Genome Sequence of the Moderately Halophilic Yellow Sea Bacterium Lentibacillus salicampi ATCC BAA-719T

Milto Simoes
University of New Hampshire, Manchester

Kyle S. MacLea
University of New Hampshire, Manchester, kyle.maclea@unh.edu

Follow this and additional works at: https://scholars.unh.edu/faculty_pubs

Recommended Citation

https://scholars.unh.edu/faculty_pubs/702

This Article is brought to you for free and open access by University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Faculty Publications by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.
Genome Sequence of the Moderately Halophilic Yellow Sea Bacterium *Lentibacillus salicampi* ATCC BAA-719^T

Milo Simoes Junior, a Kyle S. MacLea,b,c

a Biotechnology Program, University of New Hampshire, Manchester, New Hampshire, USA
b Biology Program, University of New Hampshire, Manchester, New Hampshire, USA
c Department of Life Sciences, University of New Hampshire, Manchester, New Hampshire, USA

ABSTRACT *Lentibacillus salicampi* SF-20^T (= ATCC BAA-719^T) was first isolated from a Yellow Sea salt field in Korea in 2002. Here, we report that the *L. salicampi* ATCC BAA-719^T genome sequence has a predicted length of 3,897,716 bp, containing 3,945 total genes and a CRISPR array, with a G+C content of 43.0%.

Strains and species from the firmicute genus *Lentibacillus* have been identified in a number of salty environments (1–8). The type species of that genus, *Lentibacillus salicampi* ATCC BAA-719, was first collected in 2002 from a salt field of the Yellow Sea in Korea (1), and other strains of this species have also been identified in fermented fish sauces (2). *L. salicampi* SF-20^T (= ATCC BAA-719^T) is described as a Gram-variable rod-shaped aerobic and motile bacterium capable of growing in 3% to 25% NaCl and forming spherical to oval endospores (1, 2). Characteristically, *L. salicampi* has meso-diaminopimelic acid as the diagnostic diamino acid in its peptidoglycan and has a cellular fatty acid profile that contains large amounts of branched fatty acids, particularly as anteiso-C_{15:0} and iso-C_{16:0} (1). Additionally, *L. salicampi* is closely related to species in other halophilic *Bacillaceae* genera, including *Virgibacillus*, *Gracilibacillus*, *Halobacillus*, *Filobacillus*, and *Pontibacillus* (1, 2, 9). As BAA-719 is the type strain of the *Lentibacillus* genus, its genome sequence is expected to be especially useful in resolving the assignment of new strains to the correct genera and for resolving taxonomic discrepancies among these halophilic bacilli. Here, we report the genome sequence of *L. salicampi* ATCC BAA-719^T.

L. salicampi ATCC BAA-719^T was obtained from ATCC (Manassas, VA, USA) in a freeze-dried form, then rehydrated and cultured in marine broth 2216 (BD Difco, Billerica, MA, USA), and incubated at 30°C for 96 h at 1 atm. After rehydration, *L. salicampi* was grown at log phase before its genomic DNA (gDNA) was isolated using the QIAamp DNA mini kit (Qiagen, Valencia, CA, USA). Fragmentation of gDNA and attachment of sequence adapters were undertaken using the KAPA HyperPlus kit (KR1145, v.3.16; Wilmington, MA, USA) followed by sequencing on an Illumina HiSeq 2500 instrument (Hubbard Center for Genome Studies, Durham, NH, USA). Raw 250-bp reads (5,761,192 reads in total) were trimmed using Trimmomatic v.0.38 (settings were paired-end mode with a window size of 4, quality requirement of 15, and minimum read length of 36) and then assembled with the default parameters using SPAdes v.3.13.0 (10, 11). After the removal of small (<500-bp) contigs along with contaminants flagged with the NCBI Prokaryotic Genome Assembly Pipeline (PGAP) v.4.8 (below), QUAST v.5.0.2 (12) analysis verified 135 contigs—the largest being 483,654 bp—with an \(N_{50} \) value of 64,911 bp and a genome coverage of approximately 315×. PGAP (13, 14) provided gene identification and annotation. The assembled genome was 3,897,716 bp long, and PGAP revealed a total of 3,945 genes, 3,725 protein-coding sequences, 130 pseudogenes, 64 tRNAs, 21 copies of the rRNA genes, of which only the 5S rRNA gene...
is complete, 5 noncoding RNAs (ncRNAs), 1 CRISPR array, and a G+C content of 43.0%, in line with published values for the genus (42% to 44%) (3) and species (44% or 42.4%) (1, 2).

Data availability. The *Lentibacillus salicampi* ATCC BAA-719\(^{T}\) whole-genome shotgun sequence (WGS) project has been deposited at DDBJ/ENA/GenBank under the accession number SRHY00000000. The version described in this paper is the first version, SRHY01000000. The raw Illumina data from BioProject accession number PRJNAS29678 were submitted to the NCBI Sequence Read Archive (SRA) under experiment accession number SRX5588714.

ACKNOWLEDGMENTS

M.S.J. acknowledges that bacterial handling and DNA isolation were undertaken with the kind assistance of and helpful discussions with students in the autumn 2018 BSCI 792 research class, Meghna Tadepalli, and Claudia R. Maynard. Sequencing and bioinformatics analysis were undertaken at the Hubbard Center for Genome Studies at University of New Hampshire (UNH), supported by NH-INBRE, with the assistance of Kelley Thomas and Stephen Simpson. This work was a project of the Microbiology Education through Genome Annotation-New Hampshire (MEGA-NH) program.

This work was supported by the Department of Life Sciences at the University of New Hampshire, by a Manchester Undergraduate Project Support grant to M.S.J., and by New Hampshire-INBRE through an Institutional Development Award (IDeA), P20GM103506, from the National Institute of General Medical Sciences of the NIH. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

REFERENCES

