
University of New Hampshire University of New Hampshire

University of New Hampshire Scholars' Repository University of New Hampshire Scholars' Repository

Master's Theses and Capstones Student Scholarship

Winter 2011

Parallel volume rendering for large scientific data Parallel volume rendering for large scientific data

Thomas Fogal
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/thesis

Recommended Citation Recommended Citation
Fogal, Thomas, "Parallel volume rendering for large scientific data" (2011). Master's Theses and
Capstones. 684.
https://scholars.unh.edu/thesis/684

This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire
Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized
administrator of University of New Hampshire Scholars' Repository. For more information, please contact
Scholarly.Communication@unh.edu.

https://scholars.unh.edu/
https://scholars.unh.edu/thesis
https://scholars.unh.edu/student
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F684&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis/684?utm_source=scholars.unh.edu%2Fthesis%2F684&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Scholarly.Communication@unh.edu

PARALLEL VOLUME RENDERING FOR LARGE

SCIENTIFIC DATA

BY

Thomas Fogal

B.S., University of New Hampshire (2006)

THESIS

Submitted to the University of New Hampshire
in Partial Fulfillment of

the Requirements for the Degree of

Master of Science

in

Computer Science

December 2011

UMI Number: 1507822

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI
Dissertation Publishing

UMI 1507822
Copyright 2012 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

uest
ProQuest LLC

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106-1346

This thesis has been examined and apjiroved

Thesis Director, R. Daniel Bttfgeron
Professor of Computer Spfnncc

Philip J. Matcher,
Professor of Computer Science & Chair of the Computer
Science Department

Hank R Childs.
Research Professor, Dopatlmeni of Computer Science.
University of California, Davis

Date

ACKNOWLEDGMENTS

The most important 'thank you' has to be for my committee, Professors Bergeron and

Hatcher, and Dr. Childs. I think this has dragged on far longer than any of us had

anticipated, and developed a scope much larger than intended. Their unending patience

and dedication to seeing me through this was a boon when progress was slow and doubts

were large. Further, it has been obvious from the start that they have been concerned not

simply with the production of another document and another graduate, but the incubation

of my much larger professional life during and beyond this thesis. For these things I am

forever grateful.

A special acknowledgement should go to Jens Kriiger, who really deserves to be named

as part of my committee. He and I developed the volume rendering library "Tuvok", and I

must admit he did the heavy lifting in that regard. His advice and help as I implemented

the system described here was invaluable, as was his persistent, "So, are you finished yet?"

prodding.

Siddharth Shankar deserves special mention as well. Siddharth and I implemented the

load balancing aspects mentioned herein, and again most of the credit here belongs to

Siddharth.

I am extremely fortunate to have worked on portions of this thesis with the support of

the SCI Institute at the University of Utah. I thank the administration there for ensuring

that tasks which intersect with my personal motivations and interests flow my way.

Sean Ahem of Oak Ridge National Laboratory provided significant support getting

IceT integrated into Visit, and the way Visit accesses multiple GPUs came directly out of

conversations he and I had whilst I was at Oak Ridge. The idea of 'decoupled' processing

and rendering, which sadly is only mentioned briefly in conclusions due to time constraints,

in

is entirely his.

I would like to thank Gunther Weber and Mark Howison at LBNL for discussions and

guidance during preliminary formulation of our published work related to this thesis.

Paul Navratil at TACC deserves a special 'thanks!'. He helped us get Visit working with

Longhorn's GPUs, which was critical in generating the most interesting scalability results

presented here. Thanks, Paul!

The CS graduate students at UNH served a very useful role in maintaining my sanity

whilst I was there. Thanks, guys. I miss our weekly 'CS socials'.

This research was made possible in part by the Office of Advanced Scientific Comput

ing Research, Office of Science, of the U.S. Department of Energy under Contract No.

DE-AC02-05CH11231 through the Scientific Discovery through Advanced Computing (Sci-

DAC) program's Visualization and Analytics Center for Enabling Technologies (VACET),

by the NIH/NCRR Center for Integrative Biomedical Computing, P41-RR12553-10 and

by Award Number R01EB007688 from the National Institute Of Biomedical Imaging And

Bioengineering.

Resources were utilized at the Texas Advanced Computing Center (TACC) at the Uni

versity of Texas at Austin and at the National Center for Computational Sciences at Oak

Ridge National Laboratory, which is supported by the Office of Science of the U.S. Depart

ment of Energy under Contract No. DE-AC05-00OR22725.

IV

TABLE OF CONTENTS

ACKNOWLEDGMENTS Hi

LIST OF TABLES vii

LIST OF FIGURES viii

1 I N T R O D U C T I O N and RELATED W O R K 1

1.1 Thesis Goals 2

1.2 BACKGROUND 3

2 A R C H I T E C T U R E 6

2.1 Multi-GPU Access 6

2.2 Partitioning 7

2.3 Rendering 9

2.3.1 Tuvok 9

2.3.2 Visit Integration 11

2.4 Compositing 13

3 EVALUATION 15

3.1 Rendering Times 15

3.2 Memory Strain 18

3.3 Readback and Compositing 20

3.4 Load Balancing 21

3.4.1 Algorithm Details 21

3.4.2 Results 23

3.5 Observations 25

v

4 S U M M A R Y 27

4.1 Future Work 28

B I B L I O G R A P H Y 29

A PARALLEL APPROXIMATE IMAGE COMPOSITION 30

A.l Parallel Compositing Overview 30

A.2 Expansion of the Over Operator 31

A.3 Significance of Terms 34

A.3.1 Application 36

vi

LIST OF TABLES

2.1 Tuvok Timings 12

3.1 Configuration of GPU clusters utilized 16

3.2 Time per stage in the volume rendering pipeline 20

vn

LIST OF FIGURES

1-1 Example output of our volume rendering system 3

2-1 Example output of our volume rendering system 7

2-2 Sample volume decomposition 8

2-3 Tuvok Render Modes 10

2-4 Large data sets demonstrating Tuvok 11

3-1 Scalability on Longhorn 17

3-2 Rendering time as a function of brick size 18

3-3 In-core versus out-of-core 19

3-4 Load balancing 22

3-5 Per-process rendering times for the 'Miiller' line given in Figure 3-4. . . 24

A-1 Approximating image composition using a different number of E-terms. 33

viu

ABSTRACT

PARALLEL VOLUME RENDERING FOR LARGE SCIENTIFIC DATA

by

Thomas Fogal

University of New Hampshire, December, 2011

Data sets of immense size are regularly generated by large scale computing resources.

Even among more traditional methods for acquisition of volume data, such as MRI and CT

scanners, data which is too large to be effectively visualized on standard workstations is

now commonplace.

One solution to this problem is to employ a 'visualization cluster,' a small to medium

scale cluster dedicated to performing visualization and analysis of massive data sets gener

ated on larger scale supercomputers. These clusters are designed to fulfill a different need

than traditional supercomputers, and therefore their design mandates different hardware

choices, such as increased memory, and more recently, graphics processing units (GPUs).

While there has been much previous work on distributed memory visualization as well as

GPU visualization, there is a relative dearth of algorithms which effectively use GPUs at

a large scale in a distributed memory environment. In this work, we study a common

visualization technique in a GPU-accelerated, distributed memory setting, and present per

formance characteristics when scaling to extremely large data sets.

IX

CHAPTER 1

INTRODUCTION and RELATED

WORK

Visualization and analysis algorithms, volume rendering in particular, require extensive

compute power relative to data set size. One possible solution is to use the large scale

supercomputer that generated the data, which clearly has the requisite compute power.

But it can be difficult to reserve and obtain the computing resources required for viewing

large data sets. An alternative approach, one explored in this paper, is to use a smaller

scale cluster equipped with GPUs, which can provide the needed computational power at

a fraction of the cost - provided the GPUs can be effectively utilized. As a result, a semi-

recent trend has emerged to procure GPU-accelerated visualization clusters dedicated to

processing the data generated by high end supercomputers; examples include ORNL's Lens,

Argonne's Eureka, TACC's Longhorn, SCI's Tesla-based cluster, and LLNL's Gauss.

Despite this trend, there have been relatively few efforts to study distributed memory,

GPU-accelerated visualization algorithms that can effectively utilize the resources available

on these clusters. In this paper, we report parallel volume rendering performance charac

teristics on large data sets for a typical machine of this type.

Our system is divided into three stages:

1. An intelligent pre-partitioning which is designed to make combining results from dif

ferent nodes easy.

1

2. A GPU volume Tenderer to perform the per-frame volume rendering work at interac

tive rates.

3. MPI-based compositing based on a sort-last compositing framework.

Miiller et al. presented a system similar to our own that was limited to smaller data

sets [24]. We have extended the ideas in that system to allow for larger data sets, by

removing the restriction that a data set must fit in the combined texture memory of the GPU

cluster and adding the ability to mix in CPU-based Tenderers, enabling us to analyze parallel

performance on extremely large data sets. The primary contribution of this paper is an

increased understanding of the performance characteristics of a distributed memory GPU-

accelerated volume rendering algorithm at a scale (256 GPUs) much larger than previously

published. Further, the results presented here (data sets up to 81923 voxels) represent some

of the largest parallel volume renderings attempted thus far.

1.1 Thesis Goals

Our system and benchmarks allow us to explore issues such as:

• the balance between rendering and compositing, which is a well-studied issue with

CPU-based rendering, but previously had unclear performance tradeoffs for rendering

on GPU clusters;

• the overhead of transferring data to and from a GPU;

• the importance of process-level load balancing; and

• the viability of GPU clusters for rendering very large data.

The rest of this thesis is organized as follows: in Section 1.2, we overview previous work

in parallel compositing and GPU volume rendering. In Chapter 2 we outline our system

in detail. Chapter 3 discusses our benchmarks and presents their results before drawing

2

Figure 1-1: Output of our volume rendering system with a data set representing a burning
helium flame.

conclusions based on our findings. Appendix A discusses the beginnings of a compositing

idea which could not be developed within the constraints of this thesis.

1.2 BACKGROUND

Volume rendering in a serial context has been studied for many years. The basic algo

rithm [7] was improved significantly by including empty space skipping and early ray termi

nation [16]. Max provides one of the earliest formal presentations of the complete volume

rendering equation in [21]. Despite significant algorithmic advances from research such

as [16], the largest increase in performance for desktop volume Tenderers has come from

taking advantage of the 3D texturing capabilities [2,6,31] and programmable shaders [14]

3

available on modern graphics hardware.

Extensive research has been done on parallel rendering and parallel volume rendering.

Much of this work has focused on achieving acceptable compositing times on large systems.

Molnar et al. conveyed the theoretical underpinnings of parallel rendering performance

[22]. Earlier systems for parallel volume rendering relied on direct send [12,17], which

divides the volume up into at least as many chunks as there are processors, sending ray

segments (fragments) to a responsible tile node for compositing via the Porter and Duff

over operator [28]. These algorithms are simple to implement and integrate into existing

systems, but have sporadic compositing behavior and thus have the potential to exchange

a large number of fragments, straining the network layers when scaling to large numbers of

processors. Tree based algorithms feature more regular communication patterns, but impose

an additional latency which may not be required, depending on the particular frame and

data decomposition [18,32]. Binary swap and derivative algorithms are a special case of

tree-based algorithms that feature equitable distribution of the compositing workload [18].

Despite advances in compositing algorithms, network traffic remains unevenly distributed in

time, and high-performance networking remains a necessity for subsecond rendering times

on large numbers of processors.

In the area of distributed memory parallel volume rendering of very large data sets, the

algorithm described by Ma et al. [17] has been taken to extreme scale in several followup

publications. In [5], data set sizes up to 30003 are studied using hundreds of cores. In this

regime, the time spent ray casting far exceeds the composite time. In [26,27] the data set

sizes range up to 44803, while core counts of tens of thousands are studied. In [11], the

benefits of hybrid parallelism are explored at concurrency ranges going above two hundred

thousand cores. For both of these studies, when going to extreme concurrency, compositing

time becomes large and dominates ray casting time. This suggests that a sweet spot may

exist with GPU-accelerated distributed memory volume rendering. By using hardware

acceleration, the long ray casting times encountered in [5] can be overcome. Simultaneously,

the emerging trend of composite-bound rendering time observed in [27] and [11] will be

4

mitigated by the ability to use many fewer nodes to achieve the same compute power.

Numerous systems have been developed to enable parallel rendering in existing soft

ware. Among the most well-known is Chromium [13], a rendering system which can trans

parently parallelize OpenGL-based applications. The Equalizer framework boasts multiple

compositing strategies, including an improved direct send [8]. The IceT library provides

parallel rendering with a variety of sort-last compositing strategies [23].

There has been less previous work studying volume rendering on multiple GPUs. Strengert

et al. developed a system which uses wavelet compression and adaptively decompresses the

data on small GPU clusters [29]. Marchesin et al. compared volume rendering systems that

ran on two different two-GPU configurations: two GPUs on one system, and one GPU on

two networked systems [19]. An in-core Tenderer coupled with the use of just one or two

systems artificially constrained the data set size. Miiller et al. also developed a distributed

memory volume renderer that runs on GPUs [24].

Our system differs from the Miiller et al. and other systems in a few key ways. First, we

use an out-of-core volume renderer and therefore can exceed the available texture memory of

the GPU by also utilizing the CPU memory. To further reduce memory costs, we compute

gradients dynamically in the GLSL shader [14], obviating the need to upload a separate

gradient texture. This also has the benefit of avoiding a pre-process step, which is normally

software-based in existing general-purpose visualization applications (including the one we

chose to implement our system within) and can be quite time consuming for large data sets.

Further differentiating our system and in line with recent trends in visualization cluster

architectures, we enable the use of multiple GPUs per node. Miiller et al. use a direct

send compositing strategy [12,17], whereas we use a tree-based compositing method [23].

Finally, and most importantly, we report performance results for substantially more GPUs

and much larger data sets, detailing the scalability of GPU-based visualization clusters. We

therefore believe our work is the first to evaluate the usability of distributed memory GPU

clusters for this scale of data.

5

CHAPTER 2

ARCHITECTURE

We implemented our remote rendering system inside Visit [4], which is capable of rendering

data in parallel on remote machines. The system is comprised of a lightweight 'viewer'

client application, connected over TCP to a server which employs GPU cluster nodes.

All rendering is performed on the cluster, composited via MPI, and images, optionally

compressed via zlib, are sent back to the viewer for display. Example output from our

system is shown in Figure 2-1.

Although Visit provided a good starting point for our work, we needed to make sig

nificant changes in order to implement our system. In this section, we highlight the main

features of our system, taking special care to note where we have deviated from existing

Visit functionality.

2.1 Multi-GPU Access

At the outset, Visit's parallel server supported only a single GPU per node. We have

revamped the manner in which Visit accesses GPUs to allow the system to take advantage

of multi-GPU nodes. When utilizing GPU-based rendering, each GPU is matched to a CPU

core which feeds data to that GPU. Additionally, when the number of CPU cores exceeds

the number of available GPUs, we allow for the use of software-based Tenderers on the extra

CPUs. This code has been contributed to the Visit project [3] and is available in released

versions at the time of this writing.

6

Figure 2-1: Output of our volume rendering system with a data set representing a burning
helium flame.

2.2 Partitioning

Visit contained a number of load decomposition strategies prior to our work. However, we

found these strategies to be insufficient for a variety of reasons:

• Brick-based Equalizing the distribution of work in Visit was entirely based on bricks,

or pieces of the larger data set. Our balancing algorithms use the time taken to render

the previous frame to determine a weighted distribution of loads.

• Master-s lave Dynamic balance algorithms in Visit are based on a master node,

which tells slaves to process a brick, waits for completion, and then sends slaves a new

brick to process. We implemented a flat hierarchy, as seems to be more common in

7

recent literature [20,24].

• Compositing Most importantly, for our object-based decomposition to work cor

rectly, we needed a defined ordering to perform correct compositing. The load bal

ancing and compositing subsystems were independent prior to our work.

Our system relies on a A;d-tree for distributing and balancing the data. The spatial

partitioning is done once initially and can be adaptively refined by the rendering times

from previous frames. The initial tree only considers the number of bricks available in the

data set, and attempts to evenly distribute them among processes, to the extent that is

possible. When using static load balancing, this decomposition is determined and invariant

for the life of the parallel job. Figure 2-2 depicts a possible configuration determined by

the partitioner, and shows the corresponding fcd-tree.

Figure 2-2: Decomposition and corresponding fcd-tree for an 8x3x8 grid of bricks divided
among 4 processors. Adjacent bricks are kept together for efficient rendering and com
positing. A composite order is derived dynamically from the camera location in relation
to splitting planes. Note that the number of leaves in the tree is equal to the number of
processes in the parallel rendering job.

When the dynamic load balancer is enabled, we use the last rendering time on each

process to determine the next configuration. In our initial implementation, the metric we

utilized was the total pipeline execution time to complete a frame. This included the time

to read data from the disk, as well as compositing time, among other inputs. However,

we found that I /O would dwarf the actual rendering time. Further, compositing time is

8

not dependent on the distribution of bricks. This therefore proved to be a poor metric.

Switching the balancer to use the total render time for all bricks on that process gave

significantly better results.

In order to compare different implementations, we implemented multiple load balancing

algorithms, notably those described in Marchesin et al. [20] and Miiller et al.'s work [24].

In both cases, leaf nodes represent processes, and each process has some number of bricks

assigned to it. In the Marchesin-based approach, we start at the parents of the leaf nodes

and work our way up the tree, searching for imbalance among siblings. If two siblings

are found to be imbalanced, a single layer of bricks is moved along the splitting plane.

This process continues up to the root of the tree, at which time the virtual results are

committed and the new tree dictates the resulting data distribution. In the Muller-based

approach, we begin with the root node and use preorder traversal to find imbalance among

siblings. Once imbalance is found, the process stops for the current frame. Instead of blindly

shifting a layer of blocks between the siblings, the method derives the average rendering

cost associated with a layer of bricks along the split plane, and shifts this layer if the new

configuration would improve rendering times.

In addition to achieving a relatively even balance among the data, the fcd-tree is used

in the final stages to derive a valid sort-last compositing order.

2.3 Rendering

Rendering is performed in parallel on all nodes using Tuvok, a volume rendering library

which uses GLSL shaders to accelerate rendering on the GPUs.

2.3.1 Tuvok

Tuvok1 is a drop-in volume rendering library for handling extremely large data [30]. One of

the primary design goals of Tuvok is that it should be able to visualize data sets of incredible

1 Tuvok was developed in parallel with this thesis by Jens Kriiger and the author.

9

Figure 2-3: Various render modes applied to the C60 dataset. In the top row ID and 2D
transfer functions, isosurface extraction, and Clear View are shown. The bottom row shows
the same views in anaglyph stereo mode. On the right is two by two mode featuring a 3D
view, a MIP view (top right), and two slice views (bottom).

size on almost any commodity system. Through the work presented in this thesis, we have

verified the correctness of the renderer with data sizes greater than 2 terabytes. This is

achieved using a streaming, progressive rendering system guaranteeing interactive frame

rates with adaptive quality. The generation of full quality imagery is also guaranteed on all

configurations, with any data set, but may not happen interactively.

To achieve compatability across a large set of graphics processing units, Tuvok contains

a variety of extra code paths for compatibility settings, which addresses a number of issues

discovered in various OpenGL drivers. Tuvok contains multiple Tenderers, based on ray

casting, 3D slicing, and 2D slicing, which span a large range of quality versus portability

across GPUs and drivers. The wide variety of renderer types has been critical in supporting

a large set of collaborators, as less technical users tend to have integrated graphics chips

which lack support for even 3D textures. Another feature driven by this requirement is the

ability to select the bit width of the framebuffer object (FBO) used for rendering, because

we found that some drivers would switch to a software path when rendering into a 32-bit

FBO.

Table 2.1 gives timings for multiple data sets on different systems, demonstrating Tu-

10

Figure 2-4: Large data sets rendered with the Tuvok framework. The Visible human CT
scan (a), the Wholebody data set (b) and the Richtmyer-Meshk ov instability RMI (c).

vok's compatibility and scalability. 'Air' represents a typical MacBook Air in 2010, using

a GeForce 9400M with little available RAM. 'Pro' represents a MacBook Pro, which has

about half the memory required to load up the full Richtmyer-Meshkov instability, and uti

lizes a more powerful GeForce 9600. 'Vista' is a high-end workstation with enough memory

to fit all data sets in-core, and a powerful NVIDIA Quadro 5800. The data span a range of

sizes and complexities; 'C60' is a small, test data set; the visible human male CT scan is

still relatively small, but useful for comparisons due to its popularity; the 'wholebody' data

set is slightly larger and heavily anisotropic; the RM ('Richtmyer-Meshkov') Instability is

a large data set by desktop metrics.

For these timings the progressive rendering has been disabled: only the time to render

the maximum quality image for the given view was measured. With the progressive ren

dering turned on all data sets render at the chosen refresh rates on all systems. Note that

the systems used in the test cover chipset integrated GPUs as well as also high end PC

configurations. Timings are presented for small data sets as well as reasonably sized CT

scans and simulations.

2.3.2 Visit Integration

We have developed and integrated the Tuvok library into Visit to perform extremely large

scale volume renderings. Our work utilizes the 3D slicing volume renderer, which provides a

good balance between performance and compatibility. For nodes without access to a GPU,

11

data set

C60 Molecule

128 X28 128 Bbtt = 2 MB

See Figure 2-3
VH Male CT

512 512 1884 Sbit = 471 MB

See Figure 2-4a
"Wholebody

512 512 3172 16bit = 1586 MB

See Figure 2-4b
RM Instability

2048 2048 1920 &btt = 7680 MB

See Figure 2-4c

Air

110/184

380/500

680/700

5523/6112

Pro

80/124

526/744

587/984

3112/3520

Vista

12/14

48/76

126/301

196/321

Table 2.1: Tuvok timings in milliseconds for various data sets and configurations. "Air":
MacBook Air, 2GB RAM, Onboard Geforce 9400, "Pro": MacBook Pro, 4GB RAM,
Geforce 9600, "Vista": PC running Windows Vista, 24GB RAM, NVIDIA Quadro 5800.
All tests were performed in isosurface-mode (first value) and in ID transfer function mode
(second value), using the ray casting renderer sampling twice per voxel, into a 1024 • 1024
viewport. The camera was zoomed such that the data set covered the entire viewport, and
the data were divided into bricks of size 2563.

data are rendered through the Mesa library's 'swrast' module, which executes vertex and

fragment shaders on the CPU [25]2.

Since Visit lacks robust support for multiresolution data, the progressive rendering

features of Tuvok were not utilized. Instead, Visit's I/O routines were unmodified, and we

utilized Tuvok's external data set API to feed data from Visit to the renderer. Tuvok could

still improve performance and render data progressively by reducing screen resolution and

sampling rate, however we chose to disable this feature as it simplifies the presentation of

performance data. Tuvok is simply given a set of bricks and asked to render them. Each

process in the MPI job does this independently, and does not take into account the screen

space projection of the data.

Data are forwarded "as-is" from disk, without modification or transformation to its

type. In our experiments, this means that floating point data flows all the way through the

2As one might guess, performance in this configuration is poor. We do not formally give performance

information for this configuration, but informally: we found a NVIDIA GTX 8800 to be about 500 times

faster than using Mesa's 'swrast' renderer.

12

pipeline, and becomes the input to the Tenderers - we push the native-precision data down

to the GPU and render it at full resolution. Of course, data are effectively quantized due

to the limited resolution of a transfer function.

We find this architecture compelling because it removes any need to pre-process the

data. Visit's parallel pipeline execution is based wholly around the bricks given as input

to the tool. Our main restriction is the size of each individual brick: since we utilize an

out-of-core volume renderer, we can stream sets of bricks through a GPU, even if the stream

exceeds the maximum 3D texture size or GPU memory available. However, each individual

brick must be small enough to fit within the texture memory available on a GPU.

In practice, this limitation has not affected how we generated or visualized the data for

this work. Should the need arise, we could re-brick the data set to sizes more amenable for

visualization.

2.4 Compositing

After rendering completes, each node has a full image with a subset of the total data

volume rendered into it. A compositing step takes these partial images and combines them

to produce the final result. Although we did not expect compositing to be a significant

factor in the performance of the overall system, we nonetheless incorporated a well-studied

compositor instead of implementing one ourselves. We chose the IceT parallel compositing

library [23], for its ease of integration and proven results. In external work, we have observed

the IceT compositor to be up to 8 times faster than the traditional Visit compositing code

path. We extended the compositing subsystem to derive an order from the fcd-tree for the

data passed on to IceT.

IceT implements a number of different compositing modes. However, not all of them

support what IceT calls ordered compositing, as is needed for object-parallel distributed

volume rendering. For this work, we have utilized the so-called reduce strategy, which, since

we only configure a single 'tile' in our system, essentially simplifies [23] to an implementation

13

of Binary Swap [18].

14

CHAPTER 3

EVALUATION

We implemented and tested our system on Lens, a GPU-accelerated visualization cluster

housed at ORNL. However, we were only able to access 16 GPUs on that machine. In order

to access a larger number of GPUs, we transitioned to Longhorn, a larger cluster housed at

the Texas Advanced Computing Cluster. Specifications for each cluster are listed in Table

3.1. Due to machine availability and configuration, we were not able to fully utilize either

machine.

3.1 Rendering Times

The two dominant factors in distributed memory visualization performance are the time

taken to render the data and the time taken to composite the resulting sub-images. These

have the largest impact on usability, because they comprise the majority of the latency a

user experiences: the time between when the user interacts with the data and when the

results of that interaction are displayed.

Our data originated from a simulation performed by the Center for Simulation of Ac

cidental Fires and Explosions (C-SAFE), designed to study the instabilities in a burning

helium flame. In order to study performance at varying resolutions, we resampled this data

to 10243, 20483, 40963, and 81923, at a variety of brick sizes. We then performed tests,

varying data resolution, image resolution, choice of brick size, and number of GPUs, up to

256. Unless noted otherwise, we divided the data into a grid of 8x8x8 bricks for parallel

processing (larger data sets used larger bricks), and rendered into a 1024x768 viewport.

15

Component

Number of nodes

GPUs per node

Cores per node

Graphics card

Per-node Memory

Processors

Interconnect

Lens

32

2

16

NVIDIA 8800 GTX

64 GB

2.3 GHz Opterons

DDR Infiniband

Longhorn

256

2

8

NVIDIA FX 5800

48 GB

2.53 GHz Nehalems

Mellanox QDR InfiniBand

Table 3.1: Configuration of GPU clusters utilized.

Figure 3-1 shows the scalability on the Longhorn cluster. The principal input which

affects rendering time is the data set size, as one might expect. These runs were all done

using 2 GPUs per node, except the "64 GPUs, 1 GPU/node" case, which was run on 64

nodes, each accessing a single GPU. With very large data, there is a modest increase in

performance for this experimental setup.

As can be seen in Figure 3-2, the brick size, generally, has little impact on performance.

A parallel volume Tenderer's performance is dictated by the slowest component though, and

therefore the average rendering time is less important than the maximum rendering time.

Taking that into account, it is clear that brick sizes that are not a power of two are poor

choices. Dropping down to 1283, we can see that per-brick overhead begins to become more

noticeable, impacting overall rendering times. We found larger brick sizes of 5123 get the

absolute best performance, with 2563 a good choice as well, as the differences are minor

enough that they may be considered sampling error. Of course, such recommendations may

be specific to the GPUs used in Longhorn.

We were initially surprised to find that the image resolution, while relevant, was not a

significant factor in the overall rendering time. When developing single GPU applications

that run on a user's desktop, our experience was the opposite: that image size did play

16

25

20

-a c o o
CD
0)

15 -

64 GPUs, 1 GPUs/node —<-
64 GPUs, 2 GPUs/node --•*-•

128 GPUs, 2 GPUs/node ---*-
256 GPUs, 2 GPUs/node a

1024° 2048 4096°
Dataset Size (voxels)

8192°

Figure 3-1: Overall rendering time when rendering to a 1024x768 viewport on Longhorn.
This incorporates both rendering and compositing, and therefore shows the delay a user
would experience if they used the system on a local network. Data points are the average
across many frames. For these results we used a domain consisting of 133 bricks (varying
brick size), with the exceptions that all runs in the 128 GPU cases used 83 bricks, and the
run for the 81923 data set was done using 323 bricks.

a significant role in performance. We first thought this was due to skipping bricks which

were 'empty' under our transfer function - our domain is perfectly cubic, yet as is displayed

in Figure 2-1, very little of the domain is actually visible - but even after changing to a

transfer function with no "0" values in the opacity map, rendering times changed very little.

We concluded that the data sizes are so large compared to the number of pixels rendered

that the image size is not relevant as a factor.

17

11

10 -

9 -

8 -

6 -
CO

T3

(1) 3

DC

4 -

3 -

2 -
-) I i i i i i i I

128 256 315342 373 512
Brick Size (voxels, cubed)

Figure 3-2: Rendering time as a function of brick size. Range bars indicate the minimum
and maximum times recorded, across all nodes, for that particular brick size; high disparity
indicates the rendering time per-brick was highly variable, and load imbalance was therefore
likely. All tests were done with a 40963 data set statically load balanced across 128 GPUs
on 64 nodes, using a scripted camera which requested the same viewpoints each run. Note
that the choice of brick size matters little in the average case, but bricks using non-power-
of-two sizes give widely varying performance. Brick sizes of 5123 technically give the best
performance, though raw data show it is only hundredths of a second faster than bricks
which had 2563 data points.

3.2 Memory Strain

In our initial implementation on Lens, we noticed that we began to strain the memory

allocators while rendering a 30003 data set, as we approached low memory conditions. Our

volume renderer automatically accounts for low memory conditions and attempts to free

unused bricks before failing outright. However, an operating system will thrash excessively

before finally deciding to fail an allocation, and therefore during the time leading up to

a failed allocation, performance will drop considerably. Worse, we are working in a large

40963 Dataset •—•—'

18

1 I

0.38 \!
*

0.36 I ' ' ' ' ' '
0 10 20 30 40 50 60 70

Frame

Figure 3-3: Rendering times, per frame, for the in-core and out-of-core approaches to ren
dering a 10243 data set (which fits comfortably in memory) across 16 GPUs. Additional
processing in the out-of-core case does not negatively impact performance.

existing code base, and attempting to manage allocations outside our own subsystem would

prove unwieldy. As such, we found the original scheme to be unstable; the rendering system

would create memory pressure, causing other subsystems to fail an allocation in areas where

it may be difficult or impossible to ask our volume renderer to free up memory.

To solve this problem, we render the data in a true out-of-core fashion: bricks are given to

the renderer, rendered into a framebuffer object, and immediately thrown away. We might

expect that out-of-core algorithms would have more per-block overhead and therefore be

slower than an in-core algorithm. As shown in Figure 3-3, the out-of-core approach actually

out-performs the analogous in-core approach even when there is sufficient memory to hold

the data set. In this case, finding which texture to delete in a data structure took logarithmic

lookup time in the in-core approach, whereas the conservative approach taken in the out-

19

Dataset Size

10243

20483

40963

81923

Rendering (s)

0.06141

0.35107

2.50984

19.60648

Readback (s)

0.00328

0.00377

0.00377

0.00373

Compositing (s)

0.06141

0.07673

0.29533

0.51799

Total (s)

0.12610

0.43157

2.80894

20.12820

Table 3.2: Breakdown of the different pipeline stages for various data set sizes, when running
on 256 GPUs and rendering into a 1024x768 viewport. All times are in seconds. The
10243, 20483, and 40963 case used 133 bricks (varying brick size); the 81923 case used 323

bricks, making each brick 2563. Compositing time rises only artificially; if a node finishes
rendering before other nodes, the time it must wait was included under 'Compositing' due
to an artifact of our sampling code. Thus, the data imply that larger data sets see more
load imbalance.

of-core algorithm meant the container maxed out at one element, which accounted for the

very minor improvement to performance.

3.3 Readback and Compositing

In earlier results, particularly with GPU-based rendering architectures, the community was

generally concerned with the time required to read the resulting image data from the GPU

into the host's memory [19]. Our study did not provide corroboration of this concern, which

we interpret as a positive data point with respect to evolving graphics subsystems. Our

system did demonstrate that this time increased as the resolution grew, but as can be seen

in Table 3.2, even at 1024x768 this step took only thousandths of a second.

As expected, the time required for image composition is significantly reduced when tak

ing advantage of the GPUs available in a visualization cluster. Since a GPU can render

much faster than a software-based renderer, one can achieve acceptable rendering perfor

mance using far fewer nodes. Furthermore, because compositing scales linearly with the

number of nodes involved in the compositing process, compositing performance improves

significantly when utilizing fewer nodes.

20

3.4 Load Balancing

We also sought to examine the utility of load balancing algorithms for our system. We have

implemented the algorithms as presented in two recent parallel volume rendering papers [20,

24], and compared rendering times to each other and to a statically balanced case. Figure 3-4

illustrates the comparisons, where the times shown are the maximum of all processes.

We did a variety of experiments with multiple load balancer implementations, using 8

or 16 GPUs. Our initial fly-through sequence proved to be inappropriate for the application

of a load balancer, as there was not enough imbalance in the system to observe a significant

benefit. We then attempted to zoom out of the dataset, but this resulted in rendering times

that increased on all nodes; it was not a case the balancers we implemented could effectively

deal with. We found many cases where the balancers would shift data to a node that was

previously idle or at least doing very little work, and a frame or two later the workload on

such nodes would spike. This occurred because these nodes had both 1) received new data

as part of the balance and, 2) retained old data as part of the initial decomposition or older

balancing processes. The sudden additional workload of previously invisible bricks caused

these nodes to over compensate, sending data to other "idle" nodes - nodes which would

experience the same problem a frame or two later.

In previous work, authors have praised the effect load balancing has when zooming in

to a data set [9,20]. Zooming naturally creates imbalance, as some nodes end up with data

which are not rendered under the current camera configuration, and therefore the node has

no work to do.

3.4.1 Algorithm Details

We recreated previous load balancing implementations ([20,24]) as faithfully as possible,

and found that zooming in to the data set was a task that was well-suited for load balancing.

Still, we encountered issues even with this case. For the algorithm given in [20], we observed

that data would move back and forth between nodes quite frequently, having a negative

21

Time Spent Rendering

15 20
Frame number

Figure 3-4: The maximum rendering time across all nodes under various balancing algo
rithms. The numbers after some algorithms indicate thresholds: rendering disparity under
these thresholds is ignored.

22

impact on overall rendering time. We therefore introduced a 'threshold' parameter to the

existing algorithm, in an attempt to limit this 'ping-pong' behavior. As we move up the

tree, imbalance between the left and right subtrees is subject to this threshold; if it does not

exceed the threshold, the imbalance is ignored. This is a very useful parameter for ensuring

that we do not move data too eagerly. Generally, setting this threshold too high yields

behavior equivalent to the static case; setting it too low leads to a considerable amount

of unnecessary data shifting. We found that in many cases data shifting overcompensated

for minor, expected variations (such as those one might expect from differing brick sizes;

see Figure 3-2). For example, Figure 3-4 shows that low thresholds display an obvious

'ping-pong' effect as nodes overcompensate for increased rendering load.

Miiller et al. describe a different balancing system [24]. This system calculates the

average cost of rendering a brick, and therefore has a clearer idea of what the effect of

moving a given set of bricks will have on overall system performance. Further, they introduce

additional parameters which add some hysteresis to the system. This parameter can help

reduce the 'ping-pong' effect of nodes sending data to a neighbor, only to receive in the

next frame when the neighbor becomes overloaded.

3.4.2 Results

We found that this algorithm did do intelligent balancing for reasonable settings of these

parameters, and the additional parameters could be successfully used to reduce excess data

reorganization. Still, we found two issues with the approach: for one, the assumption that

'all bricks are equal' did not pan out for our work. Even assuming uniform bricks for a

data set (true for our case, but likely not in a general system), one can see in Figure 3-2

that the time to render a brick sees variation on the order of a second. Secondly, despite

experimenting with parameter settings, we found it difficult to get the algorithm to choose

the 'best' set of nodes for balancing. In many cases, we found a particular node was an

outlier, consistently taking the most time to render per frame. Yet it was common for

this algorithm to balance different nodes. While rendering times would generally improve,

23

W
-o
c
o
o
©

o
E

_c
CD

TJ
c o
rr

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

1

-

-

i

I S - * '

I

T *

i

i i i i

Process 0
Process 1
Process 2

I Process 3
_i- . Process 4
s\? A. Process 5
\>\ -. a •* Process 6

\fe-. ^ Process 7

; •• Y •• *

*'« GJ\ "• \ - A . * ^

s-s.^V ®'S '"B-«~B..B. *

i L— 1 is n

...x—
• • * - - -

B

. .«.. .
- A - -

-

-

0 5 10 15 20 25 30 35
Frame

Figure 3-5: Per-process rendering times for the 'Miiller' line given in Figure 3-4.

the system's performance is determined by the slowest node, and therefore making the fast

nodes faster does not help overall performance.

This was apparent in the tests described in 3-4: the algorithm quite clearly balanced

between some of the nodes, but the slowest node was never balanced, and therefore the

user-visible performance for this run was equivalent to the static case. Figure 3-5 shows

a more detailed analysis of the execution of the Miiller algorithm that generated the data

for Figure 3-4. The per-node rendering times in Figure 3-5 show that process 7 is usually

the last process to finish and is often much slower than the next to the last. As evident

from the lack of sudden discontinuities in that process' rendering times, however, no bricks

from process 7 move to other nodes. Therefore rendering times decrease but the maximum

rendering time does not change.

We theorize that additions to the algorithm to learn weights for each individual brick

24

would yield fruitful results. Furthermore, the algorithm explicitly attempts to avoid visiting

the entire tree, as an attempt to bound the maximum time needed to determine a new

balancing. In our work, we did not observe cases where iterating through nodes in the tree

had a measurable impact on performance, and feel that by doing so the algorithm could

obtain the global knowledge it needs to balance data effectively. Both of these extensions

are left to future work.

3.5 Observations

In Chapter 1, we noted a variety of questions which the design of our system allows us to

address.

• Rendering vs. Compositing. As shown in Table 3.2, sub-second rendering times are

achieved using a very small number of nodes, relative to previous work. This relieves

a significant source of work for compositing algorithms.

• Overhead of GPU Transfer. Table 3.2 shows readback time to be on the order of

thousandths of a second for common image sizes. Measuring texture upload rates is

difficult with the asynchronous nature of current drivers and OpenGL, but we did not

find evidence to suggest this was a bottleneck.

• Importance of Load Balancing. A dynamic load balancer can have a very worthwhile

impact on performance. However, it can also lower the performance of the system.

Load balancers generally come with some number of tunable parameters, and useful

settings for these parameters are difficult to determine a priori, and likely impossible

for an end-user to effectively set. We observed that dynamic load balancing for volume

rendering struggled in some of the cases often encountered in real world environments

and, for this reason, believe there is still a gap between state of the art and production-

quality systems. We see a great opportunity for future work in this area.

• Viability. As displayed mostly by Figure 3-1 and Table 3.2, rendering extremely large

25

data sizes - up to 81923 voxels - is possible on relatively few nodes. Further, data

sets up to 20483 can be rendered at approximately two frames per second.

26

CHAPTER 4

SUMMARY

This thesis has presented a system for volume rendering massive data on large scale GPU-

enabled clusters. The system scales effectively up to data sets of 81923 (2.1 terabytes on

disk) and results imply that the system could take advantage of many more GPUs before

compositing time begins to dominate rendering time.

With this study, we demonstrated that GPU accelerated rendering provides compelling

performance for large scale data sets. Figure 3-1 demonstrates our system rendering data

sets which are among some of the largest published thus far, using far fewer nodes than pre

vious work. This work shows that a multi-GPU node is a great foundational 'building block'

to compose larger systems capable of rendering very large data. As the performance-price

ratio of a GPU is higher (provided it can effectively parallelize the workload) than CPU-

based solutions, this work makes the case for spending more visualization supercomputing

capital on hardware acceleration, and acquiring smaller yet more performant clusters.

Reports on the time taken for various pipeline stages demonstrate that PCI-E bus

speeds are fast enough that readback performance is not as great a concern as it was a few

years ago. However, it remains to be seen if contention will become an issue if individual

nodes are made 'fatter', utilizing additional GPUs. The 1 versus 2 GPU per node results

given in Figure 3-1 suggest that multiple GPUs do contend for resources, but at this scale

the differences are not yet significant enough to warrant moving away from the more cost-

effective 'fat' node architecture. Given the relatively few nodes needed for good performance

on large data, as well as external work which has successfully scaled compositing out to tens

of thousands of cores, scaling compositing workloads out to tens of thousands of cores, it

27

seems likely that the relatively 'thin' 2-GPU-per-system architecture can be made to scale

to much larger systems than the ones utilized for this work.

4.1 Future Work

We would like to study our system with higher image resolutions, such as those available

on a display wall, and larger numbers of GPUs. At some point, we expect compositing to

become a significant factor in the amount of time needed to volume render large data, but

we have not approached the cross-over point in this work, due to the use of 'desktop' image

resolutions and low numbers of cores.

Our system allows substituting a Mesa-based software renderer when a GPU is not

available. This provided a convenient means of implementation within an existing large

software system, in particular because it allows pipeline execution to proceed unmodified

through the rendering and compositing stages. However, tests very quickly showed that it is

not viable to use software Tenderers when a GPU is available, and usually ended up hurting

performance more than helping. Therefore, we advocate trading access to more cores for

the guarantee that we will obtain GPUs for each core we do get.

An alternate system architecture would be to decouple the rendering process from the

other work involved in visualization and analysis, such as data I/O, processing, and other

pipeline execution steps. In this architecture, all nodes would read and process data, but

processed, visualizable data would be forwarded to a subset of nodes for rendering and

compositing. The advantage gained is the ability to tailor the available parallelism to the

visualization tasks of data processing and rendering, which, as we have found, can benefit

from vastly different parallel decompositions. The disadvantages are the overhead of data

redistribution, and the wasted resources that arise from allowing non-GPU processes to sit

idle while rendering.

Our compositing algorithm assumes that the images from individual processors can be

ordered in a back-to-front fashion to generate the correct image. For this thesis, we met

28

this requirement by using regular grids, which are easy to load balance in this manner. It

should be possible to also handle certain types of curvilinear grids and a subset of nested

AMR grids. Extensions to handle unstructured grids would be difficult, but represent an

interesting future direction.

Load balancing is an extremely difficult problem, and we have barely scratched the

surface here. The principal difficulty in load balancing is identifying good parameters to

control how often and to what extent the balancing occurs. We would like to see ideas and

algorithms which move in the direction of user-friendliness: determining the most relevant

parameters and deriving appropriate values for them automatically.

29

Appendix A

PARALLEL APPROXIMATE

IMAGE COMPOSITION

A.l Parallel Compositing Overview

Parallel image compositing scales primarily with the image resolution and the number of

processes which take part in the compositing process. The resolution determines the amount

of work done for every image, though with modern CPUs at typical "desktop" resolutions,

the Porter and Duff Over operator [28] can be applied so quickly as to make this factor

irrelevant [10]. If we ignore the case of high-resolution display walls, then, the primary

contributing factor to the time taken for a parallel image compositing algorithm is the

number of processes. More processes implies more communication, the bane of any parallel

algorithm.

Parallel volume rendering of large data is a challenging problem. Methods for decom

posing the workload are well-studied [10,15,20,24], yet no clear approach has been identified

which can provide a consistently positive impact on rendering performance. Furthermore,

load imbalance increases naturally as a function of data set size. To make matters worse,

the choice of sizes for subdomains in large simulations is not made with the consideration

that these subdomains will be mapped directly into the 3D texture memory of a GPU.

Improper choice of texture sizes (in particular non-power-of-two texture sizes) can cause

severely variable rendering performance - even if subdomains are all the same size [10].

30

For more complex data types, such as adaptive mesh refinement data [1], the variable

workload problem becomes even worse. Therefore it is highly desirable to utilize com

positing algorithms which can begin to make progress prior to completion of the rendering

process across all nodes. Yet many popular algorithms, such as binary swap [18], will stall

until a "neighbor" process completes the rendering workload. The ability to perform large

subsets of the image composition process will allow a system to mitigate the effects of se

vere rendering imbalance between nodes. Compositing algorithms which fit this mold are

generally of the 'direct send' [12] type. Unfortunately direct send's scalability is limited

with large numbers of processors, due to an all-to-all communication pattern.

In this chapter we outline the beginnings of a new algorithm which is based around two

core observations:

• For parallelization purposes, it is highly desirable for a computation to be commuta

tive.

• When compositing a set of n semi-transparent images, it is extremely likely that a

proper subset of n will dominate the computation.

The end goal is to develop an algorithm which lacks a barrier between the rendering and

compositing stages. Such an algorithm could not be developed within the constraints of

this thesis, but we feel it is important to document our progress to this point regardless.

A.2 Expansion of the Over Operator

Porter and Duff's over operator [28] forms the basis of image composition, and therefore

distributed volume rendering. The operator is defined as:

A over B = CAO-A + (1 - C\A)CBOI-B (A.l)

If we extend that operator to 3 images, the weighting by 1 — a A applies to both images

which are behind A; we get:

31

CAaA + (1 - aA){CBaB + (1 - aB){Ccac)) (A.2)

If we then expand that expression by distributing all terms, we obtain:

CAOLA + CBOCB + Ccac

-asCcotc — O-ACBO-B

+aAaBCcac (A.3)

To generalize, for N images, 1 being the topmost image and n being the bottom image,

we'll get an expression that looks like:

»=i
n

t,J=l,2
n

j,j,fc=l,2,3

n
- 2_j ctta-,akaiCi

t,j,k,l=l,2,3,4

On the surface, this form of the equation has a couple advantageous properties:

1. It is a sum of products instead of a product of sums. Such expressions are, in general,

easier to parallelize.

• In particular, there are no ordering requirements, implying that computation of

the expression can begin as soon as any two processors have finished the rendering

process.

32

3
2
1
0

-1
-2
-3
-4

CO
c

(0

>

1 2e+06

1e+06

800000

600000

400000

200000

Terms Increase Accuracy

-

-
-

-
-

-

"!'

1

1
+

1

1

i

1

• *

I

+

1

~-

l

- f

l

+

i

-+

l

^

1

L

I

<r K

1

1 1
data

smooth

f n "-

1 1

*

1

"

-

-
"

8 10 12
Maximum number of terms

Number of Terms

14 16 18

n r Values Required
smoothed

_ i i i i _

6 8 10 12 14
Maximum number of terms

16

20

18 20

Figure A-1: Approximating image composition using a different number of E-terms.

2. Diminishing returns: the first few E-terms will dominate the value of the expression.

This suggests that we can ignore some of the later expressions' E-terms without having

a noticeable impact on the final value of the expression.

Figure A-1 demonstrates these diminishing returns for a composition of 20 images. The

top graph shows the error of the method as compared to the reference Porter & Duff-

computed answer. The X-axis of Figure A-1 varies the number of E-terms which were used;

at the x — 1 location, this gives the error of the expression J^?=i ^3aj a s compared to the

Porter and Duff calculation.

The bottom graph in Figure A-1 shows the number of "values" used in the sum (each

element in a E-term counts as one 'value'; thus there are n values in the initial Y^=i ajCj

term). When we get halfway through the E-terms, the possible combinations of a's and C's

begins to drop, causing the inflection point in the graph. Stated another way: the number

33

of terms in J^x is the number of ways we can choose x a's out of n (i.e. (^)), and therefore

when x > §, the number of choices begins to drop.

This is promising, because it shows that we don't need all of the E-terms to achieve

a relevant result. Indeed, using ^ E-terms, we can achieve a result which is practically

indistinguishable from the ground zero truth. Even with just 7 E-terms in the 20-image

case, the result is close enough that it seems it would be a reasonable approximation.

A.3 Significance of Terms

As demonstrated in Equation A.3, the Porter and Duff over operator can expand into a set of

sums which multiply a set of alpha values with a single color. The number of terms involved

in each successive Riemann sum shrinks as we choose more alphas out of the available set of

n. For example, when n is 5, the total number of terms added is (j) + (2) + (3) + (4) + (5).

We can take advantage of a series of numeric and color properties to remove a large

number of these terms. First we assume that am £ [0 : 1), where am represents the

maximum opacity observed across the set of all images. Strictly speaking, am could be 1,

but this case is unlikely in practice and it suffices to special case that event.

Given that any term in the fc'th Riemann sum will involve (£) alphas, the maximum

value which any term can contribute is a^ . Further, a m < 1 =>• a ^ < a m , or additional

alphas will push the resultant calculation closer to 0.

The context in which any calculation is carried out can be critical to understanding

edge cases. This computation will be performed using floating point numbers in the best

case, and of course floating point representations do not have arbitrary precision on any

real computer. If we have 3 digits of precision, than any expression smaller than 0.001

would not effect the computation: it would evaluate to 0, since it cannot be stored, and is

therefore irrelevant. Let us call the number of digits of precision L.

It is therefore safe to say that any of the terms within the Riemann sums in the expanded

compositing equation (e.g. Equation A.3) which would evaluate to < L would not have any

34

result in the final image, as the value could not be represented and would be stored as 0.

We emphasize that we have not demonstrated that the addition of such terms will have no

discernible effect, but rather that the addition of such terms will have no effect.

Stated explicitly, this means that each term must exceed L to be relevant to the over

operator computation. In the k'th Riemann sum, each term will involve k alphas. The

largest each term could thus be is o^C^, but since we assume Ck G [0 : 1), we can drop C^

and still consider a ^ to be an upper bound.

c<m< L ^> irrelevant (A.4)

Note that this result does not depend on n, the number of images in the computation.

This is because we are proving that each term in a Riemann sum is going to be represented

as zero; if each term is zero, then their summation must of course also be zero.

k = \\ogaJL)] (A.5)

It turns out L is given in the C header f l o a t . h and is defined to be 1.19209e — 7 for

IEEE-754 floating point. Given a maximum alpha of 0.5, for example, this means that

k — \logo,5(1.19209 x 10~7)] =>• k = 24. The interpretation is that no term with more than

24 alpha values in it will be non-zero. Thus all terms with more than 24 alphas can be

discarded a priori.

In this thesis, we studied volume rendering which utilized up to 256 images. The total

number of terms in this compositing case is Sfi^(^6), however only E?:l1(2^6) will be

relevant when the maximum alpha is 0.5; put another way, 3.19947522472 x 10~42 percent

of the values affect the computation. Other work suggests that as many as 36,000 cores

may be relevant for volume rendering large data, when GPUs are not available [11]. With

36,000 cores comes 36,000 images, yet still only E 2 ^ (36f00) terms will be relevant.

35

file:///logo

A.3.1 Application

The problem facing the aforementioned method of calculating a composited image is how

to utilize the new framework effectively. As an example, choose an arbitrary term in the

expansion, such as aoasa4a5ai2Ct2oC2o, and note how many different images must be rep

resented. To compute this value, we need to get the alpha channels from images 0, 3, 4, 5,

12, and 20, as well as the color channel[s] from image 20, together.

There are a couple ways this could be done. One method is to colocate some subset of

the terms together in one process, and others in another, multiply the subsets together, and

then finally send the subset to one process or the other to multiply both subsets together

with the color. Another method is to say that we need all of the associated alphas in the

above term to be colocated with the 20"1 color, and simply send all of the necessary alpha

values to whatever process has the 20*^ color.

This second option does not have sufficient advantages to be worthwhile. This method

boils down to direct send, with a unique way of computing the final color. The network

traffic will be substantial and incredibly bursty, as most nodes finish around the same

time and send large numbers of alpha values to a process predetermined by screen-space

subdivision.

The first option negates the asynchronous benefit we were searching for. Note that we

could apply this operation hierarchically: processes 0 and 3 could calculate ao«3 whilst pro

cesses 4 and 5 calculate 0405. Then one process in each of those groups could communicate

to calculate aoa3a4as. Regardless of whether or not one takes advantage of this hierarchi

cally, we are still imposing staged calculations, or implicit barriers, into our compositing

algorithm. If process 3 takes longer to generate an image than other processes, then the

computation stalls.

36

BIBLIOGRAPHY

[1] M.J. Berger and J. Oliger. Adaptive Mesh Refinement for Hyperbolic Partial Differ

ential Equations. J. of Comput. Phys., 53, 1984.

[2] Brian Cabral, Nancy Cam, and Jim Foran. Accelerated volume rendering and tomo

graphic reconstruction using texture mapping hardware. In VVS '94: Proceedings of

the 1994 symposium on Volume visualization, pages 91-98, New York, NY, USA, 1994.

ACM. h t t p : / / d o i . acm. org/10.1145/197938.197972.

[3] Hank Childs, Sean Ahem, Kathleen Bonnell, David Bremer, Eric Brugger, David

Camp, Rich Cook, Marc Durant, Thomas Fogal, Cyrus Harrison, Randy Hudson,

Harinarayan Krishna, Jeremy Meredith, Mark Miller, Paul Navratil, Dave Pugmire,

Oliver Ruebel, Allen Sanderson, Josh Stratton, Dave Semeraro, Gunther Weber,

and Brad Whitlock. Visit Visualization and Analysis Software Package, h t t p :

/ / v i s i t . l l n l . g o v / , 2001-2011.

[4] Hank Childs, Eric Brugger, Kathleen Bonnell, Jeremy Meredith, Mark Miller, Brad

Whitlock, and Nelson Max. A Contract Based System For Large Data Visualization.

In Proceedings of IEEE Visualization 2005, 2005. h t tp : / /www.idav .ucdavis .edu/

func/return_pdf?pub_id=890.

[5] Hank Childs, Mark Duchaineau, and Kwan-Liu Ma. A scalable, hybrid scheme for

volume rendering massive data sets. In Proceedings of Eurographics Symposium on

Parallel Graphics and Visualization, pages 153-162, May 2006. h t tp : / /www.idav.

ucdavis .edu/publ icat ions/pr int_pub?pub_id=892.

37

http://llnl.gov/
http://www.idav.ucdavis.edu/
http://www.idav

[6] Timothy J. Cullip and Ulrich Neumann. Accelerating volume reconstruction with 3d

texture hardware. Technical Report TR93-027, University of North Carolina at Chapel

Hill, 1994. h t tp : / /g raph ics .use .edu /cg i t /pdf /papers /Volume_tex tures_93 .pdf .

[7] Robert A. Drebin, Loren Carpenter, and Pat Hanrahan. Volume Rendering. In

SIGGRAPH '88: Proceedings of the 15th annual conference on Computer graphics

and interactive techniques, pages 65-74, New York, NY, USA, 1988. ACM. h t t p :

/ /doi .acm.org/10.1145/54852.378484.

[8] Stefan Eilemann and Renato Pajarola. Direct Send Compositing for Parallel Sort-Last

Rendering. In Proceedings of the Eurographics Symposium on Parallel Graphics and

Visualization, pages 29-36, 2007. ht tp: / /doi .acm.org/10.1145/1508044.1508083.

[9] Faith Erol, Stefan Eilemann, and Renato Pajarola. Cross-segment load balancing in

parallel rendering. In Torsten Kuhlen, Renato Pajarola, and Kun Zhou, editors, Pro

ceedings of the 11th Eurographics Symposium on Parallel Graphics and Visualization,

pages 41-50, April 2011. h t t p : / / vmml . i f i . uzh . ch / f i l e s / pd f /pub l i c a t i ons /CSLB.

pdf.

[10] Thomas Fogal, Hank Childs, Siddharth Shankar, J. Kriiger, R. D. Bergeron, and

P. Hatcher. Large Data Visualization on Distributed Memory Multi-GPU Clusters.

In Proceedings of High Performance Graphics 2010, pages 57-66, June 2010.

[11] Mark Howison, E. Wes Bethel, and Hank Childs. MPI-hybrid Parallelism for Vol

ume Rendering on Large, Multi-core Systems. In Eurographics Symposium on Parallel

Graphics and Visualization (EGPGV), Norrkoping, Sweden, May 2010. LBNL-3297E.

[12] William M. Hsu. Segmented Ray Casting for Data Parallel Volume Rendering. In PRS

'93: Proceedings of the 1993 Symposium on Parallel Rendering, pages 7-14, New York,

NY, USA, 1993. ht tp: / /doi .acm.org/10.1145/166181.166182.

38

http://graphics.use.edu/cgit/pdf/papers/Volume_textures_93.pdf
http://doi.acm.org/10.1145/1508044.1508083
http://vmml.ifi.uzh.ch/files/pdf/publications/CSLB
http://doi.acm.org/10.1145/166181.166182

[13] Greg Humphreys, Mike Houston, Ren Ng, Randall Frank, Sean Ahem, Peter D. Kirch-

ner, and James T. Klosowski. Chromium: A Stream-Processing Framework for In

teractive Rendering on Clusters. In SIGGRAPH '02: Proceedings of the 29th annual

conference on Computer graphics and interactive techniques, pages 693-702, New York,

NY, USA, 2002. ACM Press, h t tp : / / c i t e see rx . i s t . p su . edu /v i ewdoc / summary?

doi=10.1.1.19.7869.

[14] Jens Kriiger and Riidiger Westermann. Acceleration Techniques for GPU-based Volume

Rendering. In Proceedings IEEE Visualization 2003, 2003. h t tp : / /wwwcg. in . tum.de/

Research /da ta /v i s03- rc .pdf .

[15] Won-Jong Lee, Vason P. Srini, and Tack-Don Han. Adaptive and Scalable Load Bal

ancing Scheme for Sort-Last Parallel Volume Rendering on GPU Clusters. 2005.

[16] Marc Levoy. Efficient Ray Tracing of Volume Data. A CM Trans. Graph., 9(3):245-261,

1990. h t tp : / /doi .acm.org/10.1145/78964.78965.

[17] Kwan Liu Ma, James S. Painter, Charles D. Hansen, and Michael F. Krogh. A Data

Distributed, Parallel Algorithm for Ray-Traced Volume Rendering. In PRS '93: Pro

ceedings of the 1993 symposium on Parallel Rendering, pages 15-22, New York, NY,

USA, 1993. ACM. ht tp : / /doi .acm.org/10.1145/166181.166183.

[18] Kwan-Liu Ma, James S. Painter, Charles D. Hansen, and Michael F. Krogh. Parallel

Volume Rendering Using Binary-Swap Compositing. IEEE Comput. Graph. Appl.,

14(4):59-68,1994. h t tp : / / c i t e see rx . i s t . p su . edu /v i ewdoc / summary?do i=10 .1 .1 .

104.3283.

[19] S. Marchesin, C. Mongenet, and J.-M. Dischler. Multi-GPU Sort-Last Volume Visual

ization. In EG Symposium on Parallel Graphics and Visualization (EGPGV'08), Euro

graphics, April 2008. h t t p : / / i cps .u - s t r a sbg . f r /~marches in / egpgv08-mul t i gpu .

pdf.

39

http://citeseerx.ist.psu.edu/viewdoc/summary
http://wwwcg.in.tum.de/
http://doi.acm.org/10.1145/78964.78965
http://doi.acm.org/10.1145/166181.166183
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1
http://icps.u-strasbg.fr/~marchesin/egpgv08-multigpu

[20] Stephane Marchesin, Catherine Mongenet, and Jean-Michel Dischler. Dynamic Load

Balancing for Parallel Volume Rendering. In 6th Eurographics Symposium on Parallel

Graphics and Visualization, pages 43-50, May 2006. h t t p : / / p e o p l e . f r e e d e s k t o p .

org/-marcheu/egpgv06-loadbalancing.pdf.

[21] Nelson Max. Optical Models for Direct Volume Rendering. IEEE Transactions on

Visualization and Computer Graphics, 1(2):99-108, 1995. h t t p : / /www. l l n l . gov /

graphics/docs/OpticalModelsLong.pdf.

[22] Steven Molnar, Michael Cox, David Ellsworth, and Henry Fuchs. A Sorting Clas

sification of Parallel Rendering. IEEE Comput. Graph. Appl, 14(4):23-32, 1994.

ht tp: / /doi .acm.org/10.1145/1508044.1508079.

[23] Kenneth Moreland, Brian N. Wylie, and Constantine J. Pavlakos. Sort-Last Parallel

Rendering for Viewing Extremely Large Data Sets on Tile Displays. In IEEE Sym

posium on Parallel and Large-Data Visualization and Graphics, pages 85-92, 2001.

https://cfwebprod.sandia.gov/cfdocs/CCIM/docs/PVG2001.pdf.

[24] C. Miiller, M. Strengert, and T. Ertl. Optimized Volume Raycasting for Graphics-

Hardware-based Cluster Systems. In Eurographics Symposium on Parallel Graphics

and Visualization (EGPGV06), pages 59-66. Eurographics Association, 2006. h t t p : / /

www.vis .uni -s tu t tgar t .de /ger / research/pub/pub2006/egpgv06-muel ler .pdf .

[25] Brian Paul. The Mesa 3D Graphics Library, http:/ /www.mesa3d.org/.

[26] Tom Peterka, Hongfeng Yu, Robert Ross, and Kwan-Liu Ma. Parallel Volume Ren

dering on the IBM Blue Gene/P. In Proceedings of Eurographics Parallel Graph

ics and Visualization Symposium (EGPGV 2008), pages 73-80, April 2008. h t t p :

/ /vis .cs.ucdavis.edu/papers/EGPGV_08.pdf.

[27] Tom Peterka, Hongfeng Yu, Robert Ross, Kwan-Liu Ma, and Rob Latham. End-to-

End Study of Parallel Volume Rendering on the IBM Blue Gene/P. In Proceedings of

40

http://people.freedesktop
http://www.llnl.gov/
http://doi.acm.org/10.1145/1508044.1508079
https://cfwebprod.sandia.gov/cfdocs/CCIM/docs/PVG2001.pdf
http://
http://www.vis.uni-stuttgart.de/ger/research/pub/pub2006/egpgv06-mueller.pdf
http://www.mesa3d.org/

the ICPP'09 Conference, September 2009. h t t p : / / v i s . c s . u c d a v i s . e d u / U l t r a v i s /

papersZl29_peterka- icpp09-f inalpaper .pdf .

[28] Thomas Porter and Tom Duff. Compositing Digital Images. In SIGGRAPH '84:

Proceedings of the 11th annual conference on Computer graphics and interactive tech

niques, pages 253-259, New York, NY, USA, 1984. ACM. h t t p : / / d o i . a c m . o r g / 1 0 .

1145/964965.808606.

[29] Magnus Strengert, Marcelo Magallon, Daniel Weiskopf, Stefan Guthe, and Thomas

Ertl. Hierarchical visualization and compression of large volume datasets using

gpu clusters. In Eurographics Symposium on Parallel Graphics and Visualization

(EGPGV04) (2004, pages 41-48, 2004.

[30] Thomas Fogal, Jens Kriiger. Tuvok, an Architecture for Large Scale Volume Rendering.

In Michael Dogget, Samuli Laine, and Warren Hunt, editors, Proceedings of the 15th

International Workshop on Vision, Modeling, and Visualization, pages 57-66, June

2010.

[31] R. Westermann and T. Ertl. Efficiently Using Graphics Hardware in Volume Render

ing Applications. In ACM SIGGRAPH 1998, 1998. h t t p : / / d o i . a c m . o r g / 1 0 . 1 1 4 5 /

280814.280860.

[32] Hongfeng Yu, Chaoli Wang, and Kwan-Liu Ma. Massively parallel volume rendering

using 2-3 swap image compositing. In Proceedings of the 2008 ACM/IEEE Conference

on Supercomputing, SC '08, pages 48:1-48:11, Piscataway, NJ, USA, 2008. IEEE Press,

h t tp : / /v i s .cs .ucdavis .edu/papers /SC08_compos i t ing .pdf .

41

http://vis.cs.ucdavis.edu/Ultravis/
http://doi.acm.org/10
http://doi.acm.org/10.1145/
http://vis.cs.ucdavis.edu/papers/SC08_compositing.pdf

	Parallel volume rendering for large scientific data
	Recommended Citation

	tmp.1520441287.pdf.PQ4U3

