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ABSTRACT

THE DISTRIBUTION OF DIRECT AND INDIRECT FITNESS 

EFFECTS OF BENEFICIAL MUTATIONS 

By

Rachel Katherine Staples 

University of New Hampshire, December, 2012

Rare, beneficial mutations that increase an organism’s fitness provide the basis by 

which adaptation proceeds. Current theory predicts that the individual fitness effects of 

these beneficial mutations are exponentially distributed, suggesting that mutations 

conferring a small fitness increase are more numerous than those of large benefit. 

However, there is little empirical evidence describing measurable fitness effects of 

individual mutations, nor their availability or effects across a range of environments. We 

experimentally evolved a single strain of the cystic fibrosis pathogen Burkholderia 

cenocepacia under both physically structured (biofilm) and unstructured (planktonic) 

conditions, collected a sample of mutants, and measured the fitness effect of each in 

direct competition with the ancestor. Fitness was also measured in a variety of 

alternative environments to quantify the pleiotropic, or indirect, effects of each mutation. 

We found that the distribution of direct mutational effects was better modeled by an 

extreme value distribution with a truncated, Weibull-like domain of attraction, rather than 

exponential. A clustering of high fitness values and parallel evolution at the nucleotide



level indicate that mutations greatly increasing fitness are more readily available to an 

adapting population than previously assumed. Pleiotropic effects were generally positive, 

although mutants did experienced a fitness trade-off under some alternative conditions, 

suggesting that highly beneficial mutations in a structured environment are likely specific 

to that biofilm environment and may ultimately narrow the organism’s niche breadth.

We also found that the magnitude of direct and pleiotropic fitness effects were strongly 

correlated, indicating that mutations of higher initial benefit in the selective environment 

also drastically influence fitness in alternative environments, the negative effects of 

which may bar their success under fluctuating conditions.



CHAPTER I

THE DISTRIBUTION OF FITNESS EFFECTS 
OF BENEFICIAL MUTATIONS

Introduction

All organisms adapt by acquiring traits that are beneficial in the selective 

environment and are generated by mutation. Theory predicts that the majority of all 

possible mutations will have neutral or detrimental effects on an organism, yet some 

small subset will benefit the organism, increasing its fitness. Thus, the fitness effects of 

these rare beneficial mutations would likely be located within the right tail of a 

probability distribution (Figure 1.1). The size and shape of that tail is dictated by the 

number of available beneficial mutations, as well as their individual effects (Gillespie 

1984; Orr, 2003; Beisel et al., 2007). Accurately defining the spectrum of beneficial 

fitness effects available for natural selection to act upon remains crucial to understanding 

and modeling many aspects of adaptation, including the probability of beneficial 

mutations occurring and rising in frequency, the overall rate of fitness increase in a 

population, and the rate of adaptation to a new environment (Haldane, 1927; Fisher,

1930; Gillespie, 1983, 1984; Orr, 2003; Patwa and Wahl, 2008; Perfeito et al., 2007; 

Rozen et al., 2002).
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Fitness

Figure 1.1: A theoretical probability distribution of fitness effects associated with all 
possible mutations occurring on a given genotype. The majority of mutations are 
predicted to have fitness effects worse than or equal to the ancestral genotype (w,). 
Therefore, beneficial mutations are expected to be rare and their associated fitness gains 
located in the right tail.

Little is known about the individual fitness effects of beneficial mutations, nor the 

frequency at which they occur, because they are difficult to detect and measure. For this 

reason, most models of adaptation assume that the majority o f beneficial mutations will 

slightly increase fitness, while an increasingly smaller percentage will have much larger 

fitness effects, fitting an exponential distribution. This exponential distribution has also 

been derived, using extreme value theory (EVT), and rationalized as a means of 

predicting the effects of beneficial mutations (Gillespie, 1984; Orr, 2003). Select studies 

measuring the fitness effects of mutations collected prior to selection have supported this 

theory (Kassen, 2006; MacLean, 2009). An exponential-like distribution of effects was 

also reported for a set of beneficial mutations rising to high frequency (Rozen et al,

2002). However, the exponential distribution was derived from EVT under the 

assumption of relatively high ancestral fitness in that environment (Gillespie 1984), 

which may not be entirely realistic for all models of adaptation, particularly those under 

strong selection (Barrett et al, 2006). If ancestral fitness in the selective environment is
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low, a larger portion of mutations are expected to increase fitness and their effects may 

no longer be confined to the far right tail. In this case, extreme value theory would no 

longer apply and the fitness effects may be better described by a non-exponential 

distribution, like those reported by a number of studies focusing on beneficial mutations 

and viral evolution in different hosts or environments (Rokyta et al. 2008; Sanjuan et al., 

2004; Vale et al., 2012).

Empirically testing the distribution of effects remains difficult because new 

beneficial alleles may easily be lost from a population due to random sampling or 

competitive interactions with other mutants (Haldane, 1927; Wilke, 2004). The latter 

problem is particularly prevalent in large asexual populations in which co-occurring 

beneficial mutations cannot assemble by recombination and instead compete with one 

another. Known generally as the Hill-Robertson effect (Hill and Robertson, 1966), in 

asexual populations this process is known as clonal interference, and it is expected to 

favor mutations conferring a larger fitness increase, while those of smaller benefit are 

likely to be lost (Gerrish and Lenski, 1998). These phenomena make it difficult to 

identify and sample a broad range of beneficial mutations, but may be overcome by 

evolving large populations that are easily manipulated.

Microbes provide an excellent opportunity to study the effects of beneficial 

mutations for many reasons, one of which is an inherently large population size (Elena 

and Lenski, 2003). Small populations produce less genetic variation, most of which will 

be lost during a bottleneck, therefore the eventual success of a beneficial allele in a small 

population is more the result of it randomly surviving drift than its individual fitness 

benefit. Genetic variation will also be lost in larger populations, but a greater amount of
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initial variation and a wider bottleneck allow more beneficial mutants to survive and 

ultimately be collected (Kimura & Ohta, 1969; Nei et al, 1975).

Bacterial populations, and their environment, can also be easily manipulated in a 

favorable manner (Elena and Lenski, 2003; Cooper, 2002). In this way, environmental 

conditions may be altered to restrict certain interactions, such as clonal interference. 

Physical structure in the environment may reduce these negative interactions, and 

preserve a larger number of beneficial mutants. Structure has been shown to help 

maintain genetic diversity within a microbial population by localizing interactions, 

reducing overall competition, and decreasing the effects of selection (Korona et al., 1994; 

MacLean et al., 2004; Perfeito et al., 2006). We predicted that mutants of lower benefit 

would be more likely to survive clonal interference in a structured environment, allowing 

us to collect a sample of mutants that more accurately represents all beneficial mutations 

available to an adapting population. This broad collection could then be used to measure 

individual fitness values in direct competition with the ancestor, and ultimately describe 

the distribution of beneficial effects.

Methods 

Strains and Culture Conditions

The Burkholderia cepacia complex (BCC) is comprised of seventeen closely 

related species commonly isolated from the environment and capable of chronically 

infecting persons with cystic fibrosis (Isles et al., 1984; Mahenthiralingam et a l, 2000; 

Vanlaere et a l, 2008; Vanlaere et al., 2009). One of the most common species associated 

with increased patient morbitiy and mortality, Burkholderia cenocepacia, is also known 

for its ability to form robust biofilms on biotic and abiotic surfaces (Reik et a l, 2005;
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Speert et al., 2002; Springman et al, 2009). B. cenocepacia HI2424, the strain used in 

this study, was isolated from an onion field and frozen at -80°C, and remains naive to a 

laboratory environment (LiPuma et al., 2002).

A Tn7 vector was used to introduce the gene lacZ to HI2424, conferring p- 

galactosidase activity and allowing colonies to be distinguished by their blue color when 

plated on 5-bromo-4-chloro-indolyl-P-D-galactopyranoside (X-gal) (Ellis, 2008).

All evolution experiments and fitness assays were carried out in 18 x 150mm test 

tubes and incubated at 37°C while rotating on a roller drum, unless otherwise stated. 

Experimental Evolution and Collection of Mutants

Biofilm evolved populations were created by reviving Lac+ marked and Lac- 

unmarked B. cenocepacia HI2424 in 5mL of Tryptic Soy Broth from frozen stocks. All 

cultures were grown overnight, then diluted 1:100 into 5mL of M9 minimal media 

supplemented with 3% galactose (3% GMM). A 7mm polystyrene bead was also added 

to the progenitor cultures for all biofilm evolution cultures, and incubated for 24 hours. 

Beads were then removed and all attached cells were vortexed off in Phosphate Buffered 

Saline. Seven individual populations were then seeded using a 1:1 mixture of oppositely 

marked ancestor in 3% GMM containing a white bead, and incubated for 24 hours. The 

bead was then moved to a new tube of fresh media containing a black bead, and again 

incubated. Experimental evolution continued in this fashion, transferring the 24 hour 

bead to fresh media containing an oppositely marked bead, selecting for daily biofilm 

formation and dispersal. All populations were sampled every other day by removing all 

cellular content from the 48 hour bead, diluting 1:100,000 in PBS, and plating on Vz 

strength Tryptic soy (Tsoy) agar plates containing X-gal (Figure 1.2).

5
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Figure 1.2: Experimental evolution model. A) Biofilm evolved populations: oppositely 
colored polystyrene beads were transferred every 24 hours to fresh media and plated 
every 48 hours. B) Planktonic evolved populations were transferred every 24 hours with a 
1:100 dilution into phosphate buffered saline, then a 1:100 dilution into fresh media 
(1:10,000 dilution total) and plated every 48 hours.
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Planktonically evolved populations were similarly founded by inoculation of a 

clone in Tryptic Soy Broth and then subcultured and preconditioned in 1% Galactose 

Minimal Media (1% GMM). Experimental replicates were then founded by adding equal 

amounts of oppositely marked ancestor to fresh 1% GMM, with an overall dilution of 

1:100. After 24 hours, populations were diluted 1:100 into PBS, from which they were 

then diluted 1:100 into fresh media and again incubated. Transfers continued with daily 

1:10,00 dilutions and populations were sampled every 4 days by plating on Yz Tsoy agar 

with X-gal (Figure 1.2).

Mutants assumed to differ from the ancestral strain by a single mutation were 

identified by either a skew in the 1:1 ratio of oppositely marked ancestor, indicating a 

mutation had occurring on the majority background (Hegreness et al., 2006), or the 

presence of an altered colony morphology. These altered morphologies, referred to as 

studded (ST) and wrinkly (W) based on their appearance, are known to be associated 

with biofilm adaptation (Poltak and Cooper, 2011). Individual evolution experiments 

were discontinued once the first mutant in that population was discovered and a single 

clone of each was then isolated and frozen.

Fitness Assays

Fitness effects of each mutant were measured by direct competition with the 

ancestor in three- or four-fold replication. All mutants and their oppositely marked 

ancestor were separately revived and preconditioned in their selective environment, then 

added 1:1 to fresh media in the method by which they were originally evolved. Biofilm 

competitions were seeded using half the contents of a single bead for both mutant and 

ancestor. Planktonic competitions were created by adding 50 pi each of mutant and
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ancestor to 9.9 ml PBS, then transferring 50 pi to 5 ml 1% GMM for a 1:10,000 dilution

overall. Cultures were immediately sampled by diluting biofilm competitions to 10'4 and

planktonic competitions to 10'2, then plating 100 pi on Zz Tsoy-Xgal and incubating.

Competitions were again sampled after 24 hours. For biofilm competitions, the bead was

removed, its contents vortexed into PBS, then diluted to 10*5 and plated on Zz Tsoy-Xgal.

Planktonic competitions were diluted to 10'6 in PBS, then similarly plated. All plates

were incubated for 24 hours at 37°C, then allowed to develop at room temperature for 24-

48 hours before colonies were counted. The number of colony forming units (CFUs) at T

= 0 and T = 24 hours were used to determine individual yield, accounting for dilutions.

Yield was then used to calculate mutant and ancestor Malthusian parameters (m) as:

_  _ , y ieldT=2*sm =  In (—— ----- )yieldT- 0

The difference in Malthusian parameters is then defined as the selection rate (r) and used 

to calculate the difference in the rate of increase between ancestor and mutant over 24 

hours (Lenski, 1991):

t" W-evolved tTlancestor

Replicate selection rate values were then averaged, to calculate a mean selection 

rate constant for each mutant. The mean selection rate, reported as units/time, was then 

used to compare the measurable fitness effects of all mutants. An internal control was 

performed with each assay by competing the Lac + marked ancestor vs the Lac -  marked 

ancestor. Control selection rate values significantly deviating from 0 indicated a bias 

favoring one of the marked ancestors, and any fitness values simultaneously obtained 

were discarded. The variance in replicate mutant and control selection rate values, 

defined as 95% confidence intervals, was used as a measurement of experimental error.
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Statistical Analyses

According to extreme value theory, the right tail of a probability distribution o f  all 

fitness effects can be modeled using a generalized Pareto distribution (GPD). The GPD

The shape parameter (k) estimates the overall shape of the distribution as either an 

exponential distribution with many mutations of low benefit and few large increases 

(Gumbel; k  = 0); an exponential distribution in which the rate of decrease diminishes 

over time, resulting in a heavy right tail with many mutations of large benefit (Frechet; k  

> 0); or finally a non exponential distribution with a clustering mutations of higher 

benefit (Weibull; k  < 0). The scale parameter (x )  provides an estimate of the spread o f the 

distribution, with large values indicating a broader range.

To account for the predicted loss of smaller benefit mutations, mean fitness 

measurements were normalized by subtracting the lowest fitness value from all others. 

These values were then used with a statistical program designed by Beisel et al. (2007) 

that performed a likelihood-ratio test to determine whether the data fit the null, 

exponential distribution. The R program compared the likelihood that fitness effects 

were best described by a Gumbel, exponential distribution ( k  = 0) or an alternative model

has the following cumulative distribution function, and in which the right tail defined by

its shape ( k )  and scale (x) parameters as one of three functions:

x  >  0, if k >  0

0 <  x  < ----- , i f / c < 0
K

r

U  -  e ~ x/T x > 0 ,  if k =  0

( k * 0 )  by
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calculating negative twice the difference in log-likelihood (-21ogA) (R Development Core 

Team, 2011). The test also estimates the value of both k  and x, which are used to 

describe the actual distribution. P-values are calculated based upon 10,000 parametric 

bootstrap replicates, and significant values (p<0.05) rejected the null hypothesis in favor 

of an alternative distribution (Beisel et al, 2007).

All other statistical tests and measurements were performed using measured 

fitness effects in JMP 9.

Genome resequencing

Full genome resequencing was used to identify mutations in each of the bead- 

evolved mutants. Genomic DNA was individually isolated from each mutant using the 

DNeasy Blood & Tissue Kit (Qiagen) protocol for gram-negative bacteria and prepared 

for Illumina sequencing with direct read barcodes (Nugen). Reads were mapped (Table

SI) to the previously sequenced B. cenocepacia H I2424 reference genome (DOE-Joint 

Genome Institute) and mutations were identified using the breseq pipeline (Barrick and 

Knoester, 2010).

Results and Discussion

Seven replicate populations were evolved under conditions selecting for a cycle of 

biofilm formation, dispersal, and reattachment, which produces a structured environment. 

From these populations, 18 mutants (BM) were selected based on their altered colony 

phenotype (Table 1.1). Because these same morphologies have been recovered from 

similarly evolved populations in the past (Poltak and Cooper, 2011), and are known to 

have a heritable genetic basis, they were immediately classified as mutants. All biofilm 

populations produced mutants on both the Lac+ and Lac- genetic background, which
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likely explains why a skew in the 1:1 marker ratio was never seen. Of the mutants 

identified, 13 had a wrinkly phenotype; three were studded; and two mutants were found 

with a new colony phenotype referred to as “tiny mucoid” (TM). Seven mutants were 

isolated from two of the populations after just four days of serial transfer, while the other 

eleven mutants were isolated from the remaining five populations after eight days. 

Growth and generation time estimates for B. cenocepacia HI2424 under evolutionary 

conditions approximate ~8 generations every 24 hours (Traverse, 2012). Therefore, all 

mutants were isolated after only 32 or 64 generations of selection.

Nineteen populations were also evolved under planktonic conditions without a 

plastic bead, from which 19 mutants (PM) were isolated (Table 1.1). One mutant was 

isolated from each evolved population after either 8 or 12 days of evolution. Mutants 

were identified by a skew in the 1:1 marker ratio, after which a single colony of the 

majority background was chosen. Generation times under planktonic evolutionary 

conditions are calculated as log2(dilution factor). Therefore, the 1:10,000 daily dilution 

factor was used to estimate approximately 13 generations in 24 hours, thus mutants were 

collected after approximately 104 or 156 generations. Although mutations increasing 

fitness are theorized to be rare events, their quick appearance in both biofilm and 

planktonic environments may suggest otherwise. The fact that a single mutant was 

identified in each planktonic population, as opposed to the numerous mutants that 

appeared in biofilm populations, may indicate that fewer mutants were generally arising. 

Regardless, adaptive mutants were rapidly isolated from all populations, suggesting that 

the amount of overall beneficial variation available to these adapting populations was 

relatively abundant.
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Biofilm-Adaptive Mutants___________________________ Planktonic-Adaptive Mutants
Mutant Population Morphology Marker Mutant Population Morphology Marker
BM1 BB1 Wrinkly Lac + PM1 PA1 Mucoid L ac-
BM2 BB1 Wrinkly L ac- PM2 PA2 Mucoid Lac +
BM3 BB2 Wrinkly Lac + PM3 PA3 Mucoid Lac +
BM4 BB2 Wrinkly L ac- PM4 PA5 Mucoid Lac +
BM5 BB2 Studded L ac- PM5 PA6 Mucoid Lac +
BM6 BB3 Wrinkly Lac + PM6 PA7 Mucoid Lac +
BM7 BB3 Wrinkly Lac - PM7 PA8 Mucoid L ac-
BM8 BB4 Wrinkly Lac + PM8 PA9 Mucoid Lac +
BM9 BB4 Wrinkly L ac- PM9 PA10 Mucoid L ac-

BM10 BB5 Wrinkly Lac + PM10 PA11 Mucoid Lac +
BM11 BBS Wrinkly L ac- PM11 PA12 Mucoid L ac-
BM12 BC1 Wrinkly Lac + PM12 PA13 Mucoid L ac-
BM13 BC1 Tiny Mucoid Lac + PM13 PAM Mucoid L ac-
BM14 BC1 Wrinkly L ac- PM14 PA15 Mucoid Lac +
BM15 BC1 Studded L ac- PM15 PA16 Mucoid Lac +
BM16 BC3 Wrinkly Lac + PM16 PA17 Mucoid L ac-
BM17 BC3 Tiny Mucoid Lac + PM17 PA18 Mucoid L ac-
BM18 BC3 Studded L ac- PM18 PA19 Mucoid L ac-

PM19 PA20 Mucoid L ac-
Table 1.1: Biofilm- and planktonic-adaptive mutants. Mutants isolated from biofilm (bead) and planktonic environments, their 
individual morphology, presence (+) or absence of (-) of the Lac marker, and the population from which it was isolated. Only a 
single mutant with of the same morphology and Lac background was isolated from each biofilm population, to prevent repeats.



The genomes of each of the eighteen biofilm-adapted mutants were individually 

sequenced and analyzed using breseq to identify the genetic basis of adaptation (Table

S2). Breseq is a computational pipeline that predicts mutations in slightly divergent re

sequencing data aligned to a previously sequenced reference genome. It was specifically 

designed to accommodate microbial genomes up to 10Mb in size, and is an excellent tool 

for monitoring mutations over time in experimental populations. Short-read sequences 

were aligned using Bowtie 2 and individual base quality scores were re-calculated to 

include new information from the alignment, including the reference base and its position 

within the read. These re-calibrated estimated error rates were then used with the haploid 

SNP caller, which calculated the Bayesian posterior probability of all bases at each 

position in the alignment and recorded the base with the highest likelihood. Base 

substitutions were identified when the read alignment (RA) evidence quality score 

exceeded a specified cutoff for consensus mutations (E-value = 10). Single nucleotide 

polymorphism (SNP) mutations were called if a single base was affected; substitution 

mutations (SUB) were called if multiple substitutions occur together, or adjacent to 

insertions or deletions. Possible insertions and deletions (indels) are identified as 

candidate junctions and called if the position-hash score exceeded the individually 

calculated cut-off threshold. Given these stringent methods for identifying mutations, 

and an average coverage greater than 150 reads per base, we feel confident all true 

mutations were positively identified.
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Genotype Mutation Description Fitness (r) Mutants
G1 wspHK L135F SNP NS 1.305 BM13; BM17
G2 wspA S285W SNP NS 1.183 BM3; BM7
G3 wspA V389A SNP NS 1.543 BM16
G4 wspA A452V SNP NS 1.389 BM1
G5 wspE D652N SNP NS 0.991 BM2; BM4; BM9; BM11
G6 wspE S726L SNP NS 1.453 BM6; BM8
G7 wspE D733V SNP NS 0.207 BM18
G8 wspE E565D SNP NS 0.910 BM5

fabA-like C134G SNP NS 3-hydroxy lacy 1 ACP dehydratase
G9 wspE D696G SNP NS 0.884 BM10

Cytochrome C S119S SNP Syn Cytochrome C/electron carrier
G10 wspE D696G SNP NS 1.742 BM12

Lysine H437R SNP NS Lysine decarboxylase
Gil wspA A21bp DEL 1.551 BM14

exuT? L14P SNP NS Major Facilitator Transporter
MFT M114F SNP NS Major Facilitator Transporter

G12 wspE S654L SNP NS 0.152 BM15
ABC V176G SNP NS ABC Transport
wrbA D46E SNP NS Multimeric flavoprotein

Table 1.2: The genotypes of biofilm-adaptive mutants and their associated fitness effects, measured as selection rate constants.



Of these 18 mutants, 13 differed from the ancestral sequence by a single mutation 

(single-mutant), three differed by two mutations (double-mutant), and two mutants 

differed by three mutations (triple-mutant). Several of the 13 single mutants were also 

found to share the same mutation, and thus were grouped and classified by genotype for 

future fitness analyses (Table 1.2). Although the likelihood of an identical mutation 

occurring in parallel is generally very low, we determined that all mutants were 

independently derived. All mutants sharing a particular genotype were isolated from a 

separately evolved population. In one case, two mutants with the same mutation carried 

different Lac markers, further indicating that they did not evolve from the same lineage.

All 18 biofilm-adaptive mutants contained a mutation located in the wsp operon, 

which is known to directly influence levels of the messenger molecule cyclic diguanylate 

(cyclic-di-GMP) and has been characterized in Pseudomonas aeruginosa (Hickman et al, 

2005; Guvener and Harwood, 2007) Briefly, a membrane-associated protein, WspA, is 

constitutively activated by the addition of a methyl group from WspC, a 

methyltransferase. When activated, WspA causes autophosphorylation of WspE, a 

histidine kinase that in turn phosphorylates the di-guanylate cyclase, WspR. Once WspR 

is activated, it produces cyclic-diGMP by joins two GTP molecules together. 

Phosphorylated WspE also activates WspF, a methylesterase that removes a methyl group 

from WspA, forming a feedback loop and resetting the Wsp pathway. Cyclic-diGMP 

production by the Wsp pathway has also been associated with biofilm-specific adaptation 

in experimentally evolved Burkholderia populations (Traverse et al., in press). All 

mutations reported here were located within three genes Wsp genes - a ws/?-associated
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histidine kinase (here referred to as wspHK), wspA, and wspE (Table SI for details).

Two mutants with a “tiny mucoid” morphology shared the same wspHK mutation, and all 

“studded” mutants contained a different wspE mutation. Secondary and tertiary 

mutations were also identified in genes likely influencing fatty acid synthesis (FabA-like) 

and polyamine synthesis (lysine decarboxylase), as well as major facilitator and ABC 

transporter proteins.

To test whether each isolated mutant is adaptive, and directly measure the 

magnitude of that fitness benefit, each mutant was competed against the ancestor in their 

selective environment (Table 1.2). All biofilm-adaptive mutants were more fit than their 

ancestor, with a mean fitness of 1.15/day for single-mutant genotypes, and an overall 

mean fitness of 1.11/day for all biofilm genotypes. Mutants isolated from, and competed 

in, the planktonic environment were also found to have a mean fitness increase of 1.1/day 

(Figure 1.3).
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Figure 1.3: The fitness effects o f beneficial mutations. The mean fitness effect, 
including 95% confidence intervals, of single-mutant biofilm-adaptive genotypes, all 
biofilm-adaptive genotypes, and planktonic-adaptive mutants.
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The increased fitness of all biofilm-adaptive mutants is likely the result of 

increased cyclic-diGMP production by WspR. Mutations in wspE may lead to 

constitutive phosphorylation of WspR or prevent the pathway from being reset by WspF, 

both increasing c-diGMP. The mutation in wspHK may be performing a similar function 

by increasing phosphorylation of WspR. The membrane associated protein, WspA, 

directly regulates WspE activity. Mutations in wspA may result in constitutive 

autophosphorylation of WspE, again increasing c-diGMP and fitness. Interestingly, there 

wasn’t a significant difference in fitness values among genotypes containing a single 

mutation and those with double or triple mutations. There was also no correlation 

between fitness and location of the mutation within the wsp operon (Figure 1.4). 

Genotypes G9 and G10, which share a common wspE mutation, have very different 

fitness mean fitness values (r = 0.884 and r = 1.742, respectively). Genotype G9 

contained a synonymous secondary mutation in a cytochrome C electron carrier gene, 

which likely did not impact fitness (Peris et al., 2010). A secondary mutation in a lysine 

decarboxylase further separates G10, and is probably influencing polyamine synthesis. 

The effects of both mutations in G10 may be additive or synergistic, but together are 

significantly higher than G9.
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Figure 1.4: Biofilm-adaptive genotypes and their corresponding fitness values. Genotypes are ordered along the x-axis based upon 
the location of their wsp mutation, with related mean fitness (squares) and 95% confidence intervals indicated on the y-axis. Single
mutants (G1-G7) are indicated by solid lines and light gray squares, double-mutants (G8-G10) are indicated by dashed lines and 
medium gray squares, and triple-mutants (G11-G12) are indicated by dashed lines and black squares. Putative active sites and 
conserved domains identified by NCBI are highlighted in red. As shown, the greatest variation in fitness appears among wspE mutant 
genotypes; however, there is no correlation between average fitness and the number of mutations, wsp genotype, nor the location of 
individual wsp mutations within putative active sites and conserved domains.



The fitness effects of single-mutant (SM) biofilm-adaptive genotypes, all biofilm- 

adaptive genotypes and planktonic-adaptive mutants were used to determine whether the 

effects of beneficial mutations are exponentially distributed. Fitness values were 

normalized to the lowest measured value to account for the loss of smaller benefit 

mutations as a result of drift or competition, then used to estimate the overall shape of 

each distribution. The likelihood-ratio test rejected the null hypothesis that the fitness 

effects of biofilm-adaptive single-mutants (LRT=9.707,7’=0.0003), all biofilm-adaptive 

mutants (LRT= 12.749, P=0.0006), and planktonic-adaptive mutants (LRT=24.623, 

P̂ O.OOOO) are exponentially distributed (Beisel et a t, 2007). Instead, the right tail of a 

distribution of fitness effects is best described by a Weibull-shape, with a clustering of 

larger benefit mutations and a truncated tail. This model was supported by the shape 

parameter that was individually calculated for each of the three distributions (k «  -1). 

Each data set favored a similarly shaped distribution of slightly different widths, with a 

scale parameter (x) of 1.34 for SM biofilm genotypes, 1.59 for all biofilm genotypes, and 

1.50 for planktonic mutants. Frequency histograms and individual fitness values of 

biofilm-adaptive genotypes (Figure 1.5) and planktonic-adaptive mutants (Figure 1.6) 

support this visible clustering of fitness effects.
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Figure 1.5: The distribution o f fitness effects of biofilm -adaptive 
genotypes.
Top: The distribution of single-mutant fitness effects, G1-G7.
Middle: Individual fitness values, including 95% confidence intervals, for each biofilm- 
adaptive genotype.
Bottom: The distribution of all biofilm-adaptive fitness effects, including single mutant; 
double mutant, G8-G10; and triple mutants, G11-G12.
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Figure 1.6: The distribution of planktonic-adaptive fitness effects.
Top: The distribution of all planktonic-adapted fitness effects, PI-PI 9.
Middle: Individual fitness values, including 95% confidence intervals, for each 
planktonic-adaptive mutant.
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This work suggests that mutations of large fitness benefit may not be as rare as 

once believed, at least in some systems, and that the distribution of these fitness effects 

need not fit an exponential model. Although the clustered distribution of fitness effects 

may have been molded by selection -  that is, beneficial mutants could have effects better 

resembling an exponential distribution if sampled prior to selection — we suggest 

otherwise, because these mutants were sampled long before they influenced average 

properties of the population and while multiple mutations were contending. Thus 

selection had not yet sorted among beneficial alleles to generate the clustered effects, so 

the distribution itself must be an inherent property of adaptation by the ancestral 

genotype in each of the environments.

We expected that the beneficial mutations isolated from each of the selective 

environment would vary, and were surprised by the congruence in fitness values. A 

population that is generally better adapted to the selective environment is expected to 

have fewer beneficial mutations available to it because their ancestor’s initial fitness is 

much closer to the theoretical “optimum” fitness in that environment, and a larger 

number of mutations will be deleterious (Patwa and Wahl, 2008). Variation in observed 

fitness effects should be greater, therefore, when ancestral fitness is lower. In this case, 

ancestral fitness in the biofilm environment was much lower (fn = 2.04) than that in the 

planktonic environment (m = 7.54), suggesting that there may be greater variation among 

biofilm-adaptive fitness effects (Martin and Lenormand, 2006; Vale et al., 2012).

To determine whether there was significant difference between biofilm and 

planktonic variation in measured fitness effects, a Forsythe-Brown test for homogeneity 

of variance was performed. This test was chosen because a Shapiro-Wilke test concluded
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that both the planktonic-adaptive and single-mutant biofilm-adaptive data sets were not 

normally distributed (P=0.047, P=0.048 respectively) although the data set containing all 

biofilm-adaptive mutants was not quite significant (/*=(). 133, see appendix for test 

statistics). The Forsythe-Brown test determined that there was a significant difference in 

variation between biofilm-adaptive and planktonic-adaptive fitness effects (Fi5i=9.233, 

,P=0.003). It also found that there was no significant difference between the fitness effects 

of single-mutant biofilm adaptive genotypes and all biofilm-adaptive genotypes 

(F111=0.290, P=0.591). Although the mean fitness values were very similar, this 

significant difference in variation indicates that the mutants themselves may be specific 

to the selective environment (Elena and Sanjuan, 2007).

The similarity in biofilm-adaptive and planktonic-adaptive distributions was also 

surprising. Previous theoretical work using extreme value theory derived an exponential 

distribution on the assumption that ancestral fitness in that environment was high 

(Gillespie, 1984). Orr also derived a exponential distribution when focusing on mutants 

of a single gene, and comparing the individual change in fitness (AW) between the wild- 

type allele and one the few predicted beneficial alleles containing a single point mutation 

(Orr, 2003). Moreover, he found that this distribution remained the same regardless of 

the wild-type allele’s exact fitness ranking among beneficial alleles. However, this 

model still rested on the assumption of a well adapted ancestor, and later work suggested 

it may not be the best model of adaptation to novel environments. A larger subset of 

mutations is predicted to be beneficial in a novel environment where the ancestor is not 

well adapted (Barrett et al., 2006). Thus, we expected that the selective environment, and 

ancestral fitness in that environment, would dictate the shape of the distribution.
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Although our ancestral genotype was naive to both selective environments, we 

expected that a higher planktonic ancestral fitness would correlate to an exponentially 

distributed set of beneficial fitness effects because it met the assumption of high initial 

fitness specified by extreme value theory. However, neither of our observed distributions 

were exponential, and the parallelism between them suggests that mutants of similar 

effect may be available to a given genotype, regardless of ancestral fitness in the selective 

environment, and shape of the distribution may be independent of ancestral fitness. The 

spectrum of effects of beneficial mutations available to natural selection is expected to 

determine the rate by which a population adapts (Orr, 2003; Patwa and Wahl, 2008). If  a 

similar distribution is available regardless of the environment, it appears that the 

dynamics by which adaptation proceeds may not be defined by the availability of 

beneficial mutations, after all. Rather, the extent to which beneficial mutants co-occur 

and compete (clonal interference) may more strongly influence adaptive dynamics.

Overall, the non-exponential distribution of beneficial effects has been supported 

by a few empirical studies. Rokyta et al. (2008) determined that the distribution of 

beneficial fitness effects in a DNA virus are best modeled by a Weibull-like domain of 

attraction, rather than exponential. In this case, the fitness effects of several unique 

beneficial mutations were measured as progeny produced after 24 hours, instead of direct 

competition with the ancestor. The distribution of effects was estimated using the same 

likelihood-ratio framework described above, which accounts for the loss of small benefit 

mutations. This finding was in stark contrast, however, to previous work confirming an 

exponential distribution of beneficial effects conferring antibiotic resistance in 

Escherichia coli and Pseudomonas aeruginosa (Kassen and Bataillon, 2006; MacLean
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and Buckling, 2009). This disparity between distributions is likely the result of variation 

in available beneficial mutations and large differences in initial, ancestral fitness. 

MacLean and Buckling found that the fitness effects of rifampicin resistant P. aeruginosa 

mutants were exponentially distributed at low levels of the antibiotic. However, the 

fitness effects measured at high rifampicin levels, where ancestral fitness was much 

lower, were no longer exponentially distributed (MacLean and Buckling, 2009). The 

mutants tested were collected only at high levels of rifampicin, so the distributions may 

actually highlight a difference in the shape and distribution of pleiotropic fitness effects.

It also emphasizes the difficulty in determining a singular model of adaptation because 

the environment plays a heavily deterministic role.

The distribution of beneficial fitness effects is likely dictated by the internal, 

genetic environment as well as the external environment. As organisms adapt and 

population fitness increases, the availability of beneficial mutations is expected to 

decrease, and the measured effect of those mutations diminishes (Lenski et al., 1991; 

Lenski and Travisano, 1994; Cooper and Lenski, 2000; de Visser et al., 1999; de Visser 

and Lenski, 2002). It has long been assumed that the scarcity of beneficial variation 

ultimately limits the rate of further adaptation, however there is little empirical evidence 

to delineate whether large benefit mutations are altogether absent, or just no longer 

beneficial on an adapted background. Ongoing work focusing on this relationship 

between genotype and environment may help to better define the dynamics of adaptation 

by directly measuring the effects of all available beneficial mutations, regardless of 

genetic background. By sampling distributions from several populations differing in
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selective environment, as well as genetic background, we hope to paint a broader picture 

of the forces governing the dynamics of adaptation.
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CHAPTER II

THE PLEIOTROPIC FITNESS EFFECTS OF BENEFICIAL MUTATIONS

Introduction

Mutations that increase fitness by producing a beneficial phenotype may 

simultaneously alter a number of other phenotypes that are not directly selected. This 

phenomenon, known as pleiotropy, is the result of a single gene influencing multiple 

phenotypes, and is thought to be common (Fisher, 1958; Mayr, 1963). How these indirect 

effects of adaptation influence fitness when conditions and selection pressures change is 

poorly understood. Environmental variation and pleiotropy are thought to play a role in 

maintaining diversity, particularly within a heterogeneous environment (Lynch and 

Gabriel, 1987; Futuyma and Moreno, 1988; MacLean et al., 2004; Knight et al., 2006). 

Pleiotropic fitness effects are also expected to influence several aspects of evolution, and 

may help to explain why certain beneficial alleles ultimately prevail. It has been theorized 

that the magnitude of fitness benefit or trade-off is directly associated with that in the 

original, selective environment (Lande, 1983). If this is true, mutations that greatly 

increase fitness may experience an equally large deficit if environmental settings change. 

Under these more complex, potentially realistic conditions, the spectrum of pleiotropic 

effects may better predict survival than direct fitness alone.
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Recent studies attempting to quantify the pleiotropic effects of beneficial 

mutations have, in large part, focused on consecutive beneficial mutations evolving on a 

common genetic background that have been isolated over time from experimentally 

evolved populations (Travisano and Lenski, 1996; Cooper, 2002; Ostrowski et al., 2005; 

Barrett et al., 2005). The majority of this work has shown a general trend toward positive 

pleiotropy, in which mutants that had adapted to a single resource tended to be more fit 

than their ancestor when directly competed in alternative carbon sources (Travisano and 

Lenski 1996; Ostrowski 2005), although a cost of adaptation has also been seen (Cooper 

and Lenski, 2000; Cooper, 2002; MacLean et al., 2005). They also found that the 

magnitude of fitness increase was greatest in environments most similar to the selective 

environment, although the same trend was not always observed for those few mutants 

with deleterious pleiotropic effects (Travisano and Lenski 1996; Ostrowski 2005; Cooper 

and Lenski 2000, 2001, Cooper 2002). These studies have mainly focused on the 

pleiotropic effects of mutants that were already well adapted to their environment, while 

little has been reported about how pleiotropy may influence the very first steps of 

adaptation. By studying the pleiotropic effects of several mutants differing from a 

common ancestor by a single mutation, we hope to better understand the role of 

pleiotropy in adaptation. Given prior findings, we expected that the majority of 

pleiotropic effects would be positive although some mutants would experience fitness 

costs in environments more divergent from their original one. Additionally, we were 

interested in how the initial selective value compared to the magnitude of fitness gain or 

loss in alternative environments, and predicted a positive correlation based on previous
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studies that found a significant positive correlation among only mostly favorable fitness 

effects in several environments (Ostrowski et ah, 2005).

We evolved replicate populations founded by a single strain of Burkholderia 

cenocepacia in a structured environment selecting for biofilm formation. Populations 

founded from that same ancestor were also evolved in a liquid, planktonic environment 

(Poltak and Cooper, 2010). Isolates containing a single beneficial mutation were 

collected and competed against the ancestor to measure their direct fitness effects. We 

then quantified the pleiotropic effects of these mutants by directly competing them 

against the ancestor in alternative environments. In comparing different aspects of the 

biofilm environment alone, we also examined what niche the mutants had adapted to 

occupy within a heterogeneous environment containing surface structure.

Prior work has suggested that adaptation to a heterogeneous environment 

comprised of two highly contrasting physical niches, such as the structured surface and 

liquid phases of our experimental biofilm environment, would ultimately favor two 

optimal phenotypes- each able to occupy one of the niches (Futuyma and Moreno, 1988; 

Gillespie and Turelli, 1989; Kassen, 2002; MacLean et al., 2005; Jasmin and Kassen, 

2007). Mutations that are beneficial in one patch are, therefore, less likely to be 

beneficial in the other (Via and Lande, 1985). Because only cells attached to the plastic 

bead are transferred, we expect that our collection of mutants will contain biofilm 

specialists capable of exploiting this niche, and are predicted to have the largest fitness 

benefit in a structured environment. As a result of this specialization, however, mutants 

may be more likely to experience negative trade-offs and reduced niche breadth (Cooper, 

2002; Jasmin and Kassen, 2007). We hypothesized that biofilm-adaptive mutants would
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be more likely to pay a pleiotropic fitness cost in the absence of a surface for biofilm 

growth because of their specific adaptation.

Materials and Methods 

Experimental Evolution and Collection o f Mutants

Mutants of Burkholderia cenocepacia strain HI2424 were isolated from one of 

two environmental conditions as previously explained (Chapter 1). Briefly, replicate 

populations of the ancestral genotype were experimentally evolved in two environments: 

a liquid, planktonic environment and a physically structured, biofilm environment. 

Variants with a suspected beneficial mutation were collected, and their fitness benefit 

was measured by head-to-head competition with the ancestor in their selective 

environment. Altogether, 18 biofilm-evolved and 19 planktonic-evolved beneficial 

mutants were collected and used to assay fitness in alternative environments.

All isolates were maintained at -80°C; culture conditions remained the same 

except when noted. Mutant and ancestor monocultures were always preconditioned for 

24 hours in the alternative environment in which they were to be competed.

Fitness Assays in Alternative Environments

Fitness in alternative environments was measured using the method for direct 

competition previously described (Chapter I). The fitness of each biofilm evolved mutant 

was measured in the opposite selective environment (planktonic), as well as bead fitness 

in lower nutrient environments, alternative carbon sources, and general stress 

environments. For planktonic fitness, biofilm evolved mutants were competed for 24 

hours in 5mL of 3% galactose minimal media (GMM) without a bead. Competitions were
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created by adding 25 pi each of monoculture ancestor and mutant to fresh media, then 

sampled by diluting to KT4 in phosphate buffered saline (PBS) and plating 100 pi on l/2  

strength tryptic soy agar containing Xgal (Tsoy-Xgal). Cultures were incubated for 24 

hours, then sampled by diluting in PBS, and plating 50pl at 10'5 and lOOpl at 10"6.

To assay fitness in lower nutrient environments, biofilm evolved mutants were 

separately competed in 1% GMM and 0.3% GMM. Competitions were created, sampled, 

and plated using the exact method for biofilm fitness previously described. Mutant 

fitness in alternative carbon sources was also measured using the same method for 

creating, sampling, and plating competitions, but the minimal media was supplemented 

with either 3% fructose (3% FMM) or 1% trehalose (1% TMM) instead of galactose.

Finally, fitness of all biofilm mutants was measured under the general stress 

conditions of low iron and low oxygenation. Low iron levels were achieved by adding 

200 pM bathophenanthroline disulfate, an iron chelator, to the 3% GMM used. 

Competitions were then created and sampled as previously explained. Fitness in low 

levels of oxygen was assayed using 3% GMM and incubating media cultures in an orbital 

shaker at 80 RPM. Cultures were immediately sampled at 24, 105, and 25; then again at 

10s, and 25 after 24 hours.

The fitness of planktonic evolved mutants was measured in the opposite selective 

environment and in a low oxygen environment. Mutants were competed in 1% GMM 

with a 7mm polystyrene bead using the same method to measure biofilm fitness. Low 

oxygen fitness was determined using the previous protocol for measuring planktonic 

fitness with a few alterations. All cultures were incubated in a standing rack without 

shaking to produce an oxygen-depleted environment. Competition cultures were created

32



after a 1:10,000 dilution from overnight culture and sampled at 102. After 48 hours, 

competition cultures were sampled at 106.

Mutant and ancestor colony forming units (CFUs) were counted for each replicate 

and used to calculate fitness and overall yield. Fitness values (selection rate constants) 

were calculated for each environment as the difference in Malthusian parameters, or 

difference in log yield, over the amount of time assayed (Lenski et a l, 1991).

Statistical Analyses

Fitness in alternative environments (indirect effects) was compared to fitness in 

the selective environment (direct effects), as follows. Absolute values of fitness (means 

of at least three-fold replication) from each foreign environment (planktonic growth, 1% 

GMM, 0.3% GMM, 3% fructose minimal media, 1% trehalose minimal media, iron- 

limited, and oxygen-limited) were averaged for each mutant. This grand mean value, 

referred to as the “pleiotropic index”, was then regressed against direct fitness values 

using JMP 9. These regressions evaluated the correlation between fitness in the selective 

environment and the extent of fitness gain or trade-off in alternative environments, using 

p<0.05 as a statistical criterion.

Swimming M otility

Mutant and ancestor swimming ability was tested on tryptone-swim plates (1% 

tryptone; 0.3% agar; 0.5% NaCl) with threefold replication. Plates were inoculated with 

50pl of overnight culture, then incubated at 37°C for 20 hours. The diameter of each 

colony was then measured in millimeters.
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Results and D iscussion  

Adaptation to the selective environment

A single ancestral strain was evolved under a regime selecting for increased 

biofilm production requiring adherence to, then dispersal from, a polystyrene bead that 

was transferred to fresh media every 24 hours. From this environment, we isolated 18 

mutants that were assumed to differ from the ancestral strain by a single mutation 

because they so rapidly rose to a detectable frequency within a large population of 

average mutation rate. Each of these different mutations was confirmed to be beneficial 

in the environment from which they were isolated, having increased fitness when directly 

competed against the ancestral strain (3% galactose with a bead, r n  = 1.11). This 

benefit in the selective environment was expected because natural selection is inherently 

shortsighted, favoring phenotypes that are immediately beneficial. However, natural 

environments may be more variable and complex, ultimately influencing the success and 

overall adaptability of single mutations that likely influence multiple phenotypes. To 

better understand how beneficial mutations may influence alternative phenotypes, and 

subsequently fitness, we competed each of these 18 mutants against the ancestor under 

different environmental conditions.

Planktonic and low nutrient fitness

In studying the overall pleiotropic fitness effects of adaptive mutations, we were 

interested in determining how mutants had functionally adapted to their selective 

environment. Specifically, we hoped to identify whether mutants that evolved in an 

environment containing two very different niches -  biofilm growth or planktonic growth 

— had adapted to only one niche specifically as previously reported (Jasmin and Kassen,
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2007), rather than both. Fitness in the planktonic (liquid) niche was measured by 

removing the polystyrene bead, and fitness in both environments were compared. 

Adaptation to both niches should produce equivalent fitness in each. However, we 

predicted that mutants had only adapted to the biofilm portion of their environment and 

would therefore pay a fitness cost when it was removed. Fitness was also measured in 

lower levels of galactose (1% and 0.3%) to determine whether mutants had solely 

adapted to the provided carbon source at a specified concentration. If this were the case, 

fitness should decrease when galactose levels are significantly reduced, regardless of 

whether or not a bead is present.
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Figure 2 .1 : The fitness effects of all biofilm-adaptive genotypes were measured in their 
selective environment (3% galactose) and alternative environments, including: an 
unstructured environment (planktonic); lower concentrations of the original carbon 
source (1% galactose and 0.3% galactose); alternative carbon sources (3% fructose and 
1% trehalose) and general stress environments (low oxygen and low iron).
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As predicted, we found that most mutants were actually significantly less fit 

(r 12 = -0.845, SD = 0.441) in the planktonic phase than their ancestor, and overall 

planktonic fitness was significantly lower = -10.045, P < 0.0001) than that in the 

selective environment (Figure 2.1). However, mutants did not experience fitness costs at 

lower concentrations of galactose. All mutants were more fit than their ancestor at 1% 

galactose ( f n =  1.324, SD= 0.448) and 0.3% galactose ( f n -  1.955, SD= 0.357). 

Whereas fitness at 1% galactose did not significantly differ from that in the selective 

environment (/z? = -1.098, P = 0.284), mutants were significantly more fit at 0.3% 

galactose than at the 3% galactose of the selective environment (t2o -  -4.706, P = 0.0001). 

This increased mean fitness (Figure 2.1) may result from relaxed osmotic pressure at 

lower sugar concentrations. The high, initial galactose concentration (3% weight by 

volume; approximately 31 mg/ml) may have been stressful, if not toxic, which could 

cause mutant fitness to increase as sugar concentrations decrease. This hypothesis is 

supported by the distributions of individual fitness effects (Figure 2.2) that follow a 

similar pattern at all concentrations of galactose, as the mean shifts slightly toward larger 

benefit values. The similar distribution of mutant effects across environments supports 

the hypothesis that biofilm mutants adapted specifically to surface growth rather than all 

aspects of the selective environment, and that beneficial mutations may not be adaptive 

under all alternative conditions.
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Figure 2.2: Frequency distributions o f biofilm  mutant fitness effects.
A) Selective biofilm environment (3% galactose). B) Planktonic environment; dashed 
line denotes fitness of the ancestor. C) Reduced galactose (1%), exhibiting a similar 
distribution to the selective environment. D) Reduced galactose (0.3%).
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Fitness in alternative carbon sources

Alternative carbon sources were chosen based upon their mechanisms of 

transportation across the cellular membranes, with the prediction that mutants would tend 

toward positive pleiotropy and fitness would be highest in resources most similar to the 

galactose (Lin, 1987; Travisano and Lenski, 1996; Ostrowski et al., 2005). Galactose is 

transported across the outer membrane through the porin OmpF, and passes through the 

inner membrane through a non-phosphotransferase system (PTS). Fructose also crosses 

the outer membrane through the OmpF porin, but unlike galactose, is transported across 

the inner membrane by the PTS. Trehalose is a resource most dissimilar to galactose, and 

as a disaccharide, requiring the larger porin LamB to pass through the outer membrane. It 

is then transported across the inner membrane by the PTS (Travisano and Lenski, 1996). 

Trehalose is, also known to sustain membrane integrity in times of dehydration and its 

synthesis has been shown to protect the cell from stressful conditions such as extreme 

temperatures or osmotic pressures (Crowe et al., 1984; Kandror et al., 2002).

As expected, the mean fitness effect of all mutants competed in fructose was 

positive ( f  12 = 0.673, SD= 0.357), indicating that mutations were generally beneficial 

(Figure 2.1). The average benefit in fructose was actually lower than that in the selective 

environment, although the difference was not considered significant 

(J21 = -1.899, P -  0.0712) (Figure 2.3). This distribution is consistent with our 

predictions that most mutations would be beneficial in an alternative carbon source, yet 

the measurable effects would be less than in galactose.
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Figure 2.3: Frequency distributions of mutant fitness effects in alternative carbon 
sources. A) Fitness in the selective environment, 3% galactose. B) Fitness effects in 3% 
fructose, a sugar similar to galactose in structure but differently transported across cell 
membranes, are generally positive, yet the mean value is lower than that in the selective 
environment, as predicted. C) Fitness effects in 1% trehalose, a disaccharide sugar that is 
most dissimilar to galactose in terms of both structure and cellular uptake, are generally 
greater than those in the selective environment.
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Mean fitness in trehalose was expected to be even lower than that in fructose 

because its cellular uptake and structure is less similar to galactose. However, we found 

that mean fitness in trehalose ( f  12 = 1.732, SD = 0.395) was significantly greater than 

that in fructose and galactose (/?/ = 3.344, P = 0.0031). This result was initially 

surprising, not only because it did not fit with our predictions, but because previous work 

focusing on targets of selection reported an opposite trend. Travisano and Lenski (1996) 

reported that E. coli mutants selected in glucose, an OmpF/PTS sugar, were less fit in 

trehalose than in other OmpF/PTS sugars. This suggested that OmpF transport was likely 

a target for selection (Travisano and Lenski, 1996). However, those E. coli mutants had 

evolved for 2,000 generations in a homogenous environment and differed from their 

ancestor by multiple mutations, whereas the genotypes tested here evolved for a short 

period of time under selection for biofilm formation and contain, at most, three adaptive 

mutations. These differences in the selective environment may explain the opposite 

responses in trehalose. For example, biofilm adapted mutants may have a fitness edge in 

trehalose if it plays a role in biofilm development. A recent study of Klebsiella 

pneumoniae found that expression of genes involved in trehalose metabolism were 

elevated during phases of biofilm formation (Wu et al., 2011). Transposon mutants 

lacking these genes produced lower levels of biofilm and capsular polysaccharide, 

suggesting that trehalose is an important component in biofilm development (Wu et al., 

2011). If biofilm-specific mutants make better use of the provided trehalose to form 

robust biofilms than their ancestor, they will prove more fit. However, the underlying 

mechanism for these Burkholderia mutants in this system remains uncertain.
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Fitness under general stress conditions

To determine whether adaptation to a biofilm lifestyle influenced fitness under 

stressful conditions, all 18 mutants were competed at reduced concentrations of oxygen 

and iron. Biofilms provide a protective environment for bacteria, and increased biofilm 

production is a common response when external conditions are stressful. Previous 

studies have shown that low iron levels actually induce biofilm formation in several 

bacterial species (Johnson et al. 2005; Alves et al., 2010). Hence, we expected that 

biofilm-adaptive mutants would be more fit than their ancestor under low iron conditions, 

which proved to be true (r n  = 2.203, SD = 0.403). Mutant fitness in low iron was also 

significantly greater than that in the selective environment (tn  = 5.835, P < 0.0001) and 

values were normally distributed (Figure 2.4). The low iron concentration was harmful 

to the ancestor, allowing much lower yield than that in the selective environment, where 

iron is more readily available (although not supplemented). However, mutant yield 

appeared unaffected by the low concentrations, suggesting that adaptation to a biofilm 

lifestyle may also provide an advantage when iron is scarce.
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Figure 2.4: Frequency distributions of mutant fitness effects in general stress 
environments. A) Fitness in the selective environment, 3% galactose. B) Mutant fitness at 
iron concentrations was generally positive, with a mean fitness effect greater than that in 
the selective environment. B) Mutants were generally at a fitness disadvantage at a lower 
oxygen concentration, with a negative mean effect.
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We also quantified fitness at low concentrations of oxygen, with the prediction 

that mutant fitness would again tend toward positive pleiotropy and be greater than the 

ancestor. Surprisingly, mutants were actually less fit than their ancestor 

(r 12 = -0.962, SD = 0.416), and overall fitness was significantly lower than that in the 

selective environment (J21 = -10.906, P < 0.0001). Although total yield declined for both 

mutant and ancestor, we found that ancestral Malthusian fitness was similar to that in the 

selective environment, whereas Malthusian fitness of biofilm-evolved mutants was 

extremely low. We hypothesized that this low fitness may have been a result of the 

inability of biofilm-adapted mutants to occupy the planktonic phase near the air-liquid 

interface, where oxygen concentrations are likely higher than at the bottom of a non

shaking tube. Although the planktonic phase was never directly sampled, the ability of 

the ancestral genotype to swim to areas of higher oxygen concentration may have 

allowed it to grow to a higher density and still colonize the bead, whereas biofilm 

mutants were confined to areas of extremely low oxygen, restricting their overall growth. 

To further test this hypothesis, we measured the motility of all mutants alongside their 

ancestor (Figure 2.5). After 20 hours, we found that the mean swimming motility of 

biofilm-adaptive mutants (pi2= 11.4mm, SD = 4.3mm) was significantly lower (tss = - 

8.96, P < 0.0001) than that of the ancestor (x = 36.2cm). This, along with a directly 

measured fitness cost in the planktonic phase, supports our prediction that initial 

adaptation to a biofilm environment limits the ability to occupy the planktonic niche.
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Figure 2.5: Swimming motility of biofilm-adaptive genotypes and their ancestor. All 
mutants appear to have lost some motility (measured in millimeters), relative to their 
ancestor (HI2424), as a result of adaptation to a structured environment. Error bars 
represent standard deviation.

The cost o f adaptation

While exact fitness in alternative environments was not always predictable, the 

effects of biofilm-adaptive mutants were generally positive. Interestingly, all mutants 

tended to show a similar response in a given alternative environment, regardless of 

whether it was positive or negative. This symmetry contrasts with previous experiments 

that found that the costs of adaptation were not always predictable, and often differed 

even among mutants evolved under identical conditions (Travisano, 1997; Kassen, 2002; 

Ostrowski et al, 2005). While attempting to define the influence of environmental 

variation on the distribution of mutational fitness effects (DMFE) in an RNA virus, Lalic 

et al. (2011) found that they were unable to predict the effect of a mutation given its 

effect in the original host. Another recent study concluded that the variation in DMFEs
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for a single set of mutations measured in multiple hosts reflect the distinctive fitness 

landscapes of that host (Vale et al., 2012). However, that work used viruses and focused 

on the distribution of all mutational fitness effects, including those that are neutral and 

deleterious. We are interested in defining how the fitness of mutants favored by a 

selective environment correlates to fitness effects.

Theory has long assumed that the magnitude of pleiotropic fitness effect would 

directly correlate to the magnitude of its initial fitness benefit (Lande, 1983), but limited 

empirical data exist and tradeoffs have been scarce (Ostrowski et al, 2005). We used the 

complete array of fitness measurements reported here to calculate a pleiotropic index for 

each mutant, as the mean of absolute effects in each environment. This value, calculated 

for biofilm-adaptive single mutants as well as all biofilm-adaptive mutants, was then 

regressed against fitness in the selective environment.

We found a significant correlation (r2 = 0.657, F6 = 9.568, P = 0.0271) between 

direct effects and pleiotropic index for mutants with a single mutation (Figure 2.6 A). The 

strength of the correlation and its significance actually increased when all biofilm- 

adaptive mutants (single or multiple mutations) were included in the regression 

(r2 = 0.689, Ff, = 22.144 P -  0.0008). Evidently, pleiotropic effects of secondary and 

tertiary mutations generate a similar pattern (Figure 2.6 B).

46



A . 1 .7 -

1.6 -

1 .5 -xCl>
aHH
o  1-4-

1 .2 -

0 0.5 1 1.5

B . 1.7-

1.6 -

1.2 -

0 0.5 1 1.5
Direct Fitness

Figure 2.6: Pleiotropic Index (see text for definition) o f biofilm-adaptive mutants with a 
single mutation (A) and all biofilm-adaptive mutants (B) strongly correlates with direct 
fitness effects in the selective environment.
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While it is not always possible to anticipate the direction of fitness effects, this 

work suggests that the magnitude of indirect effect correlates well with the direct fitness 

effect in the selective environment, and may therefore be predictable. Defining the 

influence of mutations in alternative environments is crucial for developing models of 

adaptation and understanding the role of specialist phenotypes, particularly in 

heterogeneous environments. This work suggests that the fittest biofilm-adaptive 

variants will experience the largest trade-offs under fluctuating conditions, similar to the 

attachment and dispersal of biofilm communities. While the fate of mutants described 

here has not been characterized, prior work with similar biofilm mutants supports this 

conclusion. Previously, a single clone that was passaged under selection for biofilm 

formation diversified into a community with three morphologically distinct ecotypes. A 

representative of each ecotype was then separated from the community and evolved in a 

homogenous, liquid media. Biofilm ecotypes with the highest initial fitness experienced 

the greatest trade-off in motility, biofilm production, and fitness while adapting to the 

liquid environment, indicating that there is a cost associated with specialization (Ellis, 

2011). While the original biofilm communities remained diverse, generalist ecotypes 

eventually dominated the population and produced new variants capable of invading the 

niches of specialist ecotypes (Poltak and Cooper, 2011). We believe that the pleiotropic 

fitness costs of specialization may directly impact the process of evolution by restricting 

the potential for further adaptation, and impeding long-term success within a population.

The role of pleiotropy in adaptation also remains relevant to the emergence of 

novel and multi-host pathogens (Gandon, 2004; Vale et al., 2012; Yates et al., 2006). 

The evolution of host specificity is dependent upon the distribution of all available
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mutational fitness effects in heterogeneous environments (Pepin et al., 2010). Lalic et al. 

characterized the distribution of mutational fitness effects in the Tobacco etch potyvirus 

(TEV) across multiple hosts, and found evidence that the virus could easily broaden its 

host range and adapt to new hosts (2011). By specifically restricting our study to 

beneficial mutations, we hope to better understand how adaptive mutations interact with 

their environment and entirely novel hosts, what role genotype-by-environment 

interactions in pathogen adaptation, and whether those interactions are predictable 

(Dennehy, 2009; Pepin et al., 2010).
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APPENDIX



Number of 
Total Reads Average Coverage

BM1 33,500,574 435

BM2 36,668,563 476

BM3 30,991,427 402

BM4 15,446,128 201

BM5 25,323,922 329

BM6 25,767,153 335

BM7 27,238,621 354

BM8 24,797,574 322

BM9 22,792,877 296

BM10 41,754,928 542

BM11 18,004,355 234

BM12 12,734,313 165

BM13 19,118,577 248

BM14 23,739,497 308

BM15 39,444,785 512

BM16 34,317,080 446

BM17 16,066,953 209

BM18 35,337,581 459
Table S I : Sequencing statistics for each isolate.



Mutant Morph Position Effect Locus Tag Annotation aa
change

nt
change

Ref
Codon

Var
Codon

B1 W Chrom2 647404 NS Bcen2424_3786 wspA A452V C—>T GCC GTC
B2 W Chrom2 652772 NS Bcen2424_3791 wspE D652N G—>A GAC AAC
B3 W Chrom2 646903 NS Bcen2424_3786 wspA S285W C-->G TCG TGG
B4 W Chrom2 652772 NS Bcen2424_3791 wspE D652N 0 1 1 V > GAC AAC
B5 ST Chroml 3065571 NS Bcen2424_2768 3-hydroxyIacyl-(ACP) dehydratase-like C134G T~>G TGC GGC

Chrom2 652513 NS Bcen2424_3791 wspE E565D G ->T GAG GAT
B6 W Chrom2 652995 NS Bcen2424 3791 wspE S726L C-->T TCG TTG
B7 W Chrom2 646903 NS Bcen2424_3786 wspA S285W C—>G TCG TGG
B8 W Chrom2 652995 NS Bcen2424_3791 wspE S726L C—>T TCG TTG
B9 W Chrom2 652772 NS Bcen2424_3791 wspE D652N G—>A GAC AAC

BIO W Chrom2 838824 NS Bcen2424_3791 wspE D696G A—>G GAC GGC
Chrom2 2243712 Syn Bcen2424_5193 cytochrome C -  electron carrier S119S C-->T TCG TCA

B ll W Chrom2 652772 NS Bcen2424_3791 wspE D652N G->A GAC AAC

B12 W
Chrom2 652,905 NS Bcen2424_3791 wspE D696G A—>G GAC GGC
Chrom2 899966 NS Bcen2424_4010 response regulator receiver domain H437R A—>G CAC CGC

B13 TM Chrom2 645194 NS Bcen2424_3785 wspHK- histidine kinase L135F C-->T CTT TTT

B14 W Chrom2 646969 DEL Bcen2424_3786 wspA A21bp

Chrom2 1073395 NS Bcen2424_4159 major facilitator transporter- 
D-galacturonate and D-glucoronate LH P T->C CTC CCC

Chrom3 548243 NS Bcen2424_6354 major facilitator transporter- 
arabinose transport 1114F > I V H ATT TTT

B15 ST Chroml 1783269 NS Bcen2424_1618 ABC - polar amino acid transport V176G T->G GTG GGG
Chrom2 652779 NS Bcen2424 3791 wspE S654L C ->T TCG TTG

Chrom3 288735 NS Bcen2424_6131 wrbA- multimeric flavoprotein D46E C—>A GAC GAA

B16 W Chrom2 647215 NS Bcen2424 3786 wspA V389A T->C GTG GCG

B17 TM Chrom2 645194 NS Bcen2424_3785 wspHK- histidine kinase L135F C—>T CTT TTT

B18 ST Chrom2 653016 NS Bcen2424_3791 wspE D733V A-->T GAT GTT

Table S2: Sequencing results for biofilm-adaptive mutants.



Shapiro-W ilk Test Biofilm  Single 
M utants

Biofilm  All M utants Planktonic M utants

Count 7 12 19

Test Statistic (W) 0.807 0.894 0.899

P-value 0.048* 0.133 0.047*

Table S3: Results of a Shapiro-Wilk Test to determine goodness of fit to a normal 
distribution.

Biofilm  Single v. 
Biofilm All

Biofilm  Single v. 
Planktonic

Biofilm  All v. 
Planktonic

Brown-
Forsythe
Test

F-ratio 0.290 4.953 9.233

P-value 0.591 0.028* 0.003*

Levene’s
Test

F-ratio 0.316 5.229 9.915

P-value 0.575 0.024* 0.002*

DF N um erator 1 1 1

DF D enom inator 111 132 151

Single All Single Planktonic All Planktonic

Count 47 66 47 87 66 87

Standard Deviation 0.515 0.549 0.515 0.409 0.549 0.409

M ean A bsolute 
D ifference to Mean

0.419 0.451 0.419 0.303 0.451 0.303

M ean Absolute 
D ifference to M edian 0.416 0.448 0.416 0.301 0.448 0.301

Table S4: Results of Brown-Forsythe and .evene’s Test for homogeneity of variance.
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