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ABSTRACT 

CALIBRATION AND CHARACTERIZATION OF A LOW-COST WIRELESS SENSOR 

FOR APPLICATIONS IN CNC END MILLING 

By 

Andrew James Harmon 

University of New Hampshire, May 2012 

Degree Advisor: Barry Fussell 

Central to creating a smart machining system is the challenge of collecting detailed 

information about the milling process at the tool tip. This work discusses the design, static 

calibration, dynamic characterization, and implementation of a low-cost wireless sensor for end-

milling. Our novel strain-based sensor, called the Smart Tool, is shown to perform well in a 

laboratory setting with accuracy and dynamic behavior comparable to that of the Kistler 3-axis 

force dynamometer. The Smart Tool is capable of measuring static loads with a total 

measurement uncertainty of less than 3 percent full scale, but has a natural frequency of 

approximately 630 Hz. For this reason, signal conditioning of the strain signal is required when 

vibrations are large. 

Several techniques in signal processing are investigated to show that the sensor is useful 

for force estimation, chatter prediction, force model calibration, and dynamic parameter 

identification. The presented techniques include a discussion of the Kalman filter and Weiner 

filter for signal enhancement, Linear Predictive Coding for system identification, model-based 

filtering for force estimation, and sub-optimal linear filters for removing forced vibrations. 

xx 



CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

The fundamental purpose of our work in the Design and Manufacturing Laboratory at 

UNH is to use engineering to make NC machining smarter. While the required technology to 

implement advanced controls in manufacturing has been available for decades, the machine shop 

industry has remained relatively static. Very little technology has been implemented in industry to 

automatically control part quality and production efficiency. Advances in manufacturing 

technology are of critical importance today because smart machining holds the promise of 

helping American companies stay competitive in a global economy. 

1.1.1 The Importance of Making Observations 

A smart machining system is characterized by its ability to operate and adapt to meet 

process objectives under uncertainty. Such a smart machining system would be capable of 

performing real-time Tool Condition Monitoring (TCM); it would make in-situ adjustments to 

feedrates and spindle speeds for process improvement subject to cost and objective functions, and 

it would be capable of monitoring dynamic stability for chatter prediction and control. 

Central to performing these tasks, however, is the necessity to observe the milling 

process by making measurements and collecting data. Historically, the ability to record in-process 

data at the tool tip has been limited by the sensor location. Often, these sensors are located at 

significant physical distance from the cutting process [2], Since most process objectives (such as 

tool deflection, chip thickness, limits for tool breakage, etc) can be directly related to cutting 
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force, determination of the cutting forces is of particular interest to developing an intelligent 

controller for CNC milling. Measuring instantaneous milling forces is a difficult problem, 

however, because the sensor must be non-invasive. 

We have developed a novel, strain-based wireless sensor which we refer to as the "Smart 

Tool" (See Figure 1.1). Strain gages mounted on the tool holder body produce a signal 

proportional to cutting force when measured statically. Since milling forces are inherently non-

static, the system dynamics must be carefully considered for accurate physical interpretation of 

the strain signal. In most cases, this signal can be used to estimate force; in situations where there 

is too much vibration to estimate force, the signal provides a means for investigating tool 

deflection, dynamic parameter identification, and potentially the onset of chatter. 

Figure 1,1 - Our Smart Tool sensor, version 10 

1.2 Thesis Overview 

Chapter 2 discusses the 10lh generation design of our low-cost, wireless "Smart Tool". 

Design criteria are developed, and specifications for the selected design are presented in detail. 

Chapter 2 addresses strain gage selection, placement, and the sensor's mechanical theory of 
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operation. The analytical formulae for bending sensitivity and a comprehensive cross-sensitivity 

analysis are also presented. Chapter 2 concludes with a discussion of the data transmission board 

and conditioning electronics. 

Chapter 3 presents results of the static calibration used to determine the sensor's static 

sensitivity and cross-sensitivities. These empirical values are necessary to convert the digital 

strain data to force. The cross-sensitivities are used to develop static confidence intervals for 

force measurements. This establishes a baseline for evaluating total measurement uncertainty. 

Chapter 4 presents a dynamic characterization of the end-milling system. Open-loop 

poles of the static transfer function are determined experimentally, and variation in the damping 

ratio and natural frequency are investigated as a function of spindle speed. The problem of 

dynamic parameter identification is presented as a way of dealing with stochastic variation in 

system parameters. 

Chapter 5 presents an experimental validation of our sensor by comparing Smart Tool 

v. 10 to a Kistler 3-axis force dynamometer for a variety of cutting conditions. We show that both 

sensors accurately measure force when vibrations are small. The dynamic effects of the sensors' 

output signals are investigated when vibrations are significant. This chapter leaves us with the 

critical question, "How do we interpret the output of our sensor when the measurement is 

corrupted by system dynamics?" Answers to this question are provided in Chapter 6. 

Chapter 6 is a survey of applications in signal processing that can be useful in 

interpreting the output signal of the Smart Tool. We present a simple algorithm for enhanced 

chatter frequency detection, and various filters are developed to remove unwanted system 

dynamics. Linear Predictive Coding (LPC) is shown to be useful for dynamic parameter 

estimation. 

Chapter 7 provides conclusions for this work by thinking about how the sensor could be 

implemented for real-time control. Suggested direction for future work is also presented. 
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CHAPTER 2 

WIRELESS SENSOR DESIGN 

2.1 Introduction 

The Smart Tool Project is a research initiative at the University of New Hampshire's 

Design and Manufacturing Laboratory focused on developing low-cost, wireless sensors for 

applications in Smart Machining [2, 6, 14]. Previous efforts in this research initiative have 

involved the design of sensors for high-bandwidth torsion data, and sensors for chatter detection 

[2, 6, 14]. Smart Tool v. 10 is the result of a major redesign effort to eliminate cross-sensitivities 

to unwanted components of strain. This chapter outlines the design requirements and design 

specifications of Smart Tool v. 10. 

2.2 Project Statement 

The objective of the Smart Tool Project v. 10 is to design, build, and analyze a wireless 

strain sensor for CNC end milling that is: 

• Robust 

• Minimally invasive to the machining environment 

• Sufficiently sensitive and accurate 

• Stable with respect to time, temperature, and light 

• Less expensive than industry alternatives 

The successful design must accurately resolve its measurement from a combined loading scenario 

while remaining insensitive to unwanted components of strain. 
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2.3 Sensor Design Criteria 

The qualitative design objectives delineated in the project statement are meant to ensure 

that the device is practical in a machining environment and useful as a laboratory instrument. To 

be useful, the sensor must lend itself to material characterization, force model calibration, chatter 

detection, and development of a real-time quality controller. A specific list of design criteria is 

presented below in Table 2.1: 

Table 2.1 - Sensor Design Criteria 

Category Attribute Specification 

Physical Requirements Sensor Capability 
Measure instantaneous force, or strain 
signal adequate for state estimation 

Functional Performance Size Limitations 
Overall length < 25.4 cm (10 in) 
Max diameter < than 15.24 cm (6 in) 

Resolution Minimum resolution 4.5 N (1 lbf) 

Span 1330 N (300 lbf) at tool radius 

Data Collection Use a wireless protocol 

DC Stability 
DC drift less than 3 percent full scale 
with respect to time, temperature, and 
humidity 

Cross-Sensitivity 
Bending crosstalk < 1 % full scale 
Torsional crosstalk < 1% full scale 

Sampling Rate 3 kHz minimum sampling rate 

Precision and Repeatability 
Identical loads must correspond to 
99% repeatability 

Linearity Linear over calibrated range 

Hysteresis Less than 1 percent full scale 

Total Error Less than 5 percent full scale 

Operating Conditions Spindle Speed 0 to 7500 RPM 

Process Factors 
Sensor not affected by cutting fluid, 
temperature, and metal chips 

Human Factors User Controls Intuitive and labeled 

Aesthetic Strain Display 8 LED linear display 

Economic Cost Less than $2,000 

Safety Structural Integrity Safe to operate at all spindle speeds 
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2.4 Overview of Smart Tool v. 10 

A successful sensor design was chosen from several candidate designs. A summary of 

this design is presented below. The protocol for construction of Smart Tool v. 10 can be found in 

Appendix B. 

2.4.1 Macro-view Theory of Operation 

Consider a combined load (bending and torsion) applied to the sensor as a result of an 

arbitrary milling operation: The net force acting on the end mill creates a stress field of normal 

and shear stresses through the tool holder body. This stress distribution leads to a strain 

distribution based on Hooke's Law and resulting tool deflection. Strain gages are carefully placed 

on the tool holder body to resolve the bending strains in the tangential and radial directions. 

The voltage output from the strain gage Wheatstone bridge is proportional to strain, and 

this voltage is conditioned by an on-board instrumentation amplifier. The analog signal is next 

converted into a 16-bit digital signal and transmitted at 10.24 kHz via Bluetooth to a host PC over 

a serial connection. Currently, the wireless communication system is only capable of sampling 

and transmitting one channel of data. This means that while the sensor is outfitted with both 

tangential and radial strain gages, only one signal can be measured at any given time. A two-

channel serial communication board should be developed as future work. 

Figure 2.1 - Overview of the data transmission sequence 
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2.5 Strain Gage Selection 

Semiconductor strain gages were chosen in this application because of their large gage 

factor, high bandwidth, low power consumption, and small physical footprint [5], Careful strain 

gage placement allows the sensor to isolate bending strains associated with the tangential force 

from radial forces and torsion. Similarly, a second gage can isolate the strain effects from radial 

forces. The semiconductor strain gages are organized in a Wheatstone bridge and populated on a 

printed circuit board. To measure bending strains while mechanically avoiding other unwanted 

components of strain, the semiconductor strain gages are mounted orthogonally on the tool holder 

body near the tapered collet. Our semiconductor strain gages are highly sensitive with a nominal 

resistance of 350 ohms and a gage factor of approximately 140. Such a high sensitivity allows the 

sensor to accurately resolve strains on the order of 10"7. Furthermore, the semiconductor gages in 

each bridge are thermally matched to have the same coefficient of thermal expansion. By 

matching the coefficients of thermal expansion, and by placing all arms of the bridge in close 

proximity, the sensor is designed to minimize any systematic bias created as a result of thermal 

gradients across the tool holder body. 

Figure 2.2 - Schematic of a semiconductor Wheatstone bridge purchased from Suprock Technologies 

2.6 Orthogonal Decomposition of Strain 

The sensor's theory of operation requires an orthogonal decomposition of tool deflection 

(i.e. strain) to reconstruct the net cutting force. Consider a single-tooth flat end mill removing 

material at a constant axial depth. The net force acting on the sensor is idealized as a planar force 
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figure(7) 
hold off 
plot(1000.*t-55,force*4.448,'color',[0.65 0.65 0.65]) 
hold on 
plot(1000.*t-55,zf2*4.448, 1 color', [0.7 0 0 . 7], 'linewidth',1) 
title('IIR Notch Filter - Zero Phase Implementation') 
xlabel('Time (ms)'); 
ylabel('Force (N)') 
xlim([0 1000*max(t)]) 
ylim([-100 120]) 
xlim([0 35]) 
legend('Measurement','IIR Filter Estimate','location','southwest') 
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Figure E.3I - IIR notch filter, zero-phase implementation 
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Useful Subroutine for Power Spectral Estimation 

This script uses Welch's Method to implement power spectral estimation. It allows the user to 
specify a data window, and to perform spectral smoothing either by band averaging, ensemble 
averaging, or a combination of the two. 

function out = ssd(data,fs,varargin) 
% Sample Spectral Density 
% 
% ssd(data,fs) 
% ssd(data,fs,varargin) 
% ssd(data,fs,'ens',n,'band',n,'method','method_name','window','window_name') 
% 

% out = ssd(data,fs,varargin) 

out = struct('Sxxf',[],'CI',[],'BF',[],'bw',[]); 

% Default Parameters 
ens = 1; 
band = 1; 
method = 'fft'; 
window = 'boxcar'; 
plotting = 'half'; 

% Read in Additional Input Arguments 
for k=l:length(varargin); 

switch lower(varargin{k}) 

case{'ens'} 
if rem(varargin{k+1},1)~=0 

error('ensembles to average must be an integer'); 
end 
ens = varargin{k+1}; 

case)'band'} 
if rem(vararginfk+1},1)~=0 

error('data points to average per band must be an integer'); 
end 
band = varargin!k+1}; 

case{'method'} 
method = varargin(k+1}; 

case{'window'} 
window = varargin{k+1}; 

case)'whole' } 
plotting = 'whole'; 

end 

end 

% Degrees of Freedom 
DOF = 2*ens*band; 

% Sampling Interval 
delta = 1/fs; 

% Make Sure that "data" is a Row Vector 
[rows,cols] = size(data); 
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if rows > cols 
data = data'; 

end 

% COMPUTE THE SAMPLE SPECTRAL DENSITY BY THE APPROPRIATE METHOD 
switch(lower(method)) 

casel'fft'} % Cooley-Tukey Method (by direct Fourier Transform) 

% Divide the Record Into Ensembles 
a = length(data); % Number of observations 
b = ens; % Number of ensembles to create 
l_ens = (a-rem(a,b))/ens; % Length of each ensemble row vector 

% Initialize the Sub-Record Vector 
sub_data = zeros(b,l_ens); 

% Initialize the sub_ssd array 
sub_ssd = zeros(b,floor(l_ens/2-2)); 

% Break the Record into Sub-Records 
idx = 1; 
for i = 1:ens 

sub_data(i,:) = data(idx:idx+l_ens-l); 
idx = idx + l_ens; 

end 

% Select the right data window 
switch(lower(window)) 

easel'boxcar' } 
N = l_ens; 
w = ones(1,N); 

casej'bartlett' } 
N = l_ens; 
n = 0:N-l; 
w = (2/(N-l)).*(((N-l)/2)-abs(n-((N-l)/2))); 

case{'hanning ' } 
N = l_ens; 
w = hann(N) ' ; 

case{'hamming'} 
N = l_ens; 
w = hamming(N)'; 

case{'kaiser ' } 
N = l_ens; 
w = kaiser(N)'; 

case{'tukey'} 
N = l_ens; 
w = tukeywin(N) 

case)'blackman'} 
N = l_ens; 
w = blackman(N)'; 

end 

% COMPUTE THE SAMPLE SPECTRAL DENSITY FOR EACH SUB-RECORD 
L = N; % Length of the sub-record 
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f = linspace(1/L,(fs/2)-(1/L),floor(L/2)-2); i Frequency vector 
excluding 0, nyquist 

for i = l:ens 
% Compute the fft 
g = sub_data(i,:); % Sub-record of the time series 
G = fft((g-mean(g)).*w,L)/N; % FFT normalized by no. observations 
G_hat = G(2:(floor(L/2)-1)); % FFT from 0 to the nyquist not 

including endpoints 
A = real(G_hat); 
B = imag(G_hat); 

% Compute the sample spectral density of the sub-record 
switch(lower(plotting)) 

case{'half'} 
sub_ssd(i,:) = 2.*N.*delta.*(A.A2 + B.~2); 

case{'whole'} 
sub_ssd(i,:) = N.*delta.*(A.A2 + B.~2); 

end 
end 

% COMPUTE THE ENSEMBLE-AVERAGE SAMPLE SPECTRAL DENSITY 
ens_ssd = zeros(1,length(f)); % Initialize the vector 
for j = 1:length(f) 

ens_ssd(j) = sum(sub_ssd(:, j))/ens; % Mean value of the sub-
estimates 

end 

% BAND-AVERAGE THE ENSEMBLE-AVERAGED ESTIMATE 

% Determine the number of bands 
a = length(ens_ssd); % Length of Ensemble-Averaged SSD 
b = band; % Number of points per band 
n_bands = (a-rem(a,b))/band; % Number of bands 

% Define the band-averaged sample spectral density 
band_ssd = zeros(1,n_bands); % Initialize vector 
f2 = zeros(1,n_bands); 
idx = 1; % Starting index 
for n = 1:n_bands 

band_ssd(n) = sum(ens_ssd(idx:idx+band-1))/band; 
f2(n) = (f(idx)+f(idx+band-1))/2; 
idx = idx+band; 

end 

% Boost the Smoothed Estimate based on Windowing Error 
num = var(data); 
den = sum(band_ssd)*(f2(2)-f2(1)); 
BF = num/den; 

% Return the Smoothed Estimate 
s_bar = BF*band_ssd; 

case('prepost'} % Pre-whiten, Post-color 

% Compute the First Difference 
y = diffl(data); 

% Divide the Record Into Ensembles 
a = length(y); % Number 
b = ens; % Number 
1 ens = (a-rem(a,b))/ens; % Length 

of observations 
of ensembles to create 
of each ensemble row vector 
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% Initialize the Sub-Record Vectors 
suby = zeros(b,l_ens); 

% Break the Records into Sub-Records 
idx = 1; 
for i = l:ens 

suby(i,:) = y(idx:idx+l_ens-l); 
idx = idx + l_ens; 

end 

%Compute the Fourier Transform of x(t) and y(t) 
delta = 1/fs; 
N = l_ens; % Number of observations per 

sub-record 
L = N; % Length of the sub-record 
f = linspace(1/L, (fs/2)-(1/L),floor(L/2)-2); % Frequency vector 

excluding 0, nyquist 

% Initialize the auto-spectral density array 
Syy = zeros(b,floor((L/2)-2)); 

for n = 1:ens 

% Compute the Fourier Coefficients 
yn = suby(n,:); % Sub-record of the time series y(t) 

Gy = fft(yn-mean(yn),L)/N; % FFT normalized by no. observations 
Gy_hat = Gy(2:floor(L/2)-1); % FFT from 0 to the nyquist not 

including endpoints 

Ay = real(Gy_hat); 
By = imag(Gy_hat); 

% Compute the Auto-Spectral Density of the Filtered t.s. 
Syy(n,:) = 2.*N.*delta.*(Ay."2 + By.A2); 

end 

% Compute the Ensemble-Averages 
Syy_ens = zeros(1,length(f)); % Initialize the vector 

for j = 1:length(f) 
Syy_ens(j) = sum(Syy(:,j))/ens; % Mean value of the sub-estimates 

end 

% Band-Average the Esemble-Averared Estimates 

% Determine the number of bands 
a = length (Syy_ens); % Length of Ensemble-Averaged SSD 
b = band; % Number of points per band 
n_bands = (a-rem(a,b))/band; % Number of bands 

% Define the band-averaged Spectral Densities 
Syy_band = zeros(1,n_bands); % Initialize the vector 
f2 = zeros(1,n_bands); % Initialize frequency vector 

idx =1; % Starting index 
for n = l:n_bands 

Syy_band(n) = sum (Syy_ens(idx:idx+band-1))/band; 
f2(n) = (f(idx)+f(idx+band-1))/2; 
idx = idx+band; 

end 
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% Smooted Estimates of the 1-Sided Spectrum 
Syy = Syy_band; 

% Post-Color the White Spectrum 
num. = Syy; 
den = 4.*sin(pi.*f2.*delta).A2; 
s_bar = num./den; 
BF = den; 

end 

% Confidence Interval 
[xl x2] = chi2('two',DOF,'percent95); 
CI = [D0F/x2, DOF/xl]; 

% Return Parameters 
switch(lower(plotting)) 

case{'half'} 
out.f = f2; 
out.bw = f2 (2)-f2 (1); 
out.Sxx = s_bar; 
out.CI = CI; 
out.BF = BF; 

case{'whole'} 
delf = f2(2)-f2(1); 
N = 2*length(s_bar)+1; 
fs = delf*N; 
m = 0 : N ; 
f = m./N.*fs; 
out.f = f; 
out.bw = f2(2)-f2 (1); 
out.Sxx = [NaN s_bar 
out.CI = CI; 
out.BF = BF; 

end 

Smoothed Frequency Vector 
Bandwidth 
Sample Spectral Density 
Confidence Interval 
Boost Factor/ Filter Spectrum 

% Smoothed Frequency Vector 
% Bandwidth 
NaN fliplr(s_bar)]; % Sample Spectral Density 
% Confidence Interval 
% Boost Factor/ Filter Spectrum 
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