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An Examination of Effective Length in Moment Frames 

Honors Thesis 

Connor Schott 

Advisor: Dr. Ray Cook 

 

I. Column Buckling 

When loaded axially in compression columns experience a failure mode in compression that 

axially loaded members don’t experience in tension. This failure mode, elastic column buckling, 

doesn’t involve yielding or rupture; the column changes shape and deforms to the side. 

 

 

 

 

 

 

 

 

 

 

To find the axial load that would cause a buckling failure Leonhard Euler, figure 2, developed a 

mathematical solution. The solution (Less Boring Lectures 2021) was developed for a column with 

pinned ends from the second derivative of a beam deflection equation because a column is just a 

vertical beam experiencing axial load.  

Beam Deflection Equation: 
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Figure 1: Column Buckling 



 

The derivation for a column with two pinned ends begins with the assumption that the deflected 

shape corresponds to that of a sine or cosine curve as shown. 

 

General Solution:  𝑦 = 𝐴𝑠𝑖𝑛(∝ 𝑥) + 𝐵𝑐𝑜𝑠(∝ 𝑥) 

Where, ∝= √
𝑃

𝐸𝐼
 

Using two boundary conditions of a pinned-pinned column the two coefficients of A and B can be 

found, and a critical buckling load can be determined.  

Boundary Conditions: 

1. 𝑥 = 0, 𝑦 = 0 

2. 𝑥 = 𝐿, 𝑦 = 0 

Boundary Condition 1:  0 = 𝐴𝑠𝑖𝑛(∝∗ 0) + 𝐵𝑐𝑜𝑠(∝∗ 0) 

0 = 0 + 𝐵 ∗ 1 

𝐵 = 0 

Boundary Condition 2: 0 = 𝐴𝑠𝑖𝑛(∝∗ 𝐿) 𝐴 ≠ 0 

 sin(∝ 𝐿) = 0 

When 𝑥 = 𝜋, sin(𝑥) = 0 

 ∝ 𝐿 = 𝜋 

∝=
𝜋

𝐿
 

Plug back in, 
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Thus, Euler’s Buckling Equation for critical load: 

 𝑃𝑐𝑟 =  
𝜋2∗𝐸∗𝐼

𝐿2  [1] 

Where, 

E = modulus of elasticity 

I = moment of inertia 

L = Length of column 



  

Figure 2: Leonhard Euler, born in 1707 was a mathematician, physicist, and engineer who played 

a crucial role in the development of mathematics. He was born in Basel, Switzerland where he was 

a friend of the Bernoulli family, a very influential family in mathematics. He eventually attended 

University of Basel where he received his Master of Philosophy. Euler is credited for many 

common expressions used in math today such as the use of “π,” the letter “i” for an imaginary 

number, and the term f(x). Euler developed many foundational formulas used today in physics, 

astronomy, and engineering, but in 1757 is when he developed his critical buckling load equation 

for structural design. 



1. The Julian & Lawrence Nomograph 

For a pinned-pinned column, the effective length is equal to the length of the column. When, 

however, a column is part of a frame with rigid connections, the column ends are not free to rotate, 

and Euler’s solution must be modified by replacing the actual column length with an effective 

column length. The effective length is the distance between two points of zero moment, (inflection) 

points. Different end condition solutions for the general solution of the buckling derivation result 

in different effective lengths, as shown in Figure 3 from the AISC code manual.   

If stiff beams prevent column end rotation the corresponding inflection point is forced away from 

the intersection, resulting in a shorter effective length. If the column is flexurally stiff compared 

to the beams, the inflection point occurs near the intersection, and the effective length is longer. 

These effective lengths can be represented by an effective length factor, K, times the length of the 

column, L.  

 

 𝑃𝑐𝑟 =  
𝜋2∗𝐸∗𝐼

(𝐾𝐿)2  [2] 

 

 

 

 

Figure 3: AISC Effective Length Factors 



There are two types of framed systems, braced and unbraced. A braced frame resists lateral 

displacement and forces by use of bracing or shear walls. An unbraced frame resist sidesway 

through moment resisting connections between columns and beams. In this project only braced 

frames are considered. An effective length factor nomograph was created by Julian and Lawrence 

to determine the effective length factor of a column in a frame system. One of the first times the 

Julian & Lawrence nomograph was formally presented was in Thomas C. Kavanagh’s Effective 

Length of Framed Columns (Figure 4, Kavanagh 1960, 18). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the nomograph, G represents the beams ability to resist joint rotation through a ratio of the 

column stiffnesses at one joint relative to the beam stiffnesses at that joint. The flexural stiffness 

of each member rigidly connected at each column end joint is given by 

 
𝐸∗𝐼

𝐿
 [3] 

where, 

E = modulus of elasticity 

I = moment of inertia 

L = length of column or beam 

 

Then, 

 𝐺 =
∑(𝐸∗𝐼 𝐿⁄ )𝐶𝑜𝑙𝑢𝑚𝑛𝑠

∑(𝐸∗𝐼 𝐿⁄ )𝐵𝑒𝑎𝑚𝑠
 [4] 

Figure 4: Effective length nomograph developed by Julian and Lawrence 



 

GA is the ratio of flexural stiffnesses at one end of the column while GB is the ratio of flexural 

stiffnesses at the other end of the column. Once a G value is found for end of the column, the 

nomograph is used by plotting the two values on each side and then connecting them with a straight 

line. The value in the middle that the connecting line crosses is the effective length factor, K, of 

the column. 

 

Different supports will have different G values, resulting in different K values. An end that is 

pinned has no beams tying into it and, therefore a G factor which is theoretically infinity. In 

practice, however, a value of 10 is recommended in such cases. Similarly, a fixed end support 

would be represented by beams with, effectively, infinite stiffness and a corresponding G factor of 

0, though a design value of 1 is generally recommended for use in practice by the AISC Steel 

Construction Manual (AISC 16.1-573).  

Figure 5: Finding K-factor from Nomograph 



2. Matrix Analysis 

This thesis explores the effect of join rotations caused by asymmetric beam loads, which the 

nomograph does not account for, using matrix structural analysis software. Matrix structural 

analysis, also known as the Direct Stiffness Method, is a type of analysis that solves problems of 

trusses, beams, and frames. It was developed by William McGuire and Richard H. Gallagher. 

Many solution methods, like Euler’s, apply forces and from the applied forces, will find 

deflections. What makes matrix analysis unique is that it solves a set of deflection equations for 

compatible displacements and then use those to find forces and moments.  

The program, Visual Analysis, by IES Software out of Bozeman, Montana was selected. To verify 

the ability of the software to model column buckling the first task done on Visual Analysis was 

creating a 14-foot long, square column broken up into ten smaller parts. The column was pinned 

at the bottom connection and x-direction movement was restricted in the top connection. This 

results in a column with pinned ends which corresponds to Euler’s derivation and thus, resulting 

in an effective length factor of K=1.0. The section properties were chosen to make sure the column 

was slender. The 8”x8”x14’ column had a radius of gyration of .289 resulting in a slenderness ratio 

of 48.5. Using the section properties, the critical buckling load was calculated using Equation 2. 

Giving a Pcr of 3461 kips. Visual Analysis validated this by showing the column failed when 

loaded to 3462 kips. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6: Square Column Analysis in VA 



The next step was creating a moment frame with four beams and three columns, where the middle 

column was also split into ten smaller sections. This step was done to verify the classic frame 

solution of the nomograph, that just deals with axial loads. The far ends of the beams were fixed, 

and the columns were pinned at the bottom and restricted in the x-direction on top. 

Initially, W18x50 beams and W12x40 columns were used. This would give beams with a span to 

depth ratio of about 20 and columns with a slenderness ratio of about 50. The beams had 30’ spans, 

while the columns were 12’ in height. Using Equation 4, the G values of the two end connections 

were found to be 1.83 and then using the nomograph in figure 1, a K factor of .85 was found.  

However, with the second-order, or P-Delta, analysis on Visual Analysis the correspondence of 

the calculated critical buckling load and the actual failure load was very low. Meaning the 

calculated buckling load of the system was a lot lower than what the frame failed at on Visual 

Analysis. The height of the columns was increased to 18 ft to make the columns slenderer, which 

made the correspondence closer, but not close enough. The next change made was increasing the 

size of the beams. After several iterations, a W18x211 gave an acceptable correspondence of 

99.1%, with a critical buckling load of 826 Kips. 

After going through the process of finding the closest correspondence and not getting the results 

that were expected, a realization was made that it may be possible that visual analysis was not 

calculating the P-Delta analysis correctly. To check this a simple test was done. A single column 

with a pinned end and an x-axis restricted end was modeled. An axially load was placed on the 

model and using the second order analysis the failure load was found. Then, a lateral load at the 

midspan of the column was added, which should lower the critical buckling load. However, it did 

not change the critical failure load at all which proved that the P-Delta analysis on Visual Analysis 

was not working properly. 

Figure 7: Moment Frame Analysis in VA 



With Visual Analysis not working properly a new matrix analysis program was tried. Structural 

Analysis Program 2000, or SAP2000, was recommended. There was, however, a large learning 

curve getting used to the new software. There was never any real progress made with SAP2000, 

while a lot of time was spent learning how to set up a model and how to use the program. While 

learning about the program, a new idea came to light. 

  



3. Asymmetric Loading Influence on Buckling 

Using Visual Analysis, a manual P-Delta analysis could be done. This was done by using the same 

moment frame that gave 99% correspondence with the failure load. It was then loaded up axially 

to 99% of the critical failure load, 825 K. It was also loaded in a checkerboard pattern to represent 

the asymmetric beam loading. A 3 klf distributed load was chosen to give a larger joint rotation.  

 

Figure 8: Moment Frame Loading 

This was done to give the deflection of the column nodes just before failure. 

 

 

Figure 9: Pattern Loaded Beam Result Figure 10: Visual Analysis Nodal Deflection Results 



 

Using the result view to get the precise deflection values of the column nodes, a new column could 

be created. A separate model was created of just the middle column; however, the column was set 

up in it’s already deflected shape. The bottom node was fixed in place while the top node was 

restricted rotationally and in the x-direction. It was then loaded axially again using the same 99% 

critical failure load. 

 

Figure 11: Deflected Column Model 

After loading, the new node deflections were found and recorded. Using the new deflections, a 

third model was created with the new nodal positions. This was set up the same way as the previous 

iteration, however it was deflected more than the previous. When loaded at the same 825 kips, the 

nodal deflections were yet again recorded. After three iterations of the deflected column were 

modeled, the total deflection of the column for each was recorded.  

 

Figure 12: Recorded Deflections for each Loading Iteration 

 



 

Figure 13: Total Deflection for Each Column Iteration 

Even though the loading on the column is less than the calculated critical buckling load, the column 

continues to deflect. This shows that the column is in fact buckling. Showing, a frame system with 

asymmetric beam loading that causes joint rotation does influence the critical buckling load. 

Showing that the current nomograph is not a perfectly viable solution for the critical buckling load 

of a column in a framed system. 
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4. Conclusion 

Throughout the semester, several tasks were completed to create a finalized thesis. Initially, 

research was done on column buckling, Leonhard Euler, and the derivation of Euler’s buckling 

equation. Once it was understood where the critical buckling load equation came from and how it 

works, the Julian & Lawrence nomograph on effective length factors was examined. The 

nomograph is the current method of determining K values for framed systems where only axial 

load is taken into consideration. Matrix Analysis was then used to test the theory of if the effective 

length of a column is affected by asymmetric beam loading. It took several weeks of testing on 

Visual Analysis and SAP2000, modeling columns and framed systems with different types of 

loading patterns to test the hypothesis. Through a manual P-Delta analysis, it was determined that 

asymmetric beam loading causes excess joint rotation that is not accounted for in the nomograph. 

Thus, when loaded in a checkered pattern the effective column length is longer than expected 

which would give a lower critical buckling load. Meaning, when framed systems are 

asymmetrically loaded the nomograph is not correct and the critical column buckling load is not 

calculated correctly. 

For the next student who begins research on effective column lengths and how loading affects it, 

it is very important to know what the goal of the thesis is. That way there is no confusion along 

the way of what to do. Another important step is to familiarize oneself with the column buckling, 

Euler’s solution, and the nomograph, as was done early on in this paper. Once all the research is 

done, it is important to familiarize oneself with a matrix analysis software. I would recommend 

from the beginning, trying out a new software with a P-delta analysis to see if results can be 

obtained that way as well. It can always be done manually on Visual Analysis; however it may 

prove better if done on another software to get results in a different way. 
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