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ABSTRACT 

CALIBRATION AND CHARACTERIZATION OF A LOW-COST WIRELESS SENSOR 

FOR APPLICATIONS IN CNC END MILLING 

By 

Andrew James Harmon 

University of New Hampshire, May 2012 

Degree Advisor: Barry Fussell 

Central to creating a smart machining system is the challenge of collecting detailed 

information about the milling process at the tool tip. This work discusses the design, static 

calibration, dynamic characterization, and implementation of a low-cost wireless sensor for end-

milling. Our novel strain-based sensor, called the Smart Tool, is shown to perform well in a 

laboratory setting with accuracy and dynamic behavior comparable to that of the Kistler 3-axis 

force dynamometer. The Smart Tool is capable of measuring static loads with a total 

measurement uncertainty of less than 3 percent full scale, but has a natural frequency of 

approximately 630 Hz. For this reason, signal conditioning of the strain signal is required when 

vibrations are large. 

Several techniques in signal processing are investigated to show that the sensor is useful 

for force estimation, chatter prediction, force model calibration, and dynamic parameter 

identification. The presented techniques include a discussion of the Kalman filter and Weiner 

filter for signal enhancement, Linear Predictive Coding for system identification, model-based 

filtering for force estimation, and sub-optimal linear filters for removing forced vibrations. 

xx 



CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

The fundamental purpose of our work in the Design and Manufacturing Laboratory at 

UNH is to use engineering to make NC machining smarter. While the required technology to 

implement advanced controls in manufacturing has been available for decades, the machine shop 

industry has remained relatively static. Very little technology has been implemented in industry to 

automatically control part quality and production efficiency. Advances in manufacturing 

technology are of critical importance today because smart machining holds the promise of 

helping American companies stay competitive in a global economy. 

1.1.1 The Importance of Making Observations 

A smart machining system is characterized by its ability to operate and adapt to meet 

process objectives under uncertainty. Such a smart machining system would be capable of 

performing real-time Tool Condition Monitoring (TCM); it would make in-situ adjustments to 

feedrates and spindle speeds for process improvement subject to cost and objective functions, and 

it would be capable of monitoring dynamic stability for chatter prediction and control. 

Central to performing these tasks, however, is the necessity to observe the milling 

process by making measurements and collecting data. Historically, the ability to record in-process 

data at the tool tip has been limited by the sensor location. Often, these sensors are located at 

significant physical distance from the cutting process [2], Since most process objectives (such as 

tool deflection, chip thickness, limits for tool breakage, etc) can be directly related to cutting 
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force, determination of the cutting forces is of particular interest to developing an intelligent 

controller for CNC milling. Measuring instantaneous milling forces is a difficult problem, 

however, because the sensor must be non-invasive. 

We have developed a novel, strain-based wireless sensor which we refer to as the "Smart 

Tool" (See Figure 1.1). Strain gages mounted on the tool holder body produce a signal 

proportional to cutting force when measured statically. Since milling forces are inherently non-

static, the system dynamics must be carefully considered for accurate physical interpretation of 

the strain signal. In most cases, this signal can be used to estimate force; in situations where there 

is too much vibration to estimate force, the signal provides a means for investigating tool 

deflection, dynamic parameter identification, and potentially the onset of chatter. 

Figure 1,1 - Our Smart Tool sensor, version 10 

1.2 Thesis Overview 

Chapter 2 discusses the 10lh generation design of our low-cost, wireless "Smart Tool". 

Design criteria are developed, and specifications for the selected design are presented in detail. 

Chapter 2 addresses strain gage selection, placement, and the sensor's mechanical theory of 

2 



operation. The analytical formulae for bending sensitivity and a comprehensive cross-sensitivity 

analysis are also presented. Chapter 2 concludes with a discussion of the data transmission board 

and conditioning electronics. 

Chapter 3 presents results of the static calibration used to determine the sensor's static 

sensitivity and cross-sensitivities. These empirical values are necessary to convert the digital 

strain data to force. The cross-sensitivities are used to develop static confidence intervals for 

force measurements. This establishes a baseline for evaluating total measurement uncertainty. 

Chapter 4 presents a dynamic characterization of the end-milling system. Open-loop 

poles of the static transfer function are determined experimentally, and variation in the damping 

ratio and natural frequency are investigated as a function of spindle speed. The problem of 

dynamic parameter identification is presented as a way of dealing with stochastic variation in 

system parameters. 

Chapter 5 presents an experimental validation of our sensor by comparing Smart Tool 

v. 10 to a Kistler 3-axis force dynamometer for a variety of cutting conditions. We show that both 

sensors accurately measure force when vibrations are small. The dynamic effects of the sensors' 

output signals are investigated when vibrations are significant. This chapter leaves us with the 

critical question, "How do we interpret the output of our sensor when the measurement is 

corrupted by system dynamics?" Answers to this question are provided in Chapter 6. 

Chapter 6 is a survey of applications in signal processing that can be useful in 

interpreting the output signal of the Smart Tool. We present a simple algorithm for enhanced 

chatter frequency detection, and various filters are developed to remove unwanted system 

dynamics. Linear Predictive Coding (LPC) is shown to be useful for dynamic parameter 

estimation. 

Chapter 7 provides conclusions for this work by thinking about how the sensor could be 

implemented for real-time control. Suggested direction for future work is also presented. 
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CHAPTER 2 

WIRELESS SENSOR DESIGN 

2.1 Introduction 

The Smart Tool Project is a research initiative at the University of New Hampshire's 

Design and Manufacturing Laboratory focused on developing low-cost, wireless sensors for 

applications in Smart Machining [2, 6, 14]. Previous efforts in this research initiative have 

involved the design of sensors for high-bandwidth torsion data, and sensors for chatter detection 

[2, 6, 14]. Smart Tool v. 10 is the result of a major redesign effort to eliminate cross-sensitivities 

to unwanted components of strain. This chapter outlines the design requirements and design 

specifications of Smart Tool v. 10. 

2.2 Project Statement 

The objective of the Smart Tool Project v. 10 is to design, build, and analyze a wireless 

strain sensor for CNC end milling that is: 

• Robust 

• Minimally invasive to the machining environment 

• Sufficiently sensitive and accurate 

• Stable with respect to time, temperature, and light 

• Less expensive than industry alternatives 

The successful design must accurately resolve its measurement from a combined loading scenario 

while remaining insensitive to unwanted components of strain. 
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2.3 Sensor Design Criteria 

The qualitative design objectives delineated in the project statement are meant to ensure 

that the device is practical in a machining environment and useful as a laboratory instrument. To 

be useful, the sensor must lend itself to material characterization, force model calibration, chatter 

detection, and development of a real-time quality controller. A specific list of design criteria is 

presented below in Table 2.1: 

Table 2.1 - Sensor Design Criteria 

Category Attribute Specification 

Physical Requirements Sensor Capability 
Measure instantaneous force, or strain 
signal adequate for state estimation 

Functional Performance Size Limitations 
Overall length < 25.4 cm (10 in) 
Max diameter < than 15.24 cm (6 in) 

Resolution Minimum resolution 4.5 N (1 lbf) 

Span 1330 N (300 lbf) at tool radius 

Data Collection Use a wireless protocol 

DC Stability 
DC drift less than 3 percent full scale 
with respect to time, temperature, and 
humidity 

Cross-Sensitivity 
Bending crosstalk < 1 % full scale 
Torsional crosstalk < 1% full scale 

Sampling Rate 3 kHz minimum sampling rate 

Precision and Repeatability 
Identical loads must correspond to 
99% repeatability 

Linearity Linear over calibrated range 

Hysteresis Less than 1 percent full scale 

Total Error Less than 5 percent full scale 

Operating Conditions Spindle Speed 0 to 7500 RPM 

Process Factors 
Sensor not affected by cutting fluid, 
temperature, and metal chips 

Human Factors User Controls Intuitive and labeled 

Aesthetic Strain Display 8 LED linear display 

Economic Cost Less than $2,000 

Safety Structural Integrity Safe to operate at all spindle speeds 
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2.4 Overview of Smart Tool v. 10 

A successful sensor design was chosen from several candidate designs. A summary of 

this design is presented below. The protocol for construction of Smart Tool v. 10 can be found in 

Appendix B. 

2.4.1 Macro-view Theory of Operation 

Consider a combined load (bending and torsion) applied to the sensor as a result of an 

arbitrary milling operation: The net force acting on the end mill creates a stress field of normal 

and shear stresses through the tool holder body. This stress distribution leads to a strain 

distribution based on Hooke's Law and resulting tool deflection. Strain gages are carefully placed 

on the tool holder body to resolve the bending strains in the tangential and radial directions. 

The voltage output from the strain gage Wheatstone bridge is proportional to strain, and 

this voltage is conditioned by an on-board instrumentation amplifier. The analog signal is next 

converted into a 16-bit digital signal and transmitted at 10.24 kHz via Bluetooth to a host PC over 

a serial connection. Currently, the wireless communication system is only capable of sampling 

and transmitting one channel of data. This means that while the sensor is outfitted with both 

tangential and radial strain gages, only one signal can be measured at any given time. A two-

channel serial communication board should be developed as future work. 

Figure 2.1 - Overview of the data transmission sequence 
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2.5 Strain Gage Selection 

Semiconductor strain gages were chosen in this application because of their large gage 

factor, high bandwidth, low power consumption, and small physical footprint [5], Careful strain 

gage placement allows the sensor to isolate bending strains associated with the tangential force 

from radial forces and torsion. Similarly, a second gage can isolate the strain effects from radial 

forces. The semiconductor strain gages are organized in a Wheatstone bridge and populated on a 

printed circuit board. To measure bending strains while mechanically avoiding other unwanted 

components of strain, the semiconductor strain gages are mounted orthogonally on the tool holder 

body near the tapered collet. Our semiconductor strain gages are highly sensitive with a nominal 

resistance of 350 ohms and a gage factor of approximately 140. Such a high sensitivity allows the 

sensor to accurately resolve strains on the order of 10"7. Furthermore, the semiconductor gages in 

each bridge are thermally matched to have the same coefficient of thermal expansion. By 

matching the coefficients of thermal expansion, and by placing all arms of the bridge in close 

proximity, the sensor is designed to minimize any systematic bias created as a result of thermal 

gradients across the tool holder body. 

Figure 2.2 - Schematic of a semiconductor Wheatstone bridge purchased from Suprock Technologies 

2.6 Orthogonal Decomposition of Strain 

The sensor's theory of operation requires an orthogonal decomposition of tool deflection 

(i.e. strain) to reconstruct the net cutting force. Consider a single-tooth flat end mill removing 

material at a constant axial depth. The net force acting on the sensor is idealized as a planar force 
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because axial forces are small for inserts with a small helix angle. The net force acting on the 

engaged portion of the cutting tooth is resolved into orthogonal components by strain gages. 

Because the cutting insert on the end mill has a helix angle of 14 degrees, there is no 

single position to mount the strain gages that will work for all axial depths of cut. The 

Wheatstone bridge is aligned such that the bridge center is nominally oriented with the cutting 

tooth for an axial depth of 3.18 mm (1/8 in). This means that the radial-bridge axis is centered 

above the point on the cutting insert 1.59 mm (1/16 in) from the insert tip. The tangential bridge 

is mounted orthogonal to the radial bridge. For axial depths of cut other than 3.18 mm, a slight 

trigonometric adjustment is required to account for the vector change in the net force due to the 

insert's helix angle. Figure 2.3 shows an idealized cross section of the tool holder body and 

illustrates gage layout with respect to the cutting tooth: 

Tool Holder 
Cross-Section 

net 

Figure 2.3 - Positioning of the Wheatstone bridges to isolate bending strains 

Orthogonal positioning of the radial and tangential bridges allows the sensor to measure 

these components of strain independently. This occurs because the neutral axis for bending passes 

through the orthogonal gage location. With this configuration, the perpendicular components of 

bending strain are mechanically decoupled. 
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To understand the mechanics of how the sensor resolves bending strain from a combined 

loading scenario, consider the tool holder body modeled as a cantilever beam as shown in Figure 

2.4. The outer diameter of the tool holder body is 31.8 mm (1.25 in), and it accepts a 19 mm (0.75 

in) insert holder. The lever arm distance from the tool tip to the gages is approximately 131 mm 

Neglecting the size of the strain gages and treating the entire Wheatstone bridge as a 

single point, we next consider an arbitrary force applied at the tool tip. Loading the structure in 

this way creates a stress distribution that can be decomposed into four stress components: 

Bending normal stress, axial normal stress, transverse shear stress, and torsional shear stress. 

These stress components are given by the familiar equations: 

M • v 
lending =~1

Z C-D 

(5.1 in). 

X 

Figure 2.4 - Beam model illustrating orthogonal decomposition of bending strain 

Faxial 
Gaxial ~ ^ (2.2) 

VQ 
(2.3) Tshear ~ 

T - r  
T-twist ~ (2.4) 
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Here, M is the applied bending moment, y is the distance from the neutral axis, / is the area 

moment of inertia, Faxiai is the axial force, Ac is the area of the tool holder cross section, V is the 

shear force, Q is the first moment of area, t is the thickness of the cross section, T is the torsional 

moment about the x-axis, r  is the radius from the area centroid to the point of applied load, and J 

is the polar area moment of inertia. 

Through Hooke's Law, these stress components can be directly transformed into strain: 

1 
£* = £ K ~ v(°y + °z)] (2-5) 

£y=^ \°v ~ + (2'6^ 

£ z = \  [ ° z  ~  v ( o x  + Oy)] (2-7) 

Yxy = T-f (2-8) 

Yxz = X-f (2.9) 

Yyz = X-f (2.10) 

Young's Modulus and Poisson's Ratio (E, v) are those for plain carbon steel. 

Furthermore, recall that only normal stresses can cause a change in output of the 

Wheatstone bridge. Normal strains are capable of creating dimensional changes in the strain gage 

grid by the Poisson effect. Changes in gage length and cross section create a proportional change 

in the gage's electrical resistance. Shear strains, however, merely rotate the grid and do not cause 

the elongation or contraction necessary to vary the resistance [7], 

The instantaneous value of strain is an intermediate parameter in force measurement, and 

for this reason, we do not elaborate on the stress/ strain transformation. While the Smart Tool's 

output is proportional to bending strain, what we are ultimately concerned with is the relationship 
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between cutting force and output bits from the A/D converter. This static sensitivity is determined 

through experimental calibration. For this reason, we do not need to know the strain magnitude 

directly. 

In summary, orthogonal placement of the Wheatstone bridges causes the neutral axis of 

one bridge to pass through the gage location of the second bridge. It is this alignment of the gages 

with orthogonal neutral axes that mechanically decouples the components of bending strain. Of 

course, strain gage size effects, alignment imprecision, and transverse sensitivity can all 

contribute to cross-sensitivity between the radial and tangential signals. These effects are 

quantified through static calibration of the sensor (see Chapter 3). 

2.7 Bending Sensitivity Analysis 

A critical part of the sensor design is analytically determining the resolution and span of 

the instrument to ensure that the design is adequate. A derivation of the bending sensitivity 

calculation proceeds as follows: 

Equation 2.5 relates strain to stress by Hooke's Law. If we consider the tool loaded in 

pure bending, Equation 2.5 reduces to the one-dimensional form of Hooke's Law: 

e x = f  ( 2 - 1 1 )  

Substituting the expression for bending stress in a beam, a x  = "My //", we obtain: 

S F - l - r  
£y (2.12) 
* EI 

Equation 2.12 relates an arbitrary load at the end of the tool, 8F,  to the bending strain at the gage 

location. Here, E is the modulus of elasticity and I is the area moment of inertia; / is the distance 

from the applied load to the gages, and r is the outside diameter of the tool holder body. 

The voltage output of the Wheatstone bridge due to the presence of bending strain is given by: 

G ' E 
AE0 = — •(£! — £2 + £3 ~~ £4) ' Winamp (2-13) 
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Where G/. is the gage factor of the semiconductor strain gages, E, is the bridge excitation voltage, 

and Kmamp is the differential amplifier gain. Because two of the gages are dummy gages and see 

no change in strain since they are perpendicular to the bending load (and neglecting transverse 

sensitivity effects), the output of the Wheatstone bridge is only dependent on the strain in the 

active arms of the bridge (1 and 3). Equation 2.13 reduces to: 

A E 0 = ^ ~ £ x  K i n a m P  (2.14) 

And substituting our expression for strain at the gage location, we obtain the relationship between 

an arbitrary load applied to the sensor and the corresponding output of the Wheatstone bridge: 

G P  •  E i  ( SF  •  I  •  
^ 2 ri-rr) ( 2 1 5 )  

The smallest change in voltage that can be measured by the sensor is determined by the resolution 

of the A/D converter. With a 16 bit A/D converter, the smallest voltage that can be measured is 

given by: 

span 3.5 V 
SV = -£—= (2.16) 

bits 216 bits 

By equating (2.15) and (2.16), we obtain: 

»n  G F  •  E t  (SF  • I  •  r \  
sv = &Eo =—{-n-) Kinamp 

We then solve the above equation for force: 

2 • E • I • SV 
SF = r F . (2-17) 

Up Cj i I i^inamp 

Finally, we can change the SV from the smallest output of the sensor to the saturation limit of the 

sensor to determine the span of the instrument: 

2  - E - I - V s a t  
Fmax = r F , r I (218) 

up • fij l r H-inamp 

Equations 2.17 and 2.18 express the relationship between various design parameters and 

the resolution and span of the sensor. This derivation for bending sensitivity neglects the stress 
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effects that arise from a combined loading scenario, and it ignores any transverse sensitivity of 

the dummy gages. Ultimately, these effects will be accounted for in the static calibration. Here, 

we need a reasonable order-of-magnitude calculation to ensure that we meet the design criteria 

for resolution and span specified in Table 2.1. The relevant design specifications for computation 

of SF and Fmax are given in Table 2.2. 

Table 2.2 - Table of design specifications for calculation of bending sensitivity 

Parameter Symbol Specification 

Young's Modulus E 200 GPa 

Area moment of inertia I 1.852 x 1(T7 m4 

Voltage resolution of ADC SV 
3.5 V 

216 bits 

Saturation voltage of ADC Vsat 3.3 V 

Gain of the instrumentation amplifier Kinamp Variable 28-1300 

Gage factor GF 140 

Bridge excitation voltage Ei 3.3 V 

Moment arm (load to gage site) I 0.131 m 

Outside radius of tool holder r 0.022 m 

Using the design specifications of Table 2.2, the theoretical and experimental values for 

force resolution and span are plotted versus instrumentation amplifier gain (See Figure 2.5). The 

experimental curves were obtained by scaling the theoretical curves by a correction factor to 

match experimental observation. This correction factor was obtained by determining the bending 

load resulting in saturation for gains of Kinamp = 52, 520, and 1300. We observe that with our 

design specifications, the resolution of the sensor far exceeds the design requirement of 4.5 N (1 

Ibf) for all values of gain, and that the span of the sensor can be varied from approximately 58 N 
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to 2.67 kN (13 Ibf to 600 Ibf). Furthermore, by designing the bit resolution to be an order of 

magnitude better than the design requirement, we allow sufficient overhead to accommodate 

sensor noise. 

0.1 
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Figure 2.5 - Resolution and span versus instrumentation amplifier gain 

This theoretical curve is proportional to 1/x. The coefficient of proportionality is given by 

G^ E^t'r as determined by Equation 2.17; the total uncertainty of this constant must account for 

the difference between the theoretical and experimental curves seen above. 
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2.8 Cross-Sensitivity Analysis 

Here, we investigate the effects of varying strain gage locations from their intended 

mounting positions; strain gage misalignment will result in indicated strain that does not reflect 

the actual strain of interest. Understanding the measurement error associated with strain gage 

misalignment allows us to determine the required accuracy during gage mounting to avoid cross-

sensitivity errors. A derivation of the analysis is provided in Appendix C. 

The analysis presented forthwith considers strain gages mounted on a hollow-cylindrical 

tool holder. This geometry is the ideal representation of the actual system and provides a first-

order approximation of the measurement error produced by gage misalignment. The analysis 

shows that rotational misalignment around the circumference of the tool is more critical than 

misalignment in plane at a specific gage location. Furthermore, for circumferential misalignment 

(See Figure 2.1), measurement error is affected by the ratio of the tangential cutting force to the 

radial cutting force, and not by the magnitude of these forces. Measurement error produced by 

planar misalignment (i.e. torsional crosstalk) at a specific gage location is independent of the 

applied loading. 

Circumferenl 
Misalignmen 

Planar 
Misalignment 

<t> • 

Figure 2.6 - Illustration of misalignment errors considered in this analysis 
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2.8.1 Assumptions 

We make the following assumptions for the cross-sensitivity analysis: 

1. The tool holder is a perfect hollow cylinder made of isotropic, plain carbon steel 

2. The cutting insert is not modeled 

a. Cutting forces are assumed to act at the end of the tool holder 

b. Coupling effects (force transmission) between the insert holder and the tool 

holder are neglected 

3. The gages are mounted on the curved cylindrical outer surface of the tool holder (i.e. not 

on a machined flat) 

4. A Wheatstone bridge with two active arms is mounted at each gage location, nominally 

oriented to measure bending strains 

5. Finite size effects of the strain gages are neglected (i.e. strain is a point measurement) 

6. Transverse sensitivities and strain gage nonlinearities are not considered 

2.8.2 Results and Discussion 

Figure 2.7 shows the measurement error for the radial bridge versus circumferential 

misalignment for various ratios of tangential force to radial force. This measurement error is a 

result of bending crosstalk created by moving the bridge away from the neutral axis. Observe that 

the measurement error is proportional to the ratio of the cutting forces, and not to the magnitude 

of the forces themselves. Gage misalignment produces an indicated strain as a result of cross-

sensitivity to the unwanted component of strain produced by the tangential force. 

Figure 2.8 shows measurement error on the tangential bridge versus circumferential 

misalignment for various ratios of tangential force to radial force. Again, the measurement error 

is proportional to the ratio of these cutting forces, and not to the magnitude of the forces 

themselves. The measurement error increases as a function of misalignment, but decreases as a 

function of increasing ratios. 
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Measurement Error of Radial Bridge due to Bending Crosstalk 
T~ 

r = 

/F =4 

2 3 4 

Circumferential Misalignment, 6 (degrees) 

Figure 2.7 - Theoretical measurement error on the radial bridge due to bending crosstalk 

Measurement Error of Tangential Bridge due to Bending Crosstalk 

!?.. = 0.5 

2 3 4 

Circumferential Misalignment, 6 (degrees) 

Figure 2.8 - Theoretical measurement error on the tangential bridge due to bending crosstalk 
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The third case of misalignment to consider is rotational misalignment of the Wheatstone 

bridge at the gage site. Figure 2.9 shows the effect of rotating a gage within the biaxial stress field 

at a specific gage location. Here, measurement error is observed to be independent of the loads 

applied on the tool holder, and is thus only affected by misalignment angle. Furthermore, because 

the sine of a small angle is quite small, it takes a substantially larger planar misalignment to 

produce a large measurement error. 

Measurement Error due to Torsional Crosstalk 

O 
i— 

UJ 

I 0.5 ai 

Planar Misalignment, <J> (degrees) 

Figure 2.9 - Torsional crosstalk as a result of gage misalignment 

Our analysis shows that rotational misalignment around the circumference of the tool 

holder is more critical than misalignment in plane at a specific gage location. Furthermore, for 

circumferential misalignment, measurement error is affected by the ratio of the tangential cutting 

force to the radial cutting force, and not by the magnitude of these forces. Error produced by 

planar misalignment at a specific gage location is independent of the loading applied to the tool 

holder. This analysis is a good first-order approximation of the expected error due to 

misalignment, however, it does not address issues related to transverse sensitivity, thermal 

gradients, or stress concentrations created by geometry of the tool holder. 
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2.9 Sampling and Data Transmission 

Data transmission is accomplished by a small, low-power serial communication board. 

The current data transmission board was developed for a single-channel application [6] and is 

only capable of transmitting either radial or tangential strain via a manual switch. This switch is 

mounted in the lower end-cap of the shrouding and enables the user to choose which data set is 

transmitted to the computer. 

The serial board is powered by a 3.71 V Lithium-polymer battery with an 850 mAh 

capacity. With a full charge, the sensor can continuously transmit data for approximately five 

hours before the low voltage dropout regulator turns off the device. The battery is then recharged 

by accessing a charging jack hidden beneath the retention bolt. 

The analog voltage across the Wheatstone bridge is measured by an instrumentation 

amplifier, and sampled by a 16-bit analog to digital converter at 10.24 kHz. An LED array 

provides visual feedback about the sensor's ability to balance the bridges at startup, and after 

initialization, the height of the array serves as a visual indication of the measured strain. The data 

transmission board is shown below in Figure 2.10. 
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Digital 

Converter 

Instrumentation 
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Figure 2.10 - Data transmission board designed by Jeffery Nichols [6, 14] 
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2.10 Summary 

Design specifications for Smart Tool v. 10 are presented in this chapter. A theoretical 

analysis of the bending sensitivity and span shows that the selected design specifications meet the 

required design criteria from Table 2.1. The noise-free force resolution is designed to be two 

orders of magnitude better than the design requirement of 4.5 N, thus allowing sufficient 

overhead for both noise on the received signal and the presence of minimal cross-sensitivity. The 

corresponding span is adjustable by using a digitally programmable instrumentation amplifier 

with variable gain. 

A theoretical analysis of the indicated-strain measurement error is also presented. 

Indicated strain may not correspond to the true strain-state of interest if the gages are not 

precisely mounted during sensor construction. This analysis uses mechanics to predict the state of 

stress at the gage locations arising from the combined loading scenario for various ratios of 

tangential force to radial force. Stresses are converted to strains through the appropriate 

transformation equations, and the resulting strains are evaluated in the governing Wheatstone 

bridge equations. The outputs of the Wheatstone bridge for the misaligned scenarios are 

compared to the theoretical output for the perfectly-aligned case to predict measurement errors 

from cross-sensitivity. We observe that the strain gages need to be mounted within approximately 

3 degrees of precision to keep theoretical measurement errors sufficiently small. 
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CHAPTER 3 

STATIC CALIBRATION 

3.1 Introduction 

As stated in Chapter 2, the fundamental design objective for Smart Tool v. 10 is to 

minimize bending and torsional cross-sensitivity errors to less than 1 percent full scale. While the 

analyses presented in Chapter 2 provide a theoretical framework for the required design 

specifications, experimental testing and calibration provide the true measure of design success. 

This chapter presents the experimental results of the static calibration performed to characterize 

static sensitivity and cross-sensitivity to both bending loads and torsion loads. The result of this 

calibration is a set of static confidence intervals that account for all possible sources of 

measurement error. These confidence intervals allow us to ensure that Smart Tool v. 10 

adequately meets the design requirement of achieving total measurement error less than 5 percent 

full scale for all loading scenarios. Protocols for the static calibration experiments can be found in 

Appendix A. 

3.2 Calibration of Bending Sensitivity 

Recall that semiconductor strain gages are oriented on the tool holder body to measure 

bending strains in the radial and tangential directions. The static bending sensitivities must be 

empirically determined to relate the sensor output signal to the applied load. This relationship is 

easily determined for static loads because the sensor output is directly proportional to the applied 

force. Using a servo-hydraulic Instron 55s machine, the sensor was loaded and unloaded 10 times 

to work out any initial hysteresis. Next, the bending sensitivity calibration was repeated 5 times to 
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determine the static sensitivity of the sensor in both the radial and tangential directions. The 

experimental setup is shown in Figure 3.1 and a diagram of the load transmission can be seen in 

Figure 3.2. 

I N J T R O N  

Figure 3.1 - Instron servo-hydraulic machine used to apply bending moments to the sensor 

Bending Moment Applied Load 

U-Channel Bending Sensitivity Calibration Test Fixture 

Reaction Force 

Figure 3.2 - Schematic of the load transmission through the sensor using the C-channel calibration fixture 
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The load transmission can be thought of as two springs in series, thus, the stiffness of the 

U-channel fixture does not affect the calibration results. As seen in Figure 3.3, the entire load is 

transmitted through both the sensor and the fixture. 

^sensor ^fixture 

Kse nsor ^fixture 

Figure 3.3 - Lumped parameter schematic of the Instron load train 

Since the net displacement is affected by the stiffness of the fixture, we cannot calibrate 

strain. The static sensitivity is therefore determined by calibrating the output of the sensor (strain 

in bits) versus bending moment. This bending sensitivity calibration was repeated five times on 

each bridge with nearly identical results. The resulting calibration curves are shown in Figure 3.4 

and Figure 3.5. Since the moment arm for calibration is different than the moment arm when the 

insert holder is in the tool, the x-axes for these graphs were calibrated by dividing the bending 

moment during testing by the moment arm during cutting (i.e. the distance from the cutting tooth 

to the center of the Wheatstone bridge). 

We observe that the tangential and radial bridges have nearly identical sensitivities which 

differ by less than 0.6%. The y-intercept of approximately 32,000 bits is a result of the 

conditioning electronics that set the no-load output to half of the measurement range. This allows 

the sensor to measure both positive and negative bending strain. On startup, the output of the 

Wheatstone bridge is nominally biased to 216 / 2, which equals 32,768 bits. The ability of the 

sensor to zero itself at exactly half of the measurement range is limited by the resolution of the 12 

bit DAC used to balance the Wheatstone bridge. Achieving a perfect bias also requires a state of 

exactly zero stress during initialization of the electronics at startup. We see that the sensor does 

an adequate job of nominally initializing the no-load output to half of the measurement range. 
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Figure 3.4 - Calibration curve for static bending sensitivity in the tangential direction 
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Figure 3.5 - Calibration curve for static bending sensitivity in the radial direction 
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From the bending sensitivity calibration, we can experimentally determine the span and 

the resolution of the sensor. Note that for all static calibration experiments, the gain of the 

instrumentation amplifier, Kinamp, was set to 52. The span of the sensor is given by: 

32,768 bits 
Span = 23 ̂  ^ = 1395 N (313 Ibf) (3.1) 

And the resolution can be determined as: 

ReS0luti0n = 
23 5 bits/ = 0043 "/bit <9'56 x 10"3 'bf/bit> (3.2) 

While these empirical values are smaller than those predicted by the Sensitivity Analysis in 

Section 2.7, we find that using a gain of Kinarnv = 52 adequately meets the design criteria 

presented in Table 2.1. Because the gain of the instrumentation amplifier is programmable, the 

sensor also has the flexibility to decrease span and increase resolution for lighter cuts. 

3.3 Calibration of Bending Crosstalk 

As described by the Cross-Sensitivity Analysis of Section 2.8, misalignment of the 

Wheatstone bridge with respect to the neutral axis results in measurement error due to bending 

crosstalk. This concept is illustrated by Figure 3.6: 

0 

Tool Holder 
Cross-Section 

Figure 3.6- Bending crosstalk results from circumferential misalignment of the Wheatstone bridge 
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Here, gage misalignment results in measurement error because the indicated strain now depends 

on both the tangential force and the radial force, and these signals become linear dependent. This 

type of measurement error is referred to as bending crosstalk and is calibrated statically to 

determine the coupling between the radial and tangential bending strain signals. 

Calibration of bending crosstalk was accomplished by loading the sensor in pure bending 

on the transverse axis while measuring output from the Wheatstone bridge on the neutral axis. 

The experimental setup was identical to that for calibration of bending sensitivity, except now we 

measure the output of the bridge orthogonal to the loading. Experimentation was repeated five 

times using the Instron 55s servo-hydraulic machine. Full-scale calibration was achieved by 

applying bending moments equivalent to 300 lbf at the tool tip. A summary of the bending 

crosstalk is presented in Table 3.1: 

Table 3.1 - Summary of bending crosstalk calibration 

Measurement Bridge Full Scale Load Measured Crosstalk Percent Full Scale 

Radial 300 lbf at 5.17 in 166 bits 
166 

—— • 100 = 0.506 % 
32768 

Tangential 300 lbf at 5.17 in 877 bits 
877 

• 100 = 2.68 % 
32768 

As a point of interest, the cross-sensitivity analysis of Chapter 2 allows us to use this 

crosstalk data to estimate rotational misalignment of the strain gages with respect to the neutral 

axis. Using Figure 2.7, the radial bridge is presumably mounted with less than 1 degree 

circumferential misalignment from the neutral axis. The tangential bridge is mounted a bit further 

off-center with a misalignment of approximately 3 degrees as determined by Figure 2.8. 

Also, while the tangential bridge is farther from the neutral axis than the radial bridge, 

measurement error on the tangential bridge is mitigated by the fact that the tangential force is 

often larger than the radial force. Therefore, the actual crosstalk (i.e. not full scale crosstalk) will 

be reduced. 
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3.4 Calibration of Torsional Crosstalk 

While strain gages are insensitive to shear stresses, rotational misalignment of the 

Wheatstone bridge will cause the sensor to exhibit a cross-sensitivity to torsion. This occurs 

because rotation of the gage results in a strain transformation that causes the sensor to measure a 

component of the shear stress as a normal stress. This is shown pictorially in Figure 3.7. 

P2 

45" 

—r~ 

Figure 3.7 - Illustration of stress transformation resulting from rotation of the gage element 

Normal strains cause dimensional changes in the grid of a strain gage, thus changing its 

electrical resistance. Pure shear strains merely rotate the grid, and do not cause the elongation or 

contraction necessary to vary the resistance [7], Thus, if the strain gages are perfectly aligned, the 

sensor will be insensitive to torsional loads. 

To calibrate torsional cross-sensitivity, the sensor was loaded and unloaded five times in 

pure torsion. To realize pure torsion, a moment was applied between two pillow block bearings. 

A flexible coupling was placed between the sensor and the static end of the load train to 

compensate for shaft misalignment. A picture of this calibration fixture is shown in Figure 3.8. 

Figure 3.8 - Static calibration test fixture for torsional loading 
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Figures 3.9 and 3.10 show the experimental results of the torsional cross-sensitivity 

calibration. It is observed that full scale torsional loading causes almost no change in the sensor 

output. By calibration of the static bending sensitivity, the sensor is observed to saturate at 1388 

N (312 Ibf): With a tool radius of 9.525 mm (0.375 in), the corresponding full-scale torsional 

loading is determined to be approximately 13.22 N-m. The Smart Tool was calibrated beyond this 

full range to approximately 16 N-m. 

The vertical offset observed between loading cycles is an artifact of the Smart Tool's 

state of stress at startup; the force of gravity is large enough to change the strain at the gage 

locations and will bias the sensor output by a few bits. It is simple to compensate for this bias in 

post-processing. Also, for each observation, a 20 second moving average window was arbitrarily 

chosen to increase measurement confidence. A summary of the calibration is shown below in 

Table 3.2. 

Table 3.2 - Summary of torsional crosstalk experimentation 

Measurement Bridge Full Scale Load Measured Crosstalk Percent Full Scale 

Radial 312 lbf at 0.375 in < 120 bits 
120 

32768'100=037% 

Tangential 312 lbf at 0.375 in < 50 bits 
32768"100=015% 

Static calibration of the torsional cross-sensitivity shows that the sensor exhibits 

significantly less than 1 percent torsional crosstalk full scale. Thus, we have satisfied the design 

requirement for torsional crosstalk presented in Table 2.1. We also observe that Figures 3.9 and 

3.10 exhibit significantly more hysteresis than the results of the bending calibration. This is 

because these torsional loads were the first full-scale loads seen by the strain gages. Hysteresis is 

normal for initial loading cycles of strain gages [5] and is significantly reduced after a few full-

scale loading cycles. There is no need to repeat this experiment, however, because even with this 

initial hysteresis, torsional cross-sensitivity is sufficiently small. 
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Again as a point of interest, Figure 2.9 allows us to use the cross-sensitivity analysis of 

Chapter 2 to infer that both bridges are mounted with better than 3 degrees of planar 

misalignment at their respective gage locations. 

3.5 Calibration of Axial Sensitivity 

Axial forces also create normal stresses through the tool holder body. Our strain gage 

configuration is sensitive to these normal stresses. In order to cancel axial stresses, all arms of the 

Wheatstone bridge must see the same change in resistance when loaded axially. This is not 

achieved with our sensor design because two of the bridge arms are perpendicular to this loading. 

Thus, the axial sensitivity was calibrated by suspending weights from the toolholder in the axial 

direction (See Figure 3.11). For a helix angle of 14 degrees, full scale axial loading is given by 

Axial sensitivity was only calibrated over one-third of this range because of the weights that were 

readily available. Notwithstanding, this partial calibration remains sufficient to characterize axial 

sensitivity because the strain gages were already shown to be linear for full-scale bending strains. 

^AxiaiFs = (1388 AO * sin(14°) = 336 N  (75 I b f )  (3.3) 

Calibration of Axial Sensitivity 

O Increasing 

+ Decreasing 

Linear Fit 

120 

0 20 40 60 
Applied Load (N) 

80 100 120 

Figure 3.1I - Calibration curve for axial sensitivity of the Smart Tool v. 10 
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The axial sensitivity of the sensor was determined to be 1.1 bits/N through static 

calibration. As shown by Equation 3.4, this means that the sensor is approximately 21 times more 

sensitive to bending strains than it is to axial strains. 

Kt bending _ 23.53 bits/ 
— = 21.33 (3.4) 

Kaxial 1.103 

Furthermore, even though the bending sensitivity is already 21 times larger than the axial 

sensitivity, the actual crosstalk from axial forces is further reduced because the axial force is 

always smaller than the in-plane forces. Theoretically the axial force is proportional to the net in-

plane force by the sine of the helix angle. In practice, it is often even smaller. The X, Y, and Z 

forces are shown below for an upmilling operation at 600 RPM. The data was collected using a 

Kistler 3-axis bed dynamometer. This figure serves to further illustrate the insignificant nature of 

the axial force in milling. 

Aluminum Upmilling, Quarter Immersion, 600 RPM, hayg = 0.003" 

J 

X force 

Y force 

Z force 

3,02 3.03 3.04 3.05 3.06 
Data Index 

3.07 3.08 

x 10 

Figure 3.12 - Comparison of the axial force to the in-plane X and Y cutting forces 
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3.6 Characterization of Sensor Noise 

Noise on the strain signal reduces the effective resolution of the sensor. Possible sources 

of noise are discussed in [14] by Jeff Nichols, designer of the data transmission board used on 

Smart Tool v. 10. To characterize the noise, Figure 3.13 shows a time plot of the noisy signal and 

both the probability density function (PDF) and the cumulative probability density function 

(CPDF) for this signal. 

3.32 
x 10 Time Series of Sensor Noise, 3600 rpm 

PDF of Noise, bin size = 5 bits 

4 5 

CPDF of noise, bin size = 5 bits 

Q 0.8 x~N(0,702) 0.0 5 

•- 0.4 

0.005 
5 0.2 

-100 0 100 
Noise Amplitude (bits) 

-100 0 100 
Noise Amplitude (bits) 

Figure 3.13 - Sensor noise is shown to follow a Gaussian distribution 

The noise is observed to follow a Gaussian distribution which means that time-averaging 

does not bias the result. This is important because all of the static calibration results were 

obtained by time-averaging the output of the sensor. A standard deviation of 26.5 bits implies that 

95 percent of the noise is contained within +/- 2 sigma of the mean: Therefore, 95 percent of the 
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noise is between +/- 53 bits, corresponding to 0.16 percent full scale. Thus, the effective 

resolution is calculated as: 

2(53 bits) 
Effective Resolution = , . = 4.51 N (1.01 Ibf) (3 5) 

23.5 blts/N 

Therefore, the effective resolution satisfactorily meets the design specification of 4.5 N (1 Ibf) 

presented in Table 2.1. 

3.7 Drift and Sensor Stability 

Sensor drift was characterized by recording the no-load sensor output over extended 

periods of time. The results of this drift study are shown in Figure 3.14. The sensor was powered 

on at time t = 0 and remained in a state of zero stress for the duration of the study. The 

experiment was conducted at room temperature of approximately 25°C. Measurements were 

taken at 
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Figure 3.14 - Study of sensor drift on both bridges for extended time records 
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The behavior of these drift records is quite perplexing: Both of the bridges are 

conditioned by the same electronics, yet the output of the tangential bridge is seen to level off 

after approximately 5 minutes while the output of the radial bridge continues to drift downward. 

The source of this drift is still unknown. 

The effects of this drift are almost inconsequential, however, because most milling 

operations to be observed with this sensor will only last a few minutes. The magnitude of the drift 

remains small at less than 2 percent full scale and therefore has almost no effect on the span of 

the sensor. Also, for most geometries of cut, it is easy to determine when the tool is out of the 

workpiece, and therefore trivial to remove any bias due to drift in post-processing. For future 

real-time implementation, knowledge of when the tool is out of the workpiece could be used to 

tare the bias and compensate for drift in a block-adaptive sense. 

Another important factor that could potentially affect the DC stability of the sensor is 

temperature. As stated in Chapter 2, the semi-conductor strain gages are matched to have the 

same coefficient of thermal expansion. Theoretically, this should eliminate any systematic bias 

due to temperature effects; however, an experimental characterization has not been completed. 

Sensitivity to temperature should be investigated as future work. 

3.8 Summary 

An exciting result that comes from static calibration is the ability to determine the total 

measurement uncertainty for static loads applied to the sensor. Having characterized the various 

sensitivities, cross-sensitivities, and noise statistics, it is possible to use a truncated Taylor Series 

to determine the total measurement uncertainty via propagation of errors. To do so, we express 

the static measured force as 



Where d is the misalignment angle between the gage axis and the axial direction of the tool 

holder, S is the bridge sensitivity, I is the distance from the cutting insert to the gage location, and 

e is the measured strain. Using a truncated Taylor Series, total measurement uncertainty for the 

force is given by: 

The uncertainty in planar misalignment of the Wheatstone bridge, Ad, is determined from 

the cross-sensitivity analysis of Chapter 2. The conservative value of 3 degrees is used to obtain 

static confidence intervals. The uncertainty in lever arm distance, Al, was obtained by taking 10 

measurements from the cutting insert to the bridge location. Student's T-distribution is used to 

assign an uncertainty to this distance. Uncertainty in the bridge sensitivity, AS, is obtained from 

the 95% confidence interval for linear regression, and is a nonlinear function of applied force, F. 

Lastly, the uncertainty in the measured strain signal, Ae, is a function of the sensor noise, the 

bending crosstalk, the torsional crosstalk, and the axial crosstalk. These sources of error vary with 

the ratio of the radial force to the tangential force, and with the value of force itself. For this 

reason, a family of curves is used to prescribe confidence intervals for measurements. 

The 95% static confidence intervals for the tangential force and radial force are shown in 

Figure 3.15 and 3.16 respectively. Because the crosstalk changes as a function of the ratio of 

cutting forces, uncertainty also changes as a function of this ratio. Near the extreme value for 

worst-case scenario, a 45 N (10 Ibf) uncertainty in measured force corresponds to approximately 

3 percent uncertainty full scale. Thus, total measurement uncertainty satisfactorily meets the 

design specification of less than 5 percent full scale as presented in Table 2.1. 

(3.7) 
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Figure 3.15 - Static confidence intervals for measured tangential force 
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Figure 3.16- Static confidence intervals for measured radial force 
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Static calibration has shown that the sensor adequately meets the design specifications 

outlined in Table 2.1. While bending crosstalk on the radial bridge exceeds the design 

specification of less than 1% full scale, the total measurement error still satisfies the design 

constraint of less than 5% full scale. A summary of the significant experimental results is 

presented below: 

Table 3.3- Summary of experimental results from static calibration 

Attribute Specification Experimental Result Specification Met? 

Effective Resolution 4.5 N minimum 4.51 N Yes 

Span 1330 N minimum 1395 N Yes 

DC Stability < 3% full scale Drift < 2% full scale Yes 

Bending Crosstalk < 1% full scale 

Radial: 0.506 % Yes 

Bending Crosstalk < 1% full scale 

Tangential: 2.68 % No 

Torsional Crosstalk < 1 % full scale 

Radial: 0.37 % Yes 

Torsional Crosstalk < 1 % full scale 

Tangential: 0.15% Yes 

Total Error < 5% full scale < 3% full scale Yes 

The ability of Smart Tool v. 10 to accurately measure bending forces from a combined 

loading scenario is truly a significant result. Notwithstanding, we have only considered static 

loads applied to the sensor. In addition to rejecting unwanted components of strain, the bandwidth 

of the sensor must allow for accurate force measurement in a dynamic environment. Thus, the 

dynamic performance of Smart Tool v. 10 is evaluated in Chapter 4, and an experimental 

validation is presented in Chapter 5. 
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CHAPTER 4 

DYNAMIC CHARACTERIZATION 

4.1 Introduction 

Static calibration shows that the sensor accurately resolves the radial and tangential 

components of bending strain from a combined loading scenario. Furthermore, for the static case, 

the static sensitivity directly relates the sensor output to the applied force. For the dynamic case, 

however, sensor output is no longer proportional to cutting force. Now, the net cutting force is a 

sum of the inertial forces, spring forces, and damping forces. Therefore, understanding the 

system's dynamic behavior is critical to interpreting the measured strain signal. This section 

investigates the dynamics of the Smart Tool in our Fadal 3-axis CNC machine and discusses the 

corresponding implications to interpretation of the bending strain signal. 

4.2 Experimental Determination of the Static Frequency Response Function 

A baseline characterization of the open-loop dynamic response of the end-milling system 

is achieved by performing a "hammer test." Hammer testing is often the easiest and quickest 

technique for measuring frequency response functions (FRF's) used in modal analysis [15]. This 

baseline FRF is a static, non-rotating, non-cutting representation of the milling system with a 

fixed-free boundary condition. It tells us about the natural modes of vibration which may be 

excited by the cutting process. The hammer test also establishes a baseline for determining the 

bandwidth of the sensor. 

To determine the static, open-loop response of the milling system, a Parlec 6-inch 

extended tool holder was mounted in the spindle of our Fadal 3-axis CNC machine. This is the 
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same tool holder that was used to construct Smart Tool v. 10. Hammer testing was not performed 

on the Smart Tool itself because the shrouding around the electronics prevented us from 

mounting the accelerometer next to the strain gages. Positioning of the accelerometer in the same 

location as the strain gages is important to accurately model the FRF. The accelerometer used was 

an ICP piezo-electric accelerometer with a sensitivity of 10 mV/g. The structure was excited in 

the x-direction using a Modally Tuned impact hammer (Model 086D05) with a sensitivity of 10 

mV/lbf. A schematic of the experimental setup is shown below in Figure 4.1. 

CNC Spindle 

Accelerometer 
Parlec Tool 

Holder 

Spectrum 
Analvzer 

Modally Tuned 
Hammer 

Insert Holder 

Figure 4.1 - Schematic of the hammer test experimental setup 

The experimental protocol for determining the frequency response function was obtained 

from the literature for our Agilent 35670A spectrum analyzer [15, 16, 17]. A frequency span of 

6.4 kHz was used because it was the option that best matched the Smart Tool's Nyquist frequency 

of 5.12 kHz. Also, an exponential data window with a time constant of 12 ms was used on the 
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accelerometer response to reduce spectral leakage. Figure 4.2 shows both the measured excitation 

force and accelerometer response for a typical impact: 
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Figure 4.2 - Force input and accelerometer response measured by the spectrum analyzer 
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Figure 4.3 - Estimatedfrequency response function and squared coherency spectrum 

40 



The estimated frequency response function and corresponding squared-coherency 

spectrum are shown in Figure 4.3. The estimated FRF's for twenty hammer impacts were 

ensemble-averaged to improve confidence in the spectrum. A nylon tip was used on the impact 

hammer to concentrate energy at low frequencies and to avoid double-taps of the hammer. As a 

result, the magnitude of the FRF contains no coherent information beyond approximately 2.8 

kHz. From this experiment, we observe that the bandwidth of the open-loop system is quite low at 

approximately 600 Hz. We also observe at least two resonant modes in the open-loop static 

transfer function. These resonant modes correspond to the spectral peaks seen in the FRF at 

approximately 656 Hz and 2.16 kHz. Using the curve-fit analysis of the spectrum analyzer, the 

system poles corresponding to regions of acceptable coherence are -69.57 ± j 679.68 and -72.017 

± j 2.117e3. Because the input did not contain much high-frequency energy, we are unable to 

accurately identify closed loop poles beyond this range. The experimental FRF and corresponding 

curve fit are shown below in Figure 4.4. 
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Figure 4.4 - Estimated FRF and corresponding FRF curve fit 
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The challenge of working with a sensor with such a low bandwidth is manifest by the fact 

that the system resonances are easily excited by the cutting process. This can become a problem 

for displacement-based force sensors like our Smart Tool when measured strains are no longer 

directly proportional to the applied force. How we interpret force measurements corrupted by 

system dynamics is discussed more completely in chapters 5 and 6. The important result here is 

that low bending stiffness corresponds to low system bandwidth, thus the time-varying dynamic 

response of the milling system plays an integral role in accurate force measurement. 

4.3 Variation in the Natural Frequency and Damping Ratio with Spindle Speed 

When the bandwidth of a sensor exceeds the maximum frequency content of the input 

signal, the dynamic response of the system is of little importance because the resonant modes are 

not excited by the input. However, with a bandwidth of approximately 600 Hz, we can expect the 

system dynamics to play a significant role in accurate force measurement. For this reason, we 

performed a simple experiment to track how the open-loop dynamic response of the tool-and-

spindle system changes with spindle speed. 

Damped Natural Frequency vs RPM Damping Ratio vs RPM 
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0 1000 2000 3000 4000 5000 
Spindle Speed (rpm) 

Figure 4.5 - Dynamic variation in the natural frequency and damping ratio 
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Figure 4.5 shows a preliminary data set investigating the out-of-cut (open-loop) dynamics 

of our sensor when used with a Fadal 3-axis CNC machine. For each spindle speed, the sensor 

was excited by tapping the Smart Tool sensor with a hammer. The strain signal of the sensor was 

analyzed to investigate variation in the natural frequency and damping ratio as a function of 

spindle speed. The damped natural frequency was determined by calculating the average period 

of vibration, and the damping ratio was estimating by using a least-squares multivariate 

regression to the damped response. The data points are all single observations and we 

acknowledge that further testing should be done to improve statistical confidence. While the 

natural frequency and damping ratio are seen to change with spindle speed, we do not see a clear 

deterministic structure to their behavior. Note that the CNC machine experiences a gear change at 

2500 RPM; this may affect the boundary conditions of the sensor. 

This simple experiment tells us that the dynamic response of the sensor changes with 

different boundary conditions, and that this variation is somewhat stochastic. This stochastic 

nature makes it difficult to remove unwanted vibrations through simple linear filtering because 

the natural frequency moves without any clear deterministic structure. Furthermore, this 

experiment does not consider the effects of changing the free boundary condition at the tooth. By 

adding friction at the tool tip, one would expect both the stiffness and the damping to increase. 

Schmitz et al. [18] have shown that process damping effects are velocity-dependent and that 

damping increases with spindle speed for constant feedrate. The general problem with time-

varying system parameters is that some sort of dynamic system identification becomes necessary 

in order to compensate for the error in the measurement. 

4.4 Boundary Conditions and Dynamic Parameter Identification 

The system poles will change during cutting because the sensor's boundary conditions 

change with parameters like spindle speed, feedrate, radial immersion, axial depth, temperature, 

tool wear, etc. Since signal processing will be necessary to improve the accuracy of dynamic 



force measurements, it is first necessary to develop a modeling tool that tracks changes in the 

resonant modes of the milling system. Linear Predictive Coding (LPC), formally presented in 

Chapter 6, conveniently lends itself to perform dynamic parameter estimation. LPC is a least-

squares technique that uses the autocorrelation of a signal to model resonant structures in the data. 

For example, a sixth order auto-regressive model can be used to model the three spectral peaks 

repeatedly seen in free vibrations of the system, as shown below in Figure 4.6. 

Characteristic Open-Loop Response of the Strain Gages 
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Figure 4.6- Example of using LPC for system identification; the LPC-based PSD estimate is formed from 
the auto-regressive model to illustrate the frequency response of the system model 
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Details of the LPC implementation and a case study of dynamic parameter estimation are 

presented in Chapter 6. An example of LPC was only mentioned here for completeness, 

illustrating that we have a technique capable of modeling the resonances of the system. This 

system model can subsequently be used to remove unwanted dynamics from the measured data. 

4.5 Mass Distribution and Systematic Bias 

A final note concerning the dynamic performance of Smart Tool v. 10 is that uneven mass 

distribution of the conditioning electronics creates a systematic bias as shown in Figure 4.7. 

Systematic Bias due to Mass Distribution 
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Figure 4.7 - Systematic bias as a result of uneven mass distribution around the tool holder 
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This bias is not a problem for a single tooth cutter because there is no runout when only one tooth 

is used. Notwithstanding, the "zero" will need to be re-estimated each time the spindle changes 

RPM in order to compensate for this bias. 

The full-scale reduction in span due to uneven mass distribution is calculated as: 

(0.2479 bits/rpm\7500 rpm) 
Bias Error = , x 100 = 5.67% full scale ^4- ' 

32,768 bits 

While this dynamic bias does reduce the effective span of the sensor, it is not enough to warrant 

adding mass to even out the distribution, as increasing mass would further reduce the bandwidth. 

If future sensor designs use more than one cutting tooth, however, extra care should be taken to 

evenly distribute mass of the conditioning electronics. If not accounted for, the multi-tooth design 

will suffer from problems with runout. 

4.6 Summary 

This chapter shows that the sensor's bandwidth of approximately 600 Hz will be a 

problem for accurate force measurement because the frequency content of the applied force is 

prone to excite the resonant modes of the milling system. To successfully remove unwanted 

vibrations from the strain signal, some technique must be implemented to perform dynamic 

system identification. Chapter 6 will show how Linear Predictive Coding can be employed to 

track the system resonances. A dynamic technique for model identification is necessary because 

of the stochastic nature observed in the variation of dynamic parameters when the system is 

subjected to changing boundary conditions. 
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CHAPTER 5 

EXPERIMENTAL VALIDATION 

5.1 Introduction 

The ability of the Smart Tool to dynamically measure force is evaluated by performing a 

sensor comparison with a 3-axis bed dynamometer made by Kistler Instrumentation Corporation. 

This Kistler bed dynamometer is commonly used in research laboratories, thus, its performance 

provides a benchmark by which to compare the capabilities of our Smart Tool. A series of up-

milling operations at 600 rpm are performed to compare net force profiles. Higher speed 

upmilling is also performed at 3,000 RPM, 3,600 RPM, and 4,000 RPM to compare the accuracy 

and dynamic characteristics of each instrument. The Smart Tool is shown to provide comparable 

measurement accuracy and dynamic performance. 

5.2 Comparison of Kistler and Smart Tool v.10 

Comparison of measurement accuracy and dynamic performance is most readily achieved 

by comparing the net force profiles of both the Kistler and the Smart Tool. We choose to compare 

the net force because the Kistler operates in a fixed X-Y coordinate system while the Smart Tool 

uses the rotating tangential-radial coordinate system of the spindle. Experimental validation is 

further complicated by the fact that the Smart Tool is currently only capable of measuring a single 

channel at a time. Therefore, to determine net forces on the Smart Tool, each cutting test must be 

repeated and cut-to-cut variability must be shown to be negligible. 
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5.2.1 600 RPM Validation 

The ability of the sensor to accurately measure cutting forces for low tooth passing 

frequency was investigated by performing a series of milling operations at 600 RPM. The 

experiment consisted of upmilling operations in aluminum at 600 RPM for radial immersions of 

'A, Vi, and %. For each immersion, the feedrate was adjusted to obtain an average chip thicknesses 

of 0.0254 mm, 0.0508 mm, 0.0762 mm, and 0.0106 mm (corresponding to 0.001 in, 0.002 in, 

0.003 in, and 0.004 in respectively). 

To validate the accuracy of our sensor as a force transducer, the output is compared to 

that of a 3-axis force dynamometer made by Kistler Instrumentation Corporation. Because the 

Kistler dynamometer measures force in the X-Y coordinate system, and our sensor measures 

force in the rotating tangential-radial coordinate system, the outputs of the two sensors are 

compared by looking at the net force profiles. The net cutting force is calculated from the 

experimental data as: 

Aligning the force profiles for both qualitative and quantitative comparison requires 

significant post-processing because the signals were sampled at different sampling frequencies 

and from two different milling operations. To generate all force profiles, data reduction was 

performed in the following manner (See complete details and MATLAB code in Appendix D): 

First, 20 cycles of the Kistler data were overlaid and time-aligned using the unbiased 

definition of the time-lagged cross-correlation coefficient. 

Where Rxy is the unbiased time-lagged cross-covariance, r is the lag time, and sx, sy are the 

unbiased standard deviations of the random variables X and Y. The correlation coefficient is a 

measure of the linear dependence between two time series and therefore serves as a good means 

(5.1) 

Pxy^ Sx{T) • Sy(t + T) 
(5.2) 
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of aligning linear-dependent data. The aligned force cycles were then ensemble-averaged to 

obtain the characteristic net force profile. Next, the two data sets collected from the Smart Tool 

were time-aligned using the time-lagged cross correlation, and then ensemble-averaged to obtain 

the characteristic net force profile. Because the Smart Tool and Kistler data sets were sampled at 

different rates, the Smart Tool (ensemble-averaged net force) was interpolated onto the slower 

time axis of the Kistler data by means of linear interpolation. Lastly, the net force profiles of the 

Kistler and Smart Tool were time-aligned using the cross-correlation coefficient as defined in 

Equation 5.2. 

A flow chart of the data processing required to compare net force profiles is shown below 

in Figure 5.1: 
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Figure 5.1 - Flow chart of data processing requiredfor net force comparison 

The resulting net force profiles for the Kistler and Smart Tool v. 10 are shown on the next page in 

Figure 5.2. 

49 



1/4 Immersion, h avg 0.025 mm 1/2 Immersion, hgvg = 0.025 mm 3/4 Immersion, h 
avg 

0.025 mm 

<e 150 a> 150 <P 150 

u- 100 

0.02 0.04 
Time (seconds) 

1/4 Immersion, hgvg = 0.051 mm 

400 

0.02 0.04 
Time (seconds) 

1/4 Immersion, hgvg = 0.076 mm 

0.02 0.04 
Time (seconds) 

1/4 Immersion, h avg 0.10 mm 

0.02 0.04 
Time (seconds) 

1/2 Immersion, h 

400 
avg ; 0.051 mm 

0.02 0.04 
Time (seconds) 

3/4 Immersion, hgvg = 0.051 mm 
Ann 

2 o 
u_ 

0.02 0.04 
Time (seconds) 

1/2 Immersion, hgvg = 0.076 mm 

600 

a) 
2 
o 
u_ 

0.02 0.04 
Time (seconds) 

3/4 Immersion, hgvg = 0.076 mm 

600 

a> 
9 
o LL 

z 

0.02 0.04 
Time (seconds) 

0.02 0.04 
Time (seconds) 

1/2 Immersion, h avg 0.10 mm 3/4 Immersion, h. avg 0.10 mm 

a> y 
o li­

eu 
p 

a> 
z 

Time (seconds) Time (seconds) Time (seconds) 

Kistler 
Smart Tool 

Figure 5.2 - Comparison of net force profiles between Smart Tool v. 10 and the Kistler 3-axis force 
dynamometer; aluminum upmilling at 600 RPM, no coolant 
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We observe very good agreement between the net force profiles as measured by the 

Kistler dynamometer and our Smart Tool sensor. In all cases, the peak force measured by the 

Smart Tool is slightly larger than that measured by the Kistler. For such low toothpassing 

frequency (10 Hz), tool vibration is negligible and the two sensors provide nearly identical force 

measurements. Only one of the two Kistler data sets is shown; such good agreement between the 

Kistler and Smart Tool profiles shows that cut-to-cut variability is negligible. 

5.2.2 3000 RPM. 3600 RPM. and 4000 RPM Validation 

In addition to performing a validation for the very low tooth-passing frequency of 10 Hz, 

the same upmilling experiment was performed for toothpassing frequencies of 50 Hz, 60 Hz, and 

66.67 Hz corresponding to 3,000 RPM, 3,600 RPM, and 4,000 RPM respectively. 

3000 RPM, 1/2 Immersion, h„,„ = 0.051 mm 3000 RPM, 3/4 Immersion, h =0.10 mm 

9—Kistler 1 
Kistler 2 
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Figure 5.3 - Comparison of net force profiles between Smart Tool and Kistler 3-axis force dynamometer; 
aluminum upmilling at 3000, 3600, 4000 RPM, no coolant 
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Figure 5.3 shows four of the 36 unique cutting conditions encountered in this experiment (three 

spindle speeds * three immersions * four feedrates = 36 unique cutting conditions). The data 

reduction procedure for this experiment is identical to that explained above for the 600 RPM 

validation experiment. Plots of all net force profiles can be found at in Appendix D. 

Because the Kistler and Smart Tool profiles are in less agreement here than they were for 

the 600 RPM case, both Kistler data sets are plotted in Figure 5.3. "Kistler 1" corresponds to the 

milling operation with the Smart Tool transmitting tangential strain data, and "Kistler2" 

corresponds to the milling operation with the Smart Tool transmitting radial strain data. The 

agreement between the Kistler profiles, coming from two different milling operations, validates 

the approach of collecting tangential strain and radial strain data independently. 

These four particular cutting conditions were chosen to include here because they best 

illustrate the similarities and differences between our Smart Tool sensor and the Kistler 3-axis 

dynamometer. Observe that the Kistler profiles and Smart Tool profiles are in general agreement. 

Both sensors yield similar peak force measurements, and both sensors agree with where tooth 

engagement begins and ends. This data set is much more interesting than the 600 RPM data set, 

however, because neither sensor is now accurately measuring the instantaneous milling force! 

Since both sensors are displacement-based transducers, artifacts of their dynamic behavior 

corrupt the force measurement. 

Recall that the damped natural frequency of a 2nd order system is given by 

cod = -y/l - C2 ' <")n = V1 ~ C2 • yjk/m (5.3) 

The damped natural frequency of the Kistler is approximately 950 Hz (depending on the mass of 

the workpiece), and the damped natural frequency of the Smart Tool is approximately 650 Hz in 

our Fadal 3-axix CNC machine. The effects of their distinct natural frequencies are best 

illustrated in the left-side plots of Figure 5.3 where the measurement signals are seen to oscillate 

about the static chip thickness. 
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In reality, the net force profile should look much more like the static chip thickness than 

either sensor indicates. For a stable cut with tool vibration, variation in chip thickness remains in-

phase with each period of oscillation. We observe that the force profile does look like the static 

chip thickness in Figure 5.2 because vibrations are small. 

Figure 5.4 from Altintas [1] illustrates the system dynamics relating tool deflection to 

instantaneous chip thickness. 
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kx / 
—VM 

vibration marks 
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b y H f k y  l e f t  b y  t o o t h  ( j - 2 )  

End milling system 

\ hst(t) 

Dynamic chip thickness 

\ vAt-T) 

\ 

Static chip - Vibration at present + Vibration at previous 
thickness tooth period tooth period 

Figure 5.4 - Dynamic chip load model [I] 

As the tool vibrates, a surface waviness is created as a result of tool deflection. If this vibration 

remains in perfect phase with itself for each tooth pass, the dynamic chip thickness is identically 

equal to the static chip thickness. Variation in the magnitude and phase of tool deflection, 

however, changes the profile of the dynamic chip thickness. Large changes in chip thickness can 

lead to instability and chatter which can cause damage to both the tool and to the workpiece. 
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Since the tool-and-spindle system is approximately an order of magnitude less stiff than 

the Kistler-and-workpiece system, both sensors exhibit the same general behavior with unique 

artifacts arising from their different ringing frequencies. The most important characteristic 

difference between the two sensors is that ringing in the Smart Tool output signal actually tells us 

something useful about the cutting process. Because most of the system compliance is in the tool-

and spindle-system, the ringing in the Smart Tool signal provides important information about 

tool displacement, whereas ringing in the Kistler signal is simply an artifact of that sensor. While 

too much tool vibration may periodically render the Smart Tool's force measurement inaccurate, 

it is at these times where spectral analysis could be employed to identify chatter frequencies in 

search of more stable cutting conditions. 

5.3 Summary 

Experimental validation shows that Smart Tool v. 10 performs with similar accuracy and 

dynamic performance as the Kistler 3-axis bed dynamometer. However, the Smart Tool's 

component cost is less than 700 dollars (consumer cost unknown) whereas the Kistler is sold for 

approximately 35,000 dollars. Peak force measurements have been shown to match those 

measured with the Kistler: While dynamic effects may make instantaneous force calibration 

difficult, the unfiltered signal may still be useful in a real-time quality controller when the process 

objective is to avoid tool breakage or maintain a certain amount of tool deflection. Both of these 

processes can be controlled by knowledge of the peak force. Notwithstanding, a bandwidth of 

approximately 600 Hz does degrade the quality of measurements, and there are several signal 

processing techniques that can be implemented to improve measurements of force. This is the 

focus of Chapter 6. 
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CHAPTER6 

APPLICATIONS IN SIGNAL PROCESSING 

6.1 Introduction 

The ideal measurement system has a system bandwidth that exceeds the maximum 

frequency content of all expected inputs, thereby making measurements proportional to the input 

sequence by the static sensitivity. This concept is easily visualized by considering the dynamic 

performance of an arbitrary measurement system as shown in Figure 6.2. 

Arbitrary Linear &\stem 

Input 
K, 

~t5" + ~~S + 1 0>n 
• -> Output 

«n = 2n • 1500 rad/s 
< = 0.1 
AT, = 3 

Figure 6.1 - Transfer function of an arbitrary linear system representing a measurement system 
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Figure 6.2 - Amplitude ratio of the arbitrary measurement system 
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In such situations when the system bandwidth exceeds the maximum frequency content of the 

ensemble of input signals, no signal processing is required to obtain good estimates of those input 

signals - one simply uses the static sensitivity to scale the measured output. 

We face a more challenging measurement situation when the frequency content of the 

input sequence overlaps with portions of the amplitude ratio that vary in gain. This concept is 

illustrated in Figure 6.3. 

Amplitude Ratio vs. Frequency 
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Figure 6.3 - A measurement system whose dynamic parameters affect the accuracy of the measurement 

In such a situation where the frequency content of the input signal overlaps with non-constant 

portions of the amplitude ratio, the system dynamics of the measurement system corrupt the 

measurement by introducing phase distortion and amplitude modulation. 

The mathematical relationship between the input and output signals for a linear causal 

system can be easily described by means of a convolution integral: 

t 

y(t) = x(t) * h{t) = j X (t) • h(t — r) dr (6.1) 

o 

Where x is the input signal, y is the output signal, and h is the impulse response of the linear 

causal system. The problem we now face is how do we decouple the true measurement from the 
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system dynamics? In general, this is a very difficult problem. Perfect recovery of the input signal 

using a linear equalization filter requires that the linear model of the channel distortion is 

minimum phase (no zeros outside the unit circle) and that the signal to noise ratio is large. For 

these reasons, successfully decoupling the system dynamics from the measurement is non-trivial. 

Some of the important questions include: 

1. Is the system linear or nonlinear? 

2. If linear, what is the appropriate model structure? 

3. How well does the model fit the data? 

4. What is the variance of the modeling error, and how does the model prediction error 

propagate through estimates of the measurement? 

5. Do the dynamic parameters vary with time? 

6. Is the estimation algorithm fast enough to implement in real time, or are we limited to 

post-processing techniques? 

These questions guide the development of our signal processing techniques. In comparing 

estimators, the fundamental parameters used to evaluate any signal processing technique include 

the quality of the result, the robustness of its application, and its computational efficiency. 

6.1.2 Chapter Overview 

This chapter presents several techniques in signal processing that have applications in 

determining how to best interpret the bending strain signal of the Smart Tool when vibrations 

become significant. Linear Prediction is shown to be a useful tool for model identification, and a 

simple algorithm for enhanced chatter frequency detection is presented. With model estimates of 

the linear dynamical system, we then introduce the general problem of state estimation and look 

at optimal filtering techniques to reconstruct estimates of the measurement from the observation 

sequence. Sub-optimal filtering techniques are also investigated because of their computational 

efficiency. 
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6.1.1 General Approach to Interpreting the Bending Strain Signal 

As explained above, the measured strain signal is the result of convolving the applied 

force with the (time-varying) impulse response of the milling system. Because it is impossible to 

perfectly model the time-varying system dynamics, we will never be able to perfectly recover the 

instantaneous cutting force. Our general approach to obtaining useful information from the sensor 

is conceived by considering a simplified block diagram of the milling system dynamics. 

* FJt) 

h(t) 

S(t) 

,sT 

F(s) 

Figure 6.4 - Generalized block diagram of the end-milling process 

In Figure 6.4, the measured force, Fm(t), is obtained by multiplying the bending strain by 

the static sensitivity of the system. This bending strain signal is produced as a result of 

multiplying the sensor compliance, Gi(s), by the applied cutting force, Fc(t). Here, the sensor 

compliance, Gi(s), and the end-milling system compliance, G2(s), are very similar: The sensor 

compliance starts at the fixed end of the spindle and relates strain on the tool holder to applied 

force. The system compliance also starts at the fixed end of the spindle and relates tool deflection 

to applied force. The frequency response of Gtf.s) and G2(s) are therefore nearly identical. 
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The challenge of recovering Fc from Fm arises from the fact that the system has memory 

because of the delay block. In this sense, we are measuring a deflection component resulting from 

the system compliance which is subsequently fed back into the system to affect the deflection a 

period later! This is quite different from most applications in channel equalization where the 

noise (i.e. distortion) is completely independent from the information in the signal. In our 

application, the compliance distorts the measurement, and the resulting tool deflection is coupled 

with the next value of the applied force we wish to measure. 

The creative solution to obtaining useful force information is hidden in the composition 

of the applied cutting force: 

Fc(t) = (force from static chip thickness) + (force from dynamic chip thickness) 

Instead of trying to estimate the applied cutting force directly, it is much easier to implement a 

filtering method that artificially extends the bandwidth of the sensor, thus allowing us to break the 

actual cutting force into two components: 

1. An infinitely-stiff measurement corresponding to the force produced by the static chip 

thickness 

2. A residual measurement containing all of the information pertinent to the system 

compliance 

Infinitely Stiff Measurement 

20 

Measured Force Compliant Measurement 

200 
Data Index 

400 200 
Data Index 

400 200 
Data Index 

400 

Figure 6.5 - Approach to interpreting the bending strain signal 
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While the ideal sensor with a very high bandwidth would be capable of measuring the 

actual cutting force as a result of the instantaneous chip thickness, we can still make meaningful 

measurements with our Smart Tool by interpreting the strain signal in the following way: 

We can first use a filtering algorithm to artificially extend the bandwidth of the sensor by 

approximating the force that is produced by the static chip thickness in the absence of tool 

vibration. This is a reasonable thing to do because tool vibrations remain relatively in-phase for 

stable cuts, thus the applied force would look a lot like the static profile. This filter will produce a 

measurement that is better suited for online calibration of the cutting coefficients than the 

measured strain signal. 

Next, this "static force estimate" is subtracted from the measured signal to produce the 

residual measurement that contains all information in the signal pertinent to system compliance. 

Spectral analysis on this compliant measurement could be used to inform the CNC controller 

about the stability of the milling operation. 

It is important to note that approximating the force due to the static chip thickness (i.e. 

artificially extending the bandwidth) ignores all information pertinent to tool vibration and system 

compliance; this is not an unreasonable approach however, because when variation in the 

dynamic chip thickness is large, it is more important to find stable cutting conditions than it is to 

accurately resolve the cutting force. 

Our ability to break down the signal into static and dynamic components is unique to the 

Smart Tool because vibrations in the Smart Tool's strain measurement are largely indicative of 

tool deflection. This same method of signal conditioning would be ill-suited for the Kistler 

dynamometer because the signal would tell us mostly about workpiece deflection (which is 

typically a much smaller component of the overall system compliance than tool deflection). 

The remainder of this Chapter focuses on developing tools specifically aimed at 

artificially extending the bandwidth of the sensor and at modeling and interpreting system 

compliance. 
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6.2 Linear Predictive Coding for Dynamic Parameter Estimation 

Linear Predictive Coding (LPC) provides a robust method for tracking both the open-loop 

and closed-loop resonances of the spindle-tool-and-workpiece system. Tracking these resonant 

modes is a necessary part of model building to successfully implement model-based filtering. 

This is accomplished by specifying the order of a rational polynomial to describe the linear 

system dynamics, and solving for the best model coefficients. The model coefficients of this 

rational polynomial are chosen by minimizing the prediction error of the LPC filter in the least 

squares sense. 

6.2.1 Problem Formulation 

The objective of LPC in this application is to estimate the pole locations of the dominant 

resonant modes of the system. These poles can then be analyzed to determine the corresponding 

system dynamics and subsequently used to develop a good filter for channel equalization. 

We begin by prescribing a filter structure that will be used to model the behavior of the 

bending strain decay profile. Because system compliance is well modeled by resonant structures 

in the frequency domain, the auto-regressive model of Linear Prediction is well-suited for this 

application. The filter structure of an auto-regressive (AR) model is given by: 

In this case, the linear filter is an all-pole filter of order P. Figure 6.6 shows the block diagram 

used to produce our model-based estimate of the system compliance. 

(6.2) 

Excitation Signal 
1 

White Random 
Process 

A ( z )  Model-based 
Estimate 

Autoregressive Model 

Figure 6.6 - Block diagram of the autoregressive linear prediction model 
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In model-based spectral estimation, it is assumed that the measured signal can be 

modeled as the output of a linear time-invariant system excited by a random (i.e. flat-spectrum) 

input sequence. This assumption that the input has a flat spectrum implies that the power 

spectrum is shaped entirely by the frequency response of the model [8]. We need this assumption 

to make the problem mathematically tractable. Of course, a flat power spectrum implies that the 

driving process has infinite variance, so we must think of the input as band-limited white noise 

(i.e. finite variance). To validate the AR system model, we can formulate the problem from the 

opposite direction. Consider the inverse model used to filter the measured signal. If the resulting 

process is white, it means that the AR model captures all of the important information about the 

system. 

Measured Signal 

White Random 
Process 

Inverse Autoregressive Model 

Figure 6.7 - Inverse "spectral whitening" LPC model 

Thus, to validate the LPC method for model identification, we look at the model prediction error, 

which is given by the difference between the measured signal and the model-based estimate: 

e(m) = x(m) - x(m) 

(6.3) 
= x(m) — akx(m - k) 

k=1 

If the error sequence is white, then the autoregressive model completely describes the input-

output relationship of the system. To test for "whiteness", we can look at the correlation of the 

residuals. If the error signal is truly white, then it should be uncorrelated with itself for all lags 

greater than zero. This method of model checking is widely used by Box and Jenkins [10] for the 

general class of ARMA (Auto-Regressive Moving-Average) models. 
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An example of how this technique can be used to validate a linear prediction model is 

shown below in Figure 6.8. Because the error sequence is well decorrelated with itself for all lags 

greater than zero, this example model adequately captures the behavior of the measured signal. 
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Figure 6.8- Model checking is performed by looking at the auto-correlation of the residuals 
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6.2.1 Least Mean Square Error Predictor 

The "best" predictor coefficients are obtained by minimizing the Mean Square Error 

(MSE) defined as: 

MSE = E[eT (m)e(m)] 

= E x(jri) - ̂  akx(m - k) 
k=l 

r r r 

= E[x2(m)] - 2^akE[x(7n)x(m - k)] +^T ak^Ta;E[x(m - k ) x ( m - j ) ]  
k=l k=l j=l 

= ^*(0) - 2rT
xx

a + aTRxxd (6.4) 

Where Rxx = E[jtxr] is the autocorrelation matrix of the input vector, rxx = E[x(m)x] is the 

autocorrelation vector, and aT = [a^a.2,...,ap] is the predictor coefficient vector. The gradient 

of the mean square prediction error with respect to the predictor coefficient vector is thus 

[e2(m)] = -2 rT
xx + 2 arRxx (6.5) 

The least mean square error solution, obtained by setting the gradient equal to zero, is given by 

a. — Rxx Txx (6.6) 

This is the typical Yule-Walker formulation of the LPC equations [8, 9]. Since the correlation 

matrix is Toeplitz (i.e. cross-diagonal symmetric), the linear system of Equation 6.6 only has 

(2P — 1) degrees of freedom instead of P2. The numerically efficient method used to solve for 

the predictor coefficients is called the Levinson-Durbin Algorithm [8, 9], This recursive 

algorithm is more efficient than matrix inversion because the linear system is Toeplitz. 
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6.2.2 Determining Model Order from the Spectrum 

For an AR process, the predictor coefficients form a polynomial in z. This polynomial is 

the characteristic equation for the system resonance. Because roots of the C.E. come in complex-

conjugate pairs, we need two model coefficients to estimate each spectral peak. For this reason, 

we choose even numbers for model order. For successful implementation of LPC, appropriate 

model order selection requires prior knowledge of the power spectrum. When the model order is 

too small, the signal is under modeled and the prediction error is not well de-correlated. The 

model will not have enough spectral resolution to identify distinct peaks and the energy will 

smear to best fit the LPC model order. When the order is too high, the matrix equation can 

become ill-conditioned, and the spectrum often has spurious peaks when the SNR is small. 

6.2.2.1 LPC Model Order Case Study 

A comparison of LPC spectral estimates of different model order (Figures 6.9-11) can be 

seen for a synthetic signal composed of two sinusoidal components and observed in additive 

white Gaussian noise. The sinusoidal components were placed at 100 and 350 Hz respectively. 
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Figure 6.9 - 2nd Order LPC model smears energy across the spectrum 
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Figure 6.10 - 4,h order LPC model describes resonance well 

10th Order LPC Model 

450 500 

Welch PSD Estimate 

10th Order LPC 

0 50 100 150 200 250 300 350 400 450 500 

Frequency (Hz) 

Figure 6.11 - l(fh order LPC model used to describe a system with two resonant modes 

We see that narrowband features are enhanced by increasing the LPC model order. If we 

continue to increase order, we must be cautious not to add artificial information to the estimate. In 

general, appropriate model order selection requires a priori information about the spectrum. 
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6.2.2.2 Model Order Selection for End Milling Data 

Because cutting force profiles have a lot of harmonic content, the in-cut profile must be 

de-trended, as shown by Figure 6.12, to achieve good results from low-order LPC models. The 

out-of-cut signal has neither a bias nor a trend and can be used as measured to estimate open loop 

resonance. A 6th order model (see Figure 6.13) has been found to work well to analyze both open-

loop free vibrations and closed loop vibrations from de-trended force profiles. 
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Figure 6.12 — De-trending the in-cut data for use with LPC 
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Figure 6.13 - 6th Order LPC works well for both free vibrations and de-trendedforce signals 
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As an alternate approach, LPC can be used to model the strain signal as a whole. 

Consider the Smart Tool's measurement signal for an example cut of three-quarter immersion 

upmilling at 3000 RPM with an average chip thickness of 0.002 inches (See Figure 6.14). 
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Figure 6.14- Smart Tool's measured strain converted to force for an example cut where the force 
measurement has been corrupted by the system dynamics 

100 

Clearly, the shape of the measured signal is more indicative of tool deflection than it is of force. 

The purpose of using LPC here is attributed to its power as a tool for system identification. We 

can use LPC to identify an appropriate model which can subsequently be used to track resonant 

modes of interest, to develop linear filters that reduce unwanted vibration, or as a tool for model-

based interpolation to recover sections of missing data. 

Without de-trending the force profile (to remove the toothpassing harmonics), we can 

still use LPC to model the signal. If the damped vibrations have different ringing frequencies in-

the-cut versus out-of-the-cut, this combined model with smear the energy in the spectrum to best 

model the combined system resonance. While a 6th order LPC model was shown above to well-

model the de-trended signals, significantly larger model order is required to accurately model the 

measured signal because of the toothpassing harmonics. LPC estimates of increasing accuracy are 

shown in Figures 6.15 through 6.21. 
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Figure 6.15 - Welch power spectral estimate of the measuredforce signal 
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Figure 6.17 - LPC estimate of the power spectrum, P=12 
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Figure 6.18 - LPC estimate of the power spectrum, P=32 
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Figure 6.19 - LPC estimate of the power spectrum, P=64 
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To accurately model the signal as a whole, the LPC model order should be larger than the 

number of samples per revolution. The usefulness of modeling the signal as a whole (as opposed 

to using in-cut and out-of-cut section independently) is that a complete model of the cutting 

signal can be used to perform Least-Squares Auto-Regressive (LSAR) interpolation [9] if any of 

the strain data is lost or corrupted during transmission. 

It may also be of interest to implement a low-order model on the signal (like P=12 in 

Figure 6.17) to track resonant modes of vibration if it is computationally too-expensive to break 

the signal into in-cut and out-of-cut sections for more accurate system identification. 
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6.2.3 Case Study: Dynamic Parameter Estimation for 3A Immersion Upmilline at 3000 RPM 

As stated earlier, dynamic parameter estimation is needed to track the system dynamics; 

with a model of how the system is resonating, we can successfully implement model-based 

filtering techniques. The following presents how Linear Predictive Coding can be employed to 

track the open-loop (out-of-cut) and closed-loop (in-cut) system dynamics from the Smart Tool's 

bending strain signal. The general approach is illustrated by Figure 6.22. 
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Figure 6.22 - LPC used to implement auto-regressive modeling of dynamic system resonance 
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Figure 6.22 shows the system dynamics estimated by the LPC algorithm for a single revolution of 

the tool. The in-cut profile is de-trended as shown by Figure 6.12, and LPC is used on the in-cut 

profile and the out-of-cut free vibration separately. The bottom plots show the estimated pole 

locations of the open-loop and closed-loop AR models, and the middle plot shows the frequency 

response of these LPC models. 

The results of this parameter identification agree with our intuition: The fundamental 

mode of vibration has more damping in the cut, and the corresponding ringing frequency is 

slightly higher than the open loop mode because the boundary condition changes when the tool 

engages with the workpiece. This agrees with the notion that the dynamic stiffness increases 

when the tool is engaged with the workpiece. Implementing the LPC algorithm for every tool 

rotation allows us to track how the dynamics vary with time, as seen in Figure 6.23. 

C o m p a r i s o n  o f  O p e n - L o o p  &  C l o s e d - L o o p  R e s o n a n t  F r e q u e n c i e s  
5 0 0 0  i  i  (  i  i  i  i  i  i  

4 5 0 0 1  

4 0 0 0  '  ^  " " V - " 1 *  "  -

3 5 0 0  -

- j ?  3 0 0 0  -
x ,  

£  2 5 0 0  
E-

2000 

1 5 0 0  - |  
o  O L  M o d e  1  

, . . .  •  C L  M o d e  1  

•  O L  M o d e  2  

2  C L  M o d e  2 >  
500 " OL Mode 3 

CL Mode 3 
01— ' •= 

0 20 40 60 80 100 120 140 160 180 200 

Spindle Revolution (cycle) 

Figure 6.23 - Comparison of open-loop and closed-loop resonant frequencies 

74 

C o m p a r i s o n  o f  O p e n - L o o p  &  C l o s e d - L o o p  R e s o n a n t  F r e q u e n c i e s  

O L  M o d e  1  

C L  M o d e  1  

O L  M o d e  2  

C L  M o d e  2  

O L  M o d e  3  

C L  M o d e  3  



Figure 6.23 tracks the resonant modes of the in-cut and out-of-cut data over two seconds (200 

cycles with 50 Hz toothpassing frequency). As shown in Figure 6.22, most of the energy in the 

signal is contained in the fundamental mode which remains relatively constant compared to the 

higher modes, but still changes too much to be removed with a time-invariant filter. A close-up 

view of how the fundamental mode changes in time is shown below in Figure 6.24. 
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Figure 6.24 - Tracking variation in the fundamental resonant mode of tool vibration 

Intuition suggests that the variation in the damped natural frequency from cycle to cycle is truly 

as stochastic as shown above. Future work should investigate the variance of LPC estimates for a 

stationary signal to validate this claim. 

6.2.4 Summary of LPC Technique for Dynamic System Identification 

Linear Predictive Coding is a powerful tool for parameter estimation of systems with 

resonant spectra, because they are well described by an AR model. This technique gives us the 

power to inform an adaptive model-based filter about the system resonance cycle by cycle. No 

work has been done to investigate the potential for implementing this technique in real time. 

Notwithstanding, we have a robust tool for system identification that makes the Smart Tool useful 

for research applications where the data only needs to be interpreted during post-processing. 
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6.3 A Simple Algorithm for Enhanced Chatter Frequency Detection 

Fourier-based spectral analysis is the most common technique used to identify modes of 

vibration in end milling. One of the problems associated with looking at the spectral content of 

the measured force, however, is that the harmonics of the toothpassing frequency degrade our 

ability to interpret the spectrum and identify frequencies corresponding to forced vibrations, and 

possibly, the onset of chatter. While it is possible to minimize these unwanted harmonics with a 

comb filter, it would be nice if we could somehow gain insight into the system dynamics without 

the need to filter the signal first. 

A simple way to remove these unwanted harmonics entirely is to difference the 

measurement signal by subtracting the instantaneous measurement from the previous revolution. 

This approach is illustrated below in Figure 6.25. 
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The challenge here is that the sampling frequency is often not a perfect multiple of the 

spindle speed; we must know the spindle speed exactly (or estimate it from the data), and 

interpolation is required to obtain the value of the measurement from the previous revolution. The 

result, however, is that we entirely remove the harmonics associated with the toothpassing 

frequency, and spectral analysis allows for enhanced chatter frequency detection. 
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Figure 6.26 shows that the toothpassing harmonics (which interfere with our ability to 

locate possible chatter frequencies) are almost entirely removed by looking at the spectrum of this 

"time-lagged difference sequence." This method is superior to that of using a comb filter, because 

the signal is conditioned in the time domain. There is no need to worry about spectral leakage, 

smoothing, appropriate data windows, etc, because the unwanted periodic components are 

completely removed. Now, comparing the spectra of the measured force and the difference 

sequence, we can clearly locate the spectral peaks in the difference sequence corresponding to 

modes of system resonance. These peaks are less evident in the spectrum of the measured force. 

An even simpler technique is to use a first-order difference to remove the force profile, 
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as seen in Figure 6.27. A first-order difference is formed by taking the difference between two 

consecutive data points. As seen in Figure 6.27, while the first-order difference appears to do a 

good job of removing the force profile in the time domain, the spectrum still contains artifacts of 

the toothpassing frequency and its harmonics. Higher-order differences were implemented as 

well, but they showed no improvement in the spectrum. 

This time-lagged differencing algorithm is a powerful technique because it completely 

removes the periodic components of the force profile. Since the bending strain signal is mostly 

characteristic of tool deflection, the result of subtraction from one revolution prior creates a signal 

that is largely indicative of the shape of the dynamic chip load (in the cut). With knowledge of the 

spindle speed, it is a simple matter to difference the measured data - the result is the ability to 

perform enhanced chatter detection by completely removing the interfering harmonics. 

6.4 Model-Based Optimal Filtering 

This section considers optimal techniques in signal processing that can be used to 

artificially extend the bandwidth of the sensor. The techniques presented include the harmonic 

Kalman Filter and Weiner equalization. These optimal linear filters use least-squares techniques 

to combine the best of system modeling and actual measurements. Of course, the performance of 

any "optimal" technique is only as good as the underlying model. 

The techniques presented here are considered optimal because the filter structures are 

derived by minimizing some sort of Bayesian risk function (i.e. cost function) [11]. For example, 

minimizing the mean squared error gives the Bayesian MAP (Maximum A Posteriori) estimate 

corresponding to the conditional mean of the estimated parameter computed using the posterior 

probability density function; minimizing the absolute value of error gives the Bayesian MAVE 

(.Minimum Absolute Value of Error) estimate corresponding to the median of the posterior 

probability density function. Note that if the noise is Gaussian, these estimators are identical. 
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6.4.1 An Introduction to State Estimation 

The general problem we now face is estimation of a signal that has been distorted by 

some dynamical system and observed in additive noise (Figure 6.28). 

Linear Dynamical System Optimal Linear Filter 

Figure 6.28 - Problem formulation for state estimation 

Here, x is the true process we wish to know, y is the process x after being transformed by the 

dynamic system, v is additive white Gaussian noise, z is the noisy measurement, and x is our 

estimate of the true process x. For optimal estimation, a quadratic cost function of the state 

residual would be the most meaningful, 

/(*) = \ ^ x  =^ ( x~  _ (6'7) 

but the reason for estimation is that x is unknown. Hence, x is normally unavailable for cost 

function evaluation, and for formulation of the estimation equations. On the other hand, the 

measurements are available, and with the reasonable assumption that z bears some systematic 

relationship to x, 

/U)  =  = \ ( z  -  ~ 9)  

(6.8) 

= - (Z. — HX)T(Z -  Hx)  

is a useful cost function. Here, H is the observation matrix of the state model. It can be evaluated 

without prior knowledge of x, and it can be minimized to derive x from z. If the mean value of the 

noise is zero, then J(z) minimizes J(x) in the limit that the number of observations goes to infinity 

[ 1 1 ] .  
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6.4.2 Harmonic Kalman Filter 

The Kalman Filter is a recursive optimal filter that propagates the conditional probability 

density function from one sampling instant to the next, taking into account system dynamics and 

inputs, and incorporates both measurements and measurement error statistics in the estimate. 

Computing the weighting factors (or filter gains) that optimally combine measurements and 

extrapolations is a crucial intermediate step in the computation. The estimate is obtained by 

taking the mean (i.e. expected value) of the conditional density function, and the covariance 

matrix is used to specify the spread (or uncertainty) in the estimate [11]. The recursive 

formulation of the mean and covariance can be expressed in five equations: 

1. State Estimate Extrapolation (Propagation) 

2. Covariance Estimate Extrapolation (Propagation) 

3. Filter Gain Computation 

4. State estimate Update 

5. Covariance Estimate Update 

As Stengel [11] explains, "Given the state estimate from a previous iteration, (1) uses the 

dynamic process model to propagate the estimate of the state mean value to the next sampling 

instant without regard to new measurements. (2) does the same thing for the state covariance 

matrix, assuming that the "process noise" of known covariance is forcing the system. The result 

of (2) enters the computation of the optimal filter gains. The filter gain computation (3) weights 

prior knowledge of measurement error covariance with state estimate covariance on a purely 

statistical basis. The actual measurements have no effect on the gain computation. These 

measurements correct the state estimate in (4), adding the product of the gain matrix and the 

measurement residual to the state estimate propagated by (1). A similar correction is made to the 

covariance estimate (5), accounting for the known covariance of measurement errors." 

Block diagrams showing the appropriate computations for Kalman state estimation and 

filter gain computation are shown in Figure 6.29 and Figure 6.30: 
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Implementation of the discrete Kalman Filter is simplified for steady-state conditions 

when the statistics for the driving noise and measurement noise are stationary. In this case, the 
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filter gains can be pre-computed, and filter implementation only requires the recursive loop 

shown in Figure 6.29 (state propagation and optimal state correction based on filter gains). 

6.4.2.1 The Linear Dynamical Model 

Our motivation for using the Kalman Filter is to artificially increase the bandwidth of the 

sensor. Recall that we want to do this so that we can separate the measurement into a static 

component useful for calibration, and a compliant component useful for monitoring the system 

dynamics. This is readily accomplished by building a system model that looks like the cutting 

force resulting from the static chip thickness (Figure 6.31). 
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We implement our model of the "static force" profile by using a series of oscillators 

corresponding to the toothpassing frequency and its harmonics. We can exploit our knowledge of 

the spectrum during model building to make our lives easier: Since our objective is to build a 

state model with the appropriate frequencies and magnitudes to describe these harmonics, we can 

simulate the static profile such that the synthetic signal has an integer number of points per cycle, 

and an integer number of complete cycles. When we do this, the spectrum computed using the 

FFT is exactly the Discrete Fourier Series (DFS) [9], To this end, we have a perfect model in the 

frequency domain of the discrete sinusoids needed to recreate the static force profile. 

There is an inherent tradeoff between accuracy and model complexity using this 

technique. As frequency increases, the spectral contribution to the total energy of the signal is 

also seen to decrease. We must make a design choice as to how many spectral components we 

will use to build the linear model. Our decision must consider the fact that the estimation 

algorithm will only work as well as the underlying model. This design choice is aided by looking 

at the integral of the power spectrum of the static force model (Figure 6.32). 
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Figure 6.32 - Numerical integration of the static model spectrum is used to specify model order 

We see that a model with 10 harmonics captures 96% of the energy contained in the static signal. 

Increasing model order beyond this point does not add much information to the model. 
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6.4.2.2 Filter Gain Computation 

The filter gains are computed solely from the statistics of the driving "process noise" and 

the additive observation noise. These gains are computed to minimize the mean square error 

between the model and the observations assuming that the measurement noise is Additive White 

Gaussian Noise (AWGN). This is most readily accomplished using the MATLAB built-in 

function "Kalman.m". Complete details of the mathematics can be found in [9, 11, 12, 13]. 

6.4.2.3 Filter Implementation 

With a model of the linear system and knowledge of the noise statistics, we can build this 

"Harmonic Kalman Filter" and tune the gains to achieve the desired frequency response. The 

Bode plot of an example filter tuned for radial force measurement during 3000 rpm 3A immersion 

upmilling with an average chip thickness of 0.002 inches is shown below in Figure 6.33. 
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The result of filtering the Smart Tool's measured strain signal (3/4 immersion upmilling 

at 3000 RPM, radial force) with our harmonic Kalman Filter is shown below in Figure 6.34. 

Harmonic Kalman Filter 
120 

100 

80 

60 

40 

£ 20 
0) 
E 
o 0 

LL 

-20 

-40 

-60 

-80 

-100 

Measurement 

Kalman Estimate 

10 20 30 
Time, (ms) 

40 50 60 

Figure 6.34 - Implementation of the Harmonic Kalman Filter 

We first observe that our Kalman filter does a reasonable job of artificially increasing the system 

bandwidth. Vibrations are significantly attenuated, and peak force estimates are maintained; this 

is the general advantage of the Kalman filtering technique versus a simple low pass filter - the 

peak of the filtered signal matches that of the measurement (averaging vibrations), and there is no 

time delay to the signal. There is no delay because the Kalman filter is able to achieve zero phase 

in the pass band. 

The drawback of this technique, however, is that while 10 harmonics capture 96 percent 

of the energy in the signal, all of the un-modeled harmonics are necessary to replicate the sharp 

corners seen in the static profile. This 10-harmonic model smears out some of this energy, 

widening the base of the signal and missing the high frequency content at the peak of the profile. 
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This smearing is unavoidable, however, because significantly increasing model order causes 

problems with numerical stability as the state matrix (A matrix) becomes close to singular. 

Nonetheless, it is a powerful technique for smoothing and peak force estimation, 

6.4.3 Weiner Equalization 

Because the harmonic Kalman Filter is unable to capture the high frequency content of 

the static model, an alternate approach is to use Weiner equalization. The advantage of the 

Weiner technique is that the filter can be formulated in the time domain. Wiener filters play a 

central role in a wide range of applications such as linear prediction, echo cancellation, signal 

restoration, channel equalization, and system identification [10]. The coefficients of a Weiner 

filter are calculated to minimize the average squared distance between the filter output and a 

desired signal. Here we can think about the Weiner filter from the classical perspective of 

"channel equalization". With the typical terminology, the desired signal we wish to measure is 

distorted by the channel (the milling system compliance) and measured in noise. The goal of our 

filter is to recover the transmitted signal (the static force). 

The Weiner filter is formulated by considering the case where the observation signal y(m) 

is a distorted, noisy version of a transmitted signal x(m) [13]. We wish to recover an estimate of 

x(m) from y(m) using an FIR filter of order P. Other filter structures could also be used to develop 

the filter, but a moving average (MA) FIR structure should work well in this application because 

it will naturally compensate for the system resonance well-modeled by the AR process (i.e. zeros 

do a good job of attenuating the resonance of system poles). 

The FIR estimate of the static force profile is given by 

p 

x(m) = ̂  wk • y(m - k) (6.9) 

k=0 

Where w is the vector of optimal FIR coefficients, and y is the vector of measurements. In vector 

notation, this estimate is given by 
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x(m)  =  w T y(m)  (6.10) 

The typical Bayesian estimation procedure suggests that we should define a cost function, and 

then find the solution which minimizes the expected value of the cost (i.e. minimizes the 

Bayesian risk). In this case, we define the cost as the square of the estimation error. Our job now 

is to find the set of filter coefficients, W* which minimize the expected value of the estimation 

error. 

Bayes ianr i sk  — E[x(m) — x(m)] 2  

p 

x (m)  — w k  • y (m -  k)  = E 

k=o 

(6.11) 

If we assume that x(tn) and y(m) are ergodic, then minimizing the expected value is the same as 

minimizing the time average value. Thus, for N observations, we can approximate the ideal 

solution by finding the set of filter coefficients which minimize the summed square error (SSE): 

N-1  N-1  

SSE = e2(m) = [x (m)  -  x(m)] 2  

m=0 

N-l  

m=0 

P 

SSE =  V  x(m)  — /  w k  •  y (m  — k )  (6.12) 

m=o fc=o 

Which is minimized by taking the partial derivative with respect to the jth coefficient 

N-1  P 
dSSE 

dw 

dSSE 

dwj  

.b V"1 

— = 2 _ j2 x(jn̂  ~ Z j Wk' y(-m ~ ̂  
J  m -o  I r=n  fe=0 

[ -y (m-J)]  

rN- l  

=  - 2  

N-1  

x (m)y(m — j )  -  ̂  w k  ^ y(m - fc)y(m (6.13) 
Lm=0 k=0 m=0 

Equation 6.13 can be simplified by recognizing that the summations are linear transforms of the 

biased definition of the sample auto-correlation and sample cross-correlation functions. Thus, 

N-1 

2, x(m)y(m - j )  =  N • r y x ( j )  (6.14) 

m=0 



And 

N - 1  

2^  y(m -  k)y (m- j ) = A/ • r y y (k  
m=0 

can be replaced in Equation 6.13 to obtain 

p  

dSSE 

dwj  
-2 } yx  0)  -  ̂  Wfe •  f yy i j i  ~ j )  

k=0 

which is minimized by setting the partial derivative equal to zero. 

p 
dSSE 

dw,  
=  - 2  

7 
r y x ( j )  ~^w k  •  r y y (k  -  j )  

k=0  

= 0 

r 

fyy(fc - ;') = ryx(j), j = 0,1,2,... P 

k=o  

Thus we have P+l equations, and P+l unknowns. In matrix notation, let 

R yy  =  

r y x  = 

*yy(0) *yy(l) 

*yy(l) ^yy(O) 

f yy  ( ^0  ?yy( .P  ~  1)  

M°) 

^y(l) 

^yy(^) 

ryy(P-l) 

^yy(O) 

r x y {P)  

w = 

w0 

Wj 

W P  

(6.15) 

(6.16) 

(6.17) 

(6.18) 

Finally, we can determine the filter coefficients which minimize the summed square estimation 

error by using matrix inversion. 

Ryy w = r y x  

w = R y  * r y x  

(6.19) 
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If the signals are ergodic, then the ideal solution which minimizes the expected value of the 

estimation error squared (rather than the time averaged value) can be found in the limit as the 

number of observations approaches infinity [8]. This is the ideal Weiner solution for recovering a 

signal using an FIR filter. The conventional least squares solution to the Weiner filtering problem 

[8, 9] is similarly formulated as 

e(m) = x(m) — x(m) 

r  

x(m) — ̂  wky(m — k) ,  for m = P . . .  N -  1 — P 
(6.20) 

k=0 

Which in matrix notation, can be expressed as 

e(0) 1 r *(0) l 
e(l) *(i) 
e(2) = x{2) — 

,e(JV -1), x{N -  1), 

y(0) 
y(D 
y( 2) 

y(-1) 
y(0) 
y(i) 

y(-2) 
y(-D 
y(0) 

y(l-/>) 
y(2-P) 
y(3 - P )  

y(N -  P)  

w0 -
wl 

w2 

J 
• s

 

(6.21) 
y(N-  1) y(N -  2)  y{N -  3) 

e  =  x - Y  w  

We can minimize e7e by setting 

w = (Y T Y)~ 1  Y t x (6.22) 

This is the standard least squares solution for minimizing the residual error squared for an over-

determined set of linear equations (N > P). This matrix formulation is identical to the Weiner 

solution for a finite set of observations, because both formulations minimize eTe = SSE. 

We can now take a look at how this method works for our milling data. Again, the goal is 

to develop the optimal FIR filter coefficients that best recover the "static force" which results 

from the static chip thickness. The Weiner method requires a "training signal", x(m), which is 

used to determine how the desired signal is different from the observation sequence. This is 

extremely powerful, because we can use the infinitely-stiff static force model to train the filter to 

reject vibrations. Figure 6.35 shows the simulated static force profile superimposed on the 

measurement which has been corrupted by the system dynamics. 
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Figure 6.35 - The static model is used as a training signal to determine Weiner pole locations 

Determining the optimal filter coefficients is a simple matter of sorting observations into 

the appropriate matrix locations, as dictated by Equation 6.21. The only difficult question is 

determining how to specify model order. This design choice, as always, is aided by knowledge of 

the spectrum. Our Linear Prediction models showed that the resonance in the spectrum is well-

modeled by three spectral peaks. For this reason, choosing P=7 is a reasonable design choice. 

This 7th order polynomial in z will have 6 complex roots corresponding to three spectral nulls 

(Figure 6.36). 
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The frequency response of our Weiner FIR equalization filter is easily derived from the 

filter structure. Recall that our estimate of the static force is given by 

p 

x (m)  = 2^  wky(m — k)  (6.9) 
k=0 

Taking the Z-transform of both sides, we obtain 

p 

X(z )  =  Y(z )^^w k  z  k ,  there fore  =  H(z)  = wk z (6.23) 

k=0 fc=0 

Thus, the frequency response of our FIR Weiner filter is obtained by  letting  z  = = e^Zn^T, as 

shown in Figure 6.37 to filter the measurement signal shown in Figure 6.35. 
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Figure 6.37 - Frequency response of the optimal Weiner solution 
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We see that that our 7th order FIR filter is designed such that its coefficients create spectral nulls 

at exactly the modes of resonance seen in our Linear Prediction model. This was accomplished by 

minimizing the SSE between the static training signal and the measured signal. This is a 

particularly neat technique because the filter zeros are determined from the data itself! (They are 

placed where there is poor coherence between the training signal and the measurement.) This is 

an outstanding result because the filter puts spectral nulls at exactly the modes of resonance seen 

in the measured strain signal. 

When this filter is used on our measurement signal, the results are quite impressive. 

Figure 6.38 shows the static signal estimate recovered from the measurement signal. 
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Figure 6.38 - Static signal estimate after applying the Weiner filter 

The recovered static force estimate looks a lot like the infinitely-rigid training signal. Compared 

to the Kalman technique from above, our Weiner filter is clearly superior in terms of artificially 

extending the bandwidth because it does a better job of capturing the shape of the static profile. 

Recall that the Kalman estimate's peak is too rounded because the frequency domain model of 

the static profile ignores the high-frequency components. While the Kalman estimate is much 
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smoother than this Weiner estimate, this technique does not lose any of the sharpness in the shape 

of the static profile, because the model is trained in the time domain. 

A 4-term FIR moving average filter can be used after the Weiner filter to smooth the 

profile, as shown in Figure 6.39. There is a trade-off between smoothing and phase shift, 

however, because a linear-phase MA filter has a delay of (P-1 )/2 samples [19]. The sampling rate 

of the signal should be considered to select the model order for the moving average filter. 
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Figure 6.39 - Output of the Weiner filter can be smoothed with a low-order MA filter 
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6.5 Sub-Optimal Filtering for Signal Enhancement 

Sub-optimal filtering techniques are often favored over optimal least-squares techniques 

for their comparable performance complemented by superior computational efficiency. This 

section discusses such techniques. Presented here is a non-optimal, model-based technique for 

estimating the applied cutting force followed by a discussion of how simple linear filters can be 

used to remove unwanted vibrations. 

6.5.1 Dynamic Chip Load Filter 

The notion of a "time-lagged difference sequence" was presented above, illustrating that 

knowledge of the spindle speed can be used to estimate the variation in force from cycle to cycle. 

This time-lagged difference sequence, or variation sequence, has a similar shape as the dynamic 

chip load because the measured strain signal is largely indicative of tool deflection. This assertion 

is justified by looking at the magnitude spectrum of the Linear Prediction model (Figure 6.22) 

where we see that most of the energy in the strain signal comes from the fundamental mode of 

vibration. 

The power of this filtering technique is that it allows us to work around the problem of 

convolution and actually estimate the applied cutting force. This approach stands in contrast to all 

of the other filtering techniques discussed thus far, which were aimed at artificially increasing 

system bandwidth. As mentioned in the introduction of this chapter, we cannot use a linear filter 

structure (FIR, IIR) to estimate the actual cutting force because the cycle-delay feedback loop 

makes the dynamic behavior recursive. 

If we are creative, however, we can exploit the fact that our strain-based sensor measures 

displacement to estimate the force that results from the dynamic chip thickness. We can do this 

by estimating the shape of the dynamic chip load in units of strain, scaling by the static 

sensitivity, and superimposing this measurement on the static force profile. This is shown 

schematically in Figure 6.40. 
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Figure 6.40 - Block diagram of the dynamic chip loadfilter 

This process assumes that the static sensitivity accurately maps strain to force. Some sort of 

amplitude modulation may be required to compensate for gain as a function of frequency to 

accurately estimate force magnitudes. No work has been done to investigate how this amplitude 

modulation should be performed. Figure 6.41 shows the signals required to create the cutting 

force estimate. The measured force, y(m), is differenced based on the period of revolution, to 

obtain the variation sequence given by y(m) - y{m - T). This signal is scaled by the static 

sensitivity, and superimposed on the static force profile. 
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Superimposing the force from the dynamic chip thickness on the static model results in 

our estimate of the actual cutting force, as shown in Figure 6.42. 
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Figure 6.42 - Dynamic chip load filter estimate of the applied cutting force 

For this stable cut, even though the measured force shows a lot of vibration, the actual 

cutting force looks a lot like the static chip thickness because variations are small. In this way, we 

can exploit our record of tool vibration (in units of force), to combine the force resulting from the 

dynamic chip thickness on a model-based static estimate. 

Recall that our experimental validation in Chapter 5 showed that peak forces were in 

general agreement with those of the Kistler dynamometer, even for the higher spindle speeds. 

This observation is a preliminary validation for simply scaling the time-lagged strain sequence by 

the static sensitivity, without considering frequency-dependent amplitude modulation. This 

should be investigated as future work. 
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6.5.2 Linear Time-Invariant Filters 

Our discussion of adaptive filtering and model-based filtering would be incomplete 

without comparing the relative performance of these estimators to that of a simple linear time-

invariant notch filter. With the goal of artificially extending the bandwidth of the sensor, intuition 

tells us that a notch filter should do a reasonable job of removing vibration because most of the 

resonant energy is contained in the fundamental. 

To compare estimators, a notch filter was designed using the Matlab built-in function 

"IIRnotch.m". As previously shown in Figure 6.24, the fundamental mode of vibration is seen to 

move with some uncertainty. For this reason, the center of the notch was placed at the mean of 

the in-cut fundamental frequency (as informed by LPC), and the half-power width of the notch 

was specified by the spread of the data. The IIR filter design is shown below in Figure 6.43. 
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Figure 6.43 - Design parameters for the IIR notch filter 
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The frequency response is obtained by evaluating the Z-transform of the filter by the variable 

substitution, z = exp(jw). The application of this filter on the strain signal is shown in Figure 6.44. 
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Figure 6.44 - Implementation of the IIR notch filter 

We see a small time delay in the filtered response, but this simple linear filter does a great 

job of removing most of the vibration. Typically, we like to implement LTI filters that have linear 

phase to prevent phase distortion, so we implement the IIR notch filter with forward-backward 

(zero-phase) filtering for comparison (Figure 6.45). 
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The interesting result we see in the response of the zero-phase implementation of the IIR notch 

filter (Figure 6.45) is that the peak falls much earlier than it did with the forward implementation. 

This is interesting because the phase distortion of the notch filter actually helps the filtered signal 

to look more like the static force estimate we are trying to recover. 

If we wanted to implement a notch filter using an FIR structure, we would need to design 

an FIR filter with approximately the same impulse response as the IIR filter. This is easily 

accomplished by truncating the impulse response of the IIR filter, and using these values as the 

filter coefficients [19], as seen in Figure 6.46. 
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We see no noticeable difference in the static force estimate using the FIR notch filter 

implementation from that of the IIR model. The advantage of the IIR model is that is uses fewer 

sums and multiplies because it only has 2 poles and 2 zeros, as opposed to this FIR filter which 

has 30 zeros. 

6.6 Summary 

This chapter has shown that Linear Predictive Coding is capable of estimating the system 

resonance for both open-loop and closed-loop vibrations. This is an exceedingly powerful tool for 

system identification because it allows us to inform an adaptive filter of the system vibrations 

cycle by cycle. Real-time implementation would require sufficient processing overhead to 

implement the LPC algorithm. This should be investigated as future work. 

Optimal model-based filters were also developed to artificially increase the bandwidth of 

the sensor. While the Kalman filter and the Weiner filter both have their merits, Weiner 

equalization is seen to be particularly useful. It is capable of removing vibrations without a time 

delay, while simultaneously maintaining the high frequency content of the signal necessary to 

preserve the sharp corners of the static profile. The Kalman technique may be able to achieve 

better results if a different model is used. While the harmonic model loses the high frequency 

content needed to maintain the sharp corners of the static profile, it may be possible to build an 

equalization model via linear prediction. This should be investigated as future work. 

Sub-optimal techniques were also shown to be useful. The dynamic chip load filter 

exploits the physics of the end milling system to estimate the applied cutting force. This is 

different from the other techniques which simply aimed to artificially extend the bandwidth by 

approximating the static profile. 

Notch filters were also shown to remove vibrations well. These simple filters are well suited 

for applications when the corresponding time delay is unimportant. For example, using a notch 

filter on the measured signal before the Altintas average force calibration method is employed 
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will probably provide good results. The time delay is a problem, however, if we wish to use the 

filtered result to subtract the "static force" and obtain the compliant residual measurement. 

Table 6.1 provides a summary of the estimators considered in this chapter and their 

possible applications. 

Table 6.1 - Comparison of estimators useful for signal processing 

Linear 
Prediction 

Kalman 
Filter 

Weiner 
Filter 

Dynamic 
Chip Load 

Filter 

Notch 
Filter 

Useful 
Applications 

System 
identification 

Artificially 
extending the 
bandwidth 

Artificially 
extending the 
bandwidth 

Estimating 
applied cutting 
force 

Artificially 
extending the 
bandwidth 

Advantages 

Least-squares 
technique 

Describes the 
system well 

Track in-cut 
and out-of-cut 
variation 

Least-squares 
technique 

No phase 
delay 

Very robust 

Least-squares 
technique 

No phase 
delay 

FIR model is 
simple 

Estimates 
applied force, 
not static force 

Physics-based 
model 

Effective at 
removing 
vibration 

Simple 

Can 
implement in 
real time 

Disadvantages 

Need method 
of coherent 
triggering to 
mitigate 
variance of 
estimates 

Requires much 
processing 

Smoothing and 
smearing of 
peak force 

Filter requires 
training 

Very sensitive 
to errors in 
spindle speed 
measurement 

Small time 
delay 

Possible for 
Real Time? 

Maybe 

Need method 
of coherent 
triggering for 
indexing 

No 

Too much 
computation 
involved 

Maybe 

Training signal 
necessary 

Maybe 

Accurate 
spindle speed 
must be known 

Yes 

Build a wide 
notch to 
account for 
variation 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

Through this work, the Smart Tool was shown to achieve its fundamental design goal of 

accurately resolving bending strains from a combined loading scenario while remaining 

insensitive to unwanted components of strain. To this end, the sensor is capable of resolving static 

loads with a total measurement uncertainty of less than 3 percent full scale while maintaining an 

effective resolution of 4.5 N and a span of approximately 1400 N. A summary of the significant 

experimental results from static calibration (Chapter 3) are repeated below in Table 3.3. 

Table 3.3 (Repeated) - Summary of experimental results from static calibration 

Attribute Specification Experimental Result Specification Met? 

Effective Resolution 4.5 N minimum 4.51 N Yes 

Span 1330 N minimum 1395 N Yes 

DC Stability < 3% full scale Drift < 2% full scale Yes 

Bending Crosstalk < 1% full scale 

Radial: 0.506% Yes 

Bending Crosstalk < 1% full scale 

Tangential: 2.68% No 

Torsional Crosstalk < 1% full scale 

Radial: 0.37 % Yes 

Torsional Crosstalk < 1% full scale 

Tangential: 0.15% Yes 

Total Error < 5% full scale < 3% full scale Yes 
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As shown in Chapters 4 and 5, the dynamic performance of the sensor is less than ideal 

because large tool vibrations degrade the sensor's ability to accurately measure force. The 

fundamental natural frequency of the Smart Tool is approximately 630 Hz, however, this mode is 

seen to change depending on the boundary condition at both the cutting tip and at the spindle. For 

example, Figure 4.5 shows that there is variation in these parameters with respect to spindle 

speed, and Figure 6.23 shows that these parameters also changed in-cut versus out-of-cut for a 

fixed spindle speed of 3,000 RPM. Such a low natural frequency is a problem for displacement-

based strain sensors like our Smart Tool because vibrations become convolved with the desired 

measurement thus degrading our ability to accurately measure the applied cutting force. 

Furthermore, because the vibrations overlap with the signal of interest in the frequency domain, 

the signal cannot be separated from the "noise" (i.e. distortion from system dynamics) with a 

simple low pass filter. 

Several techniques in signal processing were presented to artificially extend the 

bandwidth of the sensor (Kalman filter, Weiner filter, notch filters), and a model-based technique 

called the dynamic chip load filter was developed to estimate the applied cutting force by 

interpreting the shape of the strain signal as tool deflection. Furthermore, Linear Predictive 

Coding was shown to be a powerful tool for dynamic parameter identification of system 

resonance. Linear prediction is particularly intriguing because it allows for the development of an 

adaptive filtering technique rather than using a time-invariant filter which merely corrects for the 

signal distortion on average. As shown in Chapter 6, these techniques can be used to circumvent 

problems associated with low bandwidth by modeling and removing forced vibrations. 

Chapter 5 showed that the Smart Tool's ability to measure force in a dynamic 

environment is comparable to that of the Kistler 3-axis force dynamometer. For the 600 RPM 

experimental validation, both sensors are shown to accurately measure the cutting force and yield 

nearly identical measurements of force. At higher spindle speeds, again, the two sensors are in 

good agreement about where tooth engagement starts and stops, and they yield nearly identical 
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peak force measurements; at these higher spindle speeds, however, both sensors' measurements 

of force are distorted by sensor dynamics for the reasons described above. 

This experimental validation (Chapter 5) shows that our sensor is both accurate and 

useful for measuring cutting forces in milling. The advantage of our sensor, as opposed to the 

Kistler, is that the Smart Tool is less invasive to the machining process. Furthermore, while both 

sensors' measurements are seen to be corrupted by sensor dynamics, the vibrations in the Smart 

Tool's strain signal are largely indicative of tool deflection. This is important because tool 

deflection is usually the largest contributor to the total system compliance. Thus, with an 

indication of the strain resulting from tool deflection, we can reconstruct the applied cutting force 

by assuming that this force is proportional to the dynamic chip thickness (Section 6.5.1). 

While our sensor's design was shown to meet its design objectives, there are some 

disadvantages to the design architecture in its current state. Foremost, it is a problem that the 

sensor is limited to a single cutting tooth. While this restriction is necessary to measure bending 

strains (which is how we are able to meet the constraint for total measurement error), it makes the 

Smart Tool impractical for industrial applications other than finish cutting. Similarly, the Kistler 

is ill-suited for industrial applications because of its high cost and invasive nature. The Kistler has 

the advantage, however, that it works with all cutting tools. The Smart Tool has the additional 

disadvantage that the current data transmission board is only capable of transmitting one signal at 

a time. 

Nonetheless, the Smart Tool is capable of capturing detailed information about the 

milling process at the tool tip. Even if a multi-tooth insert were used with this sensor design, the 

measured output is valuable when interpreted as tool deflection. This information could be used 

in a multiple-sensor smart machining system to measure tool vibrations and subsequently perform 

dynamic parameter estimation or spectral analysis to analyze stability of the current milling 

operation. 
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7.2 Extension of Signal Processing Techniques for Real-Time Implementation 

The Smart Tool project exists to develop novel sensors that are ultimately useful for real­

time quality control in milling. The natural extension of the work in this thesis is to consider how 

the sensor lends itself to real-time process improvement. Figure 7.1 shows a suggested block 

diagram for real time implementation of the Smart Tool in the framework of a smart machining 

system. The paragraphs below describe the motivation for interpreting the strain signal in the 

following way: 

Real Time 
Quality Controller ,-n 

Decision Logic Difference Sequence Threshold Detector 

Process Planning Spectral Analysis 

10. 

Robust Coefficient 
Estimator Parameter Estimator Decision Logic 

Filtering Technique 

Figure 7.1 - Suggested block diagram for real-time implementation of the Smart Tool 
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Block 1 - Real Time Quality Controller 

The real time quality controller uses cost and objective functions to meet process 

objectives. For example, during a roughing operation, the process objective is to remove material 

as efficiently as possible, which requires a tradeoff between feedrate, spindle speed, and rate of 

tool wear. Here, peak force measurements are important to monitor the process and prevent tool 

breakage. Alternatively, during a finish cut, it may be more important to maintain good surface 

quality, and spectral analysis could be employed to track vibrations. 

Block 2 - Difference Sequence 

With knowledge of the spindle speed, it is a simple matter to difference the measured 

strain signal to obtain a sequence that is proportional to the dynamic chip load. Essentially, this 

block finds the difference in force at the same angle of rotation for subsequent tooth passes. This 

is done first, because it is a computationally efficient way of assessing the stability of the cut. If 

vibrations remain in phase, the amplitude of this difference sequence is small; if vibrations 

become out of phase, this difference signal becomes large and the controller should take 

corrective action to maintain stability. For this reason, this time-lagged difference technique is 

especially useful for applications in chatter detection. 

This block is performed first because it is a powerful tool for signal classification. Signal 

classification is necessary because the Smart Tool's measurement signal seems to fall into one of 

three categories at any given time: 

1. Minimal vibration. Measured force is truly indicative of the applied cutting force. 

2. Some vibration. Vibration is mostly repeatable form cycle to cycle. Here, the measured 

force is more indicative of tool deflection than it is of cutting force. 

3. Lots of vibration. Vibration is not repeatable form cycle to cycle. The cut may be 

unstable. 
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The time-lagged difference sequence will be small for cases (1) and (2), but will not be small 

when vibrations become out-of-phase (3). Thus, by subtracting prior values of strain from the 

current value, we can make quick assessments about the stability of the cutting process. 

Accurately determining the spindle speed is a necessary intermediate step to implementing this 

algorithm. This is readily accomplished by using a Hall Effect sensor on the CNC spindle. 

Block 3 - Threshold Detector 

If cycle-to-cycle variations in measured strain are small, the cut appears to be stable. In 

this case, tool vibrations are either insignificant or highly repeatable, and we fall into signal 

classification category (1) or (2). If the strain signal becomes aperiodic, this will be reflected in 

the magnitude of the time-lagged difference signal making it possible to determine stability of the 

cut before damage is done to either the tool or the workpiece. A threshold can be established to 

determine if the cut may be unstable. Determining an appropriate threshold value should be 

investigated as future work. For example, time-lagged variations in measured force larger than 10 

percent of the peak force may indicate that the cut is becoming unstable. 

Block 4 - Decision Logic 

The magnitude of the time-lagged difference sequence can be used to assess stability of 

the cut. This informs a logic switch as to what action should be taken. If the cut is potentially 

unstable, it is more important to find stable cutting conditions than it is to accurately know force 

magnitudes. 

Block 5 - Spectral Analysis 

Spectral analysis of the time-lagged sequence was shown in Chapter 6 to provide 

enhanced spectral estimation by completely removing the harmonics of the toothpassing 

frequency. This is a convenient tool for identifying potential chatter frequencies. 
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Block 6 - Process Planning 

With knowledge of the spindle speed and potential chatter frequencies, it may be possible 

to find more stable cutting conditions before damage is caused to either the tool or the workpiece. 

Based on the block diagram in Figure 7.1, process planning is necessary here to find more stable 

cutting conditions at the onset of chatter. 

Other important aspects of process planning include the tracking of tool wear, and 

performing in-situ adjustments in feedrate to compensate for tool wear. The quality controller 

must decide when it is time to replace the tool based on cost functions of several variables. The 

contents of this block should be further investigated as future work. 

Block 7 - Parameter Estimator 

If the cut is stable, the important question is whether or not vibrations are significant. 

Implementing the time-lagged difference sequence does not tell us whether vibrations are large or 

small - it only tells us that they are repeatable. Parameter estimation can be used to look at the 

damping of the open-loop vibrations. If the magnitude of the vibrations is large, filtering may be 

required on the strain signal before the quality controller calibrates the Altintas force model. This 

filtering may be necessary to smooth the force profile for successful calibration using the 

instantaneous method. Dynamic parameter estimation can also be used to inform this filter which 

frequency bands contain unwanted vibrations. Linear prediction has useful applications here as 

shown in Chapter 6. 

Block 8 - Decision Logic 

This logic switch uses knowledge of the magnitude of vibrations to assess whether or not 

filtering is required on the measured strain signal before calibration. Future work should 

investigate an appropriate magnitude threshold for open-loop vibration, below which no filtering 

of the strain signal is necessary. Integration of the power spectrum over narrow frequency bands 

can provide a measure of the energy of the vibrations. 
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Block 9 - Filtering Technique 

Selection of an appropriate filtering technique depends on which method will be used to 

calibrate the Altintas force method. If the average-force method [1] for online calibration will be 

used, it may be possible to simply use a notch filter to remove the unwanted vibrations. If the 

instantaneous method is required for calibration because the average force matrices are ill-

conditioned (due to lack of variation in the average chip thickness), it may be required to 

implement a filter with negligible phase delay. In this case, the Weiner filter is a superior choice, 

as shown in Chapter 6. 

Block 10- Robust Coefficient Estimator 

A quality controller based on Altintas model coefficients [1] would use either the average 

force method or the instantaneous method to calibrate the force model. A force model is powerful 

because it gives the quality controller the ability to estimate the forces resulting from different 

cutting conditions. These model coefficients are then used to make changes in process variables, 

such as modifying the feedrate and/or spindle speed, or deciding that excessive tool wear requires 

replacement of the cutting inserts. 

7.3 Suggested Topics and Direction for Future Work 

This section presents suggested topics for future work in specific areas of sensor 

development and signal processing. 

7.3.1 Sensor Design and Wireless Communications 

Successful integration of the Smart Tool into a smart machining system requires a few 

modifications to the current sensor architecture. First and foremost, the data transmission board 

needs to be upgraded form a single-channel design to a two-channel design, thus allowing for 

both radial force and tangential force to be measured simultaneously. Second, data collection 

should be facilitated via C++ so that the sensor is capable of interfacing with the real time quality 
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controller. Accessing data through MATLAB is too slow to be effective in real time. Lastly, the 

Smart Tool's data stream should be synchronized with that of the Kistler and the spindle Hall 

Effect sensor. This last step requires some sort of clock synchronization for the wireless network. 

To be useful in industrial applications, the sensor design needs to be extended so that it is 

capable of accurately measuring forces on a multi-tooth cutter. The most logical way to achieve 

this goal it to use torsional strain gages on the tool holder body. This bridge configuration has 

been investigated before [2, 6, 14], but these attempts used semiconductor gages with a small 

physical footprint (i.e. gage pattern). Because of this small gage pattern, these designs did not 

cancel bending strains adequately, and the measurement suffered from large amounts of crosstalk. 

It is the notion of the author that this problem might be circumvented by using foil strain 

gages with a large-grid shear pattern. Because of the limited accuracy that is achievable when 

mounting strain gages by hand, a large grid pattern may be able to compensate for small 

misalignments and effectively mitigate problems associated with cross sensitivity. The torsional 

shear stress distribution that results from the applied cutting force is theoretically axis-symmetric 

around the tool holder. The bending strains are not axis-symmetric, thus a large grid pattern 

allows for a larger percent overlap of the bridge elements. This overlap is the necessary condition 

to compensate for bending crosstalk in the presence of gage misalignment. 

There is an inherent trade off in sensitivity by using this torsional design, however, 

because foil gages have significantly smaller gage factors, which is compounded by the fact that 

torsional strains resulting from the cutting force are much smaller than the bending strains (due to 

geometry of the cutting tool). The potential advantage of such a sensor, however, is that the 

design would be capable of using multiple cutting teeth. Also, tool holders are much stiffer in the 

torsional direction than they are in bending, so the sensor would also have a higher bandwidth, 

and filtering techniques may not be necessary. 
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7.3.2 Promising Techniques in Signal Processing 

Many of the signal processing techniques presented in Chapter 6 showed significant merit 

to furthering the development of a real time quality controller. Other techniques may also provide 

valuable information to a real-time controller, or as useful techniques for post-processing in the 

lab. Suggested directions for future work are presented here. 

1. Linear Predictive Coding should be further investigated as a primary tool for model 

building. A case study should be performed to evaluate uncertainty in the estimates of 

resonant frequencies as determined by the LPC poles. Coherent averaging was used to 

align cycles to improve estimates (See Appendix E). The sensitivity of AR pole estimates 

to choices in data indexing should also be investigated as future work. 

• Blind deconvolution should be investigated as a tool for artificially extending the 

bandwidth of the sensor. It may be computationally more efficient than any of the other 

model-based filtering methods (Kalman filter and Weiner filter). Formulations for blind 

deconvolution based on linear prediction models or from knowledge of the input power 

spectrum can be found in [8]. 

• Frequency domain calibration of the Altintas cutting force model would be a powerful 

tool because it completely eliminates problems with knowing the instantaneous angle of 

the cutting tooth. While nothing on this subject was formally included in this thesis, much 

time was spent working on frequency domain algorithms - unfortunately this work has 

not been wholly successful. Notwithstanding, it is the opinion of the author that 

knowledge of the spectrum could be used in a creative way to calibrate Altintas model 

coefficients in the frequency domain. 
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APPENDIX A 

EXPERIMENTAL PROTOCOLS FOR STATIC CALIBRATION 

Static calibration provides a means of characterizing instrument sensitivity and cross-sensitivity 
to known inputs. The sensor must be able to measure tangential and radial forces for a single-
tooth cutter, thus the sensitivity for both radial and tangential force measurements must be 
characterized. Unwanted components of strain from interfering inputs must either be shown to be 
negligible, or they must be removed through modeling and post processing. 

Static calibration consists of five sets of experiments: 

1. Calibration of bending sensitivity 
2. Calibration of bending crosstalk 
3. Calibration of cross-sensitivity to torsion 
4. Calibration of axial sensitivity 
5. Characterization of DC stability 

Experiment 1 - Calibration of Bending Sensitivity 

Objective 

The purpose of this experiment is to characterize the sensitivity, span, and resolution in both the 
radial and tangential directions. 

Equipment List 

• C-channel Instron Fixture 
• Instron servo-hydraulic 55s 
• Load cell 
• 2 point contact 
• Rapid-prototyped angular alignment block 
• Level 
• Smart Tool v. 10 
• Laptop with Bluetooth capability and MATLAB 

Experimental Protocol 

Load Cell Calibration 

The calibration file must be loaded for the appropriate load cell. Use the drop down menu bar for 
the Instron software application to load the appropriate calibration file. 
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Smart Tool Calibration of Bending Sensitivity 

1. Attach the U-channel fixture to the Instron machine 
2. Attach the Smart Tool to the fixture to calibrate the radial bending sensitivity 

a. Tighten all bolts to 25 in-lbf 
b. Record the distance from the gages to the point of contact 

i. Measure this distance 10 times to assign a statistical confidence to the 
lever arm measurement. 

c. Load and unload the tool to 300 lbf 10 times to work out any initial hysteresis 
d. Load the tool from 0 lbf to 200 lbf in roughly 10 lbf increments 
e. Unload the tool from 200 lbf to 0 lbf in roughly 10 lbf increments 
f. Repeat this loading four more times for a total of five loading cycles 

i. Record all measurements from the Instron load cell 
ii. Record all measurements from the Smart Tool using the sthlOlive.m file 

with a moving window of 20 seconds. 
3. Attach the Smart Tool to the fixture to calibrate the tangential bending sensitivity 

a. Tighten all bolts to 25 in-lbf 
b. Record the distance from the gages to the point of contact 

i. Measure this distance 10 times to assign a statistical confidence to the 
lever arm measurement. 

c. Load and unload the tool to 300 lbf 10 times to work out any initial hysteresis 
d. Load the tool from 0 lbf to 200 lbf in roughly 10 lbf increments 
e. Unload the tool from 200 lbf to 0 lbf in roughly 10 lbf increments 
f. Repeat this loading four more times for a total of five loading cycles 

i. Record all measurements from the Instron load cell 
ii. Record all measurements from the Smart Tool using the sthlOlive.m file 

with a moving window of 20 seconds. 

Data Reduction 

1. Plot Smart Tool output versus radial force over the calibrated range 
a. Plot the least squares fit line 
b. Plot the 95% confidence interval 
c. Plot the 95% prediction interval 

2. Plot Smart Tool output versus tangential force over the calibrated range 
a. Plot the least squares fit line 
b. Plot the 95% confidence interval 
c. Plot the 95% prediction interval 

3. Determine the range of the sensor from the resolution and the span of the A/D converter 

Characterized Parameters 

• Load cell sensitivity and measurement confidence 
• Smart Tool static bending sensitivity in both directions 
• Smart Tool measurement range to saturation 
• Confidence intervals for static sensitivities 
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Experiment 2 - Calibration of Bending Crosstalk 

Objective 

The purpose of this experiment is to characterize the cross-sensitivity of transverse bending loads 
on the tool holder. 

Equipment List 

• C-channel Instron Fixture 
• Instron servo-hydraulic 55s 
• Load cell 
• 2 point contact 
• Rapid-prototyped angular alignment block 
• Level 
• Smart Tool v. 10 
• Laptop with Bluetooth capability and MATLAB 

Experimental Protocol 

Load Cell Calibration 

The calibration file must be loaded for the appropriate load cell. Use the drop down menu bar for 
the Instron software application to load the appropriate calibration file. 

Smart Tool Calibration of Bending Sensitivity 

4. Attach the U-channel fixture to the Instron machine 
5. Attach the Smart Tool to the fixture to calibrate the radial bending cross-sensitivity 

a. Tighten all bolts to 25 in-lbf 
b. Record the distance from the gages to the point of contact 

i. Measure this distance 10 times to assign a statistical confidence to the 
lever arm measurement. 

c. Load the tool from 0 lbf to 200 Ibf in roughly 10 lbf increments. Loading should 
be applied in the tangential direction, perpendicular to the radial bridge. In other 
words, to calibrate bending crosstalk in the radial direction, the load is applied 
with the radial bridge on the neutral axis. 

d. Unload the tool from 200 lbf to 0 lbf in roughly 10 lbf increments 
e. Repeat this loading four more times for a total of five loading cycles 

i. Record all measurements from the Instron load cell 
ii. Record all radial strain measurements from the Smart Tool using the 

sthl Olive.m file with a moving window of 20 seconds. 
6. Repeat step 5 to calibrate the tangential bending crosstalk. 

Characterized Parameters 

• Load cell sensitivity and measurement confidence 
• Smart Tool static cross-sensitivity to bending in both directions 
• Theoretical circumferential misalignment of the strain gages 
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Experiment 3 - Calibration of Torsional Crosstalk 

Objective 

The purpose of this experiment is to characterize the torsional cross-sensitivity of the sensor. 

Equipment List 

• Smart Tool v. 10 
• Static calibration test fixture 
• Weights necessary to produce full-scale torsional strains 

Experimental Protocol 

Experimental Setup 

• Fix the sensor in the static calibration test fixture, set up to apply torsional loads. 
• Using the rapid-prototyped alignment block, orient the toolholder to that the radial bridge 

is facing up. This is best achieved by using a level. 
• Power on the Smart Tool and wait 5 minutes before starting the experiment. 

Performing the Experiment 

1. Load the sensor with increasing torque over the range of 0 to 115 in-lbf. Approximately 
ten points should be used over the full scale range. 

a. Record all measurements using the "sthlOlive.m" file and a moving average of 
20 seconds. 

2. Un-load the sensor in decreasing order of applied weights. 
a. Record all measurements using the "sth 1 Olive.m" file and a moving average of 

20 seconds. 
3. Repeat steps 1 -2 for a total of 5 times. 
4. Repeat steps 1-3 with the sensor rotated 90 degrees such that the tangential bridge is 

facing up. 

Characterized Parameters 

• Torsional cross sensitivity on the radial bridge 
• Torsional cross-sensitivity on the tangential bridge 
• Theoretical planar misalignment of the Wheatstone bridge 

118 



Experiment 4 - Calibration of Axial Sensitivity 

Objective 

The purpose of this experiment is to characterize the axial sensitivity of the sensor. 

Equipment List 

• Smart Tool v. 10 
• Rapid-prototyped block to hold the sensor at the retainment groove 
• Cutting insert with wire through the screw holes to make a loop for the weight stand 
• Weight stand and static calibration weights, 0 lbf to 30 Ibf 

Experimental Protocol 

Experimental Setup 

• Fix the sensor in the rapid prototyped block and secure it in the bench vise 
• Make a wire loop so that it is possible to suspend axial loads from the tool holder 
• Power on the Smart Tool and wait 5 minutes before starting the experiment 

Performing the Experiment 

1. Load the sensor with increasing axial load over the range of 0 to 30 lbf. Approximately 
ten points should be used over this range. 

a. Record all measurements using the "sthlOlive.m" file and a moving average of 
20 seconds. 

2. Un-load the sensor in decreasing order of applied weights. 
a. Record all measurements using the "sthlO live.m" file and a moving average of 

20 seconds. 
3. Repeat steps 1 -2 to obtain five total data sets 

Characterized Parameters 

• Axial sensitivity on the radial bridge 
• Axial sensitivity on the tangential bridge 
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Experiment 5 - Characterization of DC Drift 

Objective 

The purpose of this experiment is to characterize the DC drift of the sensor. 

Equipment List 

• Smart Tool v. 10 
• CNC Machine 
• Stop watch 

Experimental Protocol 

Experimental Setup 

• Fix the tool in the CNC spindle 
• Power on the Smart Tool and wait 5 minutes before starting the experiment 

Performing the Experiment 

1. Power on the tool with the bridge selection set to the radial bridge 
a. Record measurements in approximately one minute intervals for 15 minutes 

2. Repeat step 1 for a total of 5 records on the radial bridge 
3. Power on the tool with the bridge selection set to the tangential bridge 

a. Record measurements in approximately one minute intervals for 15 minutes 
4. Repeat step 1 for a total of 5 records on the tangential bridge 

Characterized Parameters 

• DC drift with constant environmental conditions 
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Raw Calibration Data 

Bendine Sensitivity Calibration Raw Data 

Table A.I - Calibration of radial bending sensitivity 

Tangential Run 1 Tangential Run 2 Tangential Run 3 Tangential Run 4 Tangential Run 5 

Load 
(N) 

Strain 
(bits) 

Load 
(N) 

Strain 
(bits) 

Load 
(N) 

Strain 
(bits) 

Load 
(N) 

Strain 
(bits) 

Load 
(N) 

Strain 
(bits) 

0.00 32576 0.00 32772 0.00 32692 0.00 33082 0.00 33069 

71.47 34285 77.72 34721 60.78 34254 72.42 34798 56.81 34347 

146.22 36102 145.47 36221 152.25 36260 148.31 36550 144.79 36451 

215.86 37760 206.74 37733 213.86 37899 217.20 38342 223.17 38251 

300.82 39750 300.73 39744 295.20 39774 290.03 39881 283.04 39575 

374.84 41459 369.88 41567 350.07 40964 361.94 41526 366.18 41485 

451.05 43264 424.88 42938 439.82 43233 442.87 43482 435.39 43290 

507.93 44595 490.66 44181 501.24 44758 476.51 44430 507.84 45058 

580.13 46272 586.04 46628 575.27 46376 575.94 46745 572.73 46595 

660.71 48115 654.09 48142 645.28 47963 645.50 48429 646.72 48269 

705.20 49146 720.36 49732 726.71 49870 715.31 49950 718.66 50136 

646.86 47699 650.55 48234 666.03 48421 649.44 48425 646.72 48295 

575.39 45997 582.97 46681 584.96 46658 581.34 46627 561.44 46221 

512.67 44512 499.69 44587 504.29 44743 501.15 44991 503.82 44905 

427.35 42496 447.54 43323 424.52 42748 432.18 43258 420.10 42855 

353.69 40762 363.47 41553 360.84 41387 343.50 41175 361.28 41586 

285.51 39149 280.34 39406 278.02 39254 276.86 39688 276.34 39658 

213.67 37453 211.07 37811 215.13 38007 212.27 38037 229.63 38503 

112.67 35091 159.05 36510 153.42 36204 142.30 36448 152.21 36596 

0.00 32461 65.50 34377 71.13 34432 61.33 34423 66.61 34417 

0.00 32663 0.00 32845 0.00 32988 0.00 32909 
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Table A. 2- Calibration of tangential bending sensitivity 

Radial Run 1 Radial Run 2 Radial Run 3 Radial Run 4 Radial Run 5 

Load 
(N) 

Strain 
(bits) 

Load 
(N) 

Strain 
(bits) 

Load 
(N) 

Strain 
(bits) 

Load 
(N) 

Strain 
(bits) 

Load 
(N) 

Strain 
(bits) 

0.00 32653 0.00 32263 0.00 33696 0.00 33456 0.00 31782 

76.94 34502 75.19 34098 76.38 35441 73.35 35055 80.53 33814 

153.51 36327 166.04 36318 147.30 37342 157.77 37138 123.27 34752 

220.97 37927 213.32 37551 202.00 38401 221.46 38961 203.34 36439 

311.40 40071 294.38 39231 282.78 40411 276.34 40025 280.98 38460 

359.89 41197 359.81 40863 370.05 42513 337.81 41445 356.72 40245 

437.19 43009 436.32 42570 420.62 43557 433.39 43636 418.88 41810 

513.04 44781 488.10 43840 502.47 45651 501.73 45111 510.55 43810 

593.62 46657 578.50 46221 566.26 47057 581.55 47173 570.77 45244 

654.15 48065 655.63 47791 638.20 48568 657.14 48649 646.35 46849 

719.78 49582 719.94 49231 710.79 50372 718.00 50284 714.51 48558 

657.07 48046 644.40 47604 656.23 49119 649.49 48622 647.12 46875 

579.77 46190 576.26 45993 576.07 47306 568.79 46840 589.72 45651 

515.23 44660 483.11 43571 507.74 45706 516.01 45719 485.70 43144 

444.85 42984 444.42 42744 426.45 43791 432.52 43702 422.39 41606 

377.39 41364 363.42 40856 358.75 41997 354.67 41780 355.29 40148 

295.72 39425 293.51 39229 296.37 40521 283.43 39992 293.55 38617 

214.77 37505 222.55 37593 203.13 38598 234.18 38937 205.77 36750 

156.06 36104 146.87 35750 136.41 36979 149.08 36873 138.75 35263 

77.30 34235 86.18 34415 82.21 35665 76.20 35310 79.04 33663 

0 32417.7 0.00 32391 0.00 33837 0.00 33421 0.00 31815 
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Bendins Cross-Sensitivity Calibration Raw Data 

Radial bending cross-sensitivity: 
Load is applied in the tangential direction with the radial bridge on the neutral axis. 

Table A.J - Calibration of radial bending cross-sensitivity 

Radial Run 1 Radial Run 2 Radial Run 3 Radial Run 4 Radial Run 5 

Load 
(N) 

Strain 
(bits) 

Load 
(N) 

Strain 
(bits) 

Load 
(N) 

Strain 
(bits) 

Load 
(N) 

Strain 
(bits) 

Load 
(N) 

Strain 
(bits) 

0.00 32801 0.00 32918 0.00 34093 0.00 31992 0.00 32663 

59.04 32808 88.27 32928 65.53 34101 58.65 31999 60.64 32670 

129.07 32816 154.10 32937 141.48 34110 155.73 32011 157.81 32682 

205.37 32826 239.31 32947 217.90 34118 214.10 32018 224.46 32689 

289.39 32835 293.54 32953 283.32 34127 291.96 32028 285.00 32697 

359.42 32845 362.05 32961 365.31 34137 367.45 32037 351.14 32705 

429.62 32853 444.39 32971 434.45 34145 429.49 32044 428.22 32713 

513.36 32862 505.35 32978 523.46 34154 505.65 32053 507.82 32725 

574.48 32869 575.81 32987 563.23 34161 571.65 32062 580.29 32731 

653.16 32879 638.56 32995 648.07 34171 659.71 32072 654.75 32741 

736.27 32889 712.26 33003 716.37 34179 710.91 32078 714.49 32749 

659.58 32880 647.63 32996 660.67 34172 661.01 32071 648.42 32740 

571.12 32870 582.62 32989 581.38 34163 586.41 32062 574.32 32730 

526.20 32863 513.78 32980 512.07 34154 518.75 32055 497.84 32722 

441.72 32853 425.45 32969 430.89 34144 434.87 32045 440.37 32715 

362.32 32844 355.27 32962 369.13 34137 374.46 32037 363.60 32706 

277.35 32834 279.16 32952 303.25 34129 287.40 32027 284.60 32697 

233.03 32829 203.51 32943 209.08 34118 214.42 32018 212.01 32688 

142.88 32818 146.92 32936 134.98 34110 139.75 32010 143.72 32680 

70.86 32810 69.02 32927 72.70 34101 76.55 32002 65.05 32671 

0 32801 0.00 32919 0.00 34092 0.00 31993 0.00 32663 
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Tangential bending cross-sensitivity: 
Load is applied in the radial direction with the tangential bridge on the neutral axis. 

Table A.4- Calibration of tangential bending cross-sensitivity 

Tangential Run 1 Tangential Run 2 Tangential Run 3 Tangential Run 4 Tangential Run 5 

Load 
(N) 

Strain 
(bits) 

Load 
(N) 

Strain 
(bits) 

Load 
(N) 

Strain 
(bits) 

Load 
(N) 

Strain 
(bits) 

Load 
(N) 

Strain 
(bits) 

0.00 32925 0.00 32836 0.00 32723 0.00 32604 0.00 32244 

94.13 32991 80.74 32883 69.25 32767 69.47 32640 68.06 32289 

157.53 33027 138.88 32923 132.96 32810 141.87 32691 141.08 32332 

215.20 33062 220.52 32971 216.81 32855 194.73 32725 220.47 32385 

303.89 33116 300.30 33025 280.14 32904 285.64 32780 305.54 32435 

356.48 33153 358.14 33056 345.36 32944 342.92 32817 351.84 32465 

421.33 33191 434.18 33106 435.97 32996 435.22 32873 450.71 32527 

499.44 33240 477.67 33134 498.36 33037 511.40 32925 505.35 32559 

569.93 33286 571.29 33199 579.78 33090 569.03 32960 569.24 32608 

646.75 33335 650.00 33241 659.70 33138 654.92 33014 654.49 32661 

719.31 33381 721.10 33286 719.54 33176 724.28 33060 723.92 32700 

656.26 33346 664.62 33254 641.65 33127 648.12 33009 642.58 32652 

568.95 33289 579.41 33196 579.31 33089 593.56 32978 577.27 32612 

514.00 33256 503.98 33149 512.82 33045 511.72 32923 489.66 32551 

428.94 33192 437.22 33110 436.19 33000 431.69 32874 406.39 32498 

365.12 33157 347.07 33053 359.59 32950 367.01 32832 363.04 32472 

306.39 33120 283.32 33015 287.30 32908 294.50 32787 277.17 32422 

217.36 33064 220.97 32973 205.85 32851 232.84 32747 222.35 32385 

149.02 33025 141.67 32926 142.66 32815 130.10 32683 150.03 32338 

65.06 32967 48.06 32865 71.59 32769 79.29 32648 82.18 32298 

0 32925 0.00 32837 0.00 32724 0.00 32602 0.00 32241 
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Torsional Cross-Sensitivity Calibration Raw Data 

Table A. 5 - Calibration of torsional cross sensitivity 

Applied Torque (N-m) 
Radial Strain (bits) Tangential Strain (bits) 

Applied Torque (N-m) 
Run 1 Run 2 Run 1 Run 2 Run 3 

0.00 30682 30726 32205 32166 32115 

1.25 30683 30728 32207 32157 32104 

7.48 30670 30713 32224 32163 32108 

7.96 30667 30715 32226 32165 32111 

8.90 30657 30711 32227 32166 32115 

10.03 30650 30708 32229 32172 32119 

11.16 30642 30702 32231 32174 32125 

12.29 30636 30698 32233 32178 32127 

13.42 30633 30696 32235 32180 32128 

14.55 30631 30696 32235 32178 32127 

15.68 30629 30696 32235 32178 32127 

14.55 30621 30691 32229 32172 32123 

13.42 30612 30683 32220 32166 32117 

12.29 30604 30677 32203 32155 32111 

11.16 30606 30681 32197 32153 32106 

10.03 30612 30689 32193 32149 32102 

8.90 30619 30698 32190 32144 32100 

7.96 30627 30706 32186 32142 32098 

7.48 30634 30713 32182 32140 32096 

1.25 30689 30772 32186 32138 32098 

0.00 30693 30777 32197 32151 32108 
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Axial Sensitivity Calibration Raw Data 

Table A. 6- Calibration of axial sensitivity 

Applied Load (N) 
Tangential Strain (bits) 

Applied Load (N) 
Run 1 Run 2 Run 3 Run 4 Run 5 

0.00 32176 32895 32059 33721 33122 

9.83 32186 32904 32069 33730 33133 

58.94 32241 32958 32122 33785 33185 

62.65 32246 32962 32127 33788 33190 

70.08 32255 32972 32135 33796 33199 

78.97 32265 32983 32146 33807 33208 

87.87 32272 32991 32155 33816 33219 

96.77 32283 33002 32164 33826 33229 

105.66 32293 33012 32175 33836 33237 

114.56 32303 33022 32184 33846 33247 

105.66 32294 33012 32175 33837 33239 

96.77 32284 33000 32166 33827 33228 

87.87 32273 32992 32157 33817 33217 

78.97 32264 32981 32145 33807 33208 

70.08 32254 32970 32135 33797 33198 

62.65 32245 32963 32128 33787 33189 

58.94 32243 32959 32124 33784 33186 

9.83 32187 32907 32069 33729 33132 

0.00 32177 32895 32059 33720 33122 
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Drift Investigation Raw Data 

Table A.7 - Table of raw data for drift investigation 

Time 
(min) 

Radial 
Strain 
(bits) 

Tangential 
Strain 
(bits) 

Time 
(min) 

Radial 
Strain 
(bits) 

Time 
(min) 

Radial 
Strain 
(bits) 

Time 
(min) 

Tangential 
Strain 
(bits) 

0 30893 30848 0 32403 0 32589 0 32749 

1 30886 30976 1 32378 1 32582 1 32774 

2 30874 31078 2 32320 2 32563 2 32800 

3 30867 31130 3 32250 3 32538 3 32813 

4 30848 31155 4 32179 4 32518 4 32819 

5 30835 31168 5 32141 5 32499 5 32826 

6 30822 31174 6 32083 6 32480 6 32819 

7 30810 31174 7 32038 7 32461 7 32819 

8 30797 31174 8 31987 8 32448 8 32819 

9 30784 31174 9 31942 9 32429 9 32819 

10 30771 31168 10 31898 10 32416 10 32813 

11 30758 31168 11 31917 11 32397 11 32813 

12 30752 31168 12 32384 12 32813 

13 30739 31162 13 32371 13 32813 

14 30733 31162 14 32358 14 32806 

15 30726 31162 15 32346 15 32806 

16 32333 16 32800 

17 32320 17 32800 

18 32307 18 32800 

19 32301 19 32800 

20 32288 20 32794 

21 32275 21 32800 

22 32262 23 32794 

23 32256 24 32794 

37 32134 25 32794 

26 32794 

27 32787 

28 32787 

29 32787 

30 32787 
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APPENDIX B 

PROTOCOL FOR CONSTRUCTION OF SMART TOOL V.10 

Overview 

The performance of the sensor is dependent on how well design tolerances are maintained during 
the assembly process. Factors such as strain gage alignment, surface preparation, and adhesive 
selection are critical in the construction process. The following sections detail my procedure for 
sensor construction. 

Gage Alignment 

It is critical that the strain gages be aligned with the cutting tooth. The orientation of the cutting 
insert holder is predefined by a set screw located on the tool holder body. The gages must be 
aligned with the radial and tangential components of force acting on the cutting tooth. The 
following procedure outlines our methodology for achieving sufficient alignment of the gage 
mounting locations. 

Finding the gage mounting locations 

1. Mount the tool holder in the vice attached to the table of the CNC machine 

2. Secure a pencil in the CNC spindle via the chuck-attachment tool holder 

3. Align the pencil tip with the cutting tooth 

a. Because of the rake angle of the tooth, offset the pencil tip 0.0625" from the tool end. 

This centers the gage location for cuts with an axial depth of 0.125 inches. 

4. Using the handwheel, move the pencil to the tool holder body and scribe a line along the 

surface 

5. Rapid prototype a square alignment block 

a. Use a side length equal to the diameter of the taper flange. 

b. Create a center hole that forms an interference fit with the tool holder body 

c. Extrude a small key to orient with the scribed line 

6. Fix the alignment block to the tool holder body; align the key with the scribed pencil line 

7. Mill a flat for the radial gage using the alignment block to orient the tool holder 

8. Mill a flat for the tangential gage 
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Gage Mounting Procedure 

The details of mounting strain gages are non-trivial. A rigid, secure bond between the strain gage 
and the tool holder is necessary for the gages to function properly with no creep and a linear 
response to strain. Our methodology for gage mounting is presented here: 

1. Sand the flats to achieve the necessary surface roughness for the adhesive to bond properly 

2. Clean the flats with acetone 

3. Use Loctite 380 to black out the gages and the mounting locations 

a. Semi-conductor strain gages are highly sensitive to light 

b. Apply only a thin layer; while the adhesive is fairly rigid, too much adhesive will add 

unnecessary compliance and can introduce error due to gage creep 

c. Let cure for 24 hours 

4. Bond the strain gages to the flats using Loctite 401 

a. Apply a thin coat evenly to the flat; spread with a graphite pencil if necessary 

b. Use tweezers to place the gage; use raised edge to achieve planar alignment 

c. Clamp the gage using a rubber pad and a quick clamp 

d. Let cure for 24 hours 

e. Rotate the tool holder and repeat steps (a)-(d) for the other gage 

Charging Circuit 

The following steps were performed to install the charging circuit beneath the retention bolt: 

1. Drill a 1/4" hole in the tool holder body using a carbide steel drill bit 

2. Solder the charging jack to the charging circuit board 

3. Coat the charging circuit board in a strong epoxy to protect components 

4. Pass the power cables through the 1/4" hole in the tool holder body 

5. Ensure that the charging jack is positioned such that it does not interfere with the retaining 

bolt 

6. Secure the charging jack in place with epoxy 

Wiring Protocol 

1. Solder leadwires to the appropriate bridge terminals for each strain gage 

2. Crimp terminal connectors to each gage and to the battery wires 

3. Solder the battery in parallel with the charging circuit 

4. Attach terminal connectors to appropriate pin headers on data transmission board 
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Component Testing 

After the construction of the sensor is complete, individual components are tested to ensure that 
the assembly was successful. The following outlines our testing methodology: 

1. Measure the resistance across the bridge in both directions (for both strain gages) to 

ensure that it is nominally 500 ohms 

2. Inspect the solder points on the strain gage terminals to ensure that nothing is accidentally 

grounded to the tool holder body 

3. Power on each data transmission board to verify that the board boots properly 

4. Pair the data transmission boards with the host computer 

a. Set the baud rate to 115200 

b. Set the number of bits to 8 

5. Ensure Bluetooth connectivity through Matlab 

6. Verify that the DAC can balance the Wheatstone bridge and no saturation occurs 
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APPENDIX C 

DERIVATION OF CROSSTALK THEORY DUE TO BRIDGE MISALIGNMENT 

Forces Acting on a Single Cutting Tooth: 

Tangential Force: 

Radial Force: 

F t  := 100-lbf 

Ff:= 20-lbf 

The ratio of these loads is changed to 
obtain the curves for each loadcase 

Small Angle Misalignment Arrays: 

j:= 24 

Range Variable: i:=0..j 

Circumferential Misalignment Angle: 

Planar Misalignment Angle: 

0. := —deg 
1 4 

<t>"T'deg 
1 4 

4 steps per degree, 
0:6 degrees 

4 steps per degree, 
0:6 degrees 

„ 1.75 . R := in 
2 

0.75 . 
r := in 

2 

Geometric Properties of the Tool Holder: 

Outer Radius: 

Inner Radius: 

Cross Sectional Area: 

Area Moment of Inertia: 

Polar Moment of Inertia: 

Thickness at Shear: 

Ac - r2) 

[ := —-(r4 - r") 
4 

J := —-(R
4 - r4) 

2 

tj := 2 (R - r)-cos^0.j 

Metric Units 

R = 0.022m 

r = 9.525 x 10 m 

Ac = 1.267x 10 3-m2 

1 = 1.852x 10 7-m4 

J = 3.703 x 10 ? m4 

t2 := 2-R-sin^0.j 
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Length to Gages: 1 := 5.1in I = 0.13m 

Equivalent System of Forces and Couples Acting at the Center of the Cross-Section 

V=Ff Twisting Couple: 

Bending Couples: My := Fr-

Mz
:=Ffl 

First Moment of Area Calculations: 

rRcos(0j) 

Area of Interest: Am. :=2 ' 
I 

dx - 2-

0 

rT- COS 

0 

(8.) 

V 2 x d> 

Functions Describing the Geometry for the First Moment of Area: 

Upper Bounding Curves: Outer Radius: F(x) := -JR2 - x2 

Inner Radius: f(x) := -Jr2 2 2 
x 

Lower Bounding Curves: Outer Radius: G1 := 

Inner Radius: 

. := R-sin(0.) 

:= R-cos^0.j 

gj := R-sin^G.j 

g2j := R-cos^e.j 

Limits of Integration: A, :=-R-cos(e.) aj := -r-cos(e.) B, := R-cos(e.) b 

B2 := R-sin^0.j A2 := -R-sin^0.j 

First Moments of Area: 

„Bi r°\ 

^F(x) + G,^F(x) - G^jdx- -• ^f(x) + g,^f(x) - g, 
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Q2. := -• 
i 2 

F(x) + C32j^F(x)-G2^ d> 

Normal Stress Calculations for each Gage: 

Normal Stresses Produced by Bending Couple My: 

-My-R-sin(e.) 
°At := 

i I 

JBa. •' 1 

-My 'R-cos^0.j 

I 

Normal Stresses Produced by Bending Couple M2 

-Mz 'R-cos|0.j 

CTav= r 

MzR 'sin(ei) 
aBt; ̂  I 

Shear Stress Calculations for each Gage: 

Shear Stresses Produced by Twisting Couple T: 

Tc-R 

twist ' 

Shear Stresses Produced by Shear Force Ft: 

i 1 -  j  

i:=0..j 

FtQ2i 

TA1i := — 

FfQl: 

Bl :  • i It, 

(Skip first index to avoid division by zero) 

Shear Stresses Produced by Shear Force Fr: 

FrQl. 
i:=0..j 

TA2i :=l^ 
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i:= 1..J 

FrQ2i 

TB2i:=t^ 
(Skip first index to avoid division by zero) 

(reset) i:=0..j 

Stresses for Perfectly Aligned Gages: 

Gages at Location A: 

Axial Stress: 

Transverse Stress: 

cj^a =-1.003x 10^-psi 

°At- =0'Psi 

Shear Stress: tA- Ttwist + X A 1 .  +  T A 2. Ta =3.818x10 Pa 
A0 

Gages at Location B: 

Axial Stress: 

Transverse Stress: 

= -200.627psi 

aBtn = 0-psi 

Shear Stress: TBj :-Ttwist + TBl j  
+ TB2 i  

tr = 8.92 x 10 Pa 
B0 

Stress-Strain Relations: 

Material Properties: Material: 

Young's Modulus: 

Shear Modulus: 

Poisson's Ration: 

Steel 

E := 30- 106psi 

G:= 11.2- 106-psi 

v := .281 
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Calculated Strain at Each Gage Location (for perfectly aligned aaaes): 

Gages at Location A: 

Axial Strain: 8Aa. := ~(aAa. - vaAt.) e^ = -3.344x i(f 5 

Transverse Strain: ^ := I.(oAt. - v-aAa^ E
At 8 = 9.63 x 10 

0 

Ai 6 Shear Strain: y. := y. = 4.945 x 10 
Ai G A0 

Gages at Location B: 

Axial Strain: := IYaBa, - v%) eB = -6.688x i(f 6 

Transverse Strain: eBt := -^cBt. - v.oBa^j 

i  _  
E  V  i B t j J  B a Q  

6 
sBt^ = 1.926x 10 

TBi 5 Shear Strain: Yr :=— yR =1.155x10 
Bi G Bo 

Calculated Change in Wheatstone Bridge Output (for perfectly aligned gages): 

Governing Equation: 

°F'Ei 
8E0 = ^— (e, -e2 + e3-e4)-(l - n) 

We make the following definitions: 

Gage Factor: gf := 140 (Semiconductor Strain Gages) 

Supply Voltage: E; := 3.3 v 

Nonlinearity Factor: n = n - 0 

l + 

m1 Si + + £3 + £4^ 
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The resulting output error is thus 

^aligned ^misaligned „ 
Error= IOC 

^aligned 

Gaae Perturbation Analysis: 

Sensitivity of Bridge B to Circumferential Misalignment (moving one gage location): 

•vs 
Eitd := • 

i 5E„ 
•IOC 

Sensitivity of Bridge A to Circumferential Misalignment (moving one gage location): 

§E„ := 
°FEi 

Jo-i 4 •( 2eAaj)-
(1 -n) 

Err a := 
Ai 5E„ 

•IOC 

Sensitivity of Bridge B to Planar Misalignment (at one gage location): 

'Bto EBao £Bto 
e B a 2 j J - -cos(2-(t..) + yB-sin(2-<t».) 

GpEj 
®0j

:=—'•r-2eBa2sV^1 "") 

ErrB2 i  
:= » •IOC 
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Sensitivity of Bridge A to Planar Misalignment (at one gage location): 

U°s(2-<|>j) + YAo
sin(2-<t>i) 

e A a  +  s A t  E A a  —  £  A t  
0 At0 0 At0 

e A a ?  : =  ^  
i  2  2  

5E„ :=• 
Of-E; 

'i 4 

Err a 2 :=• 
8E„ 

• IOC 
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APPENDIX D 

DATA REDUCTION PROTOCOL FOR EXPERIMENTAL VALIDATION 

Presented here is an overview of the data reduction procedure used for the net force 

comparison. From a macro-perspective, the net force profiles are aligned by manipulating the 

data as shown in Figure D.l. 

Kistler 

(Rad) K 
Kistler 
(Tan) \ 

Fx 

)j| Fnet 

Fy 

Fx 

X Fnet 

Block Align 

out data cycles 

Block Align 

out data cycles 

Smart Tool 
Radial 

Convert 
to force 

Block 
out data 

Align 
cycles 

Smart Tool 
Radial 

Convert 
to force 

Block 
out data 

Align 
cycles Average 

Smart Tool 
Radial 

Convert 
to force 

Block 
out data 

Align 
cycles 

~—> Average 

Smart Tool 
Tangential 

Convert 
to force 

Block 

out data 

Align 
cycles 

Average Smart Tool 
Tangential 

Convert 
to force 

Block 

out data 

Align 
cycles 

Average Smart Tool 
Tangential 

Convert 
to force 

Block 

out data 

Align 
cycles 

Average 

profiles 

Average 

Average 

Align and plot 

Figure D.I - Block diagram of data reduction for net force comparison 

At 600 RPM, net force profiles were compared for 12 unique cutting conditions (%, Z2, % 

immersion, havg
= 0.001, 0.002, 0.003, 0.004 in). 36 unique conditions were compared at higher 

spindle speeds (3000, 3600, 4000 RPM, lA, V2, 3A immersion, havg= 0.001, 0.002, 0.003, 0.004 in). 

Some of the Kistler data from the cutting test was corrupted due to a problem with the 

data acquisition system. This bad data is highlighted in Figure D.2. 
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Kistler 1/4 Immersion (tan) Kistler 1/4 Immersion (rad) 

§, 400 

? 200 

5 10 15 20 25 30 35 i 

Time (s) / 

Kistler 1/2 Immersion (tan) 

o 200 

5 10 15 20 25 30 35 
Time (s) 

•d 100 

Kistler 1/2 Immersion (rad) 

10 20 30 40 50 60 
Time (s) 

Kistler 3/4 Immersion (tan) 

0 10 20 30 40 50 

Kistler 3/4 Immersion (rad) 

o 50 

10 20 30_ JO 50 60 

=S 100 

o 50 

10 20 
Time (s) 

.30 jJO 50 
Time (s) 

Figure D.2 - Some bad Kistler data in the experiment 

For each feedrate, sections of good data were blocked out using the cursor tool. 

700 
Aluminum Upmilling, 1/2 Immersion, 4000 RPM 

0.004" 

43 44 
Data Index x 10 

Figure D.3 - Blocking out sections of data to average 

Table D. 1 shows the starting and stopping data indices for each cutting condition. 
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Table D.I - Table of indices used to block out data 

Smart Tool Tangential Smart Tool Radial Kistler Tangential Kistler Radial 

Immersion Chip Load Start Stop Start Stop Start Stop Start Stop 

hi 3.22E+04 5.03E+04 4.31 E+04 6.06E+04 

1/4 
h2 513E+04 6.98E+04 6.20E+04 8.03E+04 

en c 
1/4 

h3 7.10E+04 8.30E+04 8.15E+04 9.35E+04 

E 
a. 

h4 8.39E+04 9.75E+04 9.44E+04 1.08E+05 
=> 
E hi 5.66E+04 8.12E+04 6.07E+04 8.53E+04 2.51E+05 2.92E+05 2.54E+05 2.93E+05 
3 
c 
I 
s 

1/2 
h2 8.23E+04 1.07E+05 8.75E+04 1.12E+05 1.39E+05 1 79E+05 1.43E+05 1.85E+05 

3 
c 
I 
s 

1/2 
h3 1 08E+05 1.25E+05 1.13E+05 1.29E+05 1 86E+05 2.11 E+05 1.89E+05 2.16E+05 

S 
a. 

h4 1.29E+05 1.44E+05 1.30E+05 1.48E+05 2.16E+05 2.46E+05 2.20E+05 2.50E+05 

et 

S o 
n 

hi 5.92E+04 8.49E+04 8.78E+04 1.13E+05 1.55E+05 2.02E+05 2.83E+05 3.30E+05 
et 

S o 
n 

3/4 
h2 9.15E+04 1 15E+05 1.16E+05 1.42E+05 2.10E+05 2.36E+05 1.58E+05 2.04E+05 

3/4 
h3 1.22E+05 1.34E+05 1 46E+05 1.62E+05 2.42E+05 2.76E+05 2.11 E+05 2.39E+05 

h4 1.39E+05 1.56E+05 1.66E+05 1.84E+05 2.81 E+05 3.27E+05 2.44E+05 2.78E+05 

Smart Tool Tangential Smart Tool Radial Kistler Tangential Kistler Radial 

Immersion Chip Load Start Stop Start Stop Start Stop Start Stop 

hi 2.26E+05 2.41 E+05 2.37E+05 2.51 E+05 

1/4 
h2 2.42E+05 2.57E+05 2.52E+05 2.67E+05 

o> 
c 

1/4 
h3 2.58E+05 2.68E+05 2.69E+05 2.78E+05 

I 
a h4 2.69E+05 2.80E+05 2.80E+05 2.90E+05 

3 
F hi 2.47E+05 2.62E+05 2.50E+05 2.67E+05 4.60E+05 4.95E+05 4.26E+05 4.60E+05 
3 
C 

E 
3 

1/2 
h2 2.65E+05 2.84E+05 2.71 E+05 2.89E+05 4.98E+05 5.19E+05 4.65E+05 4.99E+05 

3 
C 

E 
3 

1/2 
h3 2.87E+05 2.98E+05 2.94E+05 3.04E+05 5.24E+05 5.39E+05 5.03E+05 5.24E+05 

z 
a. 

h4 3.01 E+05 3.15E+05 3.07E+05 3.20E+05 4.21 E+05 4.56E+05 5.28E+05 5.39E+05 

et 
o hi 3.03E+05 3.22E+05 3.28E+05 3.49E+05 6.76E+05 7.14E+05 6.77E+05 7.17E+05 

u» 
r> 

3/4 
h2 3.25E+05 3.46E+05 3.52E+05 3.74E+05 

3/4 
h3 3.50E+05 3.63E+05 3.77E+05 3.89E+05 

h4 3.66E+05 3.81 E+05 3.92E+05 4.08E+05 6.61 E+05 6.72E+05 6.61 E+05 6.74E+05 

Smart Tool Tangential Smart Tool Radial Kistler Tangential Kistler Radial 

Immersion Chip Load Start Stop Start Stop Start Stop Start Stop 

hi 4.03E+05 4.16E+05 4.12E+05 4.25E+05 

1/4 
h2 4.17E+05 4.31 E+05 4.28E+05 4.36E+05 

O) 
c 

1/4 
h3 4.32E+05 4.40E+05 4.42E+05 4.50E+05 

I h4 4.41 E+05 4.48E+05 4.52E+05 4.57E+05 

3 
F 

hi 4.09E+05 4 26E+05 4.14E+05 4.30E+05 7.11 E+05 7.41 E+05 7.16E+05 7.46E+05 
3 
C 

1/2 
h2 4.28E+05 445E+05 4.34E+05 4.49E+05 7.46E+05 7.76E+05 7.51 E+05 7.80E+05 

E 3 
< 
S 

1/2 
h3 4.47E+05 4.58E+05 4.55E+05 4.63E+05 7.82E+05 8.00E+05 7.84E+05 8.02E+05 

E 3 
< 
S h4 4.60E+05 4.70E+05 4.65E+05 4.74E+05 8 04E+05 8.18E+05 8.07E+05 8.23E+05 

oc 
o hi 5.15E+05 5.37E+05 5.46E+05 5.64E+05 9.09E+05 9.45E+05 9.12E+05 9.47E+05 

o_ 
3/4 

h2 5.40E+05 5.58E+05 5.62E+05 5.86E+05 9.51 E+05 9.83E+05 9.50E+05 9.86E+05 
3/4 

h3 5.69E+05 5.73E+05 5.88E+05 6.00E+05 9 86E+05 1.01E+06 9.91 E+05 1.01E+06 

h4 5.75E+05 5.85E+05 6 02E+05 6.12E+05 1.01E+06 1.03E+06 1 02E+06 1.03E+06 
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For each block of data, the "findpeaks.m" function was used to identify the data index 

corresponding to the peak of each force cycle. 

Confirmation of Correct Peak Identification 

0.5 1 15 

Data Index 

Figure D.4 - Identify peaks in the data set 

Cycles 

CO 40 

100 
Data Index 

Figure D.5 - Cycles aligned by peak value 
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These cycles were then aligned by their peak value as shown in Figure D.5. To get an average 

waveform for each block of data, the correlation coefficient was used to determine the lag index 

for each cycle corresponding to best alignment. 

Sample Cross-Covariance Function 
1 r I  1— 1  " i -  T —  1 —  -

•% 0.5: 
c 
0) 
o 
£ 
© 
O 
O 
c 
o 
*3 
_ro 
0 

o 
O 
£ "0.5: 

- 1 L  

-50 -40 -30 -20 20 30 40 -10 0 10 

Lags (data idx) 
Figure D.6 - Cross-covariance definition of the correlation coefficient used to align data 

50 

Cycles Aligned by Cross-Correlation 

<S 30 

100 
Data Index 

Figure D.7 - Aligned cycles are overlaid 
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Finally, the cycles were ensemble-averaged to obtain a characteristic profile for each cutting 

condition. The Kistler data was also averaged this way. This technique is known in DSP as 

coherent averaging. 

60 

50 

40 

© 
o 

° 30 
o 
a o 
LL 

20 

10 

0 
0 50 100 150 200 250 

Data Index 

Figure D. 8 - Aligned cycles are ensemble averaged to obtain the net profile 

The code used to process the Smart Tool data and Kistler data is presented below. 

%% Net Force Comparison 
% For Dec 15 Cutting tests 
% Andrew Harmon 

clear 
close all 
clc 

load preprocessing.mat 
load NetForce.mat 

%% Kistler Data Pre-Processing 
speed = {'rpm3000' 'rpm3 600' 'rpm4 000'); 
namespace = {'kqtan' 'kqrad' 'khtan' 'khrad' 'k3qtan' 'k3qrad'}; 
chip = {'hi' 'h2' 'h31 'h 4• } ; 

Characteristic Force Cycle 

I 
\ i 

\ I 

iv v v y v V/ V  V  
_1_ 

143 



for i = 1:3 %RPM Select 
for j = 1:length(namespace) %Immersion Select 

% Get Source 
source = eval( strcat(1ksig.1,namespace{j() 
for k = 1:4 %Feedrate Select 

% Get Data 
switch rem(j,2) 

case 1 %tan 
col = 5; 

case 0 %rad 
col = 7; 

end 
idxl = table((12*i-ll)+((ceil(j/2)-1)*4)+(k-1),col); % Table indexing 
idx2 = table((12*i-ll) + ((ceil(j/2)-l)*4) + (k-l),col+l); 
if idxl~=0 && idx2~=0 

% Select 3000, 3600, 4000 rpm 
% Select 1/4, 1/2, 3/4 immersion 

) ; 
% Select hi, h2, h3, h4 feedrate 

% Data Set of Interest 
data = source(idxl:idx2) ; 

% Get Average Waveform 
signals.(speedfi)).(namespace{j}).(chip{k}) = meanCycle(data); 

disp(strcat(1 signals.1,speed!inamespace(j},'.',chip{k), 1: Done!')); 
pause; 

end 
end 

end 
end 

%% Smart Tool Data Pre-Processing 
speed = {'rpm3000' 'rpm3600' 1rpm4000'}; 
namespace = {'sqtan1 'sqrad' 'shtan' 'shrad' 's3qtan' 's3qrad'}; 
chip = {'hi' 'h2' 1h3' 'h4' }; 

% Select 3000, 3600, 4000 rpm 
% Select 1/4, 1/2, 3/4 immersion 

Select hi, h2, h3, h4 feedrate 

% Process Tangential and Radial Data Independently 
for i = 1:3 %RPM Select 

for j = 1:length(namespace) %Immersion Select 
% Get Source 
source = eval( strcat('signamespace{j}) 
for k = 1:4 %Feedrate Select 

% Get Data 
switch rem(j,2) 

case 1 %tan 
col = 1; 

case 0 %rad 
col = 3; 

end 
idxl = table((12*i-ll)+((ceil(j/2)-1)*4)+(k-1),col); % Table indexing 
idx2 = table((12*i-ll)+((ceil(j/2)-l)*4)+(k-l),col+l); 
if idxl~=0 && idx2~=0 

% Data Set of Interest 
data = source(idxl:idx2); 

% Zero and scale the data 
force = bits2force(data,i,j); 

% Get Average Waveform 
signals.(speed{i}).(namespace{j}) . (chip!k)) = meanCycle(force) ; 

disp(strcat('signals.',speed{i},'.',namespace{jchip{k},1: Done!')); 
pause; 

end 
end 

end 
end 

namespace2 = {'sqnet' 'shnet' 's3qnet'}; 
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Convert Radial and Tangential to Net Force 
for i = 1:3 %RPM Select 

for j = [1 3 5] %Immersion Select 
for k = 1:4 %Feedrate Select 

disp (strcat ( ' Starting: signals . 1 , speedfi}, ' . ', ... 
namespace2{ceil(j/2)},1.', chip{k})); 

tfl = isfield(signals.(speed{i}),char(namespace2{ceil(j/2)})); 
tf 2 = 1; 
if tfl==l 

tf2 = isfield (signals .(speed{ i}). (namespace2 {ceil (j/2 )}) , ... 
char(chip{k})); 

end 

if tf1==0 || tf2==0 

% Data Set of Interest 
tan = signals.(speed{i}).(namespace{j}).(chip{k}) ; 
rad = signals.(speed{i)).(namespace{j+1)).(chip{k)); 

% Ignore Negative Data 
for count = 1:length(tan) 

if tan(count) <= 0 
tan(count) = 0; 

end 
end 
for count = 1:length(rad) 

if rad(count) <= 0 
rad(count) = 0; 

end 
end 

% Align the Data Sets 
figure(1) 
plot(tan,'b. -' ) ; 
hold on; 
plot(rad,'r.-'>; 

satisfied = 0; 
while satisfied == 0 

maxlag = input(1 Number of points to shift the data? >>'); 

tan = circshift(tan,[0,maxlag]); 

% Plot the data 
figure {1); 
hold off 
plot(tan, 'b.- '); 
hold on 
plot(rad, 1r.- 1); 
title('Cycles Aligned by Circshift') 
xlabel('Data Index1) 
ylabel(1 Force Cycles, aligned') 

satisfied = input(' Are you satisfied with the alignment? 
(Y=1, N=0) »'); 

end 

% Compute Net Force 
last = min(length(tan),length(rad) ); 
netForce = sqrt( tan(1:last) . A2 + rad (l:last).A2 ); 
for count = 1:length(tan) 

if tan (count) <= 0 
tan(count) = 0; 

end 
end 

figure(1) ; 
hold on 
plot(netForce,'g. — 1); 
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title('Characteristic Force Cycle') 
xlabell'Data Index') 
ylabel('Force Cycle') 

satisfied = 0; 
while satisfied == 0 

shiftidx = input(' Number of lags to shift the averaged 
waveform >>' ) ; 
netForce = circshift(netForce,[0 -shiftidx]); 

figure(1) ; 
hold off 
plot(netForce,' g. - ' ) ; 
title('Characteristic Force Cycle') 
xlabel('Data Index') 
ylabel('Force Cycle') 

satisfied = input('Are you satisfied with the alignment? (Y=l, 
N=0) »'); 
end 

% Crop Dataset 
stop = input(' Crop Stop Index >>'); 
netForce = netForce(1:stop); 
signals. (speed(i}). (namespace2{ceil<j/2)>).(chip{k >) = netForce; 
figure(1); 
hold off 
plot(netForce,'g.-'); 
title('Characteristic Force Cycle') 
xlabell'Data Index') 
ylabel('Force Cycle') 

disp(strcat ( 1 

signals.',speed{inamespace2{ceil(j/2)},1.',chip{k}, 1 : Done! ' ) ) ; 
pause(1) 

else 
disp(' Redundant Calculation: Data Skipped!') 

end 
end 

end 
end 

%% Plot all on Same Graph 

kfs = 18018; % Kistler sampling frequency 
fs = 10240; % Smart Tool sampling frequency 

speed = {'rpm3000' 'rpm3 600' 'rpm4 000'}; 
immersion = {'1/4' '1/2' '3/4'}; 
namespacel = {'kqtan' 'khtan' 'k3qtan'}; 
namespace2 = {'kqrad' 'khrad' 'k3qrad'}; 
namespace3 = {'sqnet' 'shnet' 's3qnet'}; 
chip = {'hi' 'h2' 'h3' 'h4'}; 
f r a m e  - [ 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 9 9 9  9 ] ;  
s e q u e n c e  = [ 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 ] ;  

count = 0; 
for i = 1:3 

for j =1:3 
for k = 1:4 

% Get Kistler Experiment 1 Profile 
tfl = isfield(signals.(speed{i}),char(namespacel{j})); 
tf2 = 0; 
if tfl==l 

tf2 = isfield(signals.(speed{i)).(namespacel{j}),char(chip{k})); 
end 
if tfl==l && tf2==l 

K1 = signals.(speed)i}). (namespacel{j}).(chip{k}) ; 
else 

K1 = [0 0] ; 
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end 

% Get Kistler Experiment 2 Profile 
tfl = isfield(signals.(speed!i}),char(namespace2{j})); 
tf2 = 0; 
if tfl==l 

tf2 = isfield(signals.(speed(i)).(namespace2{j}),char(chip{k})); 
end 
if tfl==l &S tf2==l 

K2 = signals.(speed{i}).(namespace2(j}).(chip{k}); 
else 

K2 =[0 0]; 
end 

% Get Smart Tool Profile 
ST = signals.(speed{i}).(namespace3{j}).(chip{k}) ; 

% Time Vectors and Errata 
ktimel = (0:length(Kl)-1)./kfs; 
ktime2 = (0:length(K2)-1)./kfs; 

% Interpolate Onto Common Time Axis 
profile.Kl = interpl(ktimel,Kl,0:1/fs:max(ktimel)); 
profile.K2 = interpl (ktime2, K2, 0 :1/fs :rnax (ktime2) ) ; 

% Zero Pad Smaller Vectors 
N = max([length(profile.Kl) length(profile.K2) length(profile.ST)]); 
time = (0:N-l)./fs; 
signalspace = {'Kl' 'K2' 1 ST 1}; 
for a=l:3 

n = length(profile.(signalspace{a})); 
if n~=N 

profile.(signalspacefa)) = [profile.(signalspace(a}), zeros(l,N-n)]; 
end 

end 

% Plot Data 
hold off 
count = count+1; 
figure(frame(count)); 
subplot(2,2,sequence(count)) 
hold off 
subplot(2,2,k) 
N = length(Kl); 
time = (0:N-1)./fs*1000; 
plot(time,Kl,1 bo-') 
hold on 
plot(time,K2, * r. — ' ) 
plot(time,ST,1g*-1> 
title(strcat('signals.1,speed!i),1.',immersion)jchip{k))); 
xlabelf'Time (ms)1) 
ylabel('Net Force (N)') 
if k==l 

legend('Kistler l1, 'Kistler 2', 'Smart Tool1,'locationnorthwest') 
end 

xlim([0 10]) 
ylim([0 500]) 
legend(1Kistler 1','Kistler 2','Smart Tool','location','northwest') 
grid on 

% Plot Misaligned Data 
hold off 
figure(1); 
plot(profile.Kl,'bo-'} 
hold on 
plot(profile.K2,'r.-') 
plot(profile.ST,'g*-') 
title(strcat('signals,speed{iimmersion{j),'.',chip{k})); 
xlabel(1 Time (s)') 
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ylabelt'Net Force (N)') 
legend('Kistler 1','Kistler 2','Smart Toollocationnorthwest1) 

% Circshift K1 on Plot 
satisfied = 0; 
while satisfied == 0 

shiftidx = input{'Number of lags to shift K1 >>'); 
profile.K1 = circshift(profile.Kl, [0 shiftidx]); 

% Plot Misaligned Data 
hold off 
figure(1) ; 
plot(profile.Kl,'bo-') 
hold on 
plot(profile.K2,'r.-') 
plot(profile.ST,' g*-') 
title(streat('signals.',speed{i},1.',immersion{jchip{k})); 
xlabel('Time (s)') 
ylabel('Net Force (N)1) 
legend('Kistler 1','Kistler 2','Smart Tool1,'location','northwest') 

satisfied = input ('Are you satisfied with the alignment? (Y=l, N=0) »'); 
end 

% Circshift K2 on Plot 
satisfied = 0; 
while satisfied == 0 

shiftidx = input(1 Number of lags to shift K2 >>'); 
profile.K2 = circshift(profile.K2,[0 shiftidx]); 

% Plot Misaligned Data 
hold off 
figure (1) ; 
plot(profile.Kl,'bo-') 
hold on 
plot(profile.K2,'r.-') 
plot(profile.ST,'g*-') 
title(strcat('signals.',speed{i), '.',immersion{j},'.',chipf k})); 
xlabel('Time (s)*) 
ylabel('Net Force (N)') 
legend('Kistler 1','Kistler 2','Smart Toollocation','northwest') 

satisfied = input('Are you satisfied with the alignment? (Y=l, N=0) >>'); 
end 

% Circshift ST on Plot 
satisfied = 0; 
while satisfied == 0 

shiftidx = input('Number of lags to shift ST »'); 
profile.ST = circshift(profile.ST,[0 shiftidx]); 

% Plot Misaligned Data 
hold off 
figure(1); 
plot(profile.Kl,'bo-') 
hold on 
plot(profile.K2,* r. — ') 
plot(profile.ST, •g* —') 
title(streat(1 signals.',speed{iimmersion)j},'.',chip{k})); 
xlabel('Time (s)') 
ylabelt'Net Force (N)') 
legend('Kistler 1','Kistler 2','Smart Tool1,'location','northwest') 

satisfied = input('Are you satisfied with the alignment? (Y=l, N=0) »'); 
end 

i Trim Data Record 
stop = input('Crop Stop Index >>'); 
profile.Kl = profile.Kl(1:stop); 
profile.K2 = profile.K2(1:stop); 
profile.ST = profile.ST(1:stop); 
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% Save Aligned Results 
signals.(speed{i}).(namespacel{j}).(chip{k}) = profile.K1 
signals.(speed{i}).(namespace2{j}).(chip{k}) = profile.K2 
signals.(speedfi)).(namespace3{j}).(chip{k}) = profile.ST 

end 
end 

end 

function smoothed = meanCycle(ydata) 

%% Locate Peaks 

% % Prompt for minimum height and distance 
% minpeakheight = input('Minimum Peak Height? »'); 
% minpeakdistance = input('Minimum Peak Distance? >>'); 

minpeakheight = 1.4*mean(ydata); 
minpeakdistance = 100; 

% Locate the peaks 
[pks, Iocs] = findpeaks(ydata,'minpeakheightminpeakheight,... 

'minpeakdistance',minpeakdistance); 

pks = pks(2:length(pks)-1); 
Iocs = Iocs(2:length(Iocs)-1); 

% Confirm correct peak identification 
figure(1) 
plot(ydata,'b-'); 
hold on 
plot(Iocs,pks,'ko'); 
title('Confirmation of Correct Peak Identification') 
xlabel('Data Index') 
ylabel('y data') 
xlim([0 length(ydata)]) ; 
legend('data', 'peaks','location', 1 southwest'); 

%% Capture Traces 

before = 60; 
after = 50; 

satisfied = 0; 
while satisfied == 0 

% Sort cycles into row vectors 
out = zeros(length(pks)-1,before+after+1); 
for n = 1:length(pks)-1; 

out(n, :) = ydata((Iocs(n)-before): (Iocs(n)+after)) ; 
end 

% % Normalize traces 
% for i=l:length(pks) 
% out(i,:) = (out(i,:)-mean(out(i,:)))./max(out(i,:)-mean(out(i,:))); 
% end 

% Plot the data 
figure(1); 
hold off 
plot(out1); 
title('Cycles') 
xlabelt'Data Index') 
ylabel('y data, overlayed') 
xlim([0 before+after+1]); 
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satisfied = input('Are you satisfied with the capture? (Y=l, N=0) >>'); 
if satisfied == 0 

% Prompt for minimum height and distance 
before = input('Number of points to keep before peak? >>'); 
after = input('Number of points to keep after peak? >>'); 

end 
end 

%% Align the Traces 

satisfied = 0; 
while satisfied == 0 

maxlag = input('Number of points to shift the cross-correlation? >>'); 

% Use a cross-correlation to align the data 
out2 = zeros(size(out)); 
for i=l:length(pks)-1 

cor = ccorr(out(1,:),out(i,:),-maxlag:maxlag); 
[~, idx] = max(cor.C); 
out2(i,:) = circshift(out(i,:), [0, idx+(maxlag+1)]); 

end 

% % Matlab's Cross-Correlation 
% out2 = zeros(size(out)); 
% for i=2:length(pks)-2 
% [C lags] = xcorr(out(:,1),out(:,i),maxlag); 
% [~, idx] = max(C); 
% out2(i,:) = circshift(out(i,:),[0,(idx+(maxlag+1))]); 
% disp(idx) 
% end 

% Plot the data 
figure(1); 
hold off 
plot(out2'); 
title('Cycles Aligned by Cross-Correlation1) 
xlabel('Data Index') 
ylabelt'y data, aligned') 
xlim([0 before+after+1]) 

satisfied = input ('Are you satisfied with the correlation? (Y=l, N=0) »'); 
end 

%% Average the Cycles 

smoothed = mean(out2); 

figure(1); 
hold off 
plot(smoothed,'b-'); 
title('Characteristic Force Cycle') 
xlabel('Data Index') 
ylabel(1 Force Cycle') 

satisfied = 0; 
while satisfied == 0 

shiftidx = input ('Number of lags to shift the averaged waveform »'); 
smoothed = circshift(smoothed,[0 shiftidx]); 

figure(1); 
hold off 
plot(smoothed,'b-'); 
title('Characteristic Force Cycle') 
xlabel('Data Index') 
ylabel(1 Force Cycle') 

satisfied = input('Are you satisfied with the alignment? (Y=l, N=0) >>'); 
end 
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Figure D.9 - Net force profile comparison: 3000 rpm, half immersion 
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Figure D.l I - Net force profile comparison: 3600 rpm, half immersion 

153 



signals. rpm3600.3/4.h1 

Kistler 1 
• Kistler 2 

Smart Tool 

4 6 
Time (ms) 

10 

500 

450 

400 

350 

z 300 
CD 

§ 250 
u. 

| 200 

150 

100 

50 

0(i 

signals. rpm3600.3/4. h2 

4 6 
Time (ms) 

Bad Kistler Data 

;— 

• : 

: s"v,^ 

! J
' \ 

jv'' i 

; 

1 1 

10 

signals.rpm3600.3/4. h3 signals. rpm3600.3/4.h4 
500 500 

Bad Kistler Data 450 

400 400 

350 350 

300 300 

§ 250 
LI. 

1 200 

§ 250 
Ul 

1 200 

150 150 

100 100 

10 
Time (ms) Time (ms) 

Figure D. 12 - Net force profile comparison: 3600 rpm, three-quarter immersion 
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Figure D. 13 - Net force profile comparison: 4000 rpm, half immersion 
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Figure D. 14 - Net force profile comparison: 4000 rpm, three-quarter immersion 

156 



APPENDIX E 

ARCHIVE OF MATLAB M-FILES 

File for Facilitating Data Collection with Smart Tool v.10 

clear; 
clc; 
close all; 

Record_Length =70; % seconds 
try 

% clean up existing serial components in case the previous run died 
instrs = instrfind; 
if (~isempty(instrs)) 

disp('Cleaning old serial ports...'); 
%fclose(instrs); 
delete{instrs); 

end 

disp('Allocating serial port...'); 

% set up the com port 
s_port = serial('COM40'); 
set(s_port, 'BaudRate', 8*115200); 
set(s_port, 'Timeout', 3); 
bufferSize = 2A12; 
set(s_port, 'InputBufferSize', bufferSize); 

disp('Trying to open serial port...'); 

% open the port 
f open (s__port) ; 

disp('Opened!'); 
disp('Configuring Toolholder...'); 
fwrite(s_port, '$$$'); 
pause (1); 
fwrite(s_port, sprintf('F,l\n')); 
fwrite(s_port, 'E'); 
fwrite(s_port, '0'); 
pause (0.2); 
fwrite(s_port, '9'); 

pause(1); 
if(s_port.BytesAvailable>0) 
control_signal = fread(s_port, s_port.BytesAvailable); 
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end 
fwrite(s_port, 'G'); 
disp('Finished Configuration'); 

strain_sample_rate = 10240; 
temp_interval = 4*2*3000; 
next__temp = 0; 
temp_sample__rate = strain_sample_rate/(temp_interval/2) ; 

strain_display = strain_sample_rate*Record_Length; 
temp_display = ceil(temp_sample_rate*60); 

strain = NaN.*ones(l, strain_display*2); 
strain_index = 1; 
temp = zeros(1, temp_display*2); 
temp_index = 1; 
raw = zeros (1, 100000); 
raw_index = 1; 

strain_time = linspace(0,(strain_display-
1)/strain_sample_rate,strain_display); 
temp_time = linspace((l-temp_display)/temp_sample_rate, 0, 
temp_display); 

disp('Collecting data...'); 
systemsound('Windows XP Print Complete'); 
tic 
while sum(isnan(strain)) > 0 

bytes = fread(s_port, max(100, floor(s_port.BytesAvailable/2)*2 
read in multiples of 2 

if (length(bytes) == bufferSize) 
warning('May have lost data. Attempting to resynchronize.') 
fwrite(s_port, * Q'); 
pause(1); 
if (s_port.BytesAvailable) ; 

fread(s_port, s_port.BytesAvailable); 
end 
next_temp = 0; 
fwrite(s_port, 'G'); 

elseif (isempty(bytes)) 
error('No data!'); 

else 
raw (raw__index: raw_index+length (bytes) -1) = bytes; 
raw_index = raw_index + length(bytes); 
if (raw_index > 75000) 

raw_index = 1; 
end 

% extract temperature if it's present 
if (length(bytes) > next_temp) 

temp(temp_index:temp_index+l) = ... 
bytes(next_temp+l:next_temp+2); 

bytes(next_temp+l:next_temp+2) = []; 
temp_index = temp_index + 2; 
if (temp_index > temp_display*2) 

temp_index = 1; 
end 
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next_temp = temp_interval + next_temp - length(bytes); 

fwrite(s_port, 'K'); 

else 
next_temp = next_temp - length(bytes); 

end 

len = min(length(bytes), strain_display*2-strain_index+l); 
strain(strain_index:strain_index+len-l) = bytes(1:len); 
if (len == strain_display*2-strain_index+l) 

strain_index = length(bytes) - len + 1; 
strain(1:strain_index-l) = bytes(len+1:end); 

else 
strain_index = strain_index + len; 

end 
end 

end 
disp('Data collection complete1); 
toe; 
plot(strain_time, [s(i:end),s(1:i — 1)]); 
catch 

disp(1 Closing ports...'); 
fclose(s_port); 
delete(s_port); 
disp('Closed!'); 
rethrow(lasterror); 
close all; 

end 
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Example Code for Linear Prediction Order Comparison 

% Get Data (3/4 Immersion upmilling, 3000 rpm, rad, h2) 
load Aluminum3k36k4 k3QuarterUpRadial.mat 

stopldx = round(startldx + Nrev*spr); 
force = (s(startIdx:stopldx)-505) ./1. 64*4.448; % N 

% Plot the force data 
figure (1) 

hold off 
plot(time*1000,force); 
title ('3/4 Immersion Upmilling at 3000 RPM') 
xlabel('time(ms)') 
ylabel('Measured Force (N) ' ) 
xlim([0 100]) 

% Power Spectrum of the Whole Signal 
[Pxx,W] = PWELCH(force, 4096, 3000, 4096); 
F1 = W/2/pi*fs; 

figure(2) 
hold off 
semilogy(F1,Pxx/fs, 'color', [0.5 0.5 0.5]) 
title('Welch Power Spectrum Estimate') 
xlabel('Frequency (Hz)') 
ylabel('Power Spectral Density (NA2/ Hz)') 
xlim([0 5000]) 
ylim([5e-6 le2]) 

% Linear Prediction Models 
[a6 g6] = lpc(force,6); 
[al2 gl2] = lpc(force,12); 
[a32 g32] = lpc(force,32); 
[a64 g64] = lpc(force,64); 
[al28 gl28] = lpc{force,128); 
[a256 g256] = lpc(force,256); 

[H6 F] = freqz(l,a6,4096,'half',10240); 
Pxx6 = g6*abs(H6)."2./2./fs; 
figure(3) 

hold off 
semilogy(F1,Pxx./fs,'color',[0.65 0.65 0.65]) 
hold on 
semilogy(F,Pxx6,'color',[0.7 0 0.7]) 
title('LPC Power Spectral Estimate, P=6') 
xlabel('Frequency (Hz)') 
ylabel('Power Spectral Density (N~2 /Hz') 
xlim([0 5000]) 

startldx = 8.58e4; 
spr = 10240/3000*60; 
Nrev = 150; 

% Starting index of data sequence 
% Samples per revolution 
% Number of revolutions 

decay = force(343:430); 
N = length(force); 
fs = 10240; 
time = (0:N-l)./fs; 

% Damped vibration profile 
% Length of data set 
% Sampling Frequency (Hz) 
% Time vector (sec) 
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legend('Welch PSD Estimate 1LPC Estimate, 
P=6','location','northeast') 

[H12 F] = freqz(l,al2,4096,'half',10240); 
Pxxl2 = gl2*abs(H12).A2./2./fs; 
figure(4) 

hold off 
semilogy(Fl,Pxx./fs,'color',[0.65 0.65 0.65]) 
hold on 
semilogy{F,Pxxl2,'color',[0.7 0 0.7]) 
title('LPC Power Spectral Estimate, P=12') 
xlabel('Frequency (Hz)') 
ylabel('Power Spectral Density (NA2 /Hz') 
xlim([0 5000]) 
legend('Welch PSD EstimateLPC Estimate, 

P=12','location','northeast') 

[H32 F] = freqz(1,a32,4096,'half',10240); 
Pxx32 = g32*abs(H32).A2./2./fs; 
figure(5) 

hold off 
semilogy(Fl,Pxx./fs,'color',[0.65 0.65 0.65]) 
hold on 
semilogy(F,Pxx32,'color',[0.7 0 0.7]) 
title('LPC Power Spectral Estimate, P=32') 
xlabel('Frequency (Hz)') 
ylabel('Power Spectral Density (NA2 /Hz') 
xlim([0 5000]) 
legend('Welch PSD Estimate','LPC Estimate, 

P=32','location','northeast') 

[H64 F] = freqz(1,a64,4096,'half',10240); 
Pxx64 = g64*abs(H64).A2./2./fs; 
figure(6) 

hold off 
semilogy(Fl,Pxx./fs,'color',[0.65 0.65 0.65]) 
hold on 
semilogy(F,Pxx64,'color',[0.7 0 0.7]) 
title('LPC Power Spectral Estimate, P=64') 
xlabel('Frequency (Hz)') 
ylabel('Power Spectral Density (NA2 /Hz') 
xlim([0 5000]) 
legend('Welch PSD Estimate','LPC Estimate, 

P=64','location','northeast') 

[H128 F] = freqz(l,al28,4096,'half',10240); 
Pxxl28 = gl28*abs(H128),A2./2./fs; 
figure(7) 

hold off 
semilogy(Fl,Pxx./fs,'color',[0.65 0.65 0.65]) 
hold on 
semilogy(F,Pxxl28,'color',[0.7 0 0.7]) 
title('LPC Power Spectral Estimate, P=128') 
xlabel('Frequency (Hz)') 
ylabel('Power Spectral Density (NA2 /Hz') 
xlim([0 5000]) 
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legend('Welch PSD EstimateLPC Estimate, 
128', 'location', 'northeast') 

[H256 F] = freqz(1,a256, 4096, 'half', 10240); 
Pxx256 = g256*abs(H256).A2./2./fs; 
figure(8) 

hold off 
semilogy(Fl,Pxx./fs,'color',[0.65 0.65 0.65]) 
hold on 
semilogy(F,Pxx256,'color',[0.7 0 0.7]) 
title('LPC Power Spectral Estimate, P—256") 
xlabel{'Frequency (Hz)') 
ylabel('Power Spectral Density (N"2 /Hz1) 
xlim([0 5000]) 
legend('Welch PSD Estimate','LPC Estimate, 

256', 'location', 'northeast') 
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Figure E.l - Radial strain converted to force 

3/4 Immersion Upmilling at 3000 RPM 
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Figure E.2 - Power spectrum of the radial force measurement signal 
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Figure E.3 - LPC spectral estimate, 6th order LPC model 
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Figure E.5 - LPC spectral estimate, 32nd order LPC model 
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Figure E.6- LPC spectral estimate, 64th order LPC model 
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Figure E.8 — LPC spectral estimate, 256th order LPC model 
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Script to Implement Auto-Regressive Modeling 

The built-in LPC function implements forward-predictor lattice estimator. The equations 
presented in Chapter 6 develop linear prediction using a backwards-prediction lattice estimator. 
The following script implements linear prediction exactly as defined in this thesis. 

function [ak varargout] = ARmodel(data,P) 

% ARmodel Auto-Regressive, Bakward-Prediction Model 

% 
% Usage: [a v u xhat] = ARmodel(data, P) 

% 

% Computes the AR model coefficients 

% Error Handing 

N = length(data); 

if N <= P 

error('Length of data record must be larger than model order'); 

end 

% Initialize Model Vectors 

y = zeros(N-P, 1); 

Y = zeros(N-P,P); 

% Build Backward-Prediction AR Data Structure 

for row = P:N-1 

y(row-P+l) = data(row+l); 

for col = 1:P 

Y(row-P+1,col) = data(row-col+1); 

end 

end 

% Least Squares Solution 

a = (Y'*Y)\Y'*y; 

ak = [1 -a' J ; 

% Process Variance 
u = zeros(N-l,1); 

xhat = zeros(N-l,1); 

for m=l+P:N 

loopsum = 0; 

for k=l:P 

term = a(k)*data(m-k); 

loopsum = loopsum+term; 

end 

u(m) = data(m)-loopsum; 

xhat(m) = loopsum; 

end 
v = var(u); 

if nargout==2 

varargout (1) = (v); 

elseif nargout==3 

varargout(1) = (v); 

varargout(2) = (u) ; 

elseif nargout==4 

varargout(1) = {v) ; 

varargout(2) = {u}; 

varargout(3) = {xhat 

end 
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Example Code for LPC-Based Dynamic Parameter Identification 

Parametric Methods for Parameter Identification 

Get Data (3/4 Immersion upmilling, 3000 rpm, 
load Aluminum3k36k4k3QuarterUpRadial.mat 
clc 

rad, h2) 

startldx = 8 . 58e4;%116525; 
spr = 10240/3000*60; 
Nrev = 202; 
stopldx = round(startldx + Nrev*spr) 
force = (s(startldx:stopldx)-505)./I 

Starting index of data sequence 
Samples per revolution 
Number of revolutions 

decay = force(343:430) 
N = length(force); 
fs = 10240; 
time = (0:N-l)./fs; 

64*4.448; % N 
Damped vibration profile 
Length of data set 
Sampling Frequency (Hz) 
Time vector (sec) 

Look at How the Dynamics Change 

% Model Order 
P = 6; 

% Locate cycles of data 
[pks Iocs] = findpeaks(abs(diff(force)), 'minpeakdistance150); 

% Compensate for bias 
Iocs = Iocs(2:end-1)-10; 

% Block Out Data 
force2 = zeros(Nrev-2,250); 
for i=l:Nrev-2 

force2(i,:)=force((locs(i)-100+l):(Iocs(i)+150)); 
end 

% Align All Cycles 
plot(force2 (1, : ) ) ; 
hold on 
for i=2:Nrev-2 

[C lags] = xcorr(force2(1, :) , force2(i, :) , 1coeff'); 
[pk idx] = max(C); 
force2(i,:) = circshift(force2(i,:),[0 lags(idx)]); 
plot(force2(i,:)); 

end 

% In the Cut Sections 
Fin = force2(:,39:106); 

% Out of Cut Sections 
Fout = force2(:,111:216); 

% Detrend The In-Cut Data 
[a b] = size(Fin); 
Fin2 = zeros(Nrev-2,b); 
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for i=l:Nrev-2 
% Define a model Vector 
theta = linspace(pi,(pi+2/3*pi),b); 
X (1, :) = -sin(theta); 
X (2, : ) = ones(1,b); 

%X(3, :) = linspace(0,1,65); 
% Multivariate Regression 
out = mvreg(Fin(i,:)',X); 
% Anomaly Time Series 
Fin2(i,:)=out.anom; 

end 

Track In-cut Resonances of the Model 
Ain = zeros(Nrev-1,P+l); 
Zin = zeros(Nrev-1,P); 
for i=l:Nrev-2 

[ak g] = lpc(Fin2(i,:),P); % 6th Order LPC Model 
z = roots(ak); % Poles in the z-plane 
Ain(i,:)=ak; 
Zin(i, :) = z; 

end 

Track Open Loop Resonances of the Model 
Aout = zeros(Nrev-1,P+l); 
Zout = zeros(Nrev-1,P); 
for i=l:Nrev-2 

[ak g] = lpc(Fout(i,:),P); % 6th Order LPC Model 
z = roots(ak); % Poles in the z-plane 
Aout(i,:) =ak; 
Zout(i,:)=z; 

end 

Calculate Formant Frequencies for Each Cycle 
flin = zeros(Nrev-2,1); f2in = zeros(Nrev-2,1); 
f3in = zeros(Nrev-2, 1) ; f4in = zeros(Nrev-2,1); 
flout = zeros(Nrev-2,1); f2out = zeros(Nrev-2,1); 
f3out = zeros(Nrev-2,1); f4out = zeros(Nrev-2,1); 
for i=l:Nrev-2 

flin(i)=atan2(imag(Zin(i,1)),real(Zin(i,1)))/2/pi*fs; 
f2in{i)=atan2(imag(Zin(i,3)),real(Zin(i,3)))/2/pi* fs; 
f3in(i)=atan2(imag(Zin(i,5)),real(Zin(i,5)))/2/pi*fs; 
%f4in(i)=atan2(imag(Zin(i,7)),real(Zin(i,7)))/2/pi*fs; 
flout(i)=atan2(imag(Zout(i,1)),real(Zout(i,1)))/2/pi*fs; 
f2out(i)=atan2(imag(Zout(i,3)),real(Zout(i,3)))/2/pi*fs; 
f3out(i)=atan2(imag(Zout(i,5)),real(Zout(i,5)))/2/pi*fs; 
%f4out(i)=atan2(imag(Zout(i,7)),real(Zout(i,7)))/2/pi*fs 

end 
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Figure E.9 - Overlay offorce profiles aligned by the cross-correlation function 

Sort States 

fin = sort(abs([flin f2in f3in]),2); 
flin = fin(:,1); 
f2in = fin(:,2); 
f3in = fin(:,3); 
fout = sort(abs([flout f2out f3out]),2); 
flout = fout (:, 1) ; 
f2out = fout(:,2); 
f3out = fout(:,3); 

Visualizing the System Description 

% Find Poles Around 3rd Mode, Exclude Outliers 
f3inID = zeros(Nrev-2,1); 
f3outID = zeros(Nrev-2,1); 
for i=l:Nrev-2 

if f3in(i) <= 5000 
f3inID(i) = 1; 

end 
if f3out(i) <= 5000 

f3outID{i) = 1; 
end 

end 
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% Average Pole Locations 
Ain2 = zeros(sum(f3inID),7); 
Aout2 = zeros(sum(f3outID),7); 
n=l; m=l; 
for i=l:Nrev-2 

if f3inID(i)==1 
Ain2(n,:)=Ain(i,:); 
n=n+l; 

elseif f3outID(i)==1 
Aout2(m,:)=Aout(i,: ) ; 
m=m+l; 

end 
end 
akCL = mean(Ain); 
zCL = roots(akCL); % Poles in the z-plane 
akOL = mean(Aout); 
zOL = roots(akOL); % Poles in the z-plane 

figure(2) 
subplot(2,2,1:2) 

hold off 
[hOL f] = freqz(1,akOL,4096,'halffs); 
[hCL f] = freqz(1,akCL,4096,'halffs); 
plot(f,20*logl0(abs(hOL)) ,'b') 
hold on 
plot(f,20*logl0(abs(hCL)),'r') 
title('Frequency Response of the LPC Model') 
xlabel('Magnitude (dB)') 
ylabel('Frequency (Hz)') 
legend('Opel Loop','Closed Loop') 

subplot(2,2,3) 
hold off 
zplane([],zOL) 
title('OL Poles of the LPC Model'); 

subplot(2,2,4) 
hold off 
zplane([],zCL) 
title('CL Poles of the LPC Model'); 
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Figure E.10- Average resonance as determined by LPC 

Make a Movie 

Frame(Nrev-1) = struct('cdata',[],'colormap',[]); 
g=figure(3); 
set(g, 'Position', [100 100 800 800]); 
n=l ; 
for j=l:Nrev-2 

akOL = Aout(j , : ) ; 
zOL = roots(akOL); 
akCL = Ain(j,:); 
zCL = roots(akCL); 

subplot(3,2,1:2) 
hold off 
step = 0; 
for k=l 

t = time((Iocs(j)-80+1+step):(Iocs(j)+633+step)); 
plot(t,force((locs(j)-80 + l + step) : (locs(j)+633 + step)), * k') 
hold on 
plot([t(120) t(120)],[-100 110],'r') 
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title(strcat('Measured Force - 3/4 Upmilling at 3000 RPM, 
Cycle =',int2str(j))) 

xlabel('Time { s e c ) ' )  
ylabel('Force (N) ' ) 
xlim([min(t) max(t)]) 
ylim([-100 110]) 
step = step+35; 
Frame(n) = getframe(gcf); 
n = n+1; 

end 
subplot(3,2,3:4) 

hold off 
[hOL f] = freqz(1,akOL,4096,'half',fs); 
[hCL f] = freqz(1,akCL,4096,'half',fs); 
plot(f,20*logl0(abs(hOL)),'b') 
hold on 
plot(f,20*logl0(abs(hCL)),'r') 
title(strcat('Frequency Response of the LPC Model, Cycle 

=',int2str(j))) 
ylabel('Magnitude (dB)') 
xlabel('Frequency (Hz)') 
legend('Open Loop','Closed Loop') 
xlim([0 5120]) 
ylim([-10 40]) 
grid on 

subplot(3,2,5) 
hold off 
zplane([],zOL) 
title('OL Poles of the LPC Model'); 

subplot(3,2,6) 
hold off 
zplane([],zCL) 
title('CL Poles of the LPC Model'); 

subplot(3,2,1:2) 
for k=l:5 

hold off 
t = time((Iocs(j)-80+1+step):(Iocs(j)+633+step)); 
plot(t,force((locs(j)-80+l+step):(locs(j)+633+step)),'k') 
hold on 
plot([t(120) t(120)],[-100 110],'r') 
title(strcat('Measured Force - 3/4 Upmilling at 3000 RPM, 

Cycle =',int2str (j))) 
xlabel('Time (sec)') 
ylabel('Force (N)') 
xlim([min(t) max(t)]) 
ylim([-100 110]) 
step = step+35; 
Frame(n) = getframe(gcf); 
n = n+1; 

end 
Frame(n) = getframe(gcf) ; 
n=n+l; 

end 

% Play the Movie 
movie(gcf,Frame,1,5) 
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Plotting for Formant Frequency Tracking 

figure(4) 
hold off 
subplot(2,1,1) 

plot(1:Nrev-2,floutcolor', 0.6.*[1 1 1]) 
hold on 
plot(1:Nrev-2,f2out,'k*') 
plot(1:Nrev-2,f3out,'ko') 
ylim([0 5000]) 
title{'Open Loop Resonant Frequencies') 
xlabel('Spindle Revolution (cycle)') 
ylabel('Frequency (Hz)1) 
legend('First Mode','Second Mode','Third 

Mode','location','northwest') 
subplot(2,1,2) 

plot(1:Nrev-2,flin,color',0.6.*[1 1 1]) 
hold on 
plot(1:Nrev-2,f2in,'k*') 
plot(1:Nrev-2,f3in,'ko') 
ylim([0 5000]) 
title('Closed Loop Resonant Frequencies') 
xlabel('Spindle Revolution (cycle)') 
ylabel('Frequency (Hz)') 
legend('First Mode','Second Mode','Third 

Mode','location','northwest') 

figure (5) 
hold off 

plot(1:Nrev-2,flout,'o','color', [0 0 1], 'markersize',4.5) 
hold on 
plot(1:Nrev-2,flin,'.', 'color', [0 .7 0]) 
plot(1:Nrev-2,f2out, 'square','color',[1 0 0], 'markersize',4) 
plot(1:Nrev-2,f2in,color',[.7 0 .7]) 
plot(1:Nrev-2,f3out,'^','color',[0.9 0.8 0],'markersize',5) 
plot(1:Nrev-2,f3in, ' + ','color',[.4 .7 .7], 'markersize',5) 
ylim([0 5000]) 
title('Comparison of Open-Loop & Closed-Loop Resonant Frequencies') 
xlabel('Spindle Revolution (cycle)') 
ylabel('Frequency (Hz)') 
legend('OL Mode 1', 'CL Mode 1', 'OL Mode 2','CL Mode 2 ' , . . . 

'OL Mode 3','CL Mode 3','locationsouthwest') 
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Example Test for Whiteness 

% In-cut profile 
x = Fout(100, : ) ; 

% Estimate 
P=6; 
[a v e xhat] = ARirtodel {x, P) ; 
m = 0:length(x)-1; 

% Autocorrelation 
[C lags] = xcorr(e(P+l:end),e{P+l:end),'coeff') ; 

% Plotting 
figure(1) 
subplot(3,1,1) 

hold off 
plot(m,x, 'color 1,[0 . 3 0.3 0.3]) 
hold on 
plot(m(P+l:end),xhat(P+l:end), 'kx ' ) ; 
xlim([0 100]) 
ylim([-100 200]) 
legend('Measurement', 'Linear Prediction 

Model','location','northeast') 
title('Example of 6AtAh Order Linear Prediction Model') 
xlabel('Data Index') 
ylabel('Force (N)') 

subplot(3,1,2) 
hold off 
plot(m(P+l:end),e(P+l:end) , 'k') 
xlim([0 100]) 
ylim([-10 10]) 
title('Residual White Noise Error Sequence') 
xlabel('Data Index') 
ylabel('Force (N)') 
grid on 

subplot(3,1,3) 
hold off 
stem(lags,C,'k*') 
title('Autocorrelation of the Error Sequence') 
xlabel('Lag Index') 
ylabel('Correlation Coefficient') 
xlim([-50 50] ) 
y l i m ( [ - 1  1 ] )  
grid on 
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Example Code for Implementing the Weiner Filter 

Measured Data to Filter 

% Strain Signal to Filter 
load radial3000h2.mat; 
force = (s-506) ./l. 64*4 . 448; % N 
N = length(force); 
time = (0:N-l) ./10240; 

Static Model used for Training Sisnal 

% Example, 3000 rpm Upmilling 

% Parameters 
rpm=2 990; % input spindle speed 
fs=10240; % sampling frequency 
numpercycle=fs*60/rpm; % number of data points per rotation 
AD = 1; %0.125*25.4; 
Feed=8.378; % assign the feedrate 
ft=Feed*25.4/rpm/N; % feed per tooth : mm/tooth 
degree=l/fs*rpm*360/60; % angular increment for simulation 

% Upmilling Geometry for Selected Radial Immersion 
immersion = '3quarter'; 
switch(lower(immersion)) 

case {1 quarter'} 
enter=pi; 
exit=pi+l/3*pi; 
maxphi = exit; 

case {'half'} 
enter=pi; 
exit=pi+l/2*pi; 
maxphi = pi/2; 

case {'3quarter'} 
enter=pi; 
exit=pi+2/3*pi; 
maxphi = pi/2; 

end 

% Build the Static Model 
Ktcft=72; % unit: N/mm~2 Multiplied by feedrate 
Kte=20; % unit: N/mm 

alpha=0; % initial value of reference locating angle 
for j=1:numpercycle 

theta=(alpha+degree*(j —1))/180*pi; 
if (theta<=exit) && (theta>=enter) 

Ft(j)=(-Ktc*sin(theta)+Kte)*AD; 
else 

Ft (j ) = 0; 
end 

end 
cycles=25; 
model = [1; 
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for n = l:cycles 
model = vertcat(model,Ft'); 

end 

% Rotate and Trim Model 
model = circshift(model(1:N), [-53 0]) ; 

Develop Weiner Block-Adaptive Filter 

% FIR Model Order 
P = 7; 

% Build the Observation Matrix, Y 
y = force; 
x = model(P:end)'; 
Y = zeros(N-P+l,P); 
for i = 1:N-P+l; 

Y(i, :) = fliplr(y((i) : (i + P-1))); 
end 

% FIR Least Squares Weighting Factors 
w = {Y **Y)\Y'*x'; 

Apply the Filter to the Measured Signal 

% Filtering 
xlh = filter(w,1,force); 

Plotting 

% Estimate Plotting 
figure (1) 
xmax = 100; 

hold off 
plot((0:N-l)/10240*1000,force,color[0.65 0.65 0.65]) 
hold on 
plot((0:N-l)/10240*1000,model,'-','color',[0.7 0 

0.7],'linewidth',1) 
title('Static Profile Used to "Train" the Weiner Filter') 
xlabelf'Time (ms)1) 
ylabel('Force, (N)') 
axis([0 xmax -100 120]) 
legend('Measurement','Static Training 

Signal','location','southwest') 

figure(2) 
subplot(2,1,1) 

hold off 
plot((0:N-l)/10240*1000, force, color', [0 . 65 0. 65 0.65]) 
hold on 
plot((0:N-1)/10240*1000,xlh,'-','color',[0.7 0 

0.7],'linewidth',1) 
title('Static Signal Estimate') 
xlabel('Time (ms)1) 
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ylabel('Force, (N)1) 
axis([0 xmax -100 120]) 
legend('Measurement','Weiner Estimate','location','southwest') 

subplot(2,1,2) 
hold off 
plot((0:N-1)/10240*1000,force,'color',[0.65 0.65 0.65]) 
hold on 
nMA = 4; 
bMA = ones(1,nMA)./nMA; 
plot{(0:N-l)/10240*1000,filter(bMA,l,xlh),,'color',[0.7 0 

0.7],'linewidth',1) 
title('Static Signal Estimate - Smoothed with MA Filter, P=4') 
xlabel('Time (ms)') 
ylabel('Force, (N)') 
axis([0 xmax -100 120]) 
legend('Measurement','Smoothed Weiner 

Estimate','location','southwest') 

% Poles and Zeros 
figure(4) 

hold off 
zplane(roots(w),[]); 
title('Zeros of the Weiner Filter') 

% Frequency Response 
figure(5) 

[H, F] = freqz(w,1,512,'half',10240); 
subplot(2,1,1) 

plot(F,20*logl0(abs(H))); 
title('Frequency Response of the Weiner Filter') 
xlabel('Frequency (Hz)') 
ylabel('Amplitude Ratio (dB)') 
xlim([0 5000]) 
ylim([-30 20]) 
grid on 

subplot(2,1,2) 
plot(F,atan2(imag(H),real(H))*180/pi); 
xlabel('Frequency (Hz)') 
ylabel('Phase (deg)') 
xlim([0 5000]) 
ylim([-90 180]) 
set(gca,'ytick',-90:45:180) 
grid on 
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Figure E. 14 - Static model used to train the Weiner filer 
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Figure E. 15 - Zeros of the Weiner Filter 
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Frequency Response of the Weiner Filter 
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Figure E. 16- Frequency response of the Weiner filter 
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Example Code for Implementing the Harmonic Kalman Filter 

Static Force Profile 

% Example, 3000 rpm Upmilling 

% Parameters 
rpm=3000; % input spindle speed 
N=l; % number of cutting tooth 
fs=10000; % sampling frequency 
numpercycle=fs*60/rpm; % number of data points per rotation 
AD = 1; %0.125*25.4; 
Feed=8.378; % assign the feedrate 
ft=Feed*25.4/rpm/N; % feed per tooth : mm/tooth 
degree=l/fs*rpm*360/60; % angular increment for simulation 

% Upmilling Geometry for Selected Radial Immersion 
immersion = '3quarter'; 
switch(lower(immersion)) 

case {'quarter'} 
enter=pi; 
exit=pi+l/3*pi; 
maxphi = exit; 

case {'half'} 
enter=pi; 
exit=pi+l/2*pi; 
maxphi = pi/2; 

case {'3quarter'} 
enter=pi; 
exit=pi+2/3*pi; 
maxphi = pi/2; 

end 

% Build the Static Force Model 
Ktc=95; % unit: N/mm~2 % Multiplied by feedrate 
Kte=0; % unit: N/mm 

alpha=0; % initial value of reference locating angle 
for j=1:numpercycle 

theta=(alpha+degree*(j —1))/180*pi; 
if (theta<=exit) && (theta>=enter) 

Ft(j)=(-Ktc*sin(theta)+Kte)*AD; 

else 
Ft(j)=0; 

end 
end 
cycles=20; 
model = [ ]; 

for n = 1:cycles 
model = vertcat(model,Ft'); 

end 
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DFS of Static Force Profile 

% Spectrum of the Static Profile 
N = length(model); 
m  =  0 : N - l ;  
t = m. / f s; 
f = m/N*fs; 

DFS = 2.*abs(fft(model-mean(model)))./length(model); % One-sided 
spectrum amplitudes 

% Power Spectrum (Periodogram Definition) 
Power = DFS.A2./length(model)./fs; 
Power2 = Power(l); % [380 38 1]; % Informed from LPC Model 

% Identify Non-Zero Modes 
ck = DFS(21:20:N); 
Pxx = Power(21:20:N); 
Pyy = Power2; 
n = length(ck); 

Harmonic Kalman Filter Model 

% Model Order Selection 
p = 10; % Number of Harmonics to Model 
q = 1; % Number of Resonant Modes to Model 
s = 2*(p+q); % Total Number of States 

% Frequency Vector for Harmonics, Resonance, Combined 
wl = 2.*pi.*f(21:20:p*21); 
w2 = 2.*pi.*[650];% 2170 4200]; 
w = [wl w2]; 

% Building the A Matrix 
A = zeros(s); 
for i=l:s 

for j=l:s 
if rem(i,2)~=0 && j==(i+l) 

A ( i , j ) = 1 ;  
end 
if rem(i,2)==0 && i==(j+l) 

A (i,j) = -w(i/2)A2; 

end 
end 

end 

% Building the B Matrix 
B = zeros(s,p+q); 
count=l; 
for i=l:s 

if rem(i,2)==0 
B(i,count) = 1; 
count=count+l; 

end 
end 
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% Building the Observation Matrix 
H = zeros(1,s); 
count=l; 
for j=l:2*p 

if rem(j,2)~=0 
H(j) = abs(ck(count)); 
count=count+l; 

end 
end 

% Initialize D Matrix 
D = zeros(1,p+q); 

% State Space Model 
sys = ss(A,B,H,D); 
% sysr = minreal(sys); 

Kalman Gain Computation 

% Parameters 
Qn = diag([ck(1:p)' ck(l)].A2); % Driving Process Noise 
Rn = 1.2; % NA2 % Variance of the additive noise 

% Discrete Gain Estimator for Continuous Plant 
[kest,L,P] = kalman(sys,Qn,Rn); 

Filter Implementation 

% Strain Signal to Filter 
load radial3000h2.mat; 
force = (s2-506) ./1.64*4.448; % N 
N2 = length(force); 
time = ( 0:N2-1) ./10240; 

% Simulate the Model 
T = 1/10240; 
strainForce = [time', force']; 
sim('HarmonicKalmanSim.mdl',1); 
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Figure E. 18 - Simulink model for the harmonic Kalman filter 
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Static Force Profile and DFS Plotting 

figure(1) 
subplot(2,1,1) 

hold off 
plot(t.*1000,model, 'b. — ' ) 
title('Static Model') 
xlabel('Time (ms)') 
ylabel('Force, (N)') 
xlim([0 205]) 
ylim([0 120]) 

subplot(2,1,2) 
stem(f,DFS,'b.') 
xlim([0 2000]) 
title('Discrete Time Fourier Series') 
ylabel('Fourier Series Coefficient1 

xlabel('Frequency (Hz)') 
figure(2) 

hold off 
plot(1:n, 2*cumtrapz(1:n,abs(ck) . A2) , 

) 

/trapz(l:n,abs(ck). ~2).*100, 
' bo: 

xlim([0 30]) 
ylim([0 100]) 
grid on 
title('Kalman Filter: Model Order Selection') 
xlabel('Number of Hamonics') 
ylabel('Percent of Signal Energy') 
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Figure E, 19- Static force profile and DFS 
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Figure E.20 - Integration of the static model power spectrum 

Kalman Filter Plotting 

figure(3) 
hold off 
plot((simout(:, 1)—.61)*1000,simout(:,3), 'color', [0.65 0.65 

0.65]); 
hold on 
plot{(simout(:, 1) -

.61)*1000,simout(:,2)+mean(model)+1,'color',[0.7 0 0.7],'linewidth',1); 
legend('Measurement','Kalman Estimate','location','southwest') 
title('Harmonic Kalman Filter') 
xlabel('Time, (ms)') 
ylabel('Force (N)') 
xlim([0 60]) 
ylim([-100 120]) 
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figure(4) 
load KalmanBode.mat 
[MAG PHASE W] = bode(Model); 
for count = 1:206 

Mag(count) = MAG(1,1,count) ; 
Phase(count) = PHASE(1,1,count); 

end 
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F = W/2/pi; 

ubplot(2,1,1) 
hold off 
plot(F,20*logl0(Mag)) 
title('Frequency Response of the Harmonic Kalman Filter') 
xlabel('Frequency (Hz)') 
ylabel('Amplitude Ratio <dB) ') 
grid on 
xlim{[0 1000] ) 
ylim([-40 10]) 

ubplot(2,1,2) 
hold off 
plot(F,Phase) 
xlabel('Frequency (Hz)') 
ylabel('Phase (deg)') 
grid on 
xlim([0 1000]) 
ylim([-90 45]) 
set(gca,'ytick',-90:45:45) 
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Figure E.2I -Implementation of the harmonic Kalman filter 
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Figure E. 22 - Bode plot of the harmonic Kalman filter 
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Example Code for Implementing the Dynamic Chip Load Filter 

Dynamic Chip Load Filter 

clear 
load hrad_3600_h2.mat % contains data and a cursor structure 
clc 

Transform data to force 

% Parameters 
N = length(data2); 
fs = 10240; 
t = (0:N-l). /fs; 
force = (data2-501)./I.64; % lbf 

% Plotting 
figure(1) 
hold off 
plot(1000 . *t-55, force, 1 color',[0 . 65 0.65 0.65]) 
title('Smart Tool - 3600 RPM, Half Immersion, Radial') 
xlabel('Time (ms)'); 
ylabel('Measured "Force" (lbf)') 
xlim([0 1000*max(t)]) 
grid on 
ylim([-25 30]) 
xlim([0 90]) 
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Figure E.23 - Example of Smart Tool data: Measured radial force, 3600 rpm 
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Time-Lasted Difference Sequence 

% Interpolate onto better time axis 
t2 = (0:2*N-1)./2./fs; 
force2 = interpl(t,force,t2); 

% Process Variables 
process.AD = 0.125; 
process.D = 0.75; 
process.rpm = 3600; 
process.f = 2; 
process.immersion = 'half'; 
N = 171.5; % Samples per revolution 

% Variation in Measurement (3600 rpm) 
delta = zeros(1,length(force)); 
for i=l:length(force) 

if i > N 
delta(i) = force(i) - interpl(1:length(force), force,i-N); 

else 
delta (i) = 0; 

end 
end 

Static Chip Load Model 

model = staticChip(force,process); 
model = circshift(model,[10 0]); 

Chipload Filter Force Estimate 

Fest = delta + model(1:length(delta))'; 

Chipload Filter Parameters - all on one plot 

figure(3) 
hold off 
plot(1000.*t-55,force*4.448,'color',[0.65 0.65 0.65]) 
hold on 
plot(1000.*t-55,delta*4.448,'r') 
plot(1000.*t-55,model(1:length(delta))*4.448,'b') 
xlim([0 38]) 
ylim([-100 120]) 
legend('Measured ForceVariation Sequence','Static Force 

Model','location','southwest') 
title('Parameters for the Chipload Filter') 
xlabel('Time (ms)') 
ylabel('Force (N)') 

figure(4) 
hold off 
plot(1000.*t-55,force*4.448,'color',[0.65 0.65 0.65]) 
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hold on 
plot(1000.*t-55, delta*4.448 + model(1:length(delta)) '*4.448, 

'color',[0.7 0 0.7]) 
xlim([0 38]) 
ylim([-100 120]) 
legend('Measured Force','Model 

Estimate', 'location' , 'southwest') 
title('Chipload Filter Estimate') 
xlabel('Time (ms)') 
ylabel('Force (N)') 
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Figure E.24 - Parameters for the dynamic chip loadfilter 
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Figure E.25 - Implementation of the dynamic chip loadfilter 
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Example Code for Implementing Notch Filters 

Desism of IIR and FIR Notch Filters 

clear 
close all 
load hrad_3600_h2.mat % contains data and a cursor structure 
clc 

Transform strain data to force 

% Parameters 
N = length(data2); 
fs = 10240; 
t = (0:N-l)./fs; 
force = (data2-501)./I.64; % lbf 

% Plotting 
figure(1) 
hold off 
plot(1000.*t-55,force, 'color[0.65 0.65 0.65]) 
title{'Smart Tool - 3600 RPM, Half Immersion, Radial') 
xlabel('Time (ms)'); 
ylabel('Measured "Force" (lbf)') 
xlirti ( [0 1000*max (t) ] ) 
grid on 
ylim([-25 30]) 
xlim([0 90]) 

Develop a Notch Filter 

% Notch Filter Parameters 
fn = 603; 
wO = 2*fn/fs; % Normalized Ringing Frquency (notch center) 
bw = wO/3; 
[b a] = iirnotch(wO,bw,-12); 

% Filter Visualization 
figure(2) 
hold off 
subplot(2,2,1) 

[H F] = freqz(b,a, 1024,fs) ; 
plot(F,20*logl0(abs(H))) 
title('Notch Filter Magnitude Spectrum') 
xlabel('Frequency (Hz)') 
ylabel('Filter Gain (dB)') 
xlim([0 5000]) 
grid on 

subplot(2,2,3) 
plot(F,atan2(imag(H),real(H)).*180./pi) 
title ('Notch Filter Phase Spectrum') 
xlabel('Frequency (Hz)') 
ylabel('Phase (deg)') 
xlim([0 5000]) 
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grid on 
subplot(2,2, [ 2;4 ] ) 

zplane(b,a) 

% Implement filter 
zf = filter(b,a,force); 
zf2 = filtfilt(b,a,force); 
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Figure E.26 - IIR notch filter z-plane andfrequency response 

Impulse Invariance FIR Notch Filter 

% Notch Filter Impulse Response 
x = zeros(100,1); x(l)=l; 
h = filter(b, a,x); 
Q = 30; 

figure(3) 
hold off 
stem(0:Q-l, h(1:Q) , 'b* *) 
bFIR = h(1:Q); 
title('Truncated Impulse Response') 
xlabel('Data Index') 
ylabel('Impulse Response') 

figure(4) 
zplane(roots(bFIR),[]) 
title('Zeros of the FIR Notch Filter') 

figure(5) 
[H, F] = freqz(bFIR,1,512,'half',10240); 
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subplot(2,1,1) 
plot(F,20*logl0(abs(H))); 
title('Frequency Response of the FIR Notch Filter') 
xlabel('Frequency (Hz)') 
ylabel('Amplitude Ratio (dB)') 
xlim([0 5000]) 
ylim([-60 0]) 
grid on 

subplot (2,1,2) 
plot(F, atan2{imag(H),real(H))*180/pi); 
xlabel('Frequency (Hz)') 
ylabel('Phase (deg)') 
xlim([0 5000]) 
ylim([-180 180]) 
set(gca,'ytick',-90:45:180) 
grid on 
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Figure E.27 - Truncated impulse response used to build te FIR notch filter 

30 

Zeros of the FIR Notch Filter 

0.5 -

t cd Q. 
£> 
(0 
c 
O) 
(0 
E 

-0.5 

-1 

-0.5 0 
Real Part 

0.5 

Figure E.28 - Zeros of the FIR notch filter 

199 



Frequency Response of the FIR Notch Filter 
-1 r "~1 

J L_ 

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 
Frequency (Hz) 

js -45 

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 
Frequency (Hz) 

Figure E. 29 - Frequency response of the FIR notch filter 
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Notch Filter Implementation 

figure(6) 
hold off 
plot(1000.*t-55,force*4.448,'color',[0.65 0.65 0.65]) 
hold on 
plot(1000.*t-55,filter(b,a,force)*4.448,'color',[0.7 0 

0.7], 'linewidth',1) 
title('IIR Notch Filter - 3600 RPM, Half Immersion, Radial') 
xlabel('Time (ms)'); 
ylabel('Force (N) ' ) 
xlim{[0 1000*max(t)]) 
ylim([-100 120]) 
xlim([0 35]) 
legend('Measurement','IIR Filter Estimate','location','southwest 
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Figure E.30 - IIR notch filter implementation 
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figure(7) 
hold off 
plot(1000.*t-55,force*4.448,'color',[0.65 0.65 0.65]) 
hold on 
plot(1000.*t-55,zf2*4.448, 1 color', [0.7 0 0 . 7], 'linewidth',1) 
title('IIR Notch Filter - Zero Phase Implementation') 
xlabel('Time (ms)'); 
ylabel('Force (N)') 
xlim([0 1000*max(t)]) 
ylim([-100 120]) 
xlim([0 35]) 
legend('Measurement','IIR Filter Estimate','location','southwest') 
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Figure E.3I - IIR notch filter, zero-phase implementation 
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Useful Subroutine for Power Spectral Estimation 

This script uses Welch's Method to implement power spectral estimation. It allows the user to 
specify a data window, and to perform spectral smoothing either by band averaging, ensemble 
averaging, or a combination of the two. 

function out = ssd(data,fs,varargin) 
% Sample Spectral Density 
% 
% ssd(data,fs) 
% ssd(data,fs,varargin) 
% ssd(data,fs,'ens',n,'band',n,'method','method_name','window','window_name') 
% 

% out = ssd(data,fs,varargin) 

out = struct('Sxxf',[],'CI',[],'BF',[],'bw',[]); 

% Default Parameters 
ens = 1; 
band = 1; 
method = 'fft'; 
window = 'boxcar'; 
plotting = 'half'; 

% Read in Additional Input Arguments 
for k=l:length(varargin); 

switch lower(varargin{k}) 

case{'ens'} 
if rem(varargin{k+1},1)~=0 

error('ensembles to average must be an integer'); 
end 
ens = varargin{k+1}; 

case)'band'} 
if rem(vararginfk+1},1)~=0 

error('data points to average per band must be an integer'); 
end 
band = varargin!k+1}; 

case{'method'} 
method = varargin(k+1}; 

case{'window'} 
window = varargin{k+1}; 

case)'whole' } 
plotting = 'whole'; 

end 

end 

% Degrees of Freedom 
DOF = 2*ens*band; 

% Sampling Interval 
delta = 1/fs; 

% Make Sure that "data" is a Row Vector 
[rows,cols] = size(data); 
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if rows > cols 
data = data'; 

end 

% COMPUTE THE SAMPLE SPECTRAL DENSITY BY THE APPROPRIATE METHOD 
switch(lower(method)) 

casel'fft'} % Cooley-Tukey Method (by direct Fourier Transform) 

% Divide the Record Into Ensembles 
a = length(data); % Number of observations 
b = ens; % Number of ensembles to create 
l_ens = (a-rem(a,b))/ens; % Length of each ensemble row vector 

% Initialize the Sub-Record Vector 
sub_data = zeros(b,l_ens); 

% Initialize the sub_ssd array 
sub_ssd = zeros(b,floor(l_ens/2-2)); 

% Break the Record into Sub-Records 
idx = 1; 
for i = 1:ens 

sub_data(i,:) = data(idx:idx+l_ens-l); 
idx = idx + l_ens; 

end 

% Select the right data window 
switch(lower(window)) 

easel'boxcar' } 
N = l_ens; 
w = ones(1,N); 

casej'bartlett' } 
N = l_ens; 
n = 0:N-l; 
w = (2/(N-l)).*(((N-l)/2)-abs(n-((N-l)/2))); 

case{'hanning ' } 
N = l_ens; 
w = hann(N) ' ; 

case{'hamming'} 
N = l_ens; 
w = hamming(N)'; 

case{'kaiser ' } 
N = l_ens; 
w = kaiser(N)'; 

case{'tukey'} 
N = l_ens; 
w = tukeywin(N) 

case)'blackman'} 
N = l_ens; 
w = blackman(N)'; 

end 

% COMPUTE THE SAMPLE SPECTRAL DENSITY FOR EACH SUB-RECORD 
L = N; % Length of the sub-record 
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f = linspace(1/L,(fs/2)-(1/L),floor(L/2)-2); i Frequency vector 
excluding 0, nyquist 

for i = l:ens 
% Compute the fft 
g = sub_data(i,:); % Sub-record of the time series 
G = fft((g-mean(g)).*w,L)/N; % FFT normalized by no. observations 
G_hat = G(2:(floor(L/2)-1)); % FFT from 0 to the nyquist not 

including endpoints 
A = real(G_hat); 
B = imag(G_hat); 

% Compute the sample spectral density of the sub-record 
switch(lower(plotting)) 

case{'half'} 
sub_ssd(i,:) = 2.*N.*delta.*(A.A2 + B.~2); 

case{'whole'} 
sub_ssd(i,:) = N.*delta.*(A.A2 + B.~2); 

end 
end 

% COMPUTE THE ENSEMBLE-AVERAGE SAMPLE SPECTRAL DENSITY 
ens_ssd = zeros(1,length(f)); % Initialize the vector 
for j = 1:length(f) 

ens_ssd(j) = sum(sub_ssd(:, j))/ens; % Mean value of the sub-
estimates 

end 

% BAND-AVERAGE THE ENSEMBLE-AVERAGED ESTIMATE 

% Determine the number of bands 
a = length(ens_ssd); % Length of Ensemble-Averaged SSD 
b = band; % Number of points per band 
n_bands = (a-rem(a,b))/band; % Number of bands 

% Define the band-averaged sample spectral density 
band_ssd = zeros(1,n_bands); % Initialize vector 
f2 = zeros(1,n_bands); 
idx = 1; % Starting index 
for n = 1:n_bands 

band_ssd(n) = sum(ens_ssd(idx:idx+band-1))/band; 
f2(n) = (f(idx)+f(idx+band-1))/2; 
idx = idx+band; 

end 

% Boost the Smoothed Estimate based on Windowing Error 
num = var(data); 
den = sum(band_ssd)*(f2(2)-f2(1)); 
BF = num/den; 

% Return the Smoothed Estimate 
s_bar = BF*band_ssd; 

case('prepost'} % Pre-whiten, Post-color 

% Compute the First Difference 
y = diffl(data); 

% Divide the Record Into Ensembles 
a = length(y); % Number 
b = ens; % Number 
1 ens = (a-rem(a,b))/ens; % Length 

of observations 
of ensembles to create 
of each ensemble row vector 
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% Initialize the Sub-Record Vectors 
suby = zeros(b,l_ens); 

% Break the Records into Sub-Records 
idx = 1; 
for i = l:ens 

suby(i,:) = y(idx:idx+l_ens-l); 
idx = idx + l_ens; 

end 

%Compute the Fourier Transform of x(t) and y(t) 
delta = 1/fs; 
N = l_ens; % Number of observations per 

sub-record 
L = N; % Length of the sub-record 
f = linspace(1/L, (fs/2)-(1/L),floor(L/2)-2); % Frequency vector 

excluding 0, nyquist 

% Initialize the auto-spectral density array 
Syy = zeros(b,floor((L/2)-2)); 

for n = 1:ens 

% Compute the Fourier Coefficients 
yn = suby(n,:); % Sub-record of the time series y(t) 

Gy = fft(yn-mean(yn),L)/N; % FFT normalized by no. observations 
Gy_hat = Gy(2:floor(L/2)-1); % FFT from 0 to the nyquist not 

including endpoints 

Ay = real(Gy_hat); 
By = imag(Gy_hat); 

% Compute the Auto-Spectral Density of the Filtered t.s. 
Syy(n,:) = 2.*N.*delta.*(Ay."2 + By.A2); 

end 

% Compute the Ensemble-Averages 
Syy_ens = zeros(1,length(f)); % Initialize the vector 

for j = 1:length(f) 
Syy_ens(j) = sum(Syy(:,j))/ens; % Mean value of the sub-estimates 

end 

% Band-Average the Esemble-Averared Estimates 

% Determine the number of bands 
a = length (Syy_ens); % Length of Ensemble-Averaged SSD 
b = band; % Number of points per band 
n_bands = (a-rem(a,b))/band; % Number of bands 

% Define the band-averaged Spectral Densities 
Syy_band = zeros(1,n_bands); % Initialize the vector 
f2 = zeros(1,n_bands); % Initialize frequency vector 

idx =1; % Starting index 
for n = l:n_bands 

Syy_band(n) = sum (Syy_ens(idx:idx+band-1))/band; 
f2(n) = (f(idx)+f(idx+band-1))/2; 
idx = idx+band; 

end 
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% Smooted Estimates of the 1-Sided Spectrum 
Syy = Syy_band; 

% Post-Color the White Spectrum 
num. = Syy; 
den = 4.*sin(pi.*f2.*delta).A2; 
s_bar = num./den; 
BF = den; 

end 

% Confidence Interval 
[xl x2] = chi2('two',DOF,'percent95); 
CI = [D0F/x2, DOF/xl]; 

% Return Parameters 
switch(lower(plotting)) 

case{'half'} 
out.f = f2; 
out.bw = f2 (2)-f2 (1); 
out.Sxx = s_bar; 
out.CI = CI; 
out.BF = BF; 

case{'whole'} 
delf = f2(2)-f2(1); 
N = 2*length(s_bar)+1; 
fs = delf*N; 
m = 0 : N ; 
f = m./N.*fs; 
out.f = f; 
out.bw = f2(2)-f2 (1); 
out.Sxx = [NaN s_bar 
out.CI = CI; 
out.BF = BF; 

end 

Smoothed Frequency Vector 
Bandwidth 
Sample Spectral Density 
Confidence Interval 
Boost Factor/ Filter Spectrum 

% Smoothed Frequency Vector 
% Bandwidth 
NaN fliplr(s_bar)]; % Sample Spectral Density 
% Confidence Interval 
% Boost Factor/ Filter Spectrum 
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