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ABSTRACT 

AN EMPIRICAL STUDY OF IMAGE PROCESSING METHODS FOR LAND 
COVER CLASSIFICATION AND FOREST COVER CHANGE DETECTION IN 

NORTHEASTERN OREGON'S TIMBER RESOURCE-DEPENDENT 
COMMUNITIES (1986-2011) 

By 

Michael James Campbell 

University of New Hampshire, September, 2012 

A study was performed to evaluate remote sensing methods for classifying land 

cover and land cover change throughout a two-county area in Northeastern Oregon 

(1986-2011). In the past three decades, this region has seen significant changes in forest 

management - changes that can be readily identified from the synoptic perspective. This 

study employs an accuracy assessment-based empirical approach to test a number of 

advanced digital image processing techniques that have recently emerged in the field of 

remote sensing. The accuracies are assessed using traditional and area-based error 

matrices. It was determined that, for single-time land cover classification, Bayes pixel-

based classification using samples created with segmentation parameters of scale 8 and 

shape 0.3 resulted in the highest overall accuracy. For land cover change detection, it 

was determined that Landsat 5 TM band 7 with a change threshold of 1.75 SD resulted in 

the highest accuracy for forest harvesting detection. 
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CHAPTERI 

INTRODUCTION 

Remote sensing technologies are unmatched in their ability to efficiently and 

accurately map the interaction between humans and the natural environment. At local, 

regional and global scales, the inventory and monitoring of Earth's natural resources is 

paramount to building towards a successful, sustainable future. Particularly in the last 

century, with increasing evidence of global climate change and the continuing expansion 

of human development, it is essential that the scientific community develop tools and 

methodologies to assess the changes that occur in the landscape over time. With 

technological and computational capacities on the rise, these tools and methodologies 

have the potential to greatly increase the efficiency and accuracy with which we can 

monitor land use and land cover changes. It is also likely, however, that with these 

increasing capacities comes increasing complexity. Especially in the realm of remote 

sensing, where newer, more advanced satellite imagery platforms are continually being 

launched, new analytical software packages are being developed and computer hardware 

is becoming exponentially more powerful, there is a seemingly limitless amount of 

remote sensing research and development to be done. While this is certainly an exciting 

prospect, it is also daunting for the discipline as a whole, as increasing avenues of 

specialization can result in increased methodological disagreement, decreased operational 

and data standards, and a general disconnect in theoretical frameworks. Given their 
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readily interpretable nature and broad applicability, the results of remote sensing studies 

are often used as a basis for interdisciplinary scientific inquiry (Roughgarden et ah, 1991) 

land management practices (Masser, 2001), and even legislative policymaking (Miller & 

Small, 2003). Accordingly, it is critical that the remote sensing community not only keep 

up with the advancing technologies by introducing new tools and methods, but continue 

to rigorously test them to ensure their validity and robustness in a variety of settings, 

temporal and spatial. 

Northeastern Oregon has seen a dramatic shift in the management of its forests in 

the last few decades (Adams & Latta, 2003). Facing challenges such as increased 

presence of invasive pests and diseases, increased frequency and intensity of forest fires, 

changing harvesting regulations, and decreased infrastructure and capacity for timber 

processing, this once timber-dependent region has seen significant declines in harvesting 

(Adams & Latta, 2003). The magnitude of these declines, however, is highly dependent 

on land ownership class, be it public, private industrial or private non-industrial. Given 

the changing land management dynamics and resultant changing land cover (or not 

changing), this region serves as an excellent basis for remote sensing inquiry. 

Accordingly, using a two-county area in northeastern Oregon as a basis for 

analysis, this study inquires into two of remote sensing's most valuable functions, single-

time land cover mapping and land cover change mapping, all the while empirically 

testing a wide array of newly emerging and well-established methodologies. 

Additionally, a new method for change detection will be introduced and tested against 

other extant methods for accuracy. The results of this study are intended to at once 

inform local residents of the changes occurring in their landscape, provide the remote 
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sensing community with a robust assessment of a number of analytical techniques, and 

establish a repeatable general framework by which future land cover change studies can 

be performed. 

Literature Review 

This study is divided largely into two phases: (1) single-time land cover 

classification and (2) land cover change classification. A great number of steps are 

necessary to accomplish each of these phases and an even greater number of options exist 

in terms of remote sensing methods used to accomplish these goals. Accordingly, a wide 

variety of research was reviewed throughout the completion of this study to assist in 

making the informed decisions that are best suited for the specific project goals. In this 

section, a selection of critical works will be highlighted and their results discussed in 

relation to the project at hand. Each of the two phases will be discussed individually, 

broken down into their component parts and references will be made to the most relevant 

literature that guided the decisions made in this study. 

Image Data 

In the realm of remote sensing, one particular sensor has stood out amongst the 

rest as a uniquely flexible and extremely powerful basis for analytical inquiry — Landsat. 

Among the lineage of sensors created by the broader Landsat program, Landsat 5 

Thematic Mapper (TM) has proven particularly valuable, having contributed almost 30 

years' worth of essentially uninterrupted data — well beyond its expected life span of three 

years - at a bi-monthly temporal resolution (Chander & Markham, 2003). This temporal 
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availability has made Landsat an invaluable resource for long-term land cover change 

analyses, such as the current project. A number of reviews have recently emerged in the 

remote sensing literature that highlight the importance of Landsat data in a broad array of 

disciplines (e.g. Green, 2006; Wulder et al, 2008; Wulder et al., 2012). The primary 

motivation for these studies stems from the uncertainty of the future of the Landsat 

program (Wulder et al., 2008). After nearly three decades' worth of data collection and 

production, the Landsat program has finally reached a halt, with the most recent 

discontinuation of Landsat 5 TM in late 2011 and the scan line correction errors of 

Landsat 7 Enhanced Thematic Mapper Plus (ETM+). Green (2006) highlights the critical 

need for the continuation of the Landsat program, citing its unique spatial, spectral and 

temporal characteristics as a public good that should be goveramentally-funded and made 

freely available to users. Wulder et al. (2012) presents data that document the significant 

increase in usage since the data was made freely available in 2008. In fact, from the time 

of initial free release, in October 2008, to September 2011 when the last Landsat 5 TM 

scenes were collected, there was a roughly five-fold increase in Landsat scene downloads 

per month. Despite an apparent data gap, the Landsat Data Continuity Mission (LDCM) 

is set to launch what will be deemed Landsat 8 in January of 2013 (Irons et al., 2012). 

Irons et al. (2012) provide a description of the characteristics of Landsat 8, which will in 

many ways mimic the characteristics of the Landsat 7 ETM+ satellite in terms of spatial 

and spectral resolution, with the addition of two more shortwave infrared bands and an 

additional thermal band as well. Interestingly, Landsat 8 will be made available not only 

with geometric corrections already performed, but radiometric corrections as well ~ a 

process that historically had to be done by the end-user. With the successful launch of 
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Landsat 8, users will once again be able to utilize Landsat's broad applicability to 

facilitate the study of a variety of earthly phenomena and ideally combine this new data 

with the wealth of historical Landsat data to enable future multi-temporal studies. While 

the methods used in this study apply specifically to Landsat 5 TM data, I believe that they 

could be easily extended to the newly acquired data of Landsat 8, further increasing the 

ability for long-term monitoring operations. 

Image Pre-Processing 

One of the critically important steps in a land cover change analysis is the ability 

to compare between images captured at different dates and times. Fortunately, with 

Landsat's temporal resolution, capturing the same image scenes every 15 days, this direct 

comparability is greatly facilitated. Unfortunately, however, it is rare that spatio-

temporal conditions during each separate image capture will be precisely replicable from 

time to time, with sensor-specific calibration changes, and natural variations in 

atmospheric and solar illumination conditions (Rogan & Chen, 2004). Accordingly, three 

preliminary image pre-processing steps are necessary in order to maximize comparability 

between images: (1) radiometric correction, (2) atmospheric correction and (3) 

topographic normalization. 

Radiometric and atmospheric correction are best considered as two parts of one 

whole process. Lu et al. (2002) highlight six primary reasons for performing radiometric 

and atmospheric correction, specific to Landsat 5 TM data: (1) within-scene 

multitemporal image analysis (e.g. land cover change), (2) across-path comparison of 

land cover types, (3) incorporation of and comparison between data from different 
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sensors (e.g. SPOT), (4) enhancing comparability to ground data (such as biomass 

estimations), (5) empirically-derived selected applications for using visible TM bands 

(such as aquatic plant bed mapping), and (6) accurate calculation of band ratios, such as 

vegetation indices. While only the first and last of this list are immediately pertinent to 

the current study, the wide applicability and necessary nature of radiometric and 

atmospheric correction should not be ignored. Broadly defined, radiometric correction is 

the process by which sensor-specific digital number (DN) values are converted to spectral 

reflectance values (Chander & Markham, 2003). While this may seem like a semantic 

difference, the DN values on a raw Landsat image, for example, are greatly affected by 

sensor-specific calibrations, such as gains and offsets (Chavez, 1996). A simple 

radiometric correction model, then, simply converts these DN values (typically unsigned 

8-bit format, 0-255) to top-of-atmosphere (TOA) reflectance values (typically float single 

format, 0.0-1.0). Atmospheric correction, however, takes this process one step further by 

functionally removing the atmospheric effects (e.g. scattering) on this TOA reflectance, 

effectively resulting ground reflectance (Chavez, 1996). If done effectively, the spectral 

reflectance value of an object from an arm's length distance should mimic that seen on 

the corrected remotely sensed image. Naturally, a wide variety of methods have been 

proposed to accomplish this goal, largely divided into two categories (and two levels of 

complexity): empirical image-based methods (simpler) and those that require in situ 

atmospheric data (more complex). 

A number of studies document the effectiveness of these methods (e.g., Moran et 

al, 1992, Lu et al, 2002). It is generally agreed that while incorporating in situ 

atmospheric measurements may increase the effectiveness of atmospheric correction, 
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simpler methods achieve comparable results in a much more cost-effective and time-

efficient manner. One of the most common of the simpler, image-based techniques is 

known as cosine of the solar zenith angle, or COST, correction (Chavez, 1996). COST is 

a relative atmospheric correction technique based on the process of dark-object 

subtraction (DOS). According to Chavez (1988) the assumptions of a DOS model are (1) 

that there is a constant haze value throughout the entire image and (2) that there is a high 

probability that there are at least a few pixels on the imagery which should be "black" 

(0% reflectance) ~ typically in shadows caused by topographic influence. Unlike more 

simple DOS models, however, COST incorporates the solar zenith angle into the 

equation, accounting for the effect of differential atmospheric transmittance (Chavez, 

1996). With the study area's remoteness (no influence of urban smog), relatively high 

base elevations (less atmosphere to travel through), generally low humidity (little 

influence of atmospheric moisture), and significant topographic variability (ample 

presence of "black" shadows), the COST method's assumptions could be met and was 

accordingly selected as the atmospheric correction algorithm of choice. 

Another critical variable that must be accounted for in multitemporal studies is the 

differential influence of topography on solar illumination. There are two primary solar 

variables that affect any given image: solar elevation (time of year) and solar azimuth 

(time of day). As the images used in this study were all collected at slightly different 

times, the effects from these factors cannot be assumed to be null. Particularly in 

mountainous regions (e.g., northeastern Oregon) a significant amount of spectral 

variability introduced by topographic slope and aspect is artificially induced, and should 

be corrected for (Civco, 1989). In medium resolution image datasets, such as Landsat, 
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northern-facing slopes (in the northern hemisphere) generally result in "darker" spectral 

responses, potentially introducing analytical difficulties into the digital remote sensing 

process, where misclassifications can result and image segmentations are also negatively 

affected (Civco, 1989). Meyer et al. (1993) described four specific topographic 

conditions particular to alpine environments, such as those in this study area, that can 

affect remote sensing analysis: (1) elevation dependency of optical thickness, (2) objects 

lying in the cast shadows of surrounding mountains, (3) well-illuminated slopes having a 

brightening effect on surrounding areas, and (4) the specific effect on irradiance of any 

given pixel is highly dependent on the sun-target geometry. While ideally one would like 

to account for all four of these conditions, topographic normalization efforts almost 

exclusively attempt to correct for the last of the four conditions, as the previous three are 

much more difficult to model accurately. There are generally two broad categories of 

topographic normalization: those based on the assumption of a Lambertian ground 

surface, and those based on the assumption of a non-Lambertian surface. The 

Lambertian model assumes that reflectance is independent of observation angle and that 

there is no diffuse illumination (Hantson & Chuvieco, 2011). The most common of the 

Lambertian correction methods is the simple cosine correction (Teillet et al., 1982), 

which, although easily computed, is well-documented to over-estimate or over-

compensate for the effects of illumination, effectively over-brightening the non-solar-

facing slopes (Jensen, 2005). Two of the most common non-Lambertian techniques are 

Minnaert correction (Minnaert, 1941) and C-Correction (Teillet et al., 1982). Both of 

these methods are empirical in nature, using the combined characteristics of the 

topography and band-specific reflectance to model the effects of differential illumination. 
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Minnaert requires a priori knowledge of the regional land cover, however, in order to get 

not only band-specific values, but also land cover-specific values. In many comparative 

studies (Meyer et al., 1993; Riano et al., 2003; Hantson & Chuvieco, 2011), C-Correction 

has been shown to be the most effective topographic normalization method. 

Additionally, unlike Minnaert correction, no prior land cover classification was necessary 

for successful processing, facilitating the subsequent unbiased classification of the 

imagery based on project-specific needs 

Radiometric/atmospheric correction and topographic normalization are not only 

intended to enhance comparability between images, but also to modify the imagery in 

such a way as to make it more representative of ground reflectance values. As a result, 

these steps enhance not only the change detection process, but also, importantly, the 

single-time land cover classification. To further enhance classification accuracy, it is 

common practice to perform a number of image transformations, band ratios and develop 

a variety of indices to capture information not readily gained in raw spectral data. Two 

of the most commonly used indices are the Normalized Difference Vegetation Index 

(NDVI) and the Tasseled Cap (TC) transformation. 

Ratio datasets intended to highlight specific vegetation qualities not readily 

identifiable in raw imagery have been used since the 1960's (e.g. Jordan, 1969). A 

variety of simple ratios (SR) were used initially, typically involving some combination of 

the near infrared and red portions of the electromagnetic spectrum. The NDVI was 

introduced in the 1970s (largely credited to Tucker, 1979), which was a more complex 

ratio originally used on Landsat MSS data aimed at reducing the error associated with SR 

vegetation indices. Since its emergence in the field of remote sensing, NDVI and other 
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complex ratios have become widely accepted as powerful estimators of vegetation 

quantities, health, and densities (Rogan & Chen, 2004; Jensen, 2005). 

The TC transformation was originally developed by Kauth and Thomas (1976) for 

the use in the realm of agricultural remote sensing on Landsat MSS data. Its original 

purpose was to be able to distinguish between agricultural crops across a broad 

geographic area over the life span of a crop, from soil, to healthy, growing crop, to late-

season or "yellowing" crop, to harvesting (back to soil) - "Finally, the crop progresses 

back to the soil from whence it came (dust from dust?) by any of several routes" (Kauth 

& Thomas, 1976). The name, "Tasseled Cap" is derived from the shape of the x-y 

distribution that results that appears to take the shape "suggestive of a tasseled woolly 

cap" (Kauth & Thomas, 1976). In the original process, each of the four bands of Landsat 

MSS data was transformed linearly to produce four metrics that highlight these various 

stages and components of crop growth: (1) soil brightness, (2) "green stuff," (3) "yellow 

stuff," and (4) "non-such." It is a similar process to the Principal Components Analysis 

in that it transforms the data in order to capture a high percentage of the variability within 

the data in multi-dimensional, linear fashion. Crist and Cicone (1984) later adapted the 

four-band MSS TC transformation to the 6 reflective bands of the Landsat TM sensor 

shortly after the launch of Landsat 4 (further refined for Landsat 5 TM by Crist et al., 

1986). The three primary features that emerged from this modified transformation were 

(1) Brightness, intended, again, to highlight primarily soil qualities, (2) Greenness, 

highlighting healthy, growing vegetation, and (3) Wetness, a new product (in place of 

"yellow stuff'), which is intended to highlight both soil and vegetation moisture. 
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In addition to the agricultural realm, the TC has been utilized in a number of 

different land cover analyses, particularly in forested environments. Cohen et al. (1995), 

for example, explored the use of the TC transformation in estimating forest stand age and 

structure. They found that the Wetness index captured a significant amount of variability 

associated with tree species-based stand type. Similarly, Wulder et al. (2004) 

documented TC Wetness' effectiveness in predicting forest stand age after harvesting 

using Landsat 7 ETM+ imagery. In addition to single-time land cover classification, 

Healey et al. (2005) explored the use of the TC transformation in detecting forest cover 

change. In that study, a linear transformation of all three TC features (deemed the 

Disturbance Index) was found to be an excellent estimator of forest harvesting activity. 

Lastly, in order to further enhance classification, particularly in areas where 

regional topography is closely linked with land cover as is often the case, a number of 

studies have advocated the use of ancillary topographic data to increase accuracies. 

Rogan et al. (2003) incorporated elevation, slope and aspect into their classification and 

regression tree-based classification model and found that ancillary data accounted for an 

approximately 15% increase in overall classification accuracy. Similarly, Treitz and 

Howarth (2000) found that using elevation data increased the ability to discriminate 

between different forest ecosystem types. 

Segmentation Parameter Analysis and Land Cover Classification 

Landsat 5 TM imagery, given its longevity, has lent itself well to a wide variety of 

methodological approaches. Until relatively recently, the vast majority of analytical 

endeavors performed on Landsat imagery (and any other image types) took place on a 
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pixel-by-pixel basis. That is, each individual picture element (pixel, raster, grid cell) was 

treated relatively independent of one another in the classification process. More recently, 

however, with the emergence of many higher resolution imagery sources (such as 

IKONOS, QuickBird, and WorldView), the unique value of individual pixels on any 

given image has decreased, leading to the proliferation of object-based image analysis 

(Blaschke, 2011). Object-based image analysis (OBIA) is built upon the process of 

image segmentation, where images are divided into pixel groupings that share similar 

characteristics, both spectrally and spatially. Blaschke (2010) provides an excellent 

review of the current state of OBIA throughout the remote sensing literature. In it, he 

highlights a number of landmark occurrences that have led to a proliferation of the 

quantity and complexity of OBIA research emerging from the remote sensing 

community. 

As stated above, however, a common thread throughout the research is the 

tendency for the use of OBIA on high resolution imagery. Accordingly, relatively little 

research has been done on the efficacy of using OBIA methods on coarser resolution 

datasets such as Landsat 5 TM. Conceptually, one can imagine that the utility of OBIA 

in studying Landsat data depends on the scale of analysis. For example, if OBIA 

improves the classification accuracy of a 1:10,000 scale analysis with 3 m resolution 

imagery, then potentially it could be similarly valuable for a 1:100,000 scale analysis 

with 30 m pixels. There is uncertainty, however, in the literature as to the effectiveness 

of OBIA with Landsat. For example, Dorren et al. (2003) compared Landsat OBIA to 

pixel-based methods in mapping forest stand types across a relatively small area (530 m ) 

with very mountainous terrain. It was found that pixel-based outperformed object-based 
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methods. That said, despite the lower accuracies, the authors suggest that the stand type 

results were potentially more "useful" (less so-called "salt and pepper effect"), and could 

function as more appropriate management units. Additionally they highlighted a number 

of factors that could improve OBIA studies with Landsat data, including improved 

accuracy assessment methods and a more insightful segmentation process (both discussed 

later). Jobin et al. (2008) provided a lukewarm account of OBIA, suggesting it may 

improve Landsat-based habitat mapping based on their results, but without a comparison 

to pixel-based methods, this suggestion should only be taken anecdotally. A few studies 

have, however, found OBIA to result in at least comparable and in some cases higher 

accuracies using Landsat data. Myint et al. (2008), for example, documented OBIA's 

effectiveness in mapping the change damage that resulted from a tornado in Oklahoma, 

finding its results to be significantly improved over traditional methods. Similarly, when 

performing a landscape-level forest fragmentation study, Newman et al. (2011) found 

OBIA methods to greatly improve classification accuracy, given the ease of including 

ancillary data to aid in the classification process. In addition, Newman et al. (2011) 

found that OBIA forest fragmentation results were significantly different than similar 

metrics computed in a pixel-based environment. This makes sense, given the fact that 

resultant image objects will be much more compact and spectrally homogeneous than the 

typically more variable pixels. Geneletti and Gorte (2003) propose an OBIA technique 

that incorporated the use of higher resolution aerial photography with Landsat in order to 

obtain higher classification accuracies ~ in some ways comparable to a pan-sharpening 

technique. 
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In general, based on the sparse results of these few studies, there appears to be no 

overall agreement as to whether or not OBIA improves classification accuracy over pixel-

based analysis for Landsat data. Although there is perhaps a slight tendency for better 

results (or at least improved utility of the results), the paucity of coarse resolution OBIA 

studies warrants a significant amount of further research before any sound conclusions 

can be drawn. Additionally, throughout all of the aforementioned OBIA-related papers, 

there is a common emphasis on the importance of the segmentation process on the 

resultant classification. A number of studies exist that inquire specifically into the 

process of segmentation and the effect on classification results. Rasi et al. (2011), for 

example, used multi-date Landsat imagery for change detection and classification and in 

doing so explored the segment sizes that result from changing segmentation parameters. 

Anders et al. (2011) found that in mapping geormophological features, each separate 

feature category (glacial, fluvial, karst, etc.) required different input segmentation 

parameters to perform optimally. 

It is appropriate here to discuss what is precisely meant by "segmentation 

parameters." The foremost software package used throughout the vast majority of OBIA 

studies has been Trimble eCognition (formerly Definiens eCognition). eCognition's 

unique multiresolution segmentation algorithm combines three levels of segmentation 

characteristics into the process, as shown in Figure 1 below. 
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Figure 1. eCognition's multiresolution segmentation parameters (Baatz and Schape, 2000) 

Baatz and Schape (2000) provide the best description of these parameters and the 

process that results. Multiresolution segmentation is a bottom-up segmentation approach 

~ that is, it begins at the pixel levels and grows segments simultaneously throughout the 

image based on local homogeneity criteria. When this region growing stops is dictated 

by the scale parameter, or, as Baatz and Schape (2000) describe it, a "degree of fitting" 

parameter. With a small scale parameter, there will be many small segments; with a large 

scale parameter, there will be fewer larger segments. The scale parameter is further 

refined by the designation of color and shape parameter inputs, or spectral and spatial 

homogeneity. If full influence is given to color, the segments are grown purely with 

regards to the image spectral characteristics, completely ignoring object shape. The color 

parameter is generally defined as the weighted sum of the spectral standard deviations per 

spectral band within a given object (Baatz & Schape, 2000). The shape parameter is not 

a measure in and of itself, but rather a combination of two additional parameters, 

compactness and smoothness. Compactness, quite simply, is the ratio between the length 

of the object perimeter and the square-root of its area (Baatz & Schape, 2000). 

Smoothness, which is closely related, is the ratio between the length of the object 
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perimeter and that of the smallest bounding rectangle (Baatz & Schape, 2000). Taken 

together, these variables represent spatial homogeneity. If full influence (or 90% 

influence, as is limited by eCognition software) is given to the shape parameter in the 

segmentation process, the resultant objects would be very compact, near circular or 

square shapes, almost completely ignoring the spectral characteristics of the imagery. 

Up until relatively recently, a typical methodology for segmentation parameter 

selection was a simple visual, qualitative assessment of the resultant segments (i.e., "Do 

these segments visually match what is happening on the ground?"). Of particular interest 

in the segmentation literature in recent years, however, is finding more objective, 

automated ways to determine these optimal segmentation parameters. Espindola et al. 

(2006) proposed a spatial autocorrelation-based region growing segmentation algorithm 

that at once maximizes within-segment spectral homogeneity and between segment 

heterogeneity. Similarly, Gao et al. (2011) explored the use of the Separability and 

Thresholds (SEaTH) algorithm for segmentation parameter selection and found it to 

produce classification accuracies higher than traditional parameter selection and 

classification methods. Moller et al. (2007) inquired into the process of assessing the 

accuracy not of the resultant OBIA classification, but of the segment boundaries 

themselves, introducing the so-called "Comparison Index," which measures topological 

agreement between ground features and image segments (i.e., "Do these segments 

quantitatively match what is happening on the ground?). Despite various attempts to 

model the optimal segmentation parameters, no general agreement has been reached. As 

suggested by Anders et al. (2011) and others, the success of segmentation is highly 

dependent on image- and scene-specific characteristics. Accordingly, simpler empirical 
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methods are believed to be best-suited for a segmentation parameter analysis. Using 

empirical, trial-and-error-based methods, it is believed that optimal segmentation 

parameters can be determined in a highly objective fashion, across broad range of study 

areas. 

With the release of eCognition 8.7 (2011), four new classification algorithms 

were implemented into the software. These four can be divided into parametric (Bayes) 

and non-parametric classifiers (decision tree, support vector machine, and ^-nearest 

neighbor) (Trimble, 2012). Given the proprietary nature of eCognition software, 

information about the specifics of the classification algorithms is notably sparse. 

Accordingly, these descriptions (gleaned largely from the Trimble eCognition 

Community, 2012) should be treated as generalizations about their broader principles, 

rather than software-specific implementation. Bayes is a probabilistic classifier based on 

Bayes' theorem that assumes strong independence of the input variables (although it has 

been shown to perform well even when this assumption is not met — see full discussion in 

CONCLUSIONS). Relatively few studies have explored the utility of Bayes-based 

classification in the remote sensing literature (e.g., Lau & Hsiao, 2005; Pradhan et al., 

2010). There is a particular paucity with regards to object-based methods, where non-

parametric methods appear to take precedent. Those that have explored Bayes in remote 

sensing, however, indeed demonstrate its utility as an effective classification tool. 

The decision tree classification method (more commonly known as classification 

and regression trees (CART)), was first introduced by Breimann et al. (1984). CART is a 

non-parametric data mining tool that recursively splits the data into a series of 

increasingly homogeneous end nodes that are able to predict the dependent variable 
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(Rogan et al., 2003). Unlike Bayes, CART makes no assumptions about the input data 

and can operate on both continuous and categorical data types. As such, CART has 

received a lot of attention in the remote sensing literature in recent years, especially in 

conjunction with the proliferation of object-based image analysis methods, because of its 

ability to incorporate a wide variety of input data and parameter estimates in the 

classification process. Additionally, unlike complex methods like support vector 

machines and artificial neural networks, the CART classification process yields a visual 

account of the actual tree after classification has been performed, so the user can see what 

input data was most valuable in the classification process and also see where it may have 

gone awry (Borak & Strahler, 1999). As mentioned previously, Rogan et al. (2003) 

explored the utility of CART in a classification model that facilitated the incorporation of 

not only a variety of different spectral data, but also ancillary data such as elevation, 

slope and aspect. In being able to include these extra variables into the decision tree, 

resultant image classification accuracies were significantly improved. 

Support vector machine (SVM) and ^-nearest neighbor (KNN) classification 

algorithms, although both valuable in their own right were not explored in this study and 

as such will not be discussed in great detail. Broadly speaking, however, SVM is a 

complex machine learning tool that transforms input data in «-dimensional feature space, 

attempting to group similar data together and form hyperplanes, or dividing lines, 

between different outcome variables. KNN, on the other hand, is a much simpler 

machine learning tool whereby unknown data points are simply classified by the majority 

of a predetermined number (k) of nearby training data in n-dimensional feature space. 
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Accuracy Assessment 

Accuracy assessment is one of the most critical steps in any remote sensing 

analysis. Since its emergence in the field of remote sensing in the early 1980s, thematic 

accuracy assessment has become an integral component in the digital image analysis 

process, often serving as the base measure of success in land cover classifications. The 

error matrix is the primary tool by which this accuracy assessment occurs (Congalton & 

Green, 2009). In an error matrix, reference data (usually collected through ground 

sampling and/or photo interpretation) aimed at representing the actual ground conditions 

are compared to the results of a thematic land cover classification (Congalton & Green, 

2009). From this matrix, a number of accuracy estimates can be gained; namely class-

specific user's and producer's accuracies, overall accuracies (Story & Congalton, 1986), 

and a number of more complex statistics, including the well-established Kappa, or Khat, 

statistic (Congalton et al., 1983). User's accuracies estimate the degree to which a user of 

the resultant classification map will be able to reliably use the classification of any given 

land cover classification for his or her analysis. Producer's accuracies estimate the degree 

to which the map producer was able to accurately classify the imagery based on the 

sample data. Overall accuracy uses the matrix's major diagonal (correctly classified 

samples) and compares that number to the total number of samples used in order to 

estimate accuracy of the entire classification. Kappa, originally adapted from Cohen 

(1960) is a multivariate, statistical measure of accuracy that incorporates all of the data 

contained within the matrix, normalizing the overall accuracy to include the element of 

chance agreement and as a result facilitates the comparison between different error 

matrices. 
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Reference data sample selection is a critical component to the assurance of a 

representative accuracy assessment. Using Landsat 5 TM imagery in a pixel-based 

environment, the widely accepted guidelines state that, in order to minimize the spatial 

and thematic error associated with field collection methods (i.e., GPS inaccuracy) and 

image characteristics (i.e. positional inaccuracy), a sample area of at least 3x3 pixels 

should be used (Congalton & Green, 2009). Additionally, in order to get a representative 

sample, a rule of thumb is that at least 100 samples per class should be taken (divided 

into training and accuracy assessment data) (Congalton & Green, 2009). Lastly, these 

samples should be well-distributed across the entire study area, to avoid sample spatial 

autocorrelation and to represent land cover types across what may amount to be a wide 

range of ground conditions, depending on the size of the study area (Congalton & Green, 

2009). 

In the traditional error matrix, these samples are treated as individual units and 

resultantly are given equal weight in the accuracy assessment process. This makes 

perfect sense in a pixel-based environment, where the ground sample units are assumed 

to have the same spatial extent (e.g., 3x3 pixels). In an object-based environment, 

however, where the image objects (and reference samples) can vary significantly in size, 

perhaps these samples should be assessed not only in terms of their totals, but weighted 

by the object spatial extent as well. Radoux et al. (2011) suggested this area-based 

weighting should be included in the accuracy assessment process. MacLean and 

Congalton (2012) applied this area-weighting scheme to the traditional error matrix, 

facilitating the computation of the aforementioned accuracy estimates (user's, producer's, 

overall, and Kappa accuracies). To date, little research has been done on the comparison 
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between the traditional error matrix and the area-based error matrix. This study will 

contribute some of the first work done on such a comparison, looking at the resultant 

accuracies between the two methods and suggesting mechanisms that might explain the 

results. 

Land Cover Change 

Remote sensing has been widely used in the fields of natural resource 

management and ecology, particularly in regards to long-term and broad-scale 

monitoring operations. Cohen and Goward (2004) and Roughgarden et al. (1991) 

provide an excellent account of this usage, documenting a number of examples of 

practical and effective uses of remote sensing technologies throughout the ecological 

discipline. This wide range of applications includes, but is certainly not limited to, 

thematic land cover classification, approximation of floral biophysical properties, 

characterization of phenological and disturbance-related vegetation changes, monitoring 

of the urban-wildland interface, and the unique ability to assess ecological activity across 

vast tracts of land and long spans of time, standing in stark contrast to the more typical 

field-based monitoring methods dominant in ecology and natural resource management. 

Of particular interest to this study is research that relates to land use and land 

cover changes over time. Rogan and Chen (2004) and Treitz and Rogan (2004) provide 

comprehensive review of the various considerations that go into a land cover change 

analyses, from selecting the optimal imagery type, to image pre-processing, change 

detection, and finally change classification. At each one of these steps, there are a 

number of decision points to be carefully vetted and, in accordance with project-specific 
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goals and research questions, selected by the remote sensing scientist. As the first two 

steps have already been discussed, the final portion of this review will discuss methods 

for change detection, change classification techniques, and change detection accuracy 

assessment. 

A variety of methods exist for the detection of land cover change on digital 

imagery. Coppin et al. (2004) and Lu et al. (2004) all provide excellent reviews 

summarizing progress throughout the remote sensing discipline in the development of 

change detection methods, highlighting the most widely used techniques and citing 

literature-based examples that employ their usage. Change detection analyses fall largely 

into one of two categories: (1) post-comparison of separately classified images at two (or 

more) different dates and (2) simultaneous analysis of multitemporal data. The first 

method is widely used for its relative ease of comprehension and a lack of necessity to 

radiometrically correct the images, but also suffers from a few fatal flaws. Namely, 

unless entirely photo-interpreted, gathering reference data at a variety of temporal 

intervals is difficult (and, unless prior work has been done, impossible), and errors in 

each individual classification are compounded in the post comparison method. 

Accordingly, these methods are not as frequently practiced throughout the discipline. 

The latter category (simultaneous multitemporal image analysis) contains a wide variety 

of options (according to Coppin et al., 2010): (1) composite analysis; (2) univariate 

image differencing; (3) image ratioing; (4) bi-temporal linear data transformation; (5) 

change vector analysis; (6) image regression; (6) multitemporal spectral mixture analysis; 

(7) multidimensional temporal feature space analysis; and (8) experimental and hybrid 
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algorithms. Lu et al. (2004) developed a similar categorization of change detection 

methods, but incorporated GIS-based methods and simple visual interpretation methods. 

While a specific explanation of each of these change detection algorithms is 

beyond the scope of this literature review, a justification of the univariate image 

differencing method used in this study is warranted. First and foremost, this process is 

recommended by the well-established National Oceanic and Atmospheric 

Administration's (NOAA) Coastal Change Analysis Program (C-CAP). This program 

has developed a comprehensive guide for regional implementation of land cover change 

analyses (Dobson et al., 1995), whose recommendations for land cover change analysis 

methods were closely followed in this study. In it, Dobson et al. (1995) suggest the 

following protocol: (1) a classification is performed on the most recent scene (Y2); (2) a 

univariate image differencing is performed between Y2 and Yl; (3) a threshold for 

change is established (per class); and (4) only those areas masked as change are classified 

for Yl. Xian et al. (2009) described a similar process used to update the 2001 National 

Land Cover Database (NLCD) to 2006. 

In addition to its usage in two widely used datasets (C-CAP and NLCD), 

univariate image differencing is the most widely applied and easily interpretable change 

detection algorithm (Coppin et al, 2004). Additionally, Lu et al. (2004) suggest that in 

looking for binary land cover changes (such as forest to non-forest and vice versa) that 

image differencing is the most preferable. Methodologically speaking, image 

differencing involves the single-band differencing (or subtraction) of a given digital 

image from another precisely registered (and ideally, radiometrically corrected) image at 

a different date. Under ideal conditions, the resulting difference image would have a 
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roughly normal frequency distribution about the mean of 0 (which can be assumed to be 

"non-change" areas). Beyond a certain threshold in each direction, however, it is 

assumed that change has occurred. Studies have used a wide variety of bands in these 

univariate differencing analyses, and it is very common to use not only raw spectral 

bands but derivative information (i.e., NDVI, TC) as well. Wilson and Sader (2002), for 

example, explored the use of the NDVI and normalized difference moisture index 

(NDMI) to detect forest cover changes due to harvesting and found that the NDMI 

outperformed the NDVI in detecting change. Mas (1999) however, found TM band 2 to 

perform comparably well to NDVI. Healey et al. (2005) used the TC transformation to 

detect forest cover changes and found that a linear combination of all three features was 

the best at identifying forest disturbance events. Ridd and Liu (1998) found that, in using 

all six spectral Landsat TM bands and the three main TC features (brightness, greenness, 

wetness), that each performed well in its own right with regard to specific land cover 

from-to change types. Clearly, little generalized agreement has been reached as to which 

spectral or derivative bands are preferable for change detection. Accordingly, it is 

believed that specific image differencing bands should be chosen empirically according 

to the regional land cover characteristics and the desired land cover change information. 

An important element of single band or univariate image differencing is the 

determination of thresholds by which the data distribution can be density sliced into 

change and non-change classifications. These are typically represented as standard 

deviations from the mean value (which, again, should ideally be 0) (Fung & LeDrew, 

1988). Importantly, as suggested by Xian et al. (2009), not all land cover classes 

experience the same degree of change. Cropland, for example, experiences greater 
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changes spectrally in a single season than perhaps unharvested forest land would 

experience in a decade. Accordingly, it is important to determine class-specific change-

no change thresholds. There are a number of ways to determine the optimal change 

thresholds, but Fung and LeDrew (1988) suggest a simple empirical testing and accuracy 

assessment comparison, as is done in this study. 

Objectives 

Therefore, the objectives in this study can be divided into two broad categories: 

methods and applications. The latter can be seen as the motivation for the former. They 

are as follows: 

1. To accurately quantify the spatial distribution of land cover types across the entire 

study area in 2011, and in doing so: 

a. Test the process of image segmentation using a variety of input 

parameters; 

b. Compare the classification accuracies of object-based and pixel-based 

analyses; 

c. Compare the classification accuracies of parametric and non-parametric 

classifiers; 

and 

d. Explore the use of an area-based error matrix for accuracy assessment. 

2. To accurately quantify the spatial distribution of land cover changes that have 

occurred across the study area from 1986 to 2011, and in doing so: 
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a. Introduce a new principal component analysis-based change detection 

technique; 

b. Test this technique against 10 other spectral and derivative change 

detection bands; 

c. Determine optimal change thresholds; 

and 

d. Quantify forest harvesting and regeneration across different land 

ownership classes. 
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CHAPTER II 

METHODS 

Study Area 

The study area encompasses much of Union and Baker Counties in northeastern 

Oregon, USA (Figure 2). The combined area of these large, sparsely populated counties 

is 13,270 km2, more than half the size of the State of New Hampshire. According to the 

2000 US Census, they possessed a combined population of 41,882 resulting in a density 

of just above 3 persons/km2, while the population density for Oregon was about 15 

persons/km2 (Union and Baker counties included). Coupled with this overall sparseness 

is the fact that almost three-quarters of the area's population (72%) lives within Census-

designated "places," which are more densely-developed town and city centers. This 

study area contains vast tracts of uninhabited land, much of which is owned by the 

Federal Government. In fact, in these two comities, 6,699 km2 (51%) of the land is under 

public ownership, managed primarily between the United States Forest Service (5,111 

km2, 76%) and the Bureau of Land Management (1,487 km2, 22%). A complete account 

of ownership totals and percentages can be seen in Appendix 1. 
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Figure 2. Study area map, Union and Baker Counties, Oregon 

The region is characterized by a highly varied topography ranging from very 

mountainous terrain to expansive valley bottoms. Elevations range from 512 m at the 

lowest point to 2915 m atop the area's highest peak, Eagle Cap Mountain. With an 

overall average elevation of 1321 m, over half of the landmass (56%) lies between the 

elevations of 1000 and 1500 m. There are two predominant mountain ranges that bound 

the study area to the east and west. The Wallowa Mountains form much of the eastern 

boundary of the study area, while the Blue Mountains lie to the west. Depending on the 
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scale being considered, these ranges are typically considered entirely separate geologic 

regions, but they are often grouped into the greater Blue Mountain region of the interior 

northwestern United States. 

Given the highly varied terrain, there are stark contrasts between different land 

cover types that dominate this area. Located on "the dry side" of the Cascade Mountains, 

this region gets relatively little precipitation (a total of 44 cm recorded at KLGD weather 

station, the area's largest airport, from January 1 to December 31, 2011). Large water 

bodies are relatively few and far between, with only a few notably-sized lakes and rivers 

being present throughout the two-county area. As a result, forested environments are 

found primarily in the mountains, where temperatures remain consistently cool enough 

and sufficient moisture is retained to enable tree growth. Despite this relative aridity, 

cropland is plentiful on the valley bottoms, benefitting from heavy irrigation and fertile 

Mount Mazama ash soils. In between these two extremes, there is a dominance of two 

land cover types: grassland and shrub/scrub. The former tends to fill the elevation 

transition zone between cropland and forest and is often found in drier patches and south-

facing slopes within the forested areas. The latter dominates the middle elevations of the 

southern portion of the study area, forming vast expanses of rolling hills dominated by 

sagebrush with little to no undergrowth. 

For the purposes of this study, elevations above 2000 m and designated 

wilderness areas were removed from consideration. It is believed that land cover changes 

that occur in these areas are simply the result of differential presence/absence of snow 

and/or other natural disturbance events (e.g. fire). Of interest to this study are only the 

anthropogenic effects on regional land cover. 
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Reference data 

A six-class land cover classification scheme was used for this study, both in terms 

of single-time land cover classification and land cover change analysis. The definition of 

these classes was determined based on expert knowledge of regional landscape dynamics, 

an inquiry into existing land cover datasets (such as the 2006 National Land Cover 

Dataset (NLCD)), visual examination of a variety of imagery types (such as Landsat and 

NAIP data), and a series of unsupervised classifications. This broad classification was 

also created with the project-specific mindset of being able to accurately classify forest-

related land cover changes in the region. The specific class definitions are described as 

follows: 

Cropland Irrigated and/or cultivated vegetation characterized by a high 

degree of seasonal influence 

Developed Any anthropogenic land development or non-vegetated disturbed 

landscape including bare ground 

Forest Areas with greater than or equal to approximately 20% canopy 

closure of naturally occurring, primarily coniferous trees 

Grassland Non-irrigated, non-cultivated herbaceous vegetation 

Shrub/Scrub Sagebrush or other shrubland with a barren or grassy underlying 

ground cover 

Water Rivers, streams, lakes, ponds, reservoirs, and submerged wetlands 
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Ground-based land cover reference data were collected between the months of 

June and August in 2011. Global positioning system (GPS) data were captured using a 

Trimble YUMA tablet GPS unit equipped with ESRI ArcPad 10 software. Sample data 

collection was performed on an opportunistic basis, with land cover reference sample 

units being selected based upon a number of criteria. These criteria are as follows: (1) 

the unit area must be at least 3,600 m2 in size (3x3 Landsat 5 TM pixels); (2) the land 

cover must be visually (and spectrally) homogeneous within the entire sample unit; (3) 

the collective samples of a given land cover class must capture a high degree of 

variability in order to ultimately classify the land cover accurately despite within class 

spectral and spatial variation; and (4) every attempt must be made to spatially distribute 

these sample units across the entire study area to avoid sample spatial autocorrelation and 

get a good distribution of samples. To aid in the process of satisfying criterion 2 above, 

an unsupervised classification was performed on a 2010 Landsat 5 TM scene and loaded 

into the GPS unit for in situ visual inspection of spectral homogeneity. Criterion 4 was 

relatively difficult to satisfy in many cases, given the sparseness of road network 

coverage in this rural region and given the restrictions imposed by avoiding trespassing 

on private lands. In many cases, as a result, GPS coordinates were taken with an offshoot 

distance and azimuth from the roadside. Subsequent to field data collection, these sample 

units were carefully edited through photo interpretation of high- and medium-spatial 

resolution imagery (2011 National Agricultural Inventory Program (NAIP) and Landsat 5 

TM data, respectively) to ensure accuracy of spatial location and thematic labeling. 

Sample units were adjusted, removed, and/or added as necessary. 
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The classes and their accordant sampling totals can be seen in Table 1. These 

totals reflect an initial goal of collecting 100 samples with a minimum mapping unit of 

3,600 m2 for each land cover class to enable accurate classification model training and to 

ensure statistical validity in accuracy assessment (Congalton & Green, 2009). In order to 

avoid high sample spatial autocorrelation and to minimize spectral redundancy in land 

cover classes that were fairly sparsely distributed or were found in units of insufficient 

size, these totals were altered for the classes of Water and Developed. The reference 

samples were then randomly divided into two groups; data used to train the classification 

model and data used to assess the thematic accuracy of the classification. 

Cropland 100 50 50 
Developed 80 40 40 
Forest 100 50 50 
Grassland 100 50 50 
Shrub/scrub 100 50 50 
Water 60 30 30 

Table 1. Land cover reference data 

Image Data 

Landsat 5 Thematic Mapper (TM) data was the primary image type used in this 

study. All images were obtained from the United States Geological Survey's (USGS) 

Global Visualization Viewer (GloVis, http://glovis.usgs. gov/) in GeoTIFF format. Two 

Landsat 5 TM scenes were needed to encompass the vast majority of Union and Baker 

counties: (1) Path 43, Row 28 (approximate scene center: 46°1'50.9"N, 117°46'19.2"W) 

and Path 43, Row 29 (44°36'43.9"N, 118°17'9.6"W). Fortunately, these two scenes fall 

within the same orbital path, meaning their image capture was part of a continuous data 

32 

http://glovis.usgs


collection swath. This results in a seamless mosaic between the two scenes, both 

spatially and spectrally. A small portion of the southeastern corner of Baker County was 

cut off from this Landsat path, and accordingly was removed from the study area (see 

Study Area). Given the insignificant size of the area removed, it was believed that the 

costs of omitting this fairly non-forested, unpopulated area outweighed the benefits of 

avoiding incorporating an entirely different scene from a Landsat path 42 (and 

resultantly, a different date of image capture). 

A temporal series of late spring to early fall images (May-October) were obtained 

at a 5-year interval between the years of 1986 and 2011. Only those images with very 

low cloud cover (<5%) were deemed acceptable for this study. In order to capture the 

seasonality of the highly moisture- and temperature-dependent land cover classes in this 

region, two images were used for each year of interest. An "early summer," or growing 

season image and a "late summer," or senescence image were used in the classification 

process. As the late summer images ultimately played a more significant role in the 

classification process, every effort was made to utilize near-anniversary images at or 

around the end of August into early September. The exception to this rule was the year 

of 1986, during which the cloud-free, senescence image availability was limited to 

October. The time frames of the early summer images were more variable, given the 

typically higher cloud cover present during the growing season. The resultant image 

dates can be seen in Table 2. 
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2011 07/09 08/26 
2006 06/25 08/28 
2001 05/10 08/30 
1996 06/13 09/01 
1991 07/02 09/04 
1986 07/20 10/08 

Table 2. Landsat 5 TM image dates 

Image Pre-Processing 

All images used in this study were pre-processed using ERDAS Imagine 2011 

software. To enhance comparability between images and to aid in the classification 

process, each image underwent the same series of pre-processing steps. These steps 

proceeded as follows: (1) image stacking, (2) image mosaicking, (3) clipping to study 

area spatial extent, (4) geometric registration, (5) atmospheric correction, (6) topographic 

normalization, (7) derivative and ratio band generation, and (8) band rescaling. Each of 

these steps is described in detail below. A model was built using ERDAS Model Maker 

that incorporated a number of these steps to facilitate processing efficiency and to ensure 

data consistency. 

Each image downloaded in raw format from USGS GloVis came with seven 

separate GeoTIFF files, each representing a different spectral band of a Landsat 5 TM 

scene. Accordingly, the first necessary step involved stacking these images together into 

a single, unsigned 8-bit (0-255) ERDAS Imagine image file (*.img format). As band 6 

(thermal) was of a different spatial resolution than the other six bands (120 m vs. 30 m, 

respectively), it was excluded from the image stack. For each year of interest, the two 

Landsat scenes (Path 43, Row 28 and Path 43 Row 29) were mosaicked together using 

"maximum" as the overlap function, in order to minimize the presence of image seams. 
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To reduce file size and further increase processing efficiency, these mosaicked images 

were clipped to the spatial extent of the study area. During the clipping process, the 

images were geometrically registered to one another so that their pixels would precisely 

overlay one another. A nearest neighbor re-sampling algorithm was used to maintain the 

spectral integrity of the original data (Jensen, 2005). 

In order to enhance comparability between images taken at different dates, times 

and atmospheric conditions, two image pre-processing techniques were employed: (1) 

atmospheric correction and (2) topographic normalization. 

All images were processed using the image-based relative atmospheric correction 

method known as COST correction (Chavez, 1996). The COST corrected surface is 

calculated as follows: 

\nd2 (L • + ~ — (i . \ DNmin(.^max ~ Lmin)\ f0-01d2COS26zX\ 
[  V m m +  DNmax ) V min + DNmax ) V  nEsun )\ 

EsunCOS26z 

Where d is the sun-earth distance, Lmin and Lmaxare spectral radiance calibration 

factors, DNt is the DN value at a given pixel i, DNmax is the maximum possible DN 

value (255 for 8-bit data), DNmin is the band-specific minimum DN value found through 

an exploration of the layer histogram (smallest value with > 1000 pixels), and is the 

solar spectral irradiance. Lmin, Lmax, E^n, and d can all be found in Chander & 

Markham (2003). It is important to note that the resulting imagery converted unsigned 8-

bit DN values to 32-bit float single reflectance values (0-1). For the purpose of 

maintaining the high level of precision enabled by such a format, all of the subsequent 
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image pre-processing was performed using a float single format. Ultimately, however, 

these data were converted back to unsigned 8-bit to reduce data storage and increase 

processing efficiency. 

Each image was then topographically normalized using the C-Correction method 

(Teillet et al., 1982). The first step in the C-Correction process is to determine the 

magnitude of illumination across the entire study area, as defined by: 

Illumination = cos y* = cos Qz cos as + sin 9Z sin as cos(Sa — S0) 

Where Yi is the solar incidence angle relative to the sloped ground surface, 6Z is 

the solar zenith angle, as is the slope of the ground surface, Sa is the solar azimuth angle 

and S0 is the aspect of the ground slope. In order to create an illumination surface, a 

USGS 30-m Digital Elevation Model (DEM) was used. Slope and aspect surfaces were 

generated using the ArcMap 10 Spatial Analyst extension, resampled using cubic 

convolution and geometrically registered to the Landsat imagery. For each image date, 

the solar zenith angle (inverse of solar elevation) and azimuth were obtained from each of 

the Landsat scenes' header files and averaged for the mosaicked image. Again, because 

these two scenes were captured as part of a continuous swath, the differences between 

solar elevations and azimuths were negligible. The resultant illumination surface was 

stacked with the six-band Landsat image and a per-pixel least squares linear regression 

was run to determine the relative effect of illumination on the "brightness" of the pixel in 

each spectral band. The purpose of this empirical adjustment approach is to normalize 

the data such that the presumed positive relationship between illumination and DN value 
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would be reduced to a null effect. In order to do so, the C-Correction (Teillet et al., 

1982) algorithm was used: 

DNMih = DNm (• 
COS 0Z + Cx 

cos yj + Cx ) 

Where DNxi his the DN value of a pixel (i) in a given spectral band (A) on a 

horizontal surface (h) (with no influence of solar illumination), DNM is the value of that 

pixel on a sloped surface (subject to illumination influence), and Cx is a band-specific 

parameter defined by slope (rn*) and y-intercept (bx) of the linear regression line between 

illumination and DN values such that: 

With each image corrected in such a way as to best represent its true on-the-

ground spectral conditions, a number of derivative bands were generated to enhance the 

accuracy of the subsequent image classification and analysis. The NDVI for Landsat 5 

TM data was calculated as such: 

NDVI = 
(band 4 — band 3) 

(band 4 + band 3) 
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Additionally, the first three TC transformation features (Brightness, Greenness, 

and Wetness) were generated. The multiplicative linear transformation values, as 

modified for Landsat 5 TM data by Crist et al. (1986) can be seen in Table 3. 

Feature : ;:T*. v-: 4 5 7 
Brightness 0.2909 0.2493 0.4806 0.5568 0.4438 0.1706 
Greenness -0.2728 -0.2174 -0.5508 0.7221 0.0733 -0.1648 
Wetness 0.1446 0.1761 0.3322 0.3396 -0.6210 -0.4186 

Table 3. Tasseled Cap transformation for Landsat 5 TM 

With all of the derivative information created, the data were then able to be 

combined for each image date into a 10-band image (6 raw spectral bands, 1 NDVI, 3 

TC). In order to do so, the 6-band atmospherically- and topographically-corrected 

Landsat image was first rescaled from float single format to unsigned 8-bit. The 

radiometric dynamic range for each of the images was then computed through an 

examination of the image histograms. For the purpose of this study, the dynamic range 

was determined to be the range of DN values with frequencies greater than or equal to 

1,000 pixels. The four derivative layers for each image date were then rescaled to the 

image dynamic range of its corresponding 6-band image in order to be comparable to the 

original raw imagery. The 10 resulting 8-bit bands were then stacked together into a 

single image. For each year of interest, the early and late summer 10-band images were 

then stacked together to form a 20-band image. Finally, given the important link between 

land cover and topography in this region, slope, aspect and elevation layers were rescaled 

to unsigned 8-bit as well, stretched to the dynamic range of the late summer image. 
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These three topographic datasets were then stacked with the 20-band image to create a 

23-band image as seen in Figure 3. 
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Figure 3. Contents of 23-band image 
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Segmentation Parameter Analysis and Land Cover Classification 

All subsequent image processing and classification took place using Trimble 

eCognition Developer 8.7. An analysis was performed to determine the optimal 

segmentation parameters needed to attain the highest land cover classification accuracy. 

Of interest in the segmentation process were three parameters: (1) scale, (2) shape, and 

(3) color. The 23-band 2011 image was loaded into eCognition. Using the software's 

multiresolution segmentation algorithm, a series of image segmentations were performed. 

Assigning equal weights to all 23 spectral, derivative and topographic bands, the image 

was segmented at every combination of the following parameter settings: 

• Scale 2-20, intervals of 2 

• Shape 0.0-0.5, intervals of 0.1 

(Note: given the tradeoff between shape and color parameters, a shape range of 0.0-0.5 is 

the same as a color range of 0.5-1.0) 

There were a number of considerations that went into the determination of these 

test ranges. In terms of scale, a visual exploration of images segmented at a variety of 

scales facilitated the determination of 20 as a suitable high-end extreme. Beyond a scale 

of 20, the segments became exceedingly large and quickly began to lose their within-

segment land cover homogeneity. In other words, at a scale of 30, for example, a single 

polygon could contain Forest, Shrub/Scrub and Grassland. In terms of shape/color, it 

was believed that spatial qualities of a segment (shape) should never have a stronger 

influence on determining the size and shape of the segments than the 23 "spectral" bands 
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(color). Accordingly, the high end of shape influence was determined to be 0.5 or 50% 

of the segmentation weight. 

Each of the resulting segmentations was examined closely for the input 

parameters' effects on segment size, and other spatial and spectral characteristics. Of 

interest to this study was not only the general effect of scale parameter on segment size, 

but also the relative variation in segment size that resulted at each scale level. 

Accordingly, an analysis was performed to explore the relationship between segment size 

relative standard deviations (RSD) and the scale parameter. Because the segment sizes at 

large scale parameters will have significantly larger standard deviations, the normalized 

or relative standard deviation was deemed an appropriate representation of within scale 

segment size variation. RSD was calculated as such: 

RSD =^~ 
tol 

Where stj is the sample standard deviation of segment size (in pixels) at a given 

scale parameter i and shape parameter j, and Hij is the mean size at those same 

parameters. The mean RSDs by scale parameter were then calculated. 

Each of the image segmentations then underwent a separate land cover 

classification. Land cover classifications were performed in both a pixel- and object-

based environment, using a non-parametric classification algorithm (CART) and a 

parametric classification algorithm (Bayes). Taking into account all of the segmentation 

and classification permutations, 240 classifications of the 2011 imagery were performed 

(10 scale x 6 shape x 2 environments x 2 algorithms = 240 classifications in total). An 
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important distinction between what was being tested in the pixel- and object-based 

environments must be made here. For both pixel- and object-based classifications, image 

segments were intersected with training data sample unit centroids (as created through 

field reconnaissance and photo interpretation) to determine segment training units. In 

both cases, the classification algorithm was trained with the resultant image segment 

sample data. In the object-based environment, this trained model was then applied to the 

remaining, unclassified image segments. In the pixel-based environment, however, the 

trained model was then applied to the remaining, unclassified pixels on the image, 

effectively ignoring the boundaries of the remaining segments. So, in essence, the impact 

of the segment characteristics is twofold impact on the resultant classification accuracy 

(training samples and segment classification) in the object-based environment. 

.In the pixel environment, however, the impact is singular, merely affecting the nature of 

the training data. Additionally, in the object-based environment, a host of segment 

features can be used to both train the model and classify the imagery, whereas pixels rely 

purely on the training data's per-band mean values and variances. The input features for 

object-based analysis were as follows: 

• Mean layer value for each of the 23 bands by object 

• Standard deviation 

• Skewness 

• Brightness 

• Maximum pixel value 

• Minimum pixel value 

• Mean of object inner border 
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• Mean of object outer border 

• Contrast to neighboring pixels 

• Mean difference to neighboring objects 

• Hue, saturation, intensity transformations (early & late) 

• GLCM homogeneity 

• Area 

• Border length 

• Compactness 

• Roundness 

• Rectangular fit 

• Shape index 

Accuracy Assessment 

All of the resultant classifications underwent an accuracy assessment to determine 

which combination of segmentation parameters, analytical environment and classification 

algorithm attained the highest accuracies. Each of the 240 classifications was assessed 

using the traditional error matrix (Congalton et al., 1983). Overall accuracies, class-

specific user's and producer's accuracies, and Kappa were all calculated using these 

matrices (Congalton and Green, 2009). Additionally, an area-based error matrix 

(MacLean and Congalton, 2012) was used for the 120 object-based classifications. The 

resultant accuracies were compared to those computed using the traditional error matrix. 

For each combination of CART vs. Bayes and object vs. pixel, a mean overall accuracy 

was computed across each scale and shape parameter. The combined settings that 

43 



produced the highest average accuracy were then selected for use in all subsequent 

classifications. Upon completing the highest accuracy classification at each temporal 

interval, a simple thematic data post-processing took place whereby areas below the 

minimum map unit of 4,500 m2 were removed and replaced with those surrounding land 

cover classes who shared the largest boundary with this area. 

Land Cover Change 

Change Detection 

For a graphical depiction of the change detection process, see Figure 4 below. 

Rjiui 

Figure 4. Change detection flowchart 

In order to assess changes in the land cover, an image differencing was 

performed. For each 5-year interval of interest, the late summer, 10-band (6 raw spectral 

bands, 1 NDVI, TCI, TC2, TC3) image was used to create a 10-band difference image 

based on a simple pixel-by-pixel subtraction between one time period and the previous. 
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A principal components analysis (PCA) was performed on the 10-band difference image 

to reduce the change vectors to a single principal component (PCI) that would account 

for most of the variability found in all 10 bands. The resultant eigenvalues were used to 

compute the amount of change variation captured in PCI. Each of the 10 difference 

bands and PCI were added into eCognition for further analysis. Using the highest 

accuracy 2011 classification as a thematic layer whose land cover polygons would form 

the boundaries for segmentation, a series of multiresolution segmentations took place. In 

each case, a single change layer was given the full segmentation weight. What resulted 

was 11 separate within-land cover class segmentations (6 spectral, 1 NDVI, 3 TC, 1 PC) 

with which band-specific change thresholds could be calculated. Using two standard 

deviations from the mean as a default threshold for delineating change areas, segments 

were classified in binary fashion into change and non-change areas based on their mean 

difference band values and land cover classification. The 11 different change area 

delineations were exported as a polygon shapefile to be assessed for change detection 

accuracy in ArcGIS 10. 

Change reference polygons were manually digitized in ArcMap 10 in the 

following manner. The 10-band 2011 late summer image and that from 2006 were 

loaded into ArcMap. These images were then visually analyzed to determine an area 

appropriate for change detection accuracy assessment, again, focusing on land cover 

changes primarily related to forest harvesting. A roughly 15,000 ha area in northern 

Union County where significant logging activity had taken place during this interval was 

selected for further analysis. Through the use of a variety RGB band composites 

including visible (3, 2, 1), false-color near-infrared (4, 3, 2), and a variety of other 
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combinations that appeared well suited to detect forest cover change, areas of significant 

change were digitized on screen at a scale of 1:15,000. Each of the automated change 

area delineations was then clipped to the same rectangular extent of the reference area. 

Each was subsequently unioned with the reference change-no change classification and 

areas of commonality and difference were calculated in hectares to determine the degree 

of thematic spatial agreement between reference data and map data. Each dataset was 

then analyzed using a 2 x 2 change-no change error matrix (Congalton and Green, 2009) 

to calculate overall accuracies, user's accuracies (errors of omission) and producer's 

accuracies (errors of commission) for change areas. Of interest to this study were change 

detection algorithms with high overall accuracies, and similar user's and producer's 

accuracies (in the interest of avoiding vast over- or under-estimation of change). If 

unequal, then a greater weight was given to higher producer's accuracies (commission 

errors, for the purposes of this project, are preferable to omission errors, if only slightly 

so). The highest accuracy change detection band was then selected for further analysis. 

Given the relatively high overall omission errors using the two-standard deviation 

threshold across all bands, an analysis of optimal threshold selection was performed 

using the most accurate single-band change detection method. Assuming that higher 

thresholds would only result in greater omission errors, four smaller standard deviation-

based thresholds were tested for change detection accuracy: 1 SD, 1.25 SD, 1.5 SD and 

1.75 SD. Using the same change detection accuracy methods described above, the 

highest accuracy threshold was chosen for use in the change detection and subsequent 

classification process. 
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Change Classification 

For a graphical depiction of the change detection process (as described by the C-

CAP change classification protocol, Dobson et al., 1995), see Figure 5 below. 

Figure 5. C-CAP change classification flowchart 

With the optimal change detection methodology in place, a full change 

classification was able to be performed. The first step in the classification process 

entailed manipulation of the training data. It can be assumed, for example, that the 

training data for 2011 's classification is still valid in those areas that were classified as 

non-change. However, those training samples that fell within change areas must be 

adjusted accordingly. In order to maintain the same total and class-specific numbers of 
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training samples, the invalid training samples were removed and subsequently replaced 

through a visual interpretation of the 2006 imagery. 

For the 2011-2006 change classification, the 23-band 2006 image was added to 

eCognition. The image was segmented, again, with equal weight given to all 23 bands 

using the pre-determined optimal single-time segmentation parameters and the 

multiresolution segmentation algorithm. Importantly, however, the image was only 

segmented outside of the change areas. In other words, only those areas that were 

classified as non-change were segmented. The polygons that represented change 

remained intact. Following the same protocol as the 2011 classification, the resultant 

segments were classified using the training sample centroids. These sample segments 

were then used to train the classification model. Instead of classifying the entire image 

wall-to-wall, however, only those areas that were previously established as change areas 

were classified. The resulting change area classification was then merged with the 2011 

classification to form a wall-to-wall classification for 2006. The same process, from 

change detection to training data manipulation, classification and merging took place for 

every interval of interest. Additionally, the same change detection accuracy assessments 

were performed on each interval, comparing the automatically-detected change areas to 

manually digitized areas of similarly high logging activity. 

Lastly, all of the land cover classifications were compared by 5-year interval to 

determine the changes that have occurred in the landscape. Change matrices were 

created by performing a simple spatial intersection between land cover classifications and 

subsequent area calculations. Additionally, these changes were intersected with polygons 

representing broad land ownership classes, including public lands, private industrial lands 
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and private non-industrial lands. As the changes in the forested environment are of key 

importance to this study, the 6 x 6 land cover change matrices were reduced to simple 2 x 

2 forest-non forest matrices to assess forest harvesting and regeneration trends, both 

across the entire landscape and across different ownership classes. 
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CHAPTER III 

RESULTS 

Segmentation Parameter Analysis and Land Cover Classification 

The scale segmentation parameter has a significant and direct effect on resultant 

image segment size. For a qualitative, visual account of the stark contrast between image 

segmentations performed at the extreme ends of this study's test range (2 and 20), see 

Figure 6. As can clearly be seen in these images, the implications of using different 

segment sizes for training data (in both the pixel- and object-based analysis) and for 

subsequent land cover classification (in the case of object-based analysis) should not be 

ignored. In areas of high spectral variation, such as the urban area in the southeastern 

portion of the image, the scale=2 segmentation produced segments in some cases as small 

as a single pixel. As such, an object-based classification with these small segments is in 

many ways comparable to a pixel-based classification. Conversely, in the scale=20 

segmentation, the massive resultant segments are perhaps too spectrally inclusive, where 

multiple land cover types could potentially fall in a single segment. 
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Figure 6. A subset scene of northwestern La Grande, Union County, OR segmented at 
scale parameters of 2 (left) and 20 (right) 

In order to obtain a quantitative estimate of the impact of the scale segmentation 

parameter on resultant segment size, an analysis was performed using the accuracy 

assessment sample data. For each segmentation performed at incremental levels of the 

scale parameter, the accuracy assessment sample data were used to obtain a mean value 

of segment size (in pixels). Given the fact that accuracy assessment data are deemed to 

be a statistically robust thematic and spatial representation of the entire dataset, it was 

assumed that the segment sizes of the accuracy data were similarly representative. Figure 

7 contains 60 data points of segment size displayed by scale parameter, each point 

representing a different shape parameter input. A power function trendline was fitted to 

the model and a R2 value was computed. As can be seen, there is a fairly directly positive 

relationship between scale parameter and segment size. This is to be expected. 

Interestingly, this relationship is not linear, but exponential. It should be noted, however, 

that this study concluded its high end segment size analysis at a scale parameter of 20. In 
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reality, segmentations can be performed at much higher scale levels than 20. Beyond a 

certain value, it is believed that the distribution of resultant segment sizes would reach an 

asymptote. Where that leveling off occurs, however, will vary dependent upon the spatial 

extent and spatial resolution of the imagery. 

Segmentation Parameter Analysis: 
Scale Parameter vs. Segment Size 
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Figure 7. The effect of scale parameters on resultant segment size 

A test was performed to explore the relationship between the scale parameter and 

segment size variability, as measured by the segment size RSD. The results of this test 

can be seen in Figure 8, where two notable trends emerge. The first is a peak RSD at the 

lowest scale parameter of 2 (RSD = 1.03). This suggests that at a scale of 2, fairly high 

variability in segment size can be expected. This trend declines to a trough at scale of 8, 

where segment size was the most consistent. Following this low RSD, a slow steady rise 

in variability emerges as the segment size increases. Again, it is worth noting that the 

behavior of this trend beyond a scale of 20 is unpredictable based on these results. 
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Segmentation Parameter Analysis: 
Scale Parameter and Segment Size Variation 
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Figure 8. The effect of scale parameters on variation in resultant segment size 

The manipulation of the shape parameter did not result in a predictable 

distribution of segment sizes. Instead, the tradeoff between shape and color parameters 

primarily affected the segments' spatial and spectral characteristics, as is their nature. 

Again, the results are fairly predictable. Figure 9 represents the same subset scene from 

Figure 5 segmented at a consistent scale of 10 but with a varying shape parameter. As 

can clearly be seen, the segments that result are significantly visually distinct from one 

another. The shape 0.0 (color 1.0) segmentation has clearly grouped together pixels of 

similar spectral quality and largely ignored the compactness and smoothness of the 

resultant segments. Conversely, the shape 0.5 (color 0.5) segmentation has produced 

much more compact, smoother segments by grouping together areas covering a larger 

distribution of spectral qualities. 
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Figure 9. A subset scene of northwestern La Grande, Union County, OR segmented at 
shape parameters of 0.0 (left) and 0.5 (right) 

For every combination of scale and shape parameter segmentations, a 

classification was performed using all four combinations of CART vs. Bayes and pixel-

based vs. object-based classification. Henceforth, CART object-based = CO, CART 

pixel-based = CP, Bayes object-based = BO, and Bayes pixel-based = BP. As a result, 

240 classifications in all were performed and their thematic accuracies were assessed 

using the traditional error matrix (Congalton et al., 1983). The overall accuracies for CO, 

CP, BO and BP were averaged for each different scale parameter segmentation. The 

resultant mean accuracies can be seen in Figure 10. A few clear trends emerge. First of 

all, in all cases BP produced the highest classification accuracies, with a peak at a scale 

parameter of 8, where the mean overall accuracy was 90.68%. Although not very strong, 

the relationship between scale and BP accuracy certainly does take on a fairly consistent 

trend. With an additional increasing trend seen towards the high-end scale parameter of 

20, perhaps higher classification accuracies than those produced at a scale of 8 could 
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have been attained. Interestingly, CP, also pixel-based, although consistently less 

accurate than BP, shares a similar trend, albeit less smooth, with a peak occurring at or 

around a scale of 8 and a trough at 18. The two object-based classifications, CO and BO 

similarly share a generalized trend in accuracy across the range of scale parameters. In 

both cases, there appears to be a fairly distinct positive relationship between scale and 

overall classification accuracy. The relationship is certainly stronger in BO than in CO, 

but in BO there is a sharp decrease in accuracy at the very last scale parameter tested, 20. 

While BP greatly outperformed CP, CO almost exclusively outperformed BO, if only 

slightly. 

Land Cover Classification Accuracy: 
Scale Parameter 
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Figure 10. Average overall accuracies of CO, CP, BO and BP across the range of scale 
parameters 

Similarly, the overall accuracies for CO, CP, BO and BP were averaged for each 

different shape parameter segmentation. The resultant mean accuracies can be seen in 

Figure 11. It is important to note that Figures 10 and 11 should be considered together, 

rather than in isolation of one another, particularly when comparing between 
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classification method accuracies, because these results tend to be similar across the entire 

ranges of scale and shape parameters, with the order of descending accuracy being 

roughly equivalent to BP (best), CP, CO, and BO (worst). That being said, these graphs 

do function as good indicators of within classification method accuracies. The trend lines 

of scale vs. accuracy themselves are believed to be the most revealing. Accordingly, 

some important trends emerge in Figure 11 as well. The most accurate method, BP, 

appears to function almost entirely independent of shape, with functionally equal 

accuracies across the board. That being said, the marginally highest mean accuracy was 

produced at a shape parameter of 0.3 (89.96%). Conversely, CP, CO, and BO all appear 

to have an accuracy peak in the 0.1-0.3 ranges and a trough in the 0.4-0.5 range, with a 

slight uptick in accuracy at shape 0.5. 

Land Cover Classification Accuracy: 
Shape Parameter 
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Figure 11. Average overall accuracies of CO, CP, BO and BP across the range of shape 
parameters 

Taking all of these accuracies into consideration, a selection of segmentation 

parameters (scale and shape), image analysis environment (pixel vs. object) and 
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classification algorithm (CART vs. Bayes) was made. The optimal combination was 

found to be Bayes pixel-based classification with training samples segmented at a scale 

of 8 and a shape of 0.3. In addition to the highest mean overall accuracy distributed 

across an array of shape parameter inputs, this combination of settings actually produced 

the highest single-time accuracy as well, with an overall accuracy of 91.48% (Kappa = 

0.897). The error matrix with class-specific user's and producer's accuracies can be seen 

in Table 4. In addition to performing well overall, none of the classes had user's or 

producer's accuracies of lower than 80%. Water and forest classification performed 

particularly well with equal user's and producer's accuracies of 100% and 98%, 

respectively. These estimates reflect the accuracies of the raw classified data. After 

performing majority filter to eliminate noise, the accuracies were increased. These values 

can be seen in Table 5. The final 2011 land cover classification can be seen in Figure 12. 
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Table 4. Error matrix of highest accuracy land cover classification before post-processing 
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Land Cover - 2011 
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Figure 12. 2011 land cover classification 
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Accuracy Assessment 

For each of the 120 object-based land cover classifications, two measures of 

accuracy were computed. The first, which were reported earlier, were accuracies as 

estimated by the traditional sample unit-based error matrix. The second series of 

accuracy assessments was performed using an area-based error matrix. Instead of 

accuracies based on sample unit totals, this matrix uses sample unit segment size as an 

estimator of accuracies. Of particular interest were the differences between traditional 

and area-based accuracies and error estimations. Figures 13 and 14 highlight these 

differences. In Figure 13, the two overall accuracy estimation techniques and results are 

displayed by scale parameter for the CART classifier (A) as well as the Bayes classifier 

(B). In both cases, the area-based error matrices consistently report higher accuracies 

than the traditional matrices. In 13 A, the differences are perhaps not as stark as in 13B, 

but interesting results emerge nonetheless. In particular, between the scale range of 2-8, 

area-based accuracies decline with increasing segment size, whereas unit-based 

accuracies increase. In 13B, the differences between methods are highest in the scale 

range of 4-10, where significantly higher area-based accuracies emerge. As scales 

increase beyond this range, however, the differences decrease until a scale of 20 where 

the differences are null. 
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Figure 13. Overall accuracies estimated using unit-based and area-based error matrices by 
scale parameter for CART (A) and Bayes (B) 

In Figure 14, the two overall accuracy estimation techniques and results are 

displayed by shape parameter for the CART classifier (A) and the Bayes classifier (B). 

With one minor exception, again in both cases, the area-based error matrices consistently 

report higher accuracies than the traditional matrices. The one exception that occurs can 

be seen in Figure 14A, where with a shape parameter of 0.5, the traditional unit-based 

error matrix reported a slightly higher overall accuracy. On the other end of the 

spectrum, the area-based accuracy appears to diverge from the unit-based accuracy, with 

a reported -3% difference in mean overall accuracy. According to the Bayes accuracies 

in Figure 14B, the area-based accuracies are consistently significantly higher than the 

unit-based accuracies with few notable shape-based trends in difference. 

Accuracy Assessment Methods: 
CART by Scale Parameter 

Accuracy Assessment Methods: 
Bayes by Scale Parameter 
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A) Accuracy Assessment Methods: 
CART by Shape Parameter 

B) Accuracy Assessment Methods: 
Bayes by Shape Parameter 
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Figure 14. Overall accuracies estimated using unit-based and area-based error matrices by 
shape parameter for CART (A) and Bayes (B) 

In order to quantify the differences in unit- and area-based error matrix 

accuracies, the absolute values of the differences between the two were averaged by scale 

parameter. This information was then combined with the segment size variation 

information from Figure 8 to highlight any potential connections between the variability 

in segment size and the differences in accuracies that may result. This combined 

information can be seen in Figure 15. Looking first at the absolute differences in CART 

accuracies, it appears that the relationship between accuracy difference and scale 

parameter are not very strong. That being said, there does appear to be a similar pattern 

to the segment size variation and the differences in CART accuracies. Both have a peak 

at a scale 2 and slope downward to a trough at scale 8. The trends between scale 8 and 

scale 20 appear less precisely related, yet still share similar steady increases. Conversely, 

the differences in Bayes accuracies seem to act entirely independent of segment size 

variation, and instead appear to have a strong negative correlation with scale parameter. 

That is, as the scale parameter (segment size) increases, the differences in reported 

overall accuracies between the unit- and area-based error matrices decrease. 
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Accuracy Assessment Methods: 
Scale Parameter, Segment Size Variation & Differences in Accuracy 
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Figure 15. The effect of segment size variation on differences in unit- and area-based 
error matrix accuracies 

Land Cover Change 

To determine the optimal change detection technique, the first change interval of 

interest, 2006-2011 was used as a basis of operation. Ten different difference images and 

one principal components image were tested for their resultant change detection 

accuracy. The PC A was performed on the 10-band difference image to capture as much 

change across all of the input bands as possible into a single band. The 10 eigenvalues 

and computed change variance percentage captured can be seen in Table 6. As can be 

seen, almost 70% of the change variance is captured in PC 1. 
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1 1036.87 69.87% 

2 253.17 17.06% 

3 130.11 8.77% 

4 42.78 2.88% 

5 6.38 0.43% 

6 5.49 0.37% 

7 4.10 0.28% 

8 2.39 0.16% 

9 1.58 0.11% 

10 1.07 0.07% 

Table 6. Principal components analysis of 10-band difference image with accordant 
eigenvalues and variance computations 

Using the highest accuracy, post-processed 2011 land cover classification, a 

within-class segmentation was performed for each of the 11 change bands of interest (10 

difference bands and PCI). From the resultant segments, a distribution of class-specific 

change values emerged, similar to those seen in Figure 16. For each band and class, the 

change distributions resembled a normal distribution. Importantly, however, the class-

specific differences can be seen in the spread of change magnitudes. For instance, in 

Figure 16, the change distribution is much wider for Cropland than it is for Forest, which 

makes sense given that an undisturbed forest sees little spectral change from one year to 

the next, while the very definition of cropland implies its constantly modified vegetative 

cover. In order to determine change thresholds, the class-specific change means and 

standard deviations were calculated for each band. These values can be seen in Table 7. 

It should be noted that these mean values represent a digital layer rescaled from float 

single format to unsigned 8-bit. As a result, instead of a mean at or near 0 (no change), 

the values vary somewhere in the mid-100s. 
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Figure 16. Example class-specific difference image value distributions 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 
Crochnd 174.93 10.25 171.29 11.89 171.95 19.49 139.36 23.36 167.79 19.65 157.31 14.30 132.75 16.08 177.18 16.05 111.67 39.60 137.21 25.84 180.26 16.49 

Developed 174.81 8.73 171.50 8.83 172% 12.84 139.93 14.56 165.16 13.91 154.48 10.40 131.36 10.39 175.34 12.72 97.23 25.79 14126 16.95 181.86 11.75 

Forest 170.09 2.05 164.16 2.09 163.69 3.05 133.49 3.67 158.06 5.82 15153 3.35 133.69 4.90 161.77 4.15 96.48 7.49 144.54 6.71 172.54 2.73 

Orssskad 172.30 3.83 167.23 4.39 167.68 6.76 134.67 7.95 162.03 10.51 154.16 6.68 131.75 6.85 168.66 7.80 94.33 16.87 140.86 11.64 177.03 6.40 

ShnttScrab 173.28 3.06 168.93 3.73 169.47 5.14 133.73 5.61 162.57 6.15 154.32 4.50 13048 4.49 170.21 5.94 80.30 8.34 139.85 7.27 180.57 4.93 

Water 173.90 7.07 168.79 7.23 169.74 10.01 140.32 15.42 169.07 19.73 159.90 13.06 126.14 31.09 169.68 15.93 93.05 20.05 139.62 17.80 178.15 16.07 

Table 7. Mean and standard deviation of difference image values by land cover class 

Using two standard deviations from the mean as a base threshold for change, each 

band was tested for its ability to accurately detect change. These class-specific band 

threshold values were applied to the binary classification of change versus non-change 

for the 2006-2011 interval. As a result, 11 different classifications were performed. 

Each classification underwent an accuracy assessment. Following a spatial intersection 

between the map data and the reference data, areas of commonality and disparity were 

computed in hectares. These were then compiled and analyzed in error matrices to 

determine change area commission and omission, overall accuracy and Kappa (See 

Appendix B for band error matrices). The user's and producer's accuracies are proxies for 
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commission and omission errors, respectively. The results of change detection 

commission and omission can be seen in Figure 17. Among all of the bands tested, the 

PC A band detected the greatest amount of change within the area of interest (1,722 ha). 

While the total reference change area was equal to 1,945 ha, 413 ha of the PCA-detected 

change was classified in error. As a result, the PCA had a user's accuracy of 76.01%. 

The highest user's accuracy was achieved using the NDVI difference image (83.74%). 

Accordingly, the NDVI had the lowest commission error. In terms of omission error, 

band 7 was found to have the highest producer's accuracy (73.22%). Out of the 11 bands 

tested, the PCA performed 3rd best, with a producer's accuracy of 67.33%, following 

band 5 with a producer's accuracy of 72.62%. Notably, in terms of omission error, the 

PCA outperformed all other derivative bands tested (NDVI and 3 TC features). 

Change Detection Accuracies: 
Comission and Omission 
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Figure 17. User's and producer's accuracies of change areas detected using different 
spectral and derivative bands 

In addition to user's and producer's accuracies for change detection, Kappa was 

calculated in order to assess overall model performance. Given the fact that the sheer 
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magnitude of the non-change areas in the reference data greatly outweighed the change 

areas, Kappa was deemed to be a more robust estimator of overall performance than the 

inflated overall accuracy calculation. The resultant Kappa values can be seen in Figure 

18. Both band 5 and 7 clearly outperformed any others. Band 7 edged out band 5, 

however, with Kappa values of 0.737 and 0.735, respectively. Band 4 performed 

exceedingly poorly, with a Kappa of -0.019, suggesting an agreement occurring less than 

predicted by chance alone. TC2 (greenness) likewise performed poorly, which makes 

sense given band 4's strong influence on this portion of the Tasseled Cap transformation. 

PCA (Kappa 0.679) outperformed NDVI, but fell short of TCI (Kappa 0.688) and TC3 

(Kappa 0.685), if only by a small margin. 

Change Detection Accuracies: 
Kappa 
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Figure 18. Kappa accuracy of change areas detected using different spectral and 
derivative bands 

Given the preferential emphasis placed on minimizing omission errors (as 

opposed to minimizing commission), and the highest overall performance in terms of 
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Kappa, band 7 was deemed the optimal band selection for change detection. The change 

matrix for band 7 can be seen in Table 8. 

Reference 

520.86 Wm%Mt 

Sum Area User 
HBPF 348.30 I 1,772.07 80.34% 
520.86 fSg&fcMt' 1 15,116.67 96.55% 

Sum Area 1,944.63 14,944.12 16,888.74 
Producer 73.22% 97.67% 

Table 8. Change detection error matrix for band 7, threshold 2 SD 

Change omission and commission errors can be seen as a direct product of the 

change threshold used. In other words, a higher standard deviation-based change 

threshold will likely produce greater omission error and a lower threshold will produce 

increased errors of commission. Accordingly, band 7 was tested at a range of standard 

deviation change thresholds (1SD - 2SD, intervals of 0.25SD) (See Appendix C for 

threshold error matrices). The results of this test can be seen in Figure 19. As expected, 

user's accuracies decrease and producer's accuracies increase as the threshold level 

decreases. 
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Change Detection Accuracies: 
Band 7 Thresholds - Comission and Omission 
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Figure 19. User's and producer's accuracies of change areas detected using band 7 at 
different standard deviation thresholds 

Kappa was also calculated at each band 7 threshold level. These results can be 

seen in Figure 20. According to Kappa, a threshold of 1.75SD was found to be the best 

predictor of change (Kappa 0.7444). 

Change Detection Accuracies: 
Band 7 Thresholds - Kappa 
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Figure 20. Kappa accuracy of change areas detected using band 7 at different standard 
deviation thresholds 
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Given band 7's superior performance at 1.75SD in terms of both Kappa and the 

tradeoff between user's and producer's accuracies (higher producer's than producer's 

accuracy without excessive overestimation of change), it was selected as the change 

threshold of choice for further use. Its change detection error matrix can be seen in Table 

9. 

Sum Area 
Producer 

Reference 

415.69 
389.74 

1,746.13 
77.68% 

15,142.62 
97.25% 

Sum Area User 
1,772.07 76.54% 
15,116.67 97.42% 
16,888.74 

Table 9. Change detection error matrix for band 7, threshold 1.75 SD 

Band 7 was used to classify change and non-change areas for each 5-year interval 

of interest iteratively backwards in time starting with 2006-2011 (results described 

above) and ending with 1986-1991. Using reference data hand-digitized in interval-

specific areas of high logging activity, accuracy assessments were performed for each 

change detection analysis. The resulting change user's and producer's accuracies for each 

of these intervals can be seen in Figure 21. Notably, the producer's accuracies decline 

backwards in time from the 2006-2011 interval to the 1996-2001 classification. 

Although these accuracies begin to climb for the last two intervals, they never reach the 

level of the initial 2006-2011 change detection. Conversely, the highest user's accuracy 

is found in the 1991-1996 interval (86.39%). This value suggests very low commission 

errors at that interval. 
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Change Detection Accuracies: 
Change Intervals - Comission and Omission 
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Figure 21. User's and producer's accuracies of change areas detected using band 7 at 
different time intervals 

In addition to user's and producer's accuracies, Kappa was calculated at each 

temporal interval. The results of these assessments can be seen in Figure 22. Following 

a similar pattern to the change user's accuracy, the highest Kappa value was found for the 

most recent change detection (2006-2011, Kappa 0.7444) and the lowest for the interval 

of 1996-2001 (Kappa 0.589). 
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Figure 22. Kappa accuracy of change areas detected using band 7 at different time 
intervals 
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For each temporal interval of interest, land cover classifications were performed 

on the detected change areas. These change area classifications were then merged with 

the latter year's classification to attain wall-to-wall classification (See Appendix D for 

land cover totals). The resultant classifications were intersected to assess class-specific 

land cover classification changes. Areas were calculated in hectares to determine change 

magnitude. These 6x6 change classifications were simplified to forest and non-forest 

changes. Four combinations resulted: forest to forest (non-change), forest to non-forest 

(change), non-forest to non-forest (non-change), and non-forest to forest (change). After 

adjusting for natural disturbance events, forest to non-forest changes were assumed to be 

the result of harvesting and non-forest to forest changes were assumed to represent forest 

regeneration. These totals were then intersected with land ownership data to determine 

owner-specific changes. The forest to non-forest totals and ownership breakdown can be 

seen in Table 10 and Figure 23. A few definitive trends emerge. In terms of overall 

forest harvesting, the first two time intervals (1986-1991 and 1991-1996) saw very 

similar total hectares removed at slightly below 8,500 ha each. Following these early 

highs, a precipitous drop occurred in the 1996-2001 interval, where only 2,126 ha were 

removed in total. The final two intervals saw consistently increasing totals with 5,477 ha 

removed between 2001 and 2006 and 9,227 ha removed in the most recent interval, 

reaching the highest total of any interval tested. In terms of ownership-specific patterns, 

some clear trends can be seen as well. A notable decrease in harvesting on public land 

occurred between 1986 and 2001 (1986-1991: 6,242 ha; 1991-1996: 3,434 ha; 1996-

2001: 749 ha), followed by a less aggressive, steady increase between 2001 and 2011. 
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Harvesting on private industrial land saw significant increases between the 1986-1991 

interval (402 ha removed) and the 2006-2011 interval (3,975 ha removed). Private non-

industrial land typically saw relatively low harvesting totals, with the one exception being 

between 1991 and 1996 where 3,603 ha were removed. 

Private Industrial Private Non-Industrial Public Total 
1986-1991 401.88 1,666.66 6,242.37 8,310.91 
1991-1996 1,346.69 3,602.59 3,433.96 8,394.39 
1996-2001 342.42 1,032.44 749.47 2,126.79 
2001-2006 2,272.57 954.84 2,243.12 5,477.49 
2006-2011 3,974.84 1,805.27 3,439.24 9,226.89 

Table 10. Total harvesting by 5-year interval broken down by land ownership class 

Forest Harvesting (1986-2011): 
Ownership Class and Total Removal 
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Figure 23. Total harvesting by 5-year interval broken down by land ownership class 

These results however, should be viewed with the understanding of differential 

total forest land ownership. As can be seen in Table 11, for example, in 2011, there were 

418,144 ha of forested land throughout the entire study area, 312,284 ha (74.68%) is 
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owned by public entities (most of which is USFS), followed by private non-industrial 

land owners (77,732 ha, 18.59%), and lastly, private industrial (28,127 ha, 6.73%). 

Accordingly, these removal totals were divided into total forested land ownership to 

compute the "normalized" removal. The resulting removal percentages can be seen in 

Table 12 and Figure 24. 

Private Industrial Private Non-Industrial Public Total 
1986 33,976.04 82,400.89 315,651.62 432,028.55 
1991 34,341.48 82,420.28 314,059.54 430,821.30 
1996 33,076.54 79,044.77 311,400.68 423,522.00 
2001 33,027.86 78,561.58 313,733.10 425,322.54 
2006 31,064.89 78,265.99 313,875.85 423,206.74 
2011 28,127.43 77,732.23 312,283.99 418,143.64 

Table 11. Total forest area broken down by land ownership class and year 

Private Industrial Private Non-Industrial Public 
1986-1991 1.18% 2.02% 1.98% 
1991-1996 3.92% 4.37% 1.09% 
1996-2001 1.04% 1.31% 0.24% 
2001-2006 6.88% 1.22% 0.71% 
2006-2011 12.80% 2.31% 1.10% 

Table 12. Percentage of total forested land removed by ownership by 5-year interval 
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Forest Harvesting (1986-2011): 
Ownership Class and Normalized Removal 
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Figure 24. Percentage of total forested land removed by ownership by 5-year interval 

The forest and non-forest change classification process not only yields change 

areas that suggest forest removal, but additionally forest areas that are regenerated (non-

forest to forest). From the forest management perspective, this variable is in many ways 

as valuable, if not more so, than the harvesting totals. Accordingly, forest regeneration 

totals were calculated across the entire study area and, again, broken down by land 

ownership class. The results of these analyses can be seen in Table 13 and Figure 25. 

The total forest regeneration across all ownership classes does not take on any major 

trend in the positive or negative direction, with the exception of a steep decline in the 

1991-1996 interval, which makes sense, given the heavy harvesting that occurred in that 

year. The ownership-specific trends, however, are of interest. For instance, again with 

the exception of 1991-1996, regeneration on public land has steadily declined. 

Conversely, both kinds of private land have seen somewhat steady growth in forest 

regeneration from the 1991-1996 interval to 2006-2011. 
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Private Industrial Private Non-Industrial Public Total 
1986-1991 617.75 1,260.61 3,587.73 5,466.09 
1991-1996 81.76 227.09 775.10 1,084.77 
1996-2001 293.74 549.24 3,081.88 3,926.97 
2001-2006 309.60 659.25 2,385.88 3,356.91 
2006-2011 1,037.37 1,271.51 1,847.38 4,159.62 

Table 13. Total regeneration by 5-year interval broken down by land ownership class 

Forest Regeneration (1986-2011): 
Ownership Class and Total Regenetation 
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Figure 25. Total regeneration by 5-year interval broken down by land ownership class 

These numbers, again, should be taken with the understanding of differential 

class-specific forest land ownership. Using the totals from Table 11, these regeneration 

values were normalized as a percent regeneration, rather than a raw total. The results can 

be seen in Table 14 and Figure 26. Generally speaking, a normalized regeneration 

(regeneration divided by total forest land ownership) of approximately 1% appears to be 

fairly common (average of all percentages = 0.87%). A major exception to this rule 

occurs, however, in the 2006-2011 interval, where private industrial land saw a 3.69% 
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regeneration and private non-industrial also had fairly high regeneration, with 1.64% 

overall. 

Private Industrial Private Non-Industrial Public 
1986-1991 1.81% 1.54% 1.15% 
1991-1996 0.25% 0.29% 0.25% 
1996-2001 0.89% 0.70% 0.98% 
2001-2006 1.00% 0.84% 0.76% 
2006-2011 3.69% 1.64% 0.59% 

Table 14. Percentage of total forested land regenerated by ownership by 5-year interval 

Forest Regeneration (1986-2011): 
Ownership Class and Normalized Regeneration 
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Figure 26. Percentage of total forested land regenerated by ownership by 5-year interval 

The ability to estimate both forest harvesting and forest regeneration enables the 

combined analysis of long term forest management projections. Two metrics 

highlighting this ability were calculated. The first is a ratio of forest area harvested to 

forest area regenerated. In this scenario, a value of 1.0 would represent an equal amount 

of harvesting and regeneration has taken place throughout the 5-year interval. For each 

ownership class and temporal interval, this ratio was calculated. The results can be seen 
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in Table 15 and Figure 27. As can clearly be seen, only three class specific values were 

found to have ratios of 1 or less (as indicated by bolded value in Table 15), two of which 

belonged to public land and the other being private industrial. In general, the highest 

harvest-regeneration ratios are found on private industrial land, where between 1991 and 

1996, for example, 16.47 times more forested land was harvested than regenerated. 

Conversely, the public lands appear to have the most consistently low harvesting ratios, 

with a peak between 1991 and 1996 of 4.43. 

Private Industrial Private Non-Industrial Public Total 
1986-1991 0.65 1.32 1.74 1.52 
1991-1996 16.47 15.86 4.43 7.74 
1996-2001 1.17 1.88 0.24 0.54 
2001-2006 7.34 1.45 0.94 1.63 
2006-2011 3.83 1.42 1.86 2.22 

Table 15. Forest harvesting-regeneration ratio by ownership class by 5-year interval 
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Figure 27. Ratio of forest harvesting to forest regeneration by 5-year interval broken 
down by ownership class 
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Another way to view this data is through the lens of net harvesting (or net 

regeneration, as the case may be). This value could be calculated using the raw totals 

(net harvesting in hectares) or the normalized totals (net harvesting in percent of total 

ownership), but again given the differential land ownership totals, percentages were 

deemed most comparably appropriate. The results of this analysis can be seen in Table 

16. Clearly, public lands appear to have the most consistently low net forest harvesting 

totals, never exceeding 1%. Conversely, private industrial land appears to be, according 

to these data, on a negative long-term trajectory. For example, as Figure 28 highlights, if 

private industrial land were to continue its most recent net forest harvesting trajectory 

(9.11% net forest removal between 2006 and 2011), in 50 years there would only be 

10,822 ha of the original 28,127 ha of forest left (38.47%). Conversely, looking at the 

same projections for public land, 95.11% of the original 312,284 ha of forested land 

would remain forested. 

Private Industrial Private Non-Industrial Public 
1986-1991 -0.62% 0.49% 0.83% 
1991-1996 3.67% 4.08% 0.84% 
1996-2001 0.15% 0.61% -0.74% 
2001-2006 5.88% 0.37% -0.05% 
2006-2011 9.11% 0.67% 0.50% 

Table 16. Net forest harvesting by 5-year interval broken down by ownership class 
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Forest Harvesting: 
Long Term Projections 
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Figure 28. Long term total forest area projections based on 2006-2011 net forest 
harvesting percentages 
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CHAPTER IV 

CONCLUSIONS 

This study had a wide-ranging set of objectives, in terms of both remote sensing 

methods and real world application. Although the former played a more predominant 

role in the process, the latter provided the applicable justification for the methodological 

exploration. Operating under the paradigm of empiricism, this study took a largely 

exploratory approach to determining the optimal conditions for land cover classification 

and change detection. In incremental fashion, each procedure in the process was 

carefully vetted for resultant accuracy. Only when conditions were met to attain an 

acceptably high analytical accuracy was forward progress made. While the specific 

results of any remote sensing study are only immediately applicable to that study, certain 

broader trends can emerge upon which future analyses can be based. It is believed that 

the incremental approach used here can function not only as a framework for future 

investigation, but because the methods were explored using such a wide range of input 

parameters, a number of the specific results can help inform future research as well. 

Each set of significant findings will be discussed according to their specific applications 

below. 
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Segmentation Parameters 

The impacts of the segmentation process on land cover classification are not to be 

ignored. The differences in resultant image classification accuracy performed with the 

range of segmentation parameters tested in this study highlighted this importance. While 

a number of studies exist that attempt to determine the optimal parameters for 

segmentation, this study utilized a purely empirical approach. There is a seemingly 

infinite combination of factors that can ultimately contribute to the determination of ideal 

segmentation parameters. These factors can be generally divided into two broad 

categories: (1) imagery characteristics and (2) project specifics. Within the former 

category, there a number of considerations including the image sensor type, spectral 

resolution, radiometric resolution, and spatial resolution. With an ever-increasing 

number of imagery types becoming available, these variables will only continue to 

complicate the segmentation process further. In terms of project specifics, the range of 

possibilities is even greater. Complicating factors may include desired land cover 

classification (number of classes, type and specificity of class definitions), study area 

characteristics (spatial extent, vegetation types, degree of urbanization, topography), 

temporal influence (single date image versus multitemporal analysis), and more. 

Accordingly, it is believed that an empirical approach, although perhaps more time 

consuming, is, at the current state of segmentation studies, one of the only approaches 

that can result in an objectively accurate image segmentation. 

An important assumption was made in this study's segmentation parameter and 

resultant classification accuracy analysis. In both the pixel- and object-based scenarios, 

the training data segments (and for OBIA, the accuracy assessment segments as well) 
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were objectively assigned using pre-determined training sample unit centroids. 

Accordingly, it should be understood that perhaps in some cases the resulting segments 

did not precisely represent the classes they were intended to (See Figure 29 for visual 

explanation). In this figurative scenario, the desired sample unit was collected in the 

forested area. If the image was segmented at a relatively small scale (Segmented Image 

1), the sample unit centroid assignment method would perform perfectly well. If this 

sample unit was a training sample, it would accurately train the model based on the 

desired forest classification. Likewise, if it was an accuracy assessment sample, its 

resultant assessment could be deemed an appropriate representation of ground conditions. 

In Segmented Image 2, however, which was segmented at a larger scale with perhaps less 

influence given to the color parameter, the resulting segments may no longer be 

representative of the ground conditions. As a result, this sample centroid, which was 

intended to represent purely forest, now assigned the entire segment to the forest 

classification, while on the ground it clearly overlaps a number of different cover types. 

As a result, the model would be trained with false information, and the accuracy 

assessment can no longer be deemed valid. The appropriate solution to this problem, 

and the manner by which training and accuracy samples should be determined in 

segmentation analyses, is through the selection of segments themselves as the sample 

units for each different combination of segmentation parameters. Given the total number 

of classifications performed (240) and large number of sample units used (540), however, 

this ideal process was not feasible for this study. It is believed that with an upper scale 

bound of 20 (segments are small enough), and an upper shape bound of 0.5 (segments are 

spectrally homogeneous enough), these mislabeling phenomena occurred scarcely 
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enough to still render the classifications and accuracy assessments valid. The very 

process of segmentation is, of course, intended to eliminate these false pixel groupings, 

but beyond a certain scale and with little influence given to spectral qualities of the 

imagery, false groupings could certainly occur and the assumptions used in this study 

could no longer be justified. 

Raw linage Segmented Image 1 Segmented Image 2 

gygj Desired Sample Unit 

^ Sample Unit Cert trend 
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Water 
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Figure 29. Figurative image segmentations and sample unit assignment 

The results of the segmentation parameter analysis revealed a few key findings. 

First, and perhaps most obviously, the effect of the scale segmentation parameter had a 

direct and highly predictable effect on the resultant image segment size. While this 

finding may appear insignificant at face value, it forms a strong, quantitative basis for 

future studies using segmentation on Landsat 5 TM data. The scale parameter is 

primarily a factor of image spatial resolution (dictated further, of course, by the color and 

shape contributions as well). Accordingly, with the information provided in Figure 7, 
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one can determine an appropriate starting point for a similar Landsat-based segmentation. 

One hectare is equal to 10,000 m2, or about 11 Landsat 5 TM pixels. If one is looking to, 

for example, study the distribution of different forest stand types and has a generic 

understanding of stand type spatial extent in hectares, one can use Figure 7 to determine 

an appropriate segmentation level, or at the very least a range of levels to test. 

A second segmentation parameter finding is the effect of the scale parameter on 

segment size variability. As Figure 8 highlights, segmentations performed with very 

small scale parameters will have much more variably-sized segments than those at a 

"medium" size. The word "medium" is used, in this case, because when a Landsat scene 

with 30 m pixels is loaded into eCognition, the default scale parameter is set to 10. This 

variability is particularly important at a small scale parameter of 2, for example, where 

segments can be as small as a single pixel. Particularly in an OBIA environment, where a 

number of complex parameters can be estimated per-segment to train the classification 

model, such as band-specific means, standard deviations, skewness, and GLCM 

homogeneity, the different results from highly varied segment sizes can have drastic 

effects on these segment metrics. As segment size increases, however, this variation will 

have less of an effect, (even though beyond a scale of 8 segment size variation actually 

increases), because the data distributions within each segment will enable much more 

realistic and representative parameter calculations. 

A third finding regarding the relationship between segmentation parameters and 

classification accuracy is perhaps that there was no finding at all. By this I mean that 

segmentation parameters alone could not predict resultant classification accuracies. 

Instead, the combination of analytical environment (pixel vs. object) and classification 
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algorithm (CART vs. Bayes) in conjunction with the segmentation parameters were the 

most indicative of resultant classification accuracy. 

OBIA vs. Pixel-Based Classification 

Since the its emergence in the field of remote sensing in the 1990s, OBIA has 

primarily been used as a way to avoid misclassification of pixels due to noise introduced 

by high spatial resolution datasets. For these purposes, OBIA has proven fairly effective. 

Few studies, however, have documented the utility of using OBIA on medium resolution 

image datasets such as Landsat 5 TM. This absence is not without justification — 

Landsat's 30 m pixels are, in many ways, image objects in their own right and have 

historically been very successful in land cover analyses of all kinds. For a land cover 

study conducted over a relatively small area with a fairly detailed classification scheme, a 

30 m pixel may sufficiently reduce the spectral noise contained within an image to 

produce fairly accurate, functional ground units, despite their indiscriminant spatial 

placement. At the regional or landscape scale with more generalized classes such as this 

study, however, perhaps the noise reduction caused by grouping of pixels over large areas 

(OBIA) would produce a more desirable result. Again, it is believed that only through an 

objective, accuracy assessment-based empirical study can the question of pixel versus 

object be fully answered. 

Interestingly, however, this study failed to determine outright whether pixel-based 

analysis or object-based analysis was preferable. Instead, like the segmentation 

parameters, the resultant classification accuracy depended much more heavily on the 

classification algorithm used. Across the entire range of scale and shape parameters, 
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Bayes pixel-based classification significantly outperformed Bayes object-based 

classification. Conversely, the relationship between CART pixel- and object-based 

classifications were much more linked to the segmentation parameters used. Hypotheses 

as to why these differences occurred will be discussed in the next section, CART vs. 

Bayes. 

A discussion about the different uses of segmentation in pixel- and object-based 

environments which was mentioned first in METHODS should be expanded upon here. 

Some may approach this study with the question, "why is segmentation being used at all 

in a pixel-based environment?" And rightly so. The explanation is as follows. Typically 

in pixel-based analyses, training sample units are created through a process commonly 

referred to as region growing. In this process, an area of interest on the map is selected 

and a region is "grown" based on neighboring pixel values. The shape and extent of 

these regions are dictated by region growing properties that typically contain spectral and 

spatial limitations. In a multiresolution segmentation, however, the entire image is 

divided into small groupings and in bottom-up fashion, regions are "grown" objectively 

across the entire region based on scale, shape, color, compactness and smoothness 

parameters. As a result, instead of a group of subjectively selected and grown training 

samples, the segmentation process results in an array of potential samples that are 

distributed throughout the entire image. Accordingly, it is believed that not only is 

segmentation an effective method of training sample selection in a pixel-based 

environment, but perhaps it is even preferable to more traditional selection methods due 

to increased objectivity. 
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The same is true of training sample segments in OBIA. That being said, the uses 

of the segments themselves varies between OBIA and pixel-based analysis. In pixel-

based analyses, the training samples are used simply to determine class-specific spectral 

means and variances. These values are ultimately compiled by class and then each pixel 

is classified individually based upon the probability that it belongs to a given class. How 

these probabilities are determined depends upon the specific classification algorithm (See 

CART vs. Bayes). In OBIA, however, any number of segment spectral and spatial 

parameters can be input into the training model (See METHODS for description of input 

parameters used in this study). This much more complex, multivariate training model is 

then applied to the remaining image segments. Additionally, in OBIA, the segments 

themselves can be used for accuracy assessment as well, whereas in a pixel-based 

environment, more traditional sample units are used. Accordingly, the segmentation 

process has much greater implications on the OBIA process than the pixel-based process. 

CART vs. Baves 

The classification algorithm used in any land cover analysis is arguably one of the 

most important considerations throughout the entire process. While it is typically one of 

the latter steps in the image analysis process, it affects each and every step along the way, 

from classification scheme development to training sample selection, band selection and 

accuracy assessment. Historically there were two primary choices: supervised 

classification and unsupervised classification, the former involving a subjective training 

sample selection and objective classification, the latter involving objective image 

grouping and subjective classification. The emergence of OBIA in many ways eliminates 
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a great deal of the subjectivity involved in the process, ideally enhancing repeatability, 

increasing efficiency and resultant accuracy. That said, there are still a number of 

subjective choices to make in the OBIA process, one of which is the classification 

algorithm of choice. With the release of eCognition 8.7, a number of advanced classifier 

tools became available. These include ^-Nearest Neighbor (KNN), Support Vector 

Machine (SVM), Decision Tree (CART), and Bayes. The latter two were selected for 

examination in this study due to their relative conceptual simplicity and yet their 

significant computational differences. Broadly defined, these two represent the 

differences between parametric (Bayes) and non-parametric (CART) classification 

methodologies. Quite simply, parametric statistics assume some predetermined (typically 

normal) distribution of the data, where non-parametric methods do not. While these 

differences are easy to comprehend theoretically, their computations in an image analysis 

environment become quite complex. Likewise, their results can be fairly difficult to 

assess. Despite this difficulty, a few clear trends emerged from the results of this study, 

and hypotheses will be made as to their potential causal mechanisms. 

The single most interesting result from this study is the exceptional performance 

of the Bayes classifier. While it is not generally surprising that a parametric method 

would outperform a non-parametric method, the specific image characteristics used in 

this study make the Bayes accuracies particularly intriguing. The Bayes classifier 

assumes complete statistical independence of the input data in order to properly train the 

model with the parameters of interest and accurately classify the results. Typically in the 

case of a parametric classifier such as Bayes, one would perform a separability analysis 

(such as Jeffries-Matusita) or other image exploration techniques to determine a few 
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optimal bands for classification, rather than using the entire image. By limiting the 

number of bands used in the classification, you decrease the amount of covariance 

present in the input data, thereby increasing the matrix invertibility and facilitating the 

classification. As can be readily assumed, no such statistical independence was present 

in the input data used in this study. The 23 bands used for each year of the classification 

were made up of essentially two 10-band images roughly equivalent images at separate 

times of year (and 3 ancillary topographic datasets). Correlation and covariance values, 

in this scenario, are inherently high. While it may be perceived as user naivety to throw 

this many highly correlated bands into a parametric classification model, or perhaps 

technological naivety for eCognition to even allow such a process, the results 

nevertheless proved extremely accurate — much more so than the more situationally 

"acceptable" non-parametric method, CART. 

Given the fact that such a methodology, according to remote sensing tradition, is 

in many ways seen as conceptually and operationally irresponsible or even invalid, little 

research in the field exists to explore these anomalously high quality results. 

Interestingly, however, a variety of research within the statistical literature have found 

similar results, where the so-called "naive" Bayes classifier has performed exceptionally 

well despite high input data dependence — "The word most used to describe its 

performance is "surprising" " (Kuncheva, 2006, pp.830). Rish (2001) found that the 

success of the naive Bayes classifier at predicting an accurate result was highest in two 

scenarios: (1) when input features were completely independent, as is expected by the 

model assumptions, and, interestingly, (2) when the features were entirely functionally 

dependent. In between these two extremes, the model performed poorly. Interestingly, 
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Kuncheva (2006) found that divergence measures (such as Matusita, a version of which is 

commonly used in digital image analysis), did not provide any insight into the 

performance of Bayes. In other words, the resultant classification accuracies acted 

independent of input feature divergence, which again stands in stark contrast to typical 

supervised classification processes. Kuncheva (2006) additionally speculated that 

mirrored covariances, such as those that would be present in the paired 10-band images 

used in this study, could potentially improve Bayes classifier accuracy. Additionally, 

Hand and Yu (2001) describe a study by Russek, Kronmal and Fisher (1983), where 

Bayes was actually outperformed by non-parametric methods when only 6 variables were 

included with the model, but when 22 variables were used, Bayes performed the best, 

defying the typical assumptions made in the remote sensing community. 

Taking a closer look at the specific classification accuracies from Figure 10, we 

can start to make sense of these anomalous results. Most notable is the fact that Bayes 

pixel-based classification (BP) consistently outperformed Bayes object-based 

classification (BO). BP appeared to act fairly independently of training segment size, 

while BO had a generally positive relationship between increasing segment size and 

resultant accuracy. This can be explained by the differential parameters being used to 

train the classification model. In a pixel-based environment, as described earlier, only 

two parameters are being estimated: class-specific spectral means and variances. 

Accordingly, the combined training information can be assumed to result in a fairly 

consistent overall mean and variance value by class. With 50 training samples, it is 

believed that these values will be similar with both small and large training segment 

sizes. Additionally, with such broad and distinct land cover classes, these spectral 
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distributions are most likely very distinct from one another. As a result, even in the event 

of high covariance between bands, as long as the distributions agree with one another by 

band, the resulting accuracies should be fairly high. Conversely, in the object-based 

environment, a host of complex calculations are being made on each individual training 

object. At a very small segment size, these values are bound to have a wide array of 

distributions. For example, a skewness value for a segment size of 4 pixels for class a in 

segment i in band x may have a radically different value than that same class and band in 

segment j by mere virtue of having such a small sample size (4 pixels) from which to 

compute a fairly complex metric. Attempting to compile the wide range of values for 

skewnesses of class a in band jc across all 50 training segments into a single distribution 

of classification probabilities will likely contain such a high overall variance that it would 

greatly overlap the same distribution for classes b, c, d and so on. With significantly 

larger segment sizes, however, these skewness values would likely become more 

consistent across class a, minimizing the variance of the class-wide skewness distribution 

and reducing overlap between that of classes a, b, c and so on. As a result, there would 

be less disagreement in the Bayes model between classes and a greater overall 

classification accuracy. Hand and Yu (2001) confirm this concept by stating, "[o]ne 

important reason [that the Bayes model performs well] is that it requires fewer 

parameters to be estimated than alternative methods which seek to model interactions in 

the individual class-conditional x distributions" (pp.387). In other words, when simpler 

parameters such as band-specific mean and variances (in the case of BP) are being 

estimated, as opposed to more complex parameters (such as those computed in BO), 

Bayes tends to perform well. 
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The results of the CART classifications are in some ways similar to those found in Bayes, 

particularly in terms of the relationship between CART pixel (CP), CART object (CO) 

and segment size. While Bayes compiles the information contained within each training 

segment to a single, band-specific distribution from which classification probabilities are 

assigned, CART maintains the unique characteristics of each individual segment and 

classifies accordingly. As such, CART is, in theory, much more sensitive to outlying 

data than Bayes. As a result, we see a similar relationship between CO and scale as was 

found in BO. At these small segment sizes, again, a variety of complex metrics are being 

calculated for each segment. Accordingly, we see a relatively low classification accuracy 

at a scale of 2 and fairly consistently increasing accuracies with greater scales. 

Accuracy Assessment 

This study was one of the first explorations of an area-based error matrix 

introduced by MacLean and Congalton (2012) for use in object-based land cover 

accuracy assessments. The puipose of any accuracy assessment is to determine the 

degree to which a land cover classification model has properly represented the ground 

conditions in thematic fonn using a representative and statistically robust sample dataset. 

The purpose of an error matrix, then, is to represent this information in graphical format 

from which specific accuracy estimations can be gleaned. Accordingly, in a pixel-based 

analysis, where each uniformly-sized pixel is classified individually, it makes sense then 

that the accuracy assessment be conducted with uniformly-sized sample units, each of 

which is given equal weight in the assessment. In object-based environments, however, 
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the end result of a land cover analysis is an array of polygons, typically varying in size 

from one to the next. As a result, misclassifications (and inversely, correct 

classifications), are not all equal in magnitude. If one were to misclassify a 10 ha 

polygon, for example, the effect on the overall image accuracy would be much greater 

than a 1 ha misclassification. The area-based error matrix seeks to account for these 

differences, and as such should be included in OBLA studies of all kinds. 

To explore the implementation and implications of using such a methodology, 

each of the 120 object-based classifications performed in this study were assessed using 

both traditional and area-based error matrices. The results certainly highlight some 

definitive trends in terms of the differences and similarities in accuracy assessment 

techniques. Most notably, in every combination of segmentation parameters, image 

analysis environment (OBLA. vs. pixel) and classification algorithm (CART vs. Bayes), 

with the exception of CART object-based at a shape of 0.5, the area-based accuracy 

assessment reported higher overall accuracies. In most cases, these differences were 

quite significant. A fairly simple hypothesis can be used to explain these differences. 

Segment size is a fairly good predictor of spectral homogeneity within a polygon. In 

other words, areas with fairly homogeneous land cover types, such as a vast tract of 

shrubland, will produce larger segments than very heterogeneous environments, such as 

urban areas, where smaller segment sizes will result. By the same token, an assumption 

can be made with a relatively high degree of confidence that larger polygons will be 

easier to classify correctly than smaller polygons — a large tract of shrubland will be 

much easier for a classification algorithm to accurately classify than a smaller, highly 

variable environment. Accordingly, in such an area-weighted accuracy assessment, if we 
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assume that larger polygons are more likely to be classified correctly, then the resultant 

overall accuracies will be higher. For a quantitative account of this phenomenon, refer to 

Figure 10. At a small segmentation parameter, the variation in segment size is the 

largest. Likewise, with these high segment size variabilities, we see the largest absolute 

differences between traditional and area-based error estimations for both CART and 

Bayes, with the latter having the starker contrast of the two. At a scale of 2, segment 

sizes in a highly varied, more difficultly classified area, segment sizes can be as small as 

1 pixel. A misclassification at this size will have little effect on the resultant accuracy 

assessment. However, the largest, presumably easiest to classify segments can have sizes 

of about 20 pixels, having a much greater impact on positively weighting the area-based 

matrix. 

This increased area-based accuracy estimation phenomenon is believed to have a 

particularly strong effect on the classifications performed in this study, with such broad 

land cover classifications. The classes used in this study are not only broad in 

description, but very visually (and spectrally) distinct from one another. As a result, a 

large tract of forest can be relatively easily identified as such (i.e. a forest is a forest is a 

forest). However, if a more complex classification scheme was used, the positive effect 

of area-weighting may not be as great. If one were to try to decipher between different 

forest stand types within the broader classification, for example, the reverse might occur. 

The segment sizes would remain (because segmentation takes place independent of 

classification scheme), but a more complex classification scheme would presumably 

result in more misclassifications. These misclassifications may, in fact, negatively 
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weight the accuracy assessment. Further exploration would be needed to confirm or 

reject this idea. 

In general, in the OBIA environment, it is believed that this area-based error 

matrix is a valuable metric to include in the accuracy assessment process. That being 

said, the user and producer of the land cover classification should be aware of the 

implications of such a methodology. In the end, both traditional and area-based 

accuracies should be reported to facilitate an unbiased but perhaps more insightful overall 

accuracy assessment. 

Change Detection 

In continuing with the paradigmatic approach of the rest of the study, the change 

detection analysis was performed on an empirical, accuracy assessment-dependent basis. 

Many methods exist for the detection and subsequent classification of land cover change 

over time. This study employed the tried and true method of single band differencing. 

Due to the simplicity of this method, a variety of tests were able to be performed. 

Additionally, with the broad classification utilized in this study, it was believed that 

single band differencing would be optimal for detecting significant forest cover changes. 

The change detection accuracy assessments produced definitive results that enabled the 

best subsequent image classifications. 

This study introduced a new principal component-based change detection 

technique. Each of the 10 spectral and derivative bands from the late summer 2011 

image were differenced from those same bands in 2006 and a principal components 

analysis was performed on the resultant 10-band difference image. The intention with 
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this methodology was to ideally capture as much of the change variation contained within 

those 10 separate bands into a single band, PCI, as possible. Although this method did 

not produce the highest accuracies, its results were intriguing nonetheless. At a class-

specific change threshold of 2 SD, PCI detected the most change out of any of the 

derivative bands (TCI, 2, 3, and NDVI) and as a result the most correctly classified 

change as well. However, in terms of omission errors, interestingly enough, it performed 

amongst the poorest of all 11 bands tested. In terms of overall performance, as estimated 

by Kappa, it notably outperformed NDVI, TC2 and raw bands 1-4. A qualitative, visual 

assessment of its change detection results reveals perhaps the most valuable finding. 

Although PCI clearly fell short in identifying visibly distinct forest changes (clear cuts), 

it identified a number of other areas where more subtle forest changes occurred that most 

other bands failed to detect. With no ground information on what these changes actually 

represented, it is difficult to definitively state what occurred between 2006 and 2011 in 

these areas, but an educated visual approximation suggests that these areas underwent 

selective harvesting. That is, forested areas that were not clear cut but perhaps 

experienced a thinning process, resulting in density, basal area, and even species 

composition change were identified via PCI and not in others. By virtue of the principal 

components analysis process, PCI likely suffered (or perhaps benefitted, depending on 

the desired change type detection) from the amount of noise resulting from the inclusion 

of the entire range of spectral and derivative influence. In reducing the dimensionality of 

the 10 bands, it is entirely possible that starkly contrasting value changes may have 

cancelled one another out, resulting in a greater influence to those bands whose changes 

were more subtle. For instance, if a clear cut is indicated by a great increase in TC3 and 
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a great decrease in NDVI, these differences may be lost. Perhaps PC2 or PC 3 might 

highlight some additional useful information absent in PCI. 

Among all of the spectral and derivative bands tested at a change threshold of 2 

SD, band 7 had the best overall change detection performance, with band 5 coming in at a 

close second. Overall performance was judged in two primary ways: Kappa and the 

tradeoff between change area user's and producer's accuracies. Kappa, being a single 

statistic, is relatively easy to compare, with band 7 having a higher Kappa than any other 

band. Change user's and producer's accuracies, however, are a bit more difficult. A 

judgment must be made between which is given a greater preference. Given the nature of 

the change-area classification method being used subsequent to the change detection, it 

was believed that a higher producer's accuracy (least errors of omission) was preferable. 

Accordingly, band 7 additionally had the highest producer's accuracy percentage. 

Band 7 was selected for further analysis. Because its user's accuracy was higher 

than its producer's accuracy (more omission error than commission), it was thought that 

perhaps 2 SD was too large of a threshold. Accordingly, change thresholds were tested at 

intervals of 0.25 SD between 1 and 2. With almost equal, but slightly higher producer's 

accuracies (and the highest Kappa value), 1.75 SD was chosen as the best threshold for 

further use in classifying each interval back in time. 

Interestingly, the change detection accuracies in previous intervals decline from 

that found in the 2006-2011 interval. While the range of Kappa values does not fall too 

far below 0.6 (2006-2011 Kappa 0.744), the tradeoff between user's and producer's 

accuracies are of particular interest. The tradeoff between user's and producer's 

accuracies for change area detection can be seen as over- or under-estimations of overall 
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change detection. With a very high change user's accuracy and low change producer's 

accuracy, it can be assumed that the model is greatly underestimating change areas. 

Conversely, high change producer's accuracies and low change user's accuracies suggest 

overestimation of change. In general, it would be desirable for these values to be equally 

high, but for the purpose of this study, as stated earlier, preference is given to slightly 

higher producer's accuracies — leaning towards overestimation, rather than 

underestimation of change. As a result, we see that the 2006-2011 and 2001-2006 

intervals are the only ones with desirable outcomes. For the other three intervals, the 

user's accuracies are significantly higher than the producer's accuracies, suggesting 

perhaps significant underestimation of change detection. This fact will be particularly 

important to keep in mind when analyzing the applied data and viewing the actual forest 

cover change totals for these intervals. 

Such a decrease in change detection accuracy, to some extent, can be expected of 

the methodology used in this study. The explanation is as follows. The 2006-2011 

interval change detection performed well, but certainly not perfectly. In fact, a 77.68% 

producer's accuracy suggests that as much as 22.32% of the change went undetected, 

even in this most accurate interval. Accordingly, only those areas classified as change 

were subsequently classified in terms of their 2006 land cover, as suggested by the C-

CAP protocol. The 22.32% of change area that was not classified as such remained 

classified as its 2011 land cover, even though on the ground it most likely changed. 

Given the fact that change thresholds are determined on a class-specific basis, the 

misclassification of that 22.32% likely decreased the accuracy of the overall change mean 

and standard deviation values for the previous time interval. The change detection for 
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2001-2006, then, would suffer from this error. This process is repeated for each interval 

of interest ultimately leading to a compilation of error that, expectedly, results in steadily 

decreasing change detection accuracies. It is believed that in using such a change 

detection and classification methodology, these errors are unavoidable. Additionally, 

changes in forest harvesting practices can greatly hamper the model's ability to accurately 

detect change. If, for example, clear cutting was the harvesting practice of choice 

between 2001 and 2011 and selecting harvesting reigned supreme in previous years, the 

same change detection band and threshold values may no longer be reliable. 

Forest Cover Change 

Although this study was largely an exploration in remote sensing methods, the 

importance of applying these methods to specific, real-world phenomena should not be 

understated. The primary application of interest revolved around detecting and 

classifying changes in the forested environments of a two-county area in northeastern 

Oregon. The results highlight predominant trends in overall and ownership-specific 

changes in total forested area throughout this region over a 25-year time span at 5-year 

intervals. From this information two key indicators of forest management can be 

gleaned: forest harvesting and forest regeneration. Again, it should be reiterated that 

while many land cover changes may have occurred in this region beyond simple forest 

and non-forest classifications, the motivation for this study was to highlight changes 

specific to forested environments. These changes should be viewed, however, through 

the lens of the resultant single time land cover and change detection accuracies. As a 
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result, they should be taken not as absolute figures, but of estimations produced through a 

very specific series of methodological procedures. 

Three predominant trends in forest harvesting practices emerge. The first relates 

to overall forest change, and the latter two revolve around ownership-specific trends. In 

terms of overall change, we see that the greatest amount of forest removal occurred in the 

most recent interval, 2006-2011. In total, 9,227 ha of forest were removed. This total 

decreases almost perfectly linearly to 1996-2001 where an estimated 2,127 ha of forest 

was removed. This total then climbs back up to a plateau for the intervals of 1986-1991 

and 1991-1996 where 8,311 ha and 8,394 ha were removed, respectively. If we refer to 

an earlier discussion of change detection accuracies, however, we can clearly see how 

these figures may potentially be significantly higher in reality, as underestimation is a 

certain possibility during these intervals. With a change producer's accuracy of 56.74% 

between 1986 and 1991, it could be said that there was a 43.26% underestimation of total 

change. Making the potentially naive assumption that all of this underestimation should 

have been classified as forest to non-forest change (harvesting), the "real" total could be 

upwards of 14,000 ha. To make this assumption, however, would do a great disservice to 

the nature of the remote sensing analysis at hand and should, as a result, be only taken as 

pure speculation. 

In addition to the overall forest harvesting trends, two ownership-specific trends 

emerge: (1) an increase in private industrial harvesting, and (2) an initial decrease in 

public land harvesting followed by a slower increase from 1986-2011. These trends are 

likely the result of a variety of factors. Speculation into the social, economic, and 

political mechanisms at work that have resulted in this shift from predominantly public 
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land harvesting to primarily private industrial warrants and entire geographic study in and 

of itself. As these subject matter-specific phenomena are not the primary motivation for 

this particular study, they will be largely left as fodder for further exploration. One 

important geospatial factor that is immediately relevant, however, is the fact that all 

timberlands are not equally harvestable. The ability to harvest timber from a given 

location in a forest depends primarily on three factors: (1) accessibility, (2) topography, 

and (3) rules and regulations. Accessibility is simply the ability for a logger to reach a 

given plot of timber - a factor that is controlled by the specific locations and densities of 

the forest road network. Closely related to accessibility is the quality of the terrain, or 

topography, of the timberlands. Some areas are simply too steep or otherwise impeded 

by natural, geologic features to harvest timber. And lastly, there are a variety of 

legislative and regulatory road blocks to a variety of logging operations, particularly 

relating to the preservation of wilderness and protection of endangered species. For 

instance, riparian environments are often protected against logging due to their 

importance in the preservation of certain fish species that could be harmed by increased 

runoff and/or other industrial pollutants thought to be caused by logging operations. 

Taking all of these factors together, a scenario can readily be imagined wherein private 

industrial timberlands, which tend to be on lower-lying elevations with less dramatic 

topography, having higher road densities and fewer regulatory impediments, are simply 

more harvestable than, for example, public lands. Accordingly, the comparative, 

ownership-specific trends that emerge in this study should be taken with the 

understanding that not all lands are equally harvestable. 
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Fortunately, there is an extant dataset that enables the comparison of ground data 

to the remote sensing estimates found in this study. The Oregon Department of Forestry 

collects information on an annual basis regarding forest management practices. One of 

the metrics that they collect is total timber board footage harvested, broken down by 

ownership class. Temporally, this information coincides nicely with the present study, 

being publicly and freely available for download from 1986-2010. The results of annual 

board footage harvested by ownership class can be seen in Figure 30. As can clearly be 

seen when comparing this study's results to the data shown below, there is a fair amount 

of disagreement. According to this information, public land harvesting has fairly 

precipitously declined since 1986 and has failed to recoup. Private industrial activity, 

however, appears to have maintained a fairly steady harvesting amount throughout the 25 

year span. 

Forest Harvesting (1986-2010): 
Oregon Department of Forestry Data 

>- Private 1 adutml 
F-PrivateNM-ltduoal 

Figure 30. Forest harvesting data in board footage from Oregon Department of Forestry, 
1986-2010 
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There are an exceedingly large number of possible explanations for these 

discrepancies, only a few of which will be discussed. First and foremost, it should be 

reiterated that the remote sensing totals should be taken as estimations perceived through 

the lens of the reported accuracies. Underestimation in early time intervals may account 

for some of these differences. Secondly, although certainly linked, board footage and 

total area removed are inherently two separate measures. Board footage takes not only 

area harvested into account, but a number of more specific tree-level variables, such as 

species, diameter and length. Additionally, board footage is a total measure of harvesting 

across a variety of management practices. This study was limited to identifying clear 

cutting operations only. Partial cuts and selective harvesting operations are less readily 

identified using Landsat imagery and were not feasible to explore in detail in this study, 

but are certainly included in board footage totals. Lastly, the ownership data used in this 

study were from 2011 tax parcel data. It was assumed that general ownership class has 

not changed in the past 25 years. This assumption, although significant, is believed to be 

largely valid in that public lands have been fairly stagnant in terms of their ownership and 

extent. Additionally, although there have been major changes in the specific companies, 

the private industrial land has primarily been exchanged from one logging company to 

the next, scarcely being purchased by non-industrial land owners or public entities. 

However, the ownership definitions made by the Oregon Department of Forestry may 

differ slightly from those used in this study, where perhaps the lines between private 

industrial and private non-industrial become slightly blurred. 
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APPENDIX A 

UNION AND BAKER COUNTY LAND OWNERSHIP TOTALS 
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APPENDIX B 

CHANGE DETECTION ACCURACY ASSESSMENTS BY BAND 

Band 1 (Blue) 

Reference 

1,007.90 
Sum Area 
Producer 

1,944.63 
48.17% 

14,944.12 
98.27% 

Sum Area User 
1,194.97 78.39% 
15,693.78 93.58% 
16,888.74 

1 92.50% 
Kappa = 0.558 

Band 2 (Green) 

Reference 

210.36 
970.00 

Sum Area 
Producer 

1,944.63 
50.12% 

14,944.12 
98.59% 

Sum Area User 
1,184.98 82.25% 
15,703.76 93.82% 
16,888.74 

93.01% 
Kappa = 0.587 

Band 3 (Red) 

215.61 
946.95 

Sum Area 
Producer 

1,944.63 
51.30% 

14,944.12 
98.56% 

Sum Area User 
1,213.29 82.23% 
15,675.46 93.%% 
16,888.74 

I ». %% 
Kappa = 0.596 
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Band 4 (Near Infrared) 

Reference 

416.02 

Sum Area 
Producer 

1,944.63 
1.52% 

Sum Area User 
445.54 6.63% 

16,443.20 88.35% 
14,944.12 16,888.74 
97.22% |m2P% 

Kappa = -0.019 

Band 5 (Shortwave Infrared 1) 

Reference 

339.81 
I 

532.47 
Sum Area 
Producer 

1,944.63 
72.62% 

Sum Area User 
1,751.97 80.60% 
15,136.78 96.48% 

14,944.12 16,888.74 
97.73% 94.84% 

Kappa = 0.735 

Band 7 (Shortwave Infrared 2) 

Reference 

348.30 

Sum Area 
Producer 

1,944.63 
73.22% 

Sum Area User 
1,772.07 80.34% 
15,116.67 96.55% 

14,944.12 16,888.74 
97.67% 

Kappa = 0.737 

Normalized Difference Vegetation Index (NDVI) 

Reference 

Sum Area 
Producer 

1,944.63 
60.18% 

14,944.12 
98.48% 

Sum Area User 
1397.63 83.74% 
15,491.11 95.00% 
16,888.74 

\wm% 
Kappa = 0.668 
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Principal Components Analysis (PC 1) 

Reference 

413.13 

Sum Area 
Producer 

1,944.63 
67.33% 

14,944.12 
97.24% 

Sum Area User 
1,722.41 76.01% 
15,166.33 95.81% 
16,888.74 

Kappa = 0.679 

Tasseled Cap Brightness (TC 1) 

Reference 

263.09 
704.32 

Sum Area 
Producer 

1,944.63 
63.78% 

14,944.12 
98.24% 

Sum Area 
1,503.40 
15385.34 
16,888.74 

User 
82.50% 
95.42% 

94.27% 
Kappa = 0.688 

Tasseled Cap Greenness (TC 2) 

Reference 

967.91 
1,737.42 

Sum Area 
Producer 

1,944.63 
10.66% 

14,944.12 
93.52% 

Sum Area User 
1,175.12 17.63% 
15,713.63 88.94% 
16,888.74 

I 
Kappa = 0.050 

Tasseled Cap Wetness (TC 3) 
Reference 

663.99 
Sum Area 
Producer 

1,944.63 
65.85% 

14,944.12 
97.71% 

Sum Area 
1,622.80 
15,265.94 
16,888.74 

User 
78.91% 
95.65% 

Kappa = 0.685 
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APPENDIX C 

BAND 7 CHANGE DETECTION ACCURACY ASSESSMENTS BY 
THRESHOLD 

1.00 Standard Deviation 

1.795.43 

Sum Area 
Producer 

1,944.63 
88.91% 

14,944.12 
87.99% 

I Sum Area User 
3,524.37 49.06% 
13,364.37 98.39% 
16,888.74 

1 88.09% 
Kappa = 0.568 

1.25 Standard Deviations 

Reference 

1,086.40 
274.48 

Sum Area 
Producer 

1,944.63 
85.89% 

14,944.12 
92.73% 

Sum Area 
2,756.55 
14,132.19 
16,888.74 

User 
60.59% 
98.06% 

HlJ4% 
Kappa = 0.665 

1.50 Standard Deviations 

345.73 
Sum Area 
Producer 

1,944.63 
82.22% 

14,944.12 
95.06% 

I Sum Area User 
2337.20 68.41% 
14,551.54 97.62% 
16,888.74 

[ 93.58% 
Kappa = 0.710 
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1.75 Standard Deviations 

Reference 

389.74 
Sum Area 
Producer 

1,746.13 
77.68% 

15,142.62 
97.25% 

Sinn Area 
1,772.07 
15,116.67 
16,888.74 

User 
76.54% 
97.42% 

Kappa = 0.744 

2.00 Standard Deviations 

Reference 

348.30 

Sum Area 
Producer 

1,944.63 
73.22% 

14,944.12 
97.67% 

Sum Area 
1,772.07 
15,116.67 
16,888.74 

User 
80.34% 
96.55% 

94,85% 
Kappa = 0.737 
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APPENDIX D 

LAND COVER AREA TOTALS 

Total Area In Year (ha) 

1986 1991 1996 2001 2006 2011 
Cropland 

Developed 
Forest 

Grassland 
Shrub/Scrub 

Water 

74,047.59 
35,187.93 

436,921. H 

71,916.39j .„69v46L28 
34,711.65{ 34,18434 

68,102.37 63,089.10 58,111.92 Cropland 
Developed 

Forest 
Grassland 

Shrub/Scrub 
Water 

74,047.59 
35,187.93 

436,921. H 

71,916.39j .„69v46L28 
34,711.65{ 34,18434 33,833.70; 33,319.62 33,745.95 

Cropland 
Developed 

Forest 
Grassland 

Shrub/Scrub 
Water 

74,047.59 
35,187.93 

436,921. H 431,121.24; 423,811.62 425,611.80! 423,491.22 418,423.95 

Cropland 
Developed 

Forest 
Grassland 

Shrub/Scrub 
Water 

237,302.10 243,075.24 250,282.44 248,088.33; 252,782.19 260,583.39 

Cropland 
Developed 

Forest 
Grassland 

Shrub/Scrub 
Water 

365,914.44 368,560.44) 371,649.78 373,690.89 376,799.85 378,588.51 

Cropland 
Developed 

Forest 
Grassland 

Shrub/Scrub 
Water 4,507.83 4,496.04; 4,491.54 4,553.91 4399.02 4,427.28 

Land Cover Type 

Area Increase or Decrease by Interval (ha) 

1986-1991 1991-1996 1996-2001 2001-2006 2006-2011 
Cropland -2,131.20 -2,455.11 -1358.91 -5,013.27 -4,977.18 

Developed -476.28 -527.31 -350.64 -514.08 426.33 
Forest -5,799.87 i -7309.62 1,800.18 -2,120.58 -5,067.27 

Grassland 5,773.14 7,207.20 -2,194.11 4,693.86 7,801.20 
Shrub/Scrub 2,646.00 3,089.34 2,041.11 3,108.96 1,788.66 

Water -11.79 -4.50i 62.37 -154.89 28.26 
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