Landing Throttleable Hybrid Rockets with Hierarchical Reinforcement Learning in a Simulated Environment

Project Team: Francesco Alessandro Stefano Mikulis-Borsoi
Advisor: Dr. Marek Petrik
Co-Advisor: Paul Gesel

Introduction
- Markov Decision Processes model decision making in discrete, stochastic, sequential environments; their next state is independent of the past state given the present state.
- Hierarchical reinforcement learning involves layers of MDPs, maintaining interpretability.
- Difficult and interesting problem: continuous and partially observable state-space, non-linear dynamics and requirement of real-time control.

Hierarchical Structure
- The Lander MDP selects the thrust, feeding it to the state definition of the stabilizer.
- The stabilizer is an MDP whose inputs and outputs are axis independent. Ensuring this type of symmetry effectively reduces the size of state space by the square root (otherwise requiring each state field to have X and Y axis).

Objectives
- Land a throttleable hybrid rocket in 3D with thrust vectoring from varying initial states.
- The controller must execute with constrained CPU, RAM and imprecise sensor data.
- Integrate 3D visualization for visual verification.
- Land the rocket with vertical velocity < 2 m/s and zenith angle < 8° from varying initial states around 30 m at -10 m/s, within 8 seconds.

RL Contribution
- Developed a standardized RL framework for OpenRocket, which should encourage the community to test different MDP formulations, and specific reward functions.
- MDPs are defined with a schema (with fields such as “stateDefinition”), and custom formulas can be used to calculate complex state fields, parsed with recursive descent.
- Software development with extensibility in mind led to the creation of common interfaces for different learning RL methods (implemented MC, TD-0, SARSA) - where the rewards can be specified in the schema.
- Crucial modifications to the source code allow for plotting the state and action fields of the custom MDPs (with MDP-specific discretization).
- The non-hierarchical version of this discretization definition succeeded < 10% of the time, even after an order of magnitude more training compared to the hierarchical problem formulation.

3D Visualizer
- Integrated OpenRocket with Blender via Python server leveraging UDP (local network capability).
- Created OpenRocket visualization extension.
- Ability to replay scenes and view simulations.

The Approach
- Demonstrates that hierarchical MDPs are effective for reducing the state space.
- Leverages different discretization of the state space based on specific needs for the MDPs.
- Landers: MC (terminalReward = -|velocityZ|)
- Stabilizer: TD-0 (reward = - angle^2 + 1)
- Splitting the MDPs allows for specific reward functions, with a meaningful single objectives.

Current Status
- Over 169 commits to the fork of OpenRocket.
- Over 10k lines of contributed code.
- Developing an expansion to include a Reacher MDP that will guide the rocket to the landing pad.

Next Steps
- Continue researching the implications of hierarchical RL in complex decision problems.
- Develop a toolbox unifying the OpenRocket RL with the OpenAI-Gym framework.
- Continue extending the customizations in OpenRocket to finalize the framework.
- Release this problem as an RL benchmark.

90% Success after 1000 episodes (1 minute)
