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Spatiotemporal analyses of soil moisture from point to footprint scale
in two different hydroclimatic regions

Champa Joshi,1 Binayak P. Mohanty,1 Jennifer M. Jacobs,2 and Amor V. M. Ines1,3

Received 11 December 2009; revised 27 July 2010; accepted 25 October 2010; published 25 January 2011

[1] This paper presents time stability analyses of soil moisture at different spatial
measurement support scales (point scale and airborne remote sensing (RS) footprint scale
800 m � 800 m) in two different hydroclimatic regions. The data used in the analyses
consist of in situ and passive microwave remotely sensed soil moisture data from the
Southern Great Plains Hydrology Experiments 1997 and 1999 (SGP97 and SGP99)
conducted in the Little Washita (LW) watershed, Oklahoma, and the Soil Moisture
Experiments 2002 and 2005 (SMEX02 and SMEX05) in the Walnut Creek (WC)
watershed, Iowa. Results show that in both the regions soil properties (i.e., percent silt,
percent sand, and soil texture) and topography (elevation and slope) are significant physical
controls jointly affecting the spatiotemporal evolution and time stability of soil moisture at
both point and footprint scales. In Iowa, using point-scale soil moisture measurements, the
WC11 field was found to be more time stable (TS) than the WC12 field. The common TS
points using data across the 3 year period (2002– 2005) were mostly located at moderate to
high elevations in both the fields. Furthermore, the soil texture at these locations consists of
either loam or clay loam soil. Drainage features and cropping practices also affected the
field-scale soil moisture variability in the WC fields. In Oklahoma, the field having a flat
topography (LW21) showed the worst TS features compared to the fields having gently
rolling topography (LW03 and LW13). The LW13 field (silt loam) exhibited better time
stability than the LW03 field (sandy loam) and the LW21 field (silt loam). At the RS
footprint scale, in Iowa, the analysis of variance (ANOVA) tests show that the percent clay
and percent sand are better able to discern the TS features of the footprints compared to the
soil texture. The best soil indicator of soil moisture time stability is the loam soil texture.
Furthermore, the hilltops (slope �0% –0.45%) exhibited the best TS characteristics in Iowa.
On the other hand, in Oklahoma, ANOVA results show that the footprints with sandy loam
and loam soil texture are better indicators of the time stability phenomena. In terms of the
hillslope position, footprints with mild slope (0.93%–1.85%) are the best indicators of TS
footprints. Also, at both point and footprint scales in both the regions, land use– land cover
type does not influence soil moisture time stability.

Citation: Joshi, C., B. P. Mohanty, J. M. Jacobs, and A. V. M. Ines (2011), Spatiotemporal analyses of soil moisture from point to

footprint scale in two different hydroclimatic regions, Water Resour. Res., 47, W01508, doi:10.1029/2009WR009002.

1. Introduction
[2] Soil moisture is a key state variable of the hydrologic

cycle. It plays a significant role in many hydrological, me-
teorological, and other natural processes in the land-atmos-
phere continuum [Entin et al., 2000]. It greatly affects the
partitioning of precipitation into infiltration and runoff,

thereby regulating the extent of groundwater recharge and
the fate and transport of contaminants both on the surface
and in the subsurface. Soil moisture in the root zone is also
vital for the growth and development of crops as it plays a
significant role in the partitioning of the surface energy
budget, hence the crop water requirements [Grayson and
Western, 1998]. Soil moisture distribution is highly nonlin-
ear across time and space. Various geophysical factors
(e.g., soil texture, topography, land use– land cover
(LULC), and weather/climate) and their interactions con-
tribute toward the spatiotemporal evolution of soil moisture
at various scales. Understanding these interactions is cru-
cial for the characterization of soil moisture dynamics
occurring in the vadose zone [Mohanty and Skaggs, 2001].

[3] Soil moisture can be estimated in various ways: by
direct in situ methods, e.g., gravimetric sampling, neutron
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probe, and time domain reflectometry (TDR) [Grayson and
Western, 1998; Mohanty et al., 1998; Famiglietti et al.,
1999], and by indirect methods using remote sensing (RS)
techniques, e.g., active [De Troch et al., 1996; Ulaby et al.,
1996] and passive [Jackson and Schmugge, 1995; Jackson
and Levine, 1996; Schmugge, 1998; Jackson, 2003; Njoku
et al., 2003] microwave measurements from airborne or
spaceborne remote sensors. The in situ methods have small
measurement support (at point scale) compared to the RS
methods in which the microwave sensors provide soil mois-
ture estimates at larger spatial scales. Passive microwave
sensor penetration depths, however, are limited to the near-
surface soil layers (�0–5 cm).

[4] Remote sensing of soil moisture needs to be cali-
brated and validated using soil moisture measurements
recorded on the ground [Yoo, 2002]. The calibration and
validation of RS products is done using footprint-scale
(mean) soil moisture data obtained from ground sampling.
Full validation, however, is inherently difficult because of
various reasons, e.g., the mismatch in scale between in situ
measurements and RS footprints (102 –103 m), the limited
number of ground samples per footprint, and the high spa-
tial variability of soil moisture due to soil types, vegetation,
topography, and weather/climate [Cosh et al., 2004a;
Jacobs et al., 2004]. This RS validation problem often
necessitates the identification of locations within a field or
footprint that can estimate the field or footprint mean soil
moisture and can retain their stability over a long period of
time. These locations, referred to as time stable (TS) loca-
tions [Vachaud et al., 1985; Mohanty and Skaggs, 2001],
can be effectively used to reduce the number of in situ sam-
pling points in designing hydrology experiments for RS
validation purposes. They can also be used to estimate the
average soil moisture content of large watersheds
adequately [Mohanty and Skaggs, 2001] and help in down-
scaling RS soil moisture products. They are crucial for
determining physical controls that can affect the soil mois-
ture spatiotemporal variability at different scales, from
point to footprint scales [Mohanty et al., 2000; Cosh et al.,
2004a; Jacobs et al., 2004].

[5] Vachaud et al. [1985] introduced the concept of time
stability by conducting a soil moisture experiment in a
2000 m2 grass field having alluvial soil in France and fur-
ther corroborated the concept by testing it in two separate
regions. Kachanoski and Dejong [1988] examined the tem-
poral persistence of a spatial pattern of soil moisture as a
function of spatial scale using the spatial coherency analy-
sis method. Their study area consisted of a small grass field
with rolling topography located in Saskatchewan, Canada.
Grayson and Western [1998] used four sets of soil moisture
measurements made over depths from 30 to 120 cm to
determine TS locations in three different catchments : Tar-
rawara and Lockyersleigh (in Australia) and R5-Chickasha
(United States). The catchments range in size from 10.5 ha
to 27 km2 and have significant relief. Mohanty and Skaggs
[2001] studied the effects of soil type, slope, and vegetation
on the spatiotemporal evolution and time stability of soil
moisture using theta probe and RS data in three different
fields in the Southern Great Plains (SGP) region. They
found that the sandy loam field exhibited better TS features
compared to the other two fields containing silt loam soils.
They also observed that the field having flat topography

had the worst time stability compared to the two fields with
gently rolling topography. Martinez-Fernandez and Cebal-
los [2003] determined the TS characteristics in an area of
1285 km2 receiving uniform rainfall located in the Duero
basin in Spain. According to them, the time stability of soil
moisture is always higher when the soils are dry compared
to when the conditions are wet. Also, the lowest temporal
stability is observed during the transition period from dry
to wet. They further observed that the dry locations in the
field were much more time stable (at all depths, 5– 100 cm)
with their temporal stability within the range of 6% –9%
compared to the wet locations. These dry locations have
soils with higher sand fraction, and therefore, they are
unable to retain water, resulting in lower moisture content
values and relatively higher time stability. Cosh et al.
[2004a] and Jacobs et al. [2004] investigated the time sta-
bility of the WC fields in the Walnut Creek (WC) water-
shed, Iowa, using in situ soil moisture data. Cosh et al.
[2004a] derived watershed-scale mean soil moisture esti-
mates for the validation of satellite products with small
errors (~3%). Jacobs et al. [2004] observed that locations
with mild slope consistently showed TS features, while
locations on hilltop and high slopes underestimated the
mean field soil moisture. Using ground-based measure-
ments from a dense network of 19 sensors distributed over
a 150 km2 semiarid region of the Walnut Gulch Experi-
mental Watershed in southeastern Arizona, Cosh et al.
[2008] found that much of the sensor network was time sta-
ble in estimating the watershed mean moisture content dur-
ing a 3.5 year time period, from 1 March 2002 to 13
September 2005. But the mean relative difference plot
obtained from the Soil Moisture Experiment 2004
(SMEX04) gravimetric soil moisture (GVSM) samples
(collected during 3 –26 August 2004) was not duplicated
by the network mean relative difference plot. They con-
cluded that the network does not record the surface soil
moisture patterns accurately; rather, it consists of an accu-
rate set of sample points that predict the watershed average
soil moisture content. While soil type characterized by bulk
density, clay, and sand content influenced 50% of the tem-
poral stability, topographic effects were less significant.
Choi and Jacobs [2007] studied the field-scale spatiotem-
poral variability of root zone soil moisture in the WC11
and WC13 fields in the WC watershed. On the basis of their
analyses, they claimed that time stability of surface soil
moisture measurements is a good indicator of subsurface
time stability. Other studies investigating the spatiotempo-
ral variability of surface soil moisture and its linkages with
different geophysical attributes, at varying spatial scales
using both ground-based and remotely sensed moisture
contents in the SGP region, include the works of Kim and
Barros [2002a, 2002b], Cosh et al. [2004b], Ryu and Fami-
glietti [2005], and Famiglietti et al. [2008].

[6] The objectives of this study are as follows. The first
objective is to investigate the temporal evolution of the TS
features of two footprints or fields in the WC watershed,
Iowa, using ground-based soil moisture measurements
obtained from the Soil Moisture Experiment campaigns in
2002 and 2005 (SMEX02 and SMEX05) and analyze
whether the TS locations maintain their stability features
over the 3 year period. The second objective is to study the
TS characteristics of RS footprints or pixels within the WC
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watershed in Iowa (during SMEX02 and SMEX05) and the
Little Washita (LW) watershed in Oklahoma (during the
Southern Great Plains Hydrology Experiments 1997 and
1999 (SGP97 and SGP99)) using airborne RS soil moisture
data and compare the footprint-scale TS features with the
ground-based soil moisture analyses to determine the com-
mon physical controls affecting the spatiotemporal evolution
of soil moisture at different measurement support scales.

2. Materials and Methods
2.1. Study Regions

2.1.1. Walnut Creek Watershed, Iowa
[7] The WC watershed (Figure 1), located south of

Ames, Iowa, has an area of 100 km2. The climate of the
area is mostly humid, with an average annual precipitation
of 835 mm. The regional topography consists of low-relief
features with poor surface drainage due to the existing prai-
rie potholes of glacial origin. The elevation of the WC
watershed ranges between 270 and 320 m. The soil texture
of this region varies considerably from fine sandy loam to
clay, with the majority classified as silt loam with a rela-
tively low permeability. Mostly row type cultivation is
done in this region, with corn (50%) and soybean (40%)
crops dominating the land cover [Choi and Jacobs, 2007].
The hydrology and climate of the WC watershed and the
region around Ames, Iowa, have been regularly monitored
by the U.S. Department of Agriculture National Soil Tilth
Laboratory over the past two decades. As such, this area
has been the focus of large-scale soil moisture experiments
(SMEX) since 2002. The SMEX02 field campaign was car-
ried out from 25 June to 12 July 2002, and SMEX05 took
place from 13 June to 4 July 2005. A detailed description
of the two campaigns, including the objectives of the mis-
sion, experiment plan, and site description, can be found
on the Agricultural Research Service Web site (http://
www.ars.usda.gov/Research/docs.htm?docid=8974).

[8] Figure 1 shows the two fields, WC11 and WC12, that
were selected for this spatiotemporal study. The location
and significant attributes of the fields are given in Table 1.
The dimension of each field is approximately 800 m� 800 m,
which is similar to the footprint resolution of different air-
borne remote sensors (Electronically Scanned Thin Array
Radiometer (ESTAR), Two-Dimensional Synthetic Aper-
ture Radiometer (2D-STAR), and Polarimetric Scanning
Radiometer (PSR)). During SMEX02, WC11 had a corn
crop cover with a small patch of soybean planted near the
western edge of the field. During SMEX05, the corn crop
in the WC11 field was rotated with a soybean crop. The
WC12 field had a tile drainage system from southwest to
northeast and was planted with corn (row cultivation) dur-
ing both SMEX02 and SMEX05. During SMEX02, soil
moisture content was measured for 12 days at 92 points in
the WC11 field and 132 points in the WC12 field (see Fig-
ure 1). Again, during the SMEX05 campaign, sampling
was done at 87 points in WC11 and 64 points in WC12.
Sampling points were located at nearly 30 m intervals along
the four transects oriented east–west and north–south in
WC11 and a single east–west and two north–south trans-
ects in WC12 (see Figure 1). During the experiments, volu-
metric soil moisture (VSM) contents were measured
between 1100 and 1500 local time (CDST) using 6 cm long

theta probes and data loggers (ML-2 probes and HH2 data
loggers of Delta-T Inc., United Kingdom). The airborne
PSR observations (resolution of 800 m � 800 m) were col-
lected from 25 June to 12 July 2002 during SMEX02 (Fig-
ure 2a). However, the RS soil moisture data acquired
through Airborne Polarimetric Microwave Imaging Radi-
ometer (APMIR) during the SMEX05 campaign are not
yet available in the public domain. The PSR is an airborne
microwave imaging radiometer developed and operated by
the National Oceanic and Atmospheric Administration
(NOAA) Environmental Technology Laboratory [Piepme-
ier and Gasiewski, 2001]. Bindlish et al. [2005] provide a
complete description of the functional operation (i.e., the
flight lines and mapping specifications) of PSR during
SMEX02.
2.1.2. Little Washita Watershed, Oklahoma

[9] The LW watershed (Figure 3) in Oklahoma lies in
the southern part of the Great Plains of the United States.
This 610 km2 watershed is a tributary of the Washita River
in southwest Oklahoma. The climate of the region is subhu-
mid, with an average annual precipitation of 750 mm. The
region has a moderately rolling topography with the eleva-
tion ranging between 321 and 459 m within the expanse of
the LW watershed. Soil texture varies considerably, with
large areas having both coarse and fine textures. Land cover
is mostly dominated by rangeland and pasture, with signifi-
cant areas having winter wheat and other crops [Mohanty
et al., 2002]. The LW watershed and its surrounding areas
are considered to be one of the best instrumented sites in
the world for surface soil moisture, hydrology, and meteor-
ology [Mohanty and Skaggs, 2001]. This is the key reason
for selecting this region for a series of watershed-scale soil
moisture experiments, namely, SGP97 and SGP99,
SMEX03, and, more recently, the Cloud and Land Surface
Interaction Campaign (CLASIC) in the summer of 2007.
The SGP97 soil moisture campaign took place between 18
June and 17 July 1997, and SGP99 was carried out from 8
to 21 July 1999. A detailed description of both the experi-
ments can be found on the Agricultural Research Service
Web site (http://www.ars.usda.gov/Research/docs.htm?
docid=8974). The CLASIC campaign was conducted for a
3 week long period in June 2007. Details regarding CLASIC,
its goals and objectives, site description, experiment plan, etc.,
can be found on the CLASIC Web site (http://acrf-camp
aign.arm.gov/clasic/).

[10] Figure 3 shows the three fields (LW03, LW13, and
LW21) that were selected for our long-term soil moisture
spatiotemporal variability study. The fields are approxi-
mately 800 m � 800 m, the same as the resolution of an
airborne RS (ESTAR/2DSTAR) footprint. Table 2 gives
the details of the geographical location and significant envi-
ronmental attributes of the LW fields. LW03 and LW13 are
gently rolling rangelands. LW03 is predominantly sandy
loam with a few small patches of loam soil, whereas the
soil texture of LW13 is mainly silt loam with a patch of
loam soil. LW21 is a flat, split winter wheat– grass field
with silt loam soil. During SGP97, VSM content in the 0 –
6 cm surface soil layer was measured daily at 49 sampling
points, in a regular 7 � 7 square grid with 100 m spacing
(Figure 3). In SGP97, we have, in total, 23, 24, and 17 com-
plete sets of daily soil moisture data for fields LW03, LW13,
and LW21, respectively. Furthermore, from CLASIC, we

W01508 JOSHI ET AL.: SOIL MOISTURE TIME STABILITY AT DIFFERENT REGIONS W01508

3 of 20



Figure 1. Sampling points in the WC fields in the Walnut Creek (WC) watershed (Iowa) during the
SMEX02 and SMEX05 campaigns. All the marked locations were time stable during both SMEX02 and
SMEX05 within 610% volumetric soil moisture (VSM). Locations 1 –6 in WC11 and 1–5 in WC12
(marked with an asterisk) were time stable during both SMEX02 and SMEX05 within 65% VSM.
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have a 10 day long data set of theta probe measured soil
moisture estimates from 11 to 25 June 2007 for the LW21
field. During the SGP97 and SGP99 campaigns, a NASA
P-3 aircraft based ESTAR instrument was used to measure
the pixel average daily surface (0–5 cm) soil moisture con-
tents across the entire SGP study region (Figure 4a). The
ESTAR is a synthetic aperture, L band passive microwave
radiometer operating at a center frequency of 1.413 GHz
and a bandwidth of 20 MHz. Details about the instrument
and resulting soil moisture products can be found on the
Goddard Earth Sciences Data and Information Services
Center Web page (http://hydrolab.arsusda.gov/sgp97/sgp97
f2.pdf). For this study, the ESTAR-measured soil moisture
data set is available for 16 days (18 June to 16 July 1997)
during SGP97 and for 5 days (8–20 July 1999) during the
SGP99 campaign.

2.2. Time Stability Analysis

[11] The time stability concept introduced by Vachaud
et al. [1985] has been widely used to analyze the TS char-
acteristics of soil moisture fields and determine the TS
locations that are representative of the field or pixel mean
soil moisture under different scenarios. According to
Vachaud et al. [1985], time stability is the time-invariant
association between spatial location and classical statistical
parametric values of different soil properties. Two statisti-
cal metrics normally used to conduct the time stability
analysis are the mean relative difference (equation (1)) and
the root-mean-square of relative difference (equation (4)).

[12] The mean relative difference �i;j (% vol/vol) at a
sampling location i in field j is defined as

�i;j ¼
1

nt

Xnt

t¼1

�i;j;t � �j;t

�j;t

; ð1Þ

where �j;t (% vol/vol) is the field mean soil moisture calcu-
lated as

�j;t ¼
1

nj;t

Xnj;t

i¼1

�i;j;t: ð2Þ

[13] In equations (1) and (2), t is the total number of
days soil sampling was done (t ¼ 1,2, . . . , nt), and �i;j;t is
the VSM content measured at location i (i ¼ 1,2, . . . , nj,t)
in field j at time t.

[14] The rank-ordered mean relative difference plot, with
error bounds of one standard deviation of the relative dif-
ference, helps us locate the best TS positions within a field.
A negative mean relative difference value signifies that the

location is drier than the field-averaged soil moisture,
whereas a positive value of mean relative difference indi-
cates that the location is wetter than the field-averaged soil
moisture.

[15] The variance of the relative difference for each sam-
pling location is calculated as

�ð�Þ2i;j ¼
1

nt � 1

Xnt

t¼1

�i;j;t � �j;t

�j;t

� �i;j

 !2

: ð3Þ

[16] Thus, the mean relative difference measures the bias
of the soil moisture value at a particular sampling location,
and the variance of the relative difference indicates the ac-
curacy of that measurement. Together these two statistical
metrics combine to give the root-mean-square error
(RMSE) of the relative difference as

RMSEi;j ¼ �
2
i;j þ �ð�Þ

2
i;jÞ

� �1=2
: ð4Þ

[17] Therefore, RMSEi,j includes both bias and accuracy
metrics [Jacobs et al., 2004]. On the basis of the rank-or-
dered RMSEi,j plot, the sampling locations having lower
RMSE values are considered temporally more stable com-
pared to the ones having higher RMSE values within a
field. In short, both mean relative difference and RMSEi,j

can be used to identify the locations within a field or an RS
pixel that consistently monitor the field or pixel mean soil
moisture with permissible degrees of error, along with the
wetter and drier points plus the extent of their variability
compared to the field or pixel mean soil moisture [Mohanty
and Skaggs, 2001].

[18] Appropriate sampling locations or RS footprints
within a field or watershed having high TS features can be
identified a priori on the basis of the available physical pa-
rameters (e.g., topography, soil, and vegetation) using a
one-way analysis of variance (ANOVA) that tests whether
statistically significant differences exist among the group
mean values [Ott, 1997]. In a one-way ANOVA, the pooled
error variance is calculated, and the resulting F statistic is
used to test the null hypothesis, which states that the popu-
lation means are equal. Thus, using ANOVA, we can deter-
mine if significant differences in soil moisture time
stability exist among the available physical parameters,
such as soil, topography, and LULC [Jacobs et al., 2004].

Table 1. Geographical Locations and Field Attributes for the WC11 and WC12 Fields in the WC Watershed, Iowa

Field

Universal Transverse
Mercator Coordinates

of the NE Corner
of the Field

Mean Soil
Texture (%) Crop Type

Topography
Drainage
FeaturesSand Clay SMEX02 SMEX05

WC11 442,616E, 4,647,323N 24.5 28.6 corn (soybeans) soybeans (corn) hilltop and slope no
WC12 443,842E, 4,646,096N 26.1 27.7 corn corn drainage features yes
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Figure 2
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Figure 3. Sampling points grid within the LW fields in the Little Washita (LW) watershed (Oklahoma)
during the SGP97 campaign. Locations marked with an asterisk in the LW21 field were time stable dur-
ing both SGP97 and CLASIC.

Table 2. Geographical Locations and Field Attributes for the LW03, LW13, and LW21 Fields in the LW Watershed, Oklahoma

Field
Universal Transverse Mercator Coordinates

of the NE Corner of the Field Soil Texture Crop Type Topography

LW03 584,467E, 3,869,166N sandy loam rangeland rolling
LW13 595,701E, 3,864,517N silt loam rangeland rolling
LW21 566,047E, 3,863,463N silt loam wheat/grass flat

Figure 2. The WC watershed, Iowa, (a) Polarimetric Scanning Radiometer (PSR) – derived soil moisture map of 25 June
2002 (pixels marked with an asterisk had the highest time stability with a 60.5% bias and lowest root-mean-square error
values), (b) digital elevation model (DEM), (c) slope, (d) land use– land cover (LULC) during SMEX02, and (e) soil tex-
ture map. Pixels marked with a dot are the time-stable (TS) pixels that estimated the watershed mean soil moisture within
62% VSM.
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Figure 4. The LW watershed, Oklahoma, (a) Electronically Scanned Thin Array Radiometer
(ESTAR) –estimated soil moisture map of 18 June 1997, (b) DEM, (c) slope, (d) soil texture map, (e)
LULC cover during SGP97, and (f) LULC cover during SGP99. Soil texture corresponding to the soil ID
in Figure 4d is given in Table 3.
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3. Results and Discussion
3.1. Walnut Creek Watershed, Iowa

3.1.1. Field-Scale Time Stability Analyses with
Ground-Based Point-Scale Observations

[19] The time series of soil moisture for the WC11 and
the WC12 fields in the WC watershed (Iowa) during
SMEX02 and SMEX05 are shown in Figure 5. It is evident
that the mean soil moisture content of field WC11 is higher
than the WC12 field in both the years (2002 and 2005),
similar to the findings of Jacobs et al. [2004] for 2002. The
higher mean soil moisture of the WC11 field can be par-
tially attributed to the higher clay (28.6%) and lower sand
content (24.5%) of the field compared to the WC12 field
(clay �27.7% and sand �26.1%). The presence of tile
drains in WC12 facilitates the soil water drainage and thus
contributes toward the lower mean soil moisture contents

of the WC12 field. Also, the variability of soil moisture is
higher in WC11 than WC12 for both SMEX02 and
SMEX05. The soil moisture variability decreases immedi-
ately after a rainfall event and then increases for both fields
during the drying period. The trend of soil moisture vari-
ability in WC11 is somewhat like WC12 in 2002 (Figure
5c) and less similar to WC12 in 2005. This behavior may
be due to the fact that during SMEX02, both WC11 and
WC12 were planted with corn, whereas during SMEX05,
WC11 was planted with soybean and WC12 was planted
with corn. Corn is usually a denser crop and has a higher
leaf area index and stronger light extinction properties than
soybean. These properties of corn fields could have caused
higher transpiration loss and led to a more uniform distribu-
tion of soil moisture content with depth than the soybean
fields [Jacobs et al., 2004]. This may explain the difference
between the soil moisture variability trends in the WC11
field during SMEX05 compared to SMEX02.

[20] Figure 6 shows the rank-ordered �i;j values within
61 standard deviation along with their RMSE values for
each sampling location in the WC11 and WC12 fields dur-
ing SMEX02 and SMEX05. A comparison of Figures 6a–
6d shows that the WC11 field maintained its higher TS
characteristics and lower temporal variability compared
to WC12 over a 3 year period (2002 – 2005). During
SMEX02, out of 92 sampling locations in WC11, 32 loca-
tions (nearly 35%) captured the field mean soil moisture
content within 610% VSM. Approximately 44% of these
32 locations (14 out of 32 locations) captured the field
mean within 65% VSM. During SMEX05, approximately
35 out of 87 sampling locations (about 40%) captured the
field mean soil moisture within 610% VSM. About 51% of

Figure 5. (a and b) Mean and (c and d) standard deviation of volumetric soil moisture content of the
WC fields in the WC watershed (Iowa) during the SMEX02 and SMEX05 campaigns.

Table 3. Percent Sand, Silt, and Clay Distribution Within the Pix-
els in the LW Watershed, Oklahomaa

Soil ID Sand (%) Silt (%) Clay (%)

1 41 45 15
2 23 63 14
3 18 69 13
4 37 47 15
5 21 66 13
6 58 32 10
7 30 50 20
8 79 15 6
9 60 31 10
10 56 32 12

aIn accordance with the legend of the soil map of the watershed in Figure 4d.
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these 35 locations (i.e., 18 locations) captured the field av-
erage within 65% VSM. Furthermore, investigation in the
WC11 field showed that 18 of the 32 TS locations (56%)
from SMEX02 (see Figure 1) exhibited TS features during
SMEX05 as well, estimating the field mean soil moisture
within 610% VSM. Approximately 33% of these 18
repeated TS locations (6 locations) captured the field mean
within 65% VSM during both the SMEX02 and SMEX05
campaigns. These 6 TS locations are marked in Figure 1.
Overall, all the TS locations, in general, had lower tempo-
ral variability and RMSE values in SMEX05 compared to
SMEX02. However, a few of the 18 repeated TS locations
that were earlier dry in 2002 with respect to the field mean
were wet in 2005 and vice versa.

[21] Similarly, in the WC12 field, during SMEX02,
about 49% of the total 132 sampling locations (64 out of
132 locations) captured the field-averaged soil moisture
within 610% VSM. Approximately 67% of these 64 TS
locations (i.e., 43 locations) captured the field mean within
65% VSM. During SMEX05, because of a lack of human
resources and other restrictions, sampling was done only
along the two vertical transects, skipping the horizontal
transect earlier sampled in SMEX02 (see Figure 1). There-
fore, the total number of sampling locations in 2005 was
reduced from 132 to 64. Of these 64 locations, about 28%
(18 locations) and 55% (33 locations) captured the field
mean soil moisture within 605% and 610% VSM, respec-
tively. These 33 TS locations within 610% VSM in
SMEX05 included 14 of the 64 TS locations from SMEX02
with the same bias. About 36% of these repeated 14 TS
locations (i.e., 5 out of 14 locations) captured the field
mean within 65% VSM. These common locations that
were time stable during both SMEX02 and SMEX05 within
the WC12 field are marked in Figure 1. Similar to the
WC11 field, the repeated TS locations in WC12 also had
lower temporal deviations and RMSE values in SMEX05

compared to SMEX02. Also, a few of the TS locations in
WC12 were overestimating or underestimating the field
mean soil moisture in 2005, opposite to that in 2002, while
rest of the locations maintained their previous trend.

[22] Though the percentage of TS locations is higher in
the WC12 field, WC11 still exhibits higher time stability as
the temporal standard deviations and RMSE values at the
TS locations in WC11 are comparatively lower. Another
important observation is that the repeated TS locations dur-
ing the 3 year period (2002 – 2005) are at moderate to high
elevations in both the WC fields. Furthermore, the soil tex-
ture at these locations consists of either loam or clay loam
soil. For elevation and soil maps of the WC fields, readers
may refer to Jacobs et al. [2004]. Almost all the mean rela-
tive difference plots showed that the drier sampling loca-
tions have lower variability (smaller temporal deviation
and smaller RMSE) compared to the wetter ones. This
result is consistent with the findings of Jacobs et al. [2004]
for SMEX02.
3.1.2. Watershed-Scale Time Stability Analyses
With PSR Footprint-Scale Observations

[23] The PSR-estimated soil moisture content is quite
low and almost uniform throughout the WC watershed in
Iowa during SMEX02. Changes in soil moisture patterns
are noticeable from 10 through 12 July 2002 after the rain-
fall event on 10 July 2002 (Figures 7a and 7b). Figure 8
shows the �i;j values ranked from lowest to highest along
with 61 standard deviation bars and the RMSE values of
the 84 pixels (resolution of 800 m � 800 m) of PSR in the
WC watershed (see Figure 2). Nearly 21% of the pixels (18
of total 84 pixels) show strong time stability, with their
pixel mean soil moisture value approximating the water-
shed mean within 62% VSM. About 48% of the total pix-
els (41 of 84 pixels) captured the watershed mean within
65% VSM, whereas nearly 80% (67 of 84 pixels) esti-
mated the watershed mean within 610% VSM. There are

Figure 6. Rank-ordered mean relative difference with one standard deviation error bars and root-
mean-square error for each sampling point in the (a and b) WC11 and (c and d) WC12 fields in the WC
watershed (Iowa) during the SMEX02 and SMEX05 campaigns.
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Figure 7. (a) The PSR-based soil moisture and (b) precipitation evolution map of the WC watershed
(Iowa) during the SMEX02 campaign.
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two pixels that exhibit the highest time stability with a
60.5% bias and the lowest RMSE values (Figure 2a).
From the digital elevation model (DEM) and slope maps, it
is apparent that these two highest TS pixels are located at a
higher elevation ( 311 m) with a low slope value (0.27% –
0.28%). Thus, these two pixels seem to be located at hilltop
within the watershed. One of the pixels is planted with soy-
bean, while the other one has a grass cover. The soil texture
of these two pixels is characterized by a high silt content
(between 46%) but lower sand (29%) and clay (26%) con-
tents (see Figures 2b –2e).

[24] A qualitative look at Figure 2e further shows that
almost all the watershed pixels with higher TS characteris-
tics (watershed mean soil moisture content within 62%
VSM bias) have a high silt content (46% –48%) and low
sand (26% –29%) and clay (24%– 26%) contents. Only
four such TS pixels have a higher sand content (45%),
whereas their silt and clay contents are 37% and 18%,
respectively. From Figure 2b, some of the pixels exhibiting
higher TS characteristics appear to be located in closer
proximity to the watershed edge at low to high elevation. A
possible reason for this could be attributed to the lateral
drainage features of these pixels due to their role as a
source instead of sink in the watershed. A few of the TS
pixels are located within the watershed at intermediate ele-
vations. Interestingly, these TS pixels do not have a definite
crop type (Figure 2d). A few of them are soybean fields,
while others have a corn or grass cover. These observations
suggest that topography (elevation) and the soil parameters
(such as percent silt and percent sand) could be the signifi-
cant physical controls affecting the time stability of soil
moisture at the 800 m � 800 m footprint scale as well as
the point scale (see section 3.1.1).
3.1.3. PSR (Footprint Scale) Versus Theta Probe
(Point Scale) Soil Moisture Data

[25] The PSR footprint containing the WC11 field has
better TS characteristics (watershed mean soil moisture
captured within 65% VSM) compared to the PSR foot-
prints overlapping with the WC12 field (watershed mean
within 610% VSM). This is somewhat similar to the find-
ings obtained from the point-scale soil moisture data for
the WC fields during SMEX02 and SMEX05, which show
that WC11 exhibits higher time stability than the WC12
field. Figure 9 shows a comparison of the theta probe –

measured and the PSR-derived soil moisture for the WC
fields during SMEX02. Only those dates when measure-
ments were recorded using both the instruments have been
considered. The 1:1 line of the scatterplot shows that the
PSR sensor estimates soil moisture content fairly well in
the WC11 field (R ¼ 0.91). However, in the WC12 field,
the sensor consistently overestimates the moisture content
compared to the in situ measurements (R ¼ 0.58 only).

3.2. Little Washita Watershed, Oklahoma

3.2.1. Field-Scale Time Stability With Ground-Based
Point-Scale Observations

[26] Figure 10 shows the time series of mean soil mois-
ture along with their standard deviation for the three LW
fields (LW03, LW13, and LW21) in the LW watershed,
Oklahoma, during the SGP97 and CLASIC campaigns. As
expected, the mean soil moisture content rises immediately
after a precipitation event and then continues to decrease
afterward throughout the dry down phase in all the fields.
The soil moisture variability trend appears to be somewhat
similar within the LW03 and LW13 fields during the exper-
imental period interspersed with various rainfall events
(Figures 10a and 10b). This may be due to the fact that
both LW03 and LW13 are rangeland fields with a rolling
topography. However, the variability in LW03 is higher
than that of LW13 and LW21, which may be due to the dif-
ference in their characteristics dominant soil types. LW03
has sandy loam soil, whereas both LW13 and LW21 have
silt loam. The soil moisture condition of the LW21 field is
almost constant during CLASIC as the weather conditions
were predominantly wet during the 3 week long campaign.
Also, during SGP97, soil moisture variability within the
same field rises slightly during the beginning of the drying
phase and then remains almost constant for the rest of the
experimental period marked with intermittent rainfall. This
may be attributed to the fact that LW21 has a somewhat
flat topography, and thus, soil moisture variability is mostly
soil controlled.

[27] During SGP97, LW13 seems to exhibit higher TS
characteristics with lower temporal deviation and lower

Figure 8. Rank-ordered mean relative difference with
one standard deviation error bars and root-mean-square
error for each PSR footprint in the WC watershed (Iowa)
during SMEX02.

Figure 9. Comparison of theta probe –measured and the
PSR-estimated mean volumetric soil moisture content of
the WC11 and WC12 fields in the WC watershed (Iowa)
during the SMEX02 campaign.
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RMSE values compared to fields LW03 and LW21 (Figures
11a–11c). LW21 exhibited the worst TS features, with TS
locations ð�i;j � 0Þ showing high temporal variability with
large standard deviation error bars. Of a total of 49 sampling

locations, about 25%, 39%, and 29% of the locations cap-
tured the field average soil moisture with a 610% bias in
LW03, LW13, and LW21, respectively. About 8%, 9%, and
8% of these TS locations captured the field mean within

Figure 10. Mean and standard deviation of volumetric soil moisture content of fields (a) LW03, (b)
LW13, and (c) LW21 during SGP97 and (d) the LW21 field during the CLASIC campaign in the LW
watershed (Oklahoma).

Figure 11. Rank-ordered mean relative difference with one standard deviation error bars and root-
mean-square error for each sampling point in fields (a) LW03, (b) LW13, and (c) LW21 during SGP97
and (d) the LW21 field during the CLASIC campaign in the LW watershed (Oklahoma).
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65% VSM in LW03, LW13, and LW21, respectively. In
LW03, few of the sampling locations, which are wetter with
respect to the field mean, are subjected to large temporal
fluctuations. Furthermore, the drier sampling locations
showed smaller temporal variability with smaller error bars
compared to the wetter locations in the LW03 field. We
made similar observations in the WC fields of the WC
watershed (see section 3.1.1). For a detailed description
regarding time stability characteristics of the LW fields dur-
ing the SGP97 campaign, readers may refer to Mohanty and
Skaggs [2001]. Furthermore, comparisons show that 10 of
the 14 TS locations estimating the field mean soil moisture
within 610% VSM bias in LW21 during SGP97 were also
time stable during CLASIC (Figure 11d). These locations
that maintained their time stability during both SGP97 and
CLASIC are shown in Figure 3.
3.2.2. Watershed-Scale Time Stability With ESTAR
Footprint-Scale Observations

[28] The ESTAR-derived watershed mean soil moisture
content as well as its temporal fluctuations is higher during
SGP97 compared to SGP99 (Figures 12). However, the

ESTAR data for SGP99 are sparse compared to the SGP97
data set. Therefore, it is not possible to make any inferences
regarding the temporal variability in the watershed mean
moisture values during SGP99. The overall soil moisture
conditions are drier during SGP99 than during the SGP97
campaign. The rank-ordered �i;j within 61 standard devia-
tion and their RMSE values for the ESTAR data sets are
shown in Figure 13. During SGP97, approximately 28% of
the pixels (269 out of 969 pixels) captured the watershed
mean soil moisture within 610% VSM, whereas in SGP99,
nearly 33% of the pixels (165 out of 980 pixels) estimated
the watershed mean within 610% bias. About 13% (131
out of 969) and 17% (165 out of 980) of the pixels captured
the watershed mean within 65% VSM during SGP97 and
SGP99, respectively. During SGP99, the temporal varia-
tions are comparatively lower than SGP97, with higher var-
iability among the drier pixels than the wetter ones, similar
to SGP97. Furthermore, investigations show about 114
common TS pixels capturing the watershed mean within
610% VSM during both SGP97 and SGP99. Figure 14a
shows the locations of these 114 repeated TS pixels

Figure 12. Soil moisture evolution map estimated from the ESTAR data within the LW watershed
(Oklahoma) during the (a) SGP97 and (b) SGP99 campaigns.
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overlaid on the DEM of the LW watershed. Of these 114
common TS pixels, 31 pixels capture the watershed mean
soil moisture with a 65% bias during both SGP97 and
SGP99. However, it should be noted that since the RS data
for SGP99 is temporally sparse, it is difficult to compare
and make any definite inference regarding the long-term
TS characteristics of these pixels within the LW watershed.
Figure 14b shows the slope map of the LW watershed con-
taining the most TS pixels that captured the watershed
mean moisture content within 61% VSM during the
SGP97 and SGP99 campaigns (note that these pixels are
not repeated TS locations during SGP97 and SGP99). It is
evident that these pixels exhibiting higher time stability
(within 61% VSM) are mostly located at low to intermedi-
ate elevations in close proximity to the northeastern and
southwestern edges of the watershed, with few of them
scattered in the central region of the watershed. This is sim-
ilar to the observations made at the WC watershed in Iowa
during SMEX02, where the higher TS pixels (within 62%
VSM) are mostly at low to high elevation near the water-
shed edge (see section 3.1.2). A closer examination of the
results shows that most of these TS pixels have moderate to
high slope values. This suggests that slope could also be
another factor besides elevation controlling the TS behav-
ior of the pixels (800 m � 800 m) in this study watershed.
These findings corroborate to the results of Jawson and
Niemann [2007], who conducted an empirical orthogonal
function (EOF) analysis using the SGP97 (ESTAR) data set
to study the spatiotemporal variations in large-scale soil
moisture patterns. In their study, they concluded that slope
had moderate correlations with the primary EOFs for both
the spatial and temporal soil moisture anomalies.

[29] Furthermore, analysis shows that these watershed
pixels with higher TS characteristics have either higher silt
content (�47%) along the northeastern edge or higher sand

content (�56%) along the southwestern edge of the study
watershed (see Figure 4d and Table 3). We made similar
observations in the case of the WC watershed as well (see
section 3.1.2). A qualitative look at Figures 4e– 4f shows
that a particular crop cover does not dominate among the
TS pixels, although the number of pixels having pasture or
rangeland covers is certainly higher than the rest during
years 1997 and 1999. This may be attributed to the fact that
the watershed was mostly covered with pastures or range-
lands during both SGP97 and SGP99. Thus, similar to the
WC watershed in Iowa, in the LW watershed, both topogra-
phy (elevation and slope) and soil parameters (percent silt
and percent sand) appear to be controlling the TS behavior
of soil moisture at both point and footprint scales.
3.2.3. Factors Controlling Time Stability of
Footprint-Scale Soil Moisture

[30] The one-way ANOVA tests were conducted for
exploring the relationships between physical properties of
the PSR footprints and their mean relative difference within
the WC watershed during SMEX02. In addition, similar
tests were conducted using the standard deviation of the
relative difference to examine whether the observed vari-
ability of time stability is related to the physical parameters
of the sampling footprints (see Table 4). The five physical
properties of the RS footprints used in the analysis are per-
cent clay, percent sand, soil texture, topography (based on
combination of elevation and slope), and LULC. The geo-
physical data sets were aggregated or disaggregated to a
cell size of 800 m � 800 m to match with the resolution of
the sensor footprints. Percent clay and percent sand were
both categorized using range of values from the CONUS
soils database, whereas soil texture was categorized using
loam and silt clay types. Topography was categorized using
DEM-derived information regarding hillslope position. The
DEM of the watershed was extracted from the GTOPO30
data (resolution of 1 km � 1 km) developed by the U.S.
Geological Survey (USGS). Landscape positions were cate-
gorized on the basis of the degree of slope for each foot-
print as hilltop (slope 0% –0.45% with zero flow
accumulation), depression (slope 0%– 0.45% with flow
accumulation), mild slope (0.45% – 0.88%), and high slope
(>0.88%) in the WC watershed. LULC included alfalfa,
corn, grass, soybean, trees, and urban areas.

[31] ANOVA results for the mean relative differences
show that the soil moisture time stability of the PSR foot-
prints can be differentiated on the basis of soil properties,
topography, and LULC. Tests using the standard deviation
of the relative differences make it apparent that of the five
physical attributes, the observed variability of time stability
of the footprints can be differentiated on the basis of per-
cent clay, percent sand, and topography. Compared to
LULC, soil properties and topography are better able to dis-
cern the TS characteristics of the footprints. It is interesting
to see that although percent clay, percent sand, and soil tex-
ture are correlated, the first two soil properties are better
able to discern the TS features of the footprints compared
to the soil texture. Figure 15 shows the mean relative dif-
ference of the PSR pixels categorized by the soil parame-
ters (percent clay, percent sand, and soil texture),
topography, and LULC during SMEX02. It is evident that
none of the soil textures are able to identify the pixels that
are close to mean relative difference (i.e., �i ¼ 0). The 95%

Figure 13. Rank-ordered mean relative difference with
one standard deviation error bars and root-mean-square error
for each ESTAR footprint in the LW watershed (Oklahoma)
during the (a) SGP97 and (b) SGP99 campaigns.
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confidence intervals show a consistent wet bias for the
loam soils and a dry bias for the silt clay soils. Furthermore,
the pixels having loam soil texture with high sand (45%)
but low clay (18%) content consistently overestimated the
watershed mean soil moisture. On the other hand, the pixels
with silt clay texture having equal amounts of clay and
sand (26%) contents consistently underestimated the water-
shed mean. The transition from wet to dry bias occurs at
about 24% clay and 29% sand, which closely matches with

the watershed average percentage of clay (24%) and sand
(31%). Overall, the best soil indicator of soil moisture time
stability is the pixel with loam soil texture having 24% clay
and 29% sand. In terms of topography, the hilltops (slope
�0%–0.45%) show the best TS features, with their respec-
tive mean relative differences close to zero (i.e., �i ¼ 0).
This result matches with the finding of our previous quali-
tative analysis (using the DEM and slope maps), where it
was apparent that the two highest TS pixels were located at

Figure 14. DEM and slope map of the LW watershed (Oklahoma) showing the location of the ESTAR
pixels that were time stable within (a) 610% VSM during both SGP97 and SGP99 and (b) 61% VSM
during the SGP97 and SGP99 campaigns. Note that the ESTAR pixels in Figure 14a are repeated TS
locations during the SGP97 and SGP99 campaigns.

Table 4. F Values for Tests of Difference in Mean Values by Sampling Property for the PSR- and the ESTAR-Based Soil Moisture
Measurements Within the WC Watershed (SMEX02) and the LW Watershed (SGP97)a

Remote Sensing Pixel Property

PSR Data (SMEX02) ESTAR Data (SGP97)

�i;j �ð�i;jÞ �i;j �ð�i;jÞ

Percent clay <0.001*** 0.009** <0.001*** <0.001***
Percent sand <0.001*** 0.009** <0.001*** <0.001***
Soil texture <0.001*** 0.118 (NS) <0.001*** <0.001***
Topography 0.036* 0.004** <0.001*** <0.001***
Land use– land cover 0.039* 0.717 (NS) <0.001*** 0.026**

aThe analysis of variance test examines the mean relative difference ð�i;jÞ and standard deviation of relative differences (�ð�i;jÞ). NS indicates nonsigni-
ficant difference at the 0.05 significance level, and asterisks indicate the following: single asterisk, significance at the 0.05 significance level; two aster-
isks, significance at the 0.01 significance level; three asterisks, significance at the 0.001 significance level. PSR, Polarimetric Scanning Radiometer;
ESTAR, Electronically Scanned Thin Array Radiometer.
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a higher elevation (�311 m) with a low slope value
(0.27% –0.28%). From Figure 15e, pixels having corn and
soybean crop cover show better time stability compared to
the rest. The Pearson coefficients for the WC watershed in

Table 5 show a significant correlation between the mean
relative difference ð�i;jÞ and the three soil parameters (per-
cent clay, percent sand, and soil texture) characterizing the
PSR pixels.

Figure 15. Mean relative difference and 95% confidence interval by soil parameters : (a) percent clay,
(b) percent sand, (c) soil texture, (d) topography, and (e) LULC in the WC watershed (Iowa) during the
SMEX02 campaign. The number of pixels with each physical parameter is shown in parenthesis.
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[32] Similar analyses were performed using the ESTAR
data set for the LW watershed during the SGP97 campaign.
Soil texture within the LW watershed was categorized
using loam, sand, sandy loam, and silt loam types. Land-
scape positions were categorized as hilltop (0% – 0.93%
with zero flow accumulation), depression (0% –0.93% with
flow accumulation), mild slope (0.93%– 1.85%), and high
slope (>1.85%). LULC of the ESTAR pixels was catego-
rized as shown in Figure 16e. Results for the mean relative
differences show that the soil moisture time stability of the
ESTAR pixels can be differentiated on the basis of soil
properties, topography, and LULC. Also, the observed vari-
ability of time stability of the footprints can be differenti-
ated on the basis of the above-mentioned five physical
properties of the ESTAR footprints. The pixels with sandy
loam soil texture having 10% clay and 60% sand (with a
consistent dry bias) are better indicators of time stability of
the pixels. Also, the pixels with loam soil texture having
15% clay and 37% or 41% sand (with a consistent wet
bias) are better indicators of the time stability phenomena
(see Figures 16a–16c). The watershed averages of clay and
sand contents are 13% and 44%, respectively. Figure 16d
shows that the pixels with mild slope (0.93%–1.85%) are
the best indicators of TS features of the ESTAR pixels.
Also, a particular LULC type does not dominate the TS
characteristics of the ESTAR footprints (Figure 16e). Corre-
lation analysis shows a significant relation between the mean
relative difference ð�i;jÞ and percent clay and percent sand
for the ESTAR pixels (see LW watershed data in Table 5).

4. Conclusions
[33] Analyses of both in situ (point scale) and passive

microwave RS (sensor footprint scale) soil moisture data
from the SMEX02 and SMEX05 field campaigns con-
ducted in the WC watershed in Iowa show that soil proper-
ties (i.e., percent silt, percent sand, and soil texture) and
topography (elevation and slope) are significant physical
parameters that jointly control the spatiotemporal evolution
and variability and TS features of soil moisture. At the field
scale, the WC11 field exhibited higher time stability and
lower temporal variation compared to the WC12 field dur-
ing the 3 year span (2002 –2005). The common TS points

during the 3 year period (2002 – 2005) were mostly located
at moderate to high elevations in both fields. Soil texture at
these locations consists of either loam or clay loam soil.
Presence of tile drainage features in the WC12 field
affected the soil moisture variability within the field. Crop
rotation during SMEX02 and SMEX05 seems to have had
an effect on the soil moisture variability in the WC11 field.
At the RS footprint scale, the ANOVA tests show that percent
clay and percent sand are better able to discern the TS fea-
tures of the footprints compared to the soil texture in the WC
watershed. Overall, the best soil indicator of soil moisture
time stability at the footprint scale is the loam soil texture.
Furthermore, the hilltops (slope �0%–0.45%) showed the
best TS characteristics, with their respective mean relative dif-
ferences closer to zero (i.e., �i ¼ 0). The two most TS pixels
are located at a higher elevation (�311 m), with a slope value
of 0.27%–0.28%, within the WC watershed. Finally, a partic-
ular LULC type does not seem to influence the footprint-scale
soil moisture time stability.

[34] In the LW watershed, Oklahoma, our analyses of
both field-based and RS soil moisture data obtained from
SGP97 and SGP99 indicate that both soil properties (per-
cent silt, percent sand, and soil texture) and topography
(elevation and slope) are significant physical controls
jointly affecting the spatiotemporal evolution and time sta-
bility of soil moisture at both point and footprint scales,
similar to the observations made in the WC watershed in
Iowa. At the field scale, the silt loam field (LW13) was
more time stable than the sandy loam field (LW03) and the
silt loam field (LW21). Field LW21, with flat topography,
showed least TS features compared to both LW03 and
LW13, which have gently rolling topography. At the foot-
print scale, ANOVA results show that the pixels with sandy
loam soil texture having 10% clay and 60% sand and those
with loam soil texture having 15% clay and 37% or 41%
sand are better indicators of the time stability phenomena
in the LW watershed. In terms of the hillslope position,
mild slopes (0.93% –1.85%) are the best indicators of TS
features of the ESTAR footprints. Also, a particular LULC
type does not affect the TS characteristics of the footprints.
These findings can prove beneficial when designing long-
term soil moisture monitoring networks and planning

Table 5. Pearson Correlation Coefficients for the WC Watershed (Iowa) and the LW Watershed (Oklahoma)a

�i;j Percent Clay Percent Sand Soil Texture Topography
Land Use–
Land Cover

WC Watershed
�i;j 1 �0.348** 0.313** �0.401** �0.138 �0.026
Percent clay �0.348** 1 �0.991** 0.591** �0.626** �0.225*
Percent sand 0.313** �0.991** 1 �0.478** �0.030 0.257*
Soil texture �0.401** 0.591** �0.478** 1 �0.135 0.075
Topography �0.138 0.007 �0.030 �0.135 1 �0.228*
Land use– land cover �0.026 �0.225* 0.257* 0.075 �0.228* 1

LW Watershed
�i;j 1 0.320** �0.701** 0.037 0.023 0.167**
Percent clay 0.320** 1 �0.679** �0.506** 0.051 0.025
Percent sand �0.701** �0.679** 1 �0.069* �0.036 �0.131**
Soil texture 0.037 �0.506** �0.069* 1 �0.040 0.057
Topography 0.023 0.051 �0.036 �0.040 1 �0.009
Land use– land cover 0.167** 0.025 �0.131** 0.057 �0.009 1

aAsterisks indicate the following: single asterisk, correlation is significant at the 0.05 significance level; two asterisks, correlation is significant at the
0.01 significance level.
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intensive, short-term field campaigns for validating air-
borne- or satellite-based RS soil moisture data.
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Figure 16. Mean relative difference and 95% confidence interval by soil parameters : (a) percent clay,
(b) percent sand, (c) soil texture, (d) topography, and (e) LULC in the LW watershed (Oklahoma) during
the SGP97 campaign. The number of pixels with each physical parameter is shown in parenthesis.
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