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ABSTRACT |
ADAPTATION OF A PSEUDOMONAS AERUGINOSA POPULATION TO
A BIOFILM LIFESTYLE: WHY IS POLYPHOSPHATE KINASE IMPORTANT?
By
Keith Ferguson

University of New Hampshire, December, 2012
In the environment, bacterial populations often exist as communities called
biofilms. During this sessile state, bacteria excrete exopolysaccharides that form
a sticky, protective matrix. This protective matrix also presents a prominent
medical challenge since chronic infections of cystic fibrosis (CF) patients are
commonly biofilm associated. Pseudomonas aeruginosa is one bacterium that
can colonize the CF lung and persist in a biofilm community. During chronic
infections, P. aeruginosa adapts to its lung environment and displays genetic and
phenotypic diversification. To model evolution during chronic infections, biofilm
populations were experimentally evolved for 540 generations and the genetic
variation was sampled at 100, 260 and 540 generations to identify adaptive
alleles. Of multiple alleles that fixed within the B1 population, mutations in two
genes, ppk and rcsC, were characterized since they were thought to be adaptive.
The goal was to measure the fithess effects of these alleles and to identify the

mechanisms that explain why they would be adaptive.
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CHAPTER |

INTRODUCTION

Biofilms & Experimental Evolution

The biofilm lifestyle is thought to be a more common state of existence
than the planktonic lifestyle for natural bacterial communities (McDougald et al.,
2011) and as such the relevance of biofilms extends to medical, environmental
and industrial fields of research. Biofilms can pose threats to human health as
they form in the lungs of cystic fibrosis (CF) patients (Mowat et al., 2011) and on
medical devices such as catheters (Fu et al., 2010) and prosthetic heart valves
(Mashaqi et al., 2011). They can also have a positive or negative influence on
industrial processes. For example, biofilms coating ships can cost the Navy up to
$56 million per year as these bacterial communities cause frictional drag,
increasing transportation costs (Shuitz et al., 2011). Conversely, these
communities can be used to help in wastewater treatment processes (Boelee et
al., 2012). Biofilms are complex communities as they are usually comprised of
more than one species in these various settings. Furthermore, community
diversity can result in additive, antagonistic or synergistic interactions between
members (Vial & Déziel, 2008). Because they are ubiquitous and have human
health and economic consequences, it is important to understand how biofilms
form, mature and disperse (Southey-Pillig, 2005; Kaplan, 2010; McDougald et al.,
2011).



Experimental evolution provides a unique method of studying bacterial
adaptation to a biofilm environment. This approach allows for real time
observation of phenotypic and genetic diversity that depends on the selective
pressures of surface attachment and dispersal over hundreds or thousands of
generations. Lenski et al. (1991) have used experimental evolution to show that
the rate of adaptation slowed across 2,000 generations of replicate populations
of planktonic E. coli in a minimal medium. Fitness relative to the ancestor
increased throughout the evolution where early adaptations were more beneficial
than later ones. These bacterial lines have been continued through 40,000
generations and hundreds of beneficial mutations have been identified (Barrick et
al., 2009). The fitness effects of individual or combinations of alleles can be
studied by direct competition between evolved clones and the ancestor. Adaptive
mutations can be detected if their frequencies rise within the population and
confer a positive fitness effect. Other studies have used experimental evolution to
study adaptive trends in predator-prey interactions of microorganisms (Gallet et
al., 2009) and in pathogens (Ellis & Cooper, 2010). In combination with high-
throughput sequencing, experimental evolution can be used as a nuanced
mutant screen to identify beneficial mutations favored by selection under defined

conditions.

Pseudomonas aeruginosa & Cystic Fibrosis

Pseudomonas aeruginosa is a metabolically diverse organism and has a

broad niche breadth as it is found in medical, environmental and industrial



settings (Wolfgang et al., 2003; Wainwright et al., 2011; Yan et al., 2011). The
bacterium can cause infections in plants and animals and is thought to grow as
biofilms when inside its host (Bjarnsholt et al., 2009). This opportunistic pathogen
is commonly found in the lungs of patients with CF, a human genetic disorder
caused by mutations in a transmembrane conductance regulator ion channel
(Pissara et a., 2008). Bacteria can easily colonize and persist in this environment
as thick mucus accumulates, causing severe morbidity and mortality.

P. aeruginosa isolates from chronic CF infections often share similar traits
as they adapt to the host resulting as a ‘chronic phenotype’ (Yang et al., 2011).
Mutations in mucA cause a mucoid phenotype due to an overproduction of
alginate, an important constituent of biofilm exopolysaccharide (Smith et al.,
20086). Excess alginate helps the bacterium evade detection by host immune
cells, which makes clearing infection difficult (Song et al., 2003). Hypermutator
populations are also commonly observed in P. aeruginosa CF infections. Clones
acquire loss-of-function mutations in a DNA repair gene and rapidly accumulate
mutations, beneficial and maladaptive. The gene encoding a methyl mismatch
repair protein, mutS, is commonly targeted during later stages of chronic
infections and leads to isolates with mutation rates higher than the ancestor
(Oliver et al., 2002; Macia et al., 2005; Hogardt et al., 2007). Because most
mutations are detrimental, it remains unclear why P. aeruginosa clinical strains
develop this phenotype. One possible explanation is that despite the risk of
accumulating maladaptive alleles, hypermutation may allow access to large-

benefit mutations under stressful conditions that overcome effects of maladaptive



alleles. For example, Giraud et al. (2001) have shown that an E. coli AmutS
genotype is initially more competitive than its ancestor in a mouse gut model.
However, when they restored the ancestral mutS allele in the mutator that was
isolated days after inoculation, it was more fit than the AmutS genotype.
Therefore, adaptive mutations were able to quickly occur on the hypermutator
genetic backgrounds.

P. aeruginosa CF isolates also commonly have mutat}ons producing a
guorum sensing deficiency. The quorum sensing regulator, /lasR is often mutated
in clinical isolates that also have mutations in mucA (affecting mucoidy and
biofilm production) and mutS. It has been hypothesized that mutS enables these
two other phenotypes to emerge but a recent study has shown that mutators
usually arise later during infections, well after mucoid, quorum sensing deficient
strains have been established in the lung (Ciof et al., 2010). Another study
(Mowat et al., 2011) which sampled 1,720 P. aeruginosa isolates from 10 chronic
infections found that most of these populations comprised of mucoid,
hypermutable, quorum sensing-altered haplotypes, further suggesting that these
changes represent adaptations to a biofilm lifestyle within the CF lung.

Clinical isolates of P. aeruginosa from chronically infected CF lungs
develop antibiotic resistance through various mechanisms (Livermore, 2002).
Mutations associated with resistance are often associated with hypermutators
suggesting that having an increased mutation rate allows for relatively quick
evolution of resistance in the CF lung. Common genes altered during chronic

infections include mexAB-oprM, mexXY-oprM, mexR and mexZ which encode



multidrug efflux pumps or regulators of these pumps (Lianes et al., 2004; Gorgani
et al., 2009). These adaptations confer resistance to a wide class of antibiotics
including B-lactams, fluoroquinolones, tetracyclines, macrolides and
aminoglycosides. Because of this characteristic, late stage CF populations
consist of ‘persister’ strains (Mulcahy et al., 2010) that are difficult to clear,

increasing patient morbidity and mortality.

A Model of P. aeruginosa Biofilm Adaptation & Potential Mechanisms

To quantify genetic variation and to identify mutations that are adaptive in
a biofilm lifestyle, P. aeruginosa PA14 was propagated for over 500 generations
on a polystyrene bead in a minimal medium with galactose as a carbon source
(Flynn, unpublished). This process involved daily transfers of biofilm coated
beads into tubes containing fresh media and a new bead (Figure 1). Three
replicate biofilm populations (B1,B2,B3) and three replicate planktonic
populations (P1,P2,P3) were evolved. As the evolution progressed, samples of
each population saw heritable changes in colony morphology different from the
ancestral type, suggesting that they had acquired mutations and that the
mutations would be adaptive. Isolates were grouped together based on colony
morphology and we assigned letters to represent each distinct type (Flynn,
unpublished, defined in Table 6). Metagenomes, or total community DNA, were
extracted at 100, 260 and 540 generations from the B1 population and subjected

to lllumina sequencing.
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Figure 1 Experimental evolution of Pseudomonas aeruginosa PA14. Modified from Poltak and Cooper (2011).



After 100 generations in the B1 population, three nonsynonymous single
nucleotide polymorphism (SNP) mutations were identified within three genes and
verified by Sanger sequencing in some of the evolved isolates. The genes
containing the SNPs are ppk, mutS and recG. Analysis of sequence variation at
intermediate frequencies also showed a two-nucleotide deletion in argA.
Potential beneficial mutations and pertaining information are listed in Table 1. At
this early time point, the ppk mutant allele frequency was 7% and the mutS, argA
and recG mutant allele frequencies were 13%, 14% and 16%, respectively.
These four mutations fix in the population by 260 generations and remain fixed at
the end of the evolution, suggesting that at least one of them is beneficial.
Observed allele frequencies also suggest that the argA, mutS and recG

mutations occurred before the ppk allele.

Table 1 Potential adaptive alleles detected in B1 metagenome

Mutation Significance Generation

Locus Annotation

Effect 2 Detected
PA14 17500  mutS H112P DNA mismatch 100 (12.8%)
repair
rcsC sensor kinase,
PA14 59780 resC L38P regulation of cupD 260 (43%)
fimbriae
2 bp arginine
PA14 68740 argA frame§hlft biosynthesis 100 (14%)
deletion
PA14 69230  ppk T443A p°'VE.h°Sphate 100 ©.8%)
inase
ATP-dependent .
PA14_ 70570 recG A750V DNA helicase 100 (15.5%)

# Numbers in parentheses refer to allele frequencies

There are multiple mechanisms that may explain how each of the

potentially adaptive alleles may benefit the evolved clones. The mutS and recG
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genes encode a DNA mismatch repair protein and an ATP-dependent DNA
helicase, respectively. Preliminary studies show that the three biofilm populations
are hypermutators (Flynn, unpublished), supporting the hypothesis that the
mutations resulting in the mutS, recG or both genes result from loss-of-function
or reduced function. Interestingly, recG is in an operon with oxyR, a regulator of
the oxidative stress response in P. aeruginosa, and transcription of both genes
were seen to increase in the presence of H,O; (Ochsner et al., 2000).

The argA gene encodes an N-acetylglutamate synthase which is involved
in arginine biosynthesis. The two nucleotide argA deletion could affect
intracellular arginine concentrations which could promote a sessile lifestyle.
Evolved clones with the mutation may produce high levels of c-di-GMP, which
upregulates biofilm production. This may also reflect adaptation to the selective
medium that was supplemented with 0.4% arginine. Physiological concentrations
of arginine have been shown to be an important component in modulating biofilm
production via the secondary messenger, cyclic di-GMP, in P. aeruginosa
(Bernier et al., 2011).

The ppk gene encodes a polyphosphate kinase (Ppk) which can reversibly
convert adenosine triphosphate (ATP) into adenosine diphosphate (ADP) and
polyphosphate (polyP). Polyphosphate kinase, in addition to its role in polyP
production, has been associated with RNA degradation (Blum et al., 1997),
ribosomal protein degradation (Kurado et al., 1999), regulation of quorum
sensing and motility (Rashid et al., 2000; Rashid & Kornberg, 2000) and

regulation of stress responses (Shiba et al., 1997). The ppk mutation exists in



evolved isolates that also have the mutS or recG SNPs. If the ppk mutation is
beneficial, the argA, mutS and recG alleles could have fixed because they are in
association with this potentially adaptive step.

Since we were interested in understanding how PA14 adapts to a biofilm
and because early beneficial mutations tend to have larger fitness effects than
later beneficial mutations (Lenski et al., 1991) morphotypes isolated at 100
generations were chosen as the focus for this study. Our PA14 biofilm
populations constantly consist of millions of cells, making it hard for beneficial
alleles starting at low frequencies to fix. Therefore, in order to rise quickly, a
mutation must have a significantly positive fitness advantage over its ancestral
genotype, motivating my first hypothesis:

Hypothesis 1: Since the ppk allele fixes by 260 generations, | hypothesized that
it is adaptive.

The protein structure of Ppk consists of an N-terminal domain responéible
for binding ATP, a head domain that is involved in dimerization and two C-
terminal domains that contain important sequences for catalytic activity. The ppk
mutatio.n results in a non-synonymous change in an amino acid within a putative
active site in one of the C-terminal catalytic domains. The ancestral and evolved
protein structures were constructed in silico and aligned using Phyre2 and
FATCAT (Figure 2). The site of the mutation does not seem to alter nearby
sequences in the evolved protein. However, the T443A change seems to
influence the 3-dimensional conformation of residues 633-637. Within this five

amino acid sequence, there are three putative active sites in the second catalytic



633-637

Figure 2 Computer generated structures of ancestral and evolved Ppk
overlapped. Red/grey indicate where ancestral and evolved sequences share 3-
dimensional conformation. Solid gray represents the evolved Ppk conformation.
T443A is the site with the Ppk mutation and 633-637 are amino acid residues.
domain that is involved in polyP production. This functional organization led me
to a second hypothesis:
Hypothesis 2: The amount of polyP produced by evolved clones with the SNP
increases compared to the ancestor.

PolyP and Ppk can play multiple roles in prokaryotes (Figure 3) and an

increase in polyP could be beneficial for P. aeruginosa in a biofilm for multiple
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Figure 3 Roles of ppk? and polyP in E. coli and P. aeruginosa. Modified from Achbergerova & Nahalka (2011).
Asterisk indicates where a mutation became detectable following 100 generations of selection and fixed by 260
generations.



reasons. Due to the thick exopolysaccharide matrix, concentration gradients of
nutrients based on diffusion rates form (Stewart, 2003). Phosphate is essential
for cell growth and metabolism and could be limiting within the P. aeruginosa
biofilms. Therefore, the ability to create large reservoirs of this molecule in the
form of polyP may be advantageous in this environment. PolyP can regulate
expression of rpoS as removing polyP from E. coli cells significantly decreased
expression of the alternative sigma factor (Shiba et al., 1997). In E. coli, the poS
gene is expressed during stationary phase due to lack of nutrients, in response to
extremes in pH and osmolarity and during exposure to temperature shock and
hydrogen peroxide (Battesti et al., 2011). Although the role of RpoS differs
somewhat between P. aeruginosa and E. coli (Venturi, 2003), there are
similarities as the alternative sigma factor is also induced under starvation
conditions, heat shock, high osmolarity and exposure to H,0 in P. aeruginosa
(Suh et al., 1999). However, studies are contradictory about the role that RpoS
may play within bacterial biofilms. Some suggest that rpoS is upregulated and is
necessary for mature biofilm development (Xu et al., 2001, Irie et al., 2010),
whereas others propose that ArpoS mutants have enhanced biofilm phenotypes
or are important only for early biofilm development (Corona-lzquierdo et al.,
2002; Ferriéres et al., 2009). This role may be species-specific and could depend
on the stage of biofilm development. These studies motivated my third
hypothesis:

Hypothesis 3: The mutant ppk allele evolved in response to biofilm associated

stress.
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E. coli and P. aeruginosa differ in how they generate polyphosphate.
Although both organisms have a ppk1 gene, only P. aeruginosa has three ppk2
enzymes that use GTP instead of ATP to add phosphates to a growing chain of
polyP (Zhang et al., 2002). In addition, most of the molecular mechanisms
determining the roles that PPK1 and polyP play in bacteria have been resolved in
E. coli and less is known about them in Pseudomonas.

Within the focal evolved P. aeruginosa population, B1, a SNP in rcsC was
detected at 260 generations at 43% frequency and rose to 92% by 560
generations, suggesting that it is also adaptive. In addition, according to
metagenomic data and genotype screening, this seems to be the only mutation
that significantly rises in frequency between these two time points. The non-
synonymous mutation changed an alanine to valine towards the C terminal end
between an active site and ATP-binding site. The rcsC gene may also modulate
stress response in P. aeruginosa as it has been shown thata ArcsC E. coli strain
displays a biofilm deficient phenotype due to elevated levels of RpoS which is
regulated by the RcsC phosphorelay (Ferriéres et al., 2009). The Rcs
phoshorelay is a two-component system consisting of a sensor kinase (RcsC), a
histidine phosphotransfer protein (RcsD) and a response regulator (ResB). ResC
and RcsD are membrane proteins that receive environmental cues that activate
the pathway through a series of phosphotransfers. When cytoplasmic RcsB is
phosphorylated, it binds to DNA to upregulate the Rcs regulon. Genes within the
regulon are associated with virulence factors, motility, drug resistance and biofilm

formation (Rogov et al., 2008).
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Another potential role that the rcsC mutation could play in the biofilm
lifestyle is the regulation of the chaperone-usher pathway (CUP) that is involved
in fimbriae assembly (Nicastro et al., 2009) as shown in Figure 2. Fimbriae are
important for cell-to-cell attachment and contribute to the development of biofilms
(Ruer et al., 2007). Whereas most Pseudomonas strains contain three groups of
cup genes, cupA, cupB and cupC, PA14 has these three as well as a fourth,
cupD. The cupD gene cluster (consisting of cupD1-5) and rcesBC are located
within a pathogenicity island, PAPI-1, unique to PA14, making it more virulent
than other P. aeruginosa strains. The cupA clusters are modulated by the MvaT
regulator, cupB and cupC are controlled by the RocASR two component system
and cupD is regulated by the Rcs and Pvr two component pathways. Mikkelsen
et al. (2009) found that cupD genes were upregulated and downregulated if rcsB
and pvrR were overexpressed, respectively. Because a mutation was found in
the rcsC gene in population B1, we isolated this allele in the ancestral

background to directly test its fithess and phenotypic effects.
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Giraud & Bentzmann (2012). Asterisk indicates the location of a mutation detected in population B1 at 260 generations.



CHAPTERIII

METHODS

Growth Conditions

P. aeruginosa was evolved in 5 ml| cultures of M63 (15 mM (NH4)2SOq4, 22
mM KH,PQOy4, 40 mM K;HPO4, 40 mM galactose, 1 mM MgSOyq, 25 uM FeCl,,
0.4% arginine) with a polystyrene bead. After 24 hr, the bead was transferred to
a new tube with fresh M63 and a second bead. This process was carried out for
90 days. Isolates were grown on Morph (1% w/v tryptone, 1.5% agar, 40 ug/mi
Congo Red, 20 ug/ml Coomassie Blue) and VBMM plates (1.5% agar, 0.8 mM
MgS04+-7H20, 10 mM citrate, 60 mM K2HPO4, 4 mM NaNH4PO4) to observe

changes in colony morphology.

Metagenomic Sequencing

Total community DNA was previously extracted at 100, 260, 540
Generations and lllumina sequencing was used to detect mutations (Flynn,
unpublished). Using BWA, we aligned reads to the published Pseudomonas
aeruginosa PA14 genome and we used SAMTOOLS to detect SNPs. Further

details of this analysis are described by Flynn et al., unpublished).
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Isolate Sequencing

From the population isolated after 100 generations, 02, P2 and P3
isolates were selected and subjected to Sanger sequencing. Clones were grown
overnight in liquid LB and genomic DNA was extracted using DNeasy Blood &

Tissue Kit (Qiagen, 69504).

Isolate Genotyping

To verify mutations from metagenomic analysis, SNPs and indels were
screened for by PCR amplifying genomic regions containing the putative
mutations, sequencing amplicons and comparing them to a reference sequence.
Templates for PCR were from cell lysates by suspending single colonies of
evolved clones into 20 yl lysis buffer (10% SDS, 10 N NaOH). Samples were
incubated at 95°C for 15 min. and pulse centrifuged. An aliquot of 180 pl water
was added and samples were centrifuged at 13,000 rpm for 5 min. Lysates were
stored at 4°C.

PCR was done in 25 pl volumes containing 1 X Standard Taq Reaction
Buffer (New England BiolLabs), 0.2 uM forward primer, 0.2 ul reverse primer,

0.2 mM dNTPs, 1 ul lysate. Cycles for each reaction were run as follows: 94°C
for 30 sec.; 94°C for 30 sec., 45-68°C for 30 sec, 72°C for 1 min. per kb.
Annealing and elongation temperatures were determined by T, of primer and
product length (Table 2). PCR products were analyzed on 1% agarose gels

stained with Gel Red (Phenix). ExoSAP-IT (USB) was used to clean crude PCR

17



Table 2 Primers for mutation screening

'::::g Sequence 5' to 3' Tm (°C) SF:; (;d(‘:):t) Reference
argASNPf ACGCCGTGGGTAGTCTGC 58.8 895 This Study
argASNPr GTGGTGAGCACGAACAGG  54.24 This Study

mutS F CTCTCTCAGCACACGCCA 55.18 404 This Study

mutS R TCGTCGCCGAGGATTG 55.74 This Study
ppkSNPf2 CCTGTCCGAAAGCGAGTTG  56.2 1077 This Study
ppkSNPr2 TCCAGTTCCTTCTTGACCCG 56.8 This Study
rcsC F GAAATCCGCTTGCGTCCA 56.0 273 This Study
rcsC R ATTCCCGCCAGGTTGTG 548 This Study
recGSNPf GCGACGAGAACAAGCACAC 56.93 588 This Study
recGSNPr GCCTGGCTGAAATGGTAGA 558 This Study

products before sequencing. Aliquots of 5 pul PCR reactions were added to 2 pl
ExoSAP-IT solution. All samples were incubated at 37°C for 20 min. followed by
80°C for 15 min. Sequencing reactions consisted of 5 yl PCR products and 2 pl
sequencing primer. Samples were sent to the Hubbard Center for Genomic

Studies for sequencing.

Allelic Replacement
Amplifying the Mutant Allele

Because the ppk and rcsC mutations occur in clones harboring other
mutations, these mutant alleles needed to be introduced in isolation to the
ancestral clone. The ppk allele was synthesized by Genscript and cloned into
pMQ30. For the rcsC allele, a cell lysate was prepared and used as templates in
PCR. Evolved isolates were streaked onto Tryptone plates and incubated at
37°C overnight. Colonies were picked and suspended in 20 pl of lysis buffer

(0.25% SDS, 0.05 N NaOH). Samples were incubated at 95°C for 15 minutes

18



and pulse centrifuged. An aliquot of 180 pul of water was added and samples
were centrifuged at 13,000 rpm for 15 min. Allelic exchange primers, which
contained 5 sequences homologous to sites flanking the Sacl restriction site of
the suicide vector pMQ30, were made to amplify 1 kb on each side of the
mutation (Table 3). Expand Long Template PCR System (Roche Applied
Sciences) was used to amplify mutant sequences. Reactions of 15 pl contained 1
X Buffer 3, 350 uM each dNTP, 300 nM each primer and 1 pl lysate.
Thermocycler parameters were as follows: 94° for 5 min, 20 cycles of 94°C for 30
s, Tm for respective primer pair for 30 s, 68°C for 2 min, and a final extension at
68° for 7 min. Products were resolved on a 1% agarose gel and stained with Gel

Red.

Yeast Recombineering

Yeast recombineering was used to clone PCR fragments into pMQ30
(Shanks et al, 2006). Vector (1 pg) was digested for 16 hrs in a reaction
containing 1 X NEBuffer 1, 100 ug/ml BSA and 20 U Sacl. Amplicons and cut
vector were transformed into Saccharomyces cerevisiae InVSc1. See table 4 for
strains and plasmids. Yeast was grown 6vernight at 30°C in 5 ml YPD (0.01%
Yeast Extract, 0.02% Bacto peptone, 0.02% dextrose) and 0.5 ml aliquots of
culture were pulse centrifuged. Pellets were washed once in T.E. (10 mM Tris-
HCI [pH 8.0], 1 mM EDTA) and suspended in 0.5 ml Lazy Bones Solution (40%

Polyethylene glycol [MW3350; Sigma P 3640], 0.1 M Lithium Acetate, 10 mM
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Tris-HCI [pH 7.5], 1 mM EDTA). Single stranded salmon sperm (0.08mg), 20-200
ng of cut pMQ30 and 50-500 ng amplicon were added to yeast suspensions,
samples were vortexed for 1 min and incubated at room temperature overnight.
Cells were heat shocked at 42°C for 11 min washed twice with T.E. and plated
onto SD Medium-URA (MP Biomedicals). Cultures were incubated at 30°C until

colonies formed.

Plasmid Extraction From Yeast

Colonies from SD Medium-URA agar were started in 10 ml liquid SD
Medium-URA and incubated at 30°C overnight. Entire cultures were pelleted and
suspended in 200 pl Smash and Grab Buffer (1% SDS, 2% Triton X-100, 100
mM NaCl, 10 mM Tris-HCI [pH 8.0], 1 mM EDTA), 200 pl
phenol:.chloroform:isoamyl alcohol (25:24:1) and 0.3g of 0.5 mm glass
beads(Next Advance, Inc.). Samples were vortexed for 2 min and centrifuged at
13,000 x g for 5 min. The aqueous layer was mixed with 200 ul chloroform and
centrifuged for 5 min. Isopropyl alcohol (140 pl) was added to the aqueous layer,
samples were inverted and incubated at room temperature for 5 min. Samples
were centrifuged for 2 min and washed twice with 500 pl 70% ethanol. DNA was (
dried by incubating at room temperature overnight and pellets were suspended in

100 pl water.
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Table 3 Allelic exchange primers

Product Size

Primer Name Primer Sequence 5' to 3" Tm (°C)° (bp) Reference
resClongForward 1 GACGOAGGATOAGCAGEA oo 50.72 2147 This Study

rcsClongReverse ncﬁgﬁﬁ%ﬁéﬁg’m&l}ggwg%nm 58.04 This Study

# Smaller letters are homologous to the sequence upstream/downstream of the Sacl restriction site on pMQ30. Larger
letters correspond to gene sequence

® Melting temperatures correspond to gene sequences



Table 4 Strains and plasmids

. Relevant
Strain Characteristics Reference
e . A pir, used in biparental ATCC
Escherichia coliS17 .1 matings 47055
Pseudomonas aeruginosa ancestral strain in Rahme et al.,
PA14 evolution 1995
Pseudomonas aeruginosa constitutively Hogan et al.,
PA14 attB::lacZ expresses lacZ 2004
P. aeruginosa PA14ppkT443A  ancestor with ppk SNP This study
P. aeruginosa PA14rcsCA750V  ancestor with rcsC SNP This study
P. aeruginosa PA14 ppk::Tn ppk transposon mutant L|ber2a36t69t al,
Saccharomyces cerevisiae Shanks et al.,
InVSc1 ura3-52 2006
Plasmid
allelic replacement
pMQ30 vector, R6K origin of Shar;las(;t al.,
replication, GmR, Ura3
allelic replacement .
pMQ30ppkSNP vector with ppkSNP This Study
pMQ30rcsCSNP allelic replacement This Study

vector with rcsC SNP

Transformation of E. coli $17

Constructed pMQ30ppk and pMQ30rcsC vectors were electroporated into

E. coli S17.1. To prepare electrocompetent cells, 500 mi of SOB (2% tryptone,

0.5% Yeast Extract, 10 mM NaCl, 2.5 mM KCI, 10 mM MgCl,, 10 mM MgSOQ,)

was inoculated with 200 pl of overnight cells and incubated at 37°C until the
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ODsgno reached 0.5. Cultures were centrifuged at 4,000 x g for 10 min at 4°C and
washed twice with cold water. Cells were suspended in 50 pl 10% glycerol and
stored at -80°C. For electroporation, cells were thawed on ice and 20 pl of yeast
DNA was added and mixed. Samples were electroporated using

2 mm cuvettes at 2.5 kV. One ml of SOB was added to cells and samples were
shaken at 37°C for 1 hr before plated on T-soy agar with 10 ug/ml gentamicin.

Inserts were verified by sequencing using primers in Table 5.

Bacterial Conjugation

Suicide vectors were conjugated into PA14 using E. coli S17.1. Strains
were grown overnight in LB (1% Bacto Tryptone, 0.5% Yeast Extract, 10 mM
NaCl) at 37°C with appropriate antibiotic. Cultures were washed twice with LB
and mixed at a 1:1, 2:1, 3:1 or 4:1 ratios of donor to recipient. Cultures were heat
shocked at 42°C for 10 min and 50 ul were spot plated onto LB agar. Plates were
incubated overnight at 30°C, spots were suspended in 1 ml LB and plated onto
LB agar with 10 ug naladixic acid and 50 pg gentamicin. Plates were incubated
at 30°C overnight and P. aeruginosa colonies were picked to start 5 mi LB
cultures that were incubated overnight at 30°C. Cultures were plated onto 5%

Table 5 Sequencing Primers for Insert

Primer Name Sequence 5'to 3' Tm(°C) Reference

pMQ30seqF TAACGCCAGGGTTTTCCCAG 62.4 This study
pMQ30seq R AGGCACCCCAGGCTTTAC 57.2 This study
rcsCF GAAATCCGCTTGCGTCCA 56.0 This study
rcsC R ATTCCCGCCAGGTTGTG 54.8 This study
rcsCseqF1 CGGATTCGCCAGGTGCTCA 60.4 This study
rcsCsegqR1 CGCTCGCCCTCTTCTCGCA 62.6 This study
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sucrose LB agar without NaCl and LB agar. Colonies were screened to verify
allelic replacement by PCR and sequencing as described above. The ancestor
and constructed mutants were plated on morphology (1% w/v tryptone, 1.5%
agar, 40 pg/mi Congo Red, 20 ug/ml Coomassie Blue) and VBMM plates (1.5%
agar, 0.8 mM MgSQO4e7H,0, 10 mM citrate, 60 mM K;HPO4, 4 mM NaNH4PO,)

to test effects of mutations on colony morphology.

Fitness Assays

To measure fitness effects of mutations, evolved isolates or constructed
mutants were competed against a neutrally marked /acZ+ ancestor (Hogan et al.,
2004). Five biological replicates of each strain were propagated in 5 ml liquid
medium consisting of 4 ml M63 and 1 ml T-soy containing a polystyrene bead.
Cultures were shaken for 24 hrs at 37°C. Beads containing biofilm were removed
and sonicated in 1.5 mL PBS for 10 s. Competitor and ancestor were mixed in 5
mi fresh M63 containing a new bead in a 1:1 ratio. Day=¢ mixtures were plated
on Tryptone agar with X-gal (40 ug/ml) and incubate for 24 hrs at 37°C. Beads
were removed and sonicated in 1.5 ml PBS and Day-1 mixtures were plated on
Tryptone agar with X-gal. Plates were incubated at 37°C for 24 hrs and let sit at
room temperature for 24 hrs to develop.

The number of colonies for competitor and marked ancestor were used to
calculate CFU/ml. To determine fitness of the competitor, the selection rate

constant was calculated as:
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In(competitor=/competitor=g) — In (ancestori=1/ancestor=)

Polyphosphate Extraction & Measurement

Polyphosphate was extracted and measured according to Silby et al.
(2009) with modifications. All strains were grown in 5 mi LB overnight and 100 ul
of these cultures was added to 5 ml K10T (50 mM Tris-HCI [pH 7.4], 0.2%
[wt/vol] Bacto tryptone, 0.15% [vol/vol] glycerol and 0.61 mM MgSO,) and
incubated for 24 hr at 37°C. An aliquot of 200 pl was removed from each culture
and ODgg was taken. For polyP extraction, 1 mi of each culture was centrifuged
for 2 min. at 13,000 x g and pellets were suspended in 500 pi pre-warmed (95°C)
guanidine thiocyanate lysis buffer (4 M guanidine thiocyanate in 500 mM Tris-
HCI[pH7]). Samples were incubated at 95°C for 5 min. Aliquots of 30 ul 10%
SDS, 500 ul 95% ethanol and 10 ul glassmilk were added to lysates and were
centrifuged for 15 sec. Pellets were suspended in 500 pl New Wash Buffer (5
mM Tris-HCI [7.5], 50 mM NaCl, 5§ mM EDTA, 50% ethanol) and centrifuged.
This wash was repeated two more times. Pellets were suspended in 100 pl of a
solution containing 50 mM Tris-HCI (pH7.4), 10 mM MgCl, and 1 mg/ml DNase |
and RNase A. Samples were incubated at 37°C for 30 min. Glassmilk was
suspended in 150 pl guanidine thyiocyanate lysis buffer and 150 pl 95% ethanol.
Pellets were suspended in 300 yl New Wash Buffer and centrifuged. This wash
was repeated once more. PolyP was eluted by suspending glassmilk in 50 mM
Tris-HCI (pH8.0). This was repeated once more and elutions were pooled

together.
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To measure polyP, 10, 25 and 50 pi aliquots of elution was added to 900
I of toluidine blue-O dye (6mg/liter in 40 mM acetic acid) and volume was
brought to 1 ml. Samples were inverted to mix and incubated at room
temperature for 15 min. Aliquots of 200 pl were loaded into 96-well polystyrene
plates and absorbance was taken at 530 nm and 630 nm. PolyP levels were

reported as the ratio Asao/As3o.

Biofilm Assay

The ability to form biofilms in monocultures of P. aeruginosa strains was
measured by a modified crystal violet assay (O’'Toole & Kolter, 1998). Strains
were grown in 4 ml M63 and 1 mi T-soy at 37°C overnight. Cultures were diluted
to ODeoo = 0.01 in fresh M63 and transferred to sterile 96 well polystyrene plates
which were incubated at 37°C for 24 hrs with orbital shaking. Cell density was
measured at ODggo and unbound cells were removed by inverting the plate.
Plates were incubated at 80°C for 30 min to heat-fix cells which were stained with
0.01% crystal violet for 20 min at room temperature. Stain was removed by
washing with water 4 times and plates were dried at room temperature for 2 min.
Wells were destained with an 80% ethanol, 20% acetone solution for 15 min and
ODggp was measured.

Measuring Oxidative Stress

To test if the ppk mutation is altering oxidative stress tolerance via RpoS
in P. aeruginosa (Jergensen et al., 1999), strains were exposed to H,0,.

Cultures of 5mi K10Tw (50 mM Tris-HCI [pH 7.4), 0.2% [wt/vol] Bacto tryptone,
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0.15% [vol/voli] glycerol and 0.61 mM MgSQ,) were incubated for 24 hrs at 37°C
and were standardized by ODggo. Strains were plated on K10Ttr agar and sterile
filter discs saturated with 3% H,O, were placed in the center. Plates were
incubated for 24 hrs and zones of inhibition were measured to determine

sensitivity.

Heat Shock Assay

Because the RpoS general stress response can confer resistance to heat
shock in Pseudomonas aeruginosa (Suh et al., 1999) strains were grown in 5 mi
K10T at 37°C for 24 hrs and exposed to 50°C for 4, 12, 20 and 45 min. Cultures
were diluted in PBS, plated on T-soy agar before and after exposure and
incubated for 24-48 hrs at 37°C. Response to heat shock was determined by

calculating percent survivai.
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CHAPTER Il

RESULTS

Morphotypes Are Genetically Diverse

Evolved isolates were initially grouped by colony morphology (Flynn,
unpublished) when plated on tryptone agar containing Coomassie Blue and
Congo Red dyes (morph plates), which bind to proteins and exopolyssacharides
respectively. The O morph was small, dark red and had irregular edges. The M
types were large, dark pink colonies usually with a bleb near the edge of the
colony which may indicate M types that acquired a new mutation as the colony
grew. P types were small, light pink, irregular colonies that have a wrinkly

surface. H mutants displayed large, light brown colonies with highly irregular

Table 6 Early Allele Identification’

O O OMMMPPP HH H WTL WTL WTL
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
agA + + Na + - + - - 4+ NA NA NA NA NA NA
mutS + + + + - + + + + NA + 4+ NA NA NA
ppk + + + + - + - - + NA - - - - -
recG NA NA NA + - NA 4+ 4+ + NA NA NA - NA NA

‘Isolates have (+) or lack (-) the respective mutation, NA = not available. Blank
spaces indicate mutations that have not been screened in an isolate. Pictures
represent colony morphologies of isolates (left to right:O,M,P,H,WTL) on tryptone
plates containing Coomassie Blue and Congo Red dyes.
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edges consisting of lighter colored blebs. The WTL colonies shared similar
morphology with the ancestor. They consisted of large, pink colonies with
irregular and diffuse edges. Three representatives of each morphotype at 100
generations were chosen for genetic and phenotypic analyses. Based on a prior
metagenomic analysis (Flynn, unpublished), mutations in the argA, mutS, ppk
and recG genes were detected approximately at 14, 13, 7 and 16% allele
frequencies espectively at 100 generations and all fix within the population by
260 generétions. Interestingly, isolates within a morphotype group did not
necessarily share the same alleles (Table 6). For example, thé OandH
morphotypes shared the same mutations; however, isolates within the M and P
morphotypes were not genetically identical.

The PA14ppkT443A strain, which has the ppk SNP isolated in the
ancestral background) had a different morphology than the ancestor when plated
on solid media (Figure 5). On VBMM, the ancestor had a larger colony
morphology and its edges are more diffuse than the mutant. Differences between

the strains on morphology plates were subtler as the ancestral colony was

Figure 5 Colony morphologies of ancestor and the ppkT443A mutant on
VBMM (A) and Morphology plates (B).

29



slightly larger and had a darker center than the ppk mutant. However, the SNP
did not directly associate with any one of the evolved morphotypes. The rcsC
allele did not alter colony morphology (not shown).

Evolved Isolates Have More Mutations Than Expected

The 02, P2 and P3 isolates from 100 generations were selected for
Sanger sequencing to identify low frequency mutations that may not have been
detected by the metagenome analysis and SNP screening. Each clone aquired
additional mutations other than the ones found at high frequency in the
population by 260 generations (Table 7). The O2 isolate had eight of the thirteen
early mutations that rise to a high frequency whereas the P2 and P3 clones had
two and four respectively. All three contain mutations that were located in genes
that have not yet been annotated and in non-coding regions. Surprisingly, P3
shared more mutations with O2 than P2. However, all three sequenced isolates

had the mutS and recG alleles.
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Table 7 Mutations detected by sequencing of individual clones

Mutation Mutation Mutation
02 Type P2 Type P3 Type
aprA SNP CupA4 SNP argA DEL
argA del eutB SNP envZ SNP
groES SNP mutS SNP fliH SNP
mdoG SNP oprC SNP ginS SNP
metR SNP recD SNP mntH2 INS
mutS SNP recG SNP mutS SNP
ppk SNP rhiA SNP ppk SNP
recC SNP mr SNP rbsA SNP
recG SNP PA14_00650 SNP recG SNP
B PA 14_02990/PA14_03000 NC PA14_00910 SNP sdaB SNP
PA14_03350 SNP PA14_02530 SNP trkA SNP
PA14_07260 SNP PA14_03166 SNP PA14_02990/PA14_03000 NC
PA14_10660 SNP PA14_06260 SNP PA14_03350 SNP
PA14_11160 SNP PA14_12350 SNP PA14_07260 SNP
PA14_ 11650 SNP PA14_19065/dcd NC PA14_09910/PA14_09920 NC
PA14_14060 SNP PA14_21020 SNP PA14_10660 SNP
PA14 16800 SNP PA14_ 25800 - SNP PA14 21770 SNP
PA14_17510 SNP PA14_31080 SNP PA14_29560 SNP
PA14_21160 SNP PA14_35080 DEL PA14_33170/PA14_33190 SNP
PA14_34320 SNP PA14_41420 SNP PA14_39000 SNP
PA14_45970 SNP PA14_44340 SNP PA14_48470 SNP
PA14_46440 SNP PA14_44650 SNP PA14_48760 SNP
PA14_47900/PA14_47910 NC PA14_45010 SNP PA14_53570/PA14_53580 SNP

PA14 49010/PA14 49020 NC INS PA14_45470 SNP  PA14_56090/PA14_56100  SNP




w
N

PA14_63310 SNP PA14_46510 SNP PA14_56890
PA14_65400 SNP PA14_50850 SNP PA14_61080
PA14_51000/PA14_51010 NC DEL
PA14_55490 SNP

PA14_61830/PA14 61840  NC
PA14_68390/PA14_68400 NC DEL
PA14_72540 SNP

SNP
SNP

Underlined genes denote alleles that rise to high frequency from 100 to 260 generations
SNP = single nucleotide polymorphism, NC = non-coding SNP, INS = insertion, DEL = deletion
Bold type indicates synonymous SNPs



The ppk SNP Confers a Fitness Advantage
We compared the fitness of the ppk SNP strain and a ppk transposon

mutant to determine if the SNP produced a loss of function mutation. Isolates
from the 100-generation sample containing or lacking the ppk mutation were
competed against the ancestral clone in a biofilm to determine its effect on
biofilm adaptation (Figure 6). Strains with the SNP were more fit than those
without it (F (1,23) = 87.3909, P<0.001). Isolated in the ancestral genetic

background, the ppk
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Figure 6 Biofilm associated fitness effects of the ppk SNP in different genetic
backgrounds. Error bars represent 95% confidence intervals, n=5. Asterisks
associated with bars indicate significant differences to WT, P<0.05. Strain names
are underlined with genotypes below. Asterisks associated with strain names
signify there are other mutations in these backgrounds (Table 7).
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mutation conferred a selection rate constant of 2.78 (Cl = 0.416), (F (1,8) =
140.630, P<0.001). The transposon mutant of ppk showed reduced fitness
compared to the ancestor (F (1,7) = 252.628), P<0.001). Evolved isolate P2
(SNP-) was as fit as WT and P3 (SNP+) had a higher fitness than ancestor and
the ppk SNP strain (F (1,7) = 35.085, P<0.001). The same strains were also
competed in planktonic conditions to test if the ppk mutation was a biofilm
specific adaptation (Figure 7) and a similar trend was observed. The ppk SNP
6 -
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Figure 7 Planktonic fithess effects of the ppk SNP in different genetic
backgrounds. Error bars represent 95% confidence intervals, n=5. Asterisks
indicate significant differences, P<0.05.
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mutant had a selection rate constant of 3.27, making it more fit than the ancestor
(ta) = 2.364, P<0.0001) and the transposon mutant was significantly less fit than
wildtype (t4) = 2.306, P<0.0001). P2 showed equal fitness to wildtype and P3 was
more fit than the ancestor (t4,= 2.306, P<0.0001) and had equal fitness to the
ppk SNP construct. Additional evolved isolates were also competed against
ancestor to test the hypothesis that the ppk mutation confers an adaptive

advantage (Figure 8). Although most isolates that have the ppk SNP appeared to
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Figure 8 Comparison of selection rate constants for generation 100 morphotypes
in M63 under biofilm conditions. Black and white bars represent isolates that
have and lack the ppk SNP respectively. Error bars represent standard deviation,
n=>5.
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be more fit than those without it, there is not a significant difference. Despite
having the SNP, O2 seemed to have similar fitness to isolates that did not have
the mutation.

Morphotypes were also competed in a biofilm against ancestor in various
concentrations of FeCl; to test if clones with the ppk mutation are more fit when

exposed to potentially toxic levels of ferrous iron since polyphosphate is known to
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Figure 9 Fitness of isolates with and without the ppk SNP in different FeCl;
concentrations in biofilm. Error bars are standard deviations, n = 5. Asterisk
indicates significant difference, P< 0.05.

chelate divalent cations (Hossain et al., 2008). Fitness was measured in 2.5, 25

(evolved conditions) and 250 uM FeCl2 (Figure 9). At each concentration, P3
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was more fit than both the ancestor and P2 (2.5 uM, t4=2.178, P<0.0001; 25 uM,
t4=2.009, P<0.0001; 250 pM, t4=2.178, P<0.0001). There was also a larger
difference in fithess between P2 and P3 in M63 with 2.5 uM iron than 250 uM

FeCl,. P2 was more fit than ancestor in 250 uM FeCl, (t4=2.502, P=0.0008).

Evolved Clones With the ppk Mutation Produce More PolyP

Since polyphosphate kinase 1 (ppk1) is the primary enzyme that
synthesizes polyP in P. aeruginosa (Zhang et al, 2002), polymer concentrations
were measured to determine if the mutation resulted in an increase or decrease
of intr_acellular polyP (Figure 10). Overall, the isolates with the mutation produce
more polyP than those that lack it (F (1, 59) = 13.398, P = 0.0005) Surprisingly,
the transposon mutant produced levels of polyP similar to the ancestor. Early
isolates with the mutation produced up to 18 times more polyP than the ancestor.
Interestingly, M3, despite having the mutation, produced levels of the polymer
comparable to WT. Early clones without the SNP showed slightly higher polyP
than their ancestor but less than ppk SNP” clones. H, V, A, P, M, D, O are colony
types from the 540 generation (late) time point which all have the ppk SNP. Late
isolates, except D, made more polyP than ancestor; however, they also produced
more of the polymer than ppk SNP" isolates and less than early isolates with the

allele.
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Figure 10 Amount of polyP produced by isolates relative to the ancestor. ppk
transposon mutant (black), early isolate that have the ppk SNP (grey), early
isolates that lack the ppk SNP (white) and 540 generation isolates that all have
the ppk SNP (striped). Error bars represent standard deviation, n = 3.

The ppk Allele Alone Does not Increase PolyP.

After isolating the ppk SNP in the ancestor, polyP was measured after 24
hrs to test whether this mutation alone was responsible for the increased
production of the polymer and increased fithess observed in the evolved isolates
with the mutation (Figure 11). Interestingly, production in the constructed strain,
the transposon mutant and P2 is similar to the ancestor and there is an increase
in P3 (F (1, 59) = 54.5135, P < 0.0001). While there may be a subtle fitness
effect associated with high levels of polyP in P3, there is likely another reason

why the ppk SNP alone is adaptive.
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Figure 11 Amount of polyP synthesized compared to fitness in a biofilm. White
bars represent selection rate constant and grey bars represent polyP production
relative to ancestor. Single asterisk denotes a significant difference in fitness to
ancestor. Double asterisk indicates significant fitness difference between P3 and
the ppk SNP. Triple asterisk indicates significant difference in polyP (n=3)
production from ancestor. Error bars represent 95% confidence intervals.

Evolved Isolates With the ppk SNP Are Not More Resistant to
Hydrogen Peroxide But May Be More Resistance to Heat Shock

Because polyphosphate has been shown to regulate the RpoS general
stress response in E. coli (Shiba et al., 1997), resistance to hydrogen peroxide
and heat shock was measured. Many of the evolved morphotypes were more
resistant to hydrogen peroxide than the ancestor regardless of having or lacking

the ppk SNP (Figure 12). To test the effect of the ppk mutation on heat-shock, an

39



isolate with and without the SNP were exposed to 50°C over a 22 minute period
(Figure 13). The P1 morphotype, lacking the mutation, shows a trend similar to
the ancestor where both strains have an 8% survival after 22 minutes. The O1
isolate (ppk SNP +), however, has a 40% survival at the endpoint (F (2, 9) =
63.025, P<0.0001).
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Figure 12 Hydrogen peroxide resistance by P. aeruginosa isolates: PA14
(white), ppk::Tn (black), generation 100 isolates with ppk SNP (small hatches),
100 generation isolates without ppk SNP (large hatches), generation 540 isolates
(grey). Error bars are standard deviation, n = 4.

40



160
140 A
120 4
100

80 A
60 -

% Survival

40
20

0

0 5 10 15 20 25

Time (min)
Figure 13 Effects of ppk mutation survival to high temperature. PA14 (black), O1
(red, ppk SNP+), P1 (blue, ppk SNP-). Error bars represent standard deviation, n
= 5. Asterisk indicates significant difference, P< 0.05.

The rcsC SNP May Enhance Biofilm Formation

Since resC has been associated with the development of biofilms
(Ferriéres et al., 2009), biofilm was assayed to measure the ability of P.
aeruginosa strains to form these sessile communities (Figure 14). Throughout
the time course, the ancestor and resC mutant show similar abilities to form
biofilm. Interestingly, they both have less biofilm after 24 hr than 8 hr. After 4 and
8 hr, the 02 isolate containing the rcsC SNP forms less biofilm than the O3 clone
lacking the mutation. However, at 24 hr, O2 forms more biofilm than O3, which
seems to lose biofilm associated growth (F (1, 12) = 15.148, P =
0.0021).However, the fitness effect of the rcsC allele was measured in the PA14
genetic background and the mutation did not significantly affect fitness on its own

(data not shown).
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Figure 14 Biofilm formation measured by crystal violet assay over 24 hr for
ancestor (black), rcsC SNP mutant (red) and 260 generation isolates O2 (green)
and O3 (blue). Error bars represent confidence intervals, n=8. Asterisks indicate
a significant difference, P<0.05.
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CHAPTER IV

DISCUSSION

PA14 Biofilm-Adapted Populations Are Complex Communities

Isolates of biofiim-adapted P. aeruginosa from the CF lung and in vitro
studies display broad genotypic and phenotypic diversity (Sauer et al., 2002;
Kirisits et al., 2005; Lee et al., 2005; Smith et al., 2006). Hypermutability seems
to be an important phenotype for P. aeruginosa in biofilms since a loss-of-
function mutS allele commonly arises in many CF clones and was found in the
B1 biofilm adapted community of this study. Although there is a mutation in mutS
within the B1 population, no mutations were detected in the lasR, mucA, or mex
genes, other frequently mutafed loci in clinical isolates (Smith et al., 2006; Ciof et
al., 2010). This could be a consequence of adapting to in vitro conditions instead
of the CF lung, where PA14 adapts to a more complex environment with other
microbes, antibiotics and the host immune system. However, the mutations
acquired by the B1 population clones produced a range of colony morphologies
and phenotypic diversity.

Identifying which gene(s) determine colony morphology seems to be

corhplex since 02 shares more mutations with P3 than P2 does. Although the
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ppk allele subtly changed morphology, it did not account for any of the
morphologies observed in the 100-generation community, suggesting that
another allele or combination of alleles define colony types. Having the mutS and
recG alleles may define the P morphology since these are the only mutations
exclusively shared by the two P clones. Even though O2 also had these
mutations, it also had eighteen mutations independent of P2 and P3 that could
result in the O morphology.

It was unexpected that we would find such genetic diversity within similar
colony types after sampling three replicates of the five morphotypes. Although
the complete genetic profiles of every morphotype were not reconstructed, we
found that isolates within morphotypes are not necessarily identical. Though the
0O, H and WTL replicates seem to be genetically identical, genetic
differenceswere found within the M and P morphotypes. Surprisingly, M2 lacks all
of the four mutations that fix by generation 260, suggesting that there is at least
one other mutation (associated with the M colony type) in this background not
identified by our methods. An additional mutation in groES that arose at low
frequency in early-evolved isolates and fixed by generation 260 was detected
during the metagenomic analysis but its presence was not verified by Sanger
sequencing probably because this allele was at 3% frequency. GroES is a co-
chaperonin that associates with another chaperonin, GroEL, and this complex
helps fold and assemble proteins (Sipos et al., 1991). However, mutations in

chaperone genes from CF infections are not common in the literature.
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Despite being apparently isogenic at the three loci | screened, fithess
differences between the O1 and O2 clones suggested the presence of one or
more mutations. Complete genome sequences of three representative clones
showed that there is significant genetic diversity within a morphotype (Table 7),
though many of these mutations may be neutral or slightly maladaptive. Based
on sequencing data (Flynn, unpublished), the B1 and B2 populations become
hypermutators between 100 and 260 generations whereas the B3 community
become a hypermutator between 260 and 540 generations. One of the B3 clones
was isolated at 260 generations and sequenced and revealed only four
mutations, one of which is a synonymous SNP. This suggests that a relatively
low number of mutations may be sufficient to enhance biofilm formation and
dispersal and that many of the mutations in the B1 100 generation isolates may
not be beneficial.

The fitness effects of some of the confirmed mutations were measured by
competing them against the ancestral genotype. When the ppk mutation was
introduced into the ancestral clone it conferred a significant positive fitness
benefit. Furthermore, having a functional ancestral ppk allele in our system was
important as the transposon knockout of this gene displayed significant negative
fitness. However, this SNP did not occur alone in any of the evolved isolates and
was always linked to the mutS allele and in some cases to the recG SNP. P3 had
a higher fitness than the constructed ppk SNP mutant suggesting that at least
one of the other mutations identified in P3 results in a fitness advantage.

Comparing growth curves (data not shown) of the ppk SNP, ppk transposon, P2
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and P3 isolates to that of ancestor suggested that P3 is capable of faster growth
and higher yield while the transposon mutant grows more slowly (area under the
curve data not shown). This further suggests that another mutation in P3 besides
the ppk and mutS provides this advantage. Interestingly, the planktonic head-to-
head competition between ancestor and the ppk constructed strain showed that
the mutant had a significant fithess advantage; a result not predicted from
individual growth curves. This could be a result of growing in 96-well plates
instead of tubes or that there is a competitive interaction between wildtype and

the PAT443A strain.

Mechanisms Not Accounting For Fitness Differences

Once positive fitness effects associated with mutations were identified, we
wanted to explain why these alleles were adaptive. PolyP can chelate potentially
toxic levels of iron as well as other divalent cations. Iron in the CF lung has been
estimated to be over 10 uM (Reid et al., 2009) whereas the medium used for the
evolution contains 25 yM. Concentrations of 10-100 uM are considered iron
replete conditions since requirements for many bacteria are approximately 1 yM
(Vasil and Ochsner, 1999). The data, however, did not support the hypothesis
that the ppk mutation was adaptive by providing a means, increased polyP, of
iron chelation (Figure 5). If iron was being sequestered, the difference in fithess
between P2 and P3 should increase as iron concentration increases. However,

this was not observed.
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Another potential mechanism we tested was that polyP increased
resistance to oxidative stress. Bacteria are often exposed to reactive oxygen
species such as hydrogen peroxide during aerobic respiration (Hassett et al.,
1999) and polyP is known to control the RpoS stress response at the
transcription level in E. coli. Furthermore, several studies have suggested that
sessile bacteria are in a stationary phase state and that RpoS is important for
biofilm formation (Adams and Mclean, 1999; Xu et al., 2001; Schembri et al.,
2003). Many of the 100 generation clones were more resistant to hydrogen
peroxide than the wildtype regardless of having the ppk SNP, which did not
support my original hypothesis that increased polyP upregulated rpoS in PA14.
To confirm this conclusion, rpoS expression could be measured in the
constructed ppk SNP mutant. Also, competing a ArpoS PA14 strain against
ancestor in our bead model could also help show whether the sigma factor is
integral for biofilm formation or fitness in our biofiim model. Interestingly, a clone'
with the ppk mutation showed a higher tolerance to heat shock than the ancestor
and a clone lacking the SNP. Of the major alternative sigma factors in P.
aeruginosa, RpoS and RpoH can confer resistance to heat shock (Suh et al.,
1999; Potvin et al., 2008). Polyphosphate could regulate rpoH instead of rpoS,
however, it would be unclear how this would be beneficial in our biofilm model

since cultures are not exposed to heat stresses.
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Alternative Mechanisms of Fitness Advantages of Evolved Mutations

Although the hypotheses regarding the mechanism of the ppk mutation
were not supported, several alternative explanations may be explored. With
ancestral levels of polyP, the ppk SNP still produced a large fithess advantage.
The mutation could affect the stability of global transcripts as Ppk in E. coli
comprises part of the RNA degradosome (Blum et al, 1997). However, polyP
levels in P3 were elevated and this isolate had a higher fitness than the ppk
construct. Kuroda et al. (1999) found that during amino acid starvation, excessive
levels of polyP can activate the Lon protease in E. coli resulting in the catabolism
of free ribosomes. P. aeruginosa may experience an amino acid depleted
environment in our bead model as the medium used during the evolution was
supplemented with only one amino acid, arginine. In addition, there are chemical
and metabblite gradients across biofilms due to the thick matrix of
exopolysaccharides (Stewart, 2003).’ Cells deeper within the biofilm could be
nutrient-deprived and have adapted to this nutrient deficiency.

The crystal structure of Ppk1 in E. coli has been characterized by Zhu et
al. (2005). The protein forms a dimer with each monomer, which consists of four
domains. In the C1 domain, His435 is a residue thought to be
autophosphorylated as the first step in polyP synthesis. The ppk SNP results in a
T443A change 39 amino acids upstream of the corresponding His in P.
aeruginosa. Though the mutation does not occur directly at a phosphorylation
site, the threonine to alanine change could affect the conformational shape

(Figure 2), indirectly influencing the active site. The T443 is a residue shared not
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only among the Pseudomonas genus but among many other bacteria. A change
in such a conserved amino acid could explain such a large fitness effect and the
increase of polyP. The mutation could also affect the binding property between
Ppk and the RNA degradasome in PA14. However, the interaction between this
protein and the degradasome has not yet been explored in Pseudomonas. In
terms of identifying the mechanistic reason why this mutation is beneficial,
comparing RNA or protein profiles of the ancestor, constructed mutants and
evolved isolates may support the putative role that Ppk and polyP regulate

transcript and protein degradation in PA14.

A Possible Role for Epistasis Among Evolved Mutations

Although the rcsC mutation alone did not show a fitness effect, it could be
conferring a fithess advantage when another allele is present. Since there are at
least four mutations that fix from 100 to 260 generations and the rcsC allele rises
to high frequency from 260 to 540 generations, its benefits through epistasis
should be considered. The fitness effects observed in the 100 and 260
generation isolates are only partly attributed to the ppk mutation and could also
be a result of this éllele in assbciation with others. Therefore, constructing PA14
strains with individual and combinations of the putative adaptive alleles will show
if fitness is determined by additive effects of these mutations or perhaps by
antagonistic/synergistic epistasis.

The seemingly neutral effect of the rcsC mutation may also be a reflection

of the fitness assays, which do not completely mimic the evolution environment.
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To succeed during the evolution, isolates had to attach to a bead surface, survive
within the biofilm, disperse and attach to a new bead within 48 hours. The
competition assay used to measure fitness only requires that the bacteria attach
and survive for 24 hours. Attachment is only part of the selective pressure as
dispersal is another important component that needs to be considered as a proxy
for fitness. Pairwise competitions are also not an accurate reflection of the bead
model. During the evolution, individual strains are not only encountering the
ancestor but are also competing for space and resources against a community of

genetically diverse clones that may play specific roles within the biofilm.

Future Considerations

An interesting observation was that an increase in polyP was only seen in
evolved clones with the ppk SNP and not in the strain with the mutation in the
ancestral background. Also, there was no correlation between polyP and fitness.
This suggests that the polymer is not important, the SNP requires another
mutation or differences in polyP among the ancestor, transposon mutant and the
ppk SNP were not detected by our methods. To increase total polyP, we are
currently cloning the wildtype and evolved alleles into a multicopy plasmid with
an inducible promoter, which may provide enough polyP to distinguish any
differences between the two proteins’ processivity. In addition, since PA14 has
multiple copies of ppk genes, we want to overexpress the exopolyphosphatase,
the enzyme that degrades polyP, in the same inducible vector to determine if

having polyP is important.
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Assuming that the mutS and recG neutral or maladaptive, the argA
mutation may be beneficial since the ppk SNP does not account for all the fitness
of the P3 clone. Arginine metabolism seems to be an important factor to P.
aeruginosa biofilm formation (MUsken et al., 2010; Schobert & Jahn, 2010). Due
to the production of EPS, PA14 is thought to be in an anaerobic or
microaerophilic environment. Because the bacteria may not be aerobically
respiring, they have to find an alternative route to generate ATP. During
anaerobic growth, P. aeruginosa can use arginine as a source of ATP through
the arginine deiminase (ADI) pathway (Wauven et al., 1984). Increases in
transcription and protein levels associated with this pathway have been found in
CF hypermutator isolates (Hoboth et al., 2009) but mutations in ADI genes were
not identified in our PA14 evolution. ArgA, however, is the first enzyme in the
biosynthesis of arginine (Lu et al., 2004) and was one of the genes targeted
during the B1 evolution. We do not know why the nature of this mutation would
be beneficial. The two nucleotide deletion is located at the C-terminal end of the
protein not near any known active sites.

The PA14 B1 evolved population shares some traits with CF adapted
isolates. Both show extensive morphological diversity and a hypermutable
phenotype. The in vitro evolved community also contains mutations in genes that
are not found in clinical strains but could be important for the general fitness of P.
aeruginosa. For example, the ppk gene seems to be integral for PA14 survival in

our bead model and the fitness of a true knockout strain could potentially be
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tested in vitro. Since this gene is found only in prokaryotes, it could be a potential
target for antimicrobial therapeutics. Additional considerations for understanding
P. aeruginosa adaptation to a sessile lifestyle could include metagenomic and
fitness analysis of the B2 and B3 populations and their clones. Comparing the
genetics of these communities would reveal genes or pathways commonly
targeted for biofilm adaptation, including those that may interface with the

metabolism of polyphosphate.
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