Combining angular and spatial information from multibeam backscatter data for improved unsupervised acoustic seabed segmentation

Alexandre C. Schimel
University of New Hampshire, Durham

Yuri Rzhanov
University of New Hampshire, Durham, Yuri.Rzhanov@unh.edu

Luciano E. Fonseca
University of New Hampshire, Durham, luciano@ccom.unh.edu

M Mayer
University of New Hampshire, Durham

Dirk Immenga
University of Waikato, Hamilton, New Zealand Aotearoa

Follow this and additional works at: https://scholars.unh.edu/ccom
Part of the [Oceanography and Atmospheric Sciences and Meteorology Commons](https://scholars.unh.edu/ccom)

Recommended Citation
Schimel, Alexandre C.; Rzhanov, Yuri; Fonseca, Luciano E.; Mayer, M; and Immenga, Dirk, "Combining angular and spatial information from multibeam backscatter data for improved unsupervised acoustic seabed segmentation" (2013). *Marine Geological and Biological Habitat Mapping (GEOHAB)*, 669.
https://scholars.unh.edu/ccom/669
Combining Angular and Spatial Information from Multibeam Backscatter Data for Improved Unsupervised Acoustic Seabed Segmentation

SCHIMEL Alexandre ¹,², RZHANOV Yuri ³,
FONSECA Luciano ³,⁴, MAYER Larry ³, and IMMENGA Dirk ²

¹ School of Life & Environmental Sciences, Deakin University, Australia
² Department of Earth & Ocean Sciences, University of Waikato, Hamilton, New Zealand
³ Center for Coastal and Ocean Mapping, University of New Hampshire, USA
⁴ Faculty of Engineering at Gama, University of Brasilia, Brazil
Introduction: Geocoder

A backscatter-data processing software by CCOM-JHC, UNH.
Introduction: Geocoder

A backscatter-data processing software by CCOM-JHC, UNH.
Introduction: main issue

The codependence of backscatter with seabed-type and angle of acquisition
Solution #1: Image-based methodologies
Solution #1: Image-based methodologies

Mosaic segmentation possibilities:

- Manual or Automatic

Variables:
- Pixel amplitude
- Statistics within neighborhood of pixels
- Textures
- Power spectra features
- ...

Algorithms:
- k-means clustering
- Decision trees
- Neural networks
- ...
Solution #2: Angular-Response-based methodologies
Solution #2: Angular-Response-based methodologies
Solution #2: Angular-Response-based methodologies
Solution #2: Angular-Response-based methodologies
Image-based vs AR-based methodologies

Image-based approach:
To empirically compensate for angular variation, so that remaining variations are approximately only due to change in seabed-type.

+ Full use of data spatial information
- Discard angular information

AR-based approach:
To attempt avoiding variation in seabed-type, so that remaining variations are approximately only due to change with angle.

+ Full use of data angular information
- Discard data spatial information
Geocoder improvements:

- BS level (dB)
- Grazing angle (deg)
- Starboard ARC
- Port ARC
Geocoder improvements:

- Themes
- 2D histograms
Geocoder improvements:

- BS level (dB)
- Grazing angle (deg)
A possible combined approach
A possible combined approach

Raw backscatter data
A possible combined approach

Mosaic (AVG flat, 300 pings)
A possible combined approach

Mosaic segmentation through aggregation (level 2)
A possible combined approach

Mosaic segmentation through aggregation (level 3)
A possible combined approach

Mosaic segmentation through aggregation (level 6)
A possible combined approach

Mosaic segmentation through aggregation (level 7)
A possible combined approach

Estimating the **homogeneity** of a given segment
A possible combined approach

Estimating the **homogeneity** of a given segment
A possible combined approach

Estimating the **homogeneity** of a given segment
A possible combined approach

Estimating the **similarity** between two segments
A possible combined approach

Estimating the similarity between two segments
A possible combined approach

Procedure:

Mosaic
A possible combined approach

Procedure:

Mosaic

aggregation

S2

aggregation

S3
A possible combined approach

Procedure:

Mosaic

aggregation

S2

identify heterogeneous segments in S3 & split them using S2

S3

aggregation

HOM threshold

S3'
A possible combined approach

Procedure:

Mosaic

aggregation

S2

aggregation

S3

HOM threshold

identify heterogeneous segments in S3 & split them using S2

S3'

MAP
A possible combined approach

Procedure:

- **Mosaic**
 - Aggregation

- **S2**
 - Aggregation
 - Identify heterogeneous segments in S3 & split them using S2

- **S3**

- **MAP**
 - Similarity matrix
 - Measure similarity between neighboring segments

HOM threshold
A possible combined approach

Procedure:

- **Mosaic**
- **S2**
 - Aggregation
 - **HOM threshold**
- **S3**
 - Aggregation
 - **Identify heterogeneous segments in S3 & split them using S2**
- **Similarity matrix**
 - Measure similarity between neighboring segments
 - **Find most similar pair of segments & aggregate them**
- **MAP**
 - **S3’**
A possible combined approach

Procedure:

1. **Mosaic**
 - **HOM threshold**
 - aggregation

2. **S2**
 - **identify heterogeneous segments in S3 & split them using S2**
 - aggregation

3. **S3**

4. **S3'**

5. **Similarity matrix**
 - **measure similarity between neighboring segments**
 - **find most similar pair of segments & aggregate them**

SIM threshold
A possible combined approach

Procedure:

- **Mosaic**
 - aggregation
 - **HOM threshold**

- **S2**
 - aggregation

- **S3**
 - **identify heterogeneous segments in S3 & split them using S2**

- **Similarity matrix**
 - measure similarity between neighboring segments
 - find most similar pair of segments & aggregate them

- **S3’**

- **MAP**

- **FINAL MAP**
A possible combined approach

Result:

• HOM threshold: 0.5
• SIM threshold: 0.5
A possible combined approach

Result:

• HOM threshold: 0.5
• SIM threshold: 0.5
Application to the common dataset

Kongsberg EM2040 data over West Taputeranga (Area 3) + HMNZS Wellington wreck (Area 2).
Application to the common dataset

Kongsberg EM2040 data over West Taputeranga (Area 3) + HMNZS Wellington wreck (Area 2).
Application to the common dataset

Kongsberg EM2040 data over West Taputeranga (Area 3) + HMNZS Wellington wreck (Area 2).
Application to the common dataset

Kongsberg EM2040 data over West Taputeranga (Area 3) + HMNZS Wellington wreck (Area 2).

- HOM threshold: 0.6
- SIM threshold: 0.3
Application to the common dataset

Kongsberg EM2040 data over West Taputeranga (Area 3) + HMNZS Wellington wreck (Area 2).

- HOM threshold: 0.6
- SIM threshold: 0.3
Conclusion

“A possible approach”. Work still in progress. Other research in development.

- …

Looking forward to exploit frequency information as well…
Acknowledgments

• The **Foundation for Research, Science and Technology** (Technology in Industry Fellowship, contract number METO0602).

• The **George Mason Charitable Trust**.

• **NOAA Grants** No. NA10NOS4000073 and NA0NOS4001153.

• **Professor Terry Healy** of the University of Waikato department of Earth and Ocean Sciences.