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ABSTRACT 

BUOYANCY-DRIVEN MOTION OF BUBBLES IN THE PRESENCE 

OF SOLUBLE SURFACTANTS 

by 

Weihua LI 

University of New Hampshire, September, 2011 

We present our experimental results for the effect of bulk-soluble surfactants on the 

buoyancy-driven motion of an air bubble rising in circular, square and rectangular 

channels filled with a liquid. The bulk fluid is either Newtonian or viscoelastic with or 

without surfactants. In a Newtonian fluid, small bubbles are nearly spherical travelling 

with a velocity much lower than the Hadamard-Rybczinski velocity. Long bubbles were 

prolate translating with a velocity independent of the bubble size. Cusps form in all the 

viscoelastic systems studied. Even in the presence of small amounts of surfactants 

bubble shapes were elongated and mobility is reduced due to Marangoni effects. At 

surfactant concentrations above CMC small bubbles are partially remobilized while long 

bubbles are completely remobilized. The effect of the channel geometry on bubble 

mobility and deformation are also presented. 
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Chapter 1 

INTRODUCTION 

In fluid mechanics, two phase flows are encountered in many natural and industrial 

processes such as vapor bubbles rising in a pot of boiling water, raindrops falling through 

air, enhanced oil recovery, inkjet printing, and so on. Knowledge of two-phase flow 

behavior is important for the optimum design and safe operation of a wide range of 

industrial systems. A single bubble rising in a liquid is an important first approach to 

understanding the structure of two-phase flows. For example, the motion of bubbles and 

drops in confined domains plays a significant role in the field of enhanced oil recovery. 

On an average, oil recovery by primary depletion and water flooding recovers only about 

one third of the original oil in the reservoir [48]. Enhanced oil recovery (EOR) 

techniques are used to increase the recovery of hydrocarbons from various types of 

petroleum reservoirs. One of the techniques applied in EOR is flooding the reservoir 

with surfactant solutions. Surfactants can dramatically alter the wettability of the walls 

and improve the mobility of the oil droplets. Anionic surfactants are widely used in 

enhanced oil recovery due to their lower adsorption on reservoir rocks as compared to 

other types of surfactants [13]. Another technique that has been used for many years in 

enhanced oil recovery is polymer flooding. Polymers can control the mobility of injected 

water, improve the volumetric sweep efficiency, and reduce channeling and breakthrough. 

Polymers can also be combined with surfactants and alkali agents to increase the sweep 
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efficiency of these tertiary recovery floods. 

The behavior of a bubble moving in a liquid differs from that of a solid particle, because 

the bubble shape can change due to the action of hydrodynamic forces. At a fluid-fluid 

interface, the fluid properties change very rapidly and continuously in the interfacial 

region but are constant in the bulk of the two fluids. However due to lack of appropriate 

molecular theories, the interface is modeled as a massless macroscopic surface where the 

fluid properties are maintained at their bulk values on either side of the interface and 

change discontinuously at the interface. Moreover, the fluid interface is characterized by 

an interfacial tension, a, which may depend on the temperature, pressure, concentration 

of any impurities, or charges in the system. Physically, the interfacial tension is termed 

as the net inward force of molecular attraction per unit length experienced by a fluid that 

minimizes its surface area or as the work done in generating a unit area of the fluid 

interface. Since the interface is a massless surface with zero volume, the net force acting 

on the interface must be zero. A force balance at the interface can be written as, 

(pa.tot ~ Ptot)™ + (T - r d ) • n + Vscr - a (V • n)n = 0 (1.1) 

where quantities with the subscript d represent the drop phase, ptot and T represent the 

actual total pressure and the deviatoric stress tensor in the fluids, and n represents the 

outward pointing unit normal. Equation (1.1) shows that the total stress undergoes a 

jump as the interface is crossed. The normal stress jumps by an amount a (V • n), that is 

interfacial tension multiplied by the curvature of the interface. The tangential stress, on 

the other hand, jumps by an amount Vs<r, that is, the gradient in the interfacial tension 

along the interface. Equation (1.1) is applied at the fluid-fluid interface to determine the 
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dynamics of drops and bubbles in confined domains. However, the location of the 

interface is not known a priori and is dependent on the state of stress in the fluid, the 

interfacial tension and the variation of interfacial tension at the interface. 

Bubble sizes and shapes play an important role in heat and mass transfer. Bubble volume 

and shapes also affect the rise velocity and drag coefficient. Bubble dynamics are 

affected by the presence of surfactants or polymers in the bulk solution. Understanding 

detailed bubble behavior can thus provide a rational approach for predictive methods and 

new design approaches in various industrial processes, such as underground 

transportation of pollutants, enhanced oil recovery, blood flow in capillaries, bioreactors, 

food processing, and solvent extraction processes. The effect of changing the fluid 

rheology due to addition of polymers and the effect of surfactants are briefly discussed in 

the remaining sections and the primary objectives of this study are outlined. 

1.1 FLUID RHEOLOGY EFFECT 

Newtonian fluids are widely used as suspension bulk liquids as mentioned in the previous 

paragraph. All gases, low molecular weight liquids and their solutions (for example, 

water and glycerol) and molten salts behave as Newtonian fluids. In a Newtonian system, 

the value of viscosity, rj, is independent of the shear rate, and it depends only on 

temperature, pressure, and the chemical composition of the fluid. In reality, most of the 

fluids we encounter in physical and industrial processes are non-Newtonian, such as 

polymer solutions and melts, multiphase mixtures (slurries, emulsions, and gas-liquid 
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dispersions), personal care products (cosmetics), soap solutions, food products 0am> 

jellies, cheese, yogurt) [10]. These solutions behave in unexpected ways which cannot be 

described by Newton's law of viscosity. The viscosity of a non-Newtonian fluid is not 

constant at a given temperature and pressure but depends on other factors such as the rate 

of shear in the fluid, the apparatus in which the fluid is contained, or even on the previous 

history of the fluid. A pseudoplastic or shear-thinning fluid shows decreased resistance 

with increasing stress, that is, the viscosity decreases with increasing shear rate. If the 

thinning effect is very strong, the fluid is termed plastic. Alternately, a dilatant or shear-

thickening fluid shows increased resistance with increasing applied stress [47]. Fluids 

such as polymer solutions show both viscous and elastic behavior and are termed as 

viscoelastic fluids. Due to their elastic nature, such fluids are capable of storing energy 

and hence can exhibit time dependent viscosity. 

Viscoelastic fluids exhibit fluid behavior very different from Newtonian fluids such as 

the Weissenberg effect (rod-climbing), hole-pressure error, and Uebler effects [35]. The 

Weissenberg effect is one of the most interesting phenomena exhibited by viscoelastic 

fluids [29]. As shown in Figure 1.1(b), a viscoelastic fluid in a cylindrical vessel will 

climb up a rotating rod against centrifugal force and gravity; while, a Newtonian liquid 

will form a hole instead as presented in Figure 1.1(a). Rod-climbing is a second-order 

effect associated with the inequality of normal stresses in shear flow. It is suggested that 

the normal stress acts like a hoop around the rod and forces the fluid inwards against the 

centrifugal force and upwards against the gravitational force [27]. Another interesting 

effect in two-phase flow of viscoelastic fluids is cusp formation. Liu et al. investigated 
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the shape of air bubbles rising in a quiescent viscoelastic fluid in the absence of wall 

effects. In a system that was completely axisymmetric, they observed bubble shapes that 

exhibited a two-dimensional cusp. In the front view, the bubbles showed a pointed shape 

as seen in Figure 1.2. In the side view, they reported that the broad edge showed a 

variety of shapes such as flat like a spade, arched like an axe, pointed like an arrow or flat 

and tilted like a guillotine as seen in Figure 1.2. It is hard to imagine how such a 

singularly asymmetric feature could arise in a situation which in every respect suggests 

that an axisymmetric shape should prevail. The fluids used in this study were shear-

thinning and viscoelastic and that affects both the deformation and mobility of the 

bubbles rising in these fluids [26]. 

Newtonian fluid Viscoelastic fluid 

Figure 1.1: Schematic showing the Weissenberg effect (or rod-climbing) in a polymeric fluid. 
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Figure 1.2: Schematic of the two-dimensional cusps seen for bubbles rising in a quiescent 
viscoelastic fluid as reported by Liu et al. [26]. 

1.2 SURFACTANT EFFECTS 

Surfactants are versatile compounds that can be found in many applications such as food 

products, motor oils, detergents, and flotation agents used for separation processes. 

Surfactants are either added as additives or present as impurities which cannot be avoided. 

Surfactants have an amphipathic structure which consists of a hydrophilic head and a 

hydrophobic tail. As a result of the special structure, when surfactants are present in a 

system, they adsorb at the two-phase interface in an oriented way such that the 

hydrophilic head stays in the aqueous phase while the hydrophobic tail stays away from it 

as shown in Figure 1.3. This alters the interfacial free energies of these surfaces in a 

marked way [37]. If an interface with a clean interfacial tension ac is created in a 

surfactant solution and the system is allowed to reach an equilibrium, the concentration of 

surfactants at the interface reaches an equilibrium value. The equilibrium interfacial 
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tension, aeq corresponding to the equilibrium surfactant concentration is less than the 

clean interfacial tension, ac. 

Interface 

Interface 

\7 

Air 

Water 

Air 

V O Water 

a 

eq 

Figure. 1.3: Schematic of equilibrium behavior of surfactant molecules at an air-water interface. 

If we conduct the experiment shown in Figure 1.3 for varying bulk concentrations of 

surfactants, we can obtain the graph for the equilibrium surface tension as a function of 

bulk surfactant concentration as shown in Figure 1.4. As seen in the figure, the 

equilibruim surface tension remains a constant for very small amount of surfactants 

present in the solution. Then, with increasing bulk surfactant concentration, the 

equilibruim surface tension decreases until it reaches a lower plateau value termed as the 

critical micelle concentration (CMC) point. Below CMC, surfactants only appear in 

monomer form while above CMC surfactants start to aggregate and form micelles. The 



shapes of micelles could be cylindrical, spherical, vesicular, lamellar, or hexagonal. The 

interfacial tension values continue to decrease as the bulk surfactant concentration is 

increased above the apparent CMC values, although the rate is lesser. The CMC value 

depends on several factors such as the length of the molecule, the nature of the solvent, 

the concentration of salt, the temperature [30]. In a polymer solution system, however, 

surface tension is greatly affected by both surfactants and the polymer molecules due to 

the associative nature of the molecules [33]. The surface tension of polymer-surfactant 

systems can be divided into three regions depending on their concentrations: a monomer 

region, a polymer-surfactant complex region, and a micellization region [46]. 
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Figure. 1.4: Schematic of equilibrium surface tension as a function of bulk surfactant 
concentration 



For flow around a single bubble rising in a vertical tube filled with surfactant solution, 

time to reach equilibrium may not be possible. Figure 1.5 shows a schematic of the 

different timescales at play for the non-equilibrium effects at an interface with surface 

convection. The bulk concentration is assumed to be less than the critical micellar 

concentration (CMC) value. The surfactants' non-equilibrium behavior depends on the 

mass transfer time scale, %MT and the convection time scale, rconv at the interface. The 

surfactant mass transfer timescale, TMT, depends on the timescale of diffusion of 

surfactant from the bulk to the sublayer, rD and the timescale of adsorption and 

desorption from the sublayer to the interface, za/d- The timescale for convection at the 

interface depends on the tangential velocity, U, at the interface. Surface convection leads 

to accumulation of surfactants at the stagnation points. If XMT « Tconv, the interface gets 

replenished with surfactants very quickly and the surface tension of the interface reduces 

Flow 
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Qf^ 
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MT 

r D 
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Figure. 1.5: Schematic of non-equilibrium behavior of surfactant molecules at interface. 
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to a uniform equilibrium surface tension corresponding to the bulk concentration. If 

IMT » tconv, the mass transfer of surfactant to the interface is inhibited and the surfactant 

may be considered insoluble. If XMT ~ Tcom>, the relative magnitudes of xa/a and xD 

determines the behavior of the interface. For example, in the adsorption-desorption limit, 

ta/d » to, and the sublayer concentration is equal to the bulk surfactant concentration 

while in the diffusion-controlled limit, Xg/d « rD. The same surfactant system may 

exhibit different behavior depending on the surfactant concentration and the type of flow. 

1.3 OBJECTIVES 

The dynamics of a single bubble in a confined system can help us understand the 

dynamics of two-phase flows in complex geometries. Several two-phase flow 

applications of interest involve complex geometries with fluids that exhibit non-

Newtonian behavior and may require the presence of surfactants. Here we focus on 

conducting a systematic experimental study on the buoyancy-driven motion of bubbles 

rising through vertical channels. The goal of this thesis is to investigate the effects of 

• shape of confining wall, 

• fluid rheology, and 

• presence of surfactants 

on the deformation and mobility of bubbles. In Chapter 2, we discuss existing studies on 

the effects of confinement, elasticity, and surfactants on bubble dynamics. In Chapter 3, 

we describe our experimental set up, systems studied, and analysis conducted. In Chapter 
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4 we summarize the experimental results of this study. We conclude with a summary of 

this work and future recommendations in Chapter 5. 
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Chapter 2 

BACKGROUND 

The motion of bubbles in confined domains is encountered in a variety of natural 

phenomena and technical applications. It also remains a problem of considerable 

fundamental importance as a pore-scale model for studying the dynamics of two-phase 

flow through porous media. Therefore, extensive theoretical and experimental research 

dealing with motion of bubbles or drops in Newtonian and non-Newtonian fluids in the 

presence or absence of surfactants has been conducted. However, a large number of 

these studies are restricted to bubble dynamics in the absence of wall effects or long 

bubbles in cylindrical tubes. 

2.1 DROPS RISING IN NEWTONIAN FLUID 

2.1.1 Unbounded Flows 

The rise of a single gas bubble in an unbounded quiescent flow has been studied since 

1911 [16, 38]. The well-known Hadamard-Rybczynski equation describes the terminal 

velocity of slowly moving spherical bubble through an unbounded fluid which is shown 

in Equation 2.1. From this equation we can see that the terminal velocity of a single 

freely rising bubble in a quiescent flow is dependent on the radius of the bubble R, the 

gravitational acceleration g, the density of the bubble pd, the density of 
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the ambient fluid p0, the viscosity of the ambient fluid tj . The equation is valid for a 

spherical bubble at very low Reynolds number. 

U,=R2g(po-pd)/3rj0 (2.1) 

2.1.2 Flow in Cylindrical Tubes 

The general shape of a Taylor bubble is a bubble whose length is several times the tube 

diameter and whose leading edge is rounded. The trailing edge can take on either a 

rounded, indented, or unsteady shape depending upon the flow conditions and fluid 

properties. There has been extensive research about Taylor bubbles in Newtonian fluids. 

Taylor [44] measured the amount of fluid left behind when a viscous Newtonian liquid 

was blown from an open-ended horizontal tube. He concluded that the film thickness 

was a monotonic increasing function of the capillary number, Ca=rjUJcr, where rj is 

viscosity, Ud is bubble velocity, and a is the surface tension. Bremerton [7] was perhaps 

among the first to perform a detailed theoretical analysis of the movement of long Taylor 

bubbles in vertical circular tubes in a Newtonian system. He demonstrated that the free 

rise of a long bubble was completely inhibited if Bond number was less than 0.842, the 

midsection of a rising bubble which had a uniform liquid film thickness increases with 

increasing bubble volume, and the shapes of the front and rear of the long bubbles remain 

the same for various bubble volumes. 

Polonsky et al. [32] performed experimental research on the relationship between 

buoyancy driven motion of a Taylor bubble rising in water and the velocity field ahead of 
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Figure 2.1: Schematic of the velocity field near the leading edge of a Taylor bubble rising in a 
stagnant fluid. 

Figure. 2.2: Schematic of the velocity field in the wake of a Taylor bubble rising in a stagnant 
fluid. 
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it. They found that the propagation velocity of the bubble was related to the maximum 

local liquid velocity ahead of it. Bugg and Saad [8] produced the velocity profile around 

a rising Taylor bubble in olive oil by particle image velocimetry (PIV) method, which is 

schematically shown in Figures 2.1 and 2.2. From the figures we can see that the 

outside fluid diverges at the leading end of the bubble and converges at the trailing end of 

the bubble. Bugg and Saad also found that the velocities in the liquid reduced to less than 

5% of the bubble speed at D/3 ahead of the bubble, D being the tube diameter. The 

velocity dropped to 10% of the bubble speed at about 0.77D below the bubble due to the 

influence of the wake. 

Feng [14] numerically studied the buoyancy-driven motion of a long gas bubble through 

viscous liquid in a round tube. He concluded that the terminal velocity of long bubbles 

was independent of bubble volume. Moreover, he showed that the surface profiles of 

long bubbles exhibited a prolate nose-like shape and various tail shapes were obtained by 

adjusting the values of Reynolds and Webber numbers. Borhan and Pallinti [6] 

experimentally and numerically investigated buoyancy-driven motion of viscous drops 

through cylindrical capillaries at small Reynolds numbers. They found that the retarding 

effect of the capillary wall decreased as the buoyancy force became more dominant 

compared to surface tension, or as the drop fluid became less viscous relative to the 

suspending fluid. However, for a given viscosity ratio and beyond a certain limiting 

value of the Bond number, the wall effect remained unchanged with increase of Bond 

number. The thickness of the liquid film surrounding large drops was insensitive to the 

value of the viscosity ratio. 

15 



2.1.3 Flow in Non-circular Tubes 

All study of motion of bubbles in non-circular channels, to date, arose due to its 

relevance to very slow two-phase flow in channels of microscopic dimensions. This flow 

is similar to the flow within the porous rock of an oil reservoir where typically the driven 

fluid is significantly more viscous than the driver. In enhanced oil recovery applications 

the film thickness is a direct measure of the fraction of oil that can be recovered by 

flooding techniques. However, circular capillaries serve as poor models for flow in 

porous media. Non-circular capillaries provide a better model for describing the irregular 

and angular nature of porous media [19]. 

Kolb and Cerro [19] numerically presented results for the two phase flow in a capillary of 

square cross section. They reported that the transition from a nonaxisymmetric to 

axisymmetric bubble was found to occur at Ca~ 0.1 [20]. Clanet et al. [11] studied the 

buoyancy driven motion of long bubbles in vertical tubes of different cross-sections 

(rectangles, regular polygons, toroidal tubes) filled with Newtonian fluids. They showed 

that the velocity in high-Reynolds-number domain was characterized by Ui, 

=(87iym(gP)U2, and the low-Reynolds number range by Ub ~ Q.Q\2gS/v, where P and S 

stand for the wetted perimeter and the area of the normal cross-section of the tube 

respectively. Recently, Li et al. [23] studied the buoyancy-driven motion of air bubbles 

in Newtonian fluids in square capillaries (lOmmxlOmm and 15mm><15mm) over a range 

of Reynolds numbers, where wall effects cannot be neglected. This study proposed a 

relationship between the Weber number, We= pUjRJa and important flow parameters 
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such as bubble velocity, bubble deformation, and film thickness. This complex behavior 

also clearly indicated that the walls had a significant retarding effect on the bubble 

motion. Most of their experimental results were numerically confirmed by Amaya-

Bower and Lee [1]. 

Several investigations were done on miniature non-circular tubes. Bi and Zhao 

investigated the motion of Taylor bubbles in miniature circular and noncircular channels 

with stagnant water. They found that in large circular tubes (d > 2.9 mm), bubbles rose 

up periodically. As the diameter of the circular tubes became smaller, the up-motion of 

the gas slugs was slowed down, and ceased completely when the tube size was 

sufficiently reduced (d < 2.9mm). For the miniature triangular channels, however, it was 

found that the gas slug always rose upward even though the hydraulic diameter was as 

small as 0.866 mm due to buoyancy force. Similarly, they found that the drift velocity in 

the square and rectangular channels is not zero [5]. Later, Liao and Zhao presented a 

theoretical model that predicts the drift velocity of a Taylor bubble in vertical mini 

triangular and square channels filled with a stagnant liquid. They found that the drift 

velocities in the triangular channel are substantially higher than those in the square 

channel having the same hydraulic diameter [24]. Yue et al. [49] investigated flow and 

mass transfer properties under air-water Taylor flow in horizontal square microchannels. 

They found that Taylor bubble moves slightly faster than the liquid slug due to the 

existence of a nearly stagnant film surrounding the bubble body. The experimental 

bubble velocity results can be well interpreted based upon an approximate measurement 

of the liquid film profile in microchannels, where it was shown that the velocity ratio 
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between Taylor bubble and the liquid slug further increased with increasing Ca primarily 

as a result of the thickening of the liquid film in the corner of the microchannel cross-

section. 

2.2 FLUID RHEOLOGY EFFECT 

2.2.1 Unbounded Flows 

Astarita and Apuzzo [2] experimentally presented data on the rising gas bubbles in a 

variety of non-Newtonian liquids. For small bubbles, the velocity-volume curve in the 

highly elastic liquids showed a striking peculiarity: a critical volume exists corresponding 

to an abrupt increase in the velocity. They speculated that it may be due to a transition 

from the Stokes to the Hadamard regime and that viscoelasticity is responsible for the 

abruptness of the velocity transition. A gas bubble moves in the Stokes regime when the 

liquid is in creeping flow, the bubble is spherical, and the interface is rigid. However, a 

gas bubble moves in Hadamard regime when the liquid is in creeping flow, the bubble is 

spherical, and the interface is free. Liu et al. [26] also confirmed the velocity jump when 

an air bubble rose in a viscoelastic fluid beyond a critical capillary number, which they 

believed was due to the reduction in the drag and effects of surfactants. Rodrigue et al. 

[35] examined the motion of a freely rising gas bubble in non-Newtonian fluids to 

determine the conditions for the possible existence of a discontinuity in the bubble 

velocity-bubble volume log-log plot. They proposed that the discontinuity results as a 

balance between elastic and Marangoni instabilities. 
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Liu et al. [26] also reported that after a critical capillary number, cusp formed in the 

viscoelastic fluid. The cusped tail is basically two-dimensional with a broad edge in one 

view and a sharp cusped edge in the orthogonal view. Cusp formation would appear in 

Newtonian liquids only when the column was tilted, and no cusp was seen for free rising 

bubbles. The two-dimensional cusp of rising air bubbles appeared to depend on the fluid 

and the bubble volume, and was independent of the size or shape of the bubble column. 

Shapes of rising bubble in viscous Newtonian fluids went from spherical to oblate 

spherical to that of a spherical cap. However, bubble shapes in many viscoelastic fluids 

ranged from spherical to prolate spherical to that with a trailing cusp. Belmonte [3] also 

observed the cusp formation but for the motion of a bubble rising in a micellar non-

Newtonian system. 

The flow field around air bubbles rising in aqueous polyacrylamide solutions and the 

viscoelastic and wall effects on the bubble mobility and velocity jump was considered by 

Herrera-Velarde et al [17]. The flow configuration changed drastically below and above 

the critical bubble volume. Negative wake appeared behind the bubble above the critical 

volume. Additionally, the container walls significantly affected the magnitude of the 

terminal velocity as well as the velocity jump. However, the critical volume at which the 

velocity jump appeared did not change for different container sizes. They believed the 

velocity jump was mainly due to the formation of negative wake. Lind and Phillips [25] 

investigated numerically the role of viscoelasticity on the dynamics of a rising gas bubble. 

They also reported that the negative wake was primarily responsible for the velocity jump 

discontinuity. 
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2.2.2 Flow in Cylindrical Tubes 

There are very limited studies on the motion of bubbles in confined domains filled with 

viscoelastic fluids and are restricted to cylindrical capillaries. Recently, Sousa et al. have 

used simultaneous PIV and shadowgraphy techniques to study the shape and flow fields 

around a Taylor bubble rising in a cylindrical tube filled with non-Newtonian fluids. 

They conducted experiments with carboxymethyl cellulose solutions and polyacrylamide 

solutions of varying concentrations. The shape of Taylor bubbles was prolate spheroid at 

the leading edge with higher curvatures for higher viscosity fluids. The bubble radius 

increased and reached a maximum value at certain distance from the nose of the bubble. 

For higher concentrations of carboxymethyl cellulose solutions (> 0.8 wt%) which 

exhibit viscoelastic fluid behavior, the bubbles show a two-dimensional cusp at the rear 

of the bubble and a negative wake. In case of polyacrylamide solutions, the authors 

found that flow field behind the bubbles was not always axisymmetric and showed a 

negative wake at higher concentrations ([41], [42], [43]). 

2.3 SURFACTANT EFFECTS 

2.3.1 Unbounded Flows 

Frumkin [15] & Levich [22] were among the first to describe the mechanism by which 

surfactants modify the velocity field in the vicinity of a fluid-fluid interface. They 

pointed out that surfactants tend to be convected along the bubble surface and accumulate 

at the rear part of the bubble. The nonuniform surfactants distribution results in 
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nonuniform surface tensions, which cause Marangoni stresses that retard the surface 

mobility. Chen and Stebe [9] confirmed Frumkin and Levich's theory about Marangoni 

retarding effects and further thoroughly explained the mechanism of remobilizing 

surfactant-retarded fluid particle interface by adjusting surfactant concentration. They 

established that a surfactant with fast sorption kinetics at concentrations above CMC can 

be used to control surface mobility. Later, Stebe and Maldarelli [40] demonstrated that 

this mechanism is effective even with the presence of surface retarding surfactants by 

adding sufficient remobilizing surfactant. The theoretical progress has identified three 

regimes of surfactant transport, which are the stagnant cap regime, uniformly retarded 

regime, and remobihzation regime. In the stagnant cap regime, the maximum rate of 

either the diffusive or kinetic fluxes of surfactant to the surface is much smaller than 

surface convection. As a result, adsorbed surfactant behaves as if it were insoluble, and 

is swept to the back end of the particle. In the uniformly retarded regime, the rate of bulk 

diffusion and surfactant kinetic exchange are of the same order as the interfacial 

convection, surfactant exchanges between the bulk and the surface. In the remobihzation 

regime, the bulk concentration of surfactant is large. The kinetic and bulk diffusive 

exchange are fast relative to convection. The difference between the bulk and sublayer 

concentrations becomes small [31]. 

Some experimental results have been reported for the case of a bubble rising in 

unbounded Newtonian or non-Newtonian fluid with the presence of surfactants. 

Rodrigue et al. [34] investigated the motion of free rising spherical gas bubbles in three 

Newtonian and eight non-Newtonian polymeric liquids in the presence of surfactants 
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(SDS). They showed that the surfactant had an effect on the velocity of the bubbles in 

both Newtonian and non-Newtonian fluids. As the viscosity of the liquid increased, the 

effect of surfactant was less pronounced in Newtonian systems. A jump discontinuity in 

the case of viscoelastic fluids was observed which they believe was due to the change of 

the ratio of elastic to surface tension forces. Later, they calculated the drag force 

experienced by free rising bubbles in an inelastic shear-thinning fluid in the presence of 

SDS [36]. They detected no variation in the viscosity curve with or without surfactants. 

They found that the presence of contamination increased the drag resulting in a decrease 

of the rise velocity. Inversely, the effect of shear thinning was to decrease the drag, thus 

leading to a balance between both effects. 

Tomiyama et al. [45] investigated the terminal velocity of a single distorted bubble in 

distilled water and in water contaminated with surfactants in the surface tension force 

dominant regime experimentally. They confirmed that bubble motion, shape and velocity 

were markedly sensitive to initial shape. The primary role of surfactants in this regime 

was to cause the damping of bubble shape oscillation, by which a contaminated bubble 

behaved as if it were a clean bubble with low initial shape deformation. Saito et al. [39] 

examined the non-equilibrium effects of surfactants in water solution. Although the bulk 

equilibrium surface tension was almost the same as that of purified water, the bubble 

motion and the surrounding liquid motion in the solutions were very different from those 

in purified water which they believed was due to Marangoni stress. They found a critical 

concentration of a surfactant at which, the intensity and size of the vorticity around the 

bubble became the largest. Zhang et al. [51] numerically simulated a free rising bubble 
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in aqueous surfactant solutions assuming the stagnant cap model and applying different 

mass transfer control steps. They found that the stagnant cap model and boundary layer 

mass transfer control were valid for Triton X-100 adsorption onto a rising 0.8 mm 

diameter bubble by comparing the simulated velocity profiles with the experimental ones. 

2.3.2 Flow in Cylindrical Tubes 

Several experimental results have also been presented for the case of a bubble rising in 

confined domains filled with either a Newtonian or a non-Newtonian fluid in the 

presence of surfactants. Krzan et al. [21] performed experiments to determine the local 

and the terminal velocities, the size and the degree of bubbles' shape deformations as a 

function of distance from the position of the bubble formation (capillary orifice) in a 

water-surfactant system. They found that the bubbles accelerated rapidly and deformed 

immediately after detachment from the capillary. After the acceleration period the 

bubbles either attained a constant value of the terminal velocity (distilled water and high 

concentrations of surfactant), or a maximum in the velocity profiles was observed (low 

concentrations of surfactant). The values of the terminal velocity diminished drastically 

with increasing surfactant concentration. Rodrigue et al. [8] observed a velocity 

discontinuity as a function of volume (0.1-10 cm3) for air bubbles using a 0.5 wt% 

polyacrylamide solution in a 20/80 glycerin/water mixture when smaller volumes are 

used. They reported that for concentrations of SDS above CMC, polymer-surfactant 

association can remobilize surface velocity and eliminate velocity discontinuity. 
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Dynamics of bubbles in the presence of surfactants has also been studied numerically. 

Cuenot et al. [12] presented a numerical study of the effects of slightly soluble surfactants 

on the flow around a spherical bubble for a Reynolds number Re=l00. They confirmed 

that the surfactants tend to slow down the flow at the rear of the bubble, leading to a 

dramatic increase of the drag coefficient. Zhang and Finch [50] addressed measurement 

of single bubble velocity in surfactant solutions (far below CMC). They reported that the 

bubble generation technique may influence the distance to reach a steady-state velocity. 

In their studies, the same steady state velocity was reached regardless of surfactant 

concentration which they suggested that the stagnant cap angle on the bubble was the 

same at steady state and was not a function of concentration. Johnson and Borhan [18] 

investigated the effect of bulk-soluble surfactants on the dynamics of a drop translating 

through a cylindrical tube under low-Reynolds-number conditions. They reported that as 

the equilibrium surface coverage was increased, the mechanism by which drop mobility 

was reduced changed from uniform retardation at low surface coverage to the formation 

of a stagnant cap at high surface coverage. 

In many industrial applications bubbles move in confined spaces, for example in the fuel 

bundles of the core of nuclear reactors, pressurizer components, steam generators and so 

on. The effect of the presence of a wall on the motion of bubbles has been studied before. 

However, a majority of these studies are either confined to larger tube sizes where wall 

effects are negligible or to very long bubbles in cylindrical tubes. Only a few of the 

studies have been reported on small diameter channels of non-circular cross section or 

with bubble sizes comparable to the channel size. Our experiments cover the whole 
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range of bubble sizes from small spherical bubbles to large elongated ones. Finally, 

while abundant experimental data are available in the literature for the buoyancy-driven 

motion of air bubbles in various suspending fluids in various channel geometries, the 

corresponding experimental information for the same case in the presence of surfactants 

is scarce. 
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Chapter 3 

EXPERIMENTAL METHODS 

The goal of this thesis is to determine the effect of soluble surfactants on the buoyancy-

driven dynamics of air bubbles in confined domains. The effect of surfactant 

concentration, fluid rheology, and the shape of the confining wall on the bubble 

deformation and mobility at steady state were studied. The experimental set up, the 

materials and their properties as well as the analysis techniques used to conduct this study 

are described in the following sections. 

3.1 EXPERIMENTAL SET-UP 

The schematic of experimental setup used to conduct this research is shown in Figure 3.1 

and described briefly here. The experimental set up consisted of an acrylic tube 

positioned vertically in front of a monochrome CMOS digital video camera (PixeLink 

PL-A741 with a maximum speed of 27 frames per second at a resolution of 1280x1024). 

A fiberglass light source provided uniform back-illumination to capture the images of the 

bubbles. The digital video camera was connected to a personal computer over a Fire Wire 

(IEEE-1394) interface and the software PixeLINK Capture OEM is used to control the 

camera and capture a video of the rising drop / bubble. Vision Assistant software from 
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National Instruments was used to obtain and analyze individual frames from the recorded 

movie. 
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Figure 3.1: Schematic of the experimental setup used to study the buoyancy-driven motion of 
bubbles in channels. 

Table 3.1: Channel geometries considered for studying dynamics of drops and bubbles rising in a 
channel filled with an immiscible fluid. 

Number 

1 

2 

3 

4 

5 

Geometry 

Circular 

Square 

Square 

Rectangular 

Rectangular 

Dimensions 

Diameter, D = 10 mm 
Length =813 mm 
Width, h = 10 mm 
Length = 927 mm 
Width, h= 15 mm 
Length = 950 mm 

Width, h=\6 mm Depth, t = 3 mm 
Length = 1232 mm 

Width, h = 32 mm Depth, t = 3 mm 
Length = 1232 mm 

Hydraulic 
Diameter, DH 

10 mm 

10 mm 

15 mm 

5.1 mm 

5.5 mm 
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Channels with various cross sectional geometries were used to study the dynamics of 

drops and bubbles over a large range of parameters and are shown in Table 3.1. The 

channels were made of acrylic plastic sheet purchased from TAP Plastics. Channels with 

square and circular cross-sections, namely, tubes 1, 2, and 3 were obtained directly from 

TAP Plastics. Channels with rectangular cross-sections, namely, tubes 4 and 5 were 

fabricated from acrylic plastic sheets (3 mm thick). The circular tube, tube number 1, 

was enclosed inside a 15 mm square channel filled with the corresponding suspending 

fluid to remove optical distortion. The length of each channel was at least thirty times its 

hydraulic diameter. The bottom end of each channel was sealed with an acrylic end fitted 

with a l l mm diameter rubber septum (RESTEK) to serve as the injection port. 

3.2 MATERIALS AND CHEMICALS 

The channels were filled with a suspending fluid of either a Newtonian or non-Newtonian 

rheology. The Newtonian suspending fluids used in these experiments consisted of 

solutions of glycerol (Aldrich) in ultrapure water (Millipore Direct-Q 3 UV with 

resistivity of 18.2 MO-cm). The Newtonian fluid used was 75 wt% glycerol water 

solution. The non-Newtonian suspending fluids used in these experiments were prepared 

by mixing carboxymethyl cellulose (SIGMA-ALDRICH) or polyacrylamide (SNF) 

powder in ultrapure water. The three different non-Newtonian solutions studied were 2 

wt% carboxymethyl cellulose solution, 0.1 wt% polyacrylamide solution, and 0.3 wt% 

polyacrylamide solution. Air was used as the drop fluid. Several surfactants at varying 

concentrations were dissolved in the suspending phase to study the effect of surfactants 
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on the dynamics of bubbles. In this study we used water soluble nonionic surfactants, 

Triton X-100 (Alfa Aesar) and Tergitol 15-S-9 (SIGMA) and water soluble ionic 

surfactants, Aerosol-OT (EM SCIENCE) and sodium dodecyl sulfate (EMD). The 

physical properties of the various chemical compounds used in the experiments are 

shown in Table 3.2. All solutions were prepared on per weight basis. The volume of 

solution needed for the experiment was determined. The required amount of the reagent, 

glycerol, carboxymethyl cellulose, or polyacrylamide was weighed and added to the 

measured amount of ultrapure water. After adding the reagent, the solution was stirred in 

a closed vessel for two days to ensure uniformity. 

3.3 OPERATING PROCEDUR 

The required amount of surfactant, reagent (glycerol or Carboxymethyl cellulose) were 

weighted and added to the measured volume of Millipore-Q water. Newtonian 

suspending fluids used in the thesis were mixed for 24 hours in a covered beaker to 

prevent evaporation and were placed in a vacuum degasser to remove any air bubbles 

from the fluid before use. Non-Newtonian fluids were mixed for at least 48 hours in a 

covered beaker and were degassed before use. Surfactant solutions were prepared at the 

highest studied concentrations as adding small amounts of surfactants to the suspending 

phase was difficult. To do this, the desired amount of surfactant was added to the well 

mixed suspending phase and allowed to mix for 24 hours in a covered beaker. The 

concentrated surfactant solution was then diluted with the suspending phase to obtain the 

required concentration. Early experiments showed that if the channels were not 
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pretreated, surfactants were lost during the experiment due to adsorption to the channel 

wall. Therefore, before each experiment, the channel was 

Table 3.2: Properties of the chemicals used in the experiments for studying dynamics of drops 
and bubbles rising in a channel filled with an immiscible fluid. 

Fluids/Materials 
Bulk phase 
Glycerol 

Carboxymethyl cellulose 

Polyacrylamide 

Drop phase 
Air 

Surfactant 
Triton X-100 

Aerosol-OT 

Sodium dodecyl sulfate 

Tergitol 15-S-9 

Properties 

Physical State: colorless, odorless, viscous liquid 
Chemical Formula: C3H803 

Molecular Weight: 92 
Density: 1260kg/m3 

Physical State: white powder 
Chemical Formula: (R304)„ (R=H or CH2C02H) 
Molecular Weight: variable 
Density: variable 
Physical State: white granular powder 
Chemical Formula: (C3H5NO)n 

Molecular Weight: variable 
Density: 1130kg/m3 

Density: 1.2kg/cm3 

Physical State: colorless, viscous liquid 
Nonionic, water soluble 
YCMC (mN/m): 30 
Chemical Formula: CuH220(C2 H4O)n(n=9-10) 
Average Molecular Weight: 647 
Density: 1060kg/m3 

Physical State: waxy solid 
Ionic, water soluble 
YCMC (mN/m):30.8 
Chemical Formula: C2oH3707NaS 
Average Molecular Weight: 444 
Density: 963kg/m3 

Physical State: crystals solid 
Ionic, water soluble 
YCMC (mN/m):40 
Chemical Formula: NaCi2H25S04 

Average Molecular Weight: 288 
Density: 1010kg/m3 

Physical State: pale yellow liquid 
Nonionic, water soluble 
YCMC (mN/m):30 
Chemical Formula: C,2.,4H25-290[CH2CH20]XH 
Average Molecular Weight: 584 
Density: 1006kg/m3 
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pretreated by filling them with the experimental suspending fluid at a surfactant 

concentration well above the CMC for 24 hours. Then the channel was cleaned with 

warm tap water six times and allowed to sit for 3 hours in between each wash. The 

process was repeated again with Millipore-Q water six times. The channel was then 

dried using the air supply in the lab. This ensured that surfactants were already adsorbed 

to the channel wall before the experiment was conducted and no excess surfactant was 

present that would desorb into the experimental solution. The surface tension of the 

experimental solution was also tested before and after the experiment to ensure that the 

surfactant concentration of the experimental solution did not change during the 

experiment. 

There was no external temperature control for this system and all of the experimental data 

presented in this paper was collected between 21 and 22 °C. The experimental 

temperature was determined by a thermocouple placed near the outlet regions of the 

channel. To conduct the experiment, the dried channel was filled slowly with the 

suspending fluid to minimize bubble regeneration. Then the channel was clamped to a 

stand and leveled to ensure that the bubbles remained along the central axis of the 

channel as they rose through the channel. The channel was placed in front of a 

monochrome CMOS video camera and the system was allowed to equilibrate thermally 

before the experiments were conducted. For each run of experiments, the desired volume 

of the drop fluid was injected at the bottom of the channel using a micrometer syringe, 

which can be used to roughly measure the volume of the bubble injected. A 3 ml syringe 

was used to produce bubbles with nominal volumes V (as measured from the syringe) 
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ranging from 0.1 to 0.5 cm , and a 5 ml syringe for bubbles with 0.5cm <V< 1.2 cm . 

The syringe was thoroughly cleaned with warm tap water first and then Millipore-Q 

water, later dried in air before each new set of experiments. The bubble was injected 

along the symmetry axis of the channel. The motion of the bubble through the channel 

was recorded using the CMOS camera. The camera was placed on a leveled tripod high 

enough from the injection point to capture the steady shape and velocity of the bubbles. 

The camera was connected to a computer via Fire Wire (IEEE-1394) interface. The 

software PixeLINK Capture OEM was used to control the camera and capture the 

movement of the rising bubble. Exposure Time (ms), Gain, and Frame Rate (fps) were 

set as 1.5, 8.2, and 20, respectively from the Basic Control menu. Region of Interest was 

adjusted to get a good image. A ruler was fixed on the channel by tape and a calibration 

image was captured from the Image Capture menu to be used for calibration later. The 

Number of Frames was modified and the movement of the bubble was captured from the 

Video Capture menu. The captured images were analyzed to determine the steady shape 

and speed of bubbles using image analysis described in Section 3.6. 

3.4 FLUID PROPTERTY MEASUREMENT 

The viscosities of all the suspending fluids were measured using either the Brookfield 

cone and plate viscometer (LVDV-III+ with Rheocalc software) or the TA Instruments 

oscillatory rheometer (AR-550n) with a cone and plate geometry. In both the rheometers 

used, a shearing flow is imposed for a suitable time so that a steady shearing flow is 

obtained. The shear rate in a cone and plate geometry is given by y = ft/tan a , where Q 
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is the steady angular rotation of the cone or plate, and a is the angle of the cone. The 

steady shear stress, x is measured as the force that a liquid exerts on the surface per unit 

area of that surface and the steady-state viscosity is determined as, = r / y . The 

equilibrium surface tension was measured using the KSV Theta optical tensiometer 

utilizing the pendant drop method for surface tension measurement. 

3.4.1 Newtonian Rheology 

For a Newtonian fluid, the steady-state shear viscosity rj is often termed simply viscosity 

since in most situations it is the only one considered. The viscosity of the glycerol water 

solution was measured using the Brookfield cone and plate viscometer (LVDV-III+ with 

Rheocalc software). The rheometer was operated with the spindle number CPE51. 

Rheocalc software was used to control the rheometer and analyze the obtained data. The 

BEAVIS routine was used to determine the viscosity of the solution at different shear 

rates. This was done by increasing the shear rates in fixed increments (1 s"1) and waiting 

a fixed amount of time (90 seconds) to obtain the steady viscosity for the specific shear 

rate. The shear stress versus shear rate data was fitted to a power law form to obtain the 

steady viscosity and the exponent as shown in Figure 3.2. The exponent obtained 

confirms that the fluid is indeed Newtonian. The viscosity of the 75 wt% glycerol water 

solution was 34 mPa.s. 
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3.4.2 Non-Newtonian Rheology 

In a complex fluid, the rate of structural rearrangement can be determined by imposing 

small amplitude oscillatory shearing. In the cone and plate geometry this kind of motion 

is achieved by rotating the cone with an angular velocity, Q.(t) = Q0 cos(cot). The shear 

rate is also a function of time and it is given by y{t) = H(t)/tan a and hence the shear 

3000-
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Figure 3.2: Shear stress as a function of shear rate for 75 wt % glycerol-water solution. 

strain, given as the time integral of shear rate, is given by y = Q0 sm(a>t) I a> tan a. The 

number Q01 co is defined as the amplitude of angular deflection and y0 = Q0 tan a I co is 

defined as the strain amplitude. If /„ is very small then the fluid is not disturbed by the 

oscillations and the stress is controlled by the rearrangement of the fluid. The shear stress 
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is the response and it can be split into "in phase" and "out of phase" with the input 

deformation. The viscoelastic behavior of the system at different frequency is 

characterized by the storage modulus, G', and the loss modulus, G", which respectively 

characterize the solid-like and fluid-like contributions to the measured stress response. 

The storage modulus G', can be determined from the "in phase" component of the 

response and loss modulus, G", can be determined from the "out of phase" component of 

the response. For liquid-like fluids the storage modulus, G' is much less than the loss 

modulus, G" (i.e. G' « G") and G'oc co and G" <x co2. The frequency dependence of G' 

and G" can be obtained by applying Oscillatory Frequency Sweep (the TA Instruments 

oscillatory rheometer AR-550n). Figure 3.3 shows frequency dependence of G' and G" 

for 2 wt% carboxymethyl cellulose solution. From Figure 3.3 we can see that at the 

lower frequencies the response is viscous-like with a loss modulus that is much larger 

than the storage modulus, while at the highest frequencies, the difference between the 

loss modulus and storage modulus becomes smaller indicating more solid-like behavior. 

Figures 3.4 and 3.5 show the frequency dependence of G' and G" for 0.1 wt% 

polyacrylamide solution and 0.3 wt% polyacrylamide solution respectively. From 

Figures 3.4 and 3.5 we can see that at the lower frequencies the response is liquid-like 

with a storage modulus that is less than the loss modulus, while at the highest frequencies, 

the storage modulus dominates the response indicating solid-like behavior. 
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Figure 3.3: Frequency dependence of G' and G" for 2 wt% carboxymethyl cellulose solution. 
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Figure 3.4: Frequency dependence of G' and G" for 0.1 wt% polyacrylamide solution. 
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Figure 3.5: Frequency dependence of G' and G" for 0.3 wt% polyacrylamide solution. 

The steady-state shear viscosity of 2 wt% carboxymethyl cellulose, 0.1 wt% 

polyacrylamide, and 0.3 wt% polyacrylamide solutions were measured using the TA 

o 

Instruments oscillatory rheometer (AR-550n). The experiments were conducted at 25 C. 

The rheometer was operated with an air supply system that provides the required pressure 
o 

(37.5 psi.), a spindle (cone angle of 2) and a pump and tank system to control the 

temperature. The AR Instrument control software was used to control the rheometer and 

analyze the obtained data. In order to evaluate the rheological properties of an unknown 

material, the Pseudo-Linear Viscoelastic Region (LVR) needed to be determined first by 

an Oscillatory Stress Sweep or Strain Sweep (OSS) experiment. Steady State Flow 

procedure was applied to determine the steady state shear viscosity. Figure 3.6 shows the 
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steady shear viscosity as a function of shear rate for 2 wt% carboxymethyl cellulose, 0.1 

wt% polyacrylamide, and 0.3 wt% polyacrylamide solutions, respectively. The low shear 

rate plateau is known as the zero shear viscosity and is designated as rf. The zero shear 

viscosities were found to be 1810 mPa.s for 2 wt% carboxymethyl cellulose solution, 

2570 mPa.s for 0.1 wt% polyacrylamide solution, and 21670 mPa.s for 0.3 wt% 

polyacrylamide solution. From Figure 3.6 we can also see that the viscosities for all 

solutions decrease with increasing shear rate, which indicates that 2 wt% carboxymethyl 

cellulose, 0.1 wt% polyacrylamide, and 0.3 wt% polyacrylamide solutions are all shear-

thinning fluids. While the zero shear viscosity for the 2 wt% carboxymethyl cellulose 

solution is lower than either of the polyacrylamide solutions, the 2 wt% carboxymethyl 

solution exhibits a higher viscosity compared to the polyacrylamide solutions at shear 

rates greater than ~ 2/s. 

100 

10 -

1 -

01 

0 01 -

0 001 

° O r 
• 2% carboxymethyl cellulose water solution 
A 0.1 % polyacrylamide solution 
O 0.3 % polyacrylamide solution 

^ A A A A °O 
• • • • • A * » a , . °°o0 

f - " : : : 8 " ^ 

°On • " » 

JoQc °ooooo 

1—1—I I I 11 l l 1—I—I I I 1111 1—I—I I 1 111[ 1—I—I I I 1111 1— 

10 10" 10' 10' 

Shear rate (1/s) 

10 

T 

104 

Figure 3.6: Steady shear viscosity as a function of shear rate for 2 wt% carboxymethyl cellulose, 
0.1 wt% polyacrylamide, and 0.3 wt% polyacrylamide solutions. 
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3.4.3 Surface Tension 

Surface tension is a property of the surface of a fluid that allows it to resist an external 

force. The surface tension of the two phase systems in the presence of different 

surfactants was measured as a function of surfactant concentration by pendant drop 

method. In the pendant drop method, drop of one liquid is generated at the tip of a needle 

and allowed to reach mechanical equilibrium. At equilibrium, the profile of the drop is 

determined by a balance between gravity and interfacial forces given by the Young-

Laplace equation. The surface tension of the liquid is determined as the parameter that 

gives the best fit of the drop profile to the Young-Laplace equation. The KSV Theta 

optical tensiometer (Attension Theta) was used to obtain the equilibrium surface tension 

data and consisted of a light source, a camera, and a syringe clamp. First, the image was 

calibrated with a 4mm diameter smooth steel ball. Then, the liquid was loaded in the 

syringe (or cuvet) forming a nicely shaped pendant drop. In order to obtain a good video 

image, the magnification was adjusted to let the drop occupy about 60% of the total area 

of the image since small drops did not provide enough pixels for good accuracy. A 

standard solution (ultrapure water from Millipore Direct-Q 3 UV with resistivity of 18.2 

MQ'cm) was measured first to ensure the instrument was working accurately and then 

the analyte was measured. The next step was to take a movie over a relatively long time 

to ensure stability. If surfactants were present in the fluid, a time variation in surface 

tension with interface age would be expected; otherwise a stable measurement with only 

variations from noise would be found. Surface tension was determined by fitting the 

shape of the drop (in a captured video image) to the Young-Laplace equation which 

relates surface tension to drop shape. 
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In Figures 3.7-3.13, we plot the equilibrium surface tension versus bulk surfactant 

concentration for all the surfactants and suspending fluid combinations used in our 

experiments. Figures 3.7-3.13 clearly showed that surface tension is greatly affected by 

the presence of surfactants. When a small amount of surfactant was added to a 

suspending solution, the equilibrium surface tension was not affected. With the increase 

of surfactant concentration, the equilibrium surface tension decreased monotonically until 

it reached a lower plateau value, which is called the critical micelle concentration (CMC) 

point and remained more or less constant thereafter. Below CMC, surfactants only 

appear in monomer form while above CMC, surfactants start to aggregate and form 

micelles. Apparent CMC values of all the surfactants were calculated from the sharp 

change in the slope in the surface tension versus surfactant concentration plots. The 

apparent CMC values of TX-100 in 75 wt% glycerol water solution, Aerosol-OT in 75 wt% 

glycerol water solution, sodium dodecyl sulfate in 75 wt% glycerol water solution, TX-

100 in 2 wt% carboxymethyl cellulose solution, and Tergitol 15-S-9 in 2 wt% carboxymethyl 

cellulose solution, 0.1 wt% polyacrylamide solution, and 0.3 wt% polyacrylamide solution 

occurred at 450ppm, 3000ppm, 6000ppm, 200ppm, 200ppm, 200 ppm, and 300 ppm, 

respectively. 

The various two-phase systems for Newtonian and Non-Newtonian cases used in our 

experiments, and their corresponding physical properties are listed in Table 3.3 and Table 

3.4, respectively. The physical properties of the prepared solutions in Table 3.3 and 

Table 3.4 were determined at the same temperature at which the experiments were 

conducted. In order to help the presentation of the experimental results, each two-phase 
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Figure 3.7: Surface tension of Triton X-100 in 75 wt% glycerol water solution. 
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Figure 3.8: Surface tension of Aerosol-OT in 75 wt% glycerol water solution. 
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Figure 3.11: Surface tension of Tergitol 15-S-9 in 2 wt% carboxymethyl cellulose solution. 
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Figure 3.12: Surface tension of Triton X-100 in 0.1wt% polyacrylamide solution. 
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Figure 3.13: Surface tension of Triton X-100 in 0.3 wt% polyacrylamide solution. 

system is designated a number identifying the geometry of the channel (1 for 

10mm circular channel, 2 for 10x10mm square channel, 3 for 15x15mm square 

channel, 4 for 16><3mm rectangular channel, and 5 for 32x3mm rectangular channel). 

The channel geometry is followed by a symbol specifying the surfactant and bulk 

solution. For Newtonian systems, G was used for clean 75 wt% glycerol water solution, 

TG represented Triton X-100 in 75 wt% glycerol water solution, AG referred to Aerosol-

OT in 75 wt% glycerol water solution, and SG was used for sodium dodecyl sulfate in 75 

wt% glycerol water solution. For Non-Newtonian clean systems, C represented clean 2 

wt% carboxymethyl cellulose solution, P for clean 0.1 wt% polyacrylamide solution, and 

PP for clean 0.3 wt% polyacrylamide solution. As for non-Newtonian systems with 

surfactants, TC was used for Triton X-100 in 2 wt% carboxymethyl cellulose solution, 

TeC referred to Tergitol 15-S-9 in 2 wt% carboxymethyl cellulose solution, TP was used 
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for Triton X-100 in 0.1 wt% polyacrylamide solution, and TPP was used for Triton X-

100 in 0.3 wt% polyacrylamide solution. The last letter represented surfactant 

concentration (a for O.lppm, b for 0.5ppm, c for lppm, d for 5 ppm, e for lOppm, f for 

50ppm, g for lOOppm, h for 250ppm, i for 500ppm, j for 750ppm, k for lOOOppm, and 1 

for 2200ppm). 

3.5 MODEL PROBLEM 

Figure 3.14 shows the schematic of a bubble rising in a vertical channel of hydraulic 

diameter, DH- The density and viscosity of the bulk phase is designated as p and rf, 

respectively. The density and viscosity of the drop phase is represented as pd and rfd, 

respectively. The drop velocity reaches a steady state, Ud along the axis of the channel. 

The equilibrium surface tension between the bulk phase and the drop phase 

is represented by oeq. The size of the drop is characterized by the radius of a spherical 

1 /^ 

drop of the same volume. Therefore, a=(3 VJ^K) , where Vd is the volume of the drop. 

The dynamics of drops and bubbles in square and rectangular channels are different from 

that in cylindrical tubes due to the non-uniform fluid film surrounding the fluid particles. 

For the three channel geometries studied, the drop profile in the cross-sectional view 

may either be axisymmetric as seen in Figure 3.2 (a), (b) and (d) or non-axisymmetric as 

seen in Figure 3.14 (c) and (e). Kolb and Cerro conducted an experimental study ([19]) 

and a numerical study ([20]) at intermediate to high Capillary and Bond numbers. Their 
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Table 3.3: Material properties of Newtonian systems studied 
Drop fluid: Air (orf=1.2kg/m\ ^dr=0.02mPa s), Bulk fluid: G(^"=33mPas) 

System 

1-G 
1-TG-e 
1-TG-g 

2-G 
2-TG-c 
2-TG-e 
2-TG-g 
2-TG-k 

3-G 
3-TG-c 
3-TG-e 
3-TG-g 
3-TG-k 

4-G 
4-TG-c 
4-TG-e 
4-TG-g 
4-TG-h 
4-TG-i 
4-TG-j 
4-TG-k 

5-G 
5-TG-b 
5-TG-e 
2-AG-c 
2-AG-e 
2-AG-g 
2-AG-k 
2-SG-e 
2-SG-g 
2-SG-h 
2-SG-k 
2-SG-l 

Channel size 

DIOmm 
DIOmm 
DIOmm 

10x10mm 
10x10mm 
1 Ox 10mm 
10x10mm 
10x10mm 
15x15mm 
15x15mm 
15x15mm 
15x15mm 
15x15mm 
16x3mm 
16x3mm 
16x3mm 
16x3mm 
16x3mm 
16x3mm 
16x3mm 
16*3mm 
32x3mm 
32x3mm 
32x3mm 
1 Ox 10mm 
1 Ox 10mm 
10x10mm 
10x10mm 
10x10mm 
1 Ox 10mm 
10x10mm 
10x10mm 
10x10mm 

Surfactant 

Oppm TX 
lOppm TX 

lOOppmTX 
Oppm TX 
lppm TX 

lOppmTX 
lOOppm TX 
lOOOppraTX 

Oppm TX 
lppm TX 
lOppmTX 

lOOppmTX 
lOOOppmTX 

Oppm TX 
1 ppm TX 
lOppmTX 

lOOppmTX 
250ppmTX 
SOOppra TX 
750ppmTX 
lOOOppmTX 

Oppm TX 
0.5ppm TX 
lOppmTX 
lppm AOT 

1 Oppm AOT 
lOOppm AOT 

lOOOppm AOT 
1 Oppm SDS 
lOOppm SDS 
500ppm SDS 
lOOOppmSDS 
2200ppm SDS 

p(kg/m3) 

1180 
1195 
1200 
1180 
1185 
1195 
1200 
1203 
1180 
1185 
1195 
1200 
1203 
1180 
1181 
1195 
1200 
1200 
1200 
1200 
1200 
1180 
1181 
1195 
1182 
1185 
1186 
1192 
1191 
1199 
1200 
1204 
1208 

n(mN/m) 

65.2 
56.0 
40.3 
65.2 
58.0 
56.0 
40.3 
31.4 
65.2 
58.0 
56.0 
40.3 
31.4 
65.2 
58.0 
56.0 
40.3 
40.0 
30 

31.0 
31.4 
65.2 
59.0 
56.0 
64.0 
60.0 
50.9 
39.2 
65.0 
63.9 
58.0 
54.0 
48.8 

experimental results showed that the bubble was non-axisymmetric for Ca < 0.1 and 

axisymmetric for Ca > 0.1 [19]. In our case, the Ca numbers were all larger than 0.1 for 

long and large bubbles rising in square channels. The bubbles, whose Ca number was 

less than 0.1 were small bubbles. These small bubbles were far away from the tube wall 

and hence axisymmetric. Therefore, we assumed that all the bubbles in square channels 
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were axisymmetric as shown in Figure 3.14(b). In rectangular channels, small bubbles 

were expected to be axisymmetric while the large bubbles were expected to be non-

axisymmetric with a pancake-like shape. Since there was no camera installed along the 

depth of the channel, it was not possible to determine the thickness of the large bubbles. 

Hence, in analyzing the bubbles rising through rectangular channels, bubble area was 

used instead of bubble volume to characterize the bubble size. The size of the bubble is 

thus characterized by the radius of a circular bubble of the same area. Therefore, for 

1 /9 

rectangular channels, a = (AJK) , where Ad is the area of the bubble. 

The bubble shape is characterized by the bubble length, L, the width, B and the 

deformation parameter, A. L and B are defined as the maximum axial and radial length of 

the steady bubble profile. The deformation parameter is defined as: 

A = ̂  (3.1) 
(L + B) 

Equation 3.1 indicates that A equals to zero for spherical bubbles with L = B. The 

deformation parameter is positive if the bubbles are elongated along the flow direction, 

i.e. A > 0 and if the bubbles are elongated perpendicular to the flow direction, A < 0. We 

define the film thickness, S as the minimum distance between the bubble edge and the 

confining wall as shown in Figure 3.14. 

3.6 DATA ANALYSIS 

The videos of the experiment captured using PixeLINK Capture OEM were analyzed by 

National Instruments Vision Assistant software. The images were first calibrated using 
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Table 3.4: Material properties and range of dimensionless parameters of systems studied 
Bulk fluid: C(?/'=1811mPa s), P(tj°=2510mPa s), and PP(ri°=2\670mPas). 

System 

1-C 
1-TC-e 
1-TC-g 

2-C 
2-TC-c 
2-TC-e 
2-TC-f 
2-TC-g 
2-TC-k 

3-C 
3-TC-e 
3-TC-g 
3-TC-k 

4-C 
4-TC-a 
4-TC-c 
4-TC-e 
4-TC-f 
4-TC-g 
4-TC-k 

5-C 
5-TC-a 
5-TC-c 
5-TC-e 
1-TeC-c 
1-TeC-g 
1-TeC-k 
2-TeC-c 
2-TeC-d 
2-TeC-e 
2-TeC-g 
2-TeC-k 
3-TeC-c 
3-TeC-d 
3-TeC-e 
3-TeC-g 
3-TeC-k 
4-TeC-c 
4-TeC-e 
4-TeC-g 
4-TeC-k 

2-P 
2-TP-e 
2-TP-g 
2-TP-k 
2-PP 

2-TPP-e 
2-TPP-g 
2-TPP-k 

Channel size 

DIOmm 
DIOmm 
DIOmm 

1 Ox 10mm 
1 Ox 10mm 
10x10mm 
lQxlOmm 
1 Ox 10mm 
10x10mm 
15x15mm 
15x15mm 
15x15mm 
15x15mm 
16x3mm 
16x3mm 
16x3mm 
16x3mm 
16x3mm 
16x3mm 
16x3mm 
32x3mm 
32x3mm 
32x3mm 
32x3mm 
DIOmm 
DIOmm 
DIOmm 

10x10mm 
10x10mm 
1 Ox 10mm 
1 Ox 10mm 
10x10mm 
15x15mm 
15x]5mm 
15x15mm 
15x15mm 
15xl5ram 
16x3mm 
16x3mm 
16x3mm 
16x3mm 
1 Ox 10mm 
10x10mm 
10x10mm 
10x1 Omm 
1 Ox 10mm 
10x10mm 
10x10mm 
lOxlOmm 

Suspending fluid 

2% carboxymethyl cellulose solution 
2% carboxymethyl cellulose solution 
2% carboxymethyl cellulose solution 
2% carboxymethyl cellulose solution 
2% carboxymethyl cellulose solution 
2% carboxymethyl cellulose solution 
2% carboxymethyl cellulose solution 
2% carboxymethyl cellulose solution 
2% carboxymethy] cellulose solution 
2% carboxymethyl cellulose solution 
2% carboxymethyl cellulose solution 
2% carboxymethyl cellulose solution 
2% carboxymethyl cellulose solution 
2% carboxymethyl cellulose solution 
2% carboxymethyl cellulose solution 
2% carboxymethyl cellulose solution 
2% carboxymethyl cellulose solution 
2% carboxymethyl cellulose solution 
2% carboxymethyl cellulose solution 
2% carboxymethyl cellulose solution 
2% carboxymethyl cellulose solution 
2% carboxymethyl cellulose solution 
2% carboxymethyl cellulose solution 
2% carboxymethyl cellulose solution 
2% carboxymethyl cellulose solution 
2% carboxymethyl cellulose solution 
2% carboxymethy] cellulose solution 
2% carboxymethyl cellulose solution 
2% carboxymethyl cellulose solution 
2% carboxymethyl cellulose solution 
2% carboxymethyl cellulose solution 
2% carboxymethyl cellulose solution 
2% carboxymethyl cellulose solution 
2% carboxymethyl cellulose solution 
2% carboxymethyl cellulose solution 
2% carboxymethyl cellulose solution 
2% carboxymethy] cellulose solution 
2% carboxymethyl cellulose solution 
2% carboxymethyl cellulose solution 
2% carboxymethyl cellulose solution 
2% carboxymethyl cellulose solution 

0.1 % polyacrylamide solution 
0.1 % polyacrylamide solution 
0.1 % polyacrylamide solution 
0.1 % polyacrylamide solution 
0.3 % polyacrylamide solution 
0.3 % polyacrylamide solution 
0.3 % polyacrylamide solution 
0.3 % polyacrylamide solution 

Surfactant 

Oppm TX 
lOppm TX 
lOOppmTX 
Oppm TX 
lppm TX 
lOppmTX 
50ppm TX 
lOOppm TX 

lOOOppmTX 
Oppm TX 
lOppmTX 

lOOppmTX 
lOOOppmTX 

Oppm TX 
O.lppm TX 

1 ppm TX 
lOppmTX 
50ppm TX 
lOOppmTX 

lOOOppmTX 
Oppm TX 

O.lppm TX 
lppm TX 

lOppm TX 
lppm TER 

lOOppm TER 
lOOOppmTER 

lppm TER 
5ppm TER 
1 Oppm TER 
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Figure 3.14: Schematic of the front view and the cross-sectional view of a bubble or drop rising 
through a channel. This bubble may be (a), (b) and (d) axisymmetric or (c) and (e) 
non-axisymmetric in the cross-sectional view. 

the calibration image captured earlier to perform measurements in real-world units. The 

coordinates of the edge of the bubble were determined using the Edge Detection routine 

applied on the calibrated image as shown in Figure 3.15. A color threshold was applied 

to the three planes of the color image and placed the result into an 8-bit image shown in 

Figure 3.15(b). In Figure 3.15(c) a Sobel filter was applied to obtain the edge of the 

bubble. Finally, the contour of the bubble was marked to record the x and y positions for 

several points along the edge of the bubble (Figure 3.15(d)). 
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Figure 3.15: Schematic of the data analysis using National Instruments Vision Assistant. 

Based on the x and y coordinate information, the maximum axial (L=ymax-ymm), the 

maximum equatorial dimensions (B=xmax-xmm), the film thickness (5=0.5x(DH-B)) of the 

bubble were calculated. In square and circular channels, the bubble or drop volume is 

calculated by the volume of evolution method shown in Figure 3.16. In rectangular 

channels, the bubble area was calculated by the procedure shown in Figure 3.17. The 

bubble velocity was calculated by evaluating the displacement of the top of the bubble 

between a specified number of frames at the known frame rate. For each experiment, 

three independent velocity measurements over different regions within the region of 

interest were made to check for any unsteadiness in the motion of the drop. The 

geometric deformation obtained for the drop shapes at axial positions within those 

regions were also used to detect unsteady drop behavior in the experiments, and to ensure 

that the shape and velocity measurements were indeed steady. 
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V, 

Vd=E[0.5X(x+x | +1)]2X KX(y ry i + 1) 

Figure 3.16. Volume calculation for square and circular channels: Volume of evolution 

Ad=E[0.5X(x+x,+ ])]X(y i-y i + 1) 

Figure 3.17: Area calculation for rectangular channels 
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3.7 DIMENSIONLESS PARAMETER SPACE 

To non-dimensionalize the system variables, the drop velocity, Ud is selected as the 

characteristic velocity scale. The characteristic length scale, Rc, is chosen as half of the 

hydraulic diameter, DH. For a cylindrical tube, RC=R, the radius of the tube and Rc=h/2 

for a square channel of side h. For a rectangular channel, Rc =hxt/(h+t). The 

dimensionless drop size is defined as, 

a 
K = - (3.2) 

The viscosity ratio is given by 

A = 4 (3-3) 
V 

The density ratio is given by 

7 = ^ (3-4) 
P 

The dynamic parameters that affect the dynamics of drops in tubes and channels are 

Reynolds number, Bond number, Capillary number and Weber number. Reynolds 

number (Re) is the ratio of inertial forces to viscous forces and is given by the formula: 

Re = ̂ ^ (3.5) 
V 
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Bond number is the ratio of gravitational forces to interfacial forces and is given by the 

formula: 

BoJ_PzPfML (3.6) 
<7 

Capillary number is the ratio of viscous forces to interfacial forces and is given by the 

formula: 

Ca = - (3.7) 

rr 

Weber number {Wei) measures the relative importance of the fluid inertia compared to its 

surface tension, which is shown in equation 3.5. 

Wer=^^ (3.8) 
rr 

UT is the steady velocity of a long bubble rising in the channel The range of 

dimensionless numbers of the various two-phase systems for Newtonian and Non-

Newtonian cases used in our experiments are listed in Table 3.5 and Table 3.6, 

respectively. 
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Table 3.5: The range of dimensionless parameters of Newtonian systems studied 
Bulk fluid: G(k= 0.00055). 

System 

1-G 
1-TG-e 
1-TG-g 

2-G 
2-TG-c 
2-TG-e 
2-TG-g 
2-TG-k 

3-G 
3-TG-c 
3-TG-e 
3-TG-g 
3-TG-k 

4-G 
4-TG-c 
4-TG-e 
4-TG-g 
4-TG-h 
4-TG-i 
4-TG-j 
4-TG-k 

5-G 
5-TG-b 
5-TG-e 
2-AG-c 
2-AG-e 
2-AG-g 
2-AG-k 
2-SG-e 
2-SG-g 
2-SG-h 
2-SG-k 
2-SG-l 

Bo 
0.04 
0.05 
0.07 
4.43 
5.01 
5.23 
7.30 
9.39 
9.98 
11.26 
11.76 
16.41 
21.12 
1.13 
1.28 
1.30 
1.71 
1.75 
2.50 
2.42 
2.39 
1.28 
1.57 
1.51 
4.53 
4.84 
5.71 
7.45 
4.49 
4.59 
5.07 
5.46 
6.06 

Re 

8.60-16.32 
5.92-13.35 
4.18-11.04 
5.89-19.24 
4.79-17.64 
4.75-15.11 
3.60-15.00 
7.35-15.50 

20.16-44.72 
10.03-43.76 
8.48-40.16 
13.18-37.51 
15.59-37.20 
2.79-6.68 
2.22-6.28 
1.45-6.28 
3.25-6.52 
0.33-5.59 
1.55-4.24 
1.74-5.86 
2.02-6.02 
1.32-8.36 
1.17-8.84 
2.43-7.87 

2.54-17.23 
5.55-15.38 
1.89-13.95 
2.47-16.21 
2.54-18.34 
3.33-18.00 
5.75-15.60 
1.38-15.24 
4.37-15.77 

Ca 

0.02-0.05 
0.02-0.04 
0.02-0.05 
0.02-0.05 
0.02-0.06 
0.02-0.05 
0.02-0.07 

0.004-0.08 
0.04-0.08 
0.02-0.09 
0.02-0.09 
0.04-0.11 
0.06-0.14 
0.02-0.06 
0.01-0.04 
0.01-0.04 
0.03-0.05 
0.02-0.05 
0.02-0.05 
0.02-0.07 
0.02-0.07 
0.01-0.04 
0.01-0.05 
0.01-0.05 
0.01-0.05 
0.02-0.05 
0.01-0.05 
0.01-0.08 
0.01-0.05 
0.01-0.05 
0.02-0.05 
0.005-0.05 
0.02-0.06 

WeT 

0.29 
0.36 
0.42 
0.49 
0.55 
0.57 
0.77 
1.06 
2.38 
2.60 
2.65 
3.72 
4.98 
0.19 
0.20 
0.21 
0.29 
0.27 
0.20 
0.31 
0.33 
0.34 
0.42 
0.37 
0.50 
0.51 
0.53 
0.88 
0.48 
0.50 
0.56 
0.63 
0.74 

7=P</P 
0.00102 
0.00100 
0.00100 
0.00102 
0.00101 
0.00100 
0.00100 
0.00100 
0.00102 
0.00101 
0.00100 
0.00100 
0.00100 
0.00102 
0.00102 
0.00100 
0.00100 
0,00100 
O.0010O 
0.00100 
0.0010O 
0.00102 
0.00102 
0.00100 
0.00102 
0.00101 
0.00101 
0.00101 
0.00101 
0.00100 
0.00100 
0.00100 
0.00099 
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Table 3.6: The range of dimensionless parameters of Non-Newtonian systems studied 
Bulk fluid: C(A = 0.001), P(A = 8xl0"6), and PP (A = 9xl0"7). 

System 

1-C 
1-TC-e 
1-TC-g 

2-C 
2-TC-c 
2-TC-e 
2-TC-f 
2-TC-g 
2-TC-i 

3-C 
3-TC-e 
3-TC-g 
3-TC-i 

4-C 
4-TC-a 
4-TC-c 
4-TC-e 
4-TC-f 
4-TC-g 
4-TC-i 

5-C 
5-TC-a 
5-TC-c 
5-TC-e 
1-TeC-c 
1-TeC-g 
1-TeC-i 
2-TeC-c 
2-TeC-d 
2-TeC-e 
2-TeC-g 
2-TeC-i 
3-TeC-c 
3-TeC-d 
3-TeC-e 
3-TeC-g 
3-TeC-i 
4-TeC-c 
4-TeC-e 
4-TeC-g 
4-TeC-i 

2-P 
2-TP-e 
2-TP-g 
2-TP-i 
2-PP 

2-TPP-e 
2-TPP-g 
2-TPP-i 

Bo 

0.13 
0.18 
0.29 
3.33 
3.50 
4.55 
5.77 
7.27 
7.73 
7.50 
10.23 
16.36 
17.34 
0.83 
0.93 
0.77 
1.13 
1.58 
1.61 
1.71 
1.07 
1.12 
1.12 
1.46 
0.14 
0.31 
0.32 
3.43 
5.03 
5.74 
7.72 
8.10 
7.71 
11.33 
12.92 
17.38 
18.23 
0.87 
1.47 
1.97 
2.07 
3.43 
4.77 
6.08 
7.85 
3.44 
4.36 
6.88 
7.75 

Re 

0.001-0.09 
0.01-0.07 
0.03-0.04 
0.01-0.06 
0.003-0.05 
0.02-0.05 
0.01-0.04 
0.003-0.04 
0.02-0.07 
0.04-0.36 
0.04-0.32 
0.10-0.30 
0.08-0.35 

0.003-0.02 
0.01-0.02 
0.003-0.02 
0.005-0.02 
0.006-0.02 
0.002-0.01 
0.005-0.03 

0.0002-0.004 
0.006-0.03 
0.004-0.03 
0.003-0.04 
0.01-0.06 
0.03-0.04 
0.02-0.09 
0.02-0.05 
0.02-0.06 
0.02-0.05 
0.01-0.04 
0,02-0.06 
0.07-0.32 
0.03-0.33 
0.03-0.35 
0.04-0.31 
0.05-0.38 
0.003-0.01 
0.001-0.01 

0.002-0.009 
0.003-0.02 
0.10-0.23 
0.01-0.22 
0.01-0.17 
0.10-0.22 

0.004-0.01 
0.001-0.01 
0.001-0.006 
0.001-0.01 

Ca 

0.05-0.39 
0.05-0.40 
0.24-0.39 
0.05-0.55 
0.03-0.50 
0.21-0.54 
0.15-0.56 
0.07-0.77 
0.33-1.45 
0.21-2.12 
0.34-2.53 
1.31-3.77 
1.12-4.66 
0.06-0.37 
0.24-0.36 
0.06-0.35 
0.11-0.41 
0.17-0.56 
0.10-0.48 
0.20-1.14 
0.03-0.55 
0.10-0.56 
0.07-0.57 
0.07-0.77 
0.05-0.27 
0.33-0.44 
0.20-0.97 
0.21-0.49 
0.27-0.78 
0.37-0.79 
0.22-0.73 
0.33-1.26 
0.42-1.95 
0.26-2.95 
0.28-3.58 
0.54-4.22 
0.71-5.36 
0.05-0.19 
0.03-0.31 
0.08-0.34 
0,15-0.77 
1.91-4.29 
0.28-5.81 
0.05-0.56 
4.46-9.29 
5.29-10.52 
1.00-13.41 
3.42-16.75 
4.37-28.74 

WeT 

0.01 
0.01 
0.01 
0.013 
0.013 
0.013 
0.02 
0.03 
0.10 
0.74 
0.77 
1.12 
1.56 

0.008 
0.007 
0.006 
0.007 
0.01 

0.005 
0.03 
0.02 
0.02 
0.02 
0.03 

0.008 
0.02 
0.08 
0.01 
0.02 
0.03 
0.02 
0.07 
0.62 
0.95 
1.21 
1.31 
1.95 

0.002 
0.004 
0.002 
0,01 
0.36 
0.41 
0.59 
0.90 
0.06 
0.08 
0.06 
0,23 

7=P/P 

0.00119 
0.00119 
0.00118 
0.00119 
0.00119 
0.00119 
0.00118 
0.00118 
0.00118 
0.00119 
0.00119 
0.00118 
0.00118 
0.00119 
0.00119 
0.00119 
0.00119 
0.00118 
0.00118 
0.00118 
0.00119 
0.00119 
0.00119 
0.00119 
0.00119 
0.00119 
0.00119 
0.00119 
0.00119 
0.00119 
0.00119 
0.00119 
0.00119 
0.00119 
0.00119 
0.00119 
0.00119 
0.00119 
0.00119 
0.00119 
0.00119 
0.00001 
0.00001 
0.00001 
0.00001 
0.00120 
0.00120 
0.00120 
0.00120 
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Chapter 4 

RESULTS AND DISCUSSION 

The experimental results for the motion of bubbles rising in Newtonian and Non-

Newtonian fluids in the absence and presence of surfactants are presented in the 

following sections. For all the experiments conducted, data are reported only for the 

bubbles that were rising at the centerline of the channels. The edges of the images 

presented in this thesis do not correspond to the edge of the channel wall. We first 

discuss the results for bubbles rising in a Newtonian bulk fluid and then the results for 

bubbles rising in a Non-Newtonian bulk fluid. For each experimental fluid combination, 

we conducted a steady state test on at least five bubbles ranging from the smallest to the 

largest to ensure that the deformations and velocities obtained were indeed steady. In 

order to measure the variation of bubble volume, bubble width, bubble length, 

deformation parameter, film thickness, and bubble velocity, we conducted error analysis 

on the results for the surfactant-free Newtonian and non-Newtonian fluid cases. To do 

this, four different frames in the "Region of Interest" were analyzed for each bubble to 

obtain the average, maximum, and minimum values of the desired parameter. The results 

are presented as error bars in Figures 4.1 - 4.5 for the Newtonian bulk fluid case and in 

Figures 4.33 - 4.37 for the non-Newtonian bulk fluid case. 
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4.1 NEWTONIAN BULK FLUID 

4.1.1 Surfactant-free System 

In this sub-section, the clean results for bubbles rising in a 10 mm square channel filled 

with 75 wt% glycerol water solution (2-G) are presented to aid in comparison with the 

results for bubbles rising in surfactant solutions. The dimensional terminal velocity, Ud, 

of the rising bubbles with error bars is shown in Figure 4.1. The shapes of the bubbles 

corresponding to some of the data points, marked with open circular symbols, are also 

presented as insets within Figure 4.1. Bubbles at small bubble volumes are nearly 

spherical in shape. As the bubble volume increases, the bubbles become oblate losing 

fore and aft symmetry. As the bubble size becomes comparable to the tube, the bubble 

becomes more elongated with higher positive curvature at the front of the bubble. 

Beyond a critical bubble volume, any increase in the volume of the bubble results in 

increasing the length of the bubble without affecting the shape of the front and rear ends 

of the bubble. The terminal velocity of small bubbles increases linearly with increasing 

bubble volume because of the increased buoyancy force. As the bubble size becomes 

comparable to the channel size, the drag force due to the confining walls increases 

resulting in a decrease in the terminal velocity. Beyond a critical bubble volume, the 

bubble velocity reaches a constant plateau value, UT, where the bubble velocity is 

independent of the bubble volume. This trend has been observed in earlier experiments 

by Bremerton [7] and Borhan and Pallinti [6] for bubbles in cylindrical tubes and by Li et 

al. [23] for bubbles in square channels. As seen in Figure 4.1, the choice of frame within 

the "Region of Interest" does not affect the velocity or volume of the bubble significantly. 
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Figure 4.1: Terminal velocity of steady bubbles as a function of bubble size for bubbles rising in 
75 wt% glycerol water solution in 10x10 mm square channel (2-G). The open 
symbols correspond to the bubbles presented in the figure. 
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Figure 4.2: Terminal velocity of steady bubbles normalized with the Hadamard-Rybczynski 
velocity as a function of dimensionless bubble size for bubbles rising in 75 wt% glycerol water 
solution in 10^10 mm square channel (2-G). 
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Larger variation of volume is seen for larger bubble sizes. However, since the velocity of 

these bubbles reaches a constant value, the shape and location of the velocity-volume 

curve remains unaffected. The velocity of the bubble normalized with the Hadamard-

Rybczynski velocity, UHR = (p - pj)g R2
tij/ 3rj° for a spherical bubble of the same volume 

rising in an unbounded fluid as a function of the dimensionless bubble size, A: is shown in 

Figure 4.2. Even for the smallest bubble size studied, K^ 0.15 for which the bubble is 

nearly spherical, the bubble velocity is much less than the bubble velocity expected for 

the same bubble in unbounded flow (average UJUHR = 0.73). This may be attribute to 

the additional drag force due to the confining walls. For large bubble volumes, the steady 

bubble volume is only a fraction of its velocity in an unbounded flow (U/UHR ~ 0.02). 

From Figure 4.2 we can see that there is very large error in the non-dimensional velocity 

at smaller bubble sizes because of its dependence on the Hadamard-Rybczynski velocity 

which in turn depends on the equivalent bubble radius, a. As the bubble size increases, 

this error reduces sharply. 

The shape of the bubble is quantified by the non-dimensional maximum axial and 

equatorial length of the bubble, L and B, respectively and the deformation parameter, A 

The bubble width, B versus the bubble length, L is shown in Figure 4.3 and the 

deformation parameter A, as a function of the dimensionless bubble size for bubbles 

rising in 75 wt% glycerol water solution in 10mm square channel (2-G) are shown in 

Figure 4.4. Small bubbles are nearly spherical as seen in Figures 4.3 and 4.4 where L = B 

and A = 0. For small bubble volumes, the bubble length and width increase almost 
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linearly with bubble size. As the bubble volume increases, the width of the bubble 

reaches an upper bound less than the size of the channel and any further increase in the 

bubble volume does not change the width of the bubble. However, the bubble length 

increases linearly at a much faster rate with increasing bubble volume. As seen in Figure 

4.4, the bubbles change shape from spherical (K < 0.3) to oblate (0.3 < tc< 0.7) to prolate 

0.0 0.5 1.0 1.5 2.0 2.5 

Dimensionless Bubble Length L 

Figure 4.3: Length versus width for bubble rising in 75 wt% glycerol water solution in 10x10 
mm square channel (2-G). The dashed line represents L = B line. The open 
symbols correspond to the bubble shapes presented in Figure 4.1. 

(K > 0.7) ones with increasing bubble sizes in agreement with Bhaga and Weber [4]. 

Figure 4.5 displays the dimensionless film thickness, 8, as a function of bubble size for 

results shown in Figures 4.1 - 4.4. As seen in Figure 4.5, the film thickness decreases 

with increase in bubble size and seems to reach a constant value for long bubbles 

consistent with the results of Bretherton [7]. Figures 4.3 - 4.5 show that the error in 
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Figure 4.4: Deformation parameter as a function of dimensionless bubble size for bubble rising 
in 75 wt% glycerol water solution in 10x10 mm square channel (2-G). The open 
symbols correspond to the bubble shapes presented in Figure 4.1. 

0.6 0.E 
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Figure 4.5: Dimensionless film thickness as a function of dimensionless bubble size for bubble 
rising in 75 wt% glycerol water solution in lOxlOmm square channel (2-G). The 
open symbols correspond to the bubble shapes presented in Figure 4.1. 
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measuring the shape parameters and the film thickness is small for the entire range of 

bubble sizes. 

The effect of a non-uniform film surrounding the bubble is presented in Figure 4.6 where 

we compare the dimensionless terminal velocity as a function of dimensionless bubble 

size obtained for steady bubbles rising in a square and a circular channel with a hydraulic 

diameter, DM = 10mm in the absence of any surfactants. The dimensionless terminal 

velocity is defined as U = UJUC where Ut = ApgRc213if is the characteristic buoyancy 

rise velocity. It should be noted that the cross sectional area of a square channel with 

10mm side length is larger than the cross sectional area of a circular tube with 10mm 

diameter. The trend of the velocity-volume curve for the bubbles rising in a square 

channel is similar to that of the velocity-volume curve for a circular channel. However, 

the terminal velocities for all bubbles moving in square channel are larger than those in 

circular channel due to leakage flux at the corners of the channel. The terminal velocity 

of a long bubble rising in a circular channel is ^ 23% lower than the velocity of a long 

bubble rising in a square channel with the same hydraulic radius. A comparison of the 

shape, the deformation parameter A, and the film thickness 8 as a function of the bubble 

size for bubbles rising in 75 wt% glycerol water solution in a circular and square channel 

with DM = 10 mm is shown in Figures 4.7, 4.8, and 4.9 respectively. For small bubble 

sizes, the bubbles are nearly spherical and unaffected by the shape of the confining walls. 

For larger bubbles, however, the bubbles in a circular channel are more prolate than 

bubbles in the square channel as seen in Figures 4.7 and 4.8. Because of the extra cross-
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sectional area near the corners of a square channel, the air bubble expands more radially 

outward in a square channel. As seen in Figure 4.9, the minimum film thickness in a 

circular channel near the channel walls is larger than that in a square channel. These 

results are consistent with the experimental observations of Li et al. [23] for bubbles 

rising in square channels. 
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Figure 4.6: Comparison of terminal velocity as a function of bubble size for steady bubbles rising 
in 75 wt% glycerol water solution in a circular tube (1-G) and square channel (2-G) 
with Dff= 10mm. 

4.1.2 Surfactant-laden System 

The effects of adding surfactant on the motion and deformation of rising bubbles in 

Newtonian solution are presented in this section. In the Newtonian bulk solution of 75 wt% 

glycerol-water solution, various surfactants including nonionic surfactants, Triton X-100 
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(TX-100) and ionic surfactants, sodium dodecyl sulfate (SDS) and Aerosol-OT (AOT) 

were added at different concentrations. These surfactants are all water soluble surfactants. 
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Figure 4.7: The bubble shapes corresponding to different bubble terminal velocity as a function of 
bubble size for 75 wt% glycerol water solution in a circular tube (1-G) and square 
channel (2-G) with DH=\0mm. 
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Figure 4.8: Comparison of deformation parameter for steady bubbles rising in 75 wt% glycerol 
water solution in a circular tube (1-G) and square channel (2-G) with 73^=10mm. 
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Figure 4.9: Comparison of film thickness as a function of bubble size for steady bubbles rising in 
75 wt% glycerol water solution in a circular tube (1-G) and square channel (2-G) 
with Z)#=10mm. 

While most of the experiments were conducted at bulk concentrations below the critical 

micellar concentration (CMC), experiments were also conducted above CMC for Triton 

X-100 and this section is divided into two subsections: results below CMC and results 

above CMC. 

4.1.2.1 Surfactant Concentrations Below CMC 

For the results presented in this section, the concentrations used here are all below critical 

micelle concentration (CMC), which indicates that all surfactant molecules are present in 

the monomer forms. A schematic of the flow around a rising bubble in the presence of 
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surfactants is shown in Figure 4.10. In the absence of surfactants and at low bubble 

speeds, the flow around the bubble diverges at the leading end of the bubble and then 

converges at the trailing end of the bubble. The bubble interface moves from the front 

end of the bubble to the trailing end of the bubble. There are two stagnation points on the 

bubble surface at the front and rear of the bubbles as shown in Figure 4.10. The 

magnitude of the surface velocity determines the overall terminal velocity of the bubble. 

X: Stagnation point 

Figure 4.10: Schematic of a bubble rising in a channel in the presence of surfactants. 

In surfactant-contaminated systems, surfactants adsorb at the front end of the bubble, are 

transported along the interface due to surface convection and diffusion, and desorb at the 

rear end of the bubble. Adsorbed surfactants tend to accumulate near the stagnation point 

at the trailing pole as there is converging flow at this end as shown in Figure 4.10. At 

steady state, a surface tension gradient is established along the interface due to the 
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nonuniform distribution of surfactants. The surface tension is higher at the leading end 

and lower at the trailing end of the bubble. The interface pulls toward the high tension 

region at the front end of bubble, exerting a Marangoni stress along the interface and 

retarding the surface velocity of the bubble. This in turn lowers the terminal velocity of 

the rising bubble [15]. 

For very small quantities of surfactants added to the fluid system, the equilibrium surface 

tension remains essentially unchanged. For example, the equilibrium surface tension 

does not change after adding lppm AOT (from 65 to 64 mN/m) and 1 ppm TX-100 (from 

65 to 58 mN/m) in 75 wt% glycerol water solution (see Figures 3.7 and 3.8). However, 

as bubbles move through these low concentration surfactant solutions, their terminal 

velocity can change due to non-equilibrium effects. Figure 4.11 shows the dimensionless 

terminal velocity as a function of dimensionless bubble size for bubble rising in 75 wt% 

glycerol water solution with 1 and 10 ppm of AOT in 10mm x 10mm square channel. 

For comparison, the corresponding velocity-volume curve in the absence of surfactants is 

also shown on the same graph. As seen in Figure 4.11, the general shape of the velocity-

volume curve in the presence of surfactants is similar to the velocity-volume curve for 

surfactant-free system. However, the terminal velocities of small bubbles in low 

concentration surfactant solutions is lower than similar sized bubbles in surfactant-free 

solutions due to Marangoni effect as described earlier. The terminal velocity for long 

bubbles does not seem to be affected by the presence of small amounts of surfactants. A 

similar reduction in mobility is seen for small additions of the nonoinc surfactant, TX-

100 in the same channel geometry (see Figure 4.12) as well as in a rectangular geometry 
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(see Figure 4.13). Further increase of the surfactant concentration but below CMC value 

enhances the Marangoni effect as seen in Figure 4.11. As the bulk concentration of AOT 

in the 75 wt% glycerol-water solution is increased to 10 ppm, the terminal velocity of 

small as well as large bubbles reduces. 

Increasing the AOT concentration further to 100 ppm in the 10 mm square channel filled 

with 75 wt% glycerol water solution results in a velocity volume curve as shown in 

Figure 4.14. The velocity-volume curves for 0 ppm and 10 ppm AOT concentrations 

are shown for comparison. The dimensionless terminal velocity for small bubbles in 100 

ppm AOT solution is lower than the corresponding bubbles in 0 ppm and 10 ppm AOT 

solutions as expected due to the increased Marangoni effect. The terminal velocity 

increases with bubble volume initially, reaches a peak at K ~ 0.5 and then starts 

decreasing again till K ~ 0.57. Beyond this bubble size, the bubble velocity increases 

again, reaches a second peak at K ~ 0.75 and then reduces again to reach the terminal 

velocity for long bubbles. The long bubble velocity in the 100 ppm AOT solution is less 

than the long bubble velocities in 0 ppm and 10 ppm AOT solutions. To the best of our 

knowledge, the existence of two peaks in the velocity-volume curve has not been 

reported to date. The deformation parameter, A as a function of drop size, K for the 

bubbles rising in 0 ppm, 10 ppm, and 100 ppm AOT solutions in 10 mm square channel 

is shown in Figure 4.15. For small bubble sizes (K < 0.9), the bubbles become more 

prolate as the surfactant concentration increases. This can also be seen in the comparison 

of bubble shapes in the three surfactant solutions for Kavg ~ 0.26, 0.63, and 0.76 in 
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mre 4.11: The terminal velocity as a function of bubble size for bubble rising in 75 wt% 
glycerol water solution at low concentrations of AOT in 10mm x 10 mm square 
channel. 
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*ure 4.12: The terminal velocity as a function of bubble size for bubble rising in 75 wt% 
glycerol water solution with tiny amount of TX-100 in 10mm x 10 mm square 
channel. 
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Figure 4.13: The terminal velocity as a function of bubble size for bubble rising in 75 wt% 
glycerol water solution with tiny amount of TX-100 in 16mm x 3 mm rectangular 
channel. 
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Figure 4.14: The terminal velocity as a function of bubble size for bubbles rising in 75 wt% 
glycerol water solution with various concentration (below CMC) of AOT in 10mm 
x 10 mm square channel. 
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Figure 4.16. Please note that the volumes of the bubbles for the three surfactant 

concentration solutions are not identical and variation of upto ± 0.02 in K exists. The 

shape of the front of the bubble is nearly identical for all the bubbles in different AOT 

concentration solutions. The rear of the bubbles is more flat for bubbles in the 0 ppm 

solution as compared to the 100 ppm solutions. It is interesting that the more prolate 

bubbles at the higher surfactant concentrations rise at lower speeds as compared to less 

prolate bubbles at the lower concentrations. This is due to the presence of surfactants that 

accumulate at the rear of the bubble as shown in Figure 4.10. Increased surfactant 

concentration at the rear of the bubble reduces the surface tension locally. A normal 

stress jump across the interface requires that as the surface tension decreases, the 

curvature must increase locally to maintain the same pressure drop across the interface. 

Thus, the bubbles moving through higher concentration surfactant solutions have a more 

curved interface at the rear compared to bubbles travelling in solutions in the absence of 

surfactants resulting in more prolate shapes. However, the accumulation of surfactants at 

the rear of the interface also renders the interface immobile in this region reducing the 

circulation within the bubble and the terminal velocity of the bubble. The deformation 

parameter for larger bubbles (K > 0.9) at different concentrations are similar. Double 

peaks in the velocity-volume curve at relatively high concentrations of surfactants (below 

CMC) were observed in our experiments for drops rising in solutions containing Triton-

XI00 in 10 mm square channels (see Figure 4.17), 15 mm square channels (see Figure 

4.18), and 16 mm x 3 mm rectangular channels (see Figure 4.19). For bubbles rising in 

TX-100 solutions in a 16 mm x 3 mm rectangular channel (Figure 4.19), the terminal 
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Figure 4.15: Comparison of deformation parameter for steady bubbles rising in 75 wt% glycerol 
water solution with various concentration (below CMC) of AOT in a square channel 
with Dff= 10mm. 
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Figure 4.16: Shape comparison for steady bubbles rising in 75 wt% glycerol water solution with 
various concentration (below CMC) of AOT in a square channel with Z)/y=10mm. 
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Figure 4.17: The terminal velocity as a function of bubble size for bubbles rising in 75 wt% 
glycerol water solution with various concentration (below CMC) of TX-100 in 
10mm x 10 mm square channel. 

0 025 

P 0 020 

0015-

S ooio-
E 
Q 

0 005-

0 000 

0 0 

A * % . A A AA A 

A Oppm TX-100 
• 10 ppm TX-100 
• 100 ppm TX-100 

02 
I 

04 06 
I 

08 

Dimensionless Size K 

Figure 4.18: The terminal velocity as a function of bubble size for bubbles rising in 75 wt% 
glycerol water solution with various concentration (below CMC) of TX-100 in a 15 
mm square channel. 
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Figure 4.19: The terminal velocity as a function of bubble size for bubbles rising in 75 wt% 
glycerol water solution with various concentration (below CMC) of TX-100 in 
16mm x 3 mm rectangular channel. 

velocity of long bubbles in the 100 ppm TX-100 solution is the same as the terminal 

velocity of long bubbles in the 0 ppm solution. 

The effect of a non-uniform film surrounding the bubble on the velocity and shape of the 

rising bubbles with surfactants is presented in Figures 4.19 - 4.22 for a 16 mm x 3 mm 

rectangular channel and in Figures 4.23 and 4.24 for a square and circular channel with 

DH= 10mm. In a rectangular channel, the bubble takes on a pancake like shape as shown 

in the schematic in Figure 3.14(e). As the bubble rises through the channel, fluid flows 

along the sides of the bubble as well as in the thin fluid film separating the bubble from 

the walls as shown in Figure 4.19. The bubble shape is not axisymmetric and the 
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distribution of surfactant at the rear of the bubble depends on the magnitude of the flow 

along the sides and the thin film. As a result, the shapes of bubbles as bubble size 

increases shows trends not seen in bubbles rising through square and circular channels 

where the bubble shapes are axisymmetric. Figures 4.21 and 4.22 show the deformation 

parameter as a function of bubble size and images of shapes realized in a 16 mm x 3 mm 

rectangular channel for 0 ppm, 1 ppm, and 100 ppm TX-100 solutions. In the absence of 

surfactants, the bubbles are nearly spherical and as the bubble size increases (K > 1.5) the 

bubbles become prolate. As small amount of surfactant (1 ppm TX-100) is added, the 

bubbles become prolate up to K ~ 1.0 beyond which the bubbles become more spherical 

in shape till K ~ 1.5. For larger bubbles (k > 1.5), the bubbles again become prolate in 

shape. However, even in the presence of very small amount of surfactant, bubble shapes 

are more prolate in the surfactant solution than in the clean solution. The effect of 

increased curvature in the presence of surfactants is enhanced at low surfactant 

concentrations due to the stronger flow in the thin film region across the depth of the 

channel. As the surfactant concentration is increased to 100 ppm TX-100, the bubble 

shapes become oblate for bubbles with K < 1.1 where the bubble shape suddenly becomes 

very prolate and then continues to remain prolate for long bubbles similar to the 

surfactant-free case. It is not clear why the bubble shape changes suddenly and more 

detailed data need to be taken in this region to draw any conclusions. 

Figure 4.23 compares the velocity-volume curve obtained for steady bubbles rising in a 

square and a circular channel with hydraulic diameter, /)//= 10mm filled with lOppm 
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Triton X-100 in 95 wt% glycerol-water solution (1-TG-e and 2-TG-e). The cross 

sectional area of a square channel with 1 Omm side length is larger than the cross sectional 

area of a circular tube with 1 Omm diameter. The shape of the velocity-volume curve for 

bubbles rising in a square and circular channel is similar showing the presence of two 

peaks. However, as seen in the absence of surfactants, the terminal velocity of long 

bubbles rising in a circular channel is ^ 21% lower than the velocity of long bubbles 

rising in a square channel with the same hydraulic radius. This is due to the leakage flux 

at the corners of the square channels, which allows the bubbles to expand more radially 

outward. As a result, the bubbles are more elongated in circular channels as compared to 

square channels (see Figure 4.24). 
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Figure 4.20: Schematic of the flow pattern around a bubble rising in a rectangular channel with 
width w and depth t. 
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Figure 4.21: Comparison of deformation parameter for steady bubbles rising in 75 wt% glycerol 
water solution with various concentration (below CMC) of TX-100 in a 16mm x 
3mm rectangular channel. 
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Figure 4.22: Shape comparison for steady bubbles rising in 75 wt% glycerol water solution with 
various concentration (below CMC) of TX-100 in a 16mm x 3mm rectangular 
channel. 
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>ure 4.23: The terminal velocity as a function of bubble size for bubble rising in 75 wt% 
glycerol water solution with 10 ppm Triton X-100 in a circular tube (1-TG-e) and 
square channel (2-TG-e) with /J//=10mm. 
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gure 4.24: The bubble shapes corresponding to different bubble terminal velocity as a function 
of bubble size for 75 wt% glycerol water with 10 ppm of TX-100 in a circular tube 
(1-TG-e) and square channel (2-TG-e) with TJ/^lOmm. 
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4.1.2.2 Surfactant Concentrations Above CMC 

Figure 4.25: Schematic of surfactant concentration above CMC 

When surfactants are present at concentrations above the critical micellar concentration 

(CMC), surfactant molecules self assemble to form aggregates (micelles) in solution. As 

the bulk concentration of the surfactant is increased, the concentration of the aggregates 

increases while the monomer concentration in equilibrium with the micelles remains the 

same and any added surfactant is mostly added to the micelles [28]. The equilibrium is a 

dynamic one in that as the monomer concentration changes, aggregates either break down 

or reassemble to return to the critical micellar concentration. Even above the CMC 

concentration, surfactants adsorb at the interface in monomer form. The surfactants 

adsorbed on the moving bubble interface accumulate at the rear end of the bubble due to 

convection. This increases the surfactant concentration at the rear of the bubble. 

Surfactants get desorbed from the interface to the sublayer from where the surfactant 

/ 
Flow 

r 

F « r 
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diffuses away to the bulk. In the bulk, the monomer - micelle equilibrium is disturbed 

and aggregates form to restore the monomer concentration. Stebe et al. [9, 40] reported 

that the movement of the interface can remain unretarded if, relative to the convective 

rate along the interface, desorption rate of the surface-active molecules is fast and the 

bulk concentration is high enough so that diffusion away from the interface is fast. In 

this manner, a uniform surface concentration of surfactant is maintained and surface 

tension gradients are removed, restoring interfacial mobility, which is shown in Figure 

4.25. 

When surfactant concentration is raised to values above the CMC, remobihzation of the 

interface is observed. This is seen clearly in Figure 4.26 where the terminal velocity is 

plotted as a function of bubble size for bubble rising in 75 wt% glycerol-water solution 

with concentration of TX-100 above CMC (lOOOppm) in a 10 mm x 10 mm square 

channel. For comparison, the velocity-volume curve in the absence of surfactant (0 ppm) 

and 100 ppm TX-100 is also plotted on the same graph. As seen in Figure 4.26, the 

terminal velocity of long bubbles with 1000 ppm TX-100 is the same as that for long 

bubbles rising in a clean 75 wt% glycerol water solution. For small bubbles, however, 

complete remobihzation is not seen. The velocity-volume curve for bubbles rising in 

1000 ppm TX-100 solution shows two peaks but are more mobile than the bubbles rising 

in the 100 ppm TX-100 solution. The bubbles rising in the 1000 ppm TX-100 solution 

are more oblate than the bubbles rising in a 0 ppm solution at small bubble sizes as seen 

in Figure 4.27. This is opposite to all our observations in surfactant solutions below 

CMC where bubbles became more prolate with the addition of surfactants. A look at the 

80 



shape of the bubbles rising in the 1000 ppm solution (see Figure 4.28) shows a distinct 

bell-like shape at the rear of the bubble, specifically for bubbles with K< 0.8 rising in the 

1000 ppm TX-100 solution. The shape and deformation of long bubbles remains largely 

unaffected by the presence of surfactants above CMC. A similar remobihzation of long 

bubbles is seen in Figure 4.29 for bubbles rising in a 15 mm x 15 mm channel with TX-

100 solutions above CMC. 

For bubbles rising in a TX-100 solutions in a 16 mm x 3 mm rectangular channel 

remobihzation of long bubbles is seen for bubbles rising in a 1000 ppm TX-100 solution 

(above CMC). This is seen clearly in Figure 4.30 where the dimensionless velocity is 

plotted as a function of bubble size for bubbles rising in 0 ppm and 1000 ppm TX-100 

solutions. However, for bubbles rising in a 500 ppm TX-100 solution (above CMC), the 

bubble terminal velocity is retarded for the entire range of bubble sizes studied. It is not 

clear whether this is a feature seen only in a rectangular channel geometry as we do not 

have data for bubbles rising in 500 ppm TX-100 solution in a 10 mm x 10 mm square 

channel. A comparison of the deformation parameter as a function of bubble size for 

bubbles rising in 0 ppm, 500 ppm, and 1000 ppm TX-100 solution is seen in Figure 4.31. 

For bubbles rising in a 500 ppm TX-100 solution, the bubbles are oblate at small bubble 

sizes and then become prolate at large bubble sizes. The bubbles in 500 ppm TX-100 

solution are more prolate than bubbles in the absence of surfactants. This is also seen 

clearly in Figure 4.32 where bubbles in 500 ppm TX-100 solution have a more curved 

interface at the rear of the bubble. As the surfactant concentration increases to 1000 ppm, 
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Figure 4.26: The terminal velocity as a function of bubble size for bubbles rising in 75 wt% 
glycerol water solution with various concentration (below CMC) of TX-100 in 1 Omm 
x 10 mm square channel. 
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Figure 4.27: Comparison of deformation parameter for steady bubbles rising in 75 wt% glycerol 
water solution with various concentration (below CMC) of TX-100 in a square channel with 
DH=\ Omm. 
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Figure 4.28: The bubble shapes corresponding to different bubble terminal velocity as a function 
of bubble size for 75 wt% glycerol water with 10 ppm of TX-100 in a square 
channel with Ay=l Omm. 
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Figure 4.29: The terminal velocity as a function of bubble size for bubble rising in 75 wt% 
glycerol water solution with various concentration of TX-100 in 15mm x 15 mm 
square channel. 
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the bubbles again become flat at the rear end. Very small as well as very large bubbles in 

a 1000 ppm surfactant solution are more oblate than bubbles rising in a clean solution. 

Based on our discussion in Section 4.1.2.1 we expect the bubble behavior in a rectangular 

channel to be different from dynamics in a square and circular channel due to the non-

axisymmetric shape of the bubble. However, more experiments are necessary to confirm 

the changes in trends observed in Figures 4.30 - 4.32. 
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Figure 4.30: The terminal velocity as a function of bubble size for bubble rising in 75 wt% 
glycerol water solution with various concentration of TX-100 in a 16mm x 3 mm 
rectaugular channel. 
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jure 4.31: Comparison of deformation parameter for steady bubbles rising in 75 wt% glycerol 
water solution with various concentration (below CMC) of TX-100 in a 16x3 
rectangular channel. 
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jure 4.32: Shape comparison for steady bubbles rising in 75 wt% glycerol water solution with 
various concentration (around CMC) of TX-100 in a 16x3 rectangular channel. 
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4.2 NON-NEWTONIAN BULK FLUID 

4.2.1 Surfactant-free System 

In this section, the clean results for bubble rising in a 1 Omm square channel filled with 2 

wt% carboxymethyl cellulose solution (2-C) are shown to aid in comparison with the 

results for bubbles rising in surfactant solutions. The dimensional terminal velocity, Ud, 

of the rising bubbles with error bars is shown in Figure 4.33. The shapes of the bubbles 

corresponding to some of the data points, marked with open circular symbols, are also 

presented as insets within Figure 4.33. Bubbles at small bubble volumes are nearly 

spherical in shape. As the bubble volume increases, the bubbles become prolate in the 

flow direction. As the bubble size becomes comparable to the tube, the bubble becomes 

more elongated with higher positive curvature at the front of the bubble. For moderate 

bubble sizes, a distinct cusp is seen instead of flat rear end in viscoelastic fluids. A cusp 

is formed due to a balance between the extra normal force exerted by the suspending 

fluid and surface tension. If the extra normal force is larger than the surface tension, a 

cusp will appear. We did not see a velocity jump for any of the volumes studied. 

Beyond a critical bubble volume, any increase in the volume of the bubble results in 

increasing the length of the bubble without affecting the shape of the front and rear ends 

of the bubble. The terminal velocity of small bubbles increases linearly with increasing 

bubble volume because of the increased buoyancy force. As the bubble size becomes 

comparable to the channel size, the drag force due to the confining walls increases 

resulting in a decrease in the terminal velocity. Beyond a critical bubble volume, the 

bubble velocity reaches a constant plateau value, UT, where the bubble velocity is 

independent of the bubble volume. As seen in Figure 4.33, the choice of frame does not 
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affect the velocity or volume of the bubble significantly. Larger variation of volume is 

seen for larger bubble sizes. However, since the velocity of these bubbles reaches a 

constant value, the shape and location of the velocity-volume curve remains unaffected. 
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Figure 4.33: Shapes and dimensional terminal velocity of steady bubbles as a function of 
dimensionless bubble size for bubble rising in 2 wt% carboxymethyl cellulose 
solution in 10x1 Omm square channel (2-C). The open symbols correspond to the 
bubbles presented in the figure. 

The velocity of the bubble normalized with the Hadamard-Rybczynski velocity, 

UHR = (P~ pd)gR2
e I3rf for a spherical bubble of the same volume rising in an 

unbounded fluid as a function of the dimensionless bubbles size, K is shown in Figure 

4.34. For small bubble sizes studied (K < 0.7) for which the bubble is nearly spherical, 

the bubble velocity is much faster than the bubble velocity expected for the same bubble 

in unbounded flow. In the case of Newtonian fluids, the wall effects were seen for very 
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small bubbles. In calculating the Hadamard-Rybczinski velocity, the zero shear viscosity 

of the fluid is used. Since carboxymethyl cellulose is a shear-thinning fluid, the actual 

viscosity of the fluid in the fluid film separating the bubble and the wall is much lower 

than the zero shear viscosity. Hence, the increased bubble velocity for the bubbles 

translating in elastic fluids may be attributed to the shear-thinning behavior of the fluids. 

For large bubble volumes, the steady bubble velocity is only a fraction of its velocity in 

an unbounded flow (U/UHR * 0.25). From Figure 4.34 we can see that there is very 

large error in the non-dimensional velocity at smaller bubble sizes because of its 

dependence on the Hadamard-Rybczynski velocity which in turn depends on the 

equivalent bubble radius, a. As the bubble size increases, this error reduces sharply. 
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Figure 4.34: Dimensionless terminal velocity of steady bubbles as a function of dimensionless 
bubble size for bubble rising in 2 wt% carboxymethyl cellulose solution in 10x10 
mm square channel (2-C). The open symbols correspond to the bubble shapes 
presented in Figure 4.34. 



The shape of the bubble is quantified by the non-dimensional maximum axial and 

equatorial length of the bubble, L and B, respectively and the deformation parameter, A. 

The bubble width, B versus the bubble length, L is shown in Figure 4.35 and the 

deformation parameter zl, as a function of the dimensionless bubble size for bubbles 

rising in 2 wt% carboxymethyl cellulose solution in 1 Omm square channel (2-C) is shown 

in Figure 4.36. Very small bubbles are nearly spherical as seen in Figures 4.35 and 4.36 

where L = B and A « 0. Even for relatively small bubble sizes compared to the channel 

size, prolate bubble shapes are seen with B < L and A > 0. As the bubble volume 

increases, the width of the bubble reaches an upper bound less than the size of the 

channel and any further increase in the bubble volume does not change the width of the 

bubble. However, the bubble length increases linearly at a much faster rate with 

increasing bubble volume. As seen in Figure 4.36, the bubbles change shape from 

spherical (K < 0.3) to prolate (K> 0.3) with increasing bubble sizes. Figure 4.37 displays 

the dimensionless film thickness, 8, as a function of bubble size for results shown in 

Figures 4.33 - 4.36. As seen from the figure, the film thickness thins with the increase of 

bubble size and seems to reach a constant value for long bubbles similar to the Taylor 

bubbles in Newtonian bulk fluids. Figures 4.35 - 4.37 show that the error in measuring 

the shape parameters and the film thickness is small for the entire range of bubble sizes. 
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Figure 4.35: The dimensionless bubble width as a function of dimensionless bubble length for 
bubble rising in 2 wt% carboxymethyl cellulose solution in 10x1 Omm square 
channel (2-C). The dashed line represents L = B curve. The open symbols 
correspond to the bubble shapes presented in Figure 4.34. 
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Figure 4.36: Deformation parameter as a function of dimensionless bubble size for bubble 
rising in 2 wt% carboxymethyl cellulose solution in 10x10 mm square channel (2-
C). The open symbols correspond to the bubble shapes presented in Figure 4.34. 

90 



c 

c 

c 
6 
3 

Dimensionless Size K 

Figure 4.37: The dimensionless film thickness as a function of dimensionless bubble size for 
bubble rising in 2 wt% carboxymethyl cellulose solution in 10x1 Omm square 
channel (2-C). The open symbols correspond to the bubble shapes presented in 
Figure 4.34. 

The dimensional terminal velocity, Ud, as a function of bubble volume, Vd for the rising 

bubbles in 0.1 wt% polyacrylamide solution and 0.3 wt% polyacrylamide solution in a 

10mm square channel is shown in Figure 4.38. As seen in Figure 3.6, both the 0.1 wt% 

polyacrylamide and 0.3 wt% polyacrylamide solutions show a shear-thinning behavior 

with zero shear viscosities of 2570 cP and 21670 cP respectively. For both the bulk 

solutions, the velocity-volume curve for steady bubble motion are similar in shape to that 

seen for a Newtonian fluid or carboxymethyl cellulose except for the motion of long 

bubbles. Unlike glycerol-water and carboxymethyl cellulose solutions, instead of 

reaching a constant plateau value beyond a critical bubble volume, the bubble velocity 

starts to increase slightly with increasing bubble size. Since the zero shear viscosity of 
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the 0.3 wt% polyacrylamide solution is nearly eight times as large as that of 0.1 wt% 

polyacrylamide solution, we expect the terminal velocity of bubbles in the 0.3 wt% 

polyacrylamide solution to be much smaller than the terminal velocity of bubbles in the 

0.1 wt% polyacrylamide solution due to the increased drag force. 

The shape comparison for bubbles rising in 0.1 wt% polyacrylamide and 0.3 wt% 

polyacrylamide solutions in 10mm x 10mm square channel is shown in Figure 4.39. The 

corresponding deformation parameters and dimensionless film thickness as a function of 

bubble size are seen in Figures 4.40 and 4.41 respectively. Since both solutions exhibit 

elasticity, cusps are seen at the rear end of all moderately sized bubbles in the two 

solutions. The rising bubbles have to cut harder through the more viscous 0.3 wt% 

polyacrylamide solution compared to the less viscous 0.1 wt% polyacrylamide solution. 

Thus, the bubbles in the 0.3 wt% polyacrylamide solution have a more prolate shape (see 

Figure 4.40) with a larger film thickness (see Figure 4.41) as compared to bubbles in the 

0.1 wt% polyacrylamide solution. The cusps became less pronounced in 0.3 wt% 

polyacrylamide solution compared with that in 0.1 wt% polyacrylamide solution. 
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Figure 4.38: Comparison of dimensional terminal velocity of steady bubbles as a function of 
dimensionless bubble size for bubble rising in 0.1 wt% polyacrylamide solution 
and 0.3 wt% polyacrylamide solution in 10x10mm square channel, respectively. 
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Figure 4.39: Shape comparison for bubble rising in 0.1 wt% polyacrylamide solution and 0.3 
wt% polyacrylamide solution in 10x10mm square channel, respectively. 
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Figure 4.40: Deformation parameter as a function of dimensionless bubble size for 
bubbles rising in 0.1 wt% polyacrylamide solution (2-P) and 0.3 wt% 
polyacrylamide solution (2-PP) in 10x10mm square channel. 
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Figure 4.41: Dimensionless film thickness as a function of dimensionless bubble size for 
bubbles rising in 0.1 wt% polyacrylamide solution (2-P) and 0.3 wt% 
polyacrylamide solution (2-PP) in 10x1 Omm square channel. 
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4.2.2 Surfactant-laden System 

The effects of adding surfactant on the motion and deformation of rising bubbles in non-

Newtonian solution are presented in this section. In the non-Newtonian bulk solution of 

2 wf% carboxymethyl cellulose solution, 0.1 wt% polyacrylamide solution, and 0.3 wt% 

polyacrylamide solution, Triton X-100 and Tergitol 15-S-9 were added at different 

concentrations. These surfactants are all water soluble surfactants. While most of the 

experiments were conducted at bulk concentrations below the critical micellar 

concentration, experiments were also conducted above CMC for Triton X-100 and 

Tergitol and this section is divided into two subsections: results below CMC and results 

above CMC. 

4.2.2.1 Surfactant Concentrations Below CMC 

For the results presented in this section, the concentrations used here are all below critical 

micelle concentration (CMC), which indicates that all surfactant molecules are present in 

the monomer forms. As we mentioned in the Newtonian section, the equilibrium surface 

tension remains essentially unchanged after adding very small quantities of surfactants to 

the fluid system. As seen from Figure 3.10, the equilibrium surface tension does not 

change after adding lppm TX-100 (from 73 to 70.5 mN/m) in 2 wt% carboxymethyl 

cellulose solution. However, the velocity-volume curves are affected due to the non-

equilibrium effects which is induced by Marangoni stresses. Figure 4.42 shows the 

dimensionless terminal velocity as a function of dimensionless bubble size for bubbles 

rising in 2 wt% carboxymethyl cellulose solution with 1 ppm TX-100 in 10mm x 10mm 
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square channel. For comparison, the corresponding velocity-volume curve in the absence 

of surfactants is also shown on the same graph. As seen in Figure 4.42, the general shape 

of the velocity-volume curve in the presence of small quntitities of surfactants (lppm 

TX-100) is similar to the velocity-volume curve for surfactant-free system. However, the 

terminal velocities of small bubbles in low concentration surfactant solutions is lower 

than similar sized bubbles in surfactant-free solutions due to Marangoni effect as 

described earlier. The terminal velocities for long bubbles were also slightly affected by 

the presence of small amounts of surfactants. As the bulk concentration of TX-100 in the 

2 wt% carboxymethy cellulose solution is increased to 100 ppm (see Figure 4.42), the 

terminal velocity of small as well as large bubbles reduces due to the increased 

Marangoni effect. The shape of the velocity-volume curve in the presence of 1 OOppm of 

surfactants is different from the velocity-volume curve for surfactant-free system. The 

terminal velocity increases with bubble volume initially, reaches a peak at K ~ 0.58 and 

then starts decreasing again till K ~ 0.63. Beyond this bubble size, the bubble velocity 

increases again, reaches a constant value at K ~ 0.90 for long bubbles. The presence of 

double peaks is similar to the results at higher surfactant concentrations in Newtonian 

systems (Figures 4.14, 4.17 - 4.19) but the retardation of long bubbles is much larger in 

the non-Newtonian solutions. Figure 4.43 shows the shape comparison and Figure 4.44 

shows the dimensionless film thickness as a function of bubble size for the experiments 

shown in Figure 4.42. As the surfactant concentration increases from 1 ppm to 100 ppm, 

the bubbles become more prolate and the film thickness surrounding the bubble increases. 

The cusp is formed as the normal stresses at the rear of the bubble tends to form a cusp 

while surface tension forces tend to counter the cusp formation. When surfactant 
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concentration at the rear of the bubble increases, it weakens the surface tension force 

resisting the cusp formation. Thus, the bubbles stretch out more forming more 

pronounced cusps. As a consequence the film thickness surrounding the bubble increases. 

Since the mobility of the bubble is reduced due to Marangoni stresses and the film 

thickness increases, the shear rtate in the film surrounding the bubble reduces. As a 

result the apparent viscosity of the shear-thinning fluid also increases, which in turn 

further lowers that velocity of the rising bubble as it experiences increased drag. A 

similar reduction in mobility of long bubbles is seen for additions of the nonoinc 

surfactant, Tergitol in 16 mm x 3 mm rectangular channel with the same bulk fluid (see 

Figure 4.45). 
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Figure 4.42: The terminal velocity as a function of bubble size for bubbles rising in 2 wt% 
carboxymethy cellulose solution with various concentration (below CMC) of TX-
100 in a 10mm xlfj mm square channel. 
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Figure 4.43: Shape comparison for bubbles rising in 2 wt% carboxymethy cellulose solution 
with various concentration (below CMC) of TX-100 in a 10mm xlO mm square 
channel. 
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Figure 4.44: Dimensionless film thickness as a function of bubble size for bubbles rising 
in 2 wt% carboxymethy cellulose solution with various concentration (below CMC) of TX-100 in 
a 10mm xlO mm square channel. 
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Figure 4.45: The terminal velocity as a function of bubble size for bubble rising in 2 wt% 
carboxymethy cellulose solution with various concentration of Tergitol in a 16mm 
x 3 mm rectangular channel. 

Figure 4.46 presents the dimensionless terminal velocity as a function of dimensionless 

bubble size for bubble rising in 0.1 wt% polyacrylamide solution with 1 and 100 ppm of 

TX-100 in a 10mm x 10mm square channel. For comparison, the corresponding 

velocity-volume curve in the absence of surfactants is also shown on the same graph. As 

seen in Figure 4.46, the general shape of the velocity-volume curve in the presence of 

lppm and lOOppm of surfactants is similar to the velocity-volume curve for surfactant-

free system. However, the terminal velocities of small bubbles in 1 ppm surfactant 

solutions is faster than similar sized bubbles in surfactant-free solutions until K-0 .62 . 

After this critical value, the terminal velocities of the bubbles in 1 ppm surfactant 

solutions is lower than similar sized bubbles in surfactant-free solutions due to 

Marangoni effect. As the bulk concentration of TX-100 in the 0.1 wt% polyacrylamide 
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solution is increased to 100 ppm, when K < 0.55, the terminal velocity of small bubbles is 

larger than similar sized bubbles in surfactant-free and 1 ppm surfactant solutions. When 

K > 0.55, the terminal velocities of bubbles in 100 ppm surfactant solutions is lower than 

similar sized bubbles in surfactant-free and 1 ppm surfactant solutions due to enhanced 

Marangoni effect. It appears that the entire curve moves to the left (smaller bubble sizes) 

with increase in surfactant concentration. 
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Figure 4.46: The terminal velocity as a function of bubble size for bubbles rising in 0.1 wt% 
polyacrylamide solution with various concentration (below CMC) of TX-100 in a 
10mm xlO mm square channel. 

The effect of a non-uniform film surrounding the bubble on the velocity of the rising 

bubbles in 2 wt% carboxymethyl cellulose solution is presented in Figure 4.47, which 

compares the terminal velocity-volume curve obtained for steady bubbles rising in a 
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10mm square channel and a circular channel with a hydraulic diameter, Z)/7=10mm with 

the presence of lOppm TX-100 (1-TC-e and 2-TC-e). The cross sectional area of the 

square channel is larger than the cross sectional area of the circular tube. The trend of the 

velocity-volume curve for the bubbles rising in the square channel is similar to that of the 

velocity-volume curve for the circular channel. The terminal velocity of a long bubble 

rising in the circular channel is ~ 28% lower than the velocity of a long bubble rising in 

the square channel. This is due to the leakage flux at the corners of the square channels 

which allows the bubbles to expand more radially outward. As a result, the bubbles are 

more elongated in circular channels as compared to square channels (see Figure 4.48). 

We can also see from the Figure 4.48 that the cusp is more pronounced in a square 

geometry. 
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Figure 4.47: The terminal velocity as a function of bubble size for bubble rising in 2 wt% 
carboxymethyl cellulose solution with 10 ppm Triton X-100 in a circular tube (1-
TC-e) and square channel (2-TC-e) with /_)//= 10mm. 
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Figure 4.48: The bubble shapes corresponding to different bubble terminal velocity as a function 
of bubble size for 2 wt% carboxymethy cellulose water solution with 1000 ppm of 
Tergitol in 10mm circular tube and 10 x 10 mm square channel. 

As discussed in Section 4.1.2.1, the shape of the bubble rising in a rectangular channel is 

not axisymmetric and the distribution of the surfactants at the rear of the bubble depends 

on the magnitude of the flow along the sides of the bubble and the thin film separating 

the bubble from the front walls. In viscoelastic fluids, the surface tension forces in turn 

govern the shape and length of the cusp seen at the rear of the bubble. The effect of the 

shape of the confining domain on the cusps formed is seen in Figures 4.43, 4.49 - 4.52. 

When bubbles are rising in elastic fluids in square channels (Figures 4.43, 4.49, 4.50), the 

shape of the cusps become more pronounced as the surfactant concentration increases. 

However, the effect is opposite when bubbles are rising in a rectangular channel (Figures 

4.51 and 4.52). 
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Figure 4.49: Shape comparison for bubbles rising in 2 wt% carboxymethy cellulose solution with 
various concentration of Tergitol in 10mm xlO mm square channel. 

Oppm 

10 ppm 

9 

9 

9 
ft 

100 p p m %.#• ' 

K=0.4 K = 0 . 6 K = 0 . 8 

Figure 4.50: Shape comparison for bubbles rising in 2 wt% carboxymethy cellulose solution with 
various concentration of TX-100 in 15 mm x 15 mm square channel. 
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Figure 4.51: The bubble shapes corresponding to different bubble terminal velocity as a function 
of bubble size for 2 wt% carboxymethy cellulose solution with various 
concentration of Triton X-100 in 16mm x 3 mm rectangular channel. 
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Figure 4.52: The bubble shapes corresponding to different bubble terminal velocity as a 
function of bubble size for 2 wt% carboxymethy cellulose solution with 
various concentration of Tergitol in 16mm x 3 mm square channel. 
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4.2.2.2 Surfactant Concentrations Above CMC 

When surfactant concentration is raised to values above the CMC, remobihzation of the 

interface is observed. This is shown clearly in Figure 4.53 where the terminal velocity is 

plotted as a function of bubble size for bubble rising in 0.1 wt% polyacrylamide solution 

with concentration of TX-100 above CMC (lOOOppm) in a 10 mm x 10 mm square 

channel. For comparison, the velocity-volume curve in the absence of surfactant (0 ppm) 

and 100 ppm TX-100 is also plotted on the same graph. As seen in Figure 4.53, the 

terminal velocity of small bubbles with 1000 ppm TX-100 is almost the same as the 

similar sized bubbles in a clean 0.1 wf% polyacrylamide solution. However, for long 

bubbles, the terminal velocity is slightly higher than that for long bubbles rising in a clean 

0.1 wt% polyacrylamide solution. Unlike Newtonian fluids, remobihzation is seen for 

the entire range of bubble sizes in case of non-Newtonian bulk fluids. Figure 4.54 shows 

the shape comparison for bubble rising in 0.1 wt% polyacrylamide solution in 1 Ox 10mm 

square channel with various concentration of TX-100. The shape of the bubbles become 

more prolate as the surfactant concentration is increased from 0 ppm to 100 ppm because 

of accumulation of surfactants at the rear of the bubble which result in the stretching out 

of the cusp. As the surfactant concentration is increased to 1000 ppm surfactant solution 

the bubbles again become more oblate similar to the bubbles rising in a solution in the 

absence of surfactant. Moreover, the cusp tends to become less pronounced with increase 

in surfactant concentration. 
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Figure 4.53: The terminal velocity as a function of bubble size for bubbles rising in 0.1 wt% 
polyacrylamide solution with various concentration of TX-100 in a 10mm xlO 
mm square channel. 
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Figure 4.54: Shape comparison for bubble rising in 0.1 wt% polyacrylamide solution in 
10x10mm square channel. 
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Figure 4.55: The terminal velocity as a function of bubble size for bubble rising in 2 wt% 
carboxymethy cellulose solution with various concentration of Tergitol in 10mm x 
10 mm square channel. 

Remobihzation of the interface is also seen for bubbles rising in 2 wt% carboxymethyl 

cellulose solution with concentration of Tergitol above CMC in 10mm x 10 mm square 

channel (Figure 4.55). As seen from Figure 4.55, the shape of the velocity-volume curve 

with 1000 ppm Tergitol in a 10x10 mm square channel is different from that in the 

surfactant-free case. There is a very small peak in the presence of 1000 ppm Tergitol in 2 

wt% carboxymethyl cellulose solution in the square geometry. The terminal velocity of 

long bubbles in the 1000 ppm Tergitol solution is also much larger than that of similar 

sized bubbles in the 0 ppm solution. Similar enhancement in the mobility of long bubbles 

is seen for bubbles rising in 16 mm x 3 mm rectangular channels filled with 2 wt% 

carboxymethyl cellulose with concentration of TX-100 above CMC (Figure 4.56) and 

concentration of Tergitol above CMC (Figure 4.57). In all the cases, the bubbles in the 
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Figure 4.56: The terminal velocity as a function of bubble size for bubble rising in 2 wt% 
carboxymethyl cellulose solution with various concentration of Triton X-100 in 
16mm x 3 mm rectangular channel. 
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Figure 4.57: The terminal velocity as a function of bubble size for bubble rising in 2 wt% 
carboxymethy cellulose solution with various concentration of Tergitol in 16mm x 
3 mm rectangular channel. 
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1000 ppm solution were more prolate than the surfactant-free case, but it is not clear if 

that is the reason why this enhanced mobility is seen for bubbles above the critical 

micellar concentration. 
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Chapter 5 

SUMMARY AND FUTURE WORK 

In this thesis, buoyancy-driven motion of bubbles in the presence of soluble surfactants 

was studied at finite Reynolds numbers. A single bubble was injected into a vertically 

positioned channel filled with an immiscible bulk fluid. Both Newtonian and non-

Newtonian fluids were used as the bulk solution. The movement and deformation of the 

bubble was captured by a CMOS digital video camera. The steady shape, bubble size, 

bubble terminal velocity, film thickness, deformation parameter were analyzed by 

"Vision Assistant" software from captured frames. The effect of how bulk soluble 

surfactants affect the mobility and shape of air bubbles rising in confined domains filled 

with a liquid was investigated. Various geometries were used to determine how 

surfactants affect bubble shapes in different geometries. 

In surfactant-free 75 wt% glycerol water solution, bubbles at small bubble sizes were 

nearly spherical in shape. As the bubble size increased, the bubbles became oblate losing 

fore and aft symmetry. As the bubble size became comparable to the tube, the bubble 

became more elongated with higher positive curvature at the front of the bubble. Beyond 

a critical bubble size, any increase in the volume of the bubble resulted in increasing the 

length of the bubble without affecting the shape of the front and rear ends of the bubble. 

The terminal velocity of small bubbles increased linearly with increasing bubble volume 
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because of the increased buoyancy force. As the bubble size became comparable to the 

channel size, the drag force due to the confining walls increased resulting in a decrease in 

the terminal velocity. Beyond a critical bubble volume, the bubble velocity reached a 

constant plateau value, where the bubble velocity was independent of the bubble volume. 

In 2 wt% carboxymethyl cellulose solution, bubbles changed directly from spherical to 

long elongated bubbles without taking on an oblate shape. The general shape of the 

velocity-volume curve was similar to the 75 wt% glycerol water solution case. Bubble 

shape transition similar to the 75 wt% glycerol-water solution was observed for bubbles 

rising in 0.1 wt% and 0.3 wt% polyacrylamide solutions. However, the velocity-volume 

curve did not reach a constant plateau value beyond a critical bubble volume, instead the 

bubble velocity increased slightly as the bubble volume increased. For bubbles rising in 

all the tested viscoelastic fluids in this thesis, a pointed cusp was observed at the trailing 

end of the bubbles due to the extra normal force exerted by the fluid. The cusp appeard 

to be axisymmetric for all the runs performed. No velocity jump was observed for 

viscoelastic fluids. 

Different surfactants with varying concentrations below and above CMC were added to 

both the Newtonian and non-Newtonian bulk solutions. In the presence of very small 

quantities of surfactants the equilibrium surface tension did not change from its clean 

interface value. However, the terminal velocity for small bubbles was found to be lower 

than that of the surfactant-free system due to the non-equilibrium effects. Long bubbles 
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seemed to be unaffected by the presence of small amounts of surfactants. The surfactants 

were swept to the trailing end of the bubble and accumulated near the trailing pole due to 

surface convection. A non-uniform distribution of surfactants along the interface 

establishes a surface tension gradient which generates Marangoni stresses. The 

Marangoni stresses oppose the surface velocity resulting in a retardation of the overall 

mobility of the bubbles. Increasing surfactant concentration enhanced the Marangoni 

effect and the bubbles were further immobilized. 

The general shape of velocity-volume curve with low concentration of surfactants was 

similar to the surfactant-free case. A change in shape of the velocity-volume curve was 

also seen for moderate surfactant concentrations. Two peaks were observed for 75 wt% 

glycerol water solution case with moderate surfactant concentrations for several 

surfactants in different channel geometries. In the presence of surfactants the bubbles 

moved slower with a more prolate shape. The deformation for bubbles moving in a 

rectangular channel in the presence of surfactants differed from bubbles rising through 

square and circular channels where the bubble shapes are axisymmetric. 

When the sufactant concentration was above CMC, a uniform surfactant concentration 

was obtained along the interface. The surface tension gradient as well as the Marangoni 

stress was reduced resulting in partial remobihzation. In 75 wt% glycerol-water solution, 

the terminal velocity of long bubbles was the same as that for the surfactant-free case. 
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Complete remobihzation was not observed for small bubbles for any of the surfactant 

systems or geometries studied. However, in 0.1 wt% and 0.3 wt% polyacrylamide 

solutions, the terminal velocity of long bubbles was slightly higher than that of the 

surfactant-free case. In 2 wt% carboxymethyl cellulose solution in a rectangular 

geometry, the terminal velocity of long bubbles was much higher than the terminal 

velocity of long bubbles for the surfactant-free case. 

The effect of surfactants on the bubble shape depended on the geometry of the confining 

walls. Cusps became more pronounced with increasing surfactant concentration for 

bubbles rising in circular and square channels filled with viscoelastic fluids. This was 

expected as elasticity caused cusps to form and surface tension forces opposed the cusp 

formation. With the addition of surfactants, surface tension forces were reduced at the 

rear of the bubble resulting in more pronounced cusps. In contrast, cusps for bubbles 

rising through viscoelastic fluids in a rectangular geometry tended to disappear with 

increasing surfactant concentration. This could be attributed to the non-axisymmetric 

shape the bubbles take in the rectangular channel and the distribution of the surfactants at 

the rear of the bubble depended on the thin film separating the bubble from the front wall. 

We also compared the velocity-volume curve for bubbles rising in a square channel with 

that for bubbles rising in a circular tube in the absence and presence of surfactants. The 

trend of the velocity-volume curve for the bubbles rising in a square channel is similar to 

that of the velocity-volume curve for a circular channel. However, the terminal velocities 
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for all bubbles moving in square channel were larger than those in circular channel due to 

leakage flux at the corners of the channel. In addition, the bubbles were more elongated 

in circular tubes compared to same sized bubbles in square channels. 

The buoyancy-driven motion of bubbles in the presence of surfactants in confined 

domains is an important problem of great interest due to its application in many fields 

such as enhanced oil recovery, microfluidics, and solvent extraction. The results of this 

thesis are a first attempt at characterizing the buoyancy-driven motion of bubbles in non-

circular channels in the presence of surfactants. Several future directions are suggested 

as follows to further exploit two-phase flow in confined domains: 

• Investigate surfactant effects on the same type of fluids with different viscosities. 

• Experiment on viscous drops other than air bubbles. 

• Perform experimental and numerical studies for a wider range of Reynolds, Bond, 

and capillary numbers. 

• Exploit surfactant effects on the microscale. 

• Investigate new surfactants with different interface kinetics and new suspending 

fluids. 
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