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ABSTRACT 

DISSOLVED ORGANIC CARBON QUANTITY AND QUALITY IN NORTH 

AMERICAN RIVERS AND STREAMS 

by 

Kevin Walker Hanley 

University of New Hampshire, May, 2012 

The controls on the quantity and chemical composition of dissolved 

organic carbon (DOC) in freshwater systems are crucial to understanding and 

managing processes like carbon sequestration, heavy-metal transport, and 

municipal water sanitization. We analyzed DOC quantity and quality for 17 major 

North American rivers and the temporal variability of DOC quantity and quality in 

several thousand small basins. Among large basins, we found positive 

correlation between wetland-cover and both DOC concentration (R2=0.78; 

p<0.0001) and specific ultraviolet absorbance at 254nm (SUVA254; R2=0.91; 

p<0.0001). We found that the role of river networks in altering the annual DOC 

signal minimal except in systems with long residence times. Among small basins, 

we found characteristics like runoff, stormflow, and vegetation indices useful in 

predicting the temporal variability of DOC concentration. Further work should 

clarify where individual characteristics drive DOC variability and more rigorously 

define the role of processing in large rivers. 
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CHAPTER I 

CONTROLS ON DISSOLVED ORGANIC CARBON QUANTITY AND QUALITY 

IN LARGE NORTH AMERICAN RIVERS 
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Introduction 

Dissolved organic carbon (DOC) quantity and chemical quality in rivers and 

streams play key biogeochemical roles influencing drinking water quality, heavy 

metal transport, stream ecosystem processes, coastal eutrophication, and the 

global carbon cycle [Aiken et al., 2003; Buffam et al., 2001; Cole et al., 2007; 

Frey and Smith, 2005; Gattuso et al., 1998; Lehtoranta et al., 2009; Sholkovitz, 

1976; Siddiqui et al., 1997], Large rivers are particularly important because they 

are a major source of material to the coastal ocean and they indicate dynamics 

across broad regions. However, most previous basin-scale riverine organic 

carbon studies have focused either on small or individual watersheds, with many 

finding that bulk DOC variability is related to basin-scale characteristics such as 

wetland-cover and runoff [Buffam etal., 2007; Chorover and Amistadi, 2001; 

Clair and Ehrman, 1996; Creed et al., 2003; Dalzell et al., 2007; Gergel et al., 

1999; Mulholland and Kuenzler, 1979; Raymond and Hopkinson, 2003]. We 

sought to address whether the processes that appear to control DOC quantity in 

small basins also scale to large, continental-scale systems. In addition, current 

global carbon flux models continue to rely on DOC concentration data of 

questionable quality, often collected more than 30 years ago [Alexander et al., 

1998; Harrison et al., 2005; Lauerwald et al., 2012; Meybeck and Ragu, 1996; 

Seitzingeret al., 2005]. Here we provide updated estimates of DOC 

concentration and flux from 17 large rivers in North America that may be used in 

future modeling efforts. 
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Interpreting variability in the quantity of DOC and predicting its impact in 

natural systems is difficult without also taking into account its chemical makeup, 

or quality. The quality of DOC is largely determined by its source material and 

past biogeochemical transformations [Schlesinger, 1997]. As a result, DOC is 

made up of thousands of different molecules with a broad spectrum of 

compositions, aromaticities, and molecular weights [Maurice etal., 2002], 

Because the chemical quality of DOC influences and is influenced by microbial 

and photolytic processes [Anesio etal, 2005; Miller etal., 2009; Namourand 

Muller, 1998; Stubbins et al., 2008] knowledge of DOC quality can improve 

understanding of both the source and fate of DOC in river systems. The chemical 

makeup of DOC in aquatic systems also influences the transport and 

bioavailability of heavy metals [Dittmari et al., 2010] and anthropogenic organic 

compounds, interacts with natural and engineered nanoparticles [Aiken et al., 

2011], and impacts the production of harmful byproducts of chlorine disinfection 

during drinking water sanitization [Singer, 1999]. Therefore, a more complete 

understanding of the quality of DOC in rivers and streams will aid in our 

interpretation of bulk DOC variability and help to ensure the health and safety of 

fresh water resources. 

Some previous large and continental-scale studies have explored controls 

on DOC quantity and quality, though each had limitations. Aitkenhead and 

McDowell [2000] found a strong link between soil C:N and DOC flux at the 

annual scale among biomes (R2=0.992, p<0.0001). Despite the strength of this 

relationship, when it is applied to predicting DOC flux from individual watersheds, 

3 



particularly large ones, its utility is limited by the necessity of geospatially 

extensive soil C:N data. Frost et al. [2006] characterized DOC concentration and 

quality throughout a single large river network. They found that concentration 

was related to a range of landscape variables including percent wetland-cover 

and the total drainage area of individual sub-catchments. They also found that 

the molecular weight of DOC and its aromaticity were related to the percent lake-

cover and percent wetland-cover of individual sub-catchments. Shih et al. [2010] 

developed a continental-scale total organic carbon flux model based on a variety 

of watershed parameters using the SPARROW modeling framework [Alexander 

et al., 2000]. They found that in-stream processes were significant in controlling 

both the quantity and quality of DOC. However, implicit in their model was the 

assumption that all organic carbon in a reach, irrespective of quality, was 

remineralized at the same rate. This type of model simplification may be 

adequate to predict bulk organic carbon quantity, but it does not reflect important 

complexities in the underlying biogeochemical processes and makes the 

interpretation of model predictions problematic. By not taking into account the 

spectrum of organic matter quality among different sources the authors likely 

overestimated the contribution to basin exports by more easily remineralized 

autochthonous sources and underestimated the more refractory allochthonous 

sources [Benner, 2003; del Giorgio arid Davis, 2003; del Giorgio and Pace, 

2008]. Unfortunately, few comparative large-basin DOC studies have been 

conducted that also incorporate quality. Here we update large-river DOC flux 

estimates and improve understanding of the processes underlying DOC 
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variability in freshwater systems by examining DOC quantity together with quality 

among 17 large rivers throughout temperate North America. We strove to answer 

several primary research questions: 

1. Are the biogeochemical processes underlying the observed 

relationships between watershed-scale characteristics and DOC 

quantity among small rivers also important among large and 

continental-scale systems? 

2. Can watershed-scale characteristics explain the variability of DOC 

quality among large river basins? 

Answers to these questions will also help address a third question: 

3. How important are in-stream processes accumulated at network scales 

in altering the quantity and quality of DOC transferred from the 

continents to the oceans? 



Methods 

Study Sites 

Our study sites included 17 large watersheds from across a wide range of 

biomes in North America (Figure 1.1, Table 1.1), 11 of which are monitored by 

the U.S. Geological Survey's National Stream Quality Accounting Network 

(NASQAN). Basins were selected based on two criteria: large drainage areas (> 

1000 km2) and complete daily discharge records available for the sampling 

period. NASQAN locations in Alaska (Yukon River) were excluded to eliminate 

the confounding influence of permafrost from the analysis. Site information, 

including geospatial coordinates, contributing drainage area, and most discharge 

data were acquired through the USGS National Water Information Service 

(NWIS). Discharge data for the Rio Grande were obtained from the International 

Boundary and Water Commission [IBWC, 2010]. In all cases, runoff was 

calculated as discharge divided by drainage area. 

Penobscot 
lennebec 
idroscoggin 

tusquehanna 
rtomac 

Sacramantd: 
San Joaquinl 

Colorado' 
Atlantic 

\_ .. . (heart 
~%Altamaha 

Paci/ic 
Ocean Rio Grand* 

Figure 1.1. Map showing the 

drainage basins and sampling 

locations for 17 North 

American rivers. 
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Table 1.1. Table showing station information, upstream drainage area, mean runoff, and annual mean values for dissolved organic carbon (DOC), 

specific ultraviolet absorption at 254 nm (SUVA254) and hydrophobic organic acids (HPOA). Rivers are sorted clockwise around the North 

American coastline starting in the Northeastern United States. ND indicates no data available. 

Site River Name Location Lat Long Drainage Wetlands Runoff DOC yield DOC load [DOC] SUVA254 HPOA HPOA Load 

Number km2 % basin cm/yr g y f '  m 2  kg/day mgC/L L mgC'1 m'1 %[DOC] kg/day 

01036390 Penobscot River Eddington, ME 44.83 -68.70 19460 10.4 80.66 7.55 403000 9.3 3.8 ND ND 

01049265 Kennebec River North Sidney, ME 44.47 -69.68 13990 6.8 78.12 4.97 191000 6.4 3.6 ND ND 

01059400 Androscoggin River Brunswick, ME 43.92 -69.97 8894 4.8 88.00 5.31 129000 6.0 3.6 ND ND 

01578310 Susquehanna River Conowingo, MD 39.66 -76.17 70200 1.2 52.41 1.38 266000 2.7 2.3 0.39 90700 

01646580 Potomac River Washington, D.C. 38.93 -77.12 29970 0.6 39.66 1.64 134000 4.3 2.6 0.36 45000 

02175000 Edisto River Givhans, SC 33.03 -80.39 7071 16.3 16.86 1.96 37900 11.2 4.0 0.66 24000 

02226160 Altamaha River Everett City, GA 31.43 -81.61 36000 10.5 28.76 2.99 297000 10.1 4.2 0.44 128000 

02231000 St. Mary's River MacClenny, FL 30.36 -82.08 1800 32.5 39.01 18.52 92000 46.8 4.7 0.71 65600 

02322500 Santa Fe River Fort White, FL 29.85 -82.72 2634 15.8 34.88 5.54 40000 12.9 4.0 0.66 29300 

02470500 Mobile River Mount Vernon, AL 31.09 -87.98 111030 8.0 25.17 1.36 414000 5.7 3.4 0.52 209000 

04264331 St. Lawrence River Cornwall, ON 45.01 -74.79 773900 6.9 30.58 1.24 1800000 2.8 1.3 0.29 529000 

07374525 Mississippi River Belle Chasse, LA 29.86 -89.98 2930000 3.4 16.44 0.66 5260000 4.0 3.0 0.43 2050000 

08475000 Rio Grande Brownsville, TX 25.88 -97.45 456700 0.5 0.11 0.01 9200 5.9 2.1 0.35 3180 

09522000 Colorado River Morelos Dam, AZ 32.72 -114.72 639000 0.6 0.30 0.01 16700 3.1 1.7 0.37 5490 

11303500 San Joaquin River Vernalis, CA 37.68 -121.27 35058 0.4 5.16 0.19 18400 3.6 2.5 0.44 5160 

11447650 Sacramento River Freeport Bridge, CA 38.46 -121.50 69457 1.2 21.11 0.63 119000 2.9 2.7 0.39 33400 

14246900 Columbia River Qunicy, OR 46.18 -123.18 665400 0.9 30.59 0.65 1180000 2.1 2.7 0.42 461000 



For several rivers daily discharge data were available only at a nearby 

USGS gauging station located on the same mainstem. In these cases, discharge 

(Q) was scaled by the percent-difference in upstream drainage areas (>4) for the 

nearby and the NASQAN stations: 

QNASQAN ~ Qnearby (AnASQAn/Anearby) (EC]. 1.1) 

This technique was used for the Altamaha, Potomac, Mobile, Androscoggin, and 

Penobscot rivers [Hodgkins, 1999]. In order to analyze discharge seasonality 

among systems, we normalized monthly-mean discharge values for individual 

basins to their corresponding annual mean discharge. The resulting values were 

averaged by month to obtain a time-series of normalized mean discharge for all 

basins. 

We calculated percent wetland-cover in each basin using data derived 

from the National Land Cover Database (NLCD) [Homer et al., 2004]. We 

aggregated high resolution NLCD wetland data into a 6-minute resolution grid to 

produce a percent-wetland raster. We used RiverGIS (RGIS), a raster algebra 

and topological network analysis application, and the STN-6, a simulated 

topological river network, to calculate the abundance of wetlands upstream of 

each of our sampling points [Vorosmarty et al., 2000]. Finally, mean latitude was 

calculated by taking the average latitude of all grid cells in each basin. 

Quantity and Quality 

Stations were sampled approximately monthly over 2 to 4 year periods 

between 2002 and 2010 by the U.S. Geological Survey (Table 1.2). We analyzed 
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for DOC concentration following Aiken [1992]. We also measured DOC quality in 

terms of specific ultraviolet absorbance (SUVA254), which is defined as a 

sample's spectral absorbance at 254 nm (UVA) normalized to its DOC 

concentration. All samples were analyzed for UVA using a Hewlett-Packard 

photo-diode array spectrophotometer and SUVA254 was calculated by dividing 

UVA by DOC concentration. We chose SUVA254 as the primary measure of 

quality because, although it does not explicitly quantify lability, it is a good 

indicator of DOC aromaticity [Weishaar et al., 2003]. 

We also measured the proportion of bulk DOC as hydrophobic organic 

acids (HPOA) using XAD-resin fractionation analysis following Aiken et al. [1992]. 

In brief, samples were acidified to pH 2 using HCI and passed through a column 

of XAD-8 resin. The HPOA fraction was retained on the XAD-8 resin and then 

back eluted with 0.1 M NaOH. The concentration of HPOA was determined by 

direct measurement of the eluent and is presented here as a fraction of bulk 

DOC. XAD fractionation is useful because it allows us to directly identify the 

hydrophobic and generally more aromatic and allochthonous compounds in the 

bulk DOC pool such as fulvic and humic acids [Aiken et al., 1979; Aiken et al., 

1992]. 
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Table 1.2. Table showing LOADEST model information: R2, Nash-Sutcliffe coefficient, and root mean square error are shown for dissolved organic 

carbon (DOC), specific ultraviolet absorption at 254 nm (SUVA254) and hydrophobic organic acids (HPOA). ND indicates that no data were 

available. 

River Name n Year Begin Year End DOC R2 DOC RMSE 

mgC/L 

DOC NS SUVA R2 SUVA RMSE 

L mgC'1 mf' 

SUVA NS HPOA R2 HPOA RMSE 

%[DOC] 

HPOA NS 

Penobscot River 61 2004 2008 0.97 1.8 0.60 0.99 0.2 0.39 ND ND ND 

Kennebec River 12 2006 2007 0.99 0.5 0.75 0.99 0.1 0.43 ND ND ND 

Androscoggin River 12 2006 2007 0.99 0.4 0.81 0.99 0.1 0.58 ND ND ND 

Susquehanna River 22 2008 2010 0.94 0.4 0.39 0.96 0.3 0.09 0.90 0.04 0.18 

Potomac River 21 2008 2010 0.99 0.3 0.80 0.99 0.1 0.81 0.99 0.03 0.92 

Edisto River 18 2005 2008 0.96 1.6 0.81 0.99 0.2 0.28 0.96 0.04 0.81 

Altamaha River 19 2008 2009 0.99 1.1 0.67 0.99 0.3 0.66 0.90 0.11 -0.51 

St. Mary's River 31 2002 2006 0.99 8.5 0.68 0.99 0.3 0.17 0.98 0.04 0.67 

Santa Fe River 29 2002 2004 0.93 5.3 0.78 0.98 0.4 0.79 0.93 0.07 0.62 

Mobile River 25 2008 2010 0.98 0.6 0.71 0.99 0.2 0.72 0.98 0.04 0.36 

St. Lawrence River 16 2008 2009 0.93 0.1 0.80 0.74 0.1 0.53 0.68 0.02 0.36 

Mississippi River 23 2008 2010 0.94 0.3 0.50 0.99 0.1 0.71 0.98 0.03 0,80 

Rio Grande 21 2008 2009 0.99 0.3 0.44 0.98 0.2 0.32 0.98 0.02 0.30 

Colorado River 27 2008 2010 0.92 0.4 0.17 0.96 0.1 0.54 0.99 0.03 0.37 

San Joaquin River 23 2008 2010 0.90 0.8 0.48 0.98 0.2 0.27 0.81 0.06 0.21 

Sacramento River 24 2008 2010 0.95 0.4 0.80 0.97 0.2 0.82 0.97 0.05 0.95 

Columbia River 18 2009 2010 0.97 0.2 0.66 0.96 0.3 0.61 0.94 0.03 0.60 



For each station we estimated daily values and the flow-weighted overall-

mean for the entire sampling period (henceforth simply referred to as "mean") for 

DOC concentration and SUVA254 using LoadRunner, a graphical front-end to the 

USGS application LOADEST [Booth et al., 2007; Runkel et al., 2004]. LOADEST 

incorporates daily discharge, seasonality, and measured constituent data to 

parameterize a multiple-regression model that allows a continuous time series to 

be estimated from discrete measurements. Root mean square error (RMSE) for 

each basin was calculated as: 

Where [DOC] is DOC concentration and n is the number of observations. 

Monthly and annual discharge-weighted concentration means were automatically 

calculated from the daily modeled values, and fluxes were simply the sum of 

daily concentrations multiplied by daily discharge over the time period of interest. 

Mean concentration, flux, and yield were calculated by taking the average of the 

annual means for each basin. In order to compare among watersheds, we 

divided flux by basin area to obtain DOC yield. 

RMSE (Eq. 1.2) 
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Results 

Basin Attributes and Mean DOC Characteristics 

Basins ranged in drainage area from 1800 km2 for the St. Mary's River in 

Florida to 2,930,000 km2 for the Mississippi River in Lousiana. In total, the 

watersheds for all the rivers accounted for more than 70% of the land-area of the 

contiguous United States and 26% of the land area of North America. The most 

northerly river was the Columbia in Oregon with a mean watershed latitude of 

46.1 degrees and the most southerly was the Santa Fe, with a mean watershed 

latitude of 30.0 degrees. Mean runoff during each basin's sampling period ranged 

from 0.11 cm/yr for the Rio Grande in Texas to 88.00 cm/yr for the Androscoggin 

River in Maine. Wetland-cover ranged from 0.5% for the San Joaquin River in 

California to 32.5% for the St. Mary's River (Table 1.1). 

Mean DOC concentrations from LOADEST ranged from 2.1 mgC/L for the 

Columbia River in Oregon to 46.8 mgC/L for the St. Mary's, while DOC load 

ranged from 9200 kgC/day for the Rio Grande to 5,260,000 kgC/day for the 

Mississippi. DOC yield ranged from 0.01 gC yr"1m"2 for the Colorado and St. 

Lawrence rivers in Arizona and Ontario, respectively, to 18.5 gC yr"1m"2 for the 

St. Mary's. Mean SUVA254, ranged from 1.3 L mg C"1 m"1 for the St. Lawrence to 

4.7 L mgC"1 rrf1 for the St. Mary's. Mean HPOA fraction ranged from 0.29 for the 

St. Lawrence to 0.72 for the Santa Fe River in Florida, while HPOA load ranged 

from 3170 kgC/day for the Rio Grande to 2,050,000 kgC/day for the Mississippi. 
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Total DOC and HPOA flux for all basins studied was 3.80 TgC/yr and 1.34 

TgC/yr, respectively (Table 1.1). 

All LOADEST models used to estimate mean DOC concentration, 

SUVA254. and HPOA concentration were significant, with p < 0.0001 in all cases 

except the SUVA254 and HPOA models for the St. Lawrence (p=0.0008 and 

p=0.002, respectively). For DOC, R2 ranged from 0.90 to 0.99 for DOC and from 

0.74 to 0.99 for SUVA254, while Nash-Sutcliffe coefficients ranged from 0.17 to 

0.81 for DOC and from 0.09 to 0.82 for SUVA254. For HPOA, R2 ranged from 0.68 

to 0.99 and Nash-Sutcliffe coefficients ranged from -0.51 (for the Altamaha River 

in Georgia) to 0.95, indicating that, with the exception of the Altamaha HPOA 

model, all LOADEST models predicted measured values with more accuracy 

than a simple mean (Table 1.2). 

DOC Quantity Patterns 

We found a strong positive correlation between percent wetland-cover and 

the log-transformed mean DOC concentration (R2=0.83, p<0.0001; Figure 2a). 

However, the shape of this relationship is almost exclusively driven by the 

wetland-dominated St. Mary's River. When we excluded the St. Mary's as an 

outlier, variability in untransformed mean DOC concentration was still well 

explained by percent wetland-cover (R2=0.78, p<0.0001; Figure 2b): 

[DOC] = 0.55 * Lw + 2.769 (Eq. 1.3) 

where Lw is percent wetland-cover. In this relationship the St. Lawrence falls well 

below the regression line but is still included in the analysis. 
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a) 

logipOC]) = 0 037'Lw * 0.496 
R*2 = 0 633 
p < 0 0001 

St. Mary's, FL 

10 20 30 40 

Percent Wetland Cover 

50 

b) 
o . 
^ [DOC] = 0 55"lw • 2 769 

R"2 « 0 779 
p <0 0001 

a m 
E o. 

a 
o 
a 

V .St. Lawrence, ON 

0 5 10 15 

Percent Wetland Cover 

Figure 1.2. Figure showing mean dissolved organic carbon (DOC) concentration vs. percent 

wetland-cover a) for all sites, with the St. Mary's River highlighted in green and b) excluding St. 

Mary's River, with the St. Lawrence River highlighted in green. Error bars represent root mean 

squared error for the LOADEST model and are smaller than the size of the data point in some 

cases. 

In order to investigate seasonality in DOC concentration variability we 

examined the relationships between percent wetland-cover and monthly-mean 

DOC concentration among basins. We found that monthly-mean concentration 

was significantly correlated (p<0.05) with percent wetland-cover for all months, 

with R2 ranging from 0.31 to 0.80 (Table 1.3). 

We found no significant relationship between mean annual runoff (RO) 

and mean DOC concentration among basins. However, we did find a significant 

positive correlation between mean DOC yield and runoff when the St. Marys was 

again excluded as an outlier (R2=0.63, p<0.0001; Figure 1.3): 

DOCyieid = 0.068 * RO - 0.129 (Eq. 1.4) 
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Within individual systems, around half of basins exhibited a significant positive 

correlation between discrete DOC concentration and daily runoff. In these basins 

runoff explained between 11 percent and 62 percent of concentration variability 

(Table 1.4). We found no correlation between the statistical significance of these 

relationships and a basin's percent wetland-cover or mean annual runoff. 

>s 

CN 
jr 

D3 0 _ 
•O 
<D 
>-

O 
O in -
O 

DOCytoW = 0 07*RO + -0 158 
R*2 = 0.65 • 
p< 0 0001 

Figure 1.3. Figure showing mean dissolved organic 

carbon (DOC) yield vs. runoff for all sites (black), 

excluding St. Mary's River (green) from the linear 

regression. 

20 40 60 

Runoff (cm/yr) 

80 

Table 1.3. Table showing the equations for the relationships between percent wetland-cover (Lw) 

and monthly-mean dissolved organic carbon (DOC) concentration or monthly-mean specific 

ultraviolet absorption at 254 nm (SUVA254). Monthly DOC relationships include all rivers except 

the St. Mary's and monthly SUVA254 relationships include all rivers except the St. Lawrence and 

Colorado. 

Month DOC formula R2 p-value SUVA254 formula R2 p-value 

Jan [DOC] = 0.36*Lw + 3.23 0.63 < 0.001 SUVA = 1.04*log Lw) + 2.729 0.83 < 0.001 

Feb [DOC] = 0.40*Lw + 2.92 0.78 < 0.001 SUVA = 1.15*log Lw) + 2.599 0.88 < 0.001 

Mar [DOC] = 0.75*Lw+ 1.96 0.63 < 0.001 SUVA = 1.24*log Lw) + 2.587 0.93 < 0.001 

Apr [DOC] = 0.53*Lw + 2.59 0.80 < 0.001 SUVA = 1.19*log Lw) + 2.592 0.89 < 0.001 

May [DOC] = 0.24*Lw + 3.52 0.31 0.015 SUVA = 1.02*log Lw) + 2.66 0.75 < 0.001 

Jun [DOC] = 0.46*Lw + 2.81 0.75 < 0.001 SUVA = 1.11 *log Lw) + 2.607 0.79 < 0.001 

Jul [DOC] = 0.44*Lw + 2.87 0.69 < 0.001 SUVA = 1.21*log Lw) + 2.469 0.86 < 0.001 

Aug [DOC] = 0.49*Lw + 2.89 0.75 < 0.001 SUVA = 1.29*log Lw) + 2.425 0.88 < 0.001 

Sep [DOC] = 0.75*Lw + 2.19 0.73 < 0.001 SUVA = 1.36*log Lw) + 2.426 0.83 < 0.001 

Oct [DOC] = 0.38*Lw + 3.44 0.42 0.004 SUVA = 1.32*log Lw) + 2.502 0.84 < 0.001 

Nov [DOC] = 0.33*Lw + 3.32 0.36 0.008 SUVA = 1.25*log Lw) + 2.55 0.87 < 0.001 

Dec [DOC] = 0.36*Lw + 3.17 0.46 0.002 SUVA = 1.21*log Lw) + 2.623 0.85 < 0.001 
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Table 1.4. Table showing within-basin runoff (RO) relationships for dissolved organic carbon 

(DOC) concentration and specific ultraviolet absorption at 254 nm (SUVA254). Basins without a 

significant relationship are labeled N/S. 

River Name Runoff-DOC formula R2 p-value Runoff-SUVA254 formula R2 p-value 

Penobscot River [DOC] = O.OI'RO + 8.46 0.11 0.004 N/S N/S 0.119 

Kennebec River [DOC] = -0.01 *R0 + 7.40 0.28 0.043 N/S N/S 0.275 

Androscoggin River N/S N/S 0.191 N/S N/S 0.915 

Susquehanna River N/S N/S 0.963 N/S N/S 0.227 

Potomac River N/S N/S 0.706 N/S N/S 0.058 

Edisto River [DOC] = 0.27*RO + 4.63 0.40 0.003 N/S N/S 0.055 

Altamaha River [DOC] = 0.03*RO + 8,53 0.18 0.022 SUVA = 0.01 *RO + 3.89 0.27 0.006 

St. Mary's River N/S N/S 0.336 N/S N/S 0.101 

Santa Fe River [DOC] = 0.17*RO + 2.78 0.62 < 0.001 SUVA = O.OrRO +3.76 0.10 0.045 

Mobile River N/S N/S 0.443 SUVA = O.OI'RO + 3.06 0.35 0.001 

St. Lawrence River [DOC] = 0.06*RO + 0.97 0.38 0.005 N/S N/S 0.89 

Mississippi River N/S N/S 0.086 SUVA = 0.02*RO + 2.57 0.27 0.007 

Rio Grande N/S N/S 0.06 SUVA = 2.05*RO + 1.85 0.16 0.043 

Colorado River [DOC] = 1.67*R0 + 2.56 0.14 0.029 SUVA = 0.95*RO + 1.35 0.20 0.011 

San Joaquin River N/S N/S 0.583 N/S N/S 0.107 

Sacramento River [DOC] = 0.06*RO + 1.37 0.50 < 0.001 SUVA = 0.04*RO + 1.67 0.71 <0.001 

Columbia River [D0C1 = 0.02*RQ + 1.47 0.47 0.001 SUVA = 0.02*RQ + 1.96 0.27 0.017 

DOC Quality Patterns 

Percent wetland-cover also appeared to be an important variable in 

controlling DOC quality. We found a strong positive correlation between the 

logarithm of percent wetland-cover and mean SUVA254 among the large rivers in 

our data set (R2=0.54, p=0.0005; Figure 1.4). In this case, the St. Lawrence and 

Colorado rivers were outliers, exhibiting far lower SUVA254 than expected based 

on their wetland-cover. The St. Mary's was not an outlier for SUVA254- When the 

St. Lawrence and Colorado rivers were excluded from the regression, the 

relationship between percent wetland-cover and SUVA254 improved (R2=0.90, 

p<0.0001; Figure 1.4): 

SUVA254 = 1.17 * log(Liv) + 2.65 (Eq. 5) 
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Figure 1.4. Figure showing mean specific 

ultraviolet absorption at 254 nm (SUVA254) vs. 

percent wetland-cover for all basins. X-axis is 

log-scale and excluded outliers are in green. 

Final model is in black. Model before the outliers 

were excluded is shown in dotted grey. Error 

bars represent root mean squared error for the 

LOAD EST model. 

We also examined the relationships between percent wetland-cover and 

monthly-mean SUVTW among basins and found that monthly-mean SUVA254 

was significantly correlated (p<0.001) with percent wetland-cover for all months 

with R2 ranging from 0.75 to 0.93 (Table 1.3). These relationships exhibited little 

seasonal variability and were more highly significant than the monthly DOC 

concentration relationships. 

We found no statistically significant relationship between mean runoff and 

SUVA254 among basins, with or without outliers (Figure 1.5). Within individual 

systems, around half of basins exhibited a significant positive correlation 

between discrete SUVA254 and daily runoff, with runoff explaining between 10 

percent and 71 percent of variability (Table 1.4). Basins with a significant 

relationship tended to be in the south and the west, whereas northern and 

eastern rivers did not tend to show significance. As with DOC concentration, we 

found no correlation between the statistical significance of these relationships 

and a basin's percent wetland-cover. 
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HPOA as a percentage of bulk DOC was positively correlated with 

SUVA254 measurements in individual grab samples across 14 basins where both 

measurements were made (R2=0.89, p<0.0001; Figure 1.6). Within individual 

basins, the relationship with SUVA254 was significant for all but three systems 

(Mobile, Mississippi, and Colorado) with R2 ranging from 0.24 for the St. Mary's 

to 0.87 for the neighboring Santa Fe. As a result, HPOA patterns were very 

similar to SUVTW-

Figure 1.5. Figure showing mean 

specific ultraviolet absorption at 254 nm 

(SUVA254) vs. mean runoff for all basins. 

Excluded outliers (St. Lawrence and 

Colorado) are shown in green. 
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Figure 1.6. Fraction of dissolved organic carbon 

(DOC) as hydrophobic organic acid (HPOA) vs. 

specific ultraviolet absorption at 254 nm 

(SUVA254) for discrete measurements from all 

basins. Measurements from rivers where the 

within-basin relationship between HPOA and 

SUVA254 was not significant (see Table 5) are 

shown as colored dots: Colorado River in green, 

Mississippi River in blue, and Mobile River in red. 
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Discussion 

DOC Quantity 

We identified a significant positive relationship between basin wetland-

cover and mean DOC concentration among large watersheds that was consistent 

with what has been reported for small basins [Buffam et al., 2007; Creed et al., 

2003; Eckhardt and Moore, 1990; Gergel et al., 1999; Gorham eta!., 1998; 

Raymond and Hopkinson, 2003]. Similar observations previously made among 

small basins have typically been explained by the hypothesis that runoff from a 

wetland to a stream channel would be less likely to have intersected the mineral 

soil horizon than runoff from non-wetland systems. These flow paths are 

important because DOC builds up in wetlands due to anaerobic conditions while 

DOC in subsurface flow intersecting the mineral horizon is more likely to be 

removed from solution by microbial processing and adsorption [Aitkenhead-

Peterson et al., 2003; Buffam et al., 2007; Eckhardt and Moore, 1990; Tipping et 

al., 1999]. We found that these small-basin patterns also occurred in large river 

systems, indicating that the control exerted by wetlands on the source of riverine 

DOC was also evident in large and continental scale systems. 

Although percent wetland cover is a powerful explanatory variable, 

substantial DOC concentration variability remained among the seven least 

wetland-dominated watersheds. These watersheds are geographically diverse 

and include the San Joaquin, Rio Grande, Potomac, Colorado, Columbia, 

Sacramento, and Susquehanna rivers which range from 0.4 to 1.2% wetland 
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cover and possess a mean DOC concentration of 3.5 ±1.3 mgC/L. Among these 

basins, we found that mean watershed latitude was negatively correlated with 

DOC concentration (R2=0.71, p=0.011; Figure 1.7), indicating that climate effects 

may dominate DOC concentration variability among low-wetland systems at the 

annual scale, but that wetland controls eclipse climate effects in basins where 

wetlands are more extensive. 

i Rio Grande. TX 

[DOC] * -0 225"meanlal +12.197 
R"2 * 0.71 
pa 0.011 

San Joaquin, CA 

^Colorado,'*? 

I ft 
[ramento. CA 

Susquehanna, MD 
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Figure 1.7. Figure showing mean dissolved 

organic carbon (DOC) concentration vs. mean 

watershed latitude for systems with less than 

2% wetland cover. Error bars represent root 

mean squared error for the LOADEST model. 

30 35 40 45 

Mean Basin Latitude 

As in previous studies, we analyzed seasonal patterns in wetland-

concentration relationships to help identify potential driving mechanisms. 

Typically, previous small-basin studies focused on a series of snapshots within 

the annual cycle. For example, Buffam et al. [2007] observed that the slope of 

the relationship between wetlands and DOC was steepest during a period of 

baseflow, suggesting dilution of DOC in high-wetland regions and increased 

DOC concentration in low-wetland regions during the spring flood (Figure 1.8). 

Eckhardt and Moore [1990], Raymond and Hopkinson [2003], and Gorham et al. 
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[1998] observed no clear seasonal pattern in the slopes of wetland-DOC 

relationships, though Eckhardt and Moore [1990] did find that streams draining 

low-wetland catchments exhibited a positive response in DOC concentration to 

rising runoff, a result consistent with Buffam etal. [2007]. Boyeretal. [1997] 

observed similar patterns and suggested as an explanation that the spring flood 

could lead to increased flushing of DOC from organic surface soil horizons that 

were previously hydrologically disconnected. 

Raymond arid Hopkinson, 2003 
Eckhardt and Moore, 1990 - Sept. '88 
Eckhardt arid Moore, 1990 - Nov. '88 
Gorham et al., 1998 - April '89 
Gorham et al., 1998 - Aug. '88 
Creed et al., 2003 
Buffam et al., 2007 - spring flood '04 
Buffam et al., 2007 - winter baseflow '04 

20 40 60 

Percent Wetland Cover 
80 100 

Figure 1.8. Figure showing dissolved organic carbon (DOC) concentration vs. percent wetland-

cover relationships from this (red diamonds) and five previous small-basin studies. 
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When we examined the slopes of the DOC concentration vs. percent 

wetland-cover relationships for individual months throughout the year, we found 

some evidence to support the hypothesis that the spring flood drove rising DOC 

concentration in low-wetland systems and dilution of DOC in high-wetland 

systems. We observed a consistent mean slope of 0.37 ± 0.03 between October 

and February, with a sharp rise to 0.75 in March (Figure 1.9a). This initial rise in 

slope was followed by a fall through April to 0.24 in May in apparent response to 

rising monthly-mean runoff, which was consistent with Buffam et al. [2007], Slope 

returned to a consistent mean of 0.46 ± 0.02 through June, July, and August 

before spiking again to 0.75 in September. The y-intercepts of these relationships 

were closely negatively correlated with the slopes (R2=0.92, p<0.0001; Figure 

9b), which was also consistent with Buffam et al. [2007], However, in contrast to 

the previously described hypothesis, daily discharge drove an increase in DOC 

concentration only within some individual large basins (Table 1.4) and no 

correlation was found between the statistical significance of these relationships 

and percent wetland-cover. For example, the high slopes observed in March and 

September were primarily driven by spikes in monthly mean DOC concentration 

in the Altamaha river, a high-wetland system, in response to elevated monthly-

mean discharge. Thus, evidence in large watersheds is inconclusive with respect 

to the hypothesis presented by Buffam et al. [2007]. 
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Figure 1.9. Figure showing a) slopes of the relationships between monthly-mean dissolved 

organic carbon (DOC) concentration and percent wetland-cover (plotted in black) and normalized 

monthly-mean discharge as a percent of mean annual flow (plotted in blue), b) Slope vs. intercept 

for the relationships between monthly-mean DOC concentration and percent wetland-cover. All 

error bars represent standard error. 

Mean runoff appeared to control variation in DOC yield among large 

basins at the annual scale (Fig. 1.3) without directly influencing DOC 

concentration [Mulholland and Kuenzler, 1979; Mulholland and Watts, 1982]. The 

lack of a significant relationship between mean DOC concentration and mean 

runoff indicated that the controls exerted on mean yield by runoff were unrelated 

to the factors controlling mean concentration. Rather, when predicting DOC flux 

at annual scales from large rivers, annual runoff should be considered a vector, 

rather than an explanatory variable for concentration. 

In this study, we sampled across the hydrograph and estimated fluxes 

using LOADEST, which led to DOC flux estimates that differed from those made 

previously. The 17 rivers systems in this study generated a total DOC flux of 3.80 
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TgC/yr, which constituted only 9% of the total DOC flux from the entire North 

American continent as estimated by Ludwig etal. [1996] (41.18 TgC/yr), yet 

these 17 rivers accounted for approximately 13% of total North American 

discharge [Benke and Cushing, 2005]. The low fraction of total flux from these 17 

rivers when compared to the total North American flux estimated by Ludwig et al. 

[1996] may be partially due to their use of a mean DOC concentration value of 

8.79 mgC/L for the Mississippi River [Leenheer, 1982], which is more than 

double the mean concentration found here (4.0 mgC/L). The Mississippi is 

particularly important because it is the largest river in North America and it 

accounts for nearly half of total discharge and DOC flux from the 17 rivers in this 

study, so even small percentage errors in its concentration can lead to a large 

absolute error in the estimation of flux. It is possible that such over-estimates of 

riverine DOC flux could contribute to the "missing terrestrial carbon" often noted 

in oceanographic carbon-cycle studies [Bianchi, 2011]. 

More recent studies also base their models partly on concentration values 

from data sources which have not been updated in over thirty years and often 

present mean DOC concentrations based on only 2 to 4 measurements per year 

[Alexander et al., 1998; Harrison etal., 2005; Lauerwald etal., 2012; Meybeck 

and Ragu, 1996; Seitzingeret al., 2005]. For example, Seitzinger et al. [2005] 

and Harrison et al. [2005] use DOC concentration measurements for the 

Mississippi River recorded from 1978-1984, arriving at a mean concentration of 

6.7 mgC/L (/?=14). However, we examined the USGS National Water Information 

System for historic DOC concentration measurements from the same gauging 

24 



station and found only a single value that exceeded 5 mgC/L since 1997 and a 

median DOC concentration of 3.7 mgC/L (n=84), indicating that there may be 

significant error in the historic DOC records that are still being used in current 

models. By sampling for multiple years across the hydrograph, employing strict 

QAQC, and estimating fluxes using the LOADEST model, we present a clearer, 

updated picture of the quantity of DOC recently delivered by these large rivers to 

estuaries and the coastal ocean. 

DOC Quality 

Basin-scale wetland cover played a major role in controlling mean DOC 

quality among large basins. It was clear that higher percent wetland cover drove 

an increase in mean SUVA254- The role of wetlands in controlling SUVA254 

among large basins appears to be related to the previously discussed hypothesis 

that subsurface flow through mineral versus organic soil horizons can control 

DOC concentration variability. Saturated, anaerobic conditions common in 

wetland soils can inhibit organic matter remineralization and lead to the 

persistence of semi-labile aromatic compounds in subsurface flow that would 

drive up SUVA254 in the rivers and streams to which it is discharged [Guillemette 

and del Giorgio, 2011]. In the absence of wetlands, extensive microbial 

processing and the preferential sorption of strongly UV-absorbing, aromatic DOC 

molecules onto mineral soils, and, in some specialized cases, onto sediments 

and particles within the stream channel, would drive down SUVA254 [Chorover 

and Amistadi, 2001; McKnight et al., 2002; Mcknight et al., 1992; Meier et al., 
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1999; Perez et al., 2011; Tipping et a!., 1999]. Thus, if subsurface flow paths are 

less likely to intersect mineral horizons in watersheds with extensive wetland 

cover, less of the aromatic, strongly UV-absorbing DOC would be removed and 

DOC with a higher SUVA254 would be more likely to enter river systems. 

The significant positive correlation between SUVA254 and the HPOA 

fraction of bulk DOC (Fig. 1.6) was unsurprising because the HPOA is typically 

considered to comprise aquatic fulvic and humic acids possessing a high 

molecular weight and aromaticity [Aiken et al., 1979]. These results suggest that 

SUVA254 may be a useful surrogate for HPOA in organic carbon modeling 

applications. However, this relationship broke down within some individual basins 

(Mobile, Mississippi, and Colorado; Table 1.5), indicating that non-aromatic 

hydrophobic acids may drive HPOA in some cases and that care should be taken 

when utilizing SUVA254 as a proxy for HPOA. 

Table 1.5. Table showing within-

basin relationships between 

hydrophobic organic acid (HPOA) 

and specific ultraviolet absorbance 

at 254 nm (SUVA254). Basins 

without a significant relationship are 

labeled N/S. ND indicates that no 

data were available. 

River Name HPOA-SUVA254 formula R2 p-value 

Penobscot River ND ND ND 

Kennebec River ND ND ND 

Androscoggin River ND ND ND 

Susquehanna River SUVA = 4.795*HPOA + 0.346 0.64 < 0.001 

Potomac River SUVA = = 6.584*HPOA + -0.306 0.58 0.003 

Edisto River SUVA = 4.988*HPOA + 1.061 0.54 0.001 

Altamaha River SUVA : = 8.267*HPOA + -0.577 0.39 < 0.001 

St. Mary's River SUVA = 2.738*HPOA + 2.826 0.24 0.003 

Santa Fe River SUVA = 7.245*HPOA + -0.19 0.87 < 0.001 

Mobile River N/S N/S 0.201 

St. Lawrence River SUVA = 5.243*HPOA + -0.18 0.64 < 0.001 

Mississippi River N/S N/S 0.346 

Rio Grande SUVA = - 6.013*HPOA + -0.102 0.48 0.001 

Colorado River N/S N/S 0.199 

San Joaquin River SUVA = 4.807*HPOA + 0.43 0.40 0.009 

Sacramento River SUVA = 8.07*HPOA + -0.825 0.76 < 0.001 

Columbia River SUVA : = 8.754*HPOA + -1.143 0.56 0.003 
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Network-scale processing 

It was somewhat surprising that the terrestrial wetland signal was so clear 

at the continental scale. We expected this signal to be masked or muted in large 

rivers by in-stream processes like photodegradation, microbial processing, and 

sorption accumulating through the river network. However, percent wetland-cover 

explained much of the DOC concentration and SUVA254 variability among basins 

at the annual scale. When we compared the concentration vs. wetland 

relationship observed here (Eq. 1.3) to those observed in previous studies 

[Buffam et al., 2007; Creed et al., 2003; Eckhardt and Moore, 1990; Gergel et al., 

1999; Gorham et al., 1998; Raymond and Hopkinson, 2003], we found little 

obvious difference in absolute concentration, slope, or intercept (Figure 1.8). 

Specifically, over the range of percent wetland-cover values studied here, the 

slope was greater than those found in most previous small basin studies but fell 

between the highest and lowest, demonstrating little evidence for within-network 

processing at annual scales. 

While wetland abundance was clearly related to SUVA254 in large 

watersheds, the presence of large lakes and reservoirs appeared to alter this 

pattern, as suggested by the Colorado and St. Lawrence river outliers. Waters in 

Lakes Mead and Powell on the Colorado River have a combined residence time 

of approximately 5 years [USBR-LC] USBR-UC] and in Lake Ontario on the St. 

Lawrence, approximately 6 years [Beltran et al., 1995]. We suspected that the 

long residence times for water in the two outlier rivers (Colorado and St. 

Lawrence) might have driven down SUVA254 by autochthonous production of 
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lower SUVA254 DOC, photodegradation, and microbial processing [Spencer et al., 

in press]. Previous studies suggest that in the Colorado River artificially flooded 

canyons like Lake Powell act as a trap for both organic and inorganic material 

entering from the major upstream river. Over time, sediments settle and organic 

matter can be remineralized or adsorbed onto precipitating calcite [Reynolds, 

1978]. Water discharged from Glen Canyon Dam is left nutrient-rich and nearly 

free of suspended particles. Unsurprisingly, these conditions facilitate 

autochthonous production of weakly UV-absorbing DOC [Henderson et al., 2008] 

in the downstream reach [Stanford, 1990]. Conversely, this interpretation is not 

always supported in the literature for the St. Lawrence: based on an isotopic 

analysis of watershed soil-carbon, DOC, POC, and DIC, Helie and Hillaire-Marcel 

[2006] reported an underlying terrestrial DOC signal with some autochonously 

driven variability only in the summer months. 

Extensive photodegradation of DOC during the long Great Lakes 

residence time and limited autochthonous production could help to explain the 

apparent conundrum in the St. Lawrence River of DOC with very low SUVA254 

values that also retain a terrestrial isotopic signal. Photodegradation acts 

primarily by breaking up strongly UV-absorbing molecules like terrestrial humic 

and fulvic acids [Moran and Zepp, 1997; Waiserand Robarts, 2004], which 

drives down SUVA254 over time. Photodegradation of DOC has also been 

observed to result in an increase in its lability, leading to greater microbial 

remineralization [Anesio etai, 2005]. Thus, in addition to driving down SUVA254 
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in the St. Lawrence, photodegradation could also provide an explanation for the 

comparatively low DOC concentration that we observed there (Figure 1.2b). 

SUVA254 end members identified in this study were similar to those found 

in the literature [Spencer et al., 2008; Weishaaret al., 2003]. We identified a 

maximum mean SUVA254 of 4.7 ± 0.3 L mgC"1 m"1 and an HPOA fraction of 71 ± 

4 %, for the wetland-dominated St. Mary's River. The highest mean SUVA254 

values previously reported ranged from 3.2 to 5.3 L mgC"1 m"1 for aquatic humic 

substances [Weishaaret al., 2003]. The lower end member was more difficult to 

estimate because as percent wetland-cover in Equation 1.5 approached zero, so 

did predicted mean SUVA254. Mean SUVA254 for the six basins with less than 2% 

wetland-cover (Colorado River excluded) was 2.5 ± 0.2 L mgC"1 m"1, significantly 

higher than groundwater and microbially-dominated SUVA254 end members 

found by Stets etal. [2010] which ranged from 0.9 to 2.1 L mgC"1 m"1. However, 

mean SUVA254 for the St. Lawrence and Colorado rivers were 1.3 and 1.7 L 

mgC"1 m"1, respectively. If network-scale processing played a major role in driving 

SUVA254 by breaking down aromatic allochthonous DOC, we would expect very 

low wetland systems to exhibit SUVA254 values similar to previously identified 

end members or values from long residence time systems. Rather, these results 

support the hypothesis proposed by del Giorgio arid Pace [2008] and Richey et 

al. [1990] which suggested that labile autochthonous material may be rapidly 

recycled while more refractory, generally allochthonous DOC is delivered to the 

coastal ocean. 
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We did not find evidence to support the contention by Shih et al. [2010] 

that approximately 60% of organic matter in rivers with high mean discharge (> 

17.85 m3 s"1) was autochthonous. All rivers in this study, with the exception of the 

Rio Grande, fall within this category and terrestrial wetland signals were strong, 

with percent wetland-cover explaining 90% of the variability in DOC quality (Eq. 

1.5) and nearly 80% of the variability in quantity (Eq. 1.3). Although the 

comparison between TOC and DOC is not direct, at annual scales DOC tends to 

makes up the majority of organic matter in rivers [Meybeck, 1982]. We believe 

that Shih et al. [2010] may have overestimated the contribution of autochthonous 

sources at the mouths of the largest river systems because they assumed the 

same degradation constant to all organic matter in a given reach, whether it was 

recalcitrant allochthonous material or more labile autochthonous material. The 

longer a bulk DOC pool is subjected to degradation under this assumption, the 

greater the percent-difference between predicted labile DOC and actual labile 

DOC would become. Consider a conceptual model where ten units of slowly 

degrading organic material (OMA) and ten units of quickly degrading organic 

material (OMB) are loaded into the headwaters of a small stream. Transfer 

efficiency (TE) is defined as the fraction of DOC in a particular reach that is 

delivered downstream, 

TE = exp(-/c t) (Eq. 1.6) 

where k is a reaction rate expressed in units of time"1 and t is a residence time. 

Shih et al. [2010] found a mean reaction rate of 0.0338 day"1. If we assume that 

quickly and slowly degrading organic matter have reaction rates three standard 
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deviations below and above that mean, respectively, OMA would have a k of 

0.0228 day"1 and OMB a k of 0.0448 day"1. With a residence time of ten days, we 

would expect to be left with 6.39 units of OMA and 7.96 units of OMB. However, if 

we subject both OMA and OMB to the same mean reaction rate, the model 

predicts 7.13 units of each remaining. Although both models predict 

approximately 14 units of bulk organic material at the stream mouth, the 

contribution of the quickly degrading OMA is over-estimated in the second case 

by 0.74 units, or 11.6%. If we assume the reach is larger, with a residence time 

of 30 days, the over-estimation grows to 1.02 units, or 39.1%. Although the 

absolute over-estimation of OMA eventually decreases at very long residence 

times where the bulk pool approaches zero, the percent over-estimation of OMA 

continues to increase. Thus, a degradation model that subjects both labile and 

recalcitrant organic matter to equivalent degradation rates through time will over-

predict the influence of the quickly degrading, photosynthetically-derived pool by 

increasing percentages in larger basins with longer residence times. 

We found that in large systems lacking long-term surface water storage, 

DOC concentration and quality in terms of SUVA254 were well predicted by 

percent wetland-cover, The current evidence suggests that for these systems at 

annual scales, in-stream processes like autochthonous production, microbial 

remineralization, and photodegradation play a subordinate role in driving DOC 

quantity and quality compared to processes that load allochthonous DOC into the 

river system, with new production being quickly recycled by the microbial 

community rather than delivered in large quantities to the coastal ocean [del 
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Giorgio and Pace, 2008; Richey et al., 1990], However, this finding is based on a 

relatively weak test that compares mean annual DOC vs. wetland relationships 

in large basins with snapshots from small basins in a variety of regions. In 

addition, few comparative DOC quality studies in small basins have been 

conducted. Finally, the tendency of smaller basins in this analysis to possess 

greater wetland coverage complicates the interpretation of our results because it 

is difficult to divorce the impact of basin size from wetlands. In order to fully 

evaluate the role of network-scale processing in driving annual DOC quantity and 

quality exported from large basins, more comprehensive, synoptic study of DOC 

and DOC quality changes from small headwaters to large rivers throughout river 

networks should be conducted. 
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CHAPTER II 

ASSESSING TEMPORAL VARIABILITY IN 

DISSOLVED ORGANIC CARBON QUANTITY AND QUALITY 

FOR SMALL RIVERS IN THE CONTINENTAL UNITED STATES 
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Introduction 

Dissolved organic carbon (DOC) and its chemical quality are fundamental 

players in the biogeochemistry of aquatic systems and have been the subject of 

a great deal of study. For example, riverine DOC represents an important 

connection in the global carbon cycle [Battin et al., 2009; Cole et al., 2007], is a 

crucial parameter in municipal water treatment [Singer, 1999], remains central to 

understanding the transport and bioavailability of heavy metals [Aiken et al., 

2011; Dittman et al., 2010], and may hold the key to developing satellite-based 

measurement of DOC concentration ([DOC]) in the coastal ocean [Salisbury et 

al., 2011]. Current continental-scale modeling efforts have made significant 

progress in predicting mean annual fluxes and concentrations of bulk DOC for 

North American rivers and streams [Lauen/vald et al., 2012; Ludwig et al., 1996; 

Seitzingeret al., 2005; Shih et al., 2010]. However, the chemical quality of 

continental DOC flux has rarely been addressed and the within-year variability of 

both DOC quantity and quality have not been modeled. A spatially explicit model 

with a temporal resolution in days that encompassed both DOC quantity and 

quality could have immediate impacts on the previously mentioned fields of 

study, but a number of challenges remain. Primarily, the temporal variability of 

DOC loading to the aquatic system from the terrestrial environment must be 

quantified, and in addition, within-channel biogeochemical processing and 

production must be properly constrained. [Anesio et al., 2005; Moran and Zepp, 

1997; Stubbins et al., 2008; Waiser and Robarts, 2004]. 
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In this paper, we investigated the transfer of DOC over time from the 

terrestrial to the aquatic environment by analyzing temporal variability in DOC 

concentration and quality for numerous small, headwater basins in the United 

States Geological Survey's (USGS) National Water Information Service (NWIS). 

We addressed two primary questions: what time-varying basin-scale 

characteristics are related to DOC concentration and quality variability in small 

basins? Second, can static basin-scale attributes of these systems tell us 

anything about how the dominant time-varying predictors might be applied more 

generally? 
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Methods 

In this study we developed a database of DOC quantity and quality 

measurements in terms of [DOC] and specific ultraviolet absorbance at 254nm 

(SUVA254) at river and stream gauging stations in the conterminous United 

States. We joined this database with several different continuous time-varying 

basin attributes, including daily discharge, ratio of stormflow to total discharge, 

and a variety of remotely-sensed basin-attributes. Next, in small individual basins 

we examined relationships between these time-varying attributes and both DOC 

concentration and SUVA254. Finally, we investigated a variety of static basin-

attributes for how they might help to explain the role of the time-varying attributes 

in controlling DOC variability. 

Database Development 

We obtained DOC concentration data for 7982 rivers and streams from 

the National Water Information Service (NWIS; http://waterdata.usgs.gov/) 

managed by the United States Geological Survey (USGS; Figure 2.1), which 

were recorded as early as August 23, 1958 and as recently as October 10, 2009. 

We excluded concentrations greater than 65 mgC/L, which were reported at only 

55 stations and were mostly recorded by the early 1980's, before strict QA/QC 

had been commonly implemented for DOC measurements, and the accuracy of 

such extraordinarily high values is suspect. The NWIS also provided historic daily 

discharge records for 2304 of these stations, as well as SUVA254 data for 560 
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stations. We excluded SUVA254 measurements greater than 6 L mg C"1 m"1 from 

analysis because such high values are more likely due to interference in UV 

absorbance at 254 nm by dissolved iron than the DOC itself [Weishaar et al., 

2003]. We also excluded SUVA254 values below the threshold of 0.6 L mg C"1 m"1, 

which is well below previously observed microbial and groundwater end 

members [Stets et al., 2010], and is generally observed only in oceanic systems. 

We imported latitude and longitude data from the NWIS to ESRI's ArcGIS 

9.10 in order to georeference all stations; basins were distributed throughout the 

conterminous United States. We also merged the NWIS station data with the 

GAGES database (n=6785) [Falcone et al., 2010], which provided annual-mean 

or static basin-scale data which covered soils, watershed climatology, hydrology, 

infrastructure, and topography for 1378 out of 7982 basins. 

We used ArcGIS to perform a spatial join between our georeferenced 

NWIS data and the topological stream network from the National Hydrography 

Affantic 
Ocean 

Pacific 
Ocean 

Mexico 

Figure 2.1. Map showing 

sampling locations for 

NWIS gauging stations. 
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Dataset (NHDplus) [USGS, 2006]. In this join each NWIS station was spatially 

associated with a single NHDplus stream-segment, which was in turn associated 

with a variety of upstream basin attributes. We used these associations to extract 

a number of attributes from the NHDplus, including cumulative upstream 

drainage area (ANHD) and the cumulative upstream percent-cover for 21 different 

land cover categories from the 1992 National Land Cover Database (NLCD) 

[Homer et al., 2004], These 21 categories were simplified to six basic land-cover 

types: forest, agriculture, urban, wetland, grassland, and shrubland (Table 2.1). 

Table 2.1. Table showing 

landcover categories for the 

National Land Cover 

Database and the simplified 

categories used in this study. 

# NLCD (1992) Categories Simplified Categories 

21 Low Intensity Residential 

22 High Intensity Residential 
Urban 

23 Commercial/Industrial/Transportation 
Urban 

85 Urban/Recreational Grasses 

41 Deciduous Forest 

42 Evergreen Forest Forest 

43 Mixed Forest 

51 Shrubland Shrubland 

71 Grassland/Herbaceous Grassland 

81 Pasture/Hay 

82 

83 

Row Crops 

Small Grains 
Agricultural 

84 Fallow 

91 

92 

Woody Wetlands 

Emergent Herbaceous Wetlands 
Wetlands 

We also used the spatial join between the NWIS dataset and the NHDplus 

to generate watershed-boundary polygons. We used an NHDplus tool, 

BasinDelineator v2.009, to generate these polygons for each NHDplus stream 

segment associated with a station in our database. We populated fields in the 

NWIS dataset with an ID number and the contributing area of each watershed 
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polygon (AP). Finally, we derived a raster mask from the vector-based polygons 

generated by BasinDelineator. 

Moderate Resolution Imaging Spectroradiometer (MODIS) data sets were 

obtained from several sources and were available starting in February of 2000. 

We investigated continuously available remotely-sensed indices that we 

considered likely to be associated with DOC variability. These included Gross 

Primary Production (GPP) and Land Surface Temperature for night and day 

(NLSTand DLST, respectively) [LPDAAC, 2000], as well as Enhanced 

Vegetation Index (EVI) and Land Surface Water Index (LSWI) [Xiao etal., 2009]. 

We calculated mean land surface temperature for each system (mean LST) as 

the average of NLST and DLST. All MODIS products were available at an 8-day 

temporal resolution. These gridded data sets were clipped using the previously 

generated raster-based watershed polygons in order to calculate basin-mean 

MODIS values at every time step for each station. After generating basin-mean 

MODIS values at an 8-day interval, we interpolated across the 7-day gaps using 

the linear method of the interpTS function, in the Water Quality (wq) library for R 

2.12.2 [RDCT, 2011]. In addition, antecedent values for all time-varying 

watershed parameters, including GPP, EVI, LSWI, DLST, NLST, and stream 

discharge were calculated as the mean of the preceding 32 day periods. Finally, 

we merged daily and antecedent MODIS values with the NWIS data set by 

station and date. 

In some cases, the area of the generated polygon (AP) was different than 

the drainage area reported in the NWIS (AUSGS)- In order to restrict analysis to 
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systems where the calculated MODIS index values accurately reflected the 

watersheds upstream of each station we calculated the percent difference for the 

areas of the generated polygons with respect to the NWIS reported drainage 

area (RUP; Equation 2.1). Disparity also existed between AUSGS and the 

cumulative upstream drainage areas extracted from the NHDplus tables {ANHD)- It 

was important to calculate the percent difference between AUSGS and ANHD {RUN', 

Equation 2.2) because land-cover values were directly extracted from the 

NHDplus and are associated with ANHD rather than being a product of the 

generated polygons. Finally, in cases where a drainage area was not available 

from the NWIS, we calculated the percent difference between ANHD and AP (RNP; 

Equation 2.3): 

RUP 
A  _ A  l^USGS "P 

USGS 
>100 (Eq. 2.1) 

R UN 
\ A  - A  L/SGS NHD 

USGS 
>100 (Eq. 2.2) 

RNP 
A  _ A  l \  

"NHD "P 
1NHD J 

>100 (Eq. 2.3) 

Small Basin Analysis 

Analysis of DOC in small basins is important for identifying controls on 

headwater DOC concentration and thus the loading of DOC from the terrestrial 

environment to downstream river systems. We defined small basins as those 

with drainage areas less than 100 km2 because minimial biogeochemical 

processing would have had the opportunity to occur in such small streams and 
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because grid-cells in current continental DOC flux modeling tools are, at a 6 

arcminute resolution, of a comparable scale [Vorosmarty et al., 2000]. Of the 

7982 initial basins, a subset of 3046, called the Small Basin Subset (SBS) had 

total drainage areas less than 100 km2 and also had Rue, RUP, and RNp less than 

100% (Figure 2.2). Historic daily discharge records from the NWIS concurrent 

with [DOC] measurements were available for 265 stations in the SBS and 

SUVA254 data were available in the SBS for 318 stations. GAGES data were 

available for only 164 SBS streams, limiting availability of some static basin-

attribute data. MODIS coverage was available for approximately 1000 stations. 

We expected the fraction of daily discharge as either stormflow or 

baseflow to be related to DOC quantity and quality variability because stormflow 

is more likely to be overland or in organic upper soil horizons while baseflow is 

more likely to be derived from deeper groundwater sources. Therefore, we 

applied a hydrograph separation algorithm to the historic discharge records from 

small watersheds where daily discharge records were complete for at least a full 

year and were concurrent with [DOC] measurements. We followed Eckhardt 

[2005] in order to obtain daily fractions of total discharge as both stormflow and 

baseflow. Eckhardt [2008] noted that this method is only appropriate for use on 

small watersheds, thus, we did not extend the hydrograph separation analysis to 

systems with drainage areas larger than 100 km2. A daily stormflow ratio (SR) 

was calculated as the daily stormflow divided by total daily discharge. 

We analyzed regressions between DOC concentration and each individual 

basin's daily discharge, LSWI, GPP, mean LST, and their 32-day antecedents, as 
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well as daily SR for all stations in the SBS where the appropriate variables were 

available. We also analyzed regressions between SUVA254 and each of these 

variables. The relationships between [DOC] and both Q and GPP took the form 

of Equation 2.4, which is based on logarthmic transformations of both [DOC] and 

the predictor variable in a simple linear regression. Equation 2.5, which 

represents the relationships between [DOC] and SR, EVI, LSWI, and mean LST, 

is based on a logarithmic transformation of only [DOC]. Equation 2.6 is based on 

the logarithmic transformation of only the predictor variable and represents the 

relationship between SUVA254 and both Q and GPP32. Finally, Equation 2.6 is 

based on a simple linear regression without transformation and represents the 

relationship between SUVA254 and SR. 

[DOC] = JS • xm (Eq. 2.4) 

[DOC] = (3 •exm (Eq. 2.5) 

SUVA254 = m*\og(x) + [3 (Eq. 2.6) 

SUVA254 =m*x + p (Eq. 2.7) 

Where x is the predictor variable (Q, GPP, or SR) and both m and flare 

regression coefficients. In all cases log-transformations were performed so that 

the variables in question met the assumption of a normal distribution in a linear 

regression. 

We also used "box-and-whisker" type plots to investigate what static 

basin-scale properties could help us understand controls on the parameters that 

governed time-varying DOC. Among the basin-scale properties we tested were 

GAGES-derived attributes: slope of the basin, northness of the slope aspect, 

42 



eastness of the slope aspect, soil permeability, soil organic matter content, clay 

content of soil, soil depth, % of precipitation as snow, relative humidity, and air 

temperature. We also tested several static basin-scale attributes derived from the 

NWIS and the NHDplus: % wetland cover, % forest cover, latitude, runoff, and 

basin area. We generated box-and-whisker plots using R 2.12.2. The boxes in 

these plots were "notched", where the width of the notch above and below the 

median (WN) was calculated following [Chambers et al., 1983] (Equation 2.8): 

±1.58 • IQR /r_ 
WN — — (Eq. 2.8) 

Where IQR is the interquartile range and n is the number of observations. 

Chambers et al. [1983] considered a lack of overlap between these notches to be 

strong evidence that the medians of the two populations differ. 

•ithrntic 

theun 

Pacific 
Ocean 

Figure 2.2. Map showing 

the sampling locations for 

the United States 

Geological Survey's 

National Water Information 

Service gauging stations in 

the Small Basin Subset. 
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Results 

Static Characteristics of Small Basins 

Stations in the SBS (n=3046) were distributed throughout the 

conterminous United States. Station latitude ranged from 27.209 degrees in 

Florida to 48.927 degrees in Washington. The drainage areas of small basins 

ranged from 0.25 km2 in Nevada County, California to 99.8 km2 in Sumpter 

County, Georgia. Median drainage area was 27.7 km2 and mean drainage area 

was 33.6 km2. 

Land-cover ranged from 0% to more than 96% for most land-cover 

categories, including forested, urban, agricultural, and shrublands, with means of 

50.9%, 11.9%, 21.3%, and 4.5%, respectively. Grasslands and wetlands reached 

maximums of 85% and 74% with means of 5.5% and 3.9%, respectively. From 

the GAGES database of mean basin properties, slope ranged from 0% to 51.4% 

with a mean of 10.4% ± 14.1% and a median of 3.8%, indicating a highly skewed 

distribution. Both the eastness and northness of the basin aspect ranged from -1 

to 1, indicating basins facing in all directions, from directly east to directly west, 

and directly south to directly north. For soil properties, permeability ranged from 

1.3 cm/hr to 31.5 cm/hr with a mean of 12.7 cm/hr ± 8.9 cm/hr and a median of 

12.2 cm/hr. Average organic matter content of soils ranged from 0.2% to 13.0% 

with a mean of 1.6% ± 1.8% and a median of 0.9%, indicating a skewed 

distribution. Mean basin soil depth ranged from 48.8 cm to 153.4 cm with a mean 

of 126.7 cm ± 28.9 cm and a median of 139.2 cm. Clay content of soils ranged 
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from 3.40% to 53.1% with a mean of 16.2% ± 10.1% and a median of 14.2%. For 

climatology, the percent of precipitation as snow ranged from 0% to 66.5 % with 

a mean of 20.4% ± 18.1% and a median of 17.3%. Relative humidity ranged from 

43.3% to 80.5% with a mean of 65.8% ± 6.7% and a median of 67.0%. Finally, 

average basin temperature ranged from -1.6 °C to 22.4 °C with a mean of 10.8 

°C ± 5.1 °C and a median of 11.0 °C. 

Time-Varvinq Characteristics of Small Basins 

DOC concentration had a log-normal distribution and ranged from 

0.3 mgC/L to 60.0 mgC/L, with a geometric mean of 2.7 mgC/L ± 2.4 mgC/L. 

Where available, SUVA254 ranged from 0.6 L mg C"1 m"1 to 5.9 L mg C~1 m"1, with 

an overall mean of 3.8 L mg C"1 m"1 ± 1.3 L mg C"1 m"1. 

Historic daily discharge records overlapping DOC concentration 

measurements were available for 265 gauging stations in the SBS. Mean daily 

discharge values for streams in the SBS were log-normally distributed and 

ranged from 0.002 m3/s to 23.049 m3/s with a geometric mean of 0.564 m3/s ± 

4.243 m3/s, indicating a highly skewed distribution. Following hydrograph 

separation analysis [Eckhardt, 2005] we calculated a mean SR for each basin 

which ranged from 0 to .93, with an overall mean of 0.31 ± 0.20 and a median of 

0.26. These results indicated that mean total streamflow in individual basins 

ranged from being composed of entirely baseflow to almost entirely stormflow. 

Antecedents of discharge and SR demonstrated similar range, probability 

distribution, mean, and median as the daily values. 
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MODIS indices EVI, GPP, LSWI, and LST had a variety of probability 

distributions (Figure 2.3) and all exhibited significant intercorrelation (Figure 2.4). 

Antecedent values for MODIS indices were similarly distributed and 

intercorrelated. Because the intercorrelation of predictor variables in a linear 

regression can confound interpretation of the role of those variables, we sought 

to select a single MODIS index as a best predictor of DOC concentration and 

SUVA254 in our final calculations. 
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Figure 2.3. Figure showing 

probability distributions for 

various MODIS indices used 

in this study, a) Gross 

Primary Production, b) 

Enhanced Vegetation Index, 

c) Land Surface Water Index, 

and d) mean Land Surface 

Temperature. 
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Figure 2.4. Figure showing the intercorrelation of MODIS indices used in this study, a) Enhanced 

Vegetation Index (EVI) vs. Gross Primary Production (GPP), b) Land Surface Water Index (LSWI) 

vs. GPP, c) mean Land Surface Temperature (LST) vs GPP, d) LSWI vs. EVI, e) LST vs EVI, and 

f) LST vs. LSWI. 

DOC Controls 

We found significant (p-value < 0.05) relationships between [DOC] and the 

various time-varying basin-scale characteristics, including discharge, MODIS 

indices, and SR (Table 2.2). Discharge was significantly correlated with [DOC] at 

121 out of 265 stations (Table A.1), while its 32-day antecedent was only 

significant at 78 out of 265 stations. 110 of the 121 basins where discharge was 

a significant predictor of [DOC] had positively sloped relationships, while 11 were 

negatively sloped. This indicated that rising discharge was generally associated 
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with a rise in DOC concentration, which is a phenomenon that has been 

observed in previous studies [Agren et ai, 2010; Eckhardt and Moore, 1990; 

Raymond and Saiers, 2010]. 

In the case of MODIS indices, the relationship between [DOC] and daily 

GPP was significant for 76 out of 349 individual stations, while its 32-day 

antecedent (GPP32) was significant for 95 out of 344 (Table A.2). Of these 95 

relationships, 78 were positively sloped, indicating a generally positive response 

in [DOC] to GPP32- Other MODIS indices were correlated with [DOC] in similar 

numbers of basins (Table 2.2). We selected GPP32 as the MODIS index for use 

in our final analysis because it was a significant predictor of [DOC] in the greatest 

number of individual basins, though only slightly, and it had a clear log-normal 

distribution which allowed it to meet the assumptions of a linear regression under 

logarithmic transformation. In addtion, GPP had only positive values which made 

the transformation comparatively simple. The seasonal variability of GPP in 

individual basins also has a theoretical basis for inclusion as a control on DOC as 

primary production is the ultimate source of natural organic matter. 

Daily SR was significantly correlated with [DOC] at 80 out of 200 stations 

(Table A.3). Of these 80 relationships 77 were positively sloped, indicating that a 

higher ratio of stormflow to total streamflow generally results in higher DOC 

concentrations. When we restricted analysis to basins and times where all three 

predictor variables (Q, GPP32, and SR) were available (/?=66; Table 2.3), we 

noted that only 12 basins lacked a relationship with one of the predictors and that 

substantial overlap occurred among the three (Figure 2.5). 
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Predictor 
vs. [DOC] 

p < 0.05 p > 0.05 

VS. SUVA254 

p < 0.05 p > 0.05 

Q 121 144 6 13 
Q32 78 187 5 14 
SR 80 120 2 17 

SR32 49 150 3 16 

GPP 74 270 27 139 

GPP32 95 249 32 134 

EVI 69 291 36 144 

EVI32 88 272 34 146 

LSWI 57 303 24 160 

LSWI32 52 308 17 167 

LST 80 285 34 146 

LST32 94 271 33 147 

Table 2.2. Table showing the number of 

significant and non-significant relationships 

between time-varying basin attributes and 

both dissolved organic carbon concentration 

(/DOCJ) and specific ultraviolet absorbance 

at 254nm (SUVA254) for individual basins. 

Iri the box-and-whisker plots, we found several static basin characteristics 

that were useful in explaining the controls exerted by the different time-varying 

parameters. In basins where discharge was vs. was not a significant predictor of 

DOC, notches for aspect northness and soil depth did not overlap (Figures 2.6 

and 2.7). These results indicated that the basins with discharge as a significant 

predictor of [DOC] are likely to be more southerly-facing and to have deeper soils 

than those basins where 0 is not a significant predictor. We found no other static 

basin characteristics with the same type of explanatory power because all other 

notches overlapped when comparing populations of basins where Q, GPP32, and 

SR were significant or non-significant predictors of [DOC]. 

Box-and-whisker plots were also used to investigate why some basins 

exhibited positively sloped relationships between the time-varying predictors and 

[DOC] while others exhibited negatively sloped relationships. We found that 

basins where discharge was positively correlated with [DOC] were likely to have 

a higher percent forest-cover than basins with negative correlations (Figure 2.8). 

In addition, we found that basins where GPP32 was positively correlated with 
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[DOC] were likely to have a higher percent wetland-cover and percent 

agricultural-cover and lower percent shrubland-cover than basins with a negative 

correlation (Figure 2.9). 

We also found significant relationships (p-value < 0.05) between SUVA254 

and the three primary time-varying attributes (Table 2.2). Q was significantly 

correlated with SUVA254 at 6 out of 19 stations (Table A.4), GPP32 was 

significantly correlated with SUVA254 at 32 out of 166 stations (Table A.5), and Sr 

was significantly correlated with SUVA254 at 2 out of 19 stations (Table A.6). 

Figure 2.5. Venn diagram showing the 

overlap between significant time-varying 

predictor variables for dissolved organic 

carbon concentration in individual basins. 

Predictors include 32-day antecedents of 

discharge (Q) and gross primary 

production (GPP), as well as stormflow 

ratio (SR). Bottom right is the number of 

basins where none of the three are 

significant predictors. 
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S(R) GPP 

Q (p<0.05) 0 (p>=0.05) S(R) (p<0.05) S(R) (p>=0 05) GPP <p<0.05) GPP (p>=0.05) 

n—121 n=144 n=80 n=120 n=95 n=249 

Significance of [DOC] vs Q, S{R), or GPP 

Figure 2.6. Box-and-whisker plot of aspect northness for basins where the three time-varying 

predictors were and were not correlated with dissolved organic carbon concentration ([DOC]). For 

discharge (Q), notches do not overlap, indicating a significant difference in the medians. 

S(R) GPP 

1 1 1 1 1 1 
Q(p<0.05) Q (p>=0.05) S<R>(P«0.05) S(R) (p>=0.05) GPP (p<0.05) GPP(p>=0.05) 

n=121 n=144 n=80 n=120 n=95 n=249 

Significance of [DOC] vs Q, S(R), or GPP 

Figure 2.7 Box-and-whisker plot of soil depth for basins where the three time-varying predictors 

were and were not correlated with dissolved organic carbon concentration ([DOCJ). For discharge 

(Q), notches do not overlap, indicating a significant difference in the medians. 
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Table 2.3. Table showing basin information for 66 basins where discharge (Q), antecedent gross primary production (GPP32), and stormflow ratio 

(SR) are all available on the same dates as at least four dissolved organic carbon (DOC) measurements. Discharge and SR are computed as 

basin means over the entire time-period available. The last three columns represent whether the time-varying predictor in question (Q, GPP32, or 

SR) are significantly correlated with [DOC]. 

Station ID County, State Lat. 

DD 

Long. 

DD 

Drainage 

km2 

Discharge 

m3/s 

SR Wetland 

% 

Forest 

% 

Ag. 

% 

Urban 

% 

Grass 

% 

Shrub 

% 

Q GPP32 

p <0.05 vs. 

S„ 

[DOC1 

01095220 Worcester County, Massachusetts 42.411 -71.792 81.8 1.6 0.207 8.2 76.5 8.5 5.4 0.0 0.0 Y N Y 

01102345 Essex County, Massachusetts 42.469 -71.007 53.9 0.9 0.192 9.5 29.6 0.0 60.5 0.0 0.0 Y N N 

01362380 Ulster County, New York 42.098 -74.317 81.6 2.8 0.169 0.0 98.3 0.2 1.5 0.0 0.0 Y Y Y 

01394500 Union County, New Jersey 40.688 -74.312 66.0 0.9 0.196 0.9 28.9 0.5 69.7 0.0 0.0 Y N Y 

01407760 Monmouth County, New Jersey 40.203 -74.066 16.7 0.3 0.187 9.0 25.7 4.3 56.5 0.0 0.0 Y Y N 

01410150 Burlington County, New Jersey 39.623 -74.441 21.0 0.5 0.177 5.9 91.6 0.3 2.0 0.0 0.0 Y N N 

01410810 Camden County, New Jersey 39.696 -74.940 20.0 0.4 0.177 12.7 31.0 21.2 35.2 0.0 0.0 Y N Y 

01410820 Camden County, New Jersey 39.669 -74.913 96.6 1.9 0.176 17.2 42.5 15.8 23.4 0.0 0.0 Y N N 

01411300 Cape May County, New Jersey 39.307 -74.821 79.8 1.2 0.174 12.4 73.4 4.1 3.4 0.0 0.0 Y N N 

01412800 Cumberland County, New Jersey 39.473 -75.256 72.5 1.0 0.173 4.0 13.4 80.4 2.2 0.0 0.0 Y N Y 

01421618 Delaware County, New York 42.361 -74.663 37.0 0.9 0.188 0.0 73.0 26.6 0.5 0.0 0.0 Y Y Y 

01422747 Delaware County, New York 42.173 -75.122 64.0 1.4 0.188 0.0 71.8 27.1 1.0 0.0 0.0 Y Y Y 

01434017 Ulster County, New York 41.925 -74.541 59.3 2.1 0.148 0.0 99.5 0.4 0.1 0.0 0.0 Y Y Y 

01434025 Ulster County, New York 41.995 -74.501 9.6 0.3 0.166 0.0 100.0 0.0 0.0 0.0 0.0 Y Y Y 

01434498 Sullivan County, New York 41.920 -74.575 87.5 3.2 0.160 0.0 99.6 0.3 0.0 0.0 0.0 Y Y Y 

01466500 Burlington County, New Jersey 39.885 -74.505 6.1 0.1 0.304 5.7 85.4 0.2 0.0 0.0 0.0 Y N N 

01467150 Camden County, New Jersey 39.903 -75.021 44.0 0.9 0.179 3.6 25.0 7.5 60.7 0.0 0.0 Y Y N 

01493112 Kent County, Maryland 39.257 -75.940 15.9 0.3 0.167 4.5 4.9 90.2 0.4 0.0 0.0 Y N Y 

01493500 Kent County, Maryland 39.280 -76.014 32.9 0.3 0.177 5.0 4.0 90.0 1.0 0.0 0.0 Y N Y 

01591000 Montgomery County, Maryland 39.238 -77.056 90.1 1.1 0.152 3.3 33.3 62.8 0.6 0.0 0.0 Y Y Y 

02172300 Aiken County, South Carolina 33.753 -81.602 40.4 0.6 0.165 5.7 71.8 19.9 0.4 0.0 0.0 Y N Y 

02306774 Hillsborough County, Florida 28.066 -82.566 45.3 0.4 0.261 24.9 4.3 2.9 43.9 9.0 0.1 Y N N 

02338523 Heard County, Georgia 33.341 -85.227 43.5 0.6 0.156 0.0 92.4 7.4 0.1 0.0 0.0 Y N Y 

03353637 Marion County, Indiana 39.667 -86.196 44.0 0.6 0.353 0.2 3.8 43.3 52.6 0.0 0.0 Y Y Y 
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in 



03361638 Hancock County, Indiana 39.843 -85.825 7.2 

03448800 Buncombe County, North Carolina 35.619 -82.308 11.0 

04087030 Waukesha County, Wisconsin 43.173 -88.104 89.9 

04087088 Milwaukee County, Wisconsin 43.055 -88.046 47.1 

04087204 Milwaukee County, Wisconsin 42.925 -87.870 64.7 

05014300 Glacier County, Montana 48.795 -113.679 37.6 

05451080 Hamilton County, Iowa 42.544 -93.589 31.1 

05540275 Du Page County, Illinois 41.726 -88.164 25.6 

06187915 Park County, Montana 45.003 -110.001 80.8 

07362587 Saline County, Arkansas 34.797 -92.933 69.9 

09306242 Rio Blanco County, Colorado 39.920 -108.472 81.8 

10343500 Nevada County, California 39.432 -120.237 27.2 

11262900 Merced County, California 37.263 -120.906 89.3 

12128000 King County, Washington 47.696 -122.275 31.3 

14161500 Lane County, Oregon 44.210 -122.256 62.4 

01102500 Middlesex County, Massachusetts 42.447 -71.139 64.0 

01105000 Norfolk County, Massachusetts 42.177 -71.201 89.9 

01367800 Sussex County, New Jersey 41.163 -74.675 40.9 

01398000 Hunterdon County, New Jersey 40.473 -74.828 66.6 

01464907 Bucks County, Pennsylvania 40.229 -75.120 69.4 

01479820 Chester County, Pennsylvania 39.817 -75.692 73.3 

01482500 Salem County, New Jersey 39.644 -75.330 37.8 

01673638 King William County, Virginia 37.627 -76.963 22.8 

02087580 Wake County, North Carolina 35.719 -78.752 54.4 

0209096970 Wayne County, North Carolina 35.479 -77.910 7.8 

0209173190 Greene County, North Carolina 35.525 -77.563 1.5 

0209173200 Greene County, North Carolina 35.531 -77.559 74.1 

0209741955 Durham County, North Carolina 35.872 -78.913 54.6 

02097464 Orange County, North Carolina 35.924 -79.115 21.6 

02172305 Aiken County, South Carolina 33.718 -81.607 79.5 

02314274 Charlton County, Georgia 30.804 -82.418 12.2 

02336635 Cobb County, Georgia 33.803 -84.521 81.6 

04087159 Milwaukee County, Wisconsin 42.998 -87.926 48.7 

0.1 0.609 0.0 0.7 98.3 1.1 0.0 0.0 Y Y N 

0.5 0.169 0.1 77.5 0.4 21.9 0.0 0.0 Y N Y 

0.9 0.191 3.3 15.3 56.3 23.8 0.9 0.0 Y N Y 

0.4 0.167 3.0 15.2 0.6 77.9 3.3 0.0 Y N N 

0.7 0.203 1.5 11.8 34.8 49.1 2.8 0.0 Y Y N 

2.4 0.185 0.7 24.2 0.0 0.0 20.9 28.7 Y Y Y 

0.4 0.164 0.3 0.4 95.3 1.5 2.5 0.0 Y N Y 

0.3 0.258 0.4 3.7 62.1 33.8 0.1 0.0 Y Y N 

1.6 0.220 0.0 73.2 0.0 0.1 4.0 9.9 Y Y N 

3.2 0.335 0.0 99.5 0.1 0.0 0.0 0.0 Y N Y 

0.0 0.332 0.1 46.8 0.0 0.2 19.8 32.8 Y Y N 

0.3 0.182 0.0 86.4 0.0 0.0 2.5 11.1 Y Y N 

2.9 0.231 36.4 0.1 26.4 0.7 35.9 0.4 Y N N 

0.3 0.167 0.2 7.8 0.0 88.6 0.9 2.4 Y Y Y 

3.4 0.174 0.0 97.1 0.0 0.0 1.3 1.0 Y N Y 

0.9 0.198 4.2 26.3 0.0 69.0 0.0 0.0 N N N 

1.7 0.204 9.5 50.6 2.1 37.5 0.0 0.0 N N N 

0.9 0.188 4.8 40.6 53.8 0.8 0.0 0.0 N Y N 

1.1 0.194 1.2 31.3 60.2 7.2 0.0 0.0 N N Y 

1.5 0.189 0.2 35.5 31.5 32.4 0.0 0.0 N N Y 

1.2 0.156 0.8 33.9 54.3 11.0 0.0 0.0 N N N 

0.6 0.187 3.1 15.6 76.1 5.0 0.0 0.0 N N N 

0.2 0.212 4.8 80.3 9.4 0.1 0.0 0.0 N Y N 

1.3 0.256 2.3 59.3 C
D

 

C
O

 

28.5 0.0 0.0 N Y Y 

0.1 0.308 15.6 43.1 41.1 0.0 0.0 0.0 N Y N 

0.0 0.840 18.7 35.1 46.2 0.0 0.0 0.0 N Y N 

0.5 0.489 28.9 29.7 40.7 0.5 0.0 0.0 N Y N 

1.0 0.204 5.3 61.8 1.1 29.6 0.0 0.0 N N N 

0.2 0.249 0.2 81.9 15.9 1.9 0.0 0.0 N N Y 

0.6 0.162 6.2 72.8 16.4 0.3 0.0 0.0 N N N 

2.0 0.185 64.9 33.9 0.1 0.0 0.0 0.1 N N N 

1.5 0.150 0.0 57.8 1.4 39.6 0.0 0.0 N N N 

0.7 0.186 0.3 3.5 0.0 96.2 0.1 0.0 N N N 



04087214 Milwaukee County, Wisconsin 42.945 -88.014 38.1 

07083000 Lake County, Colorado 39.172 -106.389 61.1 

072632962 Pulaski County, Arkansas 34.881 -92.681 22.5 

072632971 Pulaski County, Arkansas 34.890 -92.647 6.6 

10167800 Salt Lake County, Utah 40.614 -111.842 95.8 

10336778 El Dorado County, California 38.909 -119.961 31.5 

14201300 Marion County, Oregon 45.101 -122.821 38.8 

14205400 Washington County, Oregon 45.681 -123.070 87.5 

14206950 Washington County, Oregon 45.404 -122.754 81.6 

0.5 0.250 0.5 14.0 1.9 81.1 2.4 0.0 N N N 

0.8 0.138 0.0 30.7 0.0 0.0 37.2 2.2 N Y Y 

0.7 0.350 0.0 98.5 0.7 0.0 0.0 0.0 N N N 

0.2 0.402 0.0 99.4 0.6 0.0 0.0 0.0 N N N 

0.5 0.258 0.1 44.3 1.6 12.9 3.4 30.6 N N Y 

0.2 0.131 0.0 66.5 0.0 1.0 11.3 17.5 N Y Y 

0.6 0.248 0.1 2.7 88.9 1.0 0.7 0.0 N N Y 

2.1 0.161 0.0 92.1 1.0 0.0 0.0 0.2 N N Y 

1.2 0.184 0.4 28.4 5.2 56.3 2.2 5.0 N Y Y 



Discussion 

In order to better understand the temporal variability of DOC flux from the 

terrestrial environment to the aquatic, we analyzed the within-basin response of 

[DOC] to several time-varying predictors for individual streams in the SBS. When 

we analyzed within-basin response to three time-varying predictors (Q, SR, 

GPP32) we found that [DOC] was often controlled by discharge (ri=121). These 

relationships were generally positively sloped (n=110), indicating that increasing 

discharge had a concentrating effect on DOC. This was expected because 

previous studies have found that with increasing runoff, more of a watershed can 

become hydrologically connected to the stream. If runoff increased, previously 

disconnected portions of the watershed, particularly in organic upper soil 

horizons, could be flushed of DOC [Boyeret a/., 1997]. The deeper soils 

associated with basins where Q was a significant predictor of [DOC] (Figure 2.7) 

provide some support for this hypothesis in that systems with deep soils can 

accomodate a greater rise in runoff before all soils are fully hydrologically 

connected. 

Several basins (n=11) exhibited a negative slope, indicating a diluting 

effect. In these cases the watersheds may have already been fully hydrologically 

connected such that when runoff increased, the volume of water in the system 

rose while the absolute quantity of DOC transferred to the aquatic system 

remained the same, resulting in dilution. We expected such basins to be 

dominated by wetlands, which have been previously associated with a diluting 
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effect [Buffam et al., 2007], but found no significant difference in median wetland-

cover when comparing systems with postively vs. negaitvely sloped relationships. 

However, it is interesting to note that the population of basins with negatively 

sloped relationships had significantly lower percent forest-cover than the 

population of basins with positively sloped relationships (Figure 2.8), but it is 

unclear how this may be related to diluting versus concentrating hydrological 

processes. 

The role of SR in controlling [DOC] in the SBS was also apparent. Out of 

80 systems where SR was a significant predictor of [DOC], 77 exhibited a positive 

relationship. These results support the hypothesis discussed in Chapter 1 that 

DOC is removed from solution in the deep subsurface by microbial degradation 

and adsorption to mineral surfaces. When Sr is high, overland flow and shallow 

subsurface flow through organic soil horizons become more likely and high 

concentrations of minimally degraded organic compounds can be added to 

solution. Conversely, when SR is low, most streamflow has its origin in deeper 

groundwater of low concentration and low SUVA254- Thus, we expected SUVA254 

to exhibit a similar response to SR as [DOC], but SUVA254 was significantly 

correlated with Sr in only 2 out of 19 basins. 

The third time-varying parameter, 32-day antecedent GPP, was also 

a statistically significant predictor of [DOC] in a large number of basins (n=95). 

We interpreted these results as an indication that in some watersheds DOC 

transfer to the aquatic system can be partially controlled by the seasonality of 

terrestrial primary production. We found that the regression between [DOC] and 

56 



GPP32 was positively sloped in 78 basins, confirming an overall positive 

relationship. However, we did find significant negative relationships in 17 basins. 

The population of basins with a positively sloped relationship between GPP32 and 

[DOC] had significantly higher percent wetland and agricultural-cover and 

significantly lower percent shrubland-cover than those basins with a negative 

relationship (Figure 2.9), however it is yet unclear what processes might drive 

these negative relationships between GPP32 and [DOC]. 

O 
9 o 

a> Q_ 

Concentrating (positive slope) Diluting (negative slope) 
n=110 n=11 

Figure 2.8. "Box and whisker" plot showing the 

difference in percent forest-cover among 

populations of basins where the [DOC] vs. Q 

relationship is concentrating (positive slope) or 

diluting (negative slope). 

Understanding the temporal variability of DOC quantity and quality in the 

aquatic environment is crucial to understanding many biogeochemical processes. 

Efforts to model this variability have thus far been hampered by the lack of time-

varying DOC loading data at a continental scale. However, directly quantifying 

the loading of DOC from the terrestrial environment to the aquatic environment is 

complex because of the numerous sources of DOC to aquatic systems. Such 

sources include the microbial processing of direct litter fall and other particulate 

organic matter [Zieglerand Fogel, 2003], autochthonous primary production, and 
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DOC carried to aquatic systems by groundwater flow, overland flow, and direct 

precipitation. In order to study DOC loading to aquatic systems we considered 

DOC quantity in small headwater streams to be representative of an aggregation 

of these different sources. However, for this aggregation of DOC in headwater 

streams to be an appropriate proxy for terrestrial loading to the aquatic system 

we must assume that in situ autocthonous production in the headwaters is low. 

Therefore, we focused on small basins, which are less likely to have significant 

accumulation of autochthonous production [Vannote eta!., 1980]. Second, we 

must assume that the biogeochemical processing which does occur will be 

dominated by decomposition of labile organic compounds in direct litter fall and 

labile autochthonous DOC rather than the more refractory terrestrial DOC. This 

assumption also has some basins in the River Continuum Concept [Vannote et 

al., 1980] and studies continue to show preferential microbial remineralization of 

labile POC and labile autochthonous DOC [Guiiiemette and dei Giorgio, 2011; 

Koehleretal., 2012; Vahatalo etal., 2010; Ziegler and Fogel, 2003]. However, 

even in very small streams, microbes do not exclusively consume particulate and 

autochthonous organic carbon; some allochthonous DOC will always be 

remineralized. Thus, any terrestrial DOC flux estimates based on these analyses, 

even in small basins, should be considered a lower bound. 
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Figure 2.9. "Box and whisker" plot showing 

the difference among populations of basins 

where the [DOC] vs. GPP32 relationship is 

positive or negative with respect to a) percent 

wetland-cover, b) percent agricultural-cover, and 

c) percent shrubland-cover. 
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CONCLUSIONS AND FUTURE WORK 

We estimated mean DOC quantity and quality in 17 large and diverse 

North American rivers and demonstrated that wetlands play an integral role in 

controlling both DOC concentration and quality. These observations suggested 

that over mean annual time scales, river networks typically do not greatly alter 

terrestrial source signals except in basins with high residence times. We found 

that runoff does not drive DOC concentration variability among basins at the 

annual scale, but that it does within some individual systems. These results 

supply valuable insight into the controls on mean DOC quantity and quality at 

broad spatial and temporal scales and provide annual estimates of DOC flux and 

quality for several of the largest rivers in temperate North America. 

We also found significant relationships between DOC concentration and 

several time-varying predictors among small watersheds. We found that DOC 

concentration is strongly related to stream discharge, the ratio of stormflow to 

total stream discharge, and antecedent MODIS gross primary production for the 

basin. These relationships were found within individual basins and will provide 

the groundwork in future efforts to model temporal DOC quantity and quality 

variability at a continental scale. However, further work is still needed to identify 

the types of basins where each of the three time-varying predictors is applicable. 
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In order to better understand the source and fate of DOC in the 

environment future efforts should include improved sampling of headwater DOC 

quantity and quality in conjunction with large river sampling. Further studies 

should continue to work towards unraveling the hydrological processes that drive 

DOC variability within basins, the subsurface biogeochemical reactions that drive 

baseflow chemistry, and the biological and geochemical processing that drive 

DOC quantity and quality over time. 
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Table A.1. Table showing the regression equations, R2, and p-value for dissolved organic carbon 

(DOC) vs. 32-day antecedent discharge (Q32) in individual basins. 

USGS Station # Location Regression equation R2 P 

01095220 Worcester County, Massachusetts fDOC] = 4.6 * QA(0.128) 0.210 0.003 

01102345 Essex County, Massachusetts fDOCl = 7.14 * QA(0.071) 0.113 0.024 

01172680 Worcester County, Massachusetts fDOC] = 8.496 * QA(0.283) 0.399 0.004 

01174050 Worcester County, Massachusetts fDOC] = 4.687 *QA(-0.146) 0.434 0.000 

01174565 Franklin County, Massachusetts [DOC1 = 2.924 *QA(0.119) 0.134 0.001 

01174575 Franklin County, Massachusetts fDOCl = 2.684 *QA(-0.122) 0.078 0.023 

01184490 Hartford County, Connecticut [DOC] = 3.469 * QA(0.292) 0.172 0.004 

01187800 Litchfield County, Connecticut rDOCl = 3.251 * QA(0.305) 0.280 0.036 

01362380 Ulster County, New York fDOCl = 1.424 *QA(0.171) 0.247 0.000 

01390500 Bergen County, New Jersey [DOC] = 2.63 *QA(0.341) 0.593 0.000 

01394500 Union County, New Jersey fDOCl = 3.726 * QA(0.208) 0.238 0.000 

01399690 Hunterdon County, New Jersey [DOC] = 3.739 * QA(0.333) 0.520 0.000 

01399700 Hunterdon County, New Jersey [DOC] = 3.115 *QA(0.331) 0.345 0.000 

01407760 Monmouth County, New Jersey rDOCl = 5.106 *QA(0.23) 0.161 0.010 

01410150 Burlington County, New Jersey fDOC] = 8.296 * QA(0.928) 0.474 0.000 

01410784 Camden County, New Jersey rDOCl = 14.696 * QA(0.548) 0.448 0.000 

01410810 Camden County, New Jersey rDOCl = 17.347 *QA(0.728) 0.445 0.000 

01410820 Camden County, New Jersey rDOC] = 6.749*QA(0.713) 0.497 0.000 

01411300 Cape May County, New Jersey rDOC] = 8.462 *QA(1.18) 0.669 0.008 

01412800 Cumberland County, New Jersey [DOC1 = 3.106'QA(0.679) 0.524 0.000 

01421618 Delaware County, New York rDOC] = 2.976 *QA(0.126) 0.211 0.000 

01422738 Delaware County, New York rDOCl = 2.665 * QA(0.076) 0.101 0.000 

01422747 Delaware County, New York rDOCl = 1.676 *QA(0.19) 0.347 0.000 

01434013 Ulster County, New York [DOC] = 1.13 * QA(0.398) 0.622 0.000 

01434017 Ulster County, New York rDOCl = 1.124 *QA(0.392) 0.582 0.000 

0143402265 Ulster County, New York [DOC] = 1.036 *QA(0.241) 0.451 0.000 

01434025 Ulster County, New York fDOCl = 2.558 * QA(0.235) 0.352 0.000 

01434105 Ulster County, New York fDOCl = 2.192 * QA(0.258) 0.103 0.003 

01434176 Ulster County, New York fDOC] = 0.778 * QA(0.304) 0.471 0.000 

01434498 Sullivan County, New York fDOCl = 0.836 * QA(0.319) 0.586 0.000 

01466500 Burlington County, New Jersey [DOC] = 112.014 *QA(0.973) 0.605 0.000 

01467019 Burlington County, New Jersey rDOCl = 9.846 * QA(0.217) 0.178 0.029 

01467150 Camden County, New Jersey rDOCl = 3.972 * QA(0.132) 0.153 0.000 

01478000 New Castle County, Delaware rDOC] = 6.93 *QA(0.159) 0.268 0.006 

01480300 Chester County, Pennsylvania fDOCl = 8.192 *QA(0.522) 0.611 0.000 

014806318 Chester County, Pennsylvania rDOC] = 7.65 * QA(0.679) 0.360 0.001 

01480675 Chester County, Pennsylvania rDOCl = 8.609 *QA(0.159) 0.367 0.008 

01493112 Kent County, Maryland [DOC] = 4.521 * QA(0.41) 0.456 0.000 

01493500 Kent County, Maryland [DOC1 = 6.185 * QA(0.092) 0.064 0.036 

01527050 Steuben County, New York [DOC1 = 6.105 *QA(0.243) 0.131 0.000 

01572000 Schuylkill County, Pennsylvania TDOC] = 2.33 *QA(0.167) 0.196 0.000 

01576771 Lancaster County, Pennsylvania fDOC] = 13.254 * QA(0.205) 0.122 0.000 

01576772 Lancaster County, Pennsylvania fDOC] = 11.637 *QA(0.149) 0.073 0.002 
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01591000 Montgomery County, Maryland [DOC1 = 2.331 * QA(0.267) 0.259 0.000 

01594710 St Mary [DOC] = 6.936 * QA(0.282) 0.628 0.000 

01621050 Rockingham County, Virginia fDOCl = 5.879 * QA(0.266) 0.110 0.013 

01654000 Fairfax County, Virginia [DOCl = 3.595 *QA(0.152) 0.141 0.023 

02082731 ^Franklin County, North Carolina [DOC] = 5.892 * QA(0.087) 0.154 0.015 

02083833 Pitt County, North Carolina TDOCl = 5.584 * QA(0.224) 0.209 0.000 

02090625 Wayne County, North Carolina [DOC] = 13.408 *QA(0.198) 0.667 0.000 

02091960 Beaufort County, North Carolina [DOC] = 11.22 *QA(-0.162) 0.623 0.038 

02123567 Montgomery County, North Carolina [DOC] = 11.967 *QA(0.608) 0.486 0.049 

02143040 Burke County, North Carolina [DOC1 = 1.443 * QA(0.357) 0.154 0.004 

021603257 Greenville County, South Carolina [DOC] = 1.869 * QA(0.243) 0.403 0.000 

02172300 Aiken County, South Carolina rDOCl = 5.114 *QA(0.142) 0.117 0.025 

02174250 Orangeburg County, South Carolina [DOC] = 5.484 * QA(0.219) 0.783 0.000 

02300700 Hillsborough County, Florida [DOC] = 12.145 *QA(0.192) 0.573 0.000 

02306774 Hillsborough County, Florida [DOC] = 19.279 *QA(0.13) 0.638 0.000 

02332830 Hall County, Georgia [DOC] = 2.091 * QA(0.465) 0.558 0.000 

02335870 Cobb County, Georgia rDOC] = 2.019 *QA(0.291) 0.541 0.000 

02337500 Carroll County, Georgia [DOC] = 1.559 *QA(0.45) 0.534 0.000 

02338523 Heard County, Georgia rDOCl = 1.441 * QA(0.209) 0.145 0.015 

03039925 Somerset County, Pennsylvania rDOCl = 1.176 *QA(0.128) 0.061 0.012 

03144270 Coshocton County, Ohio [DOC] = 6.589 * QA(0.237) 0.262 0.000 

03144289 Coshocton County, Ohio [DOC1 = 7.194 *QA(0.189) 0.146 0.012 

03201600 Vinton County, Ohio [DOC] = 5.455 *QA(0.21) 0.120 0.005 

03353600 Marion County, Indiana rDOCl = 4.958 * QA(0.078) 0.164 0.023 

03353637 Marion County, Indiana [DOC1 = 3.92 * QA(0,075) 0.118 0.000 

03361638 Hancock County, Indiana [DOC] = 7.373 * QA(0.216) 0.476 0.000 

03373530 Orange County, Indiana [DOC1 = 2.835 * QA(0.26) 0.281 0.001 

03448800 Buncombe County, North Carolina [DOCl = 2.372 *QA(0.413) 0.701 0.006 

04071795 Shawano County, Wisconsin [DOC1 = 13.59 *QA(0.1) 0.265 0.004 

040851325 Brown County, Wisconsin [DOC] = 23.977 * QA(0.347) 0.629 0.037 

04086175 Sheboygan County, Wisconsin [DOC] = 11.263* QA(-0.101) 0.318 0.026 

04087030 Waukesha County, Wisconsin [DOCl = 8.828 *QA(0.218) 0.596 0.000 

04087070 Milwaukee County, Wisconsin [DOCl = 8.583 *QA(0.121) 0.666 0.001 

04087088 Milwaukee County, Wisconsin [DOCl = 6.846 *QA(0.171) 0.373 0.021 

04087204 Milwaukee County, Wisconsin [DOC] = 7.238 * QA(0.089) 0.221 0.000 

04288230 Lamoille County, Vermont [DOC] = 6.691 * QA(0.467) 0.627 0.012 

05014300 Glacier County, Montana [DOCl = 0.749 *QA(0.121) 0.205 0.000 

05427948 Dane County, Wisconsin [DOC] = 12.956 * QA(0.256) 0.302 0.002 

05451080 Hamilton County, Iowa [DOCl = 5.773 * QA(0.085) 0.178 0.000 

05540275 Du Page County, Illinois [DOCl = 4.606 * QA(-0.054) 0.147 0.005 

06058900 Jefferson County, Montana [DOCl = 5.735 * QA(0.699) 0.888 0.000 

06187915 Park County, Montana [DOC] = 1.12 * QA(0.158) 0.542 0.000 

06339560 Mercer County, North Dakota [DOCl = 16.208 *QA(0.072) 0.070 0.008 

06340580 Mercer County, North Dakota [DOC] = 14.432 * QA(-0.083) 0.205 0.015 

06340780 Mercer County, North Dakota [DOC] = 15.569 * QA(-0.085) 0.161 0.020 

06355310 Bowman County, North Dakota [DOCl = 16.474 *QA(-0.13) 0.389 0.000 

06404800 Custer County, South Dakota fDOCl = 32.648 * QA(0.483) 0.450 0.041 

06404998 Custer County, South Dakota fDOCl = 39.462 * QA(0.664) 0.722 0.002 
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06611800 Jackson County, Colorado fDOCl = 7.92 * QA(0.228) 0.470 0.000 

06714400 Clear Creek County, Colorado [DOCl = 3.823 *QA(1.855) 0.677 0.014 

06879650 Riley County, Kansas [DOCl = 5.145 *QA(0.252) 0.423 0.001 

06929315 Texas County, Missouri [DOC1 = 1.905 * QA(0.334) 0.817 0.000 

07249100 Mccurtain County, Oklahoma [DOCl = 6.109 *QA(0.139) 0.278 0.010 

07362587 Saline County, Arkansas [DOC1 = 2.551 * QA(0.266) 0.529 0.000 

07381590 St. Mary Parish, Louisiana [DOCl = 1.819 *QA(0.118) 0.143 0.007 

09046530 Summit County, Colorado [DOCl = 0.924 * QA(0.275) 0.444 0.000 

09153290 Mesa County, Colorado [DOC] = 4.187 *QA(-0.111) 0.255 0.000 

09244464 Routt County, Colorado [DOC] = 38.115 * QA(0.223) 0.549 0.014 

09244470 Routt County, Colorado fDOCl = 19.435 * QA(-0.125) 0.919 0.006 

09250600 Moffat County, Colorado [DOC1 = 11.088 *QA(0.159) 0.220 0.018 

09306242 Rio Blanco County, Colorado [DOCl = 11.326 * QA(0.132) 0.040 0.017 

09310575 Carbon County, Utah [DOCl = 5.236 * QA(0.365) 0.894 0.010 

10172000 Salt Lake County, Utah [DOC1 = 41.979 * QA(0.665) 0.393 0.023 

10244950 White Pine County, Nevada [DOCl = 4.22 * QA(0.48) 0.195 0.049 

10343500 Nevada County, California [DOCl = 3.004 * QA(0.404) 0.555 0.000 

11058500 San Bernardino County, California [DOCl = 11.275 *QA(0.641) 0.845 0.002 

11063680 San Bernardino County, California [DOCl = 8.629 * QA(0.65) 0.933 0.005 

11262900 Merced County, California [DOCl = 9.567 *QA(0.176) 0.172 0.025 

11447360 Sacramento County, California [DOCl = 8.65 * QA(0.069) 0.190 0.004 

12108500 King County, Washington [DOCl = 3.071 * QA(0.547) 0.563 0.000 

12113375 King County, Washington [DOCl = 5.134 *QA(-0.111) 0.312 0.000 

12128000 King County, Washington [DOCl = 4.801 * QA(0.208) 0.191 0.001 

12212100 Whatcom County, Washington [DOCl = 2.823 * QA(0.337) 0.570 0.000 

12416000 Kootenai County, Idaho [DOCl = 5.764 * QA(0.629) 0.477 0.035 

12447390 Okanogan County, Washington [DOCl = 1.843 * QA(0.313) 0.592 0.000 

14161500 Lane County, Oregon [DOCl = 0.824 *QA(0.108) 0.103 0.000 

14203750 Washington County, Oregon rDOCl = 0.912 *QA(0.278) 0.541 0.000 

401707105395000 Larimer County, Colorado [DOCl = 1.003 *QA(0.093) 0.020 0.023 

01022800 Hancock County, Maine [DOCl = 3.337 * QA(-0.028) 0.012 0.295 

01097480 Middlesex County, Massachusetts [DOCl = 5.095 * QA(-0.044) -0.072 0.580 

01101000 Essex County, Massachusetts [DOCl = 7.956 * QA(0.014) -0.307 0.823 

01102500 Middlesex County, Massachusetts [DOCl = 4.661 * QA(0.023) -0.003 0.398 

01104460 Middlesex County, Massachusetts [DOCl = 4.536 *QA(0.019) -0.160 0.608 

01105000 Norfolk County, Massachusetts [DOCl = 6.684 * QA(0) -0.031 0.991 

01172800 Worcester County, Massachusetts [DOCl = 9.583 * QA(-0.062) -0.018 0.407 

01208873 Fairfield County, Connecticut [DOC] = 2.617 *QA(0.067) 0.006 0.284 

01304000 Suffolk County, New York [DOCl = 2.701 * QA(-0.107) -0.075 0.893 

01356190 Schenectady County, New York [DOC] = 4.598 *QA(-0.061) 0.064 0.051 

01367800 Sussex County, New Jersey [DOCl = 3.422 * QA(0.024) -0.042 0.743 

01372051 Dutchess County, New York [DOCl = 4.009 * QA(-0,056) 0.052 0.146 

01376500 Westchester County, New York [DOCl = 3.569 * QA(-0.079) -0.061 0.556 

01377500 Bergen County, New Jersey [DOCl = 3.676 * QA(0.269) 0.114 0.240 

01381500 Morris County, New Jersey [DOCl = 2.911 * QA(0.072) 0.004 0.294 

01393450 Union County, New Jersey [DOCl = 4.042 * QA(-0.044) -0.031 0.728 

01398000 Hunterdon County, New Jersey [DOCl = 2.924 *QA(-0.031) 0.012 0.137 

01399500 Morris County, New Jersey [DOCl = 4.062 * QA(0.005) -0.033 0.948 
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01403400 Somerset County, New Jersey [DOC] = 5.405 * QA(0.375) 0.099 0.316 

01410787 Camden County, New Jersey [DOC] = 4.313 * QA(-0.098) -0.014 0.403 

01463620 Mercer County, New Jersey [DOC] = 4.172 *QA(-0.011) -0.043 0.806 

01464907 Bucks County, Pennsylvania [DOC] = 4.85 * QA(0.018) -0.006 0.416 

01467081 Burlington County, New Jersey [DOC1 = 4.62 * QA(0.003) -0.034 0.956 

01478137 Chester County, Pennsylvania [DOC] = 22.842 * QA(0.089) -0.007 0.378 

01479820 Chester County, Pennsylvania [DOC1 = 5.042 * QA(0.597) 0.131 0.295 

01480095 New Castle County, Delaware [DOC1 = 7.642 * QA(0.033) -0.015 0.459 

01480637 Chester County, Pennsylvania [DOC] = 16.108 *QA(0.337) 0.099 0.135 

01482500 Salem County, New Jersey [DOC] = 7.121 *QA(0.084) 0.028 0.197 

01484100 Kent County, Delaware [DOC] = 0.292 * QA(-0.569) 0.349 0.174 

01559795 Bedford County, Pennsylvania fDOC] = 1.165*QA(-0.217) 0.048 0.223 

01571490 Cumberland County, Pennsylvania [DOC] = 2.041 * QA(0.237) 0.021 0.149 

01573095 Lebanon County, Pennsylvania [DOC] = 1.477 *QA(0.206) 0.041 0.178 

01594670 Calvert County, Maryland rDOCl = 6.024 *QA(0.021) 0.001 0.282 

01659500 Stafford County, Virginia [DOC] = 3.99 * QA(0.079) -0.287 0.765 

01673638 King William County, Virginia [DOC] = 4.528 *QA(-0.151) -0.047 0.432 

02084164 Pitt County, North Carolina [DOC] = 8.298 * QA(0.035) -0.017 0.495 

02084317 Beaufort County, North Carolina [DOC] = 4.365 * QA(-0.087) -0.115 0.499 

02084540 Beaufort County, North Carolina rDOCl = 24.69 *QA(-0.16) 0.037 0.303 

0208524090 Durham County, North Carolina [DOC] = 8.027 * QA(0.097) 0.128 0.228 

02086849 Durham County, North Carolina [DOC] = 12.709* QA(-0.093) -0.105 0.489 

02087580 Wake County, North Carolina [DOC] = 5.956 * QA(0.028) 0.083 0.067 

02090960 Wayne County, North Carolina rDOCl = 12.456* QA(0.257) 0.440 0.134 

0209096970 Wayne County, North Carolina [DOC] = 9.212 *QA(0.026) -0.071 0.514 

0209173190 Greene County, North Carolina [DOC] = 10.789 *QA(0.104) 0.081 0.091 

0209173200 Greene County, North Carolina rDOCl = 15.532* QA(0.018) 0.002 0.313 

02091970 Craven County, North Carolina rDOC] = 16.676* QA(-0.058) 0.070 0.247 

02096842 Orange County, North Carolina fDOCl = 15.32 *QA(0.158) 0.082 0.231 

02096846 Orange County, North Carolina rDOCl = 5.69 * QA(-0.038) -0.191 0.852 

0209741955 Durham County, North Carolina rDOCl = 8.93 * QA(0.094) 0.282 0.207 

02097464 Oranqe County, North Carolina [DOC] = 5.693 * QA(0.069) 0.034 0.244 

02105524 Bladen County, North Carolina [DOC] = 13.049* QA(-0.019) -0.158 0.843 

02172305 Aiken County, South Carolina [DOC] = 5.539 * QA(0.007) -0.017 0.973 

02314274 Charlton County, Georgia [DOC] = 49.248 * QA(-0.028) -0.155 0.598 

02315392 Columbia County, Florida [DOC1 = 39.263 * QA(0.079) 0.172 0.147 

02336635 Cobb County, Georgia [DOC] = 1.686 *QA(0.398) 0.515 0.066 

02358685 Liberty County, Florida [DOC] = 4.332 * QA(0.025) -0.110 0.930 

03015795 Warren County, Pennsylvania [DOC] = 1.851 *QA(-0.02) -0.036 0.765 

03037525 Indiana County, Pennsylvania [DOC] = 1.955 *QA(0.01) -0.028 0.797 

03039930 Somerset County, Pennsylvania [DOC] = 0.972 * QA(-0.059) -0.002 0.341 

03110983 Jefferson County, Ohio [DOC] = 6.653 * QA(0.084) 0,037 0.131 

03201660 Vinton County, Ohio [DOC] = 4.185 *QA(0.112) 0.006 0.286 

03201700 Vinton County, Ohio [DOC] = 3.957 *QA(0.101) 0.018 0.153 

03207962 Pike County, Kentucky [DOC] = 2.392 * QA(0.037) -0.041 0.651 

03207965 Pike County, Kentucky [DOC] = 3.417 * QA(-0.013) -0.048 0.855 

03282075 Lee County, Kentucky [DOC] = 3.385 * QA(0.043) -0.037 0.574 

03282100 Estill County, Kentucky [DOC] = 3.153 *QA(0.099) 0.063 0.142 
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03283370 Powell County, Kentucky [DOC1 = 2.101 *QA(-0.048) -0.009 0.375 

03353551 Marion County, Indiana [DOC1 = 5.547 * QA(0.048) 0.112 0.076 

03450000 Buncombe County, North Carolina [DOCl = 2.561 * QA(0.264) 0.128 0.137 

04024315 Douglas County, Wisconsin [DOC] = 35.924 * QA(0.742) 0.669 0.057 

04026349 Bayfield County, Wisconsin [DOC] = 7.207 * QA(0.497) -0.134 0.520 

04087159 Milwaukee County, Wisconsin [DOC] = 6.835 *QA(0.174) 0.044 0.248 

04087214 Milwaukee County, Wisconsin TDOCl = 6.935 * QA(0.049) 0.196 0.112 

04256485 Herkimer County, New York [DOC] = 2.508 * QA(-0.023) -0.226 0.791 

05288470 Anoka County, Minnesota [DOC] = 24.048* QA(0.151) 0.257 0.064 

05288705 Hennepin County, Minnesota [DOC] = 6.585 *QA(0.01) -0.014 0.721 

05357215 Vilas County, Wisconsin [DOC] = 5.1 *QA(0.051) -0.014 0.648 

05357225 Vilas County, Wisconsin [DOC] = 7.602 * QA(0.116) -0.001 0.342 

05487550 Jasper County, Iowa [DOCl = 5.874 * QA(0.091) -0.019 0.389 

05569968 Fulton County, Illinois [DOC] = 3.39 *QA(-0.113) 0.064 0.288 

05570330 Fulton County, Illinois [DOC] = 8.279 *QA(0.109) -0.082 0.519 

05595226 St Clair County, Illinois [DOC] = 3.945 *QA(-0.411) 0.356 0.124 

06061900 Jefferson County, Montana TDOCl =2.601 *QA(0.144) 0.233 0.154 

06279790 Park County, Wyoming [DOCl = 3.857 * QA(0.335) 0.142 0.101 

06279795 Park County, Wyoming [DOCl = 2.461 * QA(0.233) 0.153 0.103 

06307525 Big Horn County, Montana [DOCl = 18.457 *QA(0.164) -0.215 0.626 

06307528 Rosebud County, Montana [DOC] = 76.191 * QA(0.475) 0.283 0.207 

06339180 Dunn County, North Dakota [DOCl = 24.463 * QA(0.009) -0.080 0.857 

06340540 Mercer County, North Dakota [DOC] = 14.396 * QA(-0.05) 0.024 0.273 

06340890 Mclean County, North Dakota [DOC] = 25.109 *QA(0.088) -0.006 0.380 

06342040 Oliver County, North Dakota rDOCl = 15.31 *QA(0.022) -0.051 0.685 

06720330 Adams County, Colorado [DOC] = 26.14 * QA(0.098) 0.016 0.245 

06720415 Adams County, Colorado [DOCl = 9.897 * QA(-0.074) 0.003 0.298 

07031692 Shelby County, Tennessee [DOC] = 6.273 *QA(0.011) -0.008 0.440 

07083000 Lake County, Colorado [DOCl = 1.034 *QA(0.106) 0.023 0.082 

07232024 Pittsburg County, Oklahoma [DOC] = 11.734 *QA(0.002) -0.062 0.944 

07246615 Le Flore County, Oklahoma [DOC] = 8.059 *QA(0.104) 0.006 0.300 

07247550 Latimer County, Oklahoma [DOCl = 8.428 * QA(-0.054) -0.001 0.336 

07248620 Le Flore County, Oklahoma [DOCl = 3.052 * QA(0.094) -0.011 0.381 

07249422 Le Flore County, Oklahoma [DOC] = 8.823 * QA(0.018) -0.102 0.786 

072632962 Pulaski County, Arkansas [DOC] = 5.458 * QA(-0.019) -0.108 0.873 

072632971 Pulaski County, Arkansas [DOC] = 4.677 * QA(0.285) 0.024 0.293 

072632982 Pulaski County, Arkansas [DOCl = 5.817 *QA(0.014) -0.108 0.869 

09243700 Routt County, Colorado [DOCl = 8.204 * QA(0.057) -0.027 0.466 

09243800 Routt County, Colorado [DOCl = 9.025 *QA(-0.041) -0.045 0.503 

09243900 Routt County, Colorado [DOC] = 9.573 *QA(-0.016) -0.095 0.834 

09244415 Routt County, Colorado [DOCl = 9.617 *QA(0.056) 0.146 0.189 

09244460 Routt County, Colorado [DOC] = 9.725 * QA(0.065) -0.124 0.586 

09250510 Moffat County, Colorado [DOCl = 12.858 *QA(0.033) -0.068 0.595 

09250610 Moffat County, Colorado [DOC] = 11.332 *QA(0.039) -0.018 0.399 

09306025 Rio Blanco County, Colorado [DOC] = 27.791 * QA(0.239) -0.123 0.583 

09306235 Rio Blanco County, Colorado [DOCl = 10.566 *QA(0.052) -0.019 0.586 

09306240 Rio Blanco County, Colorado [DOC] = 15.731 *QA(0.056) -0.029 0.457 

09306244 Rio Blanco County, Colorado [DOCl = 10.683 *QA(-0.009) -0.090 0.941 
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09310600 Carbon County, Utah [DOC| = 5.581 * QA(0.196) 0.009 0.312 

09310700 Carbon County, Utah [DOC] = 5.493 * QA(0.205) 0.090 0.129 

09313965 Carbon County, Utah [DOCl = 6.468 * QA(-0.027) -0.162 0.887 

09313975 Carbon County, Utah [DOC] = 2.912 *QA(-0.201) 0.061 0.166 

09313985 Carbon County, Utah [DOC] = 3.734 * QA(-0.135) -0.102 0.505 

09314374 Emery County, Utah [DOC] = 13.781 * QA(0.225) -0.064 0.546 

09317919 Emery County, Utah [DOC] = 2.51 * QA(-0.069) -0.017 0.402 

09317920 Emery County, Utah [DOC] = 4.633 * QA(-0.049) -0.161 0.871 

09324200 Emery County, Utah [DOC] = 5.292 * QA(0.043) -0.139 0.878 

09331850 Sevier County, Utah [DOCl = 3.472 * QA(-0.033) -0.124 0.928 

09367685 San Juan County, New Mexico [DOC] = 7.037 * QA(0.042) -0.145 0.644 

10167499 Salt Lake County, Utah [DOC] = 3.204 *QA(0.103) 0.042 0.296 

10167800 Salt Lake County, Utah [DOC] = 2.645 * QA(0.055) 0.029 0.188 

10170250 Salt Lake County, Utah [DOC] = 9.333 * QA(0.312) 0.003 0.323 

10249300 Nye County, Nevada [DOC] = 3.143 *QA(0.141) 0.110 0.105 

10249900 Esmeralda County, Nevada [DOC] = 1.942 * QA(-0.279) -0.056 0.585 

10254970 Imperial County, California [DOCl =4.607 *QA(0.519) -0.152 0.668 

10336626 El Dorado County, California [DOC] = 1.755 *QA(0.101) -0.188 0.829 

10336778 El Dorado County, California [DOCl = 3.181 * QA(0.444) 0.155 0.207 

11482468 Humboldt County, California [DOCl = 3.884 * QA(-0.007) -0.033 0.898 

11532620 Del Norte County, California [DOC] = 2.183 * QA(0.112) 0.067 0.181 

12103380 King County, Washington [DOC] = 0.986 *QA(0.179) 0.086 0.094 

12185300 Snohomish County, Washington [DOC] = 0.758 * QA(0.003) -0.010 0.957 

14201300 Marion County, Oregon [DOCl = 3.784 * QA(0.004) -0.014 0.845 

14205400 Washington County, Oregon rDOC] = 1.128 *QA(-0.033) -0.007 0.395 

14206950 Washington County, Oregon [DOCl = 3.883 * QA(-0.02) -0.009 0.474 

14211500 Multnomah County, Oregon [DOCl = 3.834 * QA(-0.048) 0.122 0.190 

14222980 Cowlitz County, Washington [DOC] = 2.028 *QA(-0.128) -0.052 0.693 

401723105400000 Larimer County, Colorado [DOC] = 0.628 *QA(-0.001) -0.004 0.986 

401733105392404 Larimer County, Colorado [DOC] = 0.901 * QA(-0.023) -0.073 0.521 
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Table A.2. Table showing the regression equations, R2, and p-value for dissolved organic carbon 

concentration (DOC) vs. 32-day antecedent MODIS gross primary production index (GPP32) in 

individual basins. 

USGS Station Location Regression equation R2 P 

01022805 Hancock County, Maine [DOC] = 0.009 * GPP32A(1.141) 0.589 0.046 

01106468 Plymouth County, Massachusetts [DOC] = 0.867 * GPP32A(0.326) 0.761 0.006 

01170970 Hampshire County, Massachusetts [DOC] = 0.865 * GPP32A(0.081) 0.507 0.002 

01209710 Fairfield County, Connecticut [DOC] = 2.259 * GPP32A(0.091) 0.250 0.002 

0131199010 Hamilton County, New York fDOC] = 6.734 * GPP32A(0.085) 0.273 0.005 

0131199022 Hamilton County, New York [DOCl = 3.406 * GPP32A(0.217) 0.429 0.047 

01362380 Ulster County, New York [DOCl = 1.166 * GPP32A(0.094) 0.099 0.000 

01367780 Sussex County, New Jersey [DOC] = 2.141 * GPP32A(0.094) 0.524 0.026 

01367800 Sussex County, New Jersey [DOC] = 2.421 * GPP32A(0.09) 0.228 0.002 

01367902 Sussex County, New Jersey [DOC] = 1.055 * GPP32A(0.204) 0.859 0.000 

01368825 Sussex County, New Jersey fDOC] = 2.918 * GPP32A(0.163) 0.623 0.012 

01379200 Somerset County, New Jersey [DOC] = 2.952 * GPP32A(0.058) 0.093 0.037 

01380100 Morris County, New Jersey [DOC] = 2.474 * GPP32A(0.076) 0.261 0.001 

01382960 Passaic County, New Jersey [DOC] = 1.389 * GPP32A(0.162) 0.425 0.047 

01388720 Morris County, New Jersey [DOC] = 3.726 * GPP32A(0.08) 0.292 0.000 

01399295 Morris County, New Jersey [DOCl = 0.705 * GPP32A(0.25) 0.656 0.009 

01400530 Monmouth County, New Jersey [DOC] = 0.793 * GPP32A(0.183) 0.589 0.016 

01400808 Mercer County, New Jersey [DOC] = 2.123 * GPP32A(0.156) 0.221 0.038 

01400860 Mercer County, New Jersey [DOC] = 2.374 * GPP32A(0.147) 0.316 0.007 

01401700 Somerset County, New Jersey [DOC] = 1.705 * GPP32A(0.124) 0.456 0.039 

01405340 Middlesex County, New Jersey [DOC] = 0.608 ' GPP32A(0.295) 0.593 0.000 

01407210 Monmouth County, New Jersey [DOC] = 0.852 * GPP32A(0.249) 0.579 0.017 

01407760 Monmouth County, New Jersey [DOC] = 1.589 * GPP32A(0.15) 0.127 0.020 

01408009 Monmouth County, New Jersey [DOC] = 0.783 * GPP32A(0.266) 0.229 0.002 

01408598 Ocean County, New Jersey [DOC] = 2.091 * GPP32A(0.135) 0.294 0.049 

01409387 Burlington County, New Jersey [DOCl = 2.623 * GPP32A(0.182) 0.120 0.021 

0140940950 Camden County, New Jersey [DOC] = 1.44 * GPP32A(0.227) 0.527 0.000 

01411196 Atlantic County, New Jersey [DOC] = 20.124 * GPP32A(-0.231) 0.099 0.033 

01411400 Cape May County, New Jersey [DOC] = 8.006 * GPP32A(0.137) 0.203 0.003 

01411444 Cumberland County, New Jersey [DOC] = 4.51 * GPP32A(0.147) 0.143 0.013 

01412005 Cumberland County, New Jersey [DOC] = 10.21 * GPP32A(-0.219) 0.444 0.042 

01413013 Cumberland County, New Jersey [DOC] = 0.946 * GPP32A(0.244) 0.538 0.023 

01421618 Delaware County, New York [DOC] = 2.272 * GPP32A(0.075) 0.146 0.000 

01422738 Delaware County, New York [DOC] = 1.64 * GPP32A(0.069) 0.198 0.000 

01422747 Delaware County, New York [DOC] = 1.626 * GPP32A(0.039) 0.035 0.000 

01434017 Ulster County, New York [DOC] = 1.238 * GPP32A(0.062) 0.124 0.011 

01434025 Ulster County, New York [DOC] = 1.55 * GPP32A(0.08) 0.128 0.000 

01434498 Sullivan County, New York [DOC] = 1.085 * GPP32A(0.048) 0.111 0.016 

01445900 Warren County, New Jersey [DOC] = 2.436 * GPP32A(0.101) 0.588 0.016 

01455700 Sussex County, New Jersey [DOCl = 2.411 * GPP32A(0.059) 0.529 0.025 

01458570 Hunterdon County, New Jersey [DOCl = 1.104 * GPP32A(0.097) 0.241 0.001 

01460870 Hunterdon County, New Jersey [DOC] = 11.242 * GPP32A(-0.172) 0.419 0.049 
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01464380 Burlington County, New Jersey [DOC] = 1.13 * GPP32A(0.194) 0.423 0.048 

01464460 Monmouth County, New Jersey [DOC] = 1.592 * GPP32A(0.145) 0.360 0.006 

01464515 Monmouth County, New Jersey [DOC] = 1.215 * GPP32A(0.227) 0.600 0.000 

01464527 Burlington County, New Jersey [DOC] = 1.459 * GPP32A(0.205) 0.477 0.000 

01465808 Burlington County, New Jersey [DOC1 = 3.06 * GPP32A(0.447) 0.819 0.003 

01465950 Burlington County, New Jersey [DOC] = 0.333 * GPP32A(0.473) 0.849 0.017 

01467150 Camden County, New Jersey [DOCl = 2.689 * GPP32A(0.074) 0.073 0.024 

01467359 Camden County, New Jersey [DOCl = 1.633 * GPP32A(0.145) 0.349 0.000 

01475042 Gloucester County, New Jersey [DOC] = 2.201 * GPP32A(0.116) 0.423 0.048 

01476625 Gloucester County, New Jersey [DOCl = 1.129 * GPP32A(0.283) 0.521 0.026 

01490116 Dorchester County, Maryland [DOCl = 3.172 * GPP32A(0.332) 0.665 0.016 

01591000 Montgomery County, Maryland [DOCl = 0.722 * GPP32A(0.188) 0.198 0.048 

01660490 Stafford County, Virginia [DOC] = 2.928 * GPP32A(0.076) 0.530 0.007 

01673638 King William County, Virginia [DOC] = 0.759 * GPP32A(0.379) 0.794 0.004 

0204279240 Newport News City, Virginia [DOC] = 131.263 * GPP32A(-0.493) 0.604 0.005 

02087580 Wake County, North Carolina [DOC] = 3.545 * GPP32A(0.085) 0.132 0.017 

0209096970 Wayne County, North Carolina [DOCl = 3.519 * GPP32A(0.192) 0.465 0.003 

0209173190 Greene County, North Carolina [DOC] = 1.086 * GPP32A(0.402) 0.493 0.000 

0209173200 Greene County, North Carolina [DOCl = 7.969 * GPP32A(0.128) 0.230 0.022 

03353637 Marion County, Indiana [DOCl = 2.511 * GPP32A(0.098) 0.120 0.025 

03361638 Hancock County, Indiana [DOC] = 2.135 * GPP32A(0.2) 0.072 0.046 

04080791 Portage County, Wisconsin [DOCl = 0*GPP32A(10.394) 0.345 0.002 

04084429 Outagamie County, Wisconsin [DOC] = 4.162 * GPP32A(0.094) 0.723 0.020 

04087204 Milwaukee County, Wisconsin [DOC] = 5.427 * GPP32A(0.049) 0.152 0.001 

05014300 Glacier County, Montana [DOCl = 0.642 * GPP32A(0.041) 0.095 0.000 

05540275 Du Page County, Illinois [DOC] = 4.42 * GPP32A(0.038) 0.118 0.012 

06187915 Park County, Montana [DOCl = 0.822 * GPP32A(0.088) 0.311 0.006 

06893564 Jackson County, Missouri [DOC] = 48396.765 * GPP32A(-1.479) 0.514 0.000 

07083000 Lake County, Colorado [DOC] = 0.674 * GPP32A(0.071) 0.065 0.010 

072632982 Pulaski County, Arkansas [DOCl = 2.455 * GPP32A(0.182) 0.188 0.046 

09013000 Larimer County, Colorado [DOC] = 2.487 * GPP32A(0.08) 0.212 0.048 

09013500 Grand County, Colorado [DOC] = 5.059 * GPP32A(-0.176) 0.062 0.010 

09306242 Rio Blanco County, Colorado [DOC] = 4.707 * GPP32A(0.052) 0.326 0.003 

10336778 El Dorado County, California [DOC] = 37649.148 * GPP32A(-1.989) 0.516 0.012 

10343500 Nevada County, California [DOC] = 8.275 * GPP32A(-0.359) 0.206 0.000 

11067000 San Bernardino County, California [DOCl = 4.139 * GPP32A(-0.337) 0.726 0.019 

12070000 Kitsap County, Washington [DOC] = 68.73 * GPP32A(-0.472) 0.771 0.032 

12072380 Kitsap County, Washington [DOC] = 7.353 * GPP32A(-0.285) 0.853 0.016 

12128000 King County, Washington [DOC] = 20.642 * GPP32A(-0.34) 0.831 0.020 

12178080 Skagit County, Washington [DOC] = 1,411 * GPP32A(-0.145) 0.268 0.019 

12178730 Whatcom County, Washington [DOC] = 1.413 * GPP32A(-0.13) 0.318 0.021 

14206435 Washington County, Oregon [DOC] = 2.724 * GPP32A(0.094) 0.296 0.000 

14206950 Washington County, Oregon [DOC] = 2.34 * GPP32A(0.096) 0.114 0.025 

362108077490901 Lenoir County, North Carolina [DOCl = 0.404 * GPP32A(0.34) 0.649 0.001 

353212077392801 Greene County, North Carolina [DOC] = 1.058 * GPP32A(0.259) 0.406 0.015 

353308077340301 Pitt County, North Carolina [DOC] = 0.981 * GPP32A(0.196) 0.497 0.014 

353351077342001 Pitt County, North Carolina [DOC] = 1.162 * GPP32A(0.197) 0.662 0.003 

353356077342901 Pitt County, North Carolina [DOC] = 1.332 * GPP32A(0.209) 0.734 0.002 
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355453092061301 Stone County, Arkansas [DOC1 = 0.138 * GPP32A(0.696) 0.421 0.010 

393944084120700 Montgomery County, Ohio [DOC] = 2.788 * GPP32A(0.091) 0.166 0.002 

401707105395000 Larimer County, Colorado [DOC] = 2.039 * GPP32A(-0.23) 0.242 0.000 

401723105400000 Larimer County, Colorado [DOC] = 0.79 * GPP32A(-0.076) 0.042 0.000 

401733105392404 Larimer County, Colorado [DOC] = 2.526 * GPP32A(-0.168) 0.163 0.000 

01022800 Hancock County, Maine [DOC] = 1.434 * GPP32A(0.17) -0.011 0.378 

01022810 Hancock County, Maine [DOC] = 1.202 * GPP32A(0.37) 0.250 0.224 

01022815 Hancock County, Maine [DOC] = 8.646 * GPP32A(0.002) -0.333 0.997 

01022825 Hancock County, Maine [DOC] = 1.872 * GPP32A(0.033) -0.194 0.880 

01022845 Hancock County, Maine [DOC] = 3.092 * GPP32A(-0.076) -0.185 0.812 

01022850 Hancock County, Maine [DOC] = 100.259 * GPP32A(-0.604) 0.306 0.115 

01022865 Hancock County, Maine [DOC] = 2.703 * GPP32A(0.061) -0.187 0.822 

01022890 Hancock County, Maine [DOC] = 4.947 * GPP32A(0.079) -0.172 0.743 

01090477 Hillsborough County, New Hampshire [DOC] = 1.263 * GPP32A(0.238) -0.017 0.387 

01095220 Worcester County, Massachusetts [DOC] = 7.889 * GPP32A(-0.096) 0.026 0.251 

01102345 Essex County, Massachusetts [DOC1 = 5.806 * GPP32A(0.055) 0.027 0.242 

01102500 Middlesex County, Massachusetts [DOC] = 4.39 * GPP32A(0.019) -0.026 0.834 

011032058 Norfolk County, Massachusetts [DOC] = 1.745 * GPP32A(0.196) -0.208 0.728 

01105000 Norfolk County, Massachusetts [DOC] = 3.598 * GPP32A(0.11) -0.012 0.373 

01112262 Worcester County, Massachusetts [DOC] = 1.724 * GPP32A(0.173) -0.237 0.846 

01311990 Hamilton County, New York [DOC] = 2.621 * GPP32A(0.176) 0.199 0.149 

0131199040 Hamilton County, New York [DOC] = 2.739 * GPP32A(0.189) 0.243 0.182 

0131199050 Essex County, New York [DOCl = 4.669 * GPP32A(0.03) -0.019 0.567 

01367625 Sussex County, New Jersey [DOC] = 2.701 * GPP32A(0.008) -0.021 0.621 

01367880 Sussex County, New Jersey [DOC] = 2.324 * GPP32A(0.119) 0.278 0.103 

01378387 Bergen County, New Jersey [DOCl = 4.316 * GPP32A(-0.054) -0.049 0.443 

01378583 Bergen County, New Jersey [DOC] = 2.39 * GPP32A(0.08) -0.110 0.599 

01378660 Morris County, New Jersey [DOCl = 1.45 * GPP32A(0.143) 0.209 0.142 

01379870 Morris County, New Jersey [DOCl = 1.049 * GPP32A(0.181) 0.352 0.071 

01380098 Morris County, New Jersey [DOC] = 2.505 * GPP32A(0.092) 0.347 0.073 

01381260 Morris County, New Jersey [DOCl = 1.137 * GPP32A(0.094) -0.066 0.479 

01381330 Morris County, New Jersey [DOCl = 0.84 * GPP32A(0.123) 0.279 0.102 

01381498 Morris County, New Jersey [DOCl = 2.567 * GPP32A(-0.001) -0.167 0.979 

01390800 Bergen County, New Jersey [DOCl = 3.216 * GPP32A(0.04) -0.012 0.375 

01393960 Essex County, New Jersey [DOCl = 1.965 * GPP32A(0.161) 0.306 0.090 

01394200 Union County, New Jersey [DOC] = 2.992 * GPP32A(-0.014) -0.160 0.856 

01394500 Union County, New Jersey [DOCl = 3.089 * GPP32A(0) -0.029 0.997 

01396588 Hunterdon County, New Jersey [DOC] = 1.287 * GPP32A(0.062) 0.060 0.115 

01396900 Hunterdon County, New Jersey [DOCl = 0.482 * GPP32A(0.284) 0.396 0.056 

01397950 Hunterdon County, New Jersey [DOC] = 1.401 * GPP32A(0.144) 0.323 0.082 

01398000 Hunterdon County, New Jersey rDOCl = 2.374 * GPP32A(0.062) 0.044 0.106 

01398060 Hunterdon County, New Jersey [DOC] = 1.405 * GPP32A(0.114) 0.267 0.109 

01398090 Somerset County, New Jersey [DOC] = 1.359 * GPP32A(0.121) 0.347 0.073 

01399200 Morris County, New Jersey [DOC] = 3.002 * GPP32A(0.13) 0.271 0.106 

01399520 Somerset County, New Jersey [DOC] = 2.999 * GPP32A(-0.107) 0.024 0.320 

01399820 Somerset County, New Jersey [DOC] = 1.657 * GPP32A(0.141) 0.268 0.108 

01400560 Middlesex County, New Jersey [DOC] = 1.702 * GPP32A(0.08) -0.093 0.548 

01400823 Middlesex County, New Jersey [DOC] = 4.806 * GPP32A(0.128) 0.018 0.329 
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01401400 Middlesex County, New Jersey [DOC] = 2.947 * GPP32A(0.058) -0.001 0.337 

01401520 Mercer County, New Jersey [DOC] = 1.216 * GPP32A(0.113) 0.115 0.216 

01401560 Somerset County, New Jersey [DOCl = 3.333 * GPP32A(0.056) -0.087 0.532 

01403171 Somerset County, New Jersey [DOC] = 5.303 * GPP32A(-0.02) -0.177 0.765 

01403190 Somerset County, New Jersey [DOCl = 1.255 * GPP32A(0.154) 0.347 0.073 

01403575 Somerset County, New Jersey [DOC] = 1.165 * GPP32A(0.148) 0.062 0.272 

01404400 Middlesex County, New Jersey [DOC] = 6.583 * GPP32A(-0,076) -0.061 0.468 

01405003 Middlesex County, New Jersey [DOCl = 4.564 * GPP32A(0.066) 0.140 0.194 

01405180 Monmouth County, New Jersey [DOCl = 1.164 * GPP32A(0.206) 0.323 0.083 

01407012 Monmouth County, New Jersey [DOCl = 1.109 * GPP32A(0.126) -0.081 0.517 

01407253 Monmouth County, New Jersey [DOCl = 1-248 * GPP32A(0.079) -0.046 0.437 

01407520 Monmouth County, New Jersey [DOCl = 10.19 * GPP32A(-0.214) 0.099 0.232 

01407538 Monmouth County, New Jersey [DOCl = 1.213 * GPP32A(0.128) 0.167 0.172 

01407900 Monmouth County, New Jersey [DOC] = 1.845 * GPP32A(-0.011) -0.165 0.919 

01408100 Ocean County, New Jersey [DOC] = 3.631 * GPP32A(0.075) 0.036 0.135 

01408110 Monmouth County, New Jersey [DOCl = 3.66 * GPP32A(0.15) 0.013 0.336 

01408152 Ocean County, New Jersey [DOCl = 3.607 * GPP32A(0.043) -0.152 0.795 

01408290 Ocean County, New Jersey [DOC] = 4.911 * GPP32A(0.085) -0.061 0.469 

01408460 Ocean County, New Jersey [DOCl = 4.114 * GPP32A(0.039) -0.031 0.474 

01408830 Ocean County, New Jersey [DOC] = 3.808 * GPP32A(0.026) -0.027 0.795 

01409030 Ocean County, New Jersey [DOCl = 4.626 * GPP32A(0.121) 0.139 0.195 

0140940200 Camden County, New Jersey [DOCl = 4.675 * GPP32A(-0.04) -0.159 0.853 

0140941070 Atlantic County, New Jersey [DOCl = 2.515 * GPP32A(0.157) -0.093 0.548 

0140941075 Atlantic County, New Jersey [DOCl = 1.934 * GPP32A(0.142) -0.034 0.415 

01409416 Atlantic County, New Jersey [DOCl = 3.89 * GPP32A(0.025) -0.021 0.625 

01409435 Burlington County, New Jersey [DOCl = 7.148 * GPP32A(-0.173) -0.102 0.574 

01409600 Atlantic County, New Jersey [DOCl = 7.997 * GPP32A(-0.088) 0.032 0.309 

01409601 Atlantic County, New Jersey [DOCl = 9-261 * GPP32A(0.056) -0.061 0.468 

01409930 Burlington County, New Jersey [DOC] = 4.993 * GPP32A(0.14) 0.064 0.269 

01410150 Burlington County, New Jersey [DOCl = 9-054 * GPP32A(-0.159) 0.031 0.152 

01410455 Atlantic County, New Jersey [DOCl = 11.107 * GPP32A(-0.257) 0.241 0.123 

01410810 Camden County, New Jersey [DOC] = 4.973 * GPP32A(-0.018) -0.123 0.905 

01410820 Camden County, New Jersey [DOC] = 65676.494 * GPP32A(-1.567) 0.016 0.323 

01411035 Gloucester County, New Jersey [DOC] = 3.905 * GPP32A(0.032) -0.023 0.696 

01411208 Atlantic County, New Jersey [DOC] = 51.171 * GPP32A(-0.422) 0.049 0.287 

01411290 Atlantic County, New Jersey [DOC] = 3.295 * GPP32A(0.087) -0.113 0.611 

01411295 Atlantic County, New Jersey [DOC] = 18.097 * GPP32A(-0.246) -0.074 0.499 

01411300 Cape May County, New Jersey [DOC] = 6.89 * GPP32A(-0.028) -0.165 0.925 

01411427 Cape May County, New Jersey [DOC] = 3.798 * GPP32A(-0.06) -0.068 0.598 

01411440 Cape May County, New Jersey [DOC] = 3.138 * GPP32A(0.25) 0.312 0.087 

01411452 Gloucester County, New Jersey [DOCl = 1.915 * GPP32A(0.104) -0.046 0.437 

01411457 Gloucester County, New Jersey [DOCl = 4.5 * GPP32A(0.18) -0.070 0.489 

01411458 Gloucester County, New Jersey [DOCl = 2.63 * GPP32A(0.291) 0.126 0.206 

01411466 Gloucester County, New Jersey [DOCl = 10.95 * GPP32A(-0.034) -0.025 0.705 

01411487 Salem County, New Jersey [DOC] = 5.884 * GPP32A(-0.177) 0.071 0.262 

01411495 Cumberland County, New Jersey [DOCl = 11.742 * GPP32A(-0.276) 0.192 0.154 

01411955 Cumberland County, New Jersey [DOC] = 5.73 * GPP32A(-0.104) 0.006 0.278 

01412800 Cumberland County, New Jersey [DOC] = 3.683 * GPP32A(-0.048) -0.011 0.444 
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01434097 Ulster County, New York fDOC] = 1.046 * GPP32A(0.102) 0.388 0.080 

01440097 Warren County, New Jersey [DOC] = 1.566 * GPP32A(-0.083) 0.019 0.327 

01443250 Sussex County, New Jersey [DOC] = 5.78 * GPP32A(0.062) 0.078 0.254 

01444990 Sussex County, New Jersey [DOC] = 2.287 * GPP32A(0.041) -0.104 0.582 

01445160 Warren County, New Jersey [DOC] = 1.933 * GPP32A(-0.007) -0.030 0.890 

01455240 Warren County, New Jersey [DOC] = 1.975 * GPP32A(0.019) -0.092 0.547 

01458300 Hunterdon County, New Jersey [DOC] = 1.153 * GPP32A(0.174) 0.325 0.082 

01458710 Hunterdon County, New Jersey [DOC] = 1.728 * GPP32A(0.072) 0.078 0.221 

01460860 Hunterdon County, New Jersey [DOC] = 7.659 * GPP32A(-0.098) 0.229 0.130 

01461250 Hunterdon County, New Jersey [DOCl = 1.312 ' GPP32A(0.283) 0.230 0.129 

01461282 Hunterdon County, New Jersey [DOC] = 2.115 * GPP32A(0.081) -0.127 0.664 

01462800 Mercer County, New Jersey [DOCl = 1.786 * GPP32A(0.055) 0.129 0.165 

01463610 Mercer County, New Jersey [DOCl = 3.012 * GPP32A(0.086) 0.176 0.165 

01463661 Mercer County, New Jersey [DOC] = 4.187 * GPP32A(-0.077) -0.093 0.550 

01463810 Mercer County, New Jersey [DOCl = 2.326 * GPP32A(0.06) 0,274 0.069 

01463850 Mercer County, New Jersey [DOCl = 4.351 * GPP32A(0.035) -0.022 0.635 

01464280 Burlington County, New Jersey [DOCl = 8.168 * GPP32A(-0.146) 0.054 0.282 

01464532 Burlington County, New Jersey fDOC] = 3.348 * GPP32A(0.016) -0.152 0.794 

01464907 Bucks County, Pennsylvania [DOC] = 3.953 * GPP32A(0.022) -0.033 0.631 

01465857 Burlington County, New Jersey [DOC] = 2.939 * GPP32A(0.08) -0.049 0.443 

01465893 Burlington County, New Jersey [DOC] = 10.84 * GPP32A(0.03) -0.024 0.683 

01465965 Burlington County, New Jersey [DOCl = 2.752 * GPP32A(0.178) 0.355 0.070 

01466100 Burlington County, New Jersey [DOCl = 1.396 * GPP32A(0.172) -0.036 0.418 

01466500 Burlington County, New Jersey [DOC] = 5.862 * GPP32A(0.081) 0.005 0.171 

01467066 Burlington County, New Jersey [DOC] = 1.807 * GPP32A(0.111) -0.059 0.464 

01467325 Gloucester County, New Jersey [DOCl = 2.913 * GPP32A(-0.023) -0.158 0.840 

01475090 Gloucester County, New Jersey [DOC] = 1.432 * GPP32A(0.263) 0.252 0.116 

01476640 Gloucester County, New Jersey [DOCl = 2.032 * GPP32A(0.176) 0.315 0.086 

01477110 Gloucester County, New Jersey [DOCl = 3.932 * GPP32A(-0.066) -0.131 0.798 

01477440 Salem County, New Jersey [DOC] = 6.514 * GPP32A(-0.058) -0.070 0.609 

01479820 Chester County, Pennsylvania [DOCl = 1.351 * GPP32A(0.238) 0.104 0.313 

01482500 Salem County, New Jersey [DOCl = 5.771 * GPP32A(0.027) -0.012 0.457 

01482520 Salem County, New Jersey [DOC] = 7.149 * GPP32A(-0.059) -0.036 0.419 

01482530 Salem County, New Jersey [DOCl = 1.834 * GPP32A(0.233) 0.319 0.084 

01482645 Salem County, New Jersey [DOC] = 9.347 * GPP32A(-0.194) 0.078 0.254 

01490108 Dorchester County, Maryland [DOC] = 5.524 * GPP32A(0,263) 0.069 0.307 

01490112 Dorchester County, Maryland [DOC] = 20.175 * GPP32A(-0.02) -0.164 0.908 

01490120 Dorchester County, Maryland [DOC] = 16.274 * GPP32A(0.02) -0.159 0.849 

01490130 Dorchester County, Maryland [DOC] = 14.114 ' GPP32A(0.042) -0.157 0.684 

01493112 Kent County, Maryland fDOC] = 1.736 * GPP32A(0.022) -0.086 0.828 

01493500 Kent County, Maryland fDOCl = 5.067 * GPP32A(0.036) -0.012 0.538 

01610400 Hardy County, West Virginia fDOC] = 1.011 * GPP32A(0.064) 0.104 0.053 

01659500 Stafford County, Virginia [DOC] = 0.252 * GPP32A(0.509) 0.515 0.106 

0208500600 Orange County, North Carolina [DOCl = 2.46 * GPP32A{0.071) -0.183 0.659 

0208524090 Durham County, North Carolina 
[DOC] = 78167497059111518218 * 
GPP32A(-7.397) 0.101 0.253 

0208725055 Wake County, North Carolina [DOC] = 1.692 * GPP32A(0.16) -0.040 0.420 

0208726370 Wake County, North Carolina [DOCl = 3.238 * GPP32A(-0.008) -0.249 0.967 

0208726995 Wake County, North Carolina [DOC] = 3.561 * GPP32A(0.062) -0.202 0.710 
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0208923650 Lenoir County, North Carolina [DOC1 = 1.192 * GPP32A(0.124) 0.060 0.211 

02090960 Wayne County, North Carolina [DOC] = 3.923 * GPP32A(0.184) 0.293 0.121 

0209171225 Greene County, North Carolina [DOC1 = 2.325 * GPP32A(0.176) -0.004 0.356 

0209171725 Greene County, North Carolina [DOC] = 1.855 * GPP32A(0.101) -0.091 0.780 

0209172000 Greene County, North Carolina [DOC1 = 6.826 * GPP32A(0.13) 0.350 0.072 

0209173070 Greene County, North Carolina [DOC] = 7.539 * GPP32A(0.201) -0.011 0.423 

0209173150 Greene County, North Carolina [DOC] = 4.209 * GPP32A(0.078) -0.040 0.696 

02091734 Greene County, North Carolina [DOC] = 2.362 * GPP32A(0.003) -0.059 0.986 

02096846 Orange County, North Carolina [DOC] = 1.414 * GPP32A(0,277) 0.060 0.259 

0209741955 Durham County, North Carolina [DOC] = 19.032 * GPP32A(-0.111) -0.140 0.527 

02097464 Orange County, North Carolina [DOC] = 2.571 * GPP32A(0.108) -0.010 0.371 

0209782609 Wake County, North Carolina [DOC] = 3.242 * GPP32A(0.184) 0.052 0.301 

02172300 Aiken County, South Carolina [DOC] = 1.41 * GPP32A(0.294) 0.042 0.331 

02172304 Aiken County, South Carolina [DOC] = 36.375 * GPP32A(-0.329) -0.150 0.780 

02172305 Aiken County, South Carolina [DOC1 = 0.381 * GPP32A(0.494) 0.036 0.072 

02176734 Beaufort County, South Carolina [DOC] = 29959.109 * GPP32A(-1.433) 0.607 0.075 

02306774 Hillsborough County, Florida IDOC1 = 56.6 * GPP32A(-0.25) 0.009 0.274 

02314274 Charlton County, Georgia [DOC] = 20.834 * GPP32A(0.146) 0.361 0.122 

02336635 Cobb County, Georgia [DOC] = 0.367 * GPP32A(0.33) 0.250 0.178 

02338523 Heard County, Georgia [DOC1 = 0.612 * GPP32A(0.126) 0.024 0.184 

02344480 Spalding County, Georgia [DOC] = 1.373 * GPP32A(0.098) -0.125 0.542 

03448800 Buncombe County, North Carolina [DOC1 = 0.116 * GPP32A(0.397) -0.106 0.588 

04081897 Winnebago County, Wisconsin [DOC] = 5.907 * GPP32A(0.02) -0.096 0.495 

040851325 Brown County, Wisconsin [DOC] = 8.887 * GPP32A(0.105) 0.072 0.304 

04085188 Kewaunee County, Wisconsin [DOC] = 12.311 * GPP32A(0.043) 0.096 0.284 

040853145 Kewaunee County, Wisconsin [DOC] = 11.171 * GPP32A(0.04) -0.038 0.417 

040870195 Washington County, Wisconsin [DOC] = 7.161 * GPP32A(-0.033) -0.015 0.383 

04087030 Waukesha County, Wisconsin [DOC1 = 7.598 * GPP32A(-0.001) -0.071 0.985 

04087070 Milwaukee County, Wisconsin [DOC1 = 7.112 * GPP32A(-0.013) -0.059 0.575 

04087088 Milwaukee County, Wisconsin [DOC] = 5.758 * GPP32A(0.006) -0.098 0.888 

04087118 Milwaukee County, Wisconsin [DOC1 = 3.938 * GPP32A(0.04) 0.533 0.099 

04087159 Milwaukee County, Wisconsin [DOC] = 11.536 * GPP32A(-0.155) 0.241 0.060 

04087214 Milwaukee County, Wisconsin [DOC] = 5.771 * GPP32A(0.017) -0.039 0.460 

04288230 Lamoille County, Vermont [DOC] = 2644.239 * GPP32A(-1.092) 0.221 0.135 

05451080 Hamilton County, Iowa [DOC] = 5.33 * GPP32A(0.008) -0.011 0.735 

05544371 Waukesha County, Wisconsin [DOC1 = 4.192 * GPP32A(0.01) -0.093 0.808 

06893557 Jackson County, Missouri [DOC] = 4.688 * GPP32A(0.044) -0.008 0.468 

06893560 Jackson County, Missouri [DOC] = 21986.769 * GPP32A(-1.371) 0.130 0.164 

06893562 Jackson County, Missouri [DOC] = 5.176 * GPP32A(0.037) -0.010 0.500 

07060894 Independence County, Arkansas [DOC] = 0.517 * GPP32A(0.128) 0.034 0.285 

072632962 Pulaski County, Arkansas [DOC] = 2.186 * GPP32A(0.173) 0.009 0.301 

072632971 Pulaski County, Arkansas [DOC] = 4.674 * GPP32A(0.065) -0.051 0.648 

072632981 Pulaski County, Arkansas [DOC] = 6.73 * GPP32A(0.027) -0.199 0.959 

0726329911 Pulaski County, Arkansas [DOC] = 1.296 * GPP32A(0.387) 0.217 0.084 

07288625 Bolivar County, Mississippi [DOC] = 6.574 * GPP32A(0.062) -0.203 0.713 

07288636 Bolivar County, Mississippi [DOC] = 6.2 * GPP32A(-0.005) -0.015 0.943 

07362587 Saline County, Arkansas [DOC] = 13.731 * GPP32A(-0.253) 0.023 0.147 

07379960 East Baton Rouge Parish, Louisiana [DOC1 = 7.488 * GPP32A{0.043) -0.033 0.691 
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07381590 St. Mary Parish, Louisiana TDOC] = 4.571 * GPP32A(0.002) -0.024 0.976 

09018000 Grand County, Colorado [DOC] = 3.792 * GPP32A(0.031) -0.032 0.672 

10167800 Salt Lake County, Utah fDOCl = 4.27 * GPP32A(-0.108) -0.070 0.538 

103367786 El Dorado County, California [DOC] = 4136.139 * GPP32A(-1.501) 0.145 0.122 

11058500 San Bernardino County, California [DOC] = 34.952 * GPP32A(-0.631) -0.029 0.406 

11073470 San Bernardino County, California [DOC] = 0.697 * GPP32A(0,083) -0.227 0.797 

11206800 Tulare County, California [DOC1 =1.111* GPP32A(-0.012) -0.006 0.522 

11262900 Merced County, California [DOC1 = 518.209 * GPP32A(-0.849) 0.386 0.111 

12073520 Pierce County, Washington [DOC] = 9.344 * GPP32A(-0.22) -0.013 0.402 

12119705 Kinq County, Washington [DOC1 = 3.483 * GPP32A(-0.055) -0,063 0.447 

12120500 King County, Washington [DOC] = 3.803 * GPP32A(0.016) -0.329 0.927 

12127100 King County, Washington [DOC] = 11.784 * GPP32A(-0.147) 0.069 0.338 

12154000 Snohomish County, Washington [DOC1 = 20.192 * GPP32A(-0.184) 0.244 0.227 

12155050 Snohomish County, Washington [DOC] = 5.378 * GPP32A(-0.045) -0.016 0.405 

12447390 Okanogan County, Washington [DOC1 = 1.276 * GPP32A(0.032) 0.033 0.180 

13088510 Cassia County, Idaho [DOC] = 1.433 * GPP32A(0.081) 0.255 0.078 

13150200 Blaine County, Idaho [DOC] = 2.06 * GPP32A(-0.029) -0.047 0.461 

14161500 Lane County, Oregon [DOC] = 1.133 * GPP32A(-0.051) 0.013 0.116 

14201300 Marion County, Oregon [DOC] = 3.255 * GPP32A(0.023) -0.024 0.662 

14205400 Washington County, Oregon [DOC] = 1.47 * GPP32A(-0.054) 0.035 0.118 

14224570 Lewis County, Washington [DOC] = 1.001 * GPP32A(0.029) -0.056 0.750 

280828082062900 Hillsborough County, Florida rDOCl = 0.011 * GPP32A(1.27) -0.043 0.425 

301520092491800 Jefferson Davis Parish, Louisiana [DOC1 = 75.341 * GPP32A(-0.272) -0.063 0.459 

333150090530400 Bolivar County, Mississippi [DOC] = 11.774 * GPP32A(-0.117) 0.032 0.078 

3343250813616 Aiken County, South Carolina [DOC] = 0*GPP32A(1.85) 0.445 0.133 

3344250813538 Aiken County, South Carolina [DOC] = 1.083 * GPP32A(0.303) 0.041 0.333 

3344280813547 Aiken County, South Carolina [DOCl = 1.101 * GPP32A(0.338) 0.119 0.265 

3344580813559 Aiken County, South Carolina [DOC] = 41.89 * GPP32A(-0.274) -0.277 0.741 

3345100813509 Aiken County, South Carolina [DOCl = 1.222 * GPP32A(0.273) 0.091 0.288 

341014116494801 San Bernardino County, California [DOC] = 0.047 * GPP32A(0.658) 0.141 0.248 

352053077483001 Lenoir County, North Carolina [DOCl = 0.357 * GPP32A(0.402) 0.284 0.053 

353107077383001 Greene County, North Carolina [DOC] = 1.899 * GPP32A(0.025) -0.085 0.722 

353111077330501 Greene County, North Carolina [DOC] = 1.484 * GPP32A(0.268) 0.177 0.165 

353111077334901 Greene County, North Carolina [DOCl = 1.001 * GPP32A(0.153) 0.091 0.178 

353220077392401 Greene County, North Carolina [DOC] = 4.534 * GPP32A(-0.116) -0.041 0.444 

353354077343401 Pitt County, North Carolina [DOCl = 0.456 * GPP32A(0.323) 0.539 0.059 

353354077343402 Pitt County, North Carolina [DOC] = 1.669 * GPP32A(0.087) 0.114 0.217 

353530092053201 Stone County, Arkansas [DOC] = 15.494 * GPP32A(-0.152) -0.065 0.615 

374248107324501 San Juan County, Colorado [DOC] = 61.142 * GPP32A(-1.041) 0.138 0.095 

382752123003401 Sonoma County, California [DOC] = 0.414 * GPP32A(0.106) -0.318 0.862 

385431119574201 El Dorado County, California [DOCl = 1.592 * GPP32A(0.48) 0.215 0.054 

391116120562501 Nevada County, California [DOC] = 0.993 * GPP32A(-0.04) -0.035 0.873 

391344105133601 Douglas County, Colorado rDOCl = 1.543 * GPP32A(0.155) 0.007 0.265 

392023105070601 Douglas County, Colorado [DOC] = 2.046 * GPP32A(0.093) -0.011 0.435 

394409105020501 Denver County, Colorado [DOCl = 2.869 * GPP32A(0.077) 0.341 0.131 

394921105015701 Adams County, Colorado [DOC] = 2.916 * GPP32A(0.138) -0.097 0.497 

400812106254800 Grand County, Colorado [DOCl = 8.418 * GPP32A(-0.029) -0.086 0.730 

400855105090501 Boulder County, Colorado [DOC] = 20.342 * GPP32A(-0.512) 0.272 0.166 
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403048105042701 Larimer County, Colorado fDOC] = 6.896 * GPP32A(-0.11) -0.151 0.589 

404750106454200 Routt County, Colorado [DOC] = 4.573 * GPP32A(-0.013) -0.243 0.890 

405344106405101 Jackson County, Colorado [DOC1 = 0.496 * GPP32A(0.394) 0.103 0.057 

415642074343101 Ulster County, New York [DOC] = 0.567 * GPP32A(0.009) -0.049 0.803 

445551123015800 Marion County, Oregon fDOC] = 0.806 * GPP32A(0.12) 0.309 0.146 

450022123012400 Marion County, Oregon [DOC] = 3.065 * GPP32A(0.01) -0.248 0.944 

452231122200000 Clackamas County, Oregon [DOC] = 0.927 * GPP32A(0.123) 0.025 0.348 

452414122213200 Clackamas County, Oregon [DOC] = 1.239 * GPP32A(0.052) -0.005 0.379 

452526122364400 Clackamas County, Oregon [DOC] = 2.683 * GPP32A(-0.031) -0.164 0.709 

454510122424900 Clark County, Washington rDOC] = 3.825 * GPP32A(-0.021) -0.152 0.590 

454549122295800 Clark County, Washington [DOC] = 1.478 * GPP32A(0.004) -0.249 0.965 

455122122310600 Clark County, Washington [DOC1 = 2.145 * GPP32A(0.093) 0.118 0.266 

455550113432001 Ravalli County, Montana [DOCl = 5.947 * GPP32A(-0.102) -0.070 0.611 

483256113590201 Flathead County, Montana [DOC] = 1.488 * GPP32A(-0.034) 0.003 0.292 
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Table A.3. Table showing the regression equations, R2, and p-value for dissolved organic carbon 

concentration (DOC) vs. stormflow ratio (SR) in individual basins. 

USGS Station Location Regression equation R2 P 

01095220 Worcester County, Massachusetts [DOC1 = 3.744 * exp[SR*(0.586)l 0.210 0.003 

01172680 Worcester County, Massachusetts [DOC] = 3.01 * exp[SR*(0.83)] 0.650 0.002 

01174565 Franklin County, Massachusetts [DOC] = 2.46 * expfSR*(0.49)] 0.129 0.002 

01184490 Hartford County, Connecticut [DOC1 = 2.454 * exp[SR*(1.341)1 0.271 0.000 

01187800 Litchfield County, Connecticut [DOC] = 2.492 * exp[SR*(1.356)] 0.600 0.001 

01362380 Ulster County, New York [DOC1 = 1.082 * exp[SR*(1.171)1 0.530 0.000 

01381500 Morris County, New Jersey [DOC] = 2.674 * exp[SR*(0.822)l 0.389 0.000 

01390500 Bergen County, New Jersey [DOC1 = 1.879 * exp[SR*(1.127)1 0.488 0.000 

01394500 Union County, New Jersey [DOC] = 2.902 * exp[SR*(0.59)l 0.179 0.000 

01398000 Hunterdon County, New Jersey [DOC] = 2.556 * exp[SR*(0.509)] 0.167 0.000 

01399690 Hunterdon County, New Jersey [DOC1 = 2.8 * exp[SR*(0.66)l 0.085 0.040 

01410784 Camden County, New Jersey [DOC] = 7.781 * exp[SR*(0.981)] 0.098 0.010 

01410810 Camden County, New Jersey rDOCl = 5.617 * exp[SR*(1.474)1 0.292 0.006 

01412800 Cumberland County, New Jersey [DOC] = 2.231 * exp[SR*(1.529)] 0.248 0.008 

01421618 Delaware County, New York [DOC] = 1.955 * exp[SR*(0.932)l 0.486 0.000 

01422747 Delaware County, New York [DOC] = 1.201 * exp[SR*(1.016)] 0.531 0.000 

01434013 Ulster County, New York [DOC] = 1.053 * exp[SR*( 1.102)1 0.226 0.000 

01434017 Ulster County, New York TDOC] = 1.079 * exp[SR*(1.099)1 0.239 0.000 

0143402265 Ulster County, New York [DOC] = 0.712 * exp[SR*(0.752)l 0.199 0.000 

01434025 Ulster County, New York [DOC] = 1.371 * exp[SR*(0.99)] 0.429 0.000 

01434105 Ulster County, New York [DOC] = 0.885 * exp[SR*(1.713)] 0.507 0.000 

01434176 Ulster County, New York [DOC] = 0.671 * exp[SR*(1.296)1 0.364 0.000 

01434498 Sullivan County, New York [DOC1 = 0.849 * exp[SR*(1.272)] 0.427 0.000 

01464907 Bucks County, Pennsylvania [DOCl = 4.188 * exp[SR*(0.418)l 0.301 0.000 

01478000 New Castle County, Delaware [DOC] = 5.172 * exp[SR*(0.5)] 0.221 0.012 

01480095 New Castle County, Delaware [DOC] = 5.485 * exp[SR*(0.436)] 0.105 0.049 

01480300 Chester County, Pennsylvania [DOCl = 4.172 * exp[SR*(1.34)l 0.597 0.000 

01480675 Chester County, Pennsylvania [DOCl = 4.903 * exp[SR*(0.723)] 0.459 0.002 

01493112 Kent County, Maryland [DOCl = 1.97 * exp[SR*(1.194)1 0.460 0.000 

01493500 Kent County, Maryland [DOC] = 4.676 * exp[SR*(0.593)1 0.181 0.001 

01527050 Steuben County, New York [DOC] = 3.256 * exp[SR*(0.464)l 0.038 0.019 

01571490 Cumberland County, Pennsylvania [DOC] = 1.428 * exp[SR*(1.428)] 0.102 0.010 

01572000 Schuylkill County, Pennsylvania [DOC] = 1.853 * exp[SR*(1.048)] 0.383 0.000 

01591000 Montgomery County, Maryland [DOC] = 1.63 * exp[SR*(1.294)] 0.340 0.000 

01594710 St Mary [DOCl = 3.141 * exp[SR*(1.237)] 0.507 0.000 

01621050 Rockingham County, Virginia [DOC] = 3.119 * exp[SR*(0.773)] 0.112 0.016 

01654000 Fairfax County, Virginia [DOCl = 2.712 * exp[SR*(0.987)l 0.349 0.001 

02083833 Pitt County, North Carolina [DOC] = 5.078 * exp[SR*(-0.511)] 0.077 0.042 

02087580 Wake County, North Carolina [DOCl = 5.457 * exp[SR*(0.208)] 0.133 0.045 

02097464 Orange County, North Carolina [DOC] = 4.459 * exp[SR*(1.015)] 0.680 0.007 

02143040 Burke County, North Carolina [DOC] = 1.3 * exp[SR*(0.985)l 0.073 0.040 

021603257 Greenville County, South Carolina [DOC] = 1.471 * exp[SR*(0.948)] 0.382 0.000 

02172300 Aiken County, South Carolina [DOC] = 4.268 * exp[SR*(0.549)] 0.187 0.005 

02174250 Orangeburg County, South Carolina [DOC] = 4.076 * exp[SR*(0.385)] 0.103 0.006 
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02332830 Hall County, Georgia [DOC] = 1.046 * exprSR*(2.317)l 0.800 0.000 

02335870 Cobb County, Georgia [DOC] = 1.514 *exp[SR*(1.341)1 0.637 0.000 

02337500 Carroll County, Georgia [DOC] = 1.169 * exp[SR*( 1.614)1 0.629 0.000 

02338523 Heard County, Georgia [DOC] = 1.061 * exp[SR*(1.297)] 0.286 0.001 

03015795 Warren County, Pennsylvania [DOC] = 1.321 * expISR*(0.987)] 0.355 0.001 

03037525 Indiana County, Pennsylvania [DOC] = 1.352 * exp[SR*(0.921)1 0.468 0.000 

03282100 Estill County, Kentucky [DOC] = 1.946 * exp[SR*(1.422)1 0.587 0.004 

03283370 Powell County, Kentucky [DOC] = 1.72 * exp[SR*(2.041)1 0.578 0.011 

03353551 Marion County, Indiana [DOC] = 4.487 * exp[SR*(0.344)1 0.305 0.019 

03353600 Marion County, Indiana [DOC1 = 4 * exp[SR*(0.472)] 0.348 0.001 

03353637 Marion County, Indiana [DOCl= 2.886 * exp[SR*(0.569)] 0.484 0.000 

03373530 Orange County, Indiana [DOC] = 1.802 * exp[SR*(2.197)1 0.696 0.000 

03448800 Buncombe County, North Carolina [DOC] = 1.1 *exp[SR*(1.947)1 0.595 0.015 

04087030 Waukesha County, Wisconsin [DOC] = 6.476 * exp[SR*(0.6)l 0.205 0.045 

05014300 Glacier County, Montana [DOC1 = 0.738 * exp[SR*(0.581 )1 0.162 0.000 

05288705 Hennepin County, Minnesota [DOC] = 7.146 * exp[SR*(-0.389)l 0.159 0.001 

05451080 Hamilton County, Iowa [DOC] = 3.88 * exp[SR*(0.727)1 0.488 0.000 

06061900 Jefferson County, Montana [DOC] = 2.284 * exp[SR*(0.679)l 0.510 0.043 

06340540 Mercer County, North Dakota [DOC1 = 9.413 * expfSR*(0.746)1 0.537 0.023 

06929315 Texas County, Missouri [DOC] = 1.084 * exp[SR*(0.749)1 0.121 0.034 

07083000 Lake County, Colorado [DOC] = 0.738 * exp[SR*(1.468)1 0.200 0.000 

07248620 Le Flore County, Oklahoma [DOC] = 2.108 * exp[SR*(1.207)1 0.498 0.004 

07362587 Saline County, Arkansas [DOC1 = 1.107 * exp[SR*(1.883)1 0.570 0.000 

10167499 Salt Lake County, Utah [DOC1 = 4.458 * exp[SR*(-1.061)1 0.937 0.004 

10167800 Salt Lake County, Utah fDOCl = 1.387 * exp[SR*(1.362)1 0.532 0.002 

10336778 El Dorado County, California [DOC] = 1.036 * exp[SR*(2.481)] 0.484 0.050 

12103380 King County, Washington [DOC1 = 0.659 * exp[SR*(1.607)1 0.617 0.000 

12108500 King County, Washington [DOC] = 2.817 * exp[SR*(1.624)1 0.308 0.000 

12128000 King County, Washington [DOC] = 3.082 * exp[SR*(0.699)l 0.291 0.000 

12416000 Kootenai County, Idaho [DOC] = 2.898 * exp[SR*(2.782)1 0.769 0.003 

14161500 Lane County, Oregon [DOC] = 0.725 * exp[SR*(1.101)1 0.453 0.000 

14201300 Marion County, Oregon [DOC1 = 3.267 * exp[SR*(0.422)l 0.128 0.011 

14203750 Washington County, Oregon [DOC] = 0.53 * exp[SR*(1.175)1 0.391 0.002 

14205400 Washington County, Oregon [DOC1 = 1.022 * exp[SR*(0.889)1 0.208 0.003 

14206950 Washington County, Oregon [DOC] = 3.586 * exp[SR*(0.471)l 0.177 0.001 

14211500 Multnomah County, Oregon [DOC1 = 0.474 * exp[SR*(2.63)l 0.714 0.021 

01097480 Middlesex County, Massachusetts [DOC1 = 4.494 * exp[SR*(0.565)1 0.237 0.074 

01102345 Essex County, Massachusetts [DOC] = 6.975 * exp[SR*(-0.028)1 -0.029 0.843 

01102500 Middlesex County, Massachusetts [DOC1 = 4.542 * exp[SR*(0.052)1 -0.010 0.651 

01104460 Middlesex County, Massachusetts [DOC] = 4.292 * exp[SR*(0.201)] 0.445 0.089 

01105000 Norfolk County, Massachusetts [DOC1 = 6.778 * exp[SR*(-0.055)l -0.028 0.740 

01172800 Worcester County, Massachusetts [DOC] = 10.516 * exp[SR*(0.019)l -0.083 0.954 

01174050 Worcester County, Massachusetts [DOC] = 5.626 * exp[SR*(0.042)1 -0.017 0.732 

01174575 Franklin County, Massachusetts [DOC] = 3.261 * exp[SR*(0.022)I -0.047 0.936 

01208873 Fairfield County, Connecticut [DOC] = 2.183 * exp[SR*(0.354)1 0.044 0.139 

01304000 Suffolk County, New York [DOC] = 2.036 * exp[SR*(1.506)1 -0.033 0.470 

01356190 Schenectady County, New York [DOC] = 4.751 * exp[SR*(0.139)1 -0.003 0.351 

01367800 Sussex County, New Jersey [DOC] = 3.28 * exp[SR*(0.264)l -0.026 0.505 
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01372051 Dutchess County, New York [DOC] = 4.088 * exp[SR*(0.115)1 -0.041 0.657 

01376500 Westchester County, New York [DOC] = 3.545 * exp[SR*(0.5)] 0.033 0.268 

01377500 Bergen County, New Jersey [DOC] = 3.632 * exp[SR*(-0.202)1 -0.168 0.725 

01393450 Union County, New Jersey [DOC] = 4.321 * exp[SR*(-0.119)] -0.029 0.663 

01399500 Morris County, New Jersey [DOC1 = 4.011 * exp[SR*(0.072)1 -0.032 0.819 

01399700 Hunterdon County, New Jersey [DOC] = 2.316 * exp[SR*(0.88)] 0.086 0.060 

01403400 Somerset County, New Jersey [DOC] = 2.631 * exp[SR*(0.84)] -0.078 0.461 

01407760 Monmouth County, New Jersey [DOC1 = 3.21 * exp[SR*(0.346)] 0.023 0.198 

01410150 Burlington County, New Jersey [DOC] = 4.078 * exp[SR*(-0.255)] -0.008 0.546 

01410787 Camden County, New Jersey [DOCl = 6.388 * exp[SR*(-0.206)] -0.079 0.576 

01410820 Camden County, New Jersey [DOC] = 7.585 * exp[SR*(0.938)] -0.036 0.545 

01411300 Cape May County, New Jersey [DOC] = 3.677 * exp[SR*(2.064)l 0.029 0.314 

01463620 Mercer County, New Jersey FDOC] = 4.009 * exp[SR*(0.287)1 0.050 0.152 

01466500 Burlington County, New Jersey [DOC] = 11.303 * exp[SR*(-0.088)] 0.004 0.207 

01467021 Burlington County, New Jersey [DOC] = 7.943 * exp[SR*(0.01)l -0.042 0.967 

01467081 Burlington County, New Jersey [DOC] = 4.527 * exp[SR*(0.105)l -0.016 0.468 

01467150 Camden County, New Jersey [DOCl = 3.55 * exp[SR*(0.134)1 0.007 0.186 

01478137 Chester County, Pennsylvania [DOC] = 17.963 * exp[SR*(0.052)] -0.046 0.776 

01479820 Chester County, Pennsylvania [DOC] = 2.396 * exp[SR*(1.444)1 0.232 0.234 

014806318 Chester County, Pennsylvania [DOC] = 4.158 * exp[SR*(0.768)] 0.008 0.283 

01482500 Salem County, New Jersey [DOC] = 6.539 * exp[SR*(0.012)] -0.040 0.957 

01559795 Bedford County, Pennsylvania [DOCl = 1 674 * exp[SR*(-0.275)l -0.078 0.725 

01573095 Lebanon County, Pennsylvania [DOC] = 1.291 * exp[SR*(-0.341)l -0.030 0.559 

01576771 Lancaster County, Pennsylvania [DOCl = 5.75 * exp[SR*(0.582)l 0.032 0.127 

01673638 King William County, Virginia [DOCl = 5.75 * exp[SR*(0.166)l -0.184 0.661 

02082731 Franklin County, North Carolina [DOC] = 5.106 * exp[SR*(0.051)] -0.028 0.651 

02084164 Pitt County, North Carolina [DOCl = 5.395 * exp[SR*(0.596)l 0.123 0.056 

02084540 Beaufort County, North Carolina [DOC] = 26.934 * exp[SR*(-0.678)] 0.065 0.269 

02086849 Durham County, North Carolina [DOCl = 14.224 * exp[SR*(-0.507)1 -0.051 0.436 

0209096970 Wayne County, North Carolina [DOC] = 8.607 * exp[SR*(-0.108)] -0.170 0.629 

0209173190 Greene County, North Carolina [DOCl = 5.18 * exp[SR*(0.689)l 0.042 0.313 

0209173200 Greene County, North Carolina [DOCl = 15.05 * exp[SR*(0.004)l -0.059 0.972 

02091970 Craven County, North Carolina [DOC] = 18.741 *exp[SR*(-0.188)] -0.213 0.743 

0209741955 Durham County, North Carolina [DOCl = 7.082 ' exp[SR*(0.606)l 0.276 0.210 

02123567 Montgomery County, North Carolina [DOC] = 2.991 * exp[SR*(1.661)] 0.323 0.186 

02172305 Aiken County, South Carolina [DOC] = 4.999 * exp[SR*(0.66)l 0.013 0.189 

02300700 Hillsborough County, Florida [DOCl = 11.36* exp[SR*(0.116)1 -0.020 0.605 

02306774 Hillsborough County, Florida [DOC] = 17.925 * exp[SR*(0.212)] 0.031 0.232 

02314274 Charlton County, Georgia rDOCl = 53.146 * exp[SR*(-0.407)l 0.438 0.091 

02315392 Columbia County, Florida [DOCl = 45.283 * exp[SR*(-0.369)] 0.323 0.082 

02336635 Cobb County, Georgia rDOCl = 1.619' exp[SR*(1.411)1 0.480 0.077 

02358685 Liberty County, Florida [DOCl = 3.645 * exp[SR*(0.504)] -0.042 0.459 

03039925 Somerset County, Pennsylvania rDOCl = 0.973 * expfSR*(-0.16)l -0.005 0.413 

03144270 Coshocton County, Ohio [DOCl = 4.169 * exp[SR*(0.512)l 0.072 0.164 

03144289 Coshocton County, Ohio fDOC] = 4.412 * exp[SR*(0.301)l 0.036 0.239 

03201600 Vinton County, Ohio rDOCl = 4.653 * exp[SR*(-0.168)1 -0.316 0.857 

03201700 Vinton County, Ohio [DOC] = 1.787 * exp[SR*(0.313)l -0.127 0.663 

03207965 Pike County, Kentucky [DOCl = 3.858 * exp[SR*(-0.513)] -0.022 0.407 
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03282075 Lee County, Kentucky [DOC] = 2.808 * exp[SR*(0.424)l 0.092 0.119 

03361638 Hancock County, Indiana [DOC] = 7.86 * exp[SR*(-0.336)] 0.023 0.181 

03450000 Buncombe County, North Carolina [DOC] = 1.728 * exp[SR*(0.489)l -0.015 0,383 

04026349 Bayfield County, Wisconsin [DOC1 = 3.998 * exp[SR*(2.01)] 0.080 0.330 

04071795 Shawano County, Wisconsin [DOC] = 14.573 * exp[SR*(-0.353)] 0.071 0.122 

04086175 Sheboygan County, Wisconsin [DOC] = 13.678 * exp[SR*(-0.175)] 0.000 0.343 

04087088 Milwaukee County, Wisconsin [DOC1 = 4.738 * exp[SR*(0.512)j 0.178 0.096 

04087159 Milwaukee County, Wisconsin [DOC1 = 6.266 * exp[SR*(0.015)l -0.100 0.983 

04087204 Milwaukee County, Wisconsin [DOC] = 6.725 * exp[SR*(0.028)l -0.017 0.784 

04087214 Milwaukee County, Wisconsin [DOCl = 6.324 * exp[SR*(0.094)l -0.095 0.555 

05288470 Anoka County, Minnesota [DOC] = 19.484 * exp[SR*(0.012)] -0.250 0.973 

05357225 Vilas County, Wisconsin [DOCl = 5.48 * exp[SR*(0.394)] 0.035 0.077 

05427948 Dane County, Wisconsin [DOC] = 7.923 * exp[SR*(0.485)l 0.035 0.339 

05487550 Jasper County, Iowa [DOC] = 3.998 * exp[SR*(0.949)] 0.105 0.312 

05540275 Du Page County, Illinois [DOCl =4.801 * exp[SR*(0.12)] 0.023 0.183 

05595226 St Clair County, Illinois [DOC] = 5.276 * exp[SR*(0.925)] 0.474 0.121 

06058900 Jefferson County, Montana [DOC] = 2.773 * exp[SR*(0.802)] -0.069 0.487 

06187915 Park County, Montana [DOCl = 1.033 * exp[SR*(-0.084)] -0.024 0.653 

06279790 Park County, Wyoming [DOC] = 4.368 * exp[SR*(0.569)1 -0.074 0.747 

06279795 Park County, Wyoming [DOC] = 1.681 * exp[SR*(2.238)l 0.231 0.055 

06339560 Mercer County, North Dakota [DOC] = 11.265 * exp[SR*(0.496)] 0.218 0.071 

06340580 Mercer County, North Dakota [DOC] = 16.281 * exprSR*(-0.099)l -0.233 0.824 

06340780 Mercer County, North Dakota [DOCl = 25.135 * exp[SR*(-0.445)l 0.241 0.085 

06342040 Oliver County, North Dakota [DOCl = 14.232 * exp[SR*(0.357)] -0.198 0.699 

06355310 Bowman County, North Dakota [DOC] = 16.598 * exp[SR*(0.289)] 0.114 0.109 

06611800 Jackson County, Colorado [DOC] = 6.629 * exp[SR*(-0.304)1 -0.011 0.390 

06714400 Clear Creek County, Colorado [DOC] = 1.61 * exp[SR*(3.398)1 -0.027 0.401 

06720415 Adams County, Colorado [DOC] = 11.106 * exp[SR*(0.229)] -0.025 0.516 

06879650 Riley County, Kansas TDOCl = 1.903 * exp[SR*(0.784)1 -0.041 0.427 

07031692 Shelby County, Tennessee [DOC] = 5.955 * exp[SR*(0.131)] 0.034 0.125 

07232024 Pittsburg County, Oklahoma [DOCl = 11.053 * exp[SR*(0.285)l 0.150 0.117 

07246615 Le Flore County, Oklahoma rDOCl = 8.644 * exp[SR*(-0.444)] -0.069 0.603 

07247550 Latimer County, Oklahoma [DOC] = 6.864 * exp[SR*(0.508)1 0.158 0.139 

072632962 Pulaski County, Arkansas [DOCl = 2.439 * exp[SR*(0.829)l -0.096 0.734 

072632971 Pulaski County, Arkansas [DOC] = 4.213 * exp[SR*(0.479)] -0.033 0.429 

07381590 St. Mary Parish, Louisiana [DOCl = 4.805 * exp[SR*(-0.193)] -0.014 0.517 

09046530 Summit County, Colorado [DOC] = 0.58 * exp[SR*(0.244)1 0.016 0.172 

09153290 Mesa County, Colorado [DOC] = 4.288 * exp[SR*(-0.078)] -0.014 0.602 

09243700 Routt County, Colorado [DOCl = 6.082 * exp[SR*(0.268)l -0.154 0.596 

09250600 Moffat County, Colorado [DOC] = 5.958 * exp[SR*(0.841)] 0.416 0.070 

09306242 Rio Blanco County, Colorado [DOCl = 8.067 * exp[SR*(0.013)l -0.029 0.949 

09310600 Carbon County, Utah [DOC] = 3.999 * exp[SR*(-0.507)l -0.119 0.632 

09310700 Carbon County, Utah [DOC] = 4.483 * exp[SR*(-0.21)l -0.061 0.775 

09313975 Carbon County, Utah [DOC] = 3.834 * exp[SR*(-0.565)] -0.117 0.821 

09317919 Emery County, Utah [DOC] = 2.514 * exp[SR*(0.745)] 0.008 0.343 

09367685 San Juan County, New Mexico [DOCl = 5.325 * exp[SR*(0.409)] -0.015 0.391 

10170250 Salt Lake County, Utah [DOC] = 8.709 * exp[SR*(0.046)l -0.071 0.957 

10172000 Salt Lake County, Utah [DOC] = 5.944 * exp[SR*(1.04)l -0.006 0.381 

90 



10244950 White Pine County, Nevada [DOC] = 1.653 * exprSR*(1.206)1 0.109 0.115 

10249300 Nye County, Nevada fDOCl = 2.298 * exp[SR*(0.485)] 0,172 0.062 

10249900 Esmeralda County, Nevada [DOC] = 2.344 * exp[SR*(0.934)l 0.003 0.327 

10254970 Imperial County, California [DOC] = 3.731 * exp[SR*(4.41)] 0.201 0.174 

10336626 El Dorado County, California [DOCl = 1.406 * exprSR*(0.878)l -0.180 0.783 

10343500 Nevada County, California [DOC] = 1.658 * exp[SR*(-0.138)] 0.002 0.243 

11262900 Merced County, California [DOCl = 10.215 * exp[SR*(-0.236)] -0.033 0.597 

11447360 Sacramento County, California [DOC] = 7.514 * exp[SR*(0.17)l -0.019 0.414 

11482468 Humboldt County, California [DOC] = 2.945 * exp[SR*(0.36)] -0.034 0.487 

11532620 Del Norte County, California [DOC] = 2.067 * exprSR*(0.58)l 0.000 0.334 

12185300 Snohomish County, Washington [DOC] = 0.731 * exp[SR*(0.196)] -0.001 0.342 

14222980 Cowlitz County, Washington [DOCl = 2.435 * exp[SR*(-3.319)l 0.091 0.120 
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Table A.4. Table showing the regression equations, R2, and p-value for specific ultraviolet 

absorbance at 254nm (SUVA254) vs. discharge (Q) in individual basins. 

USGS Station Location Regression equation R2 P 

01377500 Bergen County, New Jersey SUVA = 1.017*ln(Q) + 3.003 0.544 0.036 

01394500 Union County, New Jersey SUVA = 0.253*ln(Q) + 3.148 0.231 0.000 

01398000 Hunterdon County, New Jersey SUVA = 0.072*ln(Q) + 2.956 0.061 0.050 

01467150 Camden County, New Jersey SUVA = 0.998*ln(Q) + 4.573 0.377 0.000 

03361638 Hancock County, Indiana SUVA = 0.2irin(Q) +2.941 0.206 0.002 

05451080 Hamilton County, Iowa SUVA = 0.201*ln(Q) + 2.874 0.511 0.000 

01367800 Sussex County, New Jersey SUVA = 0,076*ln(Q) + 3.727 0.014 0.265 

01407760 Monmouth County, New Jersey SUVA = -0.007*ln(Q) + 3.97 -0.030 0.967 

01410150 Burlington County, New Jersey SUVA = -0.076*ln(Q) + 4.85 -0.017 0.632 

01411300 Cape May County, New Jersey SUVA = -0.302*ln(Q) + 4.672 -0.084 0.525 

01412800 Cumberland County, New Jersey SUVA = 0.024*ln(Q) + 3.631 -0.045 0.916 

01466500 Burlington County, New Jersey SUVA = 0.062*ln(Q) + 4.44 -0.020 0.767 

01482500 Salem County, New Jersey SUVA = 0.119*ln(Q) +3.578 0.021 0.222 

01493500 Kent County, Maryland SUVA = 0.038*ln(Q) +2.911 -0.013 0.412 

02172300 Aiken County, South Carolina SUVA = -0.066*ln(Q) + 3.917 -0.231 0.818 

02172305 Aiken County, South Carolina SUVA = -0.153*ln(Q) + 3.897 0.000 0.322 

04087204 Milwaukee County, Wisconsin SUVA = 0.111*ln(Q) + 3.166 0.060 0.059 

14161500 Lane County, Oregon SUVA = 0.158*ln(Q) + 2.722 0.012 0.207 

14205400 Washington County, Oregon SUVA = 0.03*ln(Q) + 3.554 -0.132 0.806 
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Table A.5. Table showing the regression equations, R2, and p-value for specific ultraviolet 

absorbance at 254nm (SUVA254) vs. antecedent gross primary production (GPP32) in individual 

basins. 

USGS Station Location Regression equation R2 P 

01367625 Sussex County, New Jersey SUVA = 0.073*ln(GPP32) + 2.033 0.114 0.023 

01367800 Sussex County, New Jersey SUVA = 0.068*ln(GPP32) + 3.305 0.110 0.025 

01367880 Sussex County, New Jersey SUVA = 0.208*ln(GPP32) + 2.705 0.459 0.039 

01380100 Morris County, New Jersey SUVA = 0.206*ln(GPP32) + 2.789 0.260 0.001 

01381498 Morris County, New Jersey SUVA = 0.163*ln(GPP32) + 2.347 0.419 0.049 

01399200 Morris County, New Jersey SUVA = 0.31*ln(GPP32) + 2.559 0.651 0.010 

01400808 Mercer County, New Jersey SUVA = 0,211*ln(GPP32) + 3.398 0.296 0.017 

01400823 Middlesex County, New Jersey SUVA = 0.361 *ln(GPP32) + 3.035 0.424 0.048 

01405340 Middlesex County, New Jersey SUVA = 0.394*ln(GPP32) + 2.072 0.200 0.004 

01408100 Ocean County, New Jersey SUVA = 0.229*ln(GPP32) + 3.457 0.196 0.004 

01408152 Ocean County, New Jersey SUVA = 0.552*ln(GPP32) + 2.002 0.593 0.015 

01409387 Burlington County, New Jersey SUVA = 0.252*ln(GPP32) + 3.543 0.116 0.034 

01409416 Atlantic County, New Jersey SUVA = 0.221 *ln(GPP32) + 3.14 0.210 0.003 

01410150 Burlington County, New Jersey SUVA = 0.19*ln(GPP32) + 3.884 0.180 0.005 

01411196 Atlantic County, New Jersey SUVA = 0.302*ln(GPP32) + 3.132 0.334 0.000 

01411440 Cape May County, New Jersey SUVA = 0.675*ln(GPP32) + 0.919 0.683 0.007 

01411444 Cumberland County, New Jersey SUVA = 0.255*ln(GPP32) + 3.167 0.136 0.015 

01411955 Cumberland County, New Jersey SUVA = 0.284*ln(GPP32) + 3.127 0.262 0.001 

01463810 Mercer County, New Jersey SUVA = 0.379*ln(GPP32) + 1.597 0.711 0.005 

01464460 Monmouth County, New Jersey SUVA = 0.414*ln(GPP32) + 2.456 0.299 0.020 

01464515 Monmouth County, New Jersey SUVA = 0.302*ln(GPP32) + 2.13 0.275 0.001 

01465893 Burlington County, New Jersey SUVA = 0.178*ln(GPP32) + 3.968 0.104 0.040 

01467150 Camden County, New Jersey SUVA = -0.309*ln(GPP32) + 5.264 0.120 0.026 

01476625 Gloucester County, New Jersey SUVA = 0.42*ln(GPP32) + 2.376 0.485 0.033 

01477110 Gloucester County, New Jersey SUVA = 0.403*ln(GPP32) + 2.452 0.457 0.039 

02172300 Aiken County, South Carolina SUVA = 1.188*ln(GPP32) + -2.168 0.697 0.024 

02172305 Aiken County, South Carolina SUVA = 0.406*ln(GPP32) + 1.882 0.084 0.035 

03361638 Hancock County, Indiana SUVA = 0.472*ln(GPP32) + 0.361 0.234 0.001 

04087204 Milwaukee County, Wisconsin SUVA = 0.19*ln(GPP32) + 2.311 0.413 0.000 

05451080 Hamilton County, Iowa SUVA = 0.107*ln(GPP32) + 2.288 0.119 0.001 

07288636 Bolivar County, Mississippi SUVA = 0.181*ln(GPP32) + 1.685 0.128 0.002 

3344280813547 Aiken County, South Carolina SUVA = 1.103*ln(GPP32) + -1.763 0.757 0.015 

01311990 Hamilton County, New York SUVA = 0.095*ln(GPP32) + 3.267 0.303 0.091 

0131199010 Hamilton County, New York SUVA = 0.033*ln(GPP32) + 4.182 0.052 0.147 

0131199022 Hamilton County, New York SUVA = 0.028*ln(GPP32) + 3.894 -0.153 0.802 

0131199040 Hamilton County, New York SUVA = 0.085*ln(GPP32) + 3.427 0.297 0.152 

0131199050 Essex County, New York SUVA = 0.016*ln(GPP32) + 3.718 -0.005 0.370 

01367780 Sussex County, New Jersey SUVA = 0.082*ln(GPP32) + 2.81 -0.011 0.373 

01367902 Sussex County, New Jersey SUVA = 0.043*ln(GPP32) + 3.428 0.012 0.337 

01368825 Sussex County, New Jersey SUVA = 0.207*ln(GPP32) + 3.875 0.130 0.203 

01378387 Bergen County, New Jersey SUVA = -0.06*ln(GPP32) + 3.219 -0.022 0.393 

01378583 Bergen County, New Jersey SUVA = 0.104*ln(GPP32) + 2.342 -0.056 0.458 
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01378660 Morris County, New Jersey SUVA = 0.125*ln(GPP32) + 2.904 -0.001 0.358 

01379200 Somerset County, New Jersey SUVA = -0.045*ln(GPP32) + 3.296 -0.005 0.368 

01379870 Morris County, New Jersey SUVA = 0.138*ln(GPP32) + 3.35 0.355 0.070 

01380098 Morris County, New Jersey SUVA = 0.224*ln(GPP32) + 2.479 -0.018 0.385 

01381260 Morris County, New Jersey SUVA = 0.14*ln(GPP32) + 2.324 -0.013 0.378 

01381330 Morris County, New Jersey SUVA = 0.098*ln(GPP32) + 2.795 -0.057 0.460 

01382960 Passaic County, New Jersey SUVA = 0.158*ln(GPP32) + 2.473 0.415 0.050 

01388720 Morris County, New Jersey SUVA = -0.038*ln(GPP32) + 4.92 -0.011 0.435 

01390800 Bergen County, New Jersey SUVA = 0.024*ln(GPP32) + 3.539 -0.135 0.697 

01393960 Essex County, New Jersey SUVA = 0.085*ln(GPP32) + 2.3 0.024 0.320 

01394200 Union County, New Jersey SUVA = 0.023*ln(GPP32) + 2.964 -0.139 0.718 

01394500 Union County, New Jersey SUVA = -0.005*ln(GPP32) + 3.03 -0.028 0.907 

01396588 Hunterdon County, New Jersey SUVA = 0.023*ln(GPP32) + 3.096 -0.018 0.465 

01396900 Hunterdon County, New Jersey SUVA = 0.151*ln(GPP32) + 2.221 0.262 0.111 

01397950 Hunterdon County, New Jersey SUVA = 0.031 *ln(GPP32) + 2.859 -0.108 0.593 

01398000 Hunterdon County, New Jersey SUVA = -0.086*ln(GPP32) + 3.278 0.033^ 0.141 

01398060 Hunterdon County, New Jersey SUVA = 0.063*ln(GPP32) + 2.377 -0.033 0.412 

01398090 Somerset County, New Jersey SUVA = 0.008*ln(GPP32) + 2.655 -0.159 0.846 

01399295 Morris County, New Jersey SUVA = -0.01*ln(GPP32) + 4.109 -0.166 0.963 

01399520 Somerset County, New Jersey SUVA = -0.079*ln(GPP32) + 3.486 -0.120 0.635 

01399820 Somerset County, New Jersey SUVA = 0.06*ln(GPP32) + 3.225 -0.157 0.832 

01400530 Monmouth County, New Jersey SUVA = 0.17*ln(GPP32) + 4.164 -0.270 0.724 

01400560 Middlesex County, New Jersey SUVA = 0.09*ln(GPP32) + 3.962 0.314 0.111 

01400860 Mercer County, New Jersey SUVA = -0.103*ln(GPP32) + 4.304 -0.013 0.394 

01401400 Middlesex County, New Jersey SUVA = 0.127*ln(GPP32) + 3.214 0.074 0.052 

01401520 Mercer County, New Jersey SUVA = 0.007*ln(GPP32) + 2.891 -0.166 0.949 

01401560 Somerset County, New Jersey SUVA = 0.041 *ln(GPP32) + 3.463 -0.130 0.675 

01401700 Somerset County, New Jersey SUVA = -0.207*ln(GPP32) + 4.331 0.031 0.310 

01403171 Somerset County, New Jersey SUVA = -0.098*ln(GPP32) + 3.662 -0.056 0.446 

01403190 Somerset County, New Jersey SUVA = -0.022*ln(GPP32) + 3.57 -0.164 0.911 

01403575 Somerset County, New Jersey SUVA = 0.01*ln(GPP32) + 2.86 -0.166 0.947 

01404400 Middlesex County, New Jersey SUVA = -0.035*ln(GPP32) + 4.128 -0.158 0.837 

01405003 Middlesex County, New Jersey SUVA = -0.041 *ln(GPP32) + 4.434 -0.100 0.570 

01405180 Monmouth County, New Jersey SUVA = 0.124*ln(GPP32) + 2.659 -0.081 0.517 

01407210 Monmouth County, New Jersey SUVA = -0.065*ln(GPP32) + 3.65 -0.124 0.648 

01407253 Monmouth County, New Jersey SUVA = 0.045*ln(GPP32) + 2.888 -0.155 0.817 

01407520 Monmouth County, New Jersey SUVA = 0.215*ln(GPP32) + 3.533 0.220 0.136 

01407538 Monmouth County, New Jersey SUVA = -0.072*ln(GPP32) + 5.413 -0.189 0.841 

01407760 Monmouth County, New Jersey SUVA = 0.171*ln(GPP32) + 3.151 0.036 0.142 

01407900 Monmouth County, New Jersey SUVA = 0.07*ln(GPP32) + 2.946 -0.155 0.815 

01408009 Monmouth County, New Jersey SUVA = 0.305*ln(GPP32) + 2.998 0.233 0.054 

01408110 Monmouth County, New Jersey SUVA = 0.039*ln(GPP32) + 4.34 0.020 0.326 

01408290 Ocean County, New Jersey SUVA = 0.065*ln(GPP32) + 4.587 -0.201 0.707 

01408460 Ocean County, New Jersey SUVA = -0.047*ln(GPP32) + 5.298 -0.070 0.782 

01408598 Ocean County, New Jersey SUVA = -0.24*ln(GPP32) + 6.207 -0.050 0.471 

01408830 Ocean County, New Jersey SUVA = -0.154*ln(GPP32) + 5.578 0.020 0.201 

01409030 Ocean County, New Jersey SUVA = -0.016*ln(GPP32) + 4.475 -0.162 0.888 

0140940200 Camden County, New Jersey SUVA = 0.234*ln(GPP32) + 3.652 0.071 0.261 
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0140940950 Camden County, New Jersey SUVA = 0*ln(GPP32) + 5 -0.038 0.999 

0140941070 Atlantic County, New Jersey SUVA = 0.111 *ln(GPP32) + 2.995 -0.144 0.743 

0140941075 Atlantic County, New Jersey SUVA = 0.232*ln(GPP32) + 2.506 0.406 0.053 

01409435 Burlington County, New Jersey SUVA = 0.506*ln(GPP32) + 1.772 0.141 0.193 

01409600 Atlantic County, New Jersey SUVA = 0.199*ln{GPP32) + 3.468 -0.166 0.620 

01409601 Atlantic County, New Jersey SUVA = 0.193*ln(GPP32) + 3.295 0.218 0.137 

01409930 Burlington County, New Jersey SUVA = -0.035*ln(GPP32) + 4.858 -0.162 0.880 

01410455 Atlantic County, New Jersey SUVA = -0.057*ln(GPP32) + 4.05 -0.126 0.659 

01410810 Camden County, New Jersey SUVA = 0.002*ln(GPP32) + 4.747 -0.200 0.984 

01410820 Camden County, New Jersey SUVA = 1.726*ln(GPP32) + -6.449 -0.215 0.626 

01411035 Gloucester County, New Jersey SUVA = 0.02*ln(GPP32) + 4.852 -0.043 0.837 

01411208 Atlantic County, New Jersey SUVA = 0.264*ln(GPP32) + 3.502 0.073 0.260 

01411290 Atlantic County, New Jersey SUVA = -0.189*ln(GPP32) + 5.011 0.132 0.200 

01411295 Atlantic County, New Jersey SUVA = 0.123*ln(GPP32) + 4.291 0.019 0.328 

01411300 Cape May County, New Jersey SUVA = 0.162*ln(GPP32) + 3.919 -0.074 0.500 

01411400 Cape May County, New Jersey SUVA = 0.07*ln(GPP32) + 4.272 -0.015 0.503 

01411427 Cape May County, New Jersey SUVA = -0.073*ln(GPP32) + 3.969 -0.087 0.736 

01411452 Gloucester County, New Jersey SUVA = 0.307*1n(GPP32) + 2.897 0.126 0.206 

01411457 Gloucester County, New Jersey SUVA = 0.21in(GPP32) + 3.492 0.004 0.369 

01411458 Gloucester County, New Jersey SUVA = -0.444*ln(GPP32) + 6.095 -0.145 0.533 

01411466 Gloucester County, New Jersey SUVA = 0.046*ln(GPP32) + 4.835 -0.025 0.542 

01411487 Salem County, New Jersey SUVA = 0.094*ln(GPP32) + 4.263 -0.103 0.579 

01411495 Cumberland County, New Jersey SUVA = 0.084*ln(GPP32) + 4.22 -0.135 0.695 

01412005 Cumberland County, New Jersey SUVA = -0.017*ln(GPP32) + 4.343 -0.164 0.915 

01412800 Cumberland County, New Jersey SUVA = 0.126*ln(GPP32) + 3.071 0.052 0.094 

01413013 Cumberland County, New Jersey SUVA = -0.154*ln(GPP32) + 4 -0.120 0.576 

01440097 Warren County, New Jersey SUVA = 0.117*ln(GPP32) + 2.26 -0.001 0.357 

01443250 Sussex County, New Jersey SUVA = -0.005*ln(GPP32) + 3.322 -0.166 0.954 

01444990 Sussex County, New Jersey SUVA = -0.046*ln(GPP32) + 3.34 -0.046 0.437 

01445160 Warren County, New Jersey SUVA = -0.053*ln(GPP32) + 2.987 -0.004 0.357 

01445900 Warren County, New Jersey SUVA = 0.078*ln(GPP32) + 2.957 -0.013 0.377 

01455240 Warren County, New Jersey SUVA = -0.191*ln(GPP32) + 2.622 0.116 0.215 

01455700 Sussex County, New Jersey SUVA = 0.057*ln(GPP32) + 2.44 -0.084 0.524 

01458300 Hunterdon County, New Jersey SUVA = 0.086*ln(GPP32) + 3.029 0.032 0.310 

01458570 Hunterdon County, New Jersey SUVA = 0.02*ln(GPP32) + 2.941 -0.025 0.740 

01458710 Hunterdon County, New Jersey SUVA = 0.059*ln(GPP32) + 2.442 0.020 0.308 

01460860 Hunterdon County, New Jersey SUVA = 0.078*ln(GPP32) + 3.149 0.006 0.346 

01460870 Hunterdon County, New Jersey SUVA = 0.159*ln(GPP32) + 2.921 -0.061 0.469 

01461250 Hunterdon County, New Jersey SUVA = 0.243*ln(GPP32) + 2.793 -0.055 0.456 

01461282 Hunterdon County, New Jersey SUVA = -0.01*ln(GPP32) + 3.475 -0.166 0.955 

01462800 Mercer County, New Jersey SUVA = 0.076*ln(GPP32) + 2.487 0.003 0.351 

01463610 Mercer County, New Jersey SUVA = 0.284*ln(GPP32) + 2.692 0.033 0.308 

01463661 Mercer County, New Jersey SUVA = -0.116*ln(GPP32) + 4.612 -0.102 0.575 

01463850 Mercer County, New Jersey SUVA = 0.121*ln(GPP32) + 3.663 0.033 0.150 

01464280 Burlington County, New Jersey SUVA = 0.058*ln(GPP32) + 2.977 -0.188 0.832 

01464380 Burlington County, New Jersey SUVA = -0.004*ln(GPP32) + 3.855 -0.167 0.984 

01464527 Burlington County, New Jersey SUVA = -0.14*ln(GPP32) + 5.302 0.041 0.142 

01464532 Burlington County, New Jersey SUVA = 0.235*ln(GPP32) + 2.909 0.183 0.186 
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01465808 Burlington County, New Jersey SUVA = 0.392*ln(GPP32) + 3.042 0.404 0.074 

01465857 Burlington County, New Jersey SUVA = -0.177*ln(GPP32) + 4.329 0.058 0.276 

01465950 Burlington County, New Jersey SUVA = 0.338*ln(GPP32) + 2,372 -0.126 0.511 

01465965 Burlington County, New Jersey SUVA = 0.249*ln(GPP32) + 3.778 0.388 0.059 

01466100 Burlinqton County, New Jersey SUVA = 0.261*ln(GPP32) + 2.878 -0.025 0.398 

01466500 Burlington County, New Jersey SUVA = 0.184*ln(GPP32) + 3.292 0.060 0.078 

01467066 Burlington County, New Jersey SUVA = -0.346*ln(GPP32) + 5.188 0.223 0.160 

01467325 Gloucester County, New Jersey SUVA = -0.041 *ln(GPP32) + 4.041 -0.128 0.668 

01467359 Camden County, New Jersey SUVA = 0.076*ln(GPP32) + 4.72 0.001 0.321 

01475042 Gloucester County, New Jersey SUVA = 0.067*ln(GPP32) + 4.043 -0.038 0.422 

01475090 Gloucester County, New Jersey SUVA = 0.034*ln(GPP32) + 3.375 -0.159 0.847 

01476640 Gloucester County, New Jersey SUVA = 0.027*ln(GPP32) + 4.01 -0.160 0.859 

01477440 Salem County, New Jersey SUVA = 0.109*ln(GPP32) + 3.442 -0.040 0.441 

01482500 Salem County, New Jersey SUVA = 0.051 *ln(GPP32) + 3.149 -0.002 0.340 

01482520 Salem County, New Jersey SUVA = 0.262*ln(GPP32) + 2.144 0.414 0.051 

01482530 Salem County, New Jersey SUVA = -0.033*ln(GPP32) + 2.778 -0.193 0.874 

01482645 Salem County, New Jersey SUVA = -0.097*ln(GPP32) + 3.591 -0.147 0.759 

01493500 Kent County, Maryland SUVA = -0.008*ln(GPP32) + 2.963 -0.045 0.948 

02172304 Aiken County, South Carolina SUVA = -4.939*ln(GPP32) + 31.744 -0.041 0.421 

07288625 Bolivar County, Mississippi SUVA = 0.004*ln(GPP32) + 2.699 -0.250 0.985 

14161500 Lane County, Oregon SUVA = 0.062*ln(GPP32) + 2.47 -0.015 0.651 

14205400 Washington County, Oregon SUVA = -0.031 *ln(GPP32) + 3.703 -0.139 0.887 

14206435 Washington County, Oregon SUVA = 0.097*ln(GPP32) + 2.543 0.045 0.072 

333150090530400 Bolivar County, Mississippi SUVA = 0.182*ln(GPP32) + 1.579 0.025 0.105 

3343250813616 Aiken County, South Carolina SUVA = 1.178*ln(GPP32) +-3.113 0.101 0.315 

3344250813538 Aiken County, South Carolina SUVA = 0.711*ln(GPP32) + 0.135 0.094 0.285 

3344580813559 Aiken County, South Carolina SUVA = 0.093*ln(GPP32) + 3.749 -0.329 0.931 

3345100813509 Aiken County, South Carolina SUVA = 0.061*ln(GPP32) + 3.544 -0.245 0.909 
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Table A.6. Table showing the regression equations, R2, and p-value for specific ultraviolet 

absorbance at 254nm (SUVA254) vs. stormflow ratio (SR) in individual basins. 

USGS Station Location Regression equation R2 P 

01493500 Kent County, Maryland SUVA = 0.41*SR + 14.402 0.136 0.043 

05451080 Hamilton County, Iowa SUVA = 0.74*SR + 12.125 0.297 0.000 

01367800 Sussex County, New Jersey SUVA = -0.132*SR + 40.954 -0.043 0.726 

01377500 Bergen County, New Jersey SUVA = -1.92*SR + 21.476 0.285 0.125 

01394500 Union County, New Jersey SUVA = 0.279*SR + 18.421 0.003 0.296 

01398000 Hunterdon County, New Jersey SUVA = 0.424*SR + 16.113 0.040 0.111 

01407760 Monmouth County, New Jersey SUVA = -0.44*SR + 60.387 -0.007 0.384 

01410150 Burlington County, New Jersey SUVA = -0.007*SR + 136.214 -0.022 0.988 

01411300 Cape May County, New Jersey SUVA = -1.687*SR + 173.279 0.030 0.312 

01412800 Cumberland County, New Jersey SUVA = -0.395*SR + 40.42 -0.031 0.587 

01466500 Burlington County, New Jersey SUVA = -0.408*SR + 90.77 0.124 0.071 

01467150 Camden County, New Jersey SUVA = 1.146*SR + 36.227 0.023 0.161 

01482500 Salem County, New Jersey SUVA = 0.068*SR + 31.414 -0.038 0.834 

02172300 Aiken County, South Carolina SUVA = -0.746*SR + 64.448 -0.140 0.568 

02172305 Aiken County, South Carolina SUVA = -0.376*SR + 60.379 0.003 0.299 

03361638 Hancock County, Indiana SUVA = -0.573*SR + 24.696 0.040 0.136 

04087204 Milwaukee County, Wisconsin SUVA = -0.029*SR +21.761 -0.027 0.915 

14161500 Lane County, Oregon SUVA = 0.61*SR +15.07 -0.001 0.330 

14205400 Washington County, Oregon SUVA = 0.612*SR +32.762 -0.091 0.581 
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