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ABSTRACT 

PARALLEL VOLUME RENDERING FOR LARGE SCIENTIFIC DATA 

by 

Thomas Fogal 

University of New Hampshire, December, 2011 

Data sets of immense size are regularly generated by large scale computing resources. 

Even among more traditional methods for acquisition of volume data, such as MRI and CT 

scanners, data which is too large to be effectively visualized on standard workstations is 

now commonplace. 

One solution to this problem is to employ a 'visualization cluster,' a small to medium 

scale cluster dedicated to performing visualization and analysis of massive data sets gener

ated on larger scale supercomputers. These clusters are designed to fulfill a different need 

than traditional supercomputers, and therefore their design mandates different hardware 

choices, such as increased memory, and more recently, graphics processing units (GPUs). 

While there has been much previous work on distributed memory visualization as well as 

GPU visualization, there is a relative dearth of algorithms which effectively use GPUs at 

a large scale in a distributed memory environment. In this work, we study a common 

visualization technique in a GPU-accelerated, distributed memory setting, and present per

formance characteristics when scaling to extremely large data sets. 
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CHAPTER 1 

INTRODUCTION and RELATED 

WORK 

Visualization and analysis algorithms, volume rendering in particular, require extensive 

compute power relative to data set size. One possible solution is to use the large scale 

supercomputer that generated the data, which clearly has the requisite compute power. 

But it can be difficult to reserve and obtain the computing resources required for viewing 

large data sets. An alternative approach, one explored in this paper, is to use a smaller 

scale cluster equipped with GPUs, which can provide the needed computational power at 

a fraction of the cost - provided the GPUs can be effectively utilized. As a result, a semi-

recent trend has emerged to procure GPU-accelerated visualization clusters dedicated to 

processing the data generated by high end supercomputers; examples include ORNL's Lens, 

Argonne's Eureka, TACC's Longhorn, SCI's Tesla-based cluster, and LLNL's Gauss. 

Despite this trend, there have been relatively few efforts to study distributed memory, 

GPU-accelerated visualization algorithms that can effectively utilize the resources available 

on these clusters. In this paper, we report parallel volume rendering performance charac

teristics on large data sets for a typical machine of this type. 

Our system is divided into three stages: 

1. An intelligent pre-partitioning which is designed to make combining results from dif

ferent nodes easy. 
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2. A GPU volume Tenderer to perform the per-frame volume rendering work at interac

tive rates. 

3. MPI-based compositing based on a sort-last compositing framework. 

Miiller et al. presented a system similar to our own that was limited to smaller data 

sets [24]. We have extended the ideas in that system to allow for larger data sets, by 

removing the restriction that a data set must fit in the combined texture memory of the GPU 

cluster and adding the ability to mix in CPU-based Tenderers, enabling us to analyze parallel 

performance on extremely large data sets. The primary contribution of this paper is an 

increased understanding of the performance characteristics of a distributed memory GPU-

accelerated volume rendering algorithm at a scale (256 GPUs) much larger than previously 

published. Further, the results presented here (data sets up to 81923 voxels) represent some 

of the largest parallel volume renderings attempted thus far. 

1.1 Thesis Goals 

Our system and benchmarks allow us to explore issues such as: 

• the balance between rendering and compositing, which is a well-studied issue with 

CPU-based rendering, but previously had unclear performance tradeoffs for rendering 

on GPU clusters; 

• the overhead of transferring data to and from a GPU; 

• the importance of process-level load balancing; and 

• the viability of GPU clusters for rendering very large data. 

The rest of this thesis is organized as follows: in Section 1.2, we overview previous work 

in parallel compositing and GPU volume rendering. In Chapter 2 we outline our system 

in detail. Chapter 3 discusses our benchmarks and presents their results before drawing 
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Figure 1-1: Output of our volume rendering system with a data set representing a burning 
helium flame. 

conclusions based on our findings. Appendix A discusses the beginnings of a compositing 

idea which could not be developed within the constraints of this thesis. 

1.2 BACKGROUND 

Volume rendering in a serial context has been studied for many years. The basic algo

rithm [7] was improved significantly by including empty space skipping and early ray termi

nation [16]. Max provides one of the earliest formal presentations of the complete volume 

rendering equation in [21]. Despite significant algorithmic advances from research such 

as [16], the largest increase in performance for desktop volume Tenderers has come from 

taking advantage of the 3D texturing capabilities [2,6,31] and programmable shaders [14] 
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available on modern graphics hardware. 

Extensive research has been done on parallel rendering and parallel volume rendering. 

Much of this work has focused on achieving acceptable compositing times on large systems. 

Molnar et al. conveyed the theoretical underpinnings of parallel rendering performance 

[22]. Earlier systems for parallel volume rendering relied on direct send [12,17], which 

divides the volume up into at least as many chunks as there are processors, sending ray 

segments (fragments) to a responsible tile node for compositing via the Porter and Duff 

over operator [28]. These algorithms are simple to implement and integrate into existing 

systems, but have sporadic compositing behavior and thus have the potential to exchange 

a large number of fragments, straining the network layers when scaling to large numbers of 

processors. Tree based algorithms feature more regular communication patterns, but impose 

an additional latency which may not be required, depending on the particular frame and 

data decomposition [18,32]. Binary swap and derivative algorithms are a special case of 

tree-based algorithms that feature equitable distribution of the compositing workload [18]. 

Despite advances in compositing algorithms, network traffic remains unevenly distributed in 

time, and high-performance networking remains a necessity for subsecond rendering times 

on large numbers of processors. 

In the area of distributed memory parallel volume rendering of very large data sets, the 

algorithm described by Ma et al. [17] has been taken to extreme scale in several followup 

publications. In [5], data set sizes up to 30003 are studied using hundreds of cores. In this 

regime, the time spent ray casting far exceeds the composite time. In [26,27] the data set 

sizes range up to 44803, while core counts of tens of thousands are studied. In [11], the 

benefits of hybrid parallelism are explored at concurrency ranges going above two hundred 

thousand cores. For both of these studies, when going to extreme concurrency, compositing 

time becomes large and dominates ray casting time. This suggests that a sweet spot may 

exist with GPU-accelerated distributed memory volume rendering. By using hardware 

acceleration, the long ray casting times encountered in [5] can be overcome. Simultaneously, 

the emerging trend of composite-bound rendering time observed in [27] and [11] will be 
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mitigated by the ability to use many fewer nodes to achieve the same compute power. 

Numerous systems have been developed to enable parallel rendering in existing soft

ware. Among the most well-known is Chromium [13], a rendering system which can trans

parently parallelize OpenGL-based applications. The Equalizer framework boasts multiple 

compositing strategies, including an improved direct send [8]. The IceT library provides 

parallel rendering with a variety of sort-last compositing strategies [23]. 

There has been less previous work studying volume rendering on multiple GPUs. Strengert 

et al. developed a system which uses wavelet compression and adaptively decompresses the 

data on small GPU clusters [29]. Marchesin et al. compared volume rendering systems that 

ran on two different two-GPU configurations: two GPUs on one system, and one GPU on 

two networked systems [19]. An in-core Tenderer coupled with the use of just one or two 

systems artificially constrained the data set size. Miiller et al. also developed a distributed 

memory volume renderer that runs on GPUs [24]. 

Our system differs from the Miiller et al. and other systems in a few key ways. First, we 

use an out-of-core volume renderer and therefore can exceed the available texture memory of 

the GPU by also utilizing the CPU memory. To further reduce memory costs, we compute 

gradients dynamically in the GLSL shader [14], obviating the need to upload a separate 

gradient texture. This also has the benefit of avoiding a pre-process step, which is normally 

software-based in existing general-purpose visualization applications (including the one we 

chose to implement our system within) and can be quite time consuming for large data sets. 

Further differentiating our system and in line with recent trends in visualization cluster 

architectures, we enable the use of multiple GPUs per node. Miiller et al. use a direct 

send compositing strategy [12,17], whereas we use a tree-based compositing method [23]. 

Finally, and most importantly, we report performance results for substantially more GPUs 

and much larger data sets, detailing the scalability of GPU-based visualization clusters. We 

therefore believe our work is the first to evaluate the usability of distributed memory GPU 

clusters for this scale of data. 
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CHAPTER 2 

ARCHITECTURE 

We implemented our remote rendering system inside Visit [4], which is capable of rendering 

data in parallel on remote machines. The system is comprised of a lightweight 'viewer' 

client application, connected over TCP to a server which employs GPU cluster nodes. 

All rendering is performed on the cluster, composited via MPI, and images, optionally 

compressed via zlib, are sent back to the viewer for display. Example output from our 

system is shown in Figure 2-1. 

Although Visit provided a good starting point for our work, we needed to make sig

nificant changes in order to implement our system. In this section, we highlight the main 

features of our system, taking special care to note where we have deviated from existing 

Visit functionality. 

2.1 Multi-GPU Access 

At the outset, Visit's parallel server supported only a single GPU per node. We have 

revamped the manner in which Visit accesses GPUs to allow the system to take advantage 

of multi-GPU nodes. When utilizing GPU-based rendering, each GPU is matched to a CPU 

core which feeds data to that GPU. Additionally, when the number of CPU cores exceeds 

the number of available GPUs, we allow for the use of software-based Tenderers on the extra 

CPUs. This code has been contributed to the Visit project [3] and is available in released 

versions at the time of this writing. 
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Figure 2-1: Output of our volume rendering system with a data set representing a burning 
helium flame. 

2.2 Partitioning 

Visit contained a number of load decomposition strategies prior to our work. However, we 

found these strategies to be insufficient for a variety of reasons: 

• Brick-based Equalizing the distribution of work in Visit was entirely based on bricks, 

or pieces of the larger data set. Our balancing algorithms use the time taken to render 

the previous frame to determine a weighted distribution of loads. 

• Master-s lave Dynamic balance algorithms in Visit are based on a master node, 

which tells slaves to process a brick, waits for completion, and then sends slaves a new 

brick to process. We implemented a flat hierarchy, as seems to be more common in 
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recent literature [20,24]. 

• Compositing Most importantly, for our object-based decomposition to work cor

rectly, we needed a defined ordering to perform correct compositing. The load bal

ancing and compositing subsystems were independent prior to our work. 

Our system relies on a A;d-tree for distributing and balancing the data. The spatial 

partitioning is done once initially and can be adaptively refined by the rendering times 

from previous frames. The initial tree only considers the number of bricks available in the 

data set, and attempts to evenly distribute them among processes, to the extent that is 

possible. When using static load balancing, this decomposition is determined and invariant 

for the life of the parallel job. Figure 2-2 depicts a possible configuration determined by 

the partitioner, and shows the corresponding fcd-tree. 

Figure 2-2: Decomposition and corresponding fcd-tree for an 8x3x8 grid of bricks divided 
among 4 processors. Adjacent bricks are kept together for efficient rendering and com
positing. A composite order is derived dynamically from the camera location in relation 
to splitting planes. Note that the number of leaves in the tree is equal to the number of 
processes in the parallel rendering job. 

When the dynamic load balancer is enabled, we use the last rendering time on each 

process to determine the next configuration. In our initial implementation, the metric we 

utilized was the total pipeline execution time to complete a frame. This included the time 

to read data from the disk, as well as compositing time, among other inputs. However, 

we found that I /O would dwarf the actual rendering time. Further, compositing time is 
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not dependent on the distribution of bricks. This therefore proved to be a poor metric. 

Switching the balancer to use the total render time for all bricks on that process gave 

significantly better results. 

In order to compare different implementations, we implemented multiple load balancing 

algorithms, notably those described in Marchesin et al. [20] and Miiller et al.'s work [24]. 

In both cases, leaf nodes represent processes, and each process has some number of bricks 

assigned to it. In the Marchesin-based approach, we start at the parents of the leaf nodes 

and work our way up the tree, searching for imbalance among siblings. If two siblings 

are found to be imbalanced, a single layer of bricks is moved along the splitting plane. 

This process continues up to the root of the tree, at which time the virtual results are 

committed and the new tree dictates the resulting data distribution. In the Muller-based 

approach, we begin with the root node and use preorder traversal to find imbalance among 

siblings. Once imbalance is found, the process stops for the current frame. Instead of blindly 

shifting a layer of blocks between the siblings, the method derives the average rendering 

cost associated with a layer of bricks along the split plane, and shifts this layer if the new 

configuration would improve rendering times. 

In addition to achieving a relatively even balance among the data, the fcd-tree is used 

in the final stages to derive a valid sort-last compositing order. 

2.3 Rendering 

Rendering is performed in parallel on all nodes using Tuvok, a volume rendering library 

which uses GLSL shaders to accelerate rendering on the GPUs. 

2.3.1 Tuvok 

Tuvok1 is a drop-in volume rendering library for handling extremely large data [30]. One of 

the primary design goals of Tuvok is that it should be able to visualize data sets of incredible 

1 Tuvok was developed in parallel with this thesis by Jens Kriiger and the author. 
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Figure 2-3: Various render modes applied to the C60 dataset. In the top row ID and 2D 
transfer functions, isosurface extraction, and Clear View are shown. The bottom row shows 
the same views in anaglyph stereo mode. On the right is two by two mode featuring a 3D 
view, a MIP view (top right), and two slice views (bottom). 

size on almost any commodity system. Through the work presented in this thesis, we have 

verified the correctness of the renderer with data sizes greater than 2 terabytes. This is 

achieved using a streaming, progressive rendering system guaranteeing interactive frame 

rates with adaptive quality. The generation of full quality imagery is also guaranteed on all 

configurations, with any data set, but may not happen interactively. 

To achieve compatability across a large set of graphics processing units, Tuvok contains 

a variety of extra code paths for compatibility settings, which addresses a number of issues 

discovered in various OpenGL drivers. Tuvok contains multiple Tenderers, based on ray 

casting, 3D slicing, and 2D slicing, which span a large range of quality versus portability 

across GPUs and drivers. The wide variety of renderer types has been critical in supporting 

a large set of collaborators, as less technical users tend to have integrated graphics chips 

which lack support for even 3D textures. Another feature driven by this requirement is the 

ability to select the bit width of the framebuffer object (FBO) used for rendering, because 

we found that some drivers would switch to a software path when rendering into a 32-bit 

FBO. 

Table 2.1 gives timings for multiple data sets on different systems, demonstrating Tu-
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Figure 2-4: Large data sets rendered with the Tuvok framework. The Visible human CT 
scan (a), the Wholebody data set (b) and the Richtmyer-Meshk ov instability RMI (c). 

vok's compatibility and scalability. 'Air' represents a typical MacBook Air in 2010, using 

a GeForce 9400M with little available RAM. 'Pro' represents a MacBook Pro, which has 

about half the memory required to load up the full Richtmyer-Meshkov instability, and uti

lizes a more powerful GeForce 9600. 'Vista' is a high-end workstation with enough memory 

to fit all data sets in-core, and a powerful NVIDIA Quadro 5800. The data span a range of 

sizes and complexities; 'C60' is a small, test data set; the visible human male CT scan is 

still relatively small, but useful for comparisons due to its popularity; the 'wholebody' data 

set is slightly larger and heavily anisotropic; the RM ('Richtmyer-Meshkov') Instability is 

a large data set by desktop metrics. 

For these timings the progressive rendering has been disabled: only the time to render 

the maximum quality image for the given view was measured. With the progressive ren

dering turned on all data sets render at the chosen refresh rates on all systems. Note that 

the systems used in the test cover chipset integrated GPUs as well as also high end PC 

configurations. Timings are presented for small data sets as well as reasonably sized CT 

scans and simulations. 

2.3.2 Visit Integration 

We have developed and integrated the Tuvok library into Visit to perform extremely large 

scale volume renderings. Our work utilizes the 3D slicing volume renderer, which provides a 

good balance between performance and compatibility. For nodes without access to a GPU, 
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data set 

C60 Molecule 

128 X28 128 Bbtt = 2 MB 

See Figure 2-3 
VH Male CT 

512 512 1884 Sbit = 471 MB 

See Figure 2-4a 
"Wholebody 

512 512 3172 16bit = 1586 MB 

See Figure 2-4b 
RM Instability 

2048 2048 1920 &btt = 7680 MB 

See Figure 2-4c 

Air 

110/184 

380/500 

680/700 

5523/6112 

Pro 

80/124 

526/744 

587/984 

3112/3520 

Vista 

12/14 

48/76 

126/301 

196/321 

Table 2.1: Tuvok timings in milliseconds for various data sets and configurations. "Air": 
MacBook Air, 2GB RAM, Onboard Geforce 9400, "Pro": MacBook Pro, 4GB RAM, 
Geforce 9600, "Vista": PC running Windows Vista, 24GB RAM, NVIDIA Quadro 5800. 
All tests were performed in isosurface-mode (first value) and in ID transfer function mode 
(second value), using the ray casting renderer sampling twice per voxel, into a 1024 • 1024 
viewport. The camera was zoomed such that the data set covered the entire viewport, and 
the data were divided into bricks of size 2563. 

data are rendered through the Mesa library's 'swrast' module, which executes vertex and 

fragment shaders on the CPU [25]2. 

Since Visit lacks robust support for multiresolution data, the progressive rendering 

features of Tuvok were not utilized. Instead, Visit's I/O routines were unmodified, and we 

utilized Tuvok's external data set API to feed data from Visit to the renderer. Tuvok could 

still improve performance and render data progressively by reducing screen resolution and 

sampling rate, however we chose to disable this feature as it simplifies the presentation of 

performance data. Tuvok is simply given a set of bricks and asked to render them. Each 

process in the MPI job does this independently, and does not take into account the screen 

space projection of the data. 

Data are forwarded "as-is" from disk, without modification or transformation to its 

type. In our experiments, this means that floating point data flows all the way through the 

2As one might guess, performance in this configuration is poor. We do not formally give performance 

information for this configuration, but informally: we found a NVIDIA GTX 8800 to be about 500 times 

faster than using Mesa's 'swrast' renderer. 
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pipeline, and becomes the input to the Tenderers - we push the native-precision data down 

to the GPU and render it at full resolution. Of course, data are effectively quantized due 

to the limited resolution of a transfer function. 

We find this architecture compelling because it removes any need to pre-process the 

data. Visit's parallel pipeline execution is based wholly around the bricks given as input 

to the tool. Our main restriction is the size of each individual brick: since we utilize an 

out-of-core volume renderer, we can stream sets of bricks through a GPU, even if the stream 

exceeds the maximum 3D texture size or GPU memory available. However, each individual 

brick must be small enough to fit within the texture memory available on a GPU. 

In practice, this limitation has not affected how we generated or visualized the data for 

this work. Should the need arise, we could re-brick the data set to sizes more amenable for 

visualization. 

2.4 Compositing 

After rendering completes, each node has a full image with a subset of the total data 

volume rendered into it. A compositing step takes these partial images and combines them 

to produce the final result. Although we did not expect compositing to be a significant 

factor in the performance of the overall system, we nonetheless incorporated a well-studied 

compositor instead of implementing one ourselves. We chose the IceT parallel compositing 

library [23], for its ease of integration and proven results. In external work, we have observed 

the IceT compositor to be up to 8 times faster than the traditional Visit compositing code 

path. We extended the compositing subsystem to derive an order from the fcd-tree for the 

data passed on to IceT. 

IceT implements a number of different compositing modes. However, not all of them 

support what IceT calls ordered compositing, as is needed for object-parallel distributed 

volume rendering. For this work, we have utilized the so-called reduce strategy, which, since 

we only configure a single 'tile' in our system, essentially simplifies [23] to an implementation 
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of Binary Swap [18]. 
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CHAPTER 3 

EVALUATION 

We implemented and tested our system on Lens, a GPU-accelerated visualization cluster 

housed at ORNL. However, we were only able to access 16 GPUs on that machine. In order 

to access a larger number of GPUs, we transitioned to Longhorn, a larger cluster housed at 

the Texas Advanced Computing Cluster. Specifications for each cluster are listed in Table 

3.1. Due to machine availability and configuration, we were not able to fully utilize either 

machine. 

3.1 Rendering Times 

The two dominant factors in distributed memory visualization performance are the time 

taken to render the data and the time taken to composite the resulting sub-images. These 

have the largest impact on usability, because they comprise the majority of the latency a 

user experiences: the time between when the user interacts with the data and when the 

results of that interaction are displayed. 

Our data originated from a simulation performed by the Center for Simulation of Ac

cidental Fires and Explosions (C-SAFE), designed to study the instabilities in a burning 

helium flame. In order to study performance at varying resolutions, we resampled this data 

to 10243, 20483, 40963, and 81923, at a variety of brick sizes. We then performed tests, 

varying data resolution, image resolution, choice of brick size, and number of GPUs, up to 

256. Unless noted otherwise, we divided the data into a grid of 8x8x8 bricks for parallel 

processing (larger data sets used larger bricks), and rendered into a 1024x768 viewport. 
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Component 

Number of nodes 

GPUs per node 

Cores per node 

Graphics card 

Per-node Memory 

Processors 

Interconnect 

Lens 

32 

2 

16 

NVIDIA 8800 GTX 

64 GB 

2.3 GHz Opterons 

DDR Infiniband 

Longhorn 

256 

2 

8 

NVIDIA FX 5800 

48 GB 

2.53 GHz Nehalems 

Mellanox QDR InfiniBand 

Table 3.1: Configuration of GPU clusters utilized. 

Figure 3-1 shows the scalability on the Longhorn cluster. The principal input which 

affects rendering time is the data set size, as one might expect. These runs were all done 

using 2 GPUs per node, except the "64 GPUs, 1 GPU/node" case, which was run on 64 

nodes, each accessing a single GPU. With very large data, there is a modest increase in 

performance for this experimental setup. 

As can be seen in Figure 3-2, the brick size, generally, has little impact on performance. 

A parallel volume Tenderer's performance is dictated by the slowest component though, and 

therefore the average rendering time is less important than the maximum rendering time. 

Taking that into account, it is clear that brick sizes that are not a power of two are poor 

choices. Dropping down to 1283, we can see that per-brick overhead begins to become more 

noticeable, impacting overall rendering times. We found larger brick sizes of 5123 get the 

absolute best performance, with 2563 a good choice as well, as the differences are minor 

enough that they may be considered sampling error. Of course, such recommendations may 

be specific to the GPUs used in Longhorn. 

We were initially surprised to find that the image resolution, while relevant, was not a 

significant factor in the overall rendering time. When developing single GPU applications 

that run on a user's desktop, our experience was the opposite: that image size did play 
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Figure 3-1: Overall rendering time when rendering to a 1024x768 viewport on Longhorn. 
This incorporates both rendering and compositing, and therefore shows the delay a user 
would experience if they used the system on a local network. Data points are the average 
across many frames. For these results we used a domain consisting of 133 bricks (varying 
brick size), with the exceptions that all runs in the 128 GPU cases used 83 bricks, and the 
run for the 81923 data set was done using 323 bricks. 

a significant role in performance. We first thought this was due to skipping bricks which 

were 'empty' under our transfer function - our domain is perfectly cubic, yet as is displayed 

in Figure 2-1, very little of the domain is actually visible - but even after changing to a 

transfer function with no "0" values in the opacity map, rendering times changed very little. 

We concluded that the data sizes are so large compared to the number of pixels rendered 

that the image size is not relevant as a factor. 
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Figure 3-2: Rendering time as a function of brick size. Range bars indicate the minimum 
and maximum times recorded, across all nodes, for that particular brick size; high disparity 
indicates the rendering time per-brick was highly variable, and load imbalance was therefore 
likely. All tests were done with a 40963 data set statically load balanced across 128 GPUs 
on 64 nodes, using a scripted camera which requested the same viewpoints each run. Note 
that the choice of brick size matters little in the average case, but bricks using non-power-
of-two sizes give widely varying performance. Brick sizes of 5123 technically give the best 
performance, though raw data show it is only hundredths of a second faster than bricks 
which had 2563 data points. 

3.2 Memory Strain 

In our initial implementation on Lens, we noticed that we began to strain the memory 

allocators while rendering a 30003 data set, as we approached low memory conditions. Our 

volume renderer automatically accounts for low memory conditions and attempts to free 

unused bricks before failing outright. However, an operating system will thrash excessively 

before finally deciding to fail an allocation, and therefore during the time leading up to 

a failed allocation, performance will drop considerably. Worse, we are working in a large 

40963 Dataset •—•—' 

18 



1 I 

0.38 \! 
* 

0.36 I ' ' ' ' ' ' 
0 10 20 30 40 50 60 70 

Frame 

Figure 3-3: Rendering times, per frame, for the in-core and out-of-core approaches to ren
dering a 10243 data set (which fits comfortably in memory) across 16 GPUs. Additional 
processing in the out-of-core case does not negatively impact performance. 

existing code base, and attempting to manage allocations outside our own subsystem would 

prove unwieldy. As such, we found the original scheme to be unstable; the rendering system 

would create memory pressure, causing other subsystems to fail an allocation in areas where 

it may be difficult or impossible to ask our volume renderer to free up memory. 

To solve this problem, we render the data in a true out-of-core fashion: bricks are given to 

the renderer, rendered into a framebuffer object, and immediately thrown away. We might 

expect that out-of-core algorithms would have more per-block overhead and therefore be 

slower than an in-core algorithm. As shown in Figure 3-3, the out-of-core approach actually 

out-performs the analogous in-core approach even when there is sufficient memory to hold 

the data set. In this case, finding which texture to delete in a data structure took logarithmic 

lookup time in the in-core approach, whereas the conservative approach taken in the out-
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Dataset Size 

10243 

20483 

40963 

81923 

Rendering (s) 

0.06141 

0.35107 

2.50984 

19.60648 

Readback (s) 

0.00328 

0.00377 

0.00377 

0.00373 

Compositing (s) 

0.06141 

0.07673 

0.29533 

0.51799 

Total (s) 

0.12610 

0.43157 

2.80894 

20.12820 

Table 3.2: Breakdown of the different pipeline stages for various data set sizes, when running 
on 256 GPUs and rendering into a 1024x768 viewport. All times are in seconds. The 
10243, 20483, and 40963 case used 133 bricks (varying brick size); the 81923 case used 323 

bricks, making each brick 2563. Compositing time rises only artificially; if a node finishes 
rendering before other nodes, the time it must wait was included under 'Compositing' due 
to an artifact of our sampling code. Thus, the data imply that larger data sets see more 
load imbalance. 

of-core algorithm meant the container maxed out at one element, which accounted for the 

very minor improvement to performance. 

3.3 Readback and Compositing 

In earlier results, particularly with GPU-based rendering architectures, the community was 

generally concerned with the time required to read the resulting image data from the GPU 

into the host's memory [19]. Our study did not provide corroboration of this concern, which 

we interpret as a positive data point with respect to evolving graphics subsystems. Our 

system did demonstrate that this time increased as the resolution grew, but as can be seen 

in Table 3.2, even at 1024x768 this step took only thousandths of a second. 

As expected, the time required for image composition is significantly reduced when tak

ing advantage of the GPUs available in a visualization cluster. Since a GPU can render 

much faster than a software-based renderer, one can achieve acceptable rendering perfor

mance using far fewer nodes. Furthermore, because compositing scales linearly with the 

number of nodes involved in the compositing process, compositing performance improves 

significantly when utilizing fewer nodes. 
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3.4 Load Balancing 

We also sought to examine the utility of load balancing algorithms for our system. We have 

implemented the algorithms as presented in two recent parallel volume rendering papers [20, 

24], and compared rendering times to each other and to a statically balanced case. Figure 3-4 

illustrates the comparisons, where the times shown are the maximum of all processes. 

We did a variety of experiments with multiple load balancer implementations, using 8 

or 16 GPUs. Our initial fly-through sequence proved to be inappropriate for the application 

of a load balancer, as there was not enough imbalance in the system to observe a significant 

benefit. We then attempted to zoom out of the dataset, but this resulted in rendering times 

that increased on all nodes; it was not a case the balancers we implemented could effectively 

deal with. We found many cases where the balancers would shift data to a node that was 

previously idle or at least doing very little work, and a frame or two later the workload on 

such nodes would spike. This occurred because these nodes had both 1) received new data 

as part of the balance and, 2) retained old data as part of the initial decomposition or older 

balancing processes. The sudden additional workload of previously invisible bricks caused 

these nodes to over compensate, sending data to other "idle" nodes - nodes which would 

experience the same problem a frame or two later. 

In previous work, authors have praised the effect load balancing has when zooming in 

to a data set [9,20]. Zooming naturally creates imbalance, as some nodes end up with data 

which are not rendered under the current camera configuration, and therefore the node has 

no work to do. 

3.4.1 Algorithm Details 

We recreated previous load balancing implementations ( [20,24]) as faithfully as possible, 

and found that zooming in to the data set was a task that was well-suited for load balancing. 

Still, we encountered issues even with this case. For the algorithm given in [20], we observed 

that data would move back and forth between nodes quite frequently, having a negative 
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Figure 3-4: The maximum rendering time across all nodes under various balancing algo
rithms. The numbers after some algorithms indicate thresholds: rendering disparity under 
these thresholds is ignored. 
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impact on overall rendering time. We therefore introduced a 'threshold' parameter to the 

existing algorithm, in an attempt to limit this 'ping-pong' behavior. As we move up the 

tree, imbalance between the left and right subtrees is subject to this threshold; if it does not 

exceed the threshold, the imbalance is ignored. This is a very useful parameter for ensuring 

that we do not move data too eagerly. Generally, setting this threshold too high yields 

behavior equivalent to the static case; setting it too low leads to a considerable amount 

of unnecessary data shifting. We found that in many cases data shifting overcompensated 

for minor, expected variations (such as those one might expect from differing brick sizes; 

see Figure 3-2). For example, Figure 3-4 shows that low thresholds display an obvious 

'ping-pong' effect as nodes overcompensate for increased rendering load. 

Miiller et al. describe a different balancing system [24]. This system calculates the 

average cost of rendering a brick, and therefore has a clearer idea of what the effect of 

moving a given set of bricks will have on overall system performance. Further, they introduce 

additional parameters which add some hysteresis to the system. This parameter can help 

reduce the 'ping-pong' effect of nodes sending data to a neighbor, only to receive in the 

next frame when the neighbor becomes overloaded. 

3.4.2 Results 

We found that this algorithm did do intelligent balancing for reasonable settings of these 

parameters, and the additional parameters could be successfully used to reduce excess data 

reorganization. Still, we found two issues with the approach: for one, the assumption that 

'all bricks are equal' did not pan out for our work. Even assuming uniform bricks for a 

data set (true for our case, but likely not in a general system), one can see in Figure 3-2 

that the time to render a brick sees variation on the order of a second. Secondly, despite 

experimenting with parameter settings, we found it difficult to get the algorithm to choose 

the 'best' set of nodes for balancing. In many cases, we found a particular node was an 

outlier, consistently taking the most time to render per frame. Yet it was common for 

this algorithm to balance different nodes. While rendering times would generally improve, 
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Figure 3-5: Per-process rendering times for the 'Miiller' line given in Figure 3-4. 

the system's performance is determined by the slowest node, and therefore making the fast 

nodes faster does not help overall performance. 

This was apparent in the tests described in 3-4: the algorithm quite clearly balanced 

between some of the nodes, but the slowest node was never balanced, and therefore the 

user-visible performance for this run was equivalent to the static case. Figure 3-5 shows 

a more detailed analysis of the execution of the Miiller algorithm that generated the data 

for Figure 3-4. The per-node rendering times in Figure 3-5 show that process 7 is usually 

the last process to finish and is often much slower than the next to the last. As evident 

from the lack of sudden discontinuities in that process' rendering times, however, no bricks 

from process 7 move to other nodes. Therefore rendering times decrease but the maximum 

rendering time does not change. 

We theorize that additions to the algorithm to learn weights for each individual brick 

24 



would yield fruitful results. Furthermore, the algorithm explicitly attempts to avoid visiting 

the entire tree, as an attempt to bound the maximum time needed to determine a new 

balancing. In our work, we did not observe cases where iterating through nodes in the tree 

had a measurable impact on performance, and feel that by doing so the algorithm could 

obtain the global knowledge it needs to balance data effectively. Both of these extensions 

are left to future work. 

3.5 Observations 

In Chapter 1, we noted a variety of questions which the design of our system allows us to 

address. 

• Rendering vs. Compositing. As shown in Table 3.2, sub-second rendering times are 

achieved using a very small number of nodes, relative to previous work. This relieves 

a significant source of work for compositing algorithms. 

• Overhead of GPU Transfer. Table 3.2 shows readback time to be on the order of 

thousandths of a second for common image sizes. Measuring texture upload rates is 

difficult with the asynchronous nature of current drivers and OpenGL, but we did not 

find evidence to suggest this was a bottleneck. 

• Importance of Load Balancing. A dynamic load balancer can have a very worthwhile 

impact on performance. However, it can also lower the performance of the system. 

Load balancers generally come with some number of tunable parameters, and useful 

settings for these parameters are difficult to determine a priori, and likely impossible 

for an end-user to effectively set. We observed that dynamic load balancing for volume 

rendering struggled in some of the cases often encountered in real world environments 

and, for this reason, believe there is still a gap between state of the art and production-

quality systems. We see a great opportunity for future work in this area. 

• Viability. As displayed mostly by Figure 3-1 and Table 3.2, rendering extremely large 
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data sizes - up to 81923 voxels - is possible on relatively few nodes. Further, data 

sets up to 20483 can be rendered at approximately two frames per second. 
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CHAPTER 4 

SUMMARY 

This thesis has presented a system for volume rendering massive data on large scale GPU-

enabled clusters. The system scales effectively up to data sets of 81923 (2.1 terabytes on 

disk) and results imply that the system could take advantage of many more GPUs before 

compositing time begins to dominate rendering time. 

With this study, we demonstrated that GPU accelerated rendering provides compelling 

performance for large scale data sets. Figure 3-1 demonstrates our system rendering data 

sets which are among some of the largest published thus far, using far fewer nodes than pre

vious work. This work shows that a multi-GPU node is a great foundational 'building block' 

to compose larger systems capable of rendering very large data. As the performance-price 

ratio of a GPU is higher (provided it can effectively parallelize the workload) than CPU-

based solutions, this work makes the case for spending more visualization supercomputing 

capital on hardware acceleration, and acquiring smaller yet more performant clusters. 

Reports on the time taken for various pipeline stages demonstrate that PCI-E bus 

speeds are fast enough that readback performance is not as great a concern as it was a few 

years ago. However, it remains to be seen if contention will become an issue if individual 

nodes are made 'fatter', utilizing additional GPUs. The 1 versus 2 GPU per node results 

given in Figure 3-1 suggest that multiple GPUs do contend for resources, but at this scale 

the differences are not yet significant enough to warrant moving away from the more cost-

effective 'fat' node architecture. Given the relatively few nodes needed for good performance 

on large data, as well as external work which has successfully scaled compositing out to tens 

of thousands of cores, scaling compositing workloads out to tens of thousands of cores, it 
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seems likely that the relatively 'thin' 2-GPU-per-system architecture can be made to scale 

to much larger systems than the ones utilized for this work. 

4.1 Future Work 

We would like to study our system with higher image resolutions, such as those available 

on a display wall, and larger numbers of GPUs. At some point, we expect compositing to 

become a significant factor in the amount of time needed to volume render large data, but 

we have not approached the cross-over point in this work, due to the use of 'desktop' image 

resolutions and low numbers of cores. 

Our system allows substituting a Mesa-based software renderer when a GPU is not 

available. This provided a convenient means of implementation within an existing large 

software system, in particular because it allows pipeline execution to proceed unmodified 

through the rendering and compositing stages. However, tests very quickly showed that it is 

not viable to use software Tenderers when a GPU is available, and usually ended up hurting 

performance more than helping. Therefore, we advocate trading access to more cores for 

the guarantee that we will obtain GPUs for each core we do get. 

An alternate system architecture would be to decouple the rendering process from the 

other work involved in visualization and analysis, such as data I/O, processing, and other 

pipeline execution steps. In this architecture, all nodes would read and process data, but 

processed, visualizable data would be forwarded to a subset of nodes for rendering and 

compositing. The advantage gained is the ability to tailor the available parallelism to the 

visualization tasks of data processing and rendering, which, as we have found, can benefit 

from vastly different parallel decompositions. The disadvantages are the overhead of data 

redistribution, and the wasted resources that arise from allowing non-GPU processes to sit 

idle while rendering. 

Our compositing algorithm assumes that the images from individual processors can be 

ordered in a back-to-front fashion to generate the correct image. For this thesis, we met 
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this requirement by using regular grids, which are easy to load balance in this manner. It 

should be possible to also handle certain types of curvilinear grids and a subset of nested 

AMR grids. Extensions to handle unstructured grids would be difficult, but represent an 

interesting future direction. 

Load balancing is an extremely difficult problem, and we have barely scratched the 

surface here. The principal difficulty in load balancing is identifying good parameters to 

control how often and to what extent the balancing occurs. We would like to see ideas and 

algorithms which move in the direction of user-friendliness: determining the most relevant 

parameters and deriving appropriate values for them automatically. 
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Appendix A 

PARALLEL APPROXIMATE 

IMAGE COMPOSITION 

A.l Parallel Compositing Overview 

Parallel image compositing scales primarily with the image resolution and the number of 

processes which take part in the compositing process. The resolution determines the amount 

of work done for every image, though with modern CPUs at typical "desktop" resolutions, 

the Porter and Duff Over operator [28] can be applied so quickly as to make this factor 

irrelevant [10]. If we ignore the case of high-resolution display walls, then, the primary 

contributing factor to the time taken for a parallel image compositing algorithm is the 

number of processes. More processes implies more communication, the bane of any parallel 

algorithm. 

Parallel volume rendering of large data is a challenging problem. Methods for decom

posing the workload are well-studied [10,15,20,24], yet no clear approach has been identified 

which can provide a consistently positive impact on rendering performance. Furthermore, 

load imbalance increases naturally as a function of data set size. To make matters worse, 

the choice of sizes for subdomains in large simulations is not made with the consideration 

that these subdomains will be mapped directly into the 3D texture memory of a GPU. 

Improper choice of texture sizes (in particular non-power-of-two texture sizes) can cause 

severely variable rendering performance - even if subdomains are all the same size [10]. 
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For more complex data types, such as adaptive mesh refinement data [1], the variable 

workload problem becomes even worse. Therefore it is highly desirable to utilize com

positing algorithms which can begin to make progress prior to completion of the rendering 

process across all nodes. Yet many popular algorithms, such as binary swap [18], will stall 

until a "neighbor" process completes the rendering workload. The ability to perform large 

subsets of the image composition process will allow a system to mitigate the effects of se

vere rendering imbalance between nodes. Compositing algorithms which fit this mold are 

generally of the 'direct send' [12] type. Unfortunately direct send's scalability is limited 

with large numbers of processors, due to an all-to-all communication pattern. 

In this chapter we outline the beginnings of a new algorithm which is based around two 

core observations: 

• For parallelization purposes, it is highly desirable for a computation to be commuta

tive. 

• When compositing a set of n semi-transparent images, it is extremely likely that a 

proper subset of n will dominate the computation. 

The end goal is to develop an algorithm which lacks a barrier between the rendering and 

compositing stages. Such an algorithm could not be developed within the constraints of 

this thesis, but we feel it is important to document our progress to this point regardless. 

A.2 Expansion of the Over Operator 

Porter and Duff's over operator [28] forms the basis of image composition, and therefore 

distributed volume rendering. The operator is defined as: 

A over B = CAO-A + (1 - C\A)CBOI-B (A.l) 

If we extend that operator to 3 images, the weighting by 1 — a A applies to both images 

which are behind A; we get: 
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CAaA + (1 - aA){CBaB + (1 - aB){Ccac)) (A.2) 

If we then expand that expression by distributing all terms, we obtain: 

CAOLA + CBOCB + Ccac 

-asCcotc — O-ACBO-B 

+aAaBCcac (A.3) 

To generalize, for N images, 1 being the topmost image and n being the bottom image, 

we'll get an expression that looks like: 

»=i 
n 

t,J=l,2 
n 

j,j,fc=l,2,3 

n 
- 2_j ctta-,akaiCi 

t,j,k,l=l,2,3,4 

On the surface, this form of the equation has a couple advantageous properties: 

1. It is a sum of products instead of a product of sums. Such expressions are, in general, 

easier to parallelize. 

• In particular, there are no ordering requirements, implying that computation of 

the expression can begin as soon as any two processors have finished the rendering 

process. 
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Figure A-1: Approximating image composition using a different number of E-terms. 

2. Diminishing returns: the first few E-terms will dominate the value of the expression. 

This suggests that we can ignore some of the later expressions' E-terms without having 

a noticeable impact on the final value of the expression. 

Figure A-1 demonstrates these diminishing returns for a composition of 20 images. The 

top graph shows the error of the method as compared to the reference Porter & Duff-

computed answer. The X-axis of Figure A-1 varies the number of E-terms which were used; 

at the x — 1 location, this gives the error of the expression J^?=i ^3aj a s compared to the 

Porter and Duff calculation. 

The bottom graph in Figure A-1 shows the number of "values" used in the sum (each 

element in a E-term counts as one 'value'; thus there are n values in the initial Y^=i ajCj 

term). When we get halfway through the E-terms, the possible combinations of a's and C's 

begins to drop, causing the inflection point in the graph. Stated another way: the number 
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of terms in J^x is the number of ways we can choose x a's out of n (i.e. (^)), and therefore 

when x > §, the number of choices begins to drop. 

This is promising, because it shows that we don't need all of the E-terms to achieve 

a relevant result. Indeed, using ^ E-terms, we can achieve a result which is practically 

indistinguishable from the ground zero truth. Even with just 7 E-terms in the 20-image 

case, the result is close enough that it seems it would be a reasonable approximation. 

A.3 Significance of Terms 

As demonstrated in Equation A.3, the Porter and Duff over operator can expand into a set of 

sums which multiply a set of alpha values with a single color. The number of terms involved 

in each successive Riemann sum shrinks as we choose more alphas out of the available set of 

n. For example, when n is 5, the total number of terms added is (j) + (2) + (3) + (4) + (5). 

We can take advantage of a series of numeric and color properties to remove a large 

number of these terms. First we assume that am £ [0 : 1), where am represents the 

maximum opacity observed across the set of all images. Strictly speaking, am could be 1, 

but this case is unlikely in practice and it suffices to special case that event. 

Given that any term in the fc'th Riemann sum will involve (£) alphas, the maximum 

value which any term can contribute is a^ . Further, a m < 1 =>• a ^ < a m , or additional 

alphas will push the resultant calculation closer to 0. 

The context in which any calculation is carried out can be critical to understanding 

edge cases. This computation will be performed using floating point numbers in the best 

case, and of course floating point representations do not have arbitrary precision on any 

real computer. If we have 3 digits of precision, than any expression smaller than 0.001 

would not effect the computation: it would evaluate to 0, since it cannot be stored, and is 

therefore irrelevant. Let us call the number of digits of precision L. 

It is therefore safe to say that any of the terms within the Riemann sums in the expanded 

compositing equation (e.g. Equation A.3) which would evaluate to < L would not have any 
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result in the final image, as the value could not be represented and would be stored as 0. 

We emphasize that we have not demonstrated that the addition of such terms will have no 

discernible effect, but rather that the addition of such terms will have no effect. 

Stated explicitly, this means that each term must exceed L to be relevant to the over 

operator computation. In the k'th Riemann sum, each term will involve k alphas. The 

largest each term could thus be is o^C^, but since we assume Ck G [0 : 1), we can drop C^ 

and still consider a ^ to be an upper bound. 

c<m< L ^> irrelevant (A.4) 

Note that this result does not depend on n, the number of images in the computation. 

This is because we are proving that each term in a Riemann sum is going to be represented 

as zero; if each term is zero, then their summation must of course also be zero. 

k = \\ogaJL)] (A.5) 

It turns out L is given in the C header f l o a t . h and is defined to be 1.19209e — 7 for 

IEEE-754 floating point. Given a maximum alpha of 0.5, for example, this means that 

k — \logo,5(1.19209 x 10~7)] =>• k = 24. The interpretation is that no term with more than 

24 alpha values in it will be non-zero. Thus all terms with more than 24 alphas can be 

discarded a priori. 

In this thesis, we studied volume rendering which utilized up to 256 images. The total 

number of terms in this compositing case is Sfi^( ^6), however only E?:l1(2^6) will be 

relevant when the maximum alpha is 0.5; put another way, 3.19947522472 x 10~42 percent 

of the values affect the computation. Other work suggests that as many as 36,000 cores 

may be relevant for volume rendering large data, when GPUs are not available [11]. With 

36,000 cores comes 36,000 images, yet still only E 2 ^ (36f00) terms will be relevant. 

35 

file:///logo


A.3.1 Application 

The problem facing the aforementioned method of calculating a composited image is how 

to utilize the new framework effectively. As an example, choose an arbitrary term in the 

expansion, such as aoasa4a5ai2Ct2oC2o, and note how many different images must be rep

resented. To compute this value, we need to get the alpha channels from images 0, 3, 4, 5, 

12, and 20, as well as the color channel[s] from image 20, together. 

There are a couple ways this could be done. One method is to colocate some subset of 

the terms together in one process, and others in another, multiply the subsets together, and 

then finally send the subset to one process or the other to multiply both subsets together 

with the color. Another method is to say that we need all of the associated alphas in the 

above term to be colocated with the 20"1 color, and simply send all of the necessary alpha 

values to whatever process has the 20*^ color. 

This second option does not have sufficient advantages to be worthwhile. This method 

boils down to direct send, with a unique way of computing the final color. The network 

traffic will be substantial and incredibly bursty, as most nodes finish around the same 

time and send large numbers of alpha values to a process predetermined by screen-space 

subdivision. 

The first option negates the asynchronous benefit we were searching for. Note that we 

could apply this operation hierarchically: processes 0 and 3 could calculate ao«3 whilst pro

cesses 4 and 5 calculate 0405. Then one process in each of those groups could communicate 

to calculate aoa3a4as. Regardless of whether or not one takes advantage of this hierarchi

cally, we are still imposing staged calculations, or implicit barriers, into our compositing 

algorithm. If process 3 takes longer to generate an image than other processes, then the 

computation stalls. 
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