
University of New Hampshire University of New Hampshire

University of New Hampshire Scholars' Repository University of New Hampshire Scholars' Repository

Master's Theses and Capstones Student Scholarship

Spring 2013

Adaptive Network on Chip Routing using the Turn Model Adaptive Network on Chip Routing using the Turn Model

Jonathan W. Brown
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/thesis

Recommended Citation Recommended Citation
Brown, Jonathan W., "Adaptive Network on Chip Routing using the Turn Model" (2013). Master's Theses
and Capstones. 779.
https://scholars.unh.edu/thesis/779

This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire
Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized
administrator of University of New Hampshire Scholars' Repository. For more information, please contact
Scholarly.Communication@unh.edu.

https://scholars.unh.edu/
https://scholars.unh.edu/thesis
https://scholars.unh.edu/student
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F779&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis/779?utm_source=scholars.unh.edu%2Fthesis%2F779&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Scholarly.Communication@unh.edu

Adaptive Network on C hip R outing using th e Turn M odel

BY

Jo n a th an W. Brown

B.S., University of New H am pshire (2011)

THESIS

Subm itted to th e University of New Hampshire
in P artia l Fulfillment of

the R equirem ents for the Degree of

M aster of Science

in

C om puter Science

May, 2013

UMI Number: 1523783

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Di!ss0?t&iori Publishing

UMI 1523783
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

This thesis has been examined and approved.

Thesis director, Michel C harpentier
Associate Professor of Com puter Science

Radim B artos
A ssociate Professor of C om puter Science

Qiaoyan/Yu
A ssistant Professor of Electrical and C om puter E ngineer­
ing

Phil H atcher
Professor of C om puter Science

H /'y (3
D ate

ACKNOWLEDGMENTS

It is with immense gratitude that I acknowledge the support and help of my thesis advisers,

Professor Michel Charpentier, who always found time to provide constructive feedback to my

thoughts and who was patient with my writing style, Professor Radim Bartos, who taught

me how to explain my thoughts and present them clearly in writing, Professor Qiaoyan Yu,

who answered my detailed oriented questions and helped me progress, and Professor Phil

Hatcher who never let any detail slip pass me.

I would also like to thank all my friends in W236 who helped me on the days where

nothing seemed to be working and gave me the push to approach the problem from a

different angle and the Computer Science Department tha t let me experience the joy of

programming.

Lastly I would like to thank my parents who always gave me encouragement.

T A B L E O F C O N T E N T S

ACKNOW LEDGM ENTS... iii

A B S T R A C T ... ix

Chapter 1 N etwork on Chip D escription and M odel 1

1.1 History .. 1

1.2 Network on C h i p .. 2

1.3 NoC O p e ra tio n ... 4

1.4 NoC Operation E x a m p le s .. 5

1.5 Challenges in a N o C .. 9

C hapter 2 R outing A lgorithm s in a 2D M esh 11

2.1 The Turn Model ... 11

2.2 X Y ... 12

2.3 W est-F irst... 12

2.4 Negative-First... 13

2.5 O d d-E ven ... 14

2.6 Non-Minimal O d d -E v en .. 17

2.7 D y X Y ... 22

2.8 Adaptivity of Routing Algorithms .. 22

Chapter 3 W eighted N on-M inim al O ddEven 25

3.1 Routing C o s t ... 25

3.2 Stress V a lu e s ... 25

3.3 Queue P e n a l ty .. 27

3.4 Direction P en a lty .. 27

3.5 Weighted Non-Minimal O d d E v en .. 28

iv

3.6 Implementation on a N o C ... 30

Chapter 4 Experim ental Framework 31

4.1 Experim ents.. 31

4.2 Measures ... 32

4.3 Little’s L a w .. 37

Chapter 5 Experim ental E valuation 39

5.1 Bit R ev e rse .. 39

5.2 T ran sp o se ... 41

5.3 Uniform R an d o m .. 43

5.4 Complement.. 45

5.5 H o ts p o t .. 47

5.6 WeNMOE and N M O E ... 47

Chapter 6 Conclusion 51

v

L IST O F T A B L E S

4-1 Traffic P a tte rn s .. 32

4-2 Little’s Law re s u lts .. 37

5-1 Parameter values for W eN M O E ... 39

vi

L IST O F F IG U R E S

1-1 Neighbors of a ro u te r ... 2

1-2 Model of a NoC r o u te r .. 3

1-3 Structure of p a c k e t .. 4

1-4 Routing taking several cycles to process a head f l i t 7

1-5 Routing taking several cycles to process a head flit with the desired output

port already reserved .. 8

2-1 The eight turns in the turn m odel.. 11

2-2 Turns for algorithms based on the turn m o d e l.. 13

2-3 Valid and invalid turns in O d d -E v e n .. 17

2-4 Direction s e t s .. 18

2-5 Adaptivity of Existing Routing Algorithms ... 24

4-1 Total number of flits in the network for packet injection ra te 1% 33

4-2 Total number of flits in the network for packet injection rate 2% 34

4-3 Average latency for XY in a 9x9 m e s h ... 35

4-4 Important differences when comparing multiple algorithm s......................... 36

5-1 Bit reverse traffic on a 8 x 8 m e s h ... 40

5-2 Source and destination pairs for bit reverse traffic on a 4x 4 network . . 41

5-3 Source and destination pairs for transpose t r a f f i c 41

5-4 Transpose traffic on a 8 x 8 mesh .. 42

5-5 Transpose traffic on a 9x9 mesh .. 42

5-6 Example of source and destination pairs for uniform random traffic . . . 43

5-7 Uniform random traffic on a 8 x 8 m e s h ... 44

5-8 Uniform random traffic on a 9x9 m e s h ... 44

vii

5-9 Source and destination pairs for complement tra ff ic 45

5-10 Complement traffic on a 8 x 8 m e s h .. 46

5-11 Complement traffic on a 9x9 m e s h .. 46

5-12 Example of source and destination pairs for hotspot traffic to corners of

a n e tw o rk ... 47

5-13 Example of source and destination pairs for hotspot traffic to the center

of a netw ork .. 48

5-14 Hotspot traffic sending to the four corners on a 8 x 8 m e s h 49

5-15 Hotspot traffic sending to the four corners on a 9x9 m e s h 49

5-16 Hotspot traffic sending to the center square on a 8 x 8 m e s h 50

5-17 Hotspot traffic sending to the center square on a 9x9 m e s h 50

viii

ABSTRACT

Adaptive Network on Chip Routing using the Turn Model

by

Jonathan W. Brown

University of New Hampshire, May, 2013

To create a viable network on chip, many technical challenges need to be solved. One of

the aspects of solutions is the routing algorithm: how to route packets from one component

(e.g., core CPU) to another without deadlock or livelock while avoiding congestion or faulty

routers. Routing algorithms must deal with these problems while remaining simple enough

to keep the hardware cost low.

We have created a simple to implement, deadlock free, and livelock free routing al­

gorithm that addresses these challenges. This routing algorithm, Weighted Non-Minimal

OddEven (WeNMOE), gathers information on the state of the network (congestion/faults)

from surrounding routers. The algorithm then uses this information to estimate a routing

cost and routes down the path with the lowest estimated cost.

A simulator was developed and used to study the performance and to compare the

new routing algorithm against other state of the art routing algorithms. This simulator

emulates bit reverse, complement, transpose, hotspots, and uniform random traffic patterns

and measures the average latency of delivered packets.

The results of the simulations showed that WeNMOE outperformed most routing algo­

rithms. The only exception was the XY routing algorithm on uniform random and comple­

ment traffic. In these traffic patterns, the traffic load is uniformly distributed, limiting the

opportunity for an improved route selection by WeNMOE.

CHAPTER 1

Netw ork on C hip D escrip tion and M od el

1.1 H istory

A network on chip (NoC) uses a regular layout of routers connected by wires. This concept

has existed for many years and has been implemented successfully [1]. The most common

layout of the routers is a 2D mesh (a grid) where each router has 4 neighbors. Because

of this regular layout, many assumptions th a t do not apply to T C P /IP networks can be

applied to NoC. These assumptions simplify routing. For example, shortest path calculation

is trivial on a 2D mesh.

In addition, a regular layout allows a router and its neighbors to be closer. This closeness

keeps the connecting wires short and is important because when transferring da ta through

the network, wire delays now account for most of the latency. This is because the speed of

the CPUs has increased, but the speed of the wires has not [2, 3]. Therefore, the closer the

routers, the faster the chip.

A router’s memory footprint also directly affects the length of the wires. The larger

the footprint, the longer the wires are to connect routers [4]. Consequently, several NoC

routing algorithms do not have routing tables or have small routing tables to keep the

memory footprint small.

Even with a regular topology, NoC still requires a routing algorithm, mainly to avoid

deadlock and livelock. Most of the routing algorithms are based on a 2D mesh NoC because

routing algorithms can be designed easily for this layout. Intel is one of the manufacturers

of a 2D mesh NoC with their Single-Chip Cloud Computer and Intel Teraflops Research

Chip [5, 6 , 7]. The Teraflops Research Chip implements a 2D mesh network with 80 cores

1

and the their cloud computer contains technology to have upwards of 1 0 0 cores on a single

chip.

1.2 N etwork on Chip

The network on chip is a regular layout of routers connected by wires. The rest of this

section describes the model of a NoC used.

The layout of the routers is a 2D mesh where each router has four neighbors (north, east,

south, and west) is shown in Figure 1-1. The wires connecting the routers are unidirectional,

so a connection between neighboring routers uses two wires.

Figure 1-1: Neighbors of a router

1 .2 .1 N o C R o u ter

The model of a router is comprised of five input queues, five output queues, and a compo­

nent. The component of a router is a hardware device that uses/needs access to the network

(e.g., core or memory). The queues in a router are shown in Figure 1-2. Each direction

(neighbor) has a dedicated input and output queue to service the wires. The wires transfer

data from the output port of a router to an input port of a neighboring router. The last

input and output queues are the connections to the component the router services. The

input queues in a router are usually small and the output queues have a size of one. The

2

component is usually a processing core.

A router also contains logic to decide where to route data in the network using infor­

mation from surrounding routers; at the core of this is a routing algorithm. A routing

algorithm is considered local if routing decisions are based on local information (e.g., the

current node or the current node and some surrounding nodes). An algorithm is considered

optimal or minimal if the route chosen for a packet always uses a shortest path from source

to destination. An algorithm is considered non-minimal if there is at least one route used

that is longer than the shortest path. An algorithm is adaptive if packets with the same

source and destinations can traverse different minimal and/or non-minimal paths. Note tha t

grid topologies usually contain multiple shortest paths for a given source and destination

pair.

The component itself also has a queue. This is the queue of generated packets th a t have

not been injected into the network. Generally, the component will function a t a faster clock

speed than the network.

u
^__

; □
— ■ : □

n

Component
■Queues

... Input Queue
...-Input Port

Output Port
Output Queue

Figure 1-2: Model of a NoC router

1 .2 .2 P acket

The information/data that travels through the network is divided into packets. Each packet

is made of flow control digits (flits). The queues in a router store flits and the wires transfer

flits.

The first flit in a packet is called the head flit. This flit contains information for routing

3

the packet to its destination. Usually this is just the destination address, bu t depending on

the NoC, the head flit could contain more information tha t is used during routing. The next

several flits in the packet are data flits, they contain the actual data th a t is to be transm itted

over the network. The last flit of the packet is called the tail flit. This flit signals the routers

that the end of the packet has been reached. Figure 1-3 show the structure of a packet.

Tail Flit- ■ -Head Flit

Data Flits

Figure 1-3: Structure of packet

1.3 N oC O peration

The operation of a network is split into cycles, and during each cycle the same events occur.

The cycle is constructed in such a way to allow a flit that is not blocked to move across one

router each cycle. This allows quick transfer of an entire packet if there is no contention for

ports.

There are three major events th a t occur each cycle: packet generation, routing, and wire

transfer. At the start of each cycle, the routers check for any new packets th a t a component

may have generated. If there is a new packet in the component’s queue, the first several

flits are moved to the router’s input queue.

After the check for newly generated packets, a router will use the routing algorithm and

route the packets. First an arbiter decides on an order (a priority) to route the flits residing

in the input ports of the router. Next the routing algorithm looks a t the first flit in the

queues (in the order specified) and if the flit is a head flit, routes the flit.

Routing a flit consists of determining the correct output port to send the packet using

the routing algorithm. If the routing algorithm uses network state to help determine an

output port, the state of the network at the cycle the packet arrived a t the router is used.

Once an output port has been chosen, if the output port is not being used, an internal

4

connection is made from the input port the head flit resides in to the specified output port.

If the output port already has an internal connection to another input port, the decision is

saved and the head flit waits until the next cycle. This decision also creates a dependency:

the input port waits for the output port to change state.

D eterm ining the correct output port may take several cycles if the routing algorithm

cannot process head flits as fast as the network operates. This means th a t if the first flit

in an input queue is a head flit, it may stay as the first flit in the queue for multiple cycles

while the routing algorithm determines the correct output port. During this time, other

flits are processed inside the router.

Once all the internal connections have been made, for each internal connection, the

router moves the first flit in the input queue to the connected output queue. If the flit

moved is a tail flit, the internal connection is removed so the output port can be used by a

different packet next cycle.

The wire transfer moves flits from the output queue of one router to the input queue

of a neighboring router. All the wires transfer at the same time. If the input queue is full

or the output port is empty, the wire does not transfer a flit. The wire transfer may also

transfer state information of the routers to the router’s neighbors.

A packet is marked to exit the network when the packet reaches its destination. This

occurs when the routing algorithm determines the correct output port is the output port

connected to the component. The connection functions like other internal connections.

However, the component transfers the packet from the router instead of a wire.

1.4 N oC O peration E xam ples

The following examples show the the concepts described previously in Section 1.3 a t the

cycle level (each figure shows the state of the router at each cycle, not after each event).

The first example, in Figure 1-4, shows how a single packet travels through a router.

At cycle 1, the head flit of the packet arrives at the router. The number 3 by the head

flit is how many cycles the routing algorithm will need to determine the correct output

5

port for the flit. Different routing algorithms need different amounts of time based on their

complexity. At cycle 2, the count is reduced to 2. The head flit (and therefore the rest of

the packet) is waiting. At cycle 3 the count is 1. At cycle 4, the routing algorithm has

determined the desired output port and the router makes the internal connection (the solid

line). The head flit is moved to the output port and the wire transfers the head flit to the

next router. At cycles 5 and 6 , the second and third flits follow the head flit. At cycle 7,

the tail flit travels through the router and the router removes the internal connection.

The second example (Figure 1-5) shows how a packet can wait if the requested output

port is already being used. At cycle 1, the router has an internal connection from the south

input port to the east output port. The packet th a t is using this connection (Packet A)

has already transferred two flits. There is an incoming packet (Packet B) in the west input

port of the router. At cycle 2 the third flit of Packet A is transferred, and the routing

algorithm still needs two more cycles to determine the output port for Packet B. At cycle

3 the fourth flit of Packet A is transferred and the routing algorithm needs one more cycle

for Packet B. At cycle 4, the fifth flit of Packet A is transferred and the routing algorithm

finishes operating on the head flit of Packet B. Since the requested output port, east, is

being used, the router remembers this decision/intent (the dotted line) and the packet is

blocked. At cycle 5, the sixth flit of Packet A is transferred and Packet B is still waiting.

At cycle 6 , the tail flit of Packet A is transferred and the internal connection is removed.

At cycle 7, the intent is changed to be a connection and the head flit of Packet B is moved.

6

T T
CL

t ¥ -
(a) Head flit arrives and routing starts

tWt
□ L 11

XLIT
(c) Routing continues, one more cycle

n H r

XLTT
(e) Second flit follows head flit

CL C-

CLIT
(b) Routing continues, two more cycles

tW t

iT
(d) Head flit is routed

M
TT
CL C

Lj

n
TT

(f) Third flit follows head flit

(g) Tail flit follows third flit, releases channel

Figure 1-4: Routing taking several cycles to process a head flit

7

Packet BHpV
Packet A

JL1U

i % q

(a) Packet B arrives, routing is started,
packet A continues to be transferred

nW r-
rg s-i P

(b) Routing continues on packet B, packet A
continues to be transferred

mir1—

■DD- ^ A
rY

/ - □ □ □ □ I

(c) Routing continues on packet B, packet A
continues to be transferred

X

A
“Ar

□ l

T

(d) Routing finishes, packet A has intent,
packet A continues to be transferred

(e) Packet A waits, packet A continues to be
transferred

D u

(f) Packet A waits, packet A finishes transfer,
releases channel

(g) Packet A starts being transferred

Figure 1-5: Routing taking several cycles to process a head flit with the desired output port
already reserved

8

1.5 Challenges in a N oC

There are two types of problems in a NoC, problems the NoC could prevent and problems

the NoC could not prevent. The problems the NoC could prevent are generally routing

problems, mainly livelock and deadlock. Problems the NoC could not prevent are called

faults.

1 .5 .1 L ivelock and D ea d lo ck

Deadlock and livelock are related to how a packet is routed through a network. Deadlock

occurs when there is a cycle of dependencies in the network. Said in another way, there is a

cycle that can be formed by following the internal connections and intents in a router and

the wires that connect the routers. The flits that are part of this cycle can only move if the

flit that is blocking is moved, and the flit tha t is blocking can only move if the original flit

can move.

A NoC that uses a router queue size of one with an algorithm that is not deadlock

free will see deadlock occur faster than using a queue of size 2. The same thing happens

with queues of size 3 and 4, etc. If the queues are infinite, deadlock cannot occur because

eventually, all packets will be able to move. However, infinite queues are not practical.

Livelock occurs when a flit is moving around the network and never reaches the intended

destination. This can only happen if non-minimal paths are used and if the packet travels

in a loop around the destination. If there is no loop possible, livelock cannot occur because

the packet will eventually reach a destination, but the destination may not be correct.

1 .5 .2 H ardw are F au lts

There are two major types of hardware faults, permanent and transient. Permanent are

usually manufacturing faults and never disappear. Transient faults exist only for a certain

number of cycles then disappear.

An example of a permanent fault is a missing wire. If a wire is missing, the routing

algorithm needs to be able to route around the broken wire or the NoC will not work. This

9

is because the routing algorithm will detect the broken wire and not move the packet or

will send the packet over the missing wire, but actually the packet just disappears.

An example of a transient fault is a wire th a t does not transfer flits for a few cycles due

to an event in the environment. If this happens and the router can sense the fault, a packet

can be delayed or rerouted.

A good routing algorithm should detect faults so no packet is lost and reroute packets

around faults such th a t delays are minimized, while making sure that livelock and deadlock

do not occur.

10

CHAPTER 2

R outing A lgorithm s in a 2D M esh

There are several routing algorithms tha t can be used on a 2D mesh. This chapter describes

the ones that are used for comparison against the proposed routing algorithm. For simplic­

ity, these routing algorithms do not use virtual channels. Virtual channels allow routing

algorithms to time-multiplex physical channels. This has the effect of mimicking more con­

nections between routers than there physically are. Virtual channels are not considered

in this thesis because of added complexity in the routing algorithm and extra hardware

required.

2.1 The Turn M odel

In a 2D mesh, a packet can travel in one of four directions, north, east, south, and west.

A turn is defined as a packet changing the direction of travel. For example, a packet could

turn from east to north (_J) or south to west (<_^). W ith this definition, there are 8 possible

turns as shown in Figure 2-1.

 ►-------

▼
A

Figure 2-1: The eight turns in the turn model

In [8], the turn model is introduced and it is shown that deadlock can be avoided if at

least one turn from each cycle is disallowed in the routing algorithm. In addition, algorithms

11

based on the turn model are livelock free. This is because, to have livelock, a packet must

travel in a loop and since one turn from each cycle is removed, loops cannot occur. The

algorithms based on the turn model may use either minimal paths or non-minimal paths.

2.2 X Y

XY is the classic routing algorithm for network on chip [8]. It is simple, deadlock free,

minimal, not adaptive, and based on the turn model. XY first routes a packet in the X

direction then in the Y direction. Figure 2 -2 (b) shows the valid and invalid turns in XY.

Dashed lines represent invalid turns and solid lines are valid turns. Two turns are eliminated

from each cycle. This algorithm is also called X first or static X Y to differentiate it from

dynamic XY. Algorithm 1 shows the pseudo code for this routing algorithm.

A lgo rithm 1 XY

1 if a t destination th e n
2 arrive
3 else if destination is west th e n
4 go WEST
5 else if destination is east th e n
e go EAST
7 else if destination is north th e n
s go NORTH
9 else if destination is south th e n

10 go SOUTH
u en d if

2.3 W est-First

This routing algorithm is also based on the turn model. If the destination is to the west

of the current router, the packet heads west then north or south to the destination. If the

destination is not west of the current router, the packet can be routed adaptively along

any minimal path. Figure 2-2(c) shows the valid and invalid turns in west-first tu rn model.

12

-^ r Invalid Turn
 Valid Turn

(a) Legend

(b) Turns in XY

A A

(c) Turns in west-first

a a

(d) Turns in negative-first

Figure 2-2: Turns for algorithms based on the turn model

Algorithm 2 shows the pseudo code for west-first. The adaptivity of this algorithm is shown

on lines 18 and 20.

2.4 N egative-F irst

The routing algorithm negative-first prohibits turns from a positive direction to a negative

direction. Positive directions are east and south and negative directions are north and west.

Figure 2-2(d) shows valid the turns in this model. Algorithm 3 shows the pseudo code for

this method. Packets routed with this algorithm can be routed adaptively north east (line

16) and south west (line 22).

13

A lgorith m 2 West-First

1 i f at destination t h e n
2 arrive
3 e l s e i f destination in sam e colum n t h e n
4 i f d estination is north t h e n
5 go NORTH
e e ls e
7 go SO U TH
s e n d i f
9 e l s e i f destination in sam e row t h e n

10 i f d estination is east th e n
11 go E A ST
12 e ls e
13 go W E ST
14 e n d i f
is e ls e i f destination is w est t h e n
16 go W E ST
17 e l s e i f destination is north t h e n
is go NO RTH or E A ST
19 e l s e i f destination is south t h e n
20 go SO U TH or E A S T
2 1 e n d i f

2.5 Odd-Even

The odd-even routing algorithm [9] classifies columns as either odd or even according to

the column’s number. The first column is zero and is even, the second column is one and is

odd etc. The algorithm prohibits certain turns depending on what column the packet is in.

In an even column, the packet cannot turn north or south from west (Figure 2-3(a)). In an

odd column a packet cannot turn east (Figure 2-3 (b)).

This algorithm is both deadlock and livelock free. The proof for this uses the idea tha t

in any cycle, there must be a rightmost column. W hether the rightmost column is even or

odd, a cycle cannot occur because of the prohibited turns. Therefore, no cycle can exist.

The added complication of odd and even columns allows the algorithm to be more

adaptive than other turn model based routing algorithms. Algorithm 4 shows the pseudo

code for this algorithm. The adaptivity for this algorithm is on line 35.

14

A lgorith m 3 Negative-First

1 if a t destination th e n
2 arrive
3 else if destination in same column th e n
4 if destination is north th e n
5 go NORTH
6 else
7 go SOUTH
s en d if
9 else if destination in same row th e n

10 if destination is east th e n
u go EAST
12 else
13 go WEST
14 en d if
is else if destination is north east th e n
is go NORTH o r EAST
17 else if destination is north west th e n
is go WEST
19 else if destination is south east th e n
20 go SOUTH
21 else if destination is south west th e n
22 go SOUTH o r WEST
23 en d if

15

A lgorith m 4 Odd-Even

1 Valid-Directions = 0
2 if at destination then
3 arrive
4 else if destination in same column th en
5 if destination is north th en
e Valid-Directions <— (Valid-Directions U NORTH)
7 else
8 Valid-Directions <— (Valid-Directions U SOUTH)
9 end if

10 else if destination is east th en
n if destination in same row th en
12 Valid-Directions <— (Valid-Directions U EAST)
13 else
14 if this column is odd th en
is if destination is north th en
is Valid-Directions 4— (Valid-Directions U NORTH)
17 else
is Valid-Directions 4— (Valid-Directions U SOUTH)
19 end if
20 end if
21 if destination is odd o r more than one column away then
22 Valid-Directions 4— (Valid-Directions U EAST)
23 end if
24 end if
25 else
26 Valid-Directions 4— (Valid-Directions U WEST)
27 if this column is even and destination is not in the same row th en
28 if destination is north th en
29 Valid-Directions 4— (Valid-Directions U NORTH)
30 else
31 Valid-Directions 4— (Valid-Directions U SOUTH)
32 end if
33 end if
34 end if
35 adaptively choose a direction from ValidJDirections

16

V

----- ► -------
i

V '

--------■<-----•,

1 \

---- -----------

V
A i A Ik ;

-----►......... ---------<------ ----- w -------- ------- --------1
(a) Valid and invalid turns in (b) Valid and invalid turns in
even columns odd columns

Figure 2-3: Valid and invalid turns in Odd-Even

2.6 N on-M inim al O dd-Even

The concept of odd and even columns in the (minimal) odd-even algorithm has been used

to design a non-minimal odd-even algorithm (NMOE) [10]. This algorithm allows any turn

at any point in the network as long as the turn itself is valid in the current column and if

after the turn, the packet can still reach its destination without taking an invalid turn. The

idea is that by allowing extra paths to be available, even if the paths are non-minimal, the

packet can reach its destination faster.

When the routing algorithm chooses an output port, it can choose a direction from one

of three sets. The first set contains directions tha t would have the packet follow a minimal

path. The second set has the packet choose a direction th a t is 90° from a direction that

follows a minimal path (e.g., north is 90° from east). The third set is a direction th a t is 180°

from a direction th a t follows a minimal path (e.g., west is 180° from east). Figure 2-4 shows

two of the possible combinations of 0°, 90° and 180° directions. If the routing algorithm

only uses directions from setO, the algorithm will act like the minimal odd-even algorithm.

The routing algorithm chooses which set and direction to use by looking a t the input

queue size of the router in that direction. Initially, the algorithm looks only at directions

from the minimal set (setO). If there is an input port tha t is not full along a direction from

the minimal set, the routing algorithm chooses th a t direction. If all input ports are full

using directions from the minimal set, the routing algorithm will consider the directions

in the 90° set (setl). If all those directions are not available, the routing algorithm will

attem pt to use a direction from the 180° set (set2). If all valid directions are unavailable,

17

Non-Minimal Path
90’

(setl)

Non-Minimal Path
180°
(set2)

Minimal Path
0 ’

(setO)

Non-Minimal Path
90*

(setl)
(a) Destination to the east

Non-Minimal Path
90°

(setl)

Non-Minimal Path
90°

(setl)

Minimal Path
0 °

(setO)

Minimal Path
0 °

(setO)
(b) Destination to the southeast

Figure 2-4: Direction sets

the routing algorithm waits for the first valid direction tha t is available.

The pseudo code for populating the three sets is shown in Algorithms 5 through 11.

The pseudo code for choosing a direction from the three sets is shown in Algorithm 12.

A lg o rith m 5 Odd-even NM

1 setO = setl = set2 = 0
2 if at destination th e n
3 arrive
4 else if same column th e n
5 populate the sets using ’NMOE same column’ (Algorithm 6)
e else if same row th e n
7 populate the sets using ’NMOE same row’ (Algorithm 7)
s else if destination north east th e n
9 populate the sets using ’NMOE north east’ (Algorithm 8)

10 else if destination south east th e n
n populate the sets using ’NMOE south east’ (Algorithm 9)
12 else if destination north west th e n
13 populate the sets using ’NMOE north west’ (Algorithm 10)
14 else if destination south west th e n
is populate the sets using ’NMOE south west’ (Algorithm 11)
io end if
17 adaptively choose a direction from the three sets

18

A lgorith m 6 NMOE same column

1 if this column is odd th e n
2 if coming from the east th e n
3 setl * — (setl U WEST)
4 en d if
5 if destination is south th e n
6 setO «- (setO U SOUTH)
7 else
8 setO <— (setO U NORTH)
9 end if

10 else
11 setl «— (setl U WEST)
12 if destination is south th e n
13 setO <— (setO U SOUTH)
14 if column address is not 0 th e n
15 set2 «- (set2 U NORTH)
16 en d if
17 else
18 setO <— (setO U NORTH)
19 if this column address is not 0 th e n
20 set2 +— (set2 U SOUTH)
21 en d if
22 end if
23 en d if

19

A lgorith m 7 NMOE same row

1 if th is colum n is odd then
2 if destination is east then
3 setO <— (setO U E A ST)
4 if destination is more th an 1 colum n away then
5 s e t l 4- (s e t l U NO RTH U SO U T H)
6 end if
7 if com ing from east then
8 set2 <— (set2 U W E ST)
9 end if

10 else
n setO * — (setO U W E ST)
12 end if
13 else
14 if destination is east then
is setO * — (setO U E A ST)
io set2 <— (set2 U W E ST)
17 if not com ing from w est then
is s e t l 4- (s e t l U N O RTH U SO U T H)
19 end if
20 else
21 setO <— (setO U W E ST)
22 s e t l 4 - (s e t l U N O RTH U SO U T H)
23 end if
24 end if

Algorithm 8 NMOE north east

1 if this column is odd then
2 setO <— (setO U NORTH)
3 if destination is more than 1 column away th en
4 setO <— (setO U EAST)
5 setl 4— (setl U SOUTH)
e end if
7 if coming from east then
s s e t l 4— (setl U WEST)
9 end if

10 else
11 setO 4— (setO U EAST)
12 setl 4— (setl U WEST)
13 if not coming from west then
14 setO 4— (setO U NORTH)
15 setl 4— (setl U SOUTH)
16 end if
17 end if

20

A lgorith m 9 NMOE south east

1 if this column is odd th e n
2 setO <— (setO U SOUTH)
3 if destination is more than 1 column away th e n
4 setO <— (setO U EAST)
5 setl <— (setl U NORTH)
e en d if
7 if coming from east th e n
s setl <— (setl U WEST)
9 end if

10 else
n setO «— (setO U EAST)
12 setl 4— (setl U WEST)
13 if not coming from west th e n
14 setO *— (setO U SOUTH)
is setl <— (setl U NORTH)
io end if
17 en d if

A lg o rith m 10 NMOE north west

1 if this column is odd th e n
2 setO 4— (setO U WEST)
3 else
4 setO ♦- (setO U WEST, NORTH)
5 setl <— (setl U SOUTH)
e en d if

A lg o rith m 11 NMOE south west

1 if this column is odd th e n
2 setO <— (setO U WEST)
3 else
4 setO (setO U WEST U SOUTH)
5 setl 4— (setl U NORTH)
6 en d if

21

A lgorithm 12 Choice of direction for odd-even non-minimal [10]

1 for each set in setO, setl, set2 do
2 for each direction d in the set do
3 if the router’s input queue in tha t direction is not full th en
4 route the packet in tha t direction
5 en d if
6 en d for
7 end for
8 loop
9 wait for valid direction where the router’s input queue in that direction is not full

10 en d loop

2.7 D yX Y

Dynamic XY (DyXY) [11] does not prohibit any turns from the turn model. Therefore,

DyXY can deadlock, contrary to what the original paper claims. The authors of the orig­

inal paper did not have deadlock in their experiments because their NoC simulator used

unbounded queues in the routers. The algorithm cannot livelock because only minimal

paths are used.

If more than one minimal path exists between a source and destination router, the

algorithm will route adaptively by using stress values. A router’s stress value is the current

number of flits in all of the router’s queues. So for each routing decision where two possible

outcomes are valid, DyXY will choose the router with the smaller stress value for the

output. The algorithm goes in the horizontal direction if the stress values are the same.

Algorithm 13 shows the pseudo code for DyXY.

2.8 A daptiv ity o f R outing A lgorithm s

There are three levels of adaptivity for routing algorithms: not adaptive, partially adaptive,

and fully adaptive [8]. An algorithm that is not adaptive has only one possible path for

each source destination pair. An algorithm that is partially adaptive has a t least one source

destination pair with more than one path. For an algorithm to be considered fully adaptive,

the algorithm must allow any path to be used between any source destination pair. XY is

22

A lgorith m 13 DyXY

1 i f at destination t h e n
2 arrive
3 e l s e i f destination in sam e colum n t h e n
4 i f destination is north t h e n
5 go NORTH
6 e ls e
7 go SO U TH
8 e n d i f
9 e l s e i f destination is in sam e row t h e n

10 i f destination is east th e n
11 go E A ST
12 e ls e
13 go W E ST
14 e n d i f
is e ls e
io D ir l +— horizontal d irection o f destination
17 Dir2 <— vertical d irection o f destination
is i f stress o f D ir l < stress o f D ir2 t h e n
19 go D ir l
20 e ls e
21 go Dir2
22 e n d i f
23 e n d i f

23

not adaptive; west-first, negative-first, odd-even, and DyXY are partially adaptive.

Adaptivity

XY MWe? 'F,r? «. Odd-Even Odd-Even NM Negative-First
DyXY

, 1 | 1

Deadlock Deadlock
Free Possible

Figure 2-5: Adaptivity of Existing Routing Algorithms

Figure 2-5 puts these six routing algorithms on a scale of adaptivity with the routing

algorithms on the left side less adaptive than the routing algorithms on the right. The line

between odd-even NM and DyXY is the line of practicality. Routing algorithms on the

right hand side of tha t line are not practical in a real NoC; these routing algorithms are

only useful for simulations. This is because DyXY could not actually be implemented in a

NoC in a deadlock free way.

Odd-even is more adaptive than both west-first and negative-first because on average

odd-even has more paths between any source destination pair [9]. However, the added com­

plication off odd and even columns makes the odd-even routing algorithm more complicated

than west-first or negative-first. In general, the more adaptive a practical routing algorithm

is, the more complicated it is.

No fully adaptive algorithm has been defined that is deadlock free and does not use

preemption or virtual channels [12].

24

CHAPTER 3

W eighted N on-M inim al OddEven

Using the NMOE algorithm as the starting point, we have defined a new routing algorithm.

The conclusion of the NMOE paper is tha t better decisions could be made when choosing

a nonoptimal output port. We propose a new algorithm, called Weighted Non-Minimal

OddEven (WeNMOE), which relies on five parameters to fine tune the behavior of the

algorithm that calculates a routing cost for each output port. By combining and choosing

the correct values for the parameters, the algorithm can choose a suitable output port when

a packet is routed.

3.1 R outing Cost

The routing cost for a direction is based on the stress value for the neighboring router

in that direction. This cost is modified by how full the corresponding input queue of the

neighboring router is and whether the output port in tha t direction is along a non-minimal

path:

routingCost(d, c) = routerStress(neighbor(d), c) • queuePenalty(d) • dirPenalty(d) (3.1)

3.2 Stress Values

Stress values are used to guide the routing algorithm toward a route around congestion or

faulty routers. The equation to calculate a router’s current stress a t cycle c is:

25

currentStress(c) = a • queueStress(c) + (1 — a) • neighborStresses(c) (3-2)

The current stress is a combination of how many flits are in the router and the stress

values of neighboring routers. The neighbor weight parameter a, 0 < a < 1, determines the

relative weight of these values. By including the stress value of neighbors in the calculation,

the congestion of a router can be propagated to other parts of the network. For a close

to 1, the state of a router’s neighbors are not propagated as much as when a is close to 0.

The queue stress of a router is the total number of flits currently in the router divided

by the maximum number of flits the router can contain:

^2 queueSize(c)

queueStress(c) = m a ^ M e P U t s b Q u e n (8 <3-3)

The neighborStresses for a router is a function of all the stress values of the neighboring

routers. For our algorithm, we use the average stress value of all the neighboring routers:

Y2 routerStress(neighbor, c — 1)
neighborStresses(c) = neighboTS---------- (3.4)

v ' numNeighbors

The neighboring routers stress value is one cycle old. This is because the NoC needs

one cycle to transfer the stress value of a router to its neighbors and makes the definition

not circular.

The stress value that a router sends to its neighbors is calculated by by combining the

current stress of the router and the stress value of the router last cycle:

routerStress(c) = /3 • routerStress(c — 1) + (1 — 0) ■ currentStress(c) (3.5)

26

The higher this value, the more congested the router is. The history weight parameter

P (0 < ft < 1) determines the relative weight of the current stress value and the past

stress value. By including past stress values, the stress value of a router does not change

quickly and reflects the stress values of neighbors. This is because a router’s stress value

increases and decreases with respect to the total number of flits in the router. When flits

leave the current router, the flits most likely will have traveled to neighboring routers, which

increases the stress value in the neighboring routers and decreases the stress value in the

current router.

3.3 Q ueue Penalty

For a specific router, the same stress value is sent to all of the router’s neighbors. This

tells the neighbors the overall state of the router, but not the details of the input port tha t

directly affects the current router. The queuing penalty is used for this purpose:

queuePenalty(d) = 1 + u> ■ - (3 .6)
maxQueuebize

The queuePenalty describes how full the input port of the neighboring router is. For

a given direction d, it is the queue occupancy in this direction, scaled such th a t 1 <

queuePenalty < 1 + u>. u> is called the queue penalty scale.

3.4 D irection P enalty

To influence the decision to take non-minimal paths, a function to penalize directions along

a non-minimal path is used:

dirPenalty(d) = <

1 if minimal path

1 + 7 if 90° from minimal path (3-7)

1 + 5 if 180° from minimal path

27

Th direction penalty function returns a value greater than or equal to 1 th a t describes

how bad the direction d is relative to the minimal path. If d would have the packet follow a

minimal path, the value is 1. If d is 90° from a minimal path (e.g., north is 90° from east)

then this function returns 1 + 7 and ‘punishes’ the direction for not being along a minimal

path. This function does the same calculation for a direction that is 180° from a minimal

path. The parameters 7 and <5, 0 < 7 < 5, determine how severe the dirP enalty is when

not using a minimal path.

3.5 W eighted N on-M inim al OddEveri

The algorithm to choose a direction from the three sets in WeNMOE is:

A lg o rith m 14 Routing algorithm Weighted Non-Minimal OddEven

Populate the sets setO, setl, and set2 as is done in Algorithm 5
triple_set = 0

for each set number in 0 , 1 , 2 do
for each direction d in the set do

triple_set <— (triplejset U (routingCost(d), d, set number))
end for

en d for
triple = Min^ triple_set {compare triples using (3.8)}
route the packet in direction triple.d

First, the algorithm populates a triple set for each direction in each set. Then the lowest

cost triple is found using:

(c\,Sx,di) -< (c2,S2,d2) = Cl < C 2 V(ci = C 2 A Si < S2)V(ci = C 2 A S 1 = S2 A dl < d2) (3.8)

First the triple with the smallest routing cost is chosen. If two triples have the same

routing cost, then the triple with the lowest set number (closest to the minimal path) is

28

chosen. If two triples have the same set number and routing cost, then the direction with

the highest priority is chosen. The priority of directions is (from highest to lowest) north,

east, south, west and ensures th a t the algorithm remains deterministic.

3 .5 .1 D ifferen ces b e tw een W eN M O E a n d N M O E

One difference between the NMOE and WeNMOE routing algorithms is tha t WeNMOE

always chooses an output port a t the end of routing while NMOE may not choose an

output port if all input queues are full. This difference is required because the decision

NMOE makes to route a packet can be done in one cycle, where the decision WeNMOE

makes may take multiple cycles. Therefore, if WeNMOE ended routing without making a

decision, several cycles would have to be spent to route the packet again.

The second difference is that WeNMOE may choose a minimal path over a non-minimal

path, even if the input queue along the minimal path is full. This is because according to

the routing cost, waiting some cycles for the minimal path to be available may let a packet

be delivered faster than taking a non-minimal path.

3 .5 .2 C onfigurin g W eN M O E as N M O E

The proposed algorithm can be configured to be similar to NMOE in most cases. The only

case where the algorithms would act differently is when the original algorithm would not

choose an output port and the proposed algorithm would.

To configure WeNMOE to act like NMOE, the queuePenalty function would need to be

changed to:

queuePenalty (d) —
queueSize(d)

maxQueueSize
(3.9)

This is because no us value can make the original function have binary outputs. In

additipn, queueStress function would be set to a constant value of 1 :

29

queueStress(c) = 1 (3.10)

The other parameters would be set as follows:

• 0 = 0

• 8 = 0

• 7 = 0

The history weight value is 0 to ignore past values and there are no penalties to choosing

non-minimal paths. These changes are required to ignore all values except queuePenalty

when determining an output port.

The routing values and stress values used in this algorithm can be used in other 2D

mesh routing algorithms. If the routing algorithm uses non-minimal paths, no changes are

required. If the routing algorithm uses only minimal paths, the dirPenalty function should

be removed from the routing cost equation and (3.1) replaced by (3.11):

routingCost(d) = stress(neighbor(d), c — 1) • queuePenalty (d) (3.11)

Alternatively, 7 and 5 may be set to 0.

3.6 Im plem entation on a N oC

A NoC that implements Weighted Non-Minimal OddEven needs to send the stress value of

a router to its neighbors every cycle. In addition, a credit based system is needed between

the output and input ports as in NMOE. A credit system allows an input port and an

output port to communicate so the output port will not send flits over the wire if there are

no free spots for flits (credits). Finally, floating point arithmetic needs to be converted to

integer arithmetic.

30

CHAPTER 4

E xperim ental Fram ework

A simulator was implemented based on the NoC model described in Chapter 1 and can

perform the measurements described in this chapter. In addition, this simulator implements

deadlock detection, basic fault generation, and basic verification of results.

4.1 Experim ents

Each experiment starts with an empty NoC and is done using one packet injection rate, one

traffic pattern, and one routing algorithm.

The packet injection rate represents the probability each router has to generate a new

packet every cycle. For example, a packet injection rate of 2% means every cycle each router

has a 2 % chance to generate a packet.

Traffic patterns are functions th a t take the source for a packet and produce a destination.

Table 4-1 shows the traffic patterns used and their definitions. In this table, i and j represent

the row and column coordinates of a source router.

Bit reverse traffic takes the source row and columns bits, reverses the bits of them, and

transposes the reversed results. Hotspot traffic sends traffic to a router chosen from a small

set of destination routers using a uniform distribution. Complement traffic takes the row

and column coordinates and subtracts then from the total number of rows minus 1 and

the total number of columns minus 1 respectively to produce the destination coordinates.

Transpose traffic uses the source’s row address as the destination’s column address and the

source’s column address as the destination’s row address. Uniform random traffic randomly

chooses a destination router according to a uniform distribution.

31

B it Reverse
Src: (i, j) —*■ Dest: (rev(j), rev(i))
Take the source row and column bits, reverse them, and transpose them

H otspot (D)
Src: (i , j) —* Dest: random router from set D
Send traffic to a router uniformly chosen from a set of possible destination routers

Com plem ent
Src (i, j) -» Dest: (R O W S - I - i, C O LS - 1 - j)
Subtract source row and column from total number of rows and columns

Transpose
Src: (i, j) -> Dest: (j, i)
Source row is the destination column and source column is destination row

Uniform Random
Src: (*, j) -y (RAND, RAND)
Uniformly choose a random destination row and column

Table 4-1: Traffic Patterns

4.2 M easures

Many measurements can be used to evaluate the results of an experiment. These measure­

ments include calculating the packet arrival rate, the number of misroutes during network

operation, the number of different paths used between a source and destination, the to tal

number of flits in the network, and the average packet latency. The two measures used here

are the average number of flits in the network and the average packet latency, although

other measures were used to validate the experiments.

4 .2 .1 A v era g e N u m b er o f F lits in th e N e tw o rk

The average number of flits in the network describes the stability of the routing algorithm

for a specific packet injection rate. If the average number of flits is stable throughout the

experiment, the routing algorithm is able to route packets at least as fast as packets are

injected into the network. This can be shown by plotting the number of flits in the network

32

at each cycle and fitting a line to the plot. (Figure 4-1 is a plot of this and is from an

experiment using the XY routing algorithm and uniform random traffic. If the average

number of flits in the network is not increasing, the thick line across the plot will have a

slope close to 0. The y-intercept of tha t line is close to the actual average number of packets

in the network.

800

700

600
o
* 500

V-

4-><U
z
c 400i/i4->

- 300(0

200

100

2000 4000 6000 8000 10000 12000 14000 16000 18000 200000
Cycle

Figure 4-1: Total number of flits in the network for packet injection rate 1%

As the packet injection rate increases, the fit line will have a larger y-intercept because

the average number of packets in the network also increases. The slope of the line also

stays close to 0 as long as the routing algorithm can route packets fast enough. However,

if the routing algorithm cannot route packets fast enough, the slope increases (Figure 4-2).

Because the slope is not close the 0, the average number of packets in the network grows to

infinity over time.

The performance of a routing algorithm cannot be measured if the slope of the fit line

is not close to 0. This is because the routing algorithm has broken down and cannot route

33

800

700

600
o
* 5004-><u
z
c 400

u. 300

200

100

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Cycle

Figure 4-2: Total number of flits in the network for packet injection rate 2%

packets faster than they are generated. At this point, the network is saturated.

4 .2 .2 P ack et L a ten cy

Packet latency is the time it takes for a packet to be delivered, measured from the packet’s

generation to the delivery of the tail flit. The formula to calculate the latency d for each

packet is:

d = di + ^] {dh + dq(r) + 1) + dd (4-1)
r&path

di is number of cycles the packet is waiting in the core’s queue after generation. Injection

of a packet occurs when the head flit is added to a router’s queue. It is possible th a t a

packet is generated and immediately injected into the router (di = 0) because the router’s

queue has free space.

The sum represents the total latency of events that occur at each router along the

packets path. These events are routing, queuing, and wire transfer. Routing takes dh cycles

34

and is dependent on the routing algorithm used. dq(r) is the queuing wait, the time spent

waiting in queues (not including routing) for router r. The more congestion on a network,

the higher dqr. The last term is constant and represent the time it takes for flits to travel

across a wire.

dd is the number of cycles the network needs to finish delivery of the packet. It is equal

to the length of the packet minus two. This is because when a flit is being delivered, there

is no wire transfer (minus 1 to offset the sum) and a flit can be delivered the last cycle of

routing (minus 1 to not double count cycles).

4 .2 .3 P ack et L a ten cy at M an y In je c tio n R a te s

To easily see when a routing algorithm breaks down, the average packet latency can be

plotted over several packet injection rates (Figure 4-3).

100
XY

80inQJ
U>U

60

40cuCT(OL-

20

0.00% 2.00% 4.00% 6.00% 8.00% 10.00% 12.00% 14.00% 16.00%
Flit Injection Rate (flits/node/cycle)

Figure 4-3: Average latency for XY in a 9x9 mesh

There are three parts to a plot that show how well a routing algorithm functions. The

first part is at low packet injection rates, when the routing algorithm can route packets

35

faster than the core can generate packets (0.5% to about 7% in Figure 4-3). The second

part is when the cores are generating packets at packet injection rates near the limit tha t

routing algorithm can route packets (7.5% to about 8%in Figure 4-3). The final part is

when the routing algorithm cannot keep up with the number of packets being injected, the

network is saturated, and the average number of flits in the network is not stable.

The most significant part of this plot is the second part, where the limits of the routing

algorithms plotted are reached. This part determines the highest injection rate the routing

algorithm can handle.

4 .2 .4 C om p arin g M u ltip le A lg o r ith m s

Breakdown
Difference

Stable
Difference

Packet Injection Rate

(a) Algorithms do not cross

Breakdown
Difference

>»u

Stable
Difference

Packet Injection Rate

(b) Algorithms do cross

Figure 4-4: Important differences when comparing multiple algorithms

To compare multiple algorithms, each algorithm’s average packet latency is plotted

against the packet injection rate on the same plot. There are two differences to look for on

these plots: the stable difference and the breakdown difference (Figure 4-4).

The stable difference shows how much better one algorithm is than another when the

average number of flits in the network is stable. In both subfigures, algorithm X is better.

The breakdown difference describes how much better a routing algorithm is a t packet

injection rates that cause break down. In Figure 4-4(a), algorithm X is better than the

algorithm Y, however in Figure 4-4(b) algorithm Y is better.

36

PIR Actual
Avg Time

Actual
Avg Pkts

Calculated
Avg Time

Calculated
Avg Pkts

Ratio %
Error

0.1 5.951 0.556 5.556 0.595 1.071 7.1
0.2 5.949 1.112 5.560 1.190 1.070 7.0
0.3 5.911 1.670 5.566 1.773 1.062 6.2
0.4 5.936 2.243 5.607 2.374 1.059 5.9
0.5 5.945 2.806 5.612 2.973 1.059 5.9
0.6 5.946 3.361 5.601 3.567 1.061 6.1
0.7 5.927 3.905 5.578 4.149 1.063 6.3
0.8 5.951 4.488 5.610 4.761 1.061 6.1
0.9 5.951 5.062 5.625 5.356 1.058 5.8
1.0 5.962 5.630 5.630 5.962 1.059 5.9
1.1 5.971 6.201 5.637 6.568 1.059 5.9
1.2 5.943 6.734 5.612 7.131 1.059 5.9
1.3 5.956 7.300 5.616 7.742 1.061 6.1
1.4 5.964 7.875 5.625 8.350 1.060 6.0
1.5 5.961 8.440 5.626 8.942 1.060 6.0
1.6 5.965 9.011 5.632 9.545 1.059 5.9
1.7 5.967 9.566 5.627 10.144 1.060 6.0
1.8 5.956 10.124 5.624 10.721 1.059 5.9
1.9 5.958 10.694 5.628 11.320 1.059 5.9

Table 4-2: Little’s Law results

Figure 4-4(b) shows a tradeoff between algorithm X and Y. For smaller packet injection

rates, algorithm Y is worse, but can support higher injection rates before breakdown.

4.3 L ittle’s Law

Little’s law states, “the average number of customers in a queuing system is equal to the

average arrival rate of customers to th a t system, times the average time spent in th a t

system” [13]. In an equation representing NoC, this is N = W \ where N is the average

number of packets in the network, A is the packet injection rate, and W is the average

latency for packets.

For Little’s Law to be applicable, the system has to be stable. In NoC this means th a t

the slope of the line in the number of flits in a network must be close to 0.

Experiments were run and results are gathered in Table 4-2. These experiments used

37

the XY routing algorithm. The packet injection rate was varied from 0.1% to 1.9% and the

packet length was one. The first three columns are the results from the experiment, the

next two columns are the calculated results, and the last two columns are the ratios of the

calculated results to the actual results and the percent error. The ratios are close to 1 and

the percent error is small which helps show that this NoC model represents a valid queuing

system.

38

CHAPTER 5

E xperim ental Evaluation

Parameters for WeNMOE were chosen by running experiments with bit reverse traffic with

queue length of 1 and changing the values until no more improvement was found. The

parameters used in WeNMOE are shown in Table 5-1.

The following experiments compare WeNMOE, using the set values from Table 5-1,

against other routing algorithms. These experiments use different traffic patterns and in­

jection rate. All experiments have a queue size of 1 and a packet size of 5. The network

sizes used are 8x8 and 9x9. Using different sizes of the network allow the effects of having

even or odd columns on the right most edge to be seen when using the odd-even based

routing algorithms.

5.1 B it R everse

Experiments with bit reverse traffic were generated for flit injection rates between 0.5% and

11.5% at 0.25% increments for the 8x8 network.

The source and destination pairs tha t bit reverse traffic generates is shown in Figure 5-

2. As is shown in the figure, this type of traffic generates small hotspots throughout the

network.

Symbol Value Name
a 0.01 Neighbor Weight
0 0.3 History Weight
7 1.25 Direction Penalty 90°
8 2 Direction Penalty 180°
uj 2 Queue Penalty Scale

Table 5-1: Parameter values for WeNMOE

39

Av
er

ag
e

La
te

nc
y

(C
yc

le
s)

100
XY

WestFirst
NegativeFirst

OddEven
NMOE

WeNMOE -

80

60

40

• • •
20

10 .00% 12 .00%0 .00% 2 .00% 4.00% 6 .00 % 8 .00%

Flit Injection Rate (flits/node/cycle)

Figure 5-1: Bit reverse traffic on a 8x8 mesh

WeNMOE out performs all other algorithms on this type of traffic. This is because

WeNMOE can route around the hotspots generated by bit reverse traffic.

40

Figure 5-2: Source and destination pairs for bit reverse traffic on a 4x 4 network

Z
71 Z
T 7

71
Z

(a) Transpose traffic on a 4x4 network (b) Transpose traffic on a 5x5 network

Figure 5-3: Source and destination pairs for transpose traffic

5.2 Transpose

Experiments with transpose traffic were generated for flit injection rates between 0.5% and

12% at 0.25% increments for 8x8 and between 0.1% and 2% at 0.05% increments for 9x9.

The source destination pairs for transpose traffic are shown in Figure 5-3.

41

Av
er

ag
e

La
te

nc
y

(C
yc

le
s)

Av

er
ag

e
La

te
nc

y
(C

yc
le

s)
100

80

60

40

20

XY
WestFirst

NegativeFirst
OddEven

NMOE
WeNMOE

0.00% 2.00% 4.00% 6.00% 8.00% 10.00%
Flit Injection Rate (flits/node/cycle)

Figure 5-4: Transpose traffic on a 8x8 mesh

12.00% 14.00%

100

80

60

40

20

0
1.00% 2.00% 3.00% 4.00% 5.00% 6.00% 7.00% 8.00% 9.00% 10.00%

Flit Injection Rate (flits/node/cycle)

Figure 5-5: Transpose traffic on a 9 x 9 mesh

WestFirst j
NegativeFirst -j-*-

OddEven t a
NMOE :

WeNMOE —♦

42

5.3 Uniform R andom

(b) Uniform random traffic 5x5 network(a) Uniform random traffic on a 4x4 network

Figure 5-6: Example of source and destination pairs for uniform random traffic

Experiments with uniform random traffic were generated for flit injection rates between

3% and 12% at 0.25% increments. At 12%, all routing algorithms being tested have broken

down. There is no large difference between results on a 9x9 or 10x10 network size.

A possible uniform traffic distribution is shown in Figure 5-6.

XY outperforms all other routing algorithms for uniform random traffic and WeNMOE

performs second best. XY performs better because WeNMOE attem pts to make smart

choices on where to route packets, but the smart choices are not needed because the traffic

is already balanced (the nature of uniform random) and these choices cause more congestion.

43

Av
er

ag
e

La
te

nc
y

(C
yc

le
s)

Av

er
ag

e
La

te
nc

y
(C

yc
le

s)

100
XY

WestFirst
NegativeFirst

OddEven
NMOE

WeNMOE

80

60

40

20

3.00% 4.00% 5.00% 6.00% 7.00% 8.00% 9.00% 10.00% 11.00% 12.00%
Flit Injection Rate (flits/node/cycle)

Figure 5-7: Uniform random traffic on a 8x8 mesh

100
XY — t-

WestFirst
NegativeFirst — *-

OddEven s
NMOE

WeNMOE — •

80

60

40

=
20

0 ----
3.00% 7.00%4.00% 5.00% 6 .00% 8 .00% 9.00% 10.00%

Flit Injection Rate (flits/node/cycle)

Figure 5-8: Uniform random traffic on a 9 x9 mesh

44

5.4 C om plem ent

(b) Complement on a 5x5 network(a) Complement traffic on a 4x4 network

Figure 5-9: Source and destination pairs for complement traffic

Experiments with complement traffic were generated for flit injection rates between

0.05% and 8% for 9x9 and between 0.3% and 8%. Both increase at 0.25% increments. At

8%, all routing algorithms being tested have broken down.

The source and destination pairs generated by complement are shown in Figure 5-9.

This type of traffic generates a large hotspot in the center.

As is the same with uniform random, XY performs the best for this type of traffic, WeN­

MOE performs second best. XY performs better because it naturally avoids the hotspots

in the center of the network.

45

Av
er

ag
e

La
te

nc
y

(C
yc

le
s)

Av

er
ag

e
La

te
nc

y
(C

yc
le

s)

100
XY

WestFirst
NegativeFirst

OddEven
NMOE

WeNMOE

80

60

40

20

0 ------------------- 1--------------------1_____________i_____________i_____________i_____________i_________ i_________

0.00% 1.00% 2.00% 3.00% 4.00% 5.00% 6.00% 7.00% 8.00%
Flit Injection Rate (flits/node/cycle)

Figure 5-10: Complement traffic on a 8x8 mesh

100
XY

WestFirst
NegativeFirst

OddEven
NMOE

WeNMOE

80

60

40

20

0 ------------------- 1_____________ i_____________i_____________i_____________:_____________i_____________i_____________

0.00% 1.00% 2.00% 3.00% 4.00% 5.00% 6.00% 7.00% 8.00%
Flit Injection Rate (flits/node/cycle)

Figure 5-11: Complement traffic on a 9 x 9 mesh

46

5.5 H otspot

Two types of hotspot traffic were generated, where the destinations are the four corners

of the network (Figure 5-12) and where the destinations axe the four corners of the center

square (Figure 5-13).

On the 8x8 networks, WeNMOE and NMOE have the same performance and outper­

form all other algorithms as expected. These routing algorithms can route around heavily

congested spots. However, on the 9x9 networks, WeNMOE outperforms NMOE. This

difference may be attributed to the same difference between NMOE and WeNMOE th a t

affected the transpose traffic.

(b) Hotspot traffic on a 5 x 5 network(a) Hotspot traffic on a 4x4 network

Figure 5-12: Example of source and destination pairs for hotspot traffic to corners of a
network

5.6 W eN M O E and N M O E

The reason WeNMOE outperforms NMOE consistently (the breakdown difference), is be­

cause WeNMOE always chooses an output port where NMOE does not. W hen the packet

injection rate gets to large enough values, NMOE waits for the first open input port, which

47

(a) Hotspot traffic on a 4x4 network (b) Hotspot traffic on a 5x5 network

Figure 5-13: Example of source and destination pairs for hotspot traffic to the center of a
network

has a chance to be along a non-minimal path where WeNMOE will choose a minimal path

when all routers have a high stress value.

48

Av
er

ag
e

La
te

nc
y

(C
yc

le
s)

Av

er
ag

e
La

te
nc

y
(C

yc
le

s)
100

XY
WestFirst

NegativeFirst
OddEven

NMOE
WeNMOE

80

60

40

20

0 ----------------- 1___________ i........._ i ___________ i___________ i___________ i___________ i____________i___________

0.00% 0.50% 1.00% 1.50% 2.00% 2.50% 3.00% 3.50% 4.00% 4.50%
Flit Injection Rate (flits/node/cycle)

Figure 5-14: Hotspot traffic sending to the four corners on a 8x8 mesh

100
XY — t-

WestFirst
NegativeFirst — *■

OddEven —e
NMOE

WeNMOE —♦

80

60

40

20

0 ---------------- i___________i___________i___________ i___________ i___________ i___________ i i___________ i___________

0.40% 0.60% 0.80% 1.00% 1.20% 1.40% 1.60% 1.80% 2.00% 2.20% 2.40%
Flit Injection Rate (f!its/node/cycle)

Figure 5-15: Hotspot traffic sending to the four corners on a 9 x 9 mesh

49

Av
er

ag
e

La
te

nc
y

(C
yc

le
s)

Av

er
ag

e
La

te
nc

y
(C

yc
le

s)
100

XY
WestFirst

NegativeFirst
OddEven

NMOE
WeNMOE

80

60

40

20

0 ___________ i___________ i___________ i___________ i___________ i___________ i___________ i___________ i___________

0.00% 0.50% 1.00% 1.50% 2.00% 2.50% 3.00% 3.50% 4.00% 4.50%
Flit Injection Rate (flits/node/cycle)

Figure 5-16: Hotspot traffic sending to the center square on a 8x8 mesh

100
XY

WestFirst
NegativeFirst

OddEven
NMOE

WeNMOE

80

60

40

20

0 ----
0 .00% 0.50% 2 .00% 2.50% 3.00% 3.50%1 .00% 1.50%

Flit Injection Rate (flits/node/cycle)

Figure 5-17: Hotspot traffic sending to the center square on a 9 x 9 mesh

50

CHAPTER 6

C onclusion

A Network on chip (NoC) moves data among components of a single chip. NoC uses a

regular layout of routers and employs routing algorithms to direct packets consisting of flits

through the network. NoCs face many challenges including congestion, faults, deadlock, and

livelock. To avoid congestion and faults, adaptive routing algorithms route packets around

congested or faulty routers. In order to prevent deadlock and livelock, routing algorithms

on a 2D mesh can use the turn model [8] th a t prohibits certain turns in a NoC to avoid

dependency cycles.

The non-minimal odd-even routing algorithm (NMOE) [10], adaptively chooses a direc­

tion to route a packet and is deadlock free because it is based on the tu rn model. This thesis

shows how the performance of NMOE can be improved by using more information to make

the decision to choose a direction. The proposed routing algorithm, Weighted Non-Minimal

OddEven (WeNMOE), improves on NMOE by adding a routing cost estimation mechanism.

The routing cost of each output port is based on the router’s stress value, the state of the

input port in the next router, and whether the direction is on a minimal path or not.

A router’s stress value is an exponential weighted average of the current stress of the

router and past stresses. The history weight f3 controls which stress value affects the router’s

stress more. The current stress of a router is the weighted sum of the to ta l number of flits in

the router divided by the maximum possible flits in the router and the average router stress

of the four neighboring routers. The neighbor weight a controls how much stress values of

neighboring routers affect the current router’s stress.

The queue penalty describes how full the input port on the next router is. The queue

weight u> controls how much the queue penalty affects the routing cost.

51

The direction penalty of an output port is a function that returns a value tha t depends

on the possible direction relative to a minimal path. There are three possible values, 1, if

the direction is on a minimal path, 1 + 7 if the direction is 90° from a m in im al path and

1 + 5 if the direction is 180° from a minimal path.

Using a simulator developed to evaluate 2D mesh NoC routing algorithms, WeNMOE

was compared with the NMOE, XY, negative-first, west-first, and odd-even algorithms. The

experiments were on two different network sizes, 8 x 8 and 9 x 9 , and used different traffic

patterns: bit reverse, hotspots, complement, transpose, and uniform random. WeNMOE

outperforms all existing routing algorithms under all traffic patterns listed above with the

exception of only two (complement and uniform random) where XY performed better.

This is due to the uniformity of the traffic load on those patterns, which causes adaptive

algorithms to create congestion tha t normally does not exist.

WeNMOE has a few limitations as well. Since the routing algorithm has more choices

for possible directions, more hardware would be required to implement WeNMOE on a

NoC. In addition, the floating point based routing cost would have to be done using integer

arithmetic.

In future work, more types of traffic should be explored to evaluate WeNMOE and to

better understand its benefits and drawbacks. These traffic patterns can include hotspot

traffic on top of uniform random traffic and hotspots distributed randomly throughout the

network. In addition, different values for the parameters of WeNMOE should be evaluated.

The current values are based on WeNMOE’s performance for bit reverse traffic, and may

not provide the best performance for other types of traffic. Furthermore, the method used

to generate the routing cost, queue penalty, and direction weight should be further explored

to see if different approaches would result in better performance.

52

B IB L IO G R A P H Y

[1] W. J. Dally and B. P. Towles, Principles and Practices of Interconnection Networks

(The Morgan Kaufmann Series in Computer Architecture and Design). Morgan Kauf-

mann, 2004.

[2] T. Bjerregaard and S. Mahadevan, “A survey of research and practices of network-on-

chip,” ACM Comput. Swrv., vol. 38, June 2006.

[3] E. Salminen, A. Kulmala, and T. D. Hamalainen, “Survey of network-on-chip propos­

als,” March 2008.

[4] T. Mak, P. Cheung, K.-P. Lam, and W. Luk, “Adaptive routing in network-on-chips

using a dynamic-programming network,” Industrial Electronics, IE E E Transactions

on, vol. 58, pp. 3701 -3716, aug. 2011.

[5] Intel, “Single-chip cloud computer.” h ttp ://te c h r e se E u r c h .in te l.c o m /

P ro je c tD e ta ils .aspx?Id=l, 2012. [Online; accessed 27-April-2012].

[6] Intel, “Tera-scale computing research program.” h t tp : / / te c h r e s e a r c h . in te l .c o m /

R esearchA reaD etails.aspx?Id=27, 2012. [Online; accessed 27-April-2012].

[7] Intel, “Teraflops research chip.” h t tp : / / t e c h r e s e a r c h . in te l .c o m /p r o je c td e ta i l s .

aspx?id=151, 2012. [Online; accessed 27-April-2012].

[8] C. Glass and L. Ni, “The turn model for adaptive routing,” in Computer Architecture,

1992. Proceedings., The 19th Annual International Symposium on, pp. 278 -287, 1992.

[9] G.-M. Chiu, “The odd-even turn model for adaptive routing,” Parallel and Distributed

Systems, IEEE Transactions on, vol. 11, no. 7, pp. 729-738, Jul.

53

http://techreseEurch.intel.com/
http://techresearch.intel.com/
http://techresearch.intel.com/projectdetails

[10] W.-C. Tsai, K.-C. Chu, Y.-H. Hu, and S.-J. Chen, “Non-minimal, turn-model based

NoC routing,” Microprocessors and Microsystems, 2012. Article in Press, doi:

10.1016/j.micpro.2012.08.002.

[11] M. Li, Q.-A. Zeng, and W.-B. Jone, “DyXY - a proximity congestion-aware deadlock-

free dynamic routing method for network on chip,” in Design Automation Conference,

2006 43rd ACM /IEEE, pp. 849 -852, July 2006.

[12] L. Ni and P. McKinley, “A survey of wormhole routing techniques in direct networks,”

Computer, vol. 26, no. 2, pp. 62-76, Feb.

[13] L. Kleinrock, Queueing systems. New York: Wiley, 1975.

[14] W. Jang and D. Pan, “Application-aware NoC design for efficient SDRAM access,”

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,

vol. 30, pp. 1521 -1533, oct. 2011.

[15] M. A. Yazdi, M. Modarressi, and H. Sarbazi-Azad, “A load-balanced routing scheme for

NoC-based systems-on-chip,” in Hardware and Software Implementation and Control

of Distributed MEMS (DMEMS), 2010 First Workshop on, pp. 72 -77, june 2010.

[16] S. Rodrigo, J. Flich, A. Roca, S. Medardoni, D. Bertozzi, J. Camacho, F. Silla, and

J. Duato, “Cost-efficient on-chip routing implementations for CMP and MPSoC sys­

tems,” Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions

on, vol. 30, pp. 534 -547, april 2011.

[17] S. Pasricha and Y. Zou, “NS-FTR: A fault tolerant routing scheme for networks on chip

with permanent and runtime intermittent faults,” in Design Automation Conference

(ASP-DAC), 2011 16th Asia and South Pacific, pp. 443 -448, jan. 2011.

[18] Z. Zhang, A. Greiner, and S. Taktak, “A reconfigurable routing algorithm for a fault-

tolerant 2D-mesh network-on-chip,” in Proceedings of the 45th annual Design Automa­

tion Conference, DAC ’08, (New York, NY, USA), pp. 441-446, ACM, 2008.

54

[19] S. Pasricha, Y. Zou, D. Connors, and H. J. Siegel, “OE+IOE: a novel tu rn model

based fault tolerant routing scheme for networks-on-chip,” in Proceedings o f the eighth

IEEE/AC M /IFIP international conference on hardware/software codesign and system

synthesis, CODES/ISSS ’10, (New York, NY, USA), pp. 85-94, ACM, 2010.

[20] C. Feng, Z. Lu, A. Jantsch, J. Li, and M. Zhang, “A reconfigurable fault-tolerant

deflection routing algorithm based on reinforcement learning for network-on-chip,” in

Proceedings of the Third International Workshop on Network on Chip Architectures,

NoCArc ’10, (New York, NY, USA), pp. 11-16, ACM, 2010.

[21] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das, “Application-aware prioritization

mechanisms for on-chip networks,” in Proceedings of the 42nd Annual IE E E /A C M

International Symposium on Microarchitecture, MICRO 42, (New York, NY, USA),

pp. 280-291, ACM, 2009.

[22] A. K. Mishra, O. Mutlu, and C. R. Das, “An application-oriented approach for de­

signing heterogeneous network-on-chip,” Tech. Rep. CSE-11-007, Pennsylvania State

University, June 2011.

[23] S. Ma, N. Enright Jerger, and Z. Wang, “DBAR: an efficient routing algorithm to

support multiple concurrent applications in networks-on-chip,” in Proceedings o f the

38th annual international symposium on Computer architecture, ISCA ’11, (New York,

NY, USA), pp. 413-424, ACM, 2011.

55

	Adaptive Network on Chip Routing using the Turn Model
	Recommended Citation

	00001.tif

