

and oxo-bridged heteronuclear redox sites6 3 ,6 4  as all-inorganic C 02-reduction 

photocatalysts. Park and co-workers studied tricarbonyl Re(l) catalysts 

encapsulated in NaY and AI-MCM-4 1 6 5 ,6 6 ,4 0  Under light (A > 350 nm) irradiation, 

C 0 2 was converted into CO and CO32" species on the encapsulated Re(l) 

catalysts. The researchers assumed that zeolite frameworks acted as electron 

donors for C 0 2 reduction.
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Recently, Dubois et al. tried physical adsorption of Re-bpy in a hierarchical 

mesoporous ZSM-5 and investigated photochemical properties of this material. 6 7  

A significant amount of Re-bpy was retained in the zeolite mesopores through 

simple liquid-phase adsorption. The molecular Re(l) catalyst was then tested in 

photochemical CO2 reduction at the gas-surface interface in the presence of co

adsorbed Ru(bpy)32+ photosensitizer and an amine-based electron donor. Upon 

visible-light irradiation, the formation of important reaction intermediates, 

including Re-carboxylato and Re-formato species, was demonstrated by using in 

situ Fourier transform infrared spectroscopy (FTIR).

This present study compared covalent attachment with physical 

adsorption as strategies for immobilization of Re-bpy on mesoporous silica. 

Spectroscopic techniques, including FTIR and UV-visible spectroscopies, are 

employed to characterize the surface immobilized Re(l) photocatalysts. In 

comparison with physical adsorption, covalent attachment should be more robust 

and could retain more Re(l) centers in the mesoporous materials. It is also 

expected that the surface-immobilized Re(l) photocatalyst will demonstrate 

improved photocatalytic activity than its homogeneous counterpart.

4.2 Surface immobilization of the Re(l) catalyst on meso-porous SBA-15

4.2.1 Covalent attachment of Re(l) catalyst on SBA-15 silica

The covalent attachment was achieved by modifying the synthesis 

procedure reported by Chen et al.68 ,41 as described in Scheme 4.1. First, the 2,2'-
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bipyridine-4,4'-dicarboxylic acid was refluxed in SOCI2 under N2 atmosphere for 

24 h and dried under vacuum to remove excess SOCI2 and any generated 

amounts of HCI or SO2 . The resulting product, 4,4'-bis(chlorocarbonyl)-2,2'- 

bipyridine, was mixed with TEA and APTMS in chloroform and refluxed under N2 

for 1 h. A solution of the synthesized 4,4'-bis(3-trimethoxysilylpropyl)amido-2,2'- 

bipyridine in chloroform was mixed with the SBA-15 Si02. The mixture was 

allowed to stir for 2  days at room temperature before the functionalized Si0 2 was 

filtered and washed with chloroform, methanol, and diethyl ether, and dried 

overnight at 40 °C to form SiCVL. In order to synthesize S i0 2-L-Re, the obtained 

Si02-L and pentacarbonyl chlororhenium(l) were dispensed in toluene and 

refluxed overnight. The final product was filtered, washed with toluene and 

dichloromethane, and dried overnight at 40 °C to yield a yellow powder.

Scheme 4.1 Covalent attachment of a molecular Re(l) photocatalyst on 

mesoporous silica. APTMS: 3-aminopropyltrimethyloxysilane

Re(CO)5ClAPTMS
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4.2.2 Physical adsorption of Re(l) catalyst on SBA-15 silica

In this approach, mesoporous Si0 2  was dispersed into a solution of 

toluene containing Re-bpy, which was synthesized following the method 

described by Smieja and Kubiak. 7 8 After refluxing overnight, the product was 

filtered, washed with toluene and diethyl ether, and dried overnight at 40 °C to 

yield a slightly yellow powder (“Si0 2  + Re”, Scheme 4.2a).

(a)

Scheme 4.2 Structures of (a) physically adsorbed Re-bpy (“Si02 + Re”) and

(b) Re-L

4.3 Characterization of the surface immobilized Re(l) catalyst on Si02

The as synthesized Si0 2 -L-Re and Si0 2 + Re were characterized with 

FTIR and UV-visible spectroscopies and the amounts of Re(l) centers in 

Si0 2  + Re and Si0 2 -L-Re were determined by elemental analysis.

NH HN

■r;77'77/77'̂ 77

Si02+Rc Re-L
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4.3.1 UV-Vis Spectra of the functionalized Si02
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Figure 4.1 UV-visible spectra of (a) S i02 + Re and (b) S i02-L-Re in powder 

form. Photographs of the two samples are also shown (inset)

According to the UV-Vis spectra of the functionalized Si0 2 samples as displayed 

in Figure 4.1, S i0 2 + Re and Si02 -L-Re display different colors. The synthesized 

Si02 is a white powder, which does not absorb visible light in the range between 

400 nm and 800 nm. The Si02 sample containing physically adsorbed Re-bpy 

(“Si02 + Re”) has a light yellow color, corresponding to a broad band at 365 nm 

in its UV-visible spectrum (Figure 4.1a). The band at 365 nm is attributed to the 

metal-to-ligand charge transfer (MLCT) transition of Re-bpy. The covalently
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attached Re(l) complex, SiC>2-L-Re, has an intense yellow color associated with 

an MLCT band at 400 nm (Figure 4.1b).

4.3.2 FTIR of the synthesized materials
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Figure 4.2 FTIR spectra of (a) S i02, (b) S i02+Re, (c) S i02-L, and (d) S i02-L- 

Re. The spectra were collected at room temperature under argon 

atmosphere

Figure 4.2 shows the FTIR spectra of the mesoporous Si0 2  with and without 

surface functionalization. An intense absorption at 3745 cm" 1 featuring surface 

silanol (SiOH) groups is present in the spectrum of S i0 2 (Figure 4.2a). The 

silanol peak is also seen in the FTIR spectrum of S i0 2 + Re (Figure 4.2b), which
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does not contain covalent bonds between the S1O2 surface and the physically

adsorbed Re-bpy (Scheme 4.2a). However, the peak at 3745 cm- 1  is not present

in the spectrum of Si0 2 -L (Figure 4.2c) or Si0 2 -L-Re (Figure 4.2d), in which the

SiC>2 surface is functionalized with the silane coupling agent (see Scheme 4.1).

The spectra of Si0 2 -L and Si0 2-L-Re also contain other infrared features,

particularly the three peaks associated with the amide linkages at 1376 cm- 1  (C-

N stretch), 1548 cm" 1 (N-H bend) and 1657 cm" 1 (C-0 stretch) as well as the

methylene C-H stretching bands around 2800-3000 cm' 1 (not labeled, Figure

4.2c and d). Comparison of the infrared spectra shown in Figure 4.2 clearly

demonstrates that covalent attachment of ligand L was achieved by reacting of

the silane coupling agent with surface silanol groups. It should be pointed out

that hydration of silica surfaces could also lead to the disappearance of the peak

at 3745 cm" 1 characteristic of isolated silanol groups. In our study, surface

immobilization of ligand L was carried out in chloroform under ambient conditions. 
♦

Neither of the spectra of the surface functionalized silica (Figure 4.2c and d) 

contains an intense absorption at 1630 cm' 1 characteristic of surface adsorbed 

water molecules, suggesting minimal hydration of the silica surface. Therefore, 

the absence of the peak at 3745 cm' 1 in the spectra shown in Figure 4.2c and d 

is mostly due to the depletion of silanol groups upon surface functionalization 

according to Scheme 4.1. This is further supported by the absence of 

absorptions in the range of 2815-2850 cm" 1 (C-H stretch of methoxy groups) in 

the spectra of the functionalized silica.
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Two broad absorptions at 1903 cm- 1  and 2026 cm- 1  characteristic of surface Re

carbonyl groups2 5 ,6 0  and are present in the spectrum of Si0 2 -L-Re (Figure 4,2d), 

indicating the tricarbonyl Re(l) catalyst was successfully anchored on Si0 2  

through covalent linkages according to the strategy described in Scheme 4.1. 

The two Re-carbonyl bands are also seen in the spectrum of Si0 2  + Re (Figure 

4.2b), suggesting a certain amount of Re-bpy remained adsorbed in the 

mesoporous Si0 2  even in the absence of covalent linkages between the Re(l) 

complex and the Si02  surface. The same spectrum contains several less intense 

absorptions between 1400 cm- 1  and 1600 cm" 1 associated with the bpy ligand of 

Re-bpy (Figure 4.2b, not labeled).
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4.4 Photocatalytic C 02 reduction using the surface immobilized Re(l) 

catalyst
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Figure 4.3 Photocatalytic activities of (a) Si02+Re and (b) S i02-L-Re in solar 

C 02 reduction. The amounts of CO produced were normalized to 10 mg of 

functionalized S i02 samples.

To compare the photocatlytic activity of the surface functionalized SBA-15 silicas 

by different approaches, both Si02 + Re and Si02-L-Re were tested in solar C 02 

reduction under same reaction condition. The photocatalytic activities of these 

two samples were illustrated by showing the amount of CO produced during the 

test as a function of reaction time, as shown in Figure 4.3. According to the
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amount of CO generated by the reactions, the covalently attached Si02-L-Re 

demonstrated significantly higher activity than Si02 + Re in solar CO2  reduction. 

The amount of CO produced using Si02-L-Re was ~10 times greater than that 

using S1O2 + Re under the same experimental conditions for 4 h. Obviously, the 

better photocatalytic performance of Si02-L-Re relative to Si02 + Re partly 

resulted from the higher Re(l) content in the former (5.1 pmol/ 10mg powder) 

than the latter (1.5 pmol/ 10mg powder). Another possible reason should be the 

greater photoresponse of Si02-L-Re in the visible region Since photochemical 

CO2 reduction on tricarbonyl Re(l) catalysts is initiated by the MLCT transitions, 

Si02-L-Re could harvest more photo (Figure 4.1). As mentioned earlier, the 

MLCT transitions for the Re(l) centers in Si02-L-Re and Si02 + Re were found to 

be at 400 nm and 365 nm, respectively. Since photochemical CO2 reduction on 

tricarbobyl Re(l) catalysts is initiated by the MLCT transition, SiCVL-Re can 

harvest more photonic energy than SiC>2 + Re in the visible-light region.
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Figure 4.4 FTIR spectra of (a) S i02 + Re and (b) S i02-L-Re after solar C 02 

reduction in a solution of acetonitrile containing triethylamine for 4 hour

The excellent stability of Si02-L-Re under photochemical conditions also 

contributed to its higher activity than Si02 + Re. Figure 4.4 shows the FTIR 

spectra of both samples after solar C 02 reduction in acetonitrile for 4 h followed 

by washing with acetonitrile and drying at room temperature. Two intense 

absorptions at 1901 cm-1 and 2022 cm"1 characteristic of Re-carbonyl, together 

with the absorption peaks associated with the amide linkages (1376 cm'1,

1548 cm"1 and 1657 cm"1, not labeled), are clearly seen in the spectrum of used 

Si02-L-Re (Figure 4.4b). The presence of these absorption features indicates a 

significant amount of tricarbonyl Re(l) centers remained covalently attached to 

Si02 after the photocatalytic reaction. This is consistent with the study by Takeda 

et al.11 suggesting that mesoporous structures could protect the Re(l) complex
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against photochemical decomposition. In contrast, only negligible intensity Re

carbonyl absorption features are seen in the spectrum of used SiC>2 + Re, shown 

in Figure 4.4a. It can be concluded that the majority of Re-bpy in Si02 + Re 

decomposed during photocatalysis and/or were washed off the Si02 surface. An 

absorption peak at 2238 cm-1 as well as C-H stretching bands near 3000 cm-1 

(not labeled) associated with surface adsorbed CO2 and hydrocarbons, 

respectively, are also present in the spectra of both functionalized Si0 2  after 

photocatalytic reactions.

The C02-reduction activity of Si02-L-Re was also compared with the 

derivatized homogeneous complex, Re-L, in order to probe the effect of surface 

immobilization. Upon light irradiation for 4 h, 2.2pmol of CO was produced by a 

suspension containing 10 mg of Si02-L-Re in comparison to 1.7pmol of CO 

produced by a dimethylformamide solution containing 5.1 pmol of Re-L. Since 

there are ~5.1pmol of Re(l) centers in 10 mg of Si02-L-Re, it is concluded that 

surface immobilization on mesoporous Si0 2  enhanced (or at least did not 

negatively influence) the activity of the homogeneous Re(l) complex in solar C 02 

reduction.

*FTIR spectra were taken by my lab colleague Kevin Dubois; photocatalytic tests 

were performed by my lab colleague Chao Liu.
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4.5 Conclusions

In summary, we have immobilized a tricarbonyl Re(l) photocatalyst on 

mesoporous silica via both covalent attachment and physical adsorption. The 

covalent attachment was achieved by derivatizing the bpy ligand with amide 

linkages connected to silane coupling agents, which was then immobilized on 

silica prior to complexation of bpy with Re(l). Derivatization of the bpy ligand with 

amido moieties resulted in a 35-nm red shift in the MLCT transition of the 

tricarbonyl Re(l) complex. Such a red shift into the visible light region is 

advantageous for photocatalysis using natural sunlight. When tested in solar CO2 

reduction, the covalently attached photocatalyst demonstrated excellent stability 

and higher activity than both its homogeneous counterpart and the physically 

adsorbed Re(l) photocatalyst. Most likely, the mesoporous structure protected 

the Re(l) complex against photochemical decomposition and therefore enhanced 

the photocatalytic activity of the covalently attached Re(l) complex.

♦Results presented here have been published in: Journal of Molecular Catalysis 
A: Chemical 2012, 363-364 (0), 208-213.
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CHAPTER 5

SURFACE IMMOBILIZATION OF Re(BPY)(CO)3CI ON KAOLIN FOR SOLAR 

C 02 REDUCTION

5.1 Introduction

Nanoporous materials, such as nanoporous silicas and zeolites, are 

popular candidates as solid-state catalyst supports and have been investigated in 

various catalytic reactions.69'70 The hexagonal mesoporous silica SBA-15 exhibits 

excellent performance in our solar C 02 reduction reactions due to the thermally 

and chemically stable porous structures of the silicas, which can protect the 

catalyst molecules and prevent them from being decomposed under 

photoreaction conditions. However, other structured nano materials used as 

catalyst supports for solar C 02 reduction are seldom reported. One of the clay 

materials, Kaolin has aroused our interest in the catalyst immobilization research. 

Kaolin is a white mineral belongs to the clay family.71 The name is derived from 

the Chinese mountain Kao-ling, where the Kaolin mineral was first found, so 

Kaolin is also called China clay. The unique properties of Kaolin make it an 

important industrial material. Except for being used in porcelain manufacturing, 

Kaolin also has multiple applications in other industrial areas such as the 

pharmaceutical, cosmetic, plastic, paper, as well as petroleum production.71
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The chemical composition of Kaolin can be expressed as AI2Si2 0 5 (0 H)4  

or Al2 0 3 '2 Si0 2 -2 H2 0 , but it is not a simple mixture of amorphous silica and 

alumina. Instead, Kaolin is built by one tetrahedral siloxane surface and one 

octahedral aluminum hydroxide surface, which are linked through oxygen atoms 

to form the 1:1 layered crystalline construction.26 Kaolin is chemically inert in a 

relatively broad pH range, but it is not as thermally stable as silica materials 

because Kaolin undergoes a dehydroxylation process between 200°C to 900°C 

and its crystalline structure will be collapsed due to the loss of hydroxyl 

groups.72,73 Silica only has surface silanol groups, while Kaolin composed of 

multiple types of -OH groups that exit in the flaky structures. The orientations of 

hydroxyl groups in Kaolin have been studied via both experimental and 

computational methods.26,74,75 There are four hydroxyls in Kaolin’s formula, one 

is in the plane of shared oxygen atoms and designated as inner hydroxyl; the 

other three are designated as inner surface hydroxyls because they form the 

outer surface of the octahedral alumina sheet. Although there are some 

discrepancies about bond angles*and bond lengths of the hydroxyl groups 

between theoretical values and experimental results, the consensus is the inner 

hydroxyl horizontally lies on the face between the silica sheet and alumina sheet, 

while the three inner surface hydroxyls tilt toward the octahedral site with 

different angles. Figure 5.1 demonstrates the kaolinite structure according to 

White and co-workers’ computational study.26 According to the structure, the 

inner surface hydroxyls are potential functional sites that can be utilized in 

surface immobilization.
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Figure 5.1 A 34-atom unit cell of kaolinite composed of silicate tetrahedral 

sheet, alumina octahedral sheet and hydroxyl groups26

In this present study, we covalently attached the Re-bpy catalyst on 

Kaolin surface by using the same surface immobilization strategy as that for 

functionalization of mesoporous silica. The bright yellow color of the surface 

functionalized Kaolin indicates that remarkable amount of Re-bpy was retained 

on Kaolin through the covalent bonds. UV-Visible and FTIR spectroscopies were 

employed to characterize the immobilized Re-bpy-Kaolin and revealed the 

differences between the Re-bpy-Kaolin and the Re-bpy-Si02 photocatalyst, 

which was discussed in the previous chapter. The functionalized Kaolin catalysts 

also exhibited some new features in the in situ FTIR study, which may associate 

with the layered structures and different hydroxyl groups in the supporting 

material, Kaolin. To compare with the physically adsorbed Re+ silica
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photocatalyst, the physical mixing strategy was also applied to Kaolin and Re- 

bpy to try to get the physically adsorbed Re+ Kaolin. However, after one time of 

washing, the color on the obtained mixture was completely gone. UV-Visible and 

FTIR spectra also confirmed that there was no Re-bpy retained on Kaolin by the 

physical mixing method.

5.2 Surface immobilization of the Re(l) catalyst on Kaolin

5.2.1 Covalently attachment of the Re(l) catalyst on Kaolin

The immobilization strategy is according to the procedure that is used 

for immobilization of Re(l) catalyst on silica surface, as described in chapter 4 

(scheme4.1). After obtaining the 4,4'-bis(3-trimethoxysilylpropyl)amido-2,2'- 

bipyridine in chloroform, Kaolin was added to the chloroform solution and the 

mixture was stirred for 2 days at room temperature before the functionalized 

Kaolin was washed with chloroform, methanol, and diethyl ether, and dried 

overnight at 40 °C to form Kaolin-L. Then the “as synthesized” Kaolin-L and a 

small portion of pentacarbonyl chlororhenium(l) was dispensed into toluene and 

refluxed overnight. The final product was washed with toluene and 

dichloromethane, and dried overnight at 40°C to yield a light yellow powder, 

denoted as Re-L-Kaolin.
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5.2.2 Physical adsorption of Re(l) catalyst on Kaolin

The physical adsorption method is the same as that for producing Si02+ 

Re. First, Kaolin particles were dispersed in a toluene solution that containing 

Re-bpy; next, the mixture was refluxed overnight and recovered by centrifugation 

to get a light yellow powder. However, after washing with diethyl ether, the yellow 

color in the product completely disappeared. UV-Vis and FTIR spectra of the 

washed product are identical to the spectra of pure Kaolin, which indicate no Re- 

bpy molecules are retained on Kaolin after washing. The reason that accounts for 

this is Kaolin does not have the “cage-like” porous structures as in mesoporous 

silicas; the layered structure of Kaolin can’t restrain molecules effectively without 

any specific interactions between the surfaces and the molecules. In conclusion, 

the Re-bpy catalyst was not successfully immobilized on Kaolin by the physical 

adsorption approach.

5.3 Characterization of the Re(l) catalyst on Kaolin

The product of the covalent attachment synthesis, Re-L-Kaolin, was 

characterized with SEM, UV-Vis and FTIR spectroscopies and the amount of 

Re(l) centers in Re-L-Kaolin was detected via elemental analysis.
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5.3.1 SEM of the Re(l) catalyst on Kaolin

Figure 5.2 SEM images of (a) Kaolin and (b) Re-L-Kaolin (Scale bar: 1 |jm)

Figure 5.2 shows the SEM images of Kaolin particles and surface functionalized 

Kaolin. According to Figure 5.2a, the layered clay sheets are clearly seen in the 

SEM image and the average particle size is about 500 nm. Comparison of the 

two SEM images shows that the surface functionalized Kaolin maintains the 

layered structure and particle size with the existence of Re-L on the surfaces 

(Figure 5.2b).

5.3.2 UV-Vis spectrum of the Re(l) catalyst on Kaolin

The UV-Vis spectra (Figure 5.3) shows that the pure Kaolin sample does 

not have any absorbance in the visible light range (400nm to 800nm), while the
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synthesized Re-L-Kaolin exhibits a broad absorption band at 400nm (Figure 

5.3b). This absorption wavelength coincides with the absorbance peak position of 

the Re-L-Si02, which is also at 400nm (Figure 4.1b). Both of the absorbance 

peaks are due to the metal-to-ligand charge transfer (MLCT) of Re-bpy. This 

absorption peak indicates the functionalized Kaolin catalyst has the ability to 

absorb visible light and get excited for charge separation during photocatalytic 

reactions.
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Figure 5.3 UV-Visible spectra of (a) Kaolin and (b) Re-L-Kaolin in powder 

form

5.3.3 FTIR of the Re(l) catalyst on Kaolin

The FTIR spectra of Kaolin before and after the surface functionalization 

were collected on a Nicolet iS1.0 FTIR spectrometer equipped with attenuated-



total-reflectance (ATR) accessory, as shown in Figure 5.4. After functionalization, 

the Re-L-Kaolin displays two strong absorbance at 2020 cm'1 and 1890 cm'1 

(Figure 5.4b), which are the characteristic peaks of surface carbonyl groups.25,60 

These features indicate that the tricarbonyl rhenium (I) catalyst was successfully 

immobilized on Kaolin through the covalent linkages described in the previous 

chapter (Scheme 4.1). The other infrared features, especially the peaks 

corresponding to the amide linkages at 1636 cm'1 (C-0 stretch); 1517 cm'1 (N-H 

bend) and 1342 cm"1 (C-N stretch), confirm the existence of the covalent linkages 

in the Re-L-Kaolin catalyst. In comparison with the infrared spectrum of the Re-L- 

Si02 (Figure 4.2d), the carbonyl peaks and the amide linkage peaks of the 

functionalized Kaolin slightly shift to lower wavenumbers with varying degrees. 

Both the nano-structures of supporting materials and the types of surface 

hydroxyl groups account for these shifts. The Re(l) catalyst molecules in the 

functionalized silica material are immobilized in the nanoporous environment 

through the covalent bonds linked with surface silanol groups, while the catalyst 

molecules in the functionalized Kaolin are trapped between the clay layers 

through the linkages with inner surface hydroxyls on the alumina surfaces.

On the infrared spectrum of the Re-L-Si02 (Figure 4.2d), it is observed that there 

is no surface silanol absorbance, which is a strong sharp peak at 3745cm'1 

present in the spectrum of the pure silica (Figure4.2a). The absence of silanol 

peak is due to the loss of all the surface silanol groups after the surface 

functionalization. However, the infrared peaks associated with the surface 

hydroxyl groups at 3620 cm"1, 3650 cm'1, 3668 cm'1 and 3689 cm'1 are present in



each spectrum of both Kaolin and surface functionalized Kaolin (Figure 5.4). The 

reason for this is that the amount of surface hydroxyl groups in Re-L-Kaolin is 

much more than the amount of the linked Re (I) catalyst molecules and only a 

small portion of hydroxyls are taken over by the Re(l) molecules. As a result, the 

change of the hydroxyl absorption peaks is barely seen in the two spectra.
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Figure 5.4 FTIR spectra of (a) Kaolin and (b) Re-L-Kaolin

5.4 Photocatalytic CO2 reduction of the Re(l) catalyst on Kaolin

The photocatalytic activity of the synthesized Re-rL-Kaolin was detected 

in a solution state solar CO2 reduction procedure with the presence of a



photosensitizer, Tris(2,2'-bipyridyl)dichlororuthenium(ll) complex. In this study, a 

Fiber-Lite series 180 visible light lamp was used to imitate solar light, giving the 

irradiation wavelengths >425 nm. To investigate how the intensity of input light 

affects the activity of the catalyst, visible light with different intensities, measured 

as 50 mW/cm2, 100 mW/cm2and 150 mW/cm2 respectively, were employed as 

input energy in the photocatalytic reactions. The amount of CO generated during 

the photo CO2 reduction processes was monitored, using a gas chromatograph 

equipped with a TCD detector.

Figure 5.5 illustrates the activities of the as synthesized photocatalyst under 3 

different irradiation intensities, by showing the CO turnover numbers as a 

function of reaction time. CO turnover number at each time interval is calculated 

using the amount of produced CO (mole) divided by the amount of Re(l) center in 

the reaction system (mole). According to the testing results, in the first hour, Re- 

L-Kaolin produced the largest amount of CO under the 150 mW/cm2 visible light 

irradiation (Figure 5.5c), but after 1 hour there was no more CO generated in this 

system, which indicated the catalyst lost its activity after 1 hour of high intensity 

irradiation. When under a relatively low intensity irradiation (50 mW/cm2 or 100 

mW/cm2), the catalyst can keep its activity in 10 hours (Figure 5.5a and b). The 

best performance for produce CO was acquired under the 100 mW/cm2 

irradiation, which gave a CO turnover number of 7.6 in 10 hours (Figure 5.5b).
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Figure 5.5 CO TONs of Kaolin-L-Re vs. time under different visible 

irradiation Intensity: (a) 50 mW/cm2, (b) 100 mW/cm2 and (c)150 mW/cm2 

(*CO TON= moles of generated CO I moles of Re(l) catalyst)

Recently, Liu et al. investigated the photocatalytic CO2 reduction activity 

of the homogeneous Re-L under a similar reaction condition.76 They obtained a 

CO turnover number of 14 for the homogeneous Re-L, but the homogeneous 

catalyst lost its activity after 2 hours reaction.76 In this study, the surface 

immobilized catalyst, Re-L-Kaolin, exhibited much better stability under the 

photoreaction conditions. Figure 5.6 shows the FTIR spectra of the functionalized 

Kaolin catalyst before and after 3 different photoreactions (different intensity 

irradiation) in dimethylformamide solution for 10 hours. After the photoreactions, 

the catalysts were recovered by centrifugation, washing with acetonitrile and 

drying at room temperature in dark. The two strong peaks at 2020 cm'1 and 1890
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cm'1, which associate with rhenium carbonyl groups and the absorption peaks 

corresponding to the amide linkages at 1636 cm'1,1517 cm'1 and 1342 cm'1 are 

all present in the spectra of the samples that were recovered after photoreactions 

(Figure 5.6a, b and c). These infrared spectra reveal the excellent stability and 

recyclability of the Re-L-Kaolin under our photoreaction conditions. These 

features also indicates that the layered structures of Kaolin can effectively protect 

the Re (I) catalyst during the photo CO2 reduction process.

2100 1900 1700 1500 1300
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Figure 5.6 FTIR Spectra of Kaolin-L-Re after different light intensity 

photocatalytic reactions: (a) before photoreaction, (b) 50 mW/cm2, (c) 100 

mW/cm2 and (d) 150 mW/cm2
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5.5 In situ FTIR study of CO2 reduction of covalently attached Re(l) catalyst
i

on Kaolin

As discussed in early part, the unique 1:1 layered structure and the 

diversity of inner surface hydroxyls in Kaolin have brought our interest to 

investigate the structural and catalytical properties of the surface immobilized Re- 

L-Kaolin in the photocatalytic CO2  reduction process. My lab colleague Dubois 

has investigated the properties of a physically mixed catalyst, Re(bpy)(CO)3CI + 

mesoporous ZSM-5, during the CO2 reduction process, using in situ FTIR 

spectrometry.67 In this present study, in situ FTIR was also employed to 

investigate the properties of the solid state Re-L-Kaolin catalyst in the presence 

of a sacrificial electron donor, TEOA.

To study the structural effects of different supporting materials to the Re (I) 

complex, a non-porous fumed silica nano material, Aerosil 200, was also 

functionalized with the Re (I) compound, using the same immobilization strategy 

as that for synthesis of Re-L-Kaolin. The synthesized catalyst was denoted as 

Re-L-NPSiC>2 (NP means non-porous). This synthesis was performed by Kevin 

Dubois and the Re (I) loading on the fumed silica was determined as 2.92 pmol/ 

10mg powder sample, using ICP-AES as elemental analysis method; the amount 

of Re(l) on Kaolin was determined as 1.95 pmol/ 10mg powder sample by the 

same analysis technique.

First, the catalytic activity of the “as synthesized” Re-L-NPSi02 was investigated 

in DMF solution in presence of the sacrificial electron donor, TEOA and
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photosensitizer, Ru(bpy)32+. The amount of CO generated by Re-L-NPSi02 

during the photocatalytic CO2 reduction was monitored by GC, under the same 

reaction condition as that for Re-L-Kaolin (100 mW/cm2 visible light irradiation 

and same amount of TEOA and Ru(bpy)32+).
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Figure 5.7 CO TONs of (a) Re-L-Kaolin and (b) Re-L-NPSi02 at different 

reaction time intervals, under the same reaction conditions

Figure 5.7 illustrates the photocatalytic activities of both the Re-L-Kaolin and Re- 

L-NPSi02 in DMF solution by showing the CO turnover numbers of each catalyst 

at different reaction time intervals. The synthesized Re-L- NPSi02 displays a 

slightly better activity than Re-L-Kaolin in a 10-hour CO2 reduction period. 

According to the results, the structural effects of these two solid-state materials 

do not bring about a significant difference between the two catalysts in the 

photocatalytic reaction.
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However, Re-L-Kaolin and Re-L-NPSi02 exhibited distinct features in the in situ 

solid-state infrared study in the presence of TEOA. To prepare the infrared 

samples, each catalyst powder was mixed with several drops of TEOA and 

pressed on a KBr pellet in a three-window photoreaction chamber. After 20 min 

Ar gas purge, the infrared spectrum of each sample was collected on a Nicolet 

6700 FTIR spectrometer with a Harrick Praying Mantis diffuse reflectance 

accessory. Figure 5.8 shows the FTIR spectra of the Re-L-NPSi02 + TEOA 

mixture, the Re-L-SBA-15 + TEOA mixture and the Re-L-Kaolin + TEOA mixture 

under Ar atmosphere. On the infrared spectrum, the Re-L-NPSi02 + TEOA 

mixture only displays 3 strong absorbance peaks at 2020 cm'1, 1917 cm"1 and 

1894 cm'1, which associate to the surface carbonyl groups of the tricarbonyl Re(l) 

complex. In the spectra of the Re-L-Kaolin + TEOA and the Re-L-SBA-15 + 

TEOA, except these 3 peaks, 3 new features in the carbonyl groups absorbance 

region appear at 1995 cm*1, 1875 cm'1 and 1847 cm'1, respectively. The 

formation mechanism of these new peaks is not clear. One possible reason that 

accounts for the formation of these new peaks is the meso-pores in SBA-15 and 

the layers in Kaolin can localize TEOA molecules around the tricarbonyl Re(l) 

complex to form new species, while the non-porous silica supports can’t localize 

TEOA molecules to interact with the surface immobilized tricarbonyl Re(l) 

complex. Gibson et al.77 reported the carbonyl absorbance of a /ac-Re(l)(CO)3- 

OH compound, at 2000 cm'1, 1881 cm'1 and 1858 cm'1, which are very close to 

the peak positions (1995 cm'1, 1875 cm'1 and 1847 cm 1) found in our infrared 

spectra. One assumption is the localized TEOA molecules react with residual
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water to form OH' and replace the Cl' in the fac-tricarbonyl Re(l)-CI complex, 

accordingly, a fac-tricarbonyl Re(l)-OH species formed to account for the new 

carbonyl absorbance. The slight difference between the peaks of our Re(l)-OH 

species and the reported peaks might be due to the amide derivative on the 

bipyridine ring of our Re(l) material.

It is also noticeable that between the 1700 and 1800 cm'1 absorbance region, 

there are several weak peaks observed in the spectrum of the Re-L-Kaolin + 

TEOA mixture (Figure 5.8c, not labeled); these peaks might be produced by the 

surface localized TEOA interact with the surface hydroxyls in Kaolin. Since 

functionalized silicas do not have spare surface silanol groups to interact with 

TEOA, these peaks are not seen in the spectra of both Re-L-NPSi02 + TEOA 

mixture and Re-L-SBA-15 + TEOA mixture (Figure 5.8a and b).
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Figure 5.8 FTIR spectra of (a) Re-L- NPSi02 + TEOA, (b) Re-L-SBA-15 +

TEOA and (c) Re-L-Kaolin + TEOA under Ar atmosphere in dark

Infrared spectrum of the Re-L-NPSi02 + TEOA mixture indicates the 

layered structures of Kaolin have a tremendous effect to the properties of the 

attached molecular catalyst, especially with the existence of other molecules 

such as the electron donor, TEOA. To investigate this structural effect during the 

photocatalytic C 02 reduction process, a solid-gas interphase photocatalytic C 02 

reduction of the Re-L-Kaolin was studied in a sealed 3-window photoreaction 

chamber equipped with infrared detector, in the presence of a sacrificial electron 

donor, TEOA. First, the reaction chamber was purged with C 02 (99.999%, Airgas) 

for 20 min in dark and the infrared spectrum of the Re-L-Kaolin + TEOA mixture 

under C 02 atmosphere in dark was collected. Next, light irradiation was

66



introduced to the reaction chamber, using an ozone-free Xe lamp (Newport) 

equipped with an AM 1.5 filter. This filter blocks about 50% of the infrared 

irradiation from the Xe lamp but does not significantly affect the UV-Vis light 

region. After 2 hours UV-Vis irradiation, infrared spectrum of the mixture in the 

reaction chamber was also recorded.
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Figure 5.9 FTIR Spectra of (a) Re-L- Kaolin +TEOA purge with CO2 in dark 

and (b) Re-L- Kaolin +TEOA purge with Ar in dark

Figure 5.9 shows the infrared spectra of the catalyst and TEOA mixture in dark 

under Ar and CO2 atmosphere. According to the spectra, after purge with CO2 , 

carbonyl absorbance peaks do not have significant change although the relative

67



intensity of these peaks slightly different from that under Ar atmosphere. The 

strong broad absorbance at 1650 cm'1 (Figure 5.9b) is due to the formation of 

surface absorbed bicarbonate when the mixture exposed to a CO2 atmosphere, 

which is the characteristic absorbance of the O -C -O  stretching of bicarbonate 

species.67
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Figure 5.10 FTIR Spectra of (a) Re-L- Kaolin +TEOA purge with CO2 in dark 

and (b) Re-L- Kaolin +TEOA purge with CO2 with Vis-light 2h

After UV-Vis light irradiation, the infrared features of the Re-carbonyl groups 

have a remarkable change as shown in Figure 5.10. The absorbance peaks at 

2020 cm'1, 1917 cm'1 and 1894 cm'1 shift to lower wavenumbers at 2015 cm'1,
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1903 cm'1 and 1886 cm'1, respectively, with a relative intensity decrease. These 

shifts are coincident with the results of the in situ photocatalytic CO2 reduction of 

the Re-L-NPSi02, reported by Liu et al.76 The shifts are attributed to the 

bipyridine-based reduction of Re-L species upon light irradiation. The shifted 

wavenumbers generated by our surface immobilized catalysts are lower than the 

reported shift (-20 cm'1) of the primary bipyridine-based reduction produced by a 

homogeneous Re-bpy78,79 is due to the existence of an amide (-CONH) group on 

the bpy ligand in our catalysts.76 On the contrary, the other set of Re-carbonyl 

peaks (1995 cm'1, 1875 cm'1 and 1847 cm'1) do not have wavenumber shift but 

get a relative intensity increase after the photoreaction.

*ln situ infrared spectra were collected by my lab colleague Chao Liu.

5.6 Conclusions

In summary, the photo CO2 reduction catalyst has been immobilized in 

the layer structured Kaolin through the covalent amide linkages attached with the 

inner surface hydroxyl groups in Kaolin. The functionalized Kaolin catalyst 

exhibits absorbability in visible light range due to the MLCT transition of the 

tricarbonyl Re (I) complex with derivative amide linkages. In comparison with its 

homogeneous counterpart, this surface immobilized catalyst also displays an 

excellent stability during the photocatalytic CO2 reduction, upon a moderate light
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irradiation (100 mW/cm2). Furthermore, after the photoreaction, the recycled 

catalyst still retains significant amount of Re (I) compounds in the Kaolin layers, 

which indicates a good recyclability of this material. Similar to the mesoporous 

structures in silica, the layered structure of clay material can also effectively 

protect the Re (I) compound against photochemical decomposition and improve 

the catalyst stability.

In situ FTIR study reveals some new features of the functionalized Kaolin catalyst, 

which are not seen in the infrared spectrum of the functionalized non-porous 

silica material. The formation mechanism of these new features and their 

properties are'not clear, further studies are necessary to investigate the structural 

effects of Kaolin to the attached molecular catalysts.
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