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ABSTRACT 

CRY©PRESERVATION, SPERMIATION INDUCTION AND COMPUTER 
ASSISTED ANALYSIS OF SUMMER FLOUNDER (PARALICTHYS DENTA TUS) 

SPERMATOZOA 

by 

Ryan T. Brown 

University of New Hampshire, September, 2012 

David L. Berlinsky 

The objective of this thesis was to improve the aquaculture practices for summer 

flounder Paralichthys dentatus. The experiments in this thesis examined male 

reproduction. First a practical method for summer flounder sperm cryopreservation was 

developed. These experiments examined the various parameters required to successfully 

freeze and store summer flounder spermatozoa. Success of cryopreservation was 

measured by examining post thaw viability and fertility. 

One of the problems feeing summer flounder aquaculture is sexually dimorphic 

growth rates, with females growing larger than males. To overcome this, 

meiogynogenetic summer flounder were developed, allowing the production of all female 

stocks. The second set of experiments examined the sperm characteristics and fertility of 

meiogynogentic summer flounder sperm. Finally, to overcome small milt volumes in 

summer flounder the final set of experiments examined the used of exogenous hormones 

to increase summer flounder sperm production. 

ix 



INTRODUCTION 

In the last decade, the global capture fisheries have plateaued with as many as 

50% of the world's commercial fish stocks at or beyond sustainable harvests (FAO, 

2008). Locally, the northeast ground fisheries, once considered to be among the most 

productive in the world, have declined steadily due to overfishing and environmental 

changes with devastating consequences to New England fishing communities (NMFS, 

2002). The decline in wild fisheries has coincided with a greater worldwide demand for 

seafood, and the increased demand has been met entirely through increased aquaculture 

production. From 2004-2006 aquaculture grew at an annual rate of 11% in value, and 

6.1% in volume. Currently, aquaculture continues to grow faster than any other animal 

producing sector, (8.9% annually) but much of this growth is occurring in Asia, and 

China in particular (FAO, 2008). 

The United States is a major consumer of marine aquaculture products, yet we 

grow only a small fraction of what we consume. In recent years, the US trade deficit 

associated with seafood ranked second behind oil and is estimated in excess of $9 billion 

in 2000 (ARS 2003). Our reliance on imported aquaculture products in some cases 

promotes environmental degradation in countries with less stringent regulations. A major 

obstacle to the growth of a U.S. aquaculture industry has been the need to find 

environmentally sustainable methods of farming fish. 

Although simple forms of aquaculture have been practiced for thousands of years, 

intensive, commercial aquaculture only began in the 1960s. This burgeoning industry 

faced many challenges as it has shifted from small-scale, extensive production of 
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herbivorous and omnivorous species, often grown in freshwater ponds, to intensive 

production of marine finfish and shrimp. One problem that the industry faced was 

developing cost-effective feeds because feed costs are considered to be the highest 

recurrent expenditure in an aquaculture enterprise. This single expense can account for 

60% of the operating budget for highly intensive culture of carnivorous fish (DeSilva and 

Anderson, 1995). Protein, as the most expensive nutrient in aquaculture feeds, 

contributes significantly to costs, especially in carnivorous fish. Protein in feed pellets is 

typically derived from fishmeal that is made from wild harvested stocks of economically 

less valuable species (primarily anchovies). Pellets used for marine finfish aquaculture 

typically contain up to 40% fishmeal, which provides protein (-70% of fishmeal) and fat 

(-10% of fishmeal) to the diets. It has been estimated that the aquaculture industry 

currently consumes 34% of the global fishmeal production and will consume 50% by the 

year 2013 (Naylor et al., 2000; Deutsch et al., 2006). The fishmeal market is highly 

unstable with changing year-to-year availability and significant price fluctuations 

(Rondan et al., 2004). Due to its relatively high cost, cost variability, and growing 

environmental concern about harvesting wild fish to produce fishmeal, it is desirable to 

replace fishmeal with less expensive protein sources (Tidwell et al., 2005). Partial or full 

fishmeal replacement using proteins derived from plant sources has proven effective for 

many teleost species (Carter and Hauler, 2000). 

In addition to feed ingredients, the aquaculture industry has also faced criticism 

for contributing to environmental degradation and disease transmission to wild fish. 

Finfish in many regions are grown in near-shore net pens, often in high densities. 
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Culturing animals in cages or net pens, however, can degrade water quality through waste 

accumulation. Growing fish in high densities can also increase the prevalence of 

pathogens. In recent years the Atlantic salmon industry has had to contend with 

outbreaks of infectious salmon anemia, caused by a virus (Isavirus) and fish lice 

(Lepeophtherius salmonis), an external parasitic crustacean (Berg and Hornsberg, 2008). 

Because of these problems, there is considerable interest in developing cost-effective, 

land-based systems that reduce or eliminate interactions with the external environment. 

Intensive, land-based systems that continuously re-use water (recirculating 

aquaculture (RA) systems) allows for complete control of environmental conditions, 

which permits optimal growth and performance while eliminating environmental impacts. 

For the most part, the high operational and construction costs of land-based, RA systems 

have necessitated culturing fish that can be cultured at extremely high densities, in order 

to recover the infrastructure and operational costs (economy of scale). Alternatively, 

very high-valued species (e.g., ornamentals) have been grown successfully at lower 

densities. Because of recent developments in RA technology, and greater understanding 

of the culture requirements of some high valued, marine food fish, however, the 

economics associated with RA culture have changed considerably. Compared to earlier 

iterations of recirculating systems that required up to 10% daily water replacement and 

resulted in metabolite (nitrate) accumulation, new generation RA systems can operate at 

or near 100% efficiency (no water loss) with nearly complete metabolite elimination. 

These design changes have lead to the development of several commercial-scale, land-

based aquaculture operations for foodfish in the northeast, including Local 
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Oceans™ (NY) and Australis (Turners Falls. MA). The selection of appropriate species 

for RA systems is of the upmost importance and is dependent on a number of factors such 

as market value, ease of domestication, and time required to reach market size (Webber 

and Riordan et al., 1975). 

In the U.S., considerable research has been conducted to determine practices 

conducive for the culture of summer flounder (Paralichtys dentatus) (Bengtson 1999; 

Burke et al., 1999; Watanabe and Carroll, 2001; Gaylord et al., 2004; Veillette et al., 

2007). Summer flounder are a high-value species and fishing pressure has significantly 

reduced wild catches, such that demand often exceeds supply (NOAA, 2008). Research 

on summer flounder aquaculture began in 1970, however, due to a lack of commercial 

interest and funding, culture of summer flounder was not initiated until 1990. The 

framework of summer flounder aquaculture was modeled after that of Japanese flounder 

(Paralicthys olivaceus) from Asia, and Turbot (Psetta maxima) from Europe (Bengston, 

1999). Summer flounder aquaculture began in part because of a decline in commercial 

landings from a peak of 18,000 metric tons (mt) in 1980 to 4,143 mt in 2008 (NOAA, 

2009). Growth rate remains the dominant factor controlling profitability of land-based 

culture of this species, and the costs associated with juvenile growth to market size must 

be reduced to gain competitiveness on the global market (King et al., 2001). Summer 

flounder, like other Paralichthid species, exhibit sexually dimorphic growth rates, with 

females growing considerably faster and larger than males (Morse, 1981; King et al., 

2001). A tremendous increase in growth performance can therefore be realized through 

the production of all-female populations of fingerlings. Monosex production of teleost 
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populations has been accomplished by several mechanisms, including chromosome 

manipulation (polyploidy), gynogenesis and exogenous steroid production (Wolters et 

al., 1982; Benfey and Sutterlin, 1984). Monosex populations of Japanese flounder (P. 

olivaceus) have been produced commercially in Japan and Korea since 1990 and 1995, 

respectively (Seikai, 2000; Yamamoto, 1999) 

Meiogynogenesis 

Diploid gynogenesis has been accomplished for several fish species, including 

summer flounder (Colburn et al., 2009) southern flounder (P. lethostigma; Luckenbach, 

et al., 2004; Morgan et al., 2006), and Japanese flounder (Tabata et al., 1986), and 

involves a two-step process. Initially, oogenesis is reinitiated by fertilizing eggs with 

genetically-inactivated, but motile spermatozoa. Ultraviolet (UV) irradiation has been 

successfully used in a number of fish species to crosslink paternal DNA and produce 

genetically-inactivated sperm (Morgan, et al., 2006). The use of untreated or UV-

irradiated, heterologous sperm further ensures that no parental genetic contribution is 

possible and that all surviving larvae are produced by gynogenesis. The second step 

involves re-establishing diploidy by blocking expulsion of the second polar body (meiotic 

gynogenesis or meiogynogenesis) or preventing the first embryonic cell division (mitotic 

gynogenesis or mitogynogenesis) with the use of thermal or physical shock shortly after 

fertilization (Ihssen et al., 1990). These procedures, coupled with exposure to proper sex-

determining environmental conditions, have been used to sex-reverse broodstock of 

several important aquaculture species for production of monosex populations (Devlin and 

Nagahama, 2002; Ihssen, et al., 1990; Morgan, et al., 2006). Summer flounder 
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meiogynogens were sex reversed by exposing them to high water temperatures (>21°C; 

Colburn et al. 2009) and sperm from these individuals were used in the experiments 

described in Chapter II. 

Gametogenesis 

Controlled reproduction and high quality gamete production are essential for profitable 

aquaculture to ensure adequate availability of larvae and juveniles (Mylonas et al., 2010). 

In temperate fish species, reproduction is controlled by seasonal changes in water 

temperature, day length, availability of nutrients (Sarkar et al., 2010), and social stimuli 

(Stacey et al., 2001). These environmental stimuli stimulate reproduction by their 

influence on the hypothalamo-pituitary-gonadal axis. The environmental cues stimulate 

the hypothalamus to release gonadotropin releasing hormones (GnRHs) which bind to 

receptors on gonadotropes in the anterior pituitary gland. Once stimulated by GnRHs, the 

gonadotropes synthesize and secrete gonadotropins (Gths), luteinizing hormone (LH) and 

follicle stimulating hormone (FSH) that subsequently stimulate steroidogenesis by 

follicle cells in the gonads (Mylonas et al., 2010). In cultured fish, these processes may 

be disrupted by stressors associated with captivity, and/or improper environmental 

conditioning. To reduce reproductive dysfunction in cultured fish, husbandry practices 

should minimize stress and environmental cues should simulate natural conditions 

(Schreck et al., 2001). 

For some species, such as Atlantic cod (Gadus morhua), larvae are typically 

obtained from group, volitionally spawning broodstock housed in large tanks (tank 

spawning). Under this system no genetic selection can be applied, as parentage is 
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unregulated. Environmental cues, most notably photoperiod and water temperature, 

regulate reproductive development, but the date of spawning initiation can vary by 

several weeks from one year to the next. 

An alternative to tank spawning is strip spawning where fully developed gametes 

are manually expressed from selected individuals for in vitro fertilization. In vitro 

fertilization is often employed with species that fail to spawn volitionally in captivity, and 

to control parentage for genetic improvement and manipulation of ploidy conditions. 

Additionally, tank spawning is often prolonged over a period of weeks, which extends the 

labor-intensive larviculture period and the need for algal and live-feed production. In 

vitro fertilization synchronizes and consolidates spawning efforts. 

Despite optimal husbandry, broodstock of some species fail to undergo proper 

gametogenesis, resulting in poor gamete quality, and/or fail to release mature gametes 

(ovulation and spermiation in females and males, respectively). In such cases, exogenous 

administration of Gths (or similar derivatives), GnRHs or extracts of freeze-dried 

pituitaries (carp, salmon) have proven beneficial to alleviate reproductive failure in many 

species. The specific treatments are species-specific, must be determined experimentally, 

and in general have been found more effective for inducing ovulation than spermiation 

(Mylonas and Zohar, 2001). 

Gametogenesis in males occurs in two phases. Spermatogonia replicate by mitosis 

and undergo two meiotic divisions to form four spermatids. Spermiation occurs during 

the spawning season resulting in the release of seminal plasma and spermatozoa from the 

testes. In a culture setting expelling milt from the testes can be accomplished by gentle 
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abdominal massage or stripping milt from a ripe male (Myionas et a!., 2010). 

Spermatogenesis may be continuous in fish species with tubular testes, or discontinuous 

in species with lobular testes (Vizziano et al., 2008). In male fish, spermatogenesis is 

under gonadotropic control, specifically, FSH dominates during spermatogenesis and LH 

during spermiation. LH is also responsible for stimulating androgen production in 

Leydig cells, located between the seminiferous tuble and the interstitial area of the testes. 

FSH stimulates Sertoli cell proliferation, for which germ cells are dependent for survival 

and development (Schulz and Miura, 2002). 

Cryopreservation 

Like many other domesticated animals, methods to preserve sperm by freezing 

have been developed for many species of commercially important and threatened fishes. 

The ability to cryopreserve sperm from brood stock has many benefits including 

synchronized gamete availability for in vitro fertilization, preservation of genetic material 

from superior brood stock, transportation of spermatozoa among hatcheries, conservation 

of genetic material from threatened fish species, sperm economy in species where very 

low volumes are produced, and minimizing brood stock maintenance. (Billard, 1986; 

Suquet et al., 2000; Cabrita et al., 2010). There have been research efforts to develop 

cryopreservation methods for paralichthid species such as the Japanese flounder 

(Paralicthys olivaceus) and Brazilian flounder (Paralichthys orbignyanus) (Zhang et al., 

2003; Lanes et al., 2008), but to date no methods have been developed for summer 

flounder. 
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Successful sperm cryopreservation with high post-thaw viability is dependent on 

several factors including sperm quality prior to freezing, freezing rate, extender 

composition, cryoprotectant type and concentration, and extent of sperm dilution (Rana, 

1995; Gwo, 2000; Chao and Liao, 2001; Yang and Tierch, 2009). No combinations of 

cryoprotectant and extender are universal, so sperm cryopreservation methods must be 

catered to specific species (Routray et al., 2008). During freezing, sperm are susceptible 

to cold shock, osmotic stress, and intracellular ice formation (Cabrita et al., 2005). 

Further, mitochondria function can become compromised from freezing and thawing 

(Cabrita et al., 2005). Due to these problems, cryopreserved sperm often have lower 

fertility compared to fresh even after a cryopreservation technique has been optimized 

(Cabrita et al., 2005). 

Initial sperm quality is highly variable, even among individuals of the same 

population and must be carefully evaluated prior to freezing (Rana, 1995). Sperm quality, 

even from individual fish can change chronologically, as intratesticular sperm aging has 

also been reported for many species, particularly at the end of the reproductive season 

(Susquet et al., 2000). Careful abdominal massage of sedated fish provides an effective, 

non lethal means of sperm collection for in vitro fertilization (Rana, 1995; Suquet, 2000). 

Contamination from water, mine, feces, and mucous during collection, however, can 

change the osmolality and pH of seminal fluid and further decrease sperm quality. Fecal 

and urine contamination of milt can be reduced by starving fish 6-24 hours and emptying 

their bladders prior to milt collection (Rana, 1995). Crushing dissected testes as a means 

of collecting sperm may greatly reduce the risks of contamination, however, the high 
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value of many brood stock make non-lethal means of sperm collection more desirable 

(Yang and Tierch, 2009). Because of the numerous biological factors and handling 

procedures that can affect post-thaw viability and fertilizing capacity, several methods 

have been developed to assess sperm viability prior to and following cryopreservation 

(Cabrita et al. 2005). 

Sperm Evaluation 

Spermatozoa motility is often used as an indicator of sperm quality, and the 

percentage of motile spermatozoa has been positively correlated with fertilization in 

many species (Levanduski and Cloud, 1988; Wang and Crim, 1998; Fauvel et al., 2010). 

In others, such as Atlantic cod, Gadus morhua L., (Trippel and Neilson, 1992); salmonids 

(Scott and Baynes, 1980), and rosy barb, Barbus conchonius (Amanze, 1994) fertilization 

success using in vitro fertilization was not different using motile or immotile sperm. 

Differential staining of live and dead cells, based on their membrane integrity, has proven 

useful for rapid evaluation of preservation protocols prior to fertilization trials (DeGraaf 

and Berlinsky, 2004; Lanes et al., 2008; Cabrita et al., 2009). The recent use of 

fluorescent dyes such as SYBR-14 and propidium iodide, in combination, permits fast 

and accurate viability analysis. (Cabrita et al., 2005). Cells with intact, selectively 

permeable membranes restrict passage of propidium iodide and SYBR-14 stains their 

nucleic acids green. Cells with compromised membranes do not restrict propidium 

iodide and cells stain red (Horvath et al 2006). These stains were incorporated into a kit 

for staining sperm cells (Live/dead® sperm viability kit) that was used to assess cell 

viability in the studies described in Chapter 1. 
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Other methods of assessing post thaw spermatozoa viability include assays that examine 

mitochondria functionality. This can be accomplished using the lipophillic cation JC-1 

and flow cytometry. JC-1 changes from orange to green when mitochondrial membrane 

potential is low (Cabrita et al., 2005).\ 

Extenders 

Diluting sperm with an extender solution is essential prior to cryopreservation 

(Rana,1995; Yang and Tierch, 2009). During freezing and thawing, biological salts may 

lose their buffering capacity and extender solutions play an important role in maintaining 

osmolality and pH (Yang and Tierch, 2009). In the spermatozoa of marine fishes, 

exposure to hypertonic solutions causes motility activation (Morisawa and Suzuki, 1980) 

and selected extenders must be iso-osmotic to the seminal fluid, to ensure it does not 

cause spermatozoa activation (Rana, 1995). In addition to buffering capacity, suitable 

extenders contain nutrients, stabilizing colloids, and antioxidants. (Gwo, 2000). 

Cryoprotectants 

By adding a cryoprotecting agent to extended sperm it is possible to prevent the 

formation of intercellular ice crystals and cellular dehydration during cryopreservation 

(Yang and Tierch, 2009). Effective cryoprotectants should be highly soluable, able to 

penetrate cell membranes easily and minimally toxic to spermatozoa (Suquet et al., 2000; 

Chao and Liao, 2001; Yang and Tierch, 2009). Common cryoprotectants used include 

dimethyl sulfoxide (DMSO), glycerol, ethylene glycol and methanol. Glycerol has been 

widely used for sperm cryopreservation of salmonid and marine species (Suquet et al., 

2000) but because it is slow to penetrate membranes, it requires an equilibration period, 

11 



that increases toxicity. For that reason, glycerol has been replaced by DMSO for sperm 

cryopreservation of many species. While DMSO has proven widely successful for a 

number of marine teleosts, and has been called the "universal cryoprotectant" (Chao and 

Liao 2001), equal or greater success has been attained with other cryoprotectants. For 

instance, compared to DMSO, greater success was attained using glycerol, propylene 

glycol, and trehalose as sperm cryoprotectants for Japanese flounder, winter flounder, 

Pseudopleuronectes americanus (Walbaum), and orange-spotted grouper, Epinephelus 

coioides (Hamilton), respectively (Rideout et al., 2003; Zhang et al., 2003; Peatpisut and 

Amrit, 2010). 

Freezing rates and methodology 

Many packaging vessels and freezing systems have been successfully employed 

for teleost sperm cryopreservation. Packaging vessels such as plastic straws, cryovials 

and glass capillary tubes have been used successfully and their specific use often depends 

on the species-specific sperm volumes required. Some freezing protocols have also been 

employed using dry ice, liquid nitrogen and controlled rate freezers (Stoss and 

Donaldson, 1983; Susquet et al., 2000). The range of optimal freezing rates varies 

between -1° C/minute to -99 ° C/minute (Susquet et al., 2000). Highly successful sperm 

cryopreservation has been conducted using a two-step method, during which sperm are 

initially held in liquid nitrogen vapors for some period and then plunged directly into the 

liquid nitrogen for storage. Cooling rate is determined by the height samples are placed 

above the vapor. Problems with this method may can arise due to inconsistency of sample 
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placement. These problems are avoided by using a programmable controlled-rate freezer, 

as was employed in the studies described in Chapter 1. 

Short term storage 

Short term storage of fish spermatozoa is useful when sperm and eggs may be 

collected at different times or locations. The purpose of short term milt storage is to slow 

metabolic activity of spermatozoa so their life span may be extended. Most fish sperm are 

suitable for storage because they remains quiescent in the seminal plasma, and since they 

remain immotile they consume less energy. Because of this characteristic fish 

spermatozoa may be stored for hours or even days and still remain viable. Problems that 

may reduce the viability during short term storage of spermatozoa include inadequate 

temperature control or gaseous exchange, bacterial contamination and cell desiccation. 

These obstacles may be overcome by the addition of a diluent and/or gaseous oxygen to 

the spermatozoa (Gwo, 2000; Rana, 1995). 

References 

Amanze D., 1994. Strategies for sperm-egg contact during external fertilization in 
teleosts. High performance fish: Proceedings of an International Fish Physiology 
Symposium at the University of British Columbia in Vancouver, Canada. July 
16-21, pp. 176-181. Fish Physiology Association,Vancouver, BC, Canada. 

ARS, U., 2003. ARS National Programs. 
http://www.ars.usda. gov/research/programs/programs.htm?np_code= 106&docid= 
832. 

Benfey T.J., Sutterlin A.M., 1984. Growth and gonadal development in triploid 
landlocked Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and 
Aquatic Sciences 41, 1387-1392. 

Bengtson D.A., 1999. Aquaculture of summer flounder (Paralichthys dentatus): Status of 
knowledge, current research and future research priorities. Aquaculture 176, 39-
49. 

13 

http://www.ars.usda


Berg A.G.T., Horsberg, T.E., 2008. Plasma concentrations of ernamectin benzoate after 
Slice(TM) treatments of Atlantic salmon (Salmo salar): Differences between fish, 
cages, sites and seasons. Aquaculture 288,22-26. 

Billard R., 1986. Spermatogenesis and spermatology of some teleost fish species. 
Reproduction, Nutrition and Development 26, 877-920. 

Burke J.S., Seikai T., Tanaka Y.,Tanaka M., 1999. Experimental intensive culture of 
summer flounder, Paralichthys dentatus. Aquaculture 176, 135-144. 

Cabrita E., Robles V., Rebordinos L., Sarasquete C., Herraez M.P., 2005. Evaluation of 
DNA damage in rainbow trout (Oncorhynchus mykiss) and gilthead sea bream 
(Sparus aurata) cryopreserved sperm. Cryobiology 50,144-153. 

Cabrita E., Sarasquete C., Martinez-Paramo S., Robles V., Beirao J., Perez-Cerezales S., 
Herraez M.P., 2010. Ciyopreservation of fish sperm: applications and 
perspectives. Journal of Applied Ichthyology 26, 623-635. 

Carter, C.G., Hauler, R.C., 2000. Fish meal replacement by plant meals in extruded feeds 
for Atlantic salmon, Salmo salar L. Aquaculture 185, 299-311. 

Chao, N.H., Liao, I.C., 2001. Cryopreservation of finfish and shellfish gametes and 
embryos. Aquaculture 197, 161-189. 

Colburn, H.R., Nardi., G.C., Borski, R.J., Berlinsky, D.L., 2009. Induced meiotic 
gynogenesis and sex differentiation in summer flounder {Paralichthys dentatus). 
Aquaculture 289, 175-180. 

Cyr D.G., Eales J.G., 1996. Interrelationships between thyroidal and reproductive 
endocrine systems in fish. Reviews in Fish Biology and Fisheries 6, 165-200. 

DeGraaf J.D., Berlinsky D.L., 2004. Cryogenic and refrigerated storage of Atlantic cod 
(Gadus morhua) and haddock (Melanogrammus aeglefinus) spermatozoa. 
Aquaculture 234, 527-540. 

De Silva S.S., Anderson T.A., 1995. Fish Nutrition in Aquaculture. Chapman & Hall 
Aquaculture Series, London, pp. 319. 

Deutsch, L., Graslund, S., Folke, C., Troell, M., Huitric, M., Kautsky, N., Lebel, L., 
2007. Feeding aquaculture growth through globalization: Exploitation of marine 
ecosystems for fishmeal. Global Environmental Change 17,238-249. 

14 



Devlin, R.H., Nagahama Y., 2002. Sex Determination and sex differentiation in fish: 
An overview of genetic, physiological, and environmental influences. 
Aquaculture 208, 191-364. 

Donaldson E.M., Hunter G.A., 1983. Induced final maturation, ovulation, and 
spermiation in cultured fish. Fish Physiology: Vol. 9: Reproduction, Pt. B: 
Behavior and Fertility Control. Academic press, pp.351 

FAO (2008) The State of World Fisheries and Aquaculture (SOFIA). FAO, Rome. 
Fischcher G, Shah M. 

Fauvel C., Suquet M., Cosson J. 2010. Evaluation of fish sperm quality. Journal of 
Applied Ichthyology 26, 636-643. 

Gaylord, T.G., Schwartz M.H., Cool R.W., Jahncke M.L., Craig S.R., 2004. Thermal 
optima for the culture of juvenile summer flounder, Paralichthys dentatus. 
Journal of Applied Aquaculture 14, 155-162. 

Gwo J.C., 2000. Cryopreservation of sperm of some marine fishes. In: Cryopreservation 
in Aquatic Species (ed. by Tiersch T.R., Mazik P.M.) pp. 138-160, World 
Aquaculture Society, Baton Rouge, LA. 

Habibi H.R., Marchant T.A., Nahorniak C.S., Van Der Loo H., Peter R.E., Rivier 
J.E.,Vale W.W., 1989. Functional relationship between receptor binding and 
biological activity for analogs of mammalian and salmon gonadotropin-releasing 
hormones in the pituitary of goldfish (Carassius auratus). Biology of 
Reproduction 40,1152-1161. 

Horvath A., Urbanyi B., Mims S.D., Bean W.B., Gomelsky B., Tiersch T.R., 2006. 
Improved cryopreservation of sperm of paddlefish (Polyodon spathula). Journal of 
the World Aquaculture Society 37,356-362. 

Ihssen P.E., McKay L.R., McMillian I., Phillips, R.B., 1990. Ploidy manipulation and 
gynogenesis in fishes: cytogenetic and fisheries applications. Transactions of the 
American Fisheries Society 119,698-717. 

King N.J., Nardi G.C., Jones C.J. 2001. Sex linked growth divergence of 
summerflounder from a commercial farm: are males worth the effort? Journal of 
Applied Aquaculture 11,77-88 

15 



Lam T.J., 1982. Applications of endocrinology to fish culture. Canadian Journal of 
Fisheries and Aquatic Sciences 39, 111-137. 

Lanes C.F.C., Okamoto, M., Cavalcanti, P.V., Collares, T., Campos, V.F., Deschamps, 
J.C., Robaldo, R.B., Marins, L.F., Sampaio, L.A., 2008. Cryopreservation of 
Brazilian flounder (Paralichthys orbignyanus) sperm. Aquaculture 275, 361-365. 

Le Gac F., Blaise O., Fostier A., Le Bail P-Y., et al., 1993. Growth hormone (GH) and 
reproduction: A review. Fish Physiology and Biochemistry 11, 1-6. 

Lethimonier C., Madigou T., Munoz-Cueto J., Lareyre J., 2004. Evolutionary aspects of 
GnRHs, GnRH neuronal systems and GnRH receptors in teleost fish. General and 
Comparative Endocrinology 135,1-16. 

Levanduski M., Cloud J., 1988. Rainbow trout (Salmo gairderi) semen: effect of non-
motile sperm on fertility. Aquaculture 75, 171-179. 

Luckenbach J.A., Godwin J., Daniels H.V., Beasley J.M., Sullivan C.V., Borski R.J., 
2004. Induction of diploid gynogenesis in southern flounder (Paralichthys 
lethostigma) with homologous and heterologous sperm. Aquaculture 237, 499-
516. 

Morgan A.J., Murashige C.A., Woolridge J.A., Luckenbach W.O., Watanabe R.J., 
Borski J., Godwin H.V., Daniels H., 2006. Effective UV dose and pressure 
shock for induction of meiotic gynogenesis in southern flounder 
(Paralichthys lethostisma) using black sea bass (Centropristis striata) sperm. 
Aquaculture 259,290-299. 

Morse W.W., 1981. Reproduction of the Summer Flounder, Paralichthys dentatus (L.). 
Journal of Fish Biology 19,189-203. 

Morisawa M., Suzuki K., 1980. Osmolality and potassium ion: their roles in initiation of 
sperm motility in teleosts. Science 210,1145-1147. 

Munkittrick K.R., Moccia R.D., 1984. Advances in the cryopreservation of salmonid 
semen and suitability for a production-scale artificial fertilization program. 
Theriogenology 21,645-660. 

Mylonas C.C., Fostier A., Zanuy S., 2010. Broodstock management and hormonal 
manipulations of fish reproduction. General and Comparative Endocrinology. 
165,516-534. 

16 



Mylonas, CO, Zohar, Y., 2001. Endocrine regulation and artificial induction of oocyte 
maturation and spermiation in basses of the genus Morone. Aquaculture 202, 205-
220. 

NMFS. 2002. Fisheries, statistics and economic division. National Oceanic and 
Atmospheric Administration. Silver Spring, Maryland, USA. 

NOAA. 2008. Summer flounder (Paralichthys dentatus). National Marine Fisheries 
Service, http://www.nmfs.noaa.gov/fishwatch/species/summer_flounder.htm. 

Naylor R.L., Goldburg, R.J., Primavera J.H., Kautsky N., Beveridge M., Clay J., Folke 
C., Lubchenco J., Mooney, Harold T., Max, 2000. Effect of aquaculture on world 
fish supplies. Nature 405, 1017-1024. 

Negatu Z., Hsiao S.M., Wallace R.A ., 1998. Effects of insulin-like growth factor-I on 
final oocyte maturation and steroid production in Fundulus heteroclitus. Fish 
Physiology and Biochemistry 19,13-21. 

Peatpisut T., Amrit B.N., 2010. Cryopreservation of sperm from natural and sex-reversed 
orange-spotted grouper (Epinephelus coioides). Aquaculture Research 42, 22-30. 

Rana K.J., 1995. Cryopreservation of fish spermatozoa. In: Methods in Molecular 
Biology 38: Cryopreservation and freeze-drying protocols (ed. by J.G. Day and 
M.R. McLellan) p. 151-165. Totowa, NJ. 

Rideout R.M., Litvak M.K., Trippel E.A., 2003. The development of a sperm 
cryopreservation protocol for winter flounder Pseudopleuronectes americanus 
(Walbaum): evaluation of cryoprotectants and diluents. Aquaculture Research 34, 
653-659. 

Rond£n M., Hernandez M.D., Egea M.A., Garcia B., Jover M., Rueda F.M., 2004. 
Effects of fishmeal replacement with soybean meal as protein source, and protein 
replacement with carbohydratesas an alternative energy source on sharpsnout sea 
bream, Diplodus puntazzo, fatty acid profile. Aquaculture Research 35, 1220-
1227. 

Routray P., Dash S.N., Dash C., Swain P., Sarkar Sampad K., Sarangi N., 2008. 
Cryopreservation of silver barb Puntius gonionotus (Bleeker) spermatozoa: effect 
of extender composition, cryoprotective agents and freezing rate on their post-
thawing fertilization ability. Aquaculture Research 39,1597-1605. 

17 

http://www.nmfs.noaa.gov/fishwatch/species/summer_flounder.htm


Sarkar S.K., Saha A., Dasgupta S., Nandi S., Verm a D.K., Routray P., Devaraj C., 
Mohanty J., Sarangi N., Eknath A.E., Ayyappan S., 2010. Photothermal 
manipulation of reproduction in Indian major carp: A step forward for off-season, 
breeding and seed production 
Current Science 99,960-964. 

Scott A.P., Baynes. 1980. A review of the biology, handling and storage of salmonid 
spermatozoa. Journal of Fish Biology 17, 707-739 

Schreck C.B., Contreras-Sanchez W., Fitzpatrick M.S., 2001. Effects of stress on fish 
reproduction, gamete quality, and progeny. Aquaculture 197,3-24. 

Schulz R.W., Miura T., 2002. Spermatogenesis and its endocrine regulation. Fish 
Physiology and Biochemistry 26,43-56. 

Seikai, T., 2000. Flounder culture, Japanese. Pages 382-387 in R. R. Stickney, editor. 
Encyclopedia of Aquaculture, Wiley, Ney York, New York, USA. 

Stacey N., Fraser E.J., Sorensen P., Van Der Kraak G., 2001. Milt production in goldfish: 
regulation by multiple social stimuli. Comparative Biochemistry and Physiology. 
130,467-476. 

Stoss J., Donaldson E.M., 1983. Studies on cryopreservation of eggs from rainbow trout 
(Salmo gairdneri) and coho salmon (Oncorhynchus kkutch). Aquaculture 31,51-
65. 

Suquet M., Dreanno C., Fauvel C., Cosson J., Billard, R., 2000. Cryopreservation of 
sperm in marine fish. Aquaculture Research 31,231 -243. 

Tabata K., Gorie S., Nakamura K., 1986. Induction of gynogenetic diploid in hirame 
Paralichthys olivaceus. Bulletin of the Japanese Society of Scientific 
Fisheries 52, 1901-1904. 

Tidwell J.H., Coyle S.D., Bright L.A., Yasharian D., 2005. Evaluation of plant and 
animal source proteins for replacement of fish meal in practical diets for the large 
mouth bass Micropterus salmoides. Journal of the World Aquaculture Society 36, 
454-463. 

Trippel E.A., Neilson J.D., 1992. Fertility and sperm quality of virgin and repeat-
spawning Atlantic cod (Gadus morhua) and associated hatching success. 
Canadian Journal of Fisheries and Aquatic Sciences 49,2118-2127. 

18 



Veillette, P.A., M. Merino, N.D. Marcaccio, M.M. Garcia and J.L. Specker., 2007. 
Cortisol is necessary for seawater tolerance in larvae of a marine teleost the 
summer flounder. General and Comparative Endocrinology 151, 116-121. 

Vizziano D., Fostier A., Loir M., Le Gac F., 2008. Testis development, its hormonal 
regulation and spermiation induction in teleost fish. Fish Spermatology 3,103-
139. 

Wang Z., Crim L.W., 1997. Seasonal changes in the biochemistry of seminal plasma and 
sperm motility in the ocean pout Macrozoarces americanus. Fish Physiology and 
Biochemistry 16, 77-83. 

Webber H.H., Riordan, P.F., 1975. Criteria for candidate species for aquaculture 
In: Proceedings of the Sixth Annual Meeting [of the] World Mariculture Society 
held at Seattle, Washington, January 27-31, 1975 in cooperation with [the] 
University of Washington, Seattle [and the] National Marine Fisheries Service. 
World Mariculture Society, Charleston, SC (USA) Publ. by: Louisiana State 
University. Division of Continuing Education; Baton Rouge, LA (USA). 389-
406.; Annual Meeting., Proceedings of the World Mariculture Society. 

Wolters W.R., Libey G.S., Chrisman C.L., 1982. Effect of triploidy on growth and gonad 
development of channel catfish. Transactions of the American Fisheries Society 
111,102-105. 

Yamamoto E., 1999. Studies on sex-manipulation and production of cloned populations 
in hirame, Paralichthys olivaceus. Aquaculture 173:235-246. 

Yang H., Tiersch T.R., 2009. Review: Current status of sperm ciy©preservation in 
biomedical research fish models: Zebrafish, medaka, and Xiphophorus 
Comparative Biochemistry and Physiology, Part C: Toxicology & Pharmacology 
149,224-232. 

Watanabe W.O., Carroll P.M., 2001. Progress in controlled breeding of summer flounder, 
Paralichthys dentatus, and southern flounder, Paralichthys lethostigma. Journal 
of Applied Aquaculture 11, 89-111. 

Zhang Y.Z., Zhang, S.C., Liu, X.Z., Xu, Y.Y., Wang, C.L., Sawant, M.S., Li, J., and 
Chen, S.L., 2003. Cryopreservation of flounder (Paralichthys olivaceus) sperm 
with a practical methodology. Theriogenology 60, 989-996. 

19 



PHAPTPR I 
V/AI4 U X *. 

CRYOPRESERVATION OF SUMMER FLOUNDER, (PARALICTHYS DENT A TUS) 

SPERM 

This chapter was published in the journal Aquaculture Research 

Abstract 

The summer flounder, Paralichthys dentatus L., is a high value species and 

considerable research has been conducted to determine practices conducive for its 

culture. As milt can be limited in this species, experiments were conducted to develop a 

practical sperm cryopreservation protocol for hatchery use. Two dilution ratios (1:2 and 

1:4; sperm:extender), 2 diluents (saline and sucrose-based), 2 cryoprotectants (10% 

DMSO and 12% glycerol) and 3 freezing rates (-5, -10 and -15°C min"1) were evaluated 

using differential staining to assess post-thaw sperm survival. Seven combinations of the 

factors examined reduced post-thaw viability by less than 30%. The average viability of 

sperm from fresh, pooled flounder milt (67.2 ± 2.9%) was not different from that of 

thawed milt diluted 1:4 with sucrose diluent (10% DMSO) frozen at -5°C min*1 (38.4 ± 

7.7%) and fertilization and hatch success were not different in trials using fresh or 

thawed, cryopreserved sperm. From these experiments a practical sperm cryopresrvation 

method was developed, but further refinement of the freezing protocol is necessary to 

optimize results. 
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Introduction 

Paralichthid flounder are widely cultured throughout the world, particularly in 

Asia, where Japanese flounder, Paralichthys olivaceus (Temminck & Schlegel), 

represents one of the most important aquaculture industries (Bolasina, Tagawa, 

Yamashita & Tanaka 2006). In the U.S., considerable research has been conducted to 

determine practices suitable for the culture of summer flounder, P. dentatus L. (Bengtson 

1999; Burke, Seikai, Tanaka & Tanaka 1999; Watanabe & Carroll 2001; Gay lord, 

Schwarz, Cool, Jahncke & Craig 2004). Summer flounder are a high-value species and 

fishing pressure has significantly reduced wild catches, such that demand often exceeds 

supply (NOAA 2008). Meeting the increased demand for flounder in U.S. and foreign 

markets will therefore require establishing and optimizing production through 

aquaculture, and limited commercial production has been underway in the US for over a 

decade (Bengtson 2000). 

Milt production from Paralichthid flounder can be limited (< 0.5 ml) during 

manual spawning and methods must be developed to maximize production from male 

broodstock (Smigielski 1975; Berlinsky, King, Hodson & Sullivan 1997). In addition to 

hormonal therapies to increase sperm production, sperm cryopreservation is another tool 

that can be used to manage valuable broodstock (Chao & Liao 2001; Riley, Holladay, 

Chesney & Tiersch 2004; Horvath, Urbanyi, Mims, Bean, Gomelsky & Tiersch 2006). 

Some of the benefits of cryopreservation include synchronizing gamete availability 

during hatchery spawning, preservation of genetically superior pedigree lines, simplified 

sperm transport between hatcheries, reduction in disease transfer among broodstock and 
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reduced maintenance costs of male broodstock (Suquet, Dreanno, Fauve!, Cosson & 

Billard 2000; Jenkins-Keeran, Schreuders, Edwards & Woods 2001; Cabrita, Sarasquete, 

Martinez-Paramo, Robles, BeirSo, Perez-Cerezales & Herraez 2010). 

Several factors have been shown to contribute to the relative success of sperm 

cryopreservation, including freezing and thawing rates, choice of cryoprotectants and 

diluents, dilution ratios, sperm volumes, freezing vessels and variation among individual 

males (Suquet et al. 2000). There have been successful efforts to develop 

cryopreservation methods for other Paralichthid species including Japanese and Brazilian 

flounder, P. orbignyanus (Valenciennes), (Zhang, Zhang, Liu, Xu, Wang, Sawant, Li & 

Chen 2003; Lanes, Okamoto, Cavalcanti, Collares, Campos, Deschamps, Robaldo, 

Marins & Sampaio 2008), but to date, no methods have been reported for summer 

flounder. The objective of the present study was to develop a practical method for 

cryogenic sperm storage from summer flounder combining parameters (diluent 

composition, cryoprotectants, dilution ratios, and freezing rates) previously used with 

other Paralichthid species. 

Materials and Methods 

Broodstock 

Wild-caught (southern New England) and captive-bred summer flounder 

broodstock (> 7 years; females = 0.97-3.65 kg, males = 0.68-1.60 kg) were maintained at 

Great Bay Aquaculture LLC (GBA; Portsmouth, NH, USA) for at least four years prior to 

the start of the experiments. Each fish was implanted with a passive integrated 
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transponder (PIT) tag (Biomark Inc., Boise, ID, USA) for individual identification and 

held in 6,000 L fiberglass rectangular tanks incorporated in recirculating (28-30 g L"1 

salinity) systems. The systems were equipped with biological and mechanical filtration, 

ultraviolet sterilization, foam fractionation, and photothermal control. Half-hour 

crepuscular periods were provided with 100 W incandescent bulbs to simulate dawn and 

dusk. Light intensity, measured with a light meter (Sper Scientific, Scottsdale, AZ, 

USA), ranged from 5 lux (dawn/dusk) to 30 lux (day) at the water surface during the light 

period. Water temperature and dissolved oxygen (DO) were measured daily (Oxyguard, 

Birkerod, Denmark) and unionized ammonia and nitrite were monitored weekly 

(HACH®; Loveland, CO, USA). Water quality within the culture tanks remained within 

ranges suitable for rearing this species (DO = 100% stauration; ammonia < 0.0008 mgL"1, 

nitrate < 3.0 mgL"1; Watanabe, Ellis & Ellis 1998). The fish were fed a commercial 

ration (9 mm pellet, 54% protein, 18% fat; Vitalis Cal, Skretting, New Brunswick, 

Canada) to apparent satiation 2-3 times per week. As summer flounder naturally spawn 

in the fall, photoperiod and temperature were maintained at 12L:12D and 19 ± 1 °C until 

two months prior to desired spawning and then gradually adjusted to 8L.16D and 14°C, 

respectively (Watanabe et al. 1998; Bengtson 1999). 

Milt collection 

Before milt collection, flounder were anesthetized with 70 mg L"1 MS-222 

(Tricane-S, Tricane Methanosulphonate, Western Chemical Inc., Scottsdale, AZ, USA) 

and the area around the urogenital pore was blotted dry with a paper towel. Milt was 

collected and volumes measured in 1 mL Tuberculin syringes (Beckton, Dickinson and 
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Co., Franklin Lakes, NJ, USA) and transferred into 2 mL microcentrifuge tubes. The 

milt was used immediately after verifying sperm motility, or held on ice < 1 h prior to use 

(Lanes et al. 2008). 

Assessing sperm viability and motility 

Sperm density was determined from 10 summer flounder males by diluting 

samples (1:1000) with 10% formalin and counting immotile cells using a Neubauer 

hemacytometer (West Germany) at 1000x with a compound microscope (Zeiss AxioCam 

MRm, Carl Zeiss Inc., Thornwood, NY, USA). All samples were counted in triplicate. 

Sperm viability was determined using a LIVE/DEAD ® sperm viability kit 

(Molecular probes, Eugene, OR, USA) which differentially stains live and dead cells with 

SYBR 14 and propidium iodide dyes, respectively. The stained sperm (> 100) were 

viewed with a Zeiss Axiophot fluorescence microscope (Oberkochen, Germany) using 

green fluorescence protein and rhodamine filters. Sperm viability was calculated as the 

proportion of live cells relative to the total number of cells counted. 

Before use, sperm (diluted 1:50; 1 p.1 milt: 49 jil seawater) were checked for 

motility with a compound microscope immediately after activation with ultraviolet-

sterilized seawater (30 g L"1). Motility was estimated with an arbitrary scale, ranging 

from 0-4, where 0 represents no motility; 1,1- 25%; 2, 26-50%; 3, 51-75%; and 4, 76-

100% motile sperm (Viveiros, Jatzkowski & Komen 2003). Only sperm with motility 

scores > 3 were used for cryopreservation trials. 

Viability analysis 

To validate the Live/Dead ® sperm viability kit, a regression analysis was 

24 



in IMP fi O A Q Itictitiitp Tnr Pan/ NP ITQÂ  hAhuoori r\Ai*/>ant irtaVtl̂  cnprm 
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and qualitative motility (n = 21; Figure 1). 

Cryopreservation experiment 1 

To identify the optimal parameters for cryopreservation, a multi factorial (2 

diluents x 2 cryoprotectants x 2 dilution ratios x 3 freezing rates) ANOVA experimental 

design was conducted using sperm collected from four males and frozen using one of two 

diluents (sucrose: 110 mM sucrose, 100 mM KHCO3,10 mM Tris-Cl, pH 8.2, osmolality 

335 mOsmol; and saline: 423 mM NaCl, 9 mM KCl, 9.25 mM CaCl2-2H20,22.92 mM 

MgCl2-6H20,25.5 mM MgS04-7H20,2.15 mM NaHC03, pH 8.2, osmolality 

900m0smol), two cryoprotectants (12% or 1.65 M glycerol; and 10% or 1.40 M DMSO) 

% cryoprotectant indicates final cryoprotectant concentration of the sample, two dilution 

ratios (1:2; 100 ^1:100 jxl and 1:4; 50 (j.1:150 jil), and three freezing rates (-5, -10, and -

15°C min"1). The diluents were mixed with cryoprotectants approximately 1 day prior to 

use, and were held at 4°C. All solutions and instruments used in the freezing procedure 

were chilled (4°C) prior to use. The milt was diluted in 2 mL cryo-vials (Nalgene 

Cryoware Low density polyethylene, Nalgene Co. Rochester, NY, USA). Vials were 

capped, thoroughly mixed, and held on ice until all replicates for one freezing rate were 

filled. No additional equilibration time was allotted beyond that required to fill the cryo-

vials (2-3 min). Cryo-vials containing sperm samples were frozen using a Planar Biomed 

Model 10-16 programmable freezer (Planer, United Kingdom). Once samples reached -

150°C, they were immediately plunged into liquid nitrogen and kept overnight. The 

samples were thawed in a 37°C water bath for 2 min, and held at room temperature 
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(20°C). The sperm were immediately examined using the LIVE/DEAD ® sperm viability 

kit, as described above. Each diluent, cryoprotectant, and dilution combination was 

frozen in triplicate at each of the 3 freezing rates. Because different pools of sperm were 

used for each freezing rate trial, thawed sperm viability was compared to that from the 

corresponding fresh sperm pool. A least squares analysis was performed to compare 

freezing parameters (diluent, cryoprotectant, dilution ratio and freezing rate) and results 

are presented as "mean decrease in viability." 

Cryopreservation experiment 2 

The results of the initial cryopreservation experiment were further analysed using 

the maximize desirability function in the prediction profiler (JMP 8.0). This function 

compared treatments and interactions and selected the combination of treatment levels 

that yielded the greatest post-thaw viability. From this analysis, the cryoprotectant 

(DMSO) and dilution (1:4) were selected for further analysis in a 2x3 factorial design and 

combined with both diluents, at each freezing rate. Sperm from four males were frozen 

with these parameters in triplicate, as described above. 

Egg collection 

During all procedures fish were anesthetized with 70 mg L"1 MS-222. Two weeks 

prior to anticipated spawning, ovarian development was visually assessed with the aid of 

a light table (Watanabe & Carroll 2001; Luckenbach, Godwin, Daniels & Borski 2002). 

Those fish containing vitellogenic stage oocytes were induced to spawn with daily 

injections of carp pituitary extract (CPE, 2 mg kg"1; Stoller Fisheries, Spirit Lake, I A, 

USA; Smigielski 1975; Berlinsky etal. 1997). Females were checked for evidence of 
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ovulation daily by exerting gentle pressure on the dorsal surface overlying the ovaries. If 

ovulation did not occur, the degree of ovarian development was visually assessed and 

CPE was re-administered. This procedure was repeated daily (-3—4 days) until ovulation 

occurred. 

Ovulated eggs were collected into a 500 mL polypropylene beaker and their total 

volume recorded. A subsample of eggs (n = 200) was examined to assess quality. High 

quality eggs from marine teleosts are generally clear, buoyant, spherical, and lack a 

perivitelline space prior to fertilization (McEvoy 1984; Kjarsvik, Mangor-Jensen & 

Holmefjord 1990). An estimate of the number of eggs exhibiting these characteristics 

was determined. If most of the eggs appeared to be of high quality, the batch was 

retained for fertilization. 

Fertilization trial 

Based on the results of the second cryopreservation experiment, fertility trials 

were conducted using sperm diluted 1:4 with sucrose diluent and DMSO solution, and 

frozen in 1 mL aliquots at -5°C min"1. Eggs from three females were collected as above, 

divided into two 250 mL polypropylene beakers, and fertilized with either fresh milt (100 

fiL) or thawed, cryopreserved milt from four males (1-1.0 mL aliquot). Approximately 

20-40 ml of filtered sea water (34 g/L) was added and the eggs and sperm were gently 

mixed for 2 min. Following fertilization the eggs were transferred to a calibrated 

separatory funnel containing 700-1000 mL seawater and statically incubated for 5-10 

min to allow the buoyant (viable) and sinking (non viable) eggs to separate. The volumes 

of both groups of eggs were recorded and the number of eggs mL"1 was estimated (1,200 
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eggs mL"1) based on previous findings (Berlinsky et a!. 1997). The percentage of 

fertilized eggs was determined after 3-4 h (32-64 cell stage) by microscopic examination 

of approximately 200 eggs. The viable eggs were then incubated at GBA in 50 L 

incubators connected in a recirculating system (17°C, 35 g L"1 salinity, continuous 

illumination of approximately 200 lux). Each day, aeration was removed and water flow 

stopped for 10 min to allow non-viable eggs to sink. The volume of non-viable eggs was 

recorded daily, and the final buoyant volume was recorded at 72 h. Following 

examination with a dissecting microscope, pre-hatch success was determined as the ratio 

of developed embryos (beating hearts) to non-developed, in the final buoyant egg 

volume. 

Statistical analysis 

The effects of predictor parameters (diluent, cryoprotectant, dilution ratio, and 

freezing rate) on sperm viability and fertilization, with fresh and cryopreserved sperm, 

were analyzed by ANOVA and a full-factorial least squares analysis. When effects were 

significant, a Tukey's a posteriori multiple range test was used for pair-wise 

comparisons. Percent data were arcsine square-root transformed to improve the ANOVA 

assumption of normality. Linear regression analysis was conducted to determine the 

correlation between sperm motility. All statistics were performed using JMP 8.0. All 

data are presented as means ± SEM. 
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Results 

Assessing sperm viability and motility 

Flounder (n=10) had a milt volume of 1.9 ± 0.5 mL, a density of 12.4 ± 1.6 (x 109) 

cells mL"1, and a total cell count of 26.3 ± 6.6 (*109). The volume corrected for fish size 

was 1.5 ± 0.5 mL kg"1 BW. A positive relationship was verified between sperm motility 

and viability (n=21, Adjusted R2 = 0.81,/? < 0.05, Fig. 1). 

Cryopreservation experiments 

The results of cryopreservation experiment 1 are shown in Table 1.1 Seven 

combinations of the factors examined reduced post-thaw viability by less than 30%. 

Only the treatment "freezing rate" was statistically significant (P < 0.0001) and an 

interaction was detected between diluent and cryoprotectant (P = 0.0008). Overall the -

5°C min1 freezing rate (26.9% decrease in viability) outperformed -10 (50.0%) and -15°C 

min1 (52.0%), and DMSO cryoprotectant (39.4%) outperformed glycerol (46.4%). The 

results of the subsequent cryopreservation trial, during which sperm were diluted 1:4 with 

either sucrose or saline diluents and frozen at different rates (Table 1.2), shows that 

sucrose outperformed saline. The average viability of sperm from fresh, pooled flounder 

milt (67.2 ± 2.9%) was not different from that of thawed sperm diluted 1:4 with sucrose 

diluent (10% DMSO) frozen at -5°C min1 (38.4 ± 7.7%). 

There were no statistical differences in fertilization success or pre-hatch viability 

between fresh and thawed sperm Table 1.3. The sperm to egg ratios, however, differed 

between fresh (34.7 * 10 sperm: egg) and cryopreserved (88.4 * 10 sperm: egg) 
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treatments. 

Discussion 

Sperm densities and milt volumes vary considerably among teleost species and 

are further influenced by season, social factors, stress, nutrition, and frequency of 

stripping (Biiyiikhatipoglu & Holtz 1984; Teletchea, Gardeur, Psenicka, Kaspar, Le Dore, 

Linhart & Fontaine 2009). Summer flounder are among several Pleuronectiform species 

that produce relatively low volumes of concentrated sperm (Lanes, Okamoto, Bianchini, 

Marins & Sampaio 2010). While cell motility is often used as an indicator of sperm 

quality, and the percentage of motile sperm has been positively correlated with 

fertilization in many species (Levanduski & Cloud 1988; Wang & Crim 1998; Fauvel, 

Suquet & Cosson 2010), in others, such as Atlantic cod, Gadus morhua L., (Trippel & 

Neilson 1992); salmonids (Scott & Baynes 1980), and rosy barb, Barbus conchortius 

(Hamiltion-Buchanan), (Amanze 1994) fertilization success using in vitro fertilization 

was not different using motile or immotile sperm. Differential staining of live and dead 

cells, based on their membrane integrity, has proven useful for rapid evaluation of 

preservation protocols prior to fertilization trials (DeGraaf & Berlinsky 2004; Lanes et al. 

2008; Cabrita, Engrola, ConceigSo, PousSo-Ferreira & Dinis 2009), and was used in the 

present study. While high correlations between cell viability and motility have been 

reported for some species (e.g. cod, DeGraaf & Berlinsky 2004; Brazilian flounder, 

Lanes et al. 2008; summer flounder, present study), in other cases poor correlations were 

observed (Linhart, Rodina, Flajshans, Gela & Kocour 2005). This is likely due to the fact 

that live-staining populations also included cells with insufficient ATP reserves for 
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motility (Linhart & Billard 1994). Because of these discrepancies in viability assessment, 

the ultimate test for sperm quality is the ability to fertilize eggs (Bromage & Roberts 

1995; Riley, Chesney & Tiersch 2008). 

In the present study, fertilization and hatching were not different in trials using 

fresh or cryopreserved sperm. Adequate freezing success was achieved using a sucrose-

based diluent with 10% DMSO, and results were similar to those reported in trials with 

the congeneric Brazilian flounder (Lanes et al. 2008). Although DMSO has proven 

widely successful for a number of marine teleosts, and has been called the "universal 

cryoprotectant" (Chao & Liao 2001), equal or greater success has been attained with 

other cryoprotectants. For instance, compared to DMSO, greater success was attained 

using glycerol, propylene glycol, and trehalose as sperm cryoprotectants for Japanese 

flounder, winter flounder, Pseudopleuronectes americanus (Walbaum), and orange-

spotted grouper, Epinephelus coioides (Hamilton), respectively (Rideout, Litvak, & 

Trippel 2003; Zhang et al. 2003; Peatpisut & Amrit 2010). 

Sperm cryopreservation has been applied to more than 200 marine and freshwater 

fish species and the degree to which specific variables influence post-thaw viability is 

highly species-dependent. For instance, in carp, Cyprinus carpio L. no differences in 

post-thaw motility were found using either sucrose or saline-based diluents (Horvath, 

Miskolczi & Urbanyi 2003), but sucrose-based diluents were found to be superior to 

saline-based in spotted halibut, Verasper variegatus (Temminck & Schlegel), and turbot, 

Scophthalmus maximus L., (Chen, Ji, Yu, Tian & Sha 2004; Tian, Chen, Ji, Zhai, Sun, 

Chen & Su 2008). The cryopreservation trials reported here represent an important first 
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step towards effective male summer flounder broodstock management, and our protocol 

and results were similar to those of Lanes et al. (2008) for Brazilian flounder. Several 

cryopreservation parameter combinations gave satisfactory results in our initial trial, 

however, and greater amounts of cryopreserved sperm were necessary to attain the same 

fertility success as that of fresh sperm. Further refinement of the freezing protocol is 

necessary to optimize results, and will entail conducting sequential, stepwise comparisons 

of cryoprotectant concentrations, freezing and thawing rates, sperm diluents, and sperm 

to egg ratios (Suquet et al. 2000; Rideout et al. 2003). 

In conclusion, several parameter combinations were successfully used for summer 

flounder sperm cryopreservation. Fertilization and hatch success were not different in 

trials using fresh or post-thawed cryopreserved sperm diluted 1:4 with a sucrose-based 

diluent and 10% DMSO. Further experiments may be necessary to optimize sperm 

cryopreservation techniques for this species 
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Figure 1.1 Correlation between summer flounder, Paralichthys dentatus L sperm motility 

and viability determined by differential fluorescent staining (n=21, Adjusted R2 = 0.81,/? 

< 0.05). 
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Table 1.1 Mean decrease in post-thaw viability for cryopreserved sperm from summer 

flounder, Paralichthys dentatus L. Values that share a letter are not significantly 

different (ANOVA, Tukey's Post Hoc, p < 0.05). 

r>-i r, . „ ^ Freezing Rate Decrease in viabili Dilution Diluent Cryoprotectant • -K . ,, /n/x •_*_ ( C mm ) post-thaw (%) 

1 2 Saline DMSO -5 28.3 ± 11.7 abed 

1 2 Saline DMSO -10 58.4 ± 1.4 cd 

1 2 Saline DMSO -15 46.2 ± 4.9 abed 

1 2 Saline Glycerol -5 18.9 ± 1.4 ab 
1 2 Saline Glycerol -10 36.0 ± 14.4 abed 
1 2 Saline Glycerol -15 59.1 ±3.7 cd 

1 4 Saline DMSO -5 18.4 ±8.5 a 
1 4 Saline DMSO -10 58.6 ± 2.9 cd 
1 4 Saline DMSO -15 58.7 ± 6.3 cd 

1 4 Saline Glycerol -5 27.0 ± 8.6 abed 
1 4 Saline Glycerol -10 46.3 ± 5.8 abed 
1 4 Saline Glycerol -15 52.3 ± 7.8 abed 
1 2 Sucrose DMSO -5 21.6 ± 6.0 abc 
1 2 Sucrose DMSO -10 46.9 ± 2.4 abed 

1 2 Sucrose DMSO -15 48.9 ± 2.9 abed 

1 2 Sucrose Glycerol -5 38.5 ±3.9 abed 

1 2 Sucrose Glycerol -10 58.7 ± 1.4 cd 
1 2 Sucrose Glycerol -15 57.6 ± 3.5 bed 

1 4 Sucrose DMSO -5 21.2 ±8.3 abc 

1 4 Sucrose DMSO -10 29.8 ± 13.9 abed 

1 4 Sucrose DMSO -15 36.3 ± 6.8 abed 

1 4 Sucrose Glycerol -5 40.9 ± 10.2 abed 
1 4 Sucrose Glycerol -10 64.9 ± 0.8 d 

1 4 Sucrose Glycerol -15 56.4 ± 6.9 abed 
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L., sperm determined by differential staining. All samples were frozen with extenders 

containing 10% DMSO at a 1:4 dilution. Values that share a letter are not significantly 

different (ANOVA, Tukey's Post Hoc Test,/? < 0.05). 

Diluent Freezing Rate (°C min"1) Viability (%) 

Fresh - 67.2 ± 2.9 a 
Sucrose -5 38.4 ± 7.7 ab 
Sucrose -10 35.0 ±11.9 be 
Sucrose -15 27.3 ±1.3 bed 
Saline -5 4.3± 4.3 d 
Saline -10 5.7 ±4. led 

Saline -15 4.9 ± 4.9 cd 
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Table 1.3 Mean fertilization and pre-hatch development of summer flounder, 

Paralichthys dentatus L., eggs fertilized with fresh and cryopreserved sperm. 

Fertilization and prehatch results are presented as percentages of initial buoyant eggs. 

Milt Condition Initial Buoyant Eggs (x 1(P) Fertilization (%) Pre-hatch (%) 

__ 40.4 ± 9.4 73.4 ±5.5 55.73 ± 6.7 
frozen 35.6 ±2.8 62.8 ± 18.7 32.65 ±15.9 
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CHAPTER II 

SWIMMING CHARACTERISTICS AND FERTILIZING CAPACITY OF 
MEIOGYNOGENETIC (PARALICTHYS DENTATUS) SPERMATOZOA 

This chapter was accepted for publication in The Journal of the World Aquaculture 
Society. 

Abstract 

Summer flounder exhibit sexually dimorphic growth rates, with females growing 

considerably faster and larger than males. In an effort to produce monosex (all female) 

populations, meiogynogenetic fish were produced and raised at male-determining 

temperatures. Upon attaining sexual maturity, spermatozoa characteristics from normal 

and meiogynogenetic (meiogyn) summer flounder were compared using computer-

assisted sperm analysis. Sperm concentration was lower for meiogyn fish, but not when 

normalized for body weight, and swimming characteristics of each group were similar. 

In a fertilization trial using pooled eggs from 2 females, sperm from normal and meiogyn 

males had equal fertilization success, but fewer embryos produced from meiogyn sperm 

survived through development. Twenty-four hour survival of hatched larvae was equal 

from both groups (> 96%). Sperm from meiogyn males were used to fertilize eggs from 

seven domesticated female broodstock during commercial production. Mean fertilization 

and hatch were 56.0 ± 6.8% and 32.7 ± 8.9%, respectively, resulting in the production of 

304,450 larvae. 

Keywords: Summer flounder; Paralichthys dentatus; CASA; meiogynogenetic 
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Introduction 

Due to high consumer demand, Paralichthid flounder are widely cultured 

throughout the world, particularly in Asia, where Japanese flounder, Paralichthys 

olivaceus, culture represents one of the most significant marine aquaculture industries 

(Bolasina et al. 2006). In the U.S., considerable research has been conducted to 

determine practices conducive for the culture of summer flounder, P. dentatus. Studies to 

date have focused on methods to improve spawning, larviculture, juvenile rearing, and 

disease prevention and management (Bengtson 1999; Burke et al., 1999; Watanabe and 

Carroll 2001; Gaylord et al. 2004; Veillette et al. 2007) and limited, commercial 

production has been underway in the USA for over a decade, primarily in recirculating 

systems (Bengtson and Nardi 2000). 

Growth rate remains the dominant factor controlling profitability of land-based 

culture of this species, and the costs associated with juvenile growth to market size must 

be reduced to gain competitiveness on the global market (King et al. 2001). Summer 

flounder, like other Paralichthid species, exhibit sexually dimorphic growth rates, with 

females growing considerably faster and larger than males (Morse 1981; King et al. 

2001). A tremendous increase in growth performance can therefore be realized through 

the production of all-female populations of fingerlings. In one study, (King et al. 2001) 

found that during routine production, female summer flounder grew 1.4 times larger than 

males at 15 months post hatch, and were projected to be twice as large by harvest at 23 

months. Monosex populations of Japanese flounder have been produced commercially in 

Japan and Korea since 1990 and 1995, respectively (Yamamoto 1999; Seikai 2000). 
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Of Paralichthid species, the specific sex-determining mechanisms have only been 

definitively elucidated for Japanese flounder. Investigations have shown that Japanese 

flounder females, like many teleosts with an "XXZXY" sex chromosome system, are 

homogametic (XX) and males heterogametic (XY) (Tabata 1991; Yamamoto 1999). 

During the sex-determining period of development, however, homogametic individuals 

can be phenotypically sex reversed by exposure to high water temperatures or exogenous 

steroids (Kitano et al. 1999; Kitano 2002). These XX-males can then be reared to 

maturity, distinguished from XY males in the population by progeny testing, and crossed 

with normal, XX females to produce monosex populations (Hattori et al. 2007). To avoid 

the time and expense associated with progeny testing, populations of fish possessing only 

XX, maternal genotypes have been produced by diploid gynogenesis and then sex-

reversed (Tabata et al. 1986; Tabata 1991; Hulata 2001; Devlin and Nagahama 2002). 

Diploid gynogenesis has also been accomplished for summer (Colburn et al. 2009) 

and southern flounder, P. lethostigma (Luckenbach et al. 2004; Morgan et al. 2006) and 

meiogyn fish from both species have been raised to maturity under male-determining 

environmental conditions. The objectives of the present study were to compare 

spermatozoa characteristics from sex-reversed, meiogyn and normal male summer 

flounder using computer-assisted sperm analysis (CASA). Fertilization capacity from 

both populations was then compared, and sperm from sex-reversed, meiogyn fish was 

used for in vitro fertilization during commercial production. 
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Materials and Methods 

Brood stock 

Wild-caught and captive-bred (normal) summer flounder broodstock (> 7 years; 

females = 0.97-3.65 kg, males = 0.68-1.60 kg) were maintained at Great Bay Aquaculture 

LLC (GBA; Portsmouth, NH, USA) for at least four years prior to the start of the 

experiments. The fish were implanted with a passive integrated transponder (PIT) tag 

(Biomark Inc., Boise, ID, USA) for individual identification and held in 6,000 - L 

fiberglass rectangular tanks incorporated in recirculating (28-30 ppt salinity) systems. 

The systems were equipped with biological and mechanical filtration, ultraviolet 

sterilization, foam fractionation, and photothermal control. Half-hour crepuscular periods 

were provided with 100 W incandescent bulbs to simulate dawn and dusk. Light 

intensity, measured with a light meter (Sper Scientific, Scottsdale, AZ, USA), ranged 

from 5 - lx (dawn/dusk) to 30 - lx (day) at the water surface during light period. Water 

temperature and dissolved oxygen were measured daily (Oxyguard, Birkerod, Denmark) 

and total ammonia nitrogen and nitrite were monitored weekly (HACH® ; Loveland, CO 

USA). Water quality within the culture tanks remained within ranges suitable for rearing 

this species (Watanabe et al. 1998). The fish were fed a commercial ration (9 - mm 

pellet, 54% protein, 18% fat; Vitalis Cal, Skretting, Trouw, Spain) to apparent satiation 2-

3 times per week. As summer flounder naturally spawn in the fall, photoperiod and 

temperature were maintained at 12L: 12D and 19 ± 1 C until two months prior to desired 

spawning and then gradually adjusted to to 8L: 16D and 14 C, respectively (Watanabe et 

al. 1998; Bengtson 1999). 

44 



Meiogynogenetic fish (0.24-0.77 kg) were produced as reported previously (Colbum et 

al. 2009). Briefly, summer flounder eggs were activated with ultraviolet-irradiated black 

sea bass, Centropristis striata sperm, and a 6 - min pressure shock (8,500 psi) was 

applied 2 min post-fertilization. The eggs and larvae were incubated (16-17 C and 35 

ppt) and reared (16-18 C and 27-31 ppt) under standard hatchery conditions and fed 

enriched rotifers followed by Artemia. Upon metamorphosis (41 days-post hatch; DPH), 

the juveniles (n = 900) were transferred to 235 - L cylindrical tanks that were 

incorporated into recirculating systems and subjected to male-determining temperatures 

(>21 C). At 376 DPH, 153 of the remaining fish were transferred to the broodstock 

systems described above, and held for approximately 3 years prior to the start of the 

experiments. 

Sperm Collection 

Before sperm collection, flounder were anesthetized with 70 mg/L tricaine 

methanesulphonate (MS-222; Western Chemical Inc., Scottsdale, AZ, USA) and the area 

around the urogenital pore was blotted dry with a paper towel. Sperm were collected and 

volumes measured in 1- mL Tuberculin syringes (Beckton, Dickinson and Co. Franklin 

Lakes, NJ, USA) and transferred into 2 - mL microcentrifuge tubes. The sperm were 

used immediately after verifying motility, or held on ice < 1- h prior to use (Lanes et al. 

2008). 

Assessing Sperm Motility and Viability 

Sperm cell density were determined from 10 normal and 18 meiogyn fish by 

diluting samples (1:1000) with 10% formalin and counting immotile cells using a 
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Neubauer hernocytometer (West Germany) at 1000 * with a compound microscope 

(Zeiss AxioCam MRm, Carl Zeiss Inc., Thornwood, NY, USA). All samples were 

counted in triplicate. 

Before use, sperm was checked for motility with a compound microscope immediately 

following activation with ultraviolet-sterilized seawater (UVSW; 30 ppt). Dilution was 

equal to 1:50 (1 |IL sperm and 49 JJ.L seawater). Motility was estimated with an arbitrary 

scale, ranging from 0-4, where 0 represents no motility; 1,1- 25%; 2,26-50%; 3, 51-

75%; and 4, 76-100% motile spermatozoa (Viveros et al. 2003). Only sperm with a 

motility scores > 3 were used for fertilization trials and commercial production. 

CASA 

Sperm were collected from 8 normal and 9 meiogyn fish, analyzed for cell density 

as above, and stored undiluted in microcentrifuge tubes on ice < 1 h prior to analysis. 

The CEROS Analyzer used a multi-parameter approach to simultaneously assess many 

spermatozoa characteristics, including path velocity (VAP), track speed (VCL), 

progressive velocity (VSL), linearity (LIN), duration (DUR), and motility (MOT) Table 

2.1. Video recordings of spermatozoa were analyzed every 30 sec for a 10 sec duration, 

until sperm motility ceased. 

Egg Collection 

During all procedures fish were anesthetized with 70 mg/L MS-222. Two weeks 

prior to anticipated spawning, ovarian development was visually assessed with the aid of 

a light table (Watanabe and Carroll 2001; Luckenbach et al. 2002). Those fish containing 

vitellogenic stage oocytes were induced to spawn with daily injections of carp pituitary 
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extract (CPE, 2 mg/kg; Stoller Fisheries, Spirit Lake, IA, USA; Smigielski 1975; 

Berlinsky et al. 1997). Females were checked for evidence of ovulation daily by exerting 

gentle pressure on the dorsal surface overlying the ovaries. If ovulation did not occur, the 

degree of ovarian development was visually assessed and CPE was re-administered. This 

procedure was repeated daily (~3-4 d) until ovulation occurred. 

Ovulated eggs were collected into a 500 - mL polypropylene beaker and their total 

volume recorded. A subsample of eggs (n = 200) was examined to assess quality. High 

quality eggs from marine teleosts are generally clear, buoyant, spherical, and lack a 

perivitelline space prior to fertilization (Kjorsvik et al. 1990; Larsson et al. 1997). An 

estimate of the number of eggs exhibiting these characteristics was determined. If most 

of the eggs appeared to be of high quality, milt was added. 

Fertilization IVial 

To compare the fertility between normal (n=3) and meiogyn (n=4) males, milt was 

collected, and density enumerated, as described above, and used to fertilize the pooled 

eggs from 2 females. Three, 20-mL egg aliquots were fertilized with 100 jiL of each 

sperm pool in 100-mL beakers, activated with approximately 25 mL filtered sea water 

(34 ppt), and gently mixed for 2 min. The eggs were transferred to a calibrated 

separatory funnel containing 700-800 mL seawater and statically incubated for 15 min to 

allow the buoyant (viable) and sinking (nonviable) eggs to separate. The volumes of both 

groups of eggs were recorded. The number of eggs/mL was estimated based on previous 

verification (G. Nardi, unpublished data) and the percentage of fertilized eggs was 
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determined after 2 - h (4-8 eel! stage) by microscopic examination of approximately 200 

eggs. 

The buoyant eggs were transferred to six 50 - L incubators that were incorporated into a 

recirculating system and held at 17 C, 35 ppt with supplemental aeration. Nonviable 

embryos were collected from the bottoms of the incubators daily and enumerated 

volumetrically. Pre-hatch embryos (visible movement, beating hearts) were enumerated 

volumetrically after approximately 70 - h of incubation and returned to the incubators. 

Upon hatch, 20 larvae from each incubator were transferred to 1- L beakers containing 35 

ppt seawater, 17° C with supplemental aeration and viability was assessed after 24 hours. 

Commercial Production 

Commercial-scale summer flounder production was performed at GBA using the 

eggs from 7 females, following the spawning protocols described above. All eggs were 

fertilized with milt from 6-8 meiogyn males at a ratio of 50 \xL milt: 10 mL eggs. 

Following buoyancy separation, the viable eggs were pooled into four 100 - L incubators 

and incubated until hatching. A subset of approximately 200 eggs was retained to 

determine fertilization success. Upon hatching, the flow and aeration were stopped for 

10 - min to allow the yolk sac fry to float to the surface. The larvae were transferred to 

15 - L tanks containing aerated seawater and counted volumetrically by mixing the larvae 

and withdrawing samples with a 10 - mL serological pipette. This procedure was 

repeated six times, the larvae count averaged, and multiplied by the tank volume. Hatch 

success was determined as the ratio of hatched larvae to the number of buoyant eggs 

initially stocked in the incubator. 
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Statistical Analysis 

Spermatozoa characteristics, fertilization, pre-hatch viability, hatching success, 

and larval survival were analyzed by ANOVA. Percent data were square-root arcsine 

transformed to improve the ANOVA assumption of normality. When effects were 

significant (P < 0.05), a Tukey's a posteriori multiple range test was used for pair-wise 

comparisons. All statistics were performed using JMP 8.0 & 9.0 software (SAS Institute, 

Inc., Caiy, NC, USA). 

Results 

Assessing Sperm Viability and Motility 

Body weight, sperm volume, and cell concentration were lower for meiogyn 

compared to normal fish, but sperm concentration did not differ between the groups when 

normalized for fish weight (Table 2.2). 

CASA 

For the most commonly reported spermatozoa characteristics (VAP, VCL, VSL, 

LIN, DUR, MOT), there were no significant differences found between normal and 

meiogyn summer flounder. These results correspond favorably with those from other 

species (Table 2.3). 

Fertilization Trial 

The results of the fertilization trial comparing sperm from normal and meiogyn 

fish are shown in Table 2.4. Egg buoyancy, fertilization success, and 24-h larval survival 
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were not different between the two groups, but development through hatching was lower 

using sperm from meiogyn (36.3%) compared to normal (46.6%) fish (Table 2.4.) 

Commercial Production 

In the commercial production at GBA, seven females ovulated a total of 11 times 

over  a  3  d period.  Eggs fer t i l ized with meiogynogenet ic  male  sperm (—19 x  10 3  

spermatozoa: egg) had a mean fertilization and hatch of 55.0 ± 6.8% and 32.7 ± 8.9%, 

respectively (Table 5). A total of 304,450 larvae were produced. 

Discussion 

Sperm quality has been shown to be affected by a number of factors including broodstock 

nutrition and husbandry and post-harvest handling (Bobe and Labbe 2010). While 

several criteria have been used to assess sperm quality, none have been sufficiently 

integrative to fully predict the ability of spermatozoa to fertilize ova (Fauvel et al. 2010). 

Spermatozoa swimming ability of many animals, particularly mammals, has been 

assessed using CASA, and it is well suited for use with fish, since their spermatozoa 

motility is so short-lived (Fauvel et al. 2010). CASA has been used to determine 

environmental effects and potential toxicants on spermatozoa motility in many fish 

species, and also for evaluating sperm diluents prior to cryopreservation (Cosson 2008; 

Cosson et al. 2010). Despite CASA's usefulness, for these and other applications, sperm 

motility is not a definitive predictor of fertilizing potential, as in some species such as 

Atlantic cod (Gadus morhua) (Trippel and Neilson 1992), salmonids (Scott and Baynes 

1980), and walleye (Sander vitreus) (Casselman et al. 2006), fertilization success was not 
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correlated with sperm motility. Further, motility and swimming parameters are not 

accurate indicators of genetic problems that can affect embryonic and larval 

development. 

In the present study, no differences were detected by CAS A in spermatozoa swimming 

parameters between normal and meiogyn fish, but the meiogyn fish were considerably 

smaller than normal 4-year old male broodstock fish previously raised at GB A, and in the 

fertilization trials, survival through hatching was lower compared to normal fish. 

Relatively low hatching (14-50%) was also observed in commercial production trials 

using meiogyn sperm. Decreased growth and fertility, due to homozygosity of 

deleterious alleles (Leary et al. 1985; Ihssen et al. 1990), have been reported in several 

meiogyn fish species, including the honmoroko, Gnathopogon caerulescens (Fujioka 

1998), coho salmon, Oncorhynchus kisutch (Piferrer et al. 1994) rainbow trout, 

Oncorhynchus mykiss (Feist et al. 1995) and common carp, Cyprinus carpio (Komen et 

al. 1992). For instance, Feist et al. (1995) reported that survival of offspring produced 

from sex reversed meiogyn rainbow trout ranged from 0 to 62% of that from normal 

(control) fish. In other species (e.g. European sea bass, Dicentrarchus labrax, Felip et al. 

2002, Franceson et al. 2005; Thai walking catfish, Clarias macrocephalus Na-Nakorn 

1995) similar growth and fertility between meiogyn fish and controls were reported, and 

very high fertility was attained using cryopreserved sperm from sex reversed meiogyn 

Japanese flounder (Tabata and Mizuta 1997). Genetic selection during domestication has 

been shown to dramatically reduce sperm volume (Zohar 1996), and quality (Agnese et 

al. 1995) in commercially important species. Growth and fertility impairment in meiogyn 
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fish may be species-specific and/or related to the degree of selective pressure to which 

the broodstock had been subjected. 

Fertilization success in fishes is often variable when using manual spawning and in vitro 

fertilization, and in the present study ranged from 15-90% during commercial 

application. This variation likely reflects differences in egg quality, which may be due to 

post-ovulatory aging (Bobe and Labbe 2010), but sperm quality and density cannot be 

excluded as contributing factors. Spermatozoa density differed between normal and 

meiogyn males used in the fertilization trial, but fertilization success did not differ despite 

using equal sperm volumes. This information, and the high fertilization often achieved 

during the commercial production study, suggests that adequate spermatozoa were 

available for in vitro fertilization. Although the optimal spermatozoa: egg ratio has not 

been determined for this species, ratios similar to that used in the present study (19, 

000:1) were found to be adequate in other fish species such as walleye Sander vitreus, 

25,000:1 (Rinchard et al. 2005); turbot Scophthalmus maximus, 9,000:1 (Chereguini et al. 

1999) and Atlantic halibut Hippoglossus hippoglossus, 10,000:1 (Vermeirssen et al. 

2000). 

Sperm density and volume vary considerably among teleost species and are further 

influenced by season, social factors, stress, nutrition, and frequency of stripping 

(Buyiikhatipoglu and Holtz 1984; Teletchea et al. 2009). Summer flounder are among 

several Pleuronectiform species that produce relatively low volumes of concentrated 

sperm (Lanes et al. 2010). The volumes of expressible sperm from meiogyn fish were 

lower than those reported for many other marine species (Suquet et al. 1994; Mylonas et 

52 



al. 2003), but expressible volumes less than 1 mL were also reported for turbot, Pseita 

maxima (Suquet et al. 1994), yellowtail flounder, Limanda ferruginea (Clearwater and 

Crim 1998), and Brazilian flounder, Paralichthys orbignyanus (Lanes et al. 2010). The 

relatively small size of the meiogyn fish may have limited sperm production, as in other 

species, sperm production has been shown to increase in older, larger individuals 

(Biiyukhatipoglu and Holtz 1984; Billard 1986). The relatively low sperm production 

necessitated the use of several meiogyn males during commercial production, but the 

contribution of individual males to fertilization success is unknown. In other species 

such as Atlantic halibut, studies have confirmed that sperm competition is significant 

during in vitro fertilization, resulting in vastly skewed fertilization success among 

individuals (Ottesen et al. 2009). Additional studies are necessary to determine the 

optimal spermatozoa: ova ratio, and degree of sperm competition in summer flounder, to 

improve reproductive efficiency in this species. 

In conclusion, spermatozoa from meiogyn summer flounder were similar to those 

produced from normal males when analyzed by CASA, but resulted in lower viability of 

developing embryos. Further experiments are necessary to optimize the spermatozoa: 

ova ratio in this species and resolve fertility differences between normal and meiogyn 

individuals. Sex-reversed meiogyn males were used in commercial-scale production and 

efforts are currently underway to evaluate the effects of temperature on sex 

differentiation of offspring from these individuals 

53 



Acknowledgements 

We thank Richard Greenlaw, Brian Gennaco, and Brett Newman (GBA) for their 

assistance with fish husbandry, and sampling and Timothy Breton and Katy Hladki 

(UNH) for helpful suggestions during the preparation of this manuscript. This work was 

funded by the USDA (SBIR 200600382) and the New Hampshire Agricultural 

Experiment Station. 

References 

Agnese, J.F., Z.J. Oteme, and S. Gilles. 1995. Effects of domestication on genetic variability, 
fertility, survival and growth rate in a tropical siluriform: Hetrobranchus longifilis 
Valenciennes 1840. Aquaculture 131:197-204. 

Bengtson, D.A. 1999. Aquaculture of summer flounder (Paralichthys dentatus): Status of 
knowledge, current research and future research priorities. Aquaculture 176:39-49. 

Bengtson, D.A. and G. C. Nardi 2000. Summer flounder culture. Pages 907-913 in R. R. 
Stickney, editor. Encyclopedia of Aquaculture, Wiley, New York, New York, USA. 

Berlinsky, D. L., W. V. King, R.G. Hodson, and C.V. Sullivan 1997. Hormone induced 
spawning of summer flounder, Paralichthys dentatus. Journal of the World Aquaculture 
Society 28:79-86. 

Billard, R. 1986. Spermatogenesis and spermatology of some teleost fish species. Reproduction, 
Nutrition and Development 26:877-920. 

Bobe, J. and C. Labbe 2010. Egg and sperm quality in fish. General and Comparative 
Endocrinology 165:535-548. 

Bolasina, S., M. Tagawa, Y. Yamashita, and M. Tanaka 2006. Effect of stocking density on 
growth, digestive enzyme activity and Cortisol level in larvae and juveniles of Japanese 
flounder, Paralichthys olivaceus. Aquaculture 259:432-443. 

Burke, J. S., T. Seikai, Y. Tanaka, and M. Tanaka 1999. Experimental intensive culture of 
summer flounder, Paralichthys dentatus. Aquaculture 176:135-144. 

Buyukhatipoglu, S. and W. Holtz 1984. Sperm output in rainbow trout (Salmo gairdnerfl - effect 
of age, timing and frequency of stripping and presence of females. Aquaculture 37:63-71. 

54 



Casselman, S.J., A.I. Schultz-Hostedde, and R. Montgomerie 2006. Sperm quality influences 
fertilization success in walleye (Sander vitreus). Canadian Journal of Fisheries and 
Aquatic Sciences 63:2119-2125. 

Chereguini, O., I. Garcia de la Banda, I. Rasines and A. Fernandez 1999. Artificial fertilization 
in turbot, Scophthalmus maximus (L.): different methods and determination of the 
optimal sperm-egg ratio. Aquaculture Research 30:319-324. 

Clearwater, S.J. and L.W. Crim 1998. Gonadotropin releasing hormone-analogue treatment 
increases sperm motility, seminal plasma pH and sperm production in yellowtail flounder 
Pleuronectes ferrugineus. Fish Physiology and Biochemistry 19:349-357. 

Colbura, H. R., G. C. Nardi, R. J. Borski, and D.L. Berlinsky 2009. Induced meiotic 
gynogenesis and sex differentiation in summer flounder (Paralichthvs dentatus). 
Aquaculture 289:175-180. 

Cosson, J.J. 2008. Methods to analyze the movements of fish spermatozoa and their flagella. 
Pages 63-102 in Alavi, S.A., J.J. Cosson, K. Coward, and G. Raffiee, editors. Fish 
Spermatology. Alpha Science International, Ltd., Oxford, U.K. 

Cosson, J. J., A.L. Groison, C. Fauvel, and M. Suquet 2010. Description of hake Merlucius 
merlucius spermatozoa: Flagellar wave characteristics and motility parameters in various 
situations. Journal of Applied Ichthyology 26:644-652. 

Devlin, R.H. and Y. Nagahama 2002. Sex Determination and sex differentiation in fish: An 
overview of genetic, physiological, and environmental influences. Aquaculture 208:191-
364. 

Fauvel, C., M. Suquet and J. Cosson 2010. Evaluation of fish sperm quality. Journal of Applied 
Ichthyology 26: 636-643. 

Feist G., Y Choo-Guan., M.S. Fitzpatrick, and C.B. Schreck 1995. The production of functional 
sex-reversed male rainbow trout with 17 alpha-methyltestosterone and 11 beta-
hydroxyandrostenedione. Aquaculture 131:145-152. 

Felip, A., F. Piferrer, M. Carrillo, and S. Zanuy 2002. Growth, gonadal development and sex 
ratios of meiogynogenetic diploid sea bass. Journal of Fish Biology 61:347-359. 

Francescon, A., A. Barbara, D. Bertotto, A. Libertini, F. Cepollaro, J. Richard, P. Belvedere, and 
L. Colombo 2005. Assessment of homozygosity and fertility in meiotic gynogens of the 
European sea bass (Dicentrarchus labrax L.). Aquaculture 243:93-102. 

55 



Fujioka, Y. 1998. Survival, growth and sex ratios of gynogenetic diploid honmoroko. Journal of 
Fish Biology 52: 430-442. 

Gaylord, T.G., M.H. Schwarz, R.W. Cool, M.L. Jahncke, and S.R. Craig 2004. Thermal optima 
for the culture of juvenile summer flounder, Paralichthvs dentatus. Journal of Applied 
Aquaculture 14:155-162. 

Groison, A.L., C. Fauvel, M. Susquet, O.S. Kjesbu, L.R. Le Coz, I. Mayer, and J. Cosson 2010. 
Some characteristics of sperm motility in European hake (Merluccius merluccius. L., 
1758). Journal of Applied Ichthyology 26:682-689. 

Hattori, R.S., R.J. Gould, T. Fujioka, T. Saito J. Kurita, C.A. Strussmann, M. Yokota, and S. 
Watanabe 2007. Temperature-dependent sex determination in Hd-Rr Medaka Orvzias 
latipes: Gender sensitivity, thermal threshold, critical period, and Dmrtl expression 
profile. Sexual Development 1:138-146. 

Hulata, G. 2001. Genetic manipulations in aquaculture: A review of stock improvement by 
classical and modern technologies. Genetica 111:155-173. 

Ihssen, P.E., L.R. McKay, I. McMillian, and R.B. Phillips 1990. Ploidy manipulation and 
gynogenesis in fishes: cytogenetic and fisheries applications. Transactions of the 
American Fisheries Society 119:698-717. 

King N.J., Nardi G.C., Jones C J. 2001. Sex linked growth divergence of summerflounder from 
a commercial farm: are males worth the effort? J. Appl. Aquae., 11,77-88 

Kitano, T. 2002. Studies on P450 Aromatase (P450arom) Gene expression in sex differentiation 
in Japanese flounder (Paralichthvs olivaceus). Report of Kumamoto Prefectural Fisheries 
Research Center 5:7-24. 

Kitano, T., K. Takamune, T. Kobayashi, Y. Nagahama, and S.I. Abe 1999. Suppression of P450 
aromatase gene expression in sex-reversed males produced by rearing genetically female 
larvae at a high water temperature during a period of sex differentiation in the Japanese 
flounder (Paralichthvs olivaceus). Journal of Molecular Endocrinology 23: 167-176. 

Kjorsvik, E., A. Mangor-Jensen, and I. Holmefjord 1990. Egg quality in fishes. Advances in 
Marine Biology. Academic Press Limited, Oxford, U.K. 

Komen, J., G.F. Wiegertjes, V.J.T. van Ginneken, E.H. Eding, and C.J.J Richter 1992. 
Gynogenesis in common carp (Cyprinus carpio L.). III. The effects of inbreeding on 
gonadal development of heterozygous and homozygous gynogenetic offspring. 
Aquaculture 104:51-66. 

56 



Krol, J., R.K. Kowalski, P. Hliwa, G.J. Dietrich, R. Stabinskiand, and A. Ciereszko 2009. The 
effects of commercial preparations containing two different GnRH analogues and 
dopamine antagonists on spermiation and sperm characterization in the European smelt 
Osmerus eperlanus (L). Aquaculture 286: 328-331. 

Lanes, C.F.C., M. Okamoto, P.V. Cavalcanti, T. Collares, V.F. Campos, J.C. Deschamps, R.B. 
Robaldo, L.F. Marins, and L.A. Sampaio 2008. Cryopreservation of Brazilian flounder 
(Paralichthys orbignvanus) sperm. Aquaculture 275: 361-365. 

Lanes, C.F.C., M.H. Okamoto, A. Bianchini, L.F. Marins, and L.A. Sampaio 2010. Sperm 
quality of Brazilian flounder Paralichthys orbignvanus throughout the reproductive 
season. Aquaculture Research 41:199-207. 

Larsson, D.G.J., C.C. Mylonas, Y. Zohar, and L.W. Crim 1997. Gonadotropin-releasing 
hormone analogue (GnRHa) induces multiple ovulations of high-quality eggs in a cold 
water, batch-spawning teleost, the yellowtail flounder (Pleuronectes ferrugineus). 
Canadian Journal of Fisheries and Aquatic Sciences 54:1957-1964. 

Leary, R.F., F.W. Allendorf, K.L. Kundsen, and G.H. Thorgaard 1985. Heterozygosity and 
developmental stability in gynogenetic diploid and triploid rainbow trout. Heredity 54: 
219-225. 

Liu, Q.H., J. Li, Z.Z. Xiao, F.H. Ding, D.D. Yu, and X.Z. Xu 2007. Use of computer-assisted 
sperm analysis (CASA) to evaluate the quality of cryopreserved sperm in red seabream 
(Pagrus major). Aquaculture 263:20-25. 

Luckenbach, J.A., J. Godwin, H.V. Daniels, and R.V. Borski 2002. Optimization of North 
American flounder culture: a controlled breeding scheme. World Aquaculture 33: 40-45. 

Luckenbach, J.A., J. Godwin, H.V. Daniels, J.M. Beasley, C.V. Sullivan, and R.V. Borski 2004. 
Induction of diploid gynogenesis in southern flounder (Paralichthys lethostigma) with 
homologous and heterologous sperm. Aquaculture 237:499-516. 

Morgan, A.J., R. Murashige, C.A. Woolridge, J.A. Luckenbach, W.O. Watanabe, R.J. Borski, J. 
Godwin, and H.V. Daniels 2006. Effective UV dose and pressure shock for induction of 
meiotic gynogenesis in southern flounder (Paralichthys lethostigma) using black sea bass 
(Centropristis striata) sperm. Aquaculture 259:290-299. 

Morse, W.W. 1981. Reproduction of the summer flounder, Paralichthys dentatus (L.). Journal 
of Fish Biology 19:189-203. 

Mylonas, C.C., M. Papadaki, and P. Divanach 2003. Seasonal changes in sperm production and 
quality in the red porgy Pagrus pagrus (L.). Aquaculture Research 34:1161 -1170. 

57 



Na-Nakorn, U. 1995. Comparison of cold and heat shocks to induce diploid gynogenesis in Thai 
walking catfish (Clarias macrocephalus) and performances of gynogens. Aquatic Living 
Resources 8:333-341. 

Ottesen, O.H., I. Babiak, and G. Dahle 2009. Sperm competition and fertilization success of 
Atlantic halibut (Hippoglossus hippoelossus L.). Aquaculture 286:240-245. 

Scott, A.P. and S.M. Baynes 1980. A review of the biology, handling and storage of salmonid 
spermatozoa. Journal of Fish Biology 17:707-739. 

Seikai, T. 2000. Flounder culture, Japanese. Pages 382-387 in R. R. Stickney, editor. 
Encyclopedia of Aquaculture, Wiley, Ney York, New York, USA. 

Smigielski, A.S. 1975. Hormone-induced spawnings of the summer flounder and rearing of the 
larvae in the laboratory. The Progressive Fish-Culturist 37:3-8. 

Suquet, M., R. Billard, J. Cosson, G. Dorange, L. Chauvaud, C. Mugnier, and C. Fauvel 1994. 
Sperm features in turbot (Scophthalmus maximus): a comparison with other freshwater 
and marine fish species. Aquatic Living Resources 7:283-294. 

Tabata, K. 1991. Application of the chromosomal manipulation in aquaculture of hirame 
Paralichthys olivaceus. Bulletin of the Hyogo Prefectural Fisheries Experimental Station 
28:1-134. 

Tabata, K. and A. Mizuta 1997. Cryopreservation of sex reversed gynogenetic female sperm in 
hirame. Fisheries Science 63:482-483. 

Tabata, K., S. Gorie, and K. Nakamura 1986. Induction of gynogenetic diploid in hirame 
Paralichthys olivaceus. Bulletin of the Japanese Society of Scientific Fisheries 52:1901-
1904. 

Teletchea, F., J-N Gardeur, M. Psenicka, V. Kaspar, Y. Le Dore, O. Linhart, and P. Fontaine 
2009. Effects of four factors on the quality of male reproductive cycle in pikeperch 
Sander lucioperca. Aquaculture 291:217-223. 

Trippel, E.A. and J.D. Neilson 1992. Fertility and sperm quality of virgin and repeat-spawning 
Atlantic cod (Gadus morhua) and associated hatching success. Canadian Journal of 
Fisheries and Aquatic Sciences 49:2118-2127. 

Veillette, P.A., M. Merino, N.D. Marcaccio, M.M. Garcia and J.L. Specker 2007. Cortisol is 
necessary for seawater tolerance in larvae of a marine teleost the summer flounder. 
General and Comparative Endocrinology 151:116-121. 

58 



Vermeirssen E.L.M, R.J. Sheilds, C. Mazzora de Quero, and A.P. Scott 2000. Gonadotropin 
releasing hormone agonist raises concentrations of progestins and enhances milt fluidity 
in Atlantic halibut (Hippoglossus hippoglossus). Fish Physiology and Biochemistry 
22:77-87. 

Viveiros, A.T.M., A. Jatzkowski, and J. Komen 2003. Effects of oxytocin on semen release 
Watanabe, W.O. and P.M. Carroll 2001. Progress in controlled breeding of summer 
flounder, Paralichthvs dentatus. and southern flounder, P. Lethostigma. Journal of 
Applied Aquaculture 11:89- 111. 

Watanabe, W.O., E.P. Ellis, and S.C. Ellis 1998. Progress in controlled maturation and 
spawning of summer flounder Paralichthvs dentatus broodstock. Journal of the World 
Aquaculture Society 29:393-404. 

Yamamoto, E. 1999. Studies on sex-manipulation and production of cloned populations in 
hirame, Paralichthvs olivaceus. Aquaculture 173:235-246. 

Zohar, Y. 1996. New approaches for the manipulation of ovulation and spawning in farmed fish. 
Bulletin of the National Research Institute of Aquaculture Supplement 2:43-48. 

59 



Tables 

Table 2.1. Parameter definitions for CAS A measurements. 

Parameter Definition Units 

Duration (DUR) Time from activation to zero percent motility of sample. Sec 

Path Velocity (VAP) Average velocity of the smoothed cell path. Mm/sec 

Progressive Velocity Average velocity measured in a straight line from the Mm/sec 

(VSL) beginning to the end of track. 

Track Speed (VCL) Average velocity measured over the actual point-to-

point track followed by the cell. 

fun/sec 

Linearity (LIN) The departure of the cell track from a straight line. 

Average value of the ratio VSL/VCL. 

Motile percent 

(MOT) Percent motile as defined by VSL and VAP cutoffs. 
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Table 2.2 Volume and cell density of meiogyn and normal summer flounder sperm. Values that 

share a letter are not significantly different (t-test, P < 0.05). BW = fish body weight. 

Concentration 

Treatment Volume (ml) (cells/ml x 109) BW (kg) Sperm (ml/kg BW) 

Normal 2.0 ±0.5 a 12.4+ 1.6a i . i ± o . r  1.8 ±0.4 

Meiogynogen 0.3 ± 0.4b 3.8± 1.2 b 0.4 ±0.1 b 0.8 ± 0.3 

p = 0.0068 p = 0.0002 p = 0.0001 
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Table 2.3. Spermatozoa characteristics of rneiogyn and normal summer flounder 

measured by Computer-Assisted Sperm Analysis compared to those of other species. 

Spermatozoa characteristics indicated are duration (DUR), average path velocity (VAP), 

progressive velocity (VSL), track speed (VCL), linearity (LIN) and motile percent 

Summer flounder Summer flounder 
Parameter 

meiogynogens normal 
Halibut Sea bream Hake Smelt 

DUR 328.5 ± 47.9 343.0 ±43.7 

VAP 87.8 ±4.1 • 104.3 ±7.0 113.1 64.0 55.7 

VSL 85.2 ±3.9 100.8 ±6.6 82.3 51.0 38.7 

VCL 99.1 ±4.0 115.1 ±6.6 99.6 82.0 79.9 

LIN 84.8 ± 1.1 86.5 ± 1.2 81.5 40.6 

MOT 35.8 ±5.8 49.5 ± 6.8 46.5 64.7 53.7 

(MOT). 

a Ottesen et al. 2009,b Liu et al. 2007,c Groison et al. 2010, d Krol et al. 2009 
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summer flounder sperm. 

Fertility Parameter (%) 

Treatment Buoyancy Fertilization Pre-hatch Larval viability 

Normal 98 ± 0.0 47.0 ± 0.0 46.6 ± 0.0a 96.6 ± 3.3 

Meiogynogenetic 97 ±0.0 41.6 ±0.0 36.3±0.0b 98.3 ±1.6 

P=0.0113 
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Female Ovulated 

Eggs 

(xlO3) 

Fertilization 

(%) 

Incubator Hatch 

(%) 

1 275.9 90 1 45.2 

2 77.9 70 1 

3 30 35 2 50.5 

1 188.9 55 3 21.1 

2 60 75 3 

3 40.7 NA 3 

4 67.2 NA 3 

3 95.9 40 4 

5 54 15 4 14 

6 95.9 60 4 

7 95.9 55 4 
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CHAPTER III 

SPERMIATION INDUCTION IN SUMMER FLOUNDER (PARALICTHYS 
DENTATUS) 

Introduction 

In temperate fish species, reproductive development is usually stimulated by 

environmental cues, particularly and water temperature, that activate the hypothalamic-

pituitary gonadal axis. Upon stimulation, gonadotropin releasing hormones (GnRHs), 

well conserved, 10 amino acid peptides are released from the hypothalamus and cause 

release of large glycoprotein gonadotropic hormones (follicle stimulating hormone and 

luteinizing hormone; FSH and LH) from the anterior pituitary (Zohar et al., 2010). These 

gonadotropins subsequently stimulate gonadal steroid production, necessary for normal 

gamete development, spawning behavior initiation, and fertilization. In captivity, 

however, many fish species fail to properly respond to simulated environmental 

conditions, and either undergo improper gamete development and/or do not initiate 

volitional spawning. The causes of reproductive failure in cultured fish are often 

unknown, but may be due to improper broodstock sex ratios, densities, tank size or 

spawning substrate. 

In addition to manipulating environmental cues, researchers and culturists often use 

exogenous hormones to stimulate gamete development and/or initiate spawning behavior 

(Mylonas et al., 2010). Initially, preparations made from freeze-dried carp pituitaries 

(carp pituitary extract; CPE) were used for this purpose but were largely replaced with 
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the wide scale production of human chorionic gonadotropin (hCG). hCG is similar in 

structure to pituitary gonadotropins and has been used to stimulate ovulation in many fish 

species as well as domestic livestock. More recently, analogues of GnRHs have been 

used for fish broodstock, as their small size and structural similarity to native hormones 

were thought to be less likely to initiate immune responses than hCG or CPE. These 

analogues were found to be highly effective in inducing ovulation in many fish species. 

Although used less frequently than in females, exogenous hormones have also been used 

in male broodstock to stimulate spermatogenesis and spermiation. (Donaldson and 

Hunter, 1983, Lam, 1982, Zohar, 1989, Mylonas and Zohar 2001). As in females, GnRH 

analogues have been favored in recent years, and the use of slow release implants, 

eliminates the stress associated with frequent administration that are necessary with 

liquid injections. Male summer flounder often produce very small sperm volumes that 

can be limiting in commercial production (Cyr and Eales, 1996; Le Gac et al., 1993; 

Negatu et al., 1998; Weber et al., 1995). 

The purpose of this study was to test the efficacy of several hormone preparations on 

spermiation in summer flounder to improve reproductive efficiency for commercial 

aquaculture. 

Materials and Methods 

Broodstock husbandry 

Wild-caught and captive-bred (normal) summer flounder broodstock (> 7 years; females 

= 0.97-3.65 kg, males = 0.68-1.60 kg) were maintained at Great Bay Aquaculture LLC 

(GBA; Portsmouth, NH, USA) for at least four years prior to the start of the experiments. 
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The fish were implanted with a passive integrated transponder (PIT) tag (Biomark Inc., 

Boise, ID, USA) for individual identification and held in 6,000 - L fiberglass rectangular 

tanks incorporated in recirculating (28-30 ppt salinity) systems. The systems were 

equipped with biological and mechanical filtration, ultraviolet sterilization, foam 

fractionation, and photothermal control. Half-hour crepuscular periods were provided 

with 100 W incandescent bulbs to simulate dawn and dusk. Light intensity, measured 

with a light meter (Sper Scientific, Scottsdale, AZ, USA), ranged from 5 - lx (dawn/dusk) 

to 30 - lx (day) at the water surface during light period. Water temperature and dissolved 

oxygen were measured daily (Oxyguard, Birkerod, Denmark) and total ammonia nitrogen 

and nitrite were monitored weekly (HACH®; Loveland, CO USA). Water quality within 

the culture tanks remained within ranges suitable for rearing this species (Watanabe et al. 

1998). The fish were fed a commercial ration (9 - mm pellet, 54% protein, 18% fat; 

Vitalis Cal, Skretting, Trouw, Spain) to apparent satiation 2-3 times per week. As 

summer flounder naturally spawn in the fall, and temperature were maintained at 12L: 

12D and 19 ± I C until two months prior to desired spawning and then gradually adjusted 

to to 8L: 16D and 14 C, respectively (Watanabe et al., 1998; Bengtson ,1999). 

Meiogvn production 

Meiogynogenetic fish (0.24-0.77 kg) were produced as reported previously 

(Colbum et al., 2009). Briefly, summer flounder eggs were activated with ultraviolet-

irradiated black sea bass, Centropristis striata sperm, and a 6 - min pressure shock (8,500 

psi) was applied 2 min post-fertilization. The eggs and larvae were incubated (16-17° C 

and 35 ppt) and reared (16-18 0 C and 27-31 ppt) under standard hatchery conditions and 
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fed enriched rotifers followed by Artemia. Upon metamorphosis (41 days-post hatch; 

DPH), the juveniles (n = 900) were transferred to 235 - L cylindrical tanks that were 

incorporated into recirculating systems and subjected to male-determining temperatures 

(> 21 C). At 376 DPH, 153 of the remaining fish were transferred to the broodstock 

systems described above, and held for approximately 3 years prior to the start of the 

experiments. 

Induction 

Six groups of six male, meiogynogen summer flounder between 0.2 and 0.5 kg were 

injected with six different hormonal treatments to induce spermiation. Before application 

of the treatments, milt was extracted by gentle abdominal massage. Individual fish were 

selected for this experiment by their milt and spermatozoa characteristics. To qualify for 

this experiment all of the males must have produced between 0.05ml and 0.3ml of milt 

during initial extraction. Additionally, spermatozoa motility was graded by a qualitative 

scoring system. Before use, sperm (diluted 1:50; 1 jil milt: 49 ^1 seawater) were checked 

for motility with a compound microscope immediately after activation with ultraviolet-

sterilized seawater (30 g L"1). Motility was estimated with an arbitrary scale, ranging 

from 0-4, where 0 represents no motility; 1,1- 25%; 2,26-50%; 3, 51-75%; and 4, 76-

100% motile sperm (Viveiros et al., 2003). 

Of the treatments used, four were active hormones and two were controls. The treatments 

included carp pituitary extract (CPE, 2 mg kg"1; Stoller Fisheries, Spirit Lake, IA, USA; 

Smigielski, 1975; Berlinsky et al., 1997), liquid gonadotropin releasing hormone (GnRH) 

at 25 ng/kg bodyweight, human chorionic gonadotropin (HCG) at 600 IU/kg bodyweight, 
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and a cholesterol/cellulose implant containing 25 jig GnRH. The control treatments 

included a 32 mg cholesterol/cellulose sham implant and liquid physiological saline 

(0.9%) injected at 550 jiL/kg BW. All of the liquid treatments were injected daily for two 

weeks. The implanted treatments were administered at days one, seven and fourteen of 

the experiment. At day eight and fifteen all of the fish were checked for milt production 

by gentle abdominal massage. Milt was collected in 2 mL polypropylene 

microcentrifuge tubes and held on ice until motility could be determined. 

Results 

Milt volume 

No significant differences in volume were seen in any induction treatment for initial or 

day 8 milt collections. Fish treated with CPE produced significantly greater volumes than 

fish treated with a sham implant on day 15 (Fig. 3.1). 

Spermatozoa counts 

No significant differences in total spermatozoa produced by induction treatment 

were seen between fish at day 8. A significant increase in spermatozoa produced by 

GnRH liquid injection was seen at day 15 compared to sham implant (Fig 3.2). 

Assessing sperm Motility 

Motility of meiogynogenetic sperm was compared for the duration of the study. 

Motility was assessed at the start of the study and at days 8 and 15. No significant 

differences were found in any of the treatments between days of motility assessment (Fig. 

3.3). 

69 



Discussion 

Sperm density and volume vary considerably among teleost species and are 

further influenced by season, age and frequency of stripping. Summer flounder are 

among several Pleuronectiform species that produce relatively low volumes of 

concentrated, high-density sperm (Lanes et al., 2010). Expressible volumes less than 1 

mL were also reported for turbot (Psetta maxima; Suquet et al., 1994), yellowtail 

flounder (Limanda ferruginea) (Clearwater and Crim, 1998), and Brazilian flounder 

(Paralichthys orbignyanus) (Lanes et al., 2010) that produce relatively low volumes of 

(concentrated, high density sperm). Although direct comparisons with normal males of 

the same age were not available, production from the meiogynogenetic summer flounder 

used in the present study may have been further reduced because of reduced body mass, 

likely associated with increased homozygosity. 

hCG and analogues of GnRH have been used to accelerate the onset of 

spermiation as well as increase milt production in a number of teleost species but 

considerable species-specific differences in responsiveness have been reported (Mylonis 

and Zohar, 2001). For instance, analogues of GnRH have been shown to accelerate 

spermiation in Atlantic halibut (Hippoglossus hippoglossus; Vermeirssen et al. 2004) and 

golden rabbitfish (Sigamis guttatus; Komatsu et al. 2006), but were ineffective in 

Japanese eels (Anguilla japonica\ Kagawa et al., 2009) that responded to hCG and 

salmon pituitary extract. Similar results were found with hCG, which despite wide­

spread effectiveness (e.g. European sea bass (Dicentrachus labrax; Schiavone et al. 

2006), pejerrey (Odontesthes bonariensis; Miranda et al., 2005) and New Zealand 
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snapper (Pagrus auratus; Pankhurst, 1994) was ineffective on European smelt (Osmerus 

eperlanus; Krol et al., 2009) which responded to GnRH analogues. Some of the factors 

that have been shown to influence species-specific responsiveness include administration 

method and dose, fish age, spawning season stage, frequency of stripping and degree of 

dopaminergic inhibition (Biiyiikhatipoglu and Holtz, 1984; Vermeirssen et al., 2004; 

Kagawa et al., 2009). Although currently used less frequently, pituitary extracts (carp 

and salmon) are also used as spermiation-induction agents (Miranda et al., 2005; Kagawa 

et al., 2009). It was previously shown that GnRH, hCG and CPE were all ineffective in 

inducing spermiation in non-spermiating summer flounder (Berlinsky et al., 1997). 

Although GnRH administered as an injectable liquid increased spermiation in the present 

study, the extent to which it did so wasn't as pronounced as that reported in some other 

studies (Miranda et al., 2005; Rzemieniecki et al., 2004) and milt volumes remained very 

small. Additional studies are necessary to determine if low milt production is a function 

of genotype (gynogenetic) or sub-optimal induction regimes for this species. 

Exogenously administered hormones were found to stimulate spermiation in as 

little as 24 hrs in some species (Miranda et al., 2005; Krol et al., 2009; Rzemieniecki et 

al., 2004), but longer administration periods (21-42 days) were examined in other species 

(Lim et al., 2004; Schiavone et al., 2006). In European sea bass {Dicentrarchus labrax) 

and greenback flounder (Rhombosolea tapirina) administered hCG and GnRHa 

implants, respectively, milt volume increased by one week post-treatment and typically 

remained elevated for a week thereafter (Lim et al., 2004; Schiavone et al., 2006). The 

timeframe for spermiation induction in the present study was based on industry practices 
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where summer flounder broodstock are typically administered CPE daily for up to 14 

days to induce ovulation and spermiation (G. Nardi personal Communication; Bengton, 

1999; King et al„ 2001). 

In the present study milt volume increased from days 8-14 with repeated CPE 

injections. These results are consistent with those of Viveros (2002), who reported 

additive effects of CPE administration on milt hydration in African catfish, Clarias 

gariepinus. As increases in milt volume were observed between the days 7 and 14 

sampling, it is possible that further increases could have occurred if the study were 

conducted for a longer duration. Considering the labor involved and stress associated 

with daily injections, further experiments with long acting hormone implants may be 

warranted. 
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Tables and Figures 

Table 3.1 Concentrations and administration technique of hormones applied during 
the experiment. 

Treatments Concentration Administration 

GnRHa implant 25 fig/implant Implanted day 1 and day 8 

GnRHa injection 

25 ng/ml injected 0.5ml/kg 

body weight 

Intramusculature injection 

daily for 15 days 

Carp pituitary extract 

(CPE) 

2 mg/ml injected 0.5ml/kg body 

weight 

Intramusculature injection 

daily for 15 days 

Saline injection 

0.9% saline injected 0.5ml/kg 

bodyweight 

Intramusculature injection 

daily for 15 days 

Human chorionic 

gonadotropin (hCG) 600 IU/kg body weight 

Intramusculature injection 

daily for 15 days 

Sham Implant Cholesterol/cellulose implant Implanted day 1 and day 8 
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Figure 3.1. 

Mean values (± SEM) for milt volume calculated for induction treatments. Initial, Day 8 
and Day 15 volumes were obtained from milt collected initially before treatment and on 
the eighth and fifteenth day of the experiment. Values labeled by the same letter are not 
significantly different (P>0.05). 
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Figure 3.2. 

Mean values (± SEM) for total cell counts calculated for induction treatments. Day 8 and 
Day 15 cell totals were obtained from milt collected on the seventh and fourteenth day of 
the experiment. Columns labeled by the same letter are not significantly different 
(PX).05). 

77 



GnRH GnRH mi 

initial 

Day 8 

Day 15 

Saline Sham 

Hormone Dose 

Fig. 3.3 

Mean motility values for each hormone treatment. Motility was measured initially 
before treatment application and at day 8 and day 15 of the experiment. Motility was 
assessed using an ordinal scoring system based on (Viveiros et al., 2003) 
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CHAPTER. IV 

CONCLUSIONS AND FUTURE DIRECTIONS 

The experiments that I conducted for my thesis research represent important steps 

toward controlling reproduction in summer flounder and creating monosex (all female) 

populations. 

The cryopreservation studies revealed that fertilization and hatching were not 

different in trials using fresh or cryopreserved sperm at a slow freezing rate -5 deg C/min" 

1, DMSO cryoprotectant and a sucrose based extender. These experiments determined 

that the parameters suitable for freezing summer flounder sperm (Paralichtys olivaceus) 

were similar to related species, Japanese flounder (Paralichthys olivaceus) and Brazillian 

flounder (Paralichthys orbignyanus). It may be possible to achieve greater fertilization 

and hatching if the cryopreservation protocol were further optimized, this would require 

varying the parameters used in the cryopreservation protocol such as, freezing rate, 

cryoprotectant type and concentration, dilution ratio, and extender composition. Finally, 

these experiments observed the post thaw viability of sperm after a short duration of 

storage (approximately 24 hours). Further experiments could evaluate the viability of 

sperm stored over a greater period of time (weeks or months). 

While comparing sperm from normal and meiogynogenetic summer flounder, I 

determined that the two were similar when analyzed by CASA but lower embryonic 
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viability was observed with the use of sperm from meiogynogenetic males. Examination 

of the genetic composition of meiogyn sperm may reveal what specific abnormalities 

may be causing the decreased fertility and developmental dysfunction. Possible causes of 

dysfunction may be that meiogyn males have a greater number of deleterious alleles 

associated with an increased homozygosity compared to normal male flounder. 

Further experimentation will be necessary to determine the effects of temperature 

and other environmental factors (e.g. density, substrate, lighting, nutrition) on sex 

determination and differentiation in this species, as it has been shown in congeneric 

species that female genotypes (e.g. XX) will only result in female phenotypes if correct 

environmental conditions are applied. 
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