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ABSTRACT 

BIMODULE CATEGORIES AND MONOIDAL 2-STRUCTURE: 

by 

Justin Greenough 

University of New Hampshire, September 2010 

Advisor: Dr. Dmitri Nikshych 

We define a notion of tensor product of bimodule categories and prove that with 

this product the 2-category of C-bimodule categories for fixed tensor C is a monoidal 

2-category in the sense of Kapranov and Voevodsky ([KV91]). We then provide a 

monoidal-structure preserving 2-equivalence between the 2-category of C-bimodule 

categories and Z(C)-module categories (module categories over the center of C). The 

(braided) tensor structure of C\ lEI-p Ci for (braided) fusion categories over braided 

fusion T> is introduced. For a finite group G we show that de-equivariantization is 

equivalent to the tensor product over Rep(G). The fusion rules for the Grothendeick 

ring of Rep(G)-module categories are derived and it is shown that the group of in-

vertible Rep(G)-module categories is isomorphic to H2(G,kx), extending results in 

[ENO09]. 
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INTRODUCTION 

0.1 Generalities 

Over the last century it has become evident that the study of algebraic structures 

from a module theoretic perspective is effective and powerful. The essential paradigm 

hinges on the observation that one structure may "act" on another and that in study

ing such actions one may learn something about the structures involved. The applica

tion of this basic notion has led to the development of a vast machinery of techniques 

and methods. In the theory of group representations, for example, one defines the 

action of a group on a vector space by specifying an association between elements of 

a group and linear transformations on a fixed space. Much can be understood about 

groups by making observations about the sorts of linear transformations which can 

arise by this process and in particular the traces of these linear maps (character the

ory). To study Lie algebras one defines an associative algebra as a certain quotient of 

the tensor algebra and then studies modules over this algebra. This notion also occurs 

naturally in more physical contexts, such as Boundary Conformal Field Theory (see 

for example [Car], [JF03], [VP01]). To any CFT is associated a ring-like object which 

acts on boundary conditions in a higher-dimensional space. Considerations about 

how similar constructions can be deformed have helped lead to the development of 

the theory of quantum groups, Hopf algebras and algebraic category theory, and have 
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deep applications in theoretical physics (see [Maj02], [Str07], [FMS99] among many 

others). 

It is beneficial to consider the ways in which modules interact. The collection 

of modules defined over a given structure will generally form a category with extra 

algebraic structure allowing the application of extended classical results and con

structions from ring and group theory. In precisely this fashion one moves from a 

"one-dimensional theory" to an enriched categorical theory with analogous but sub

tler structures yielding analogous but more refined results. Thus the classical picture 

acts as a cartography for the new theory and provides a narrative over which it 

develops. 

The categories under study are required to satisfy axioms making something akin 

to linear algebra possible (so called abelian categories). Fusion categories are defined 

to be abelian categories equipped with a monoidal structure (multiplication) that 

behaves nicely with respect to other important operations. The notion of "monoidal 

category" is an abstraction of the notion of a ring and is intended to capture ring

like properties on an axiomatic level. Similarly we may define symmetric r braided 

tensor categories as abstractions of a commutative ring, and module category as an 

abstracted module. Module categories, introduced by Bernstein in [Ber95] and studied 

in [Ost03], [EO04] among many others, form the basic objects of study in this thesis. 

The definition of a module category involves describing the action of a monoidal 

category just as classical modules describe actions of rings. Because we are dealing 

with more abstract structures the new axioms take the form of commuting diagrams 

whose vertices are objects and whose edges consist of appropriately defined maps 
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which form part of the definition of the action. These maps dictate the appropriate 

associativity and unit constraints, in the categorical context, that one would see 

expressed in equations such as (xy)z — x{yz) and Ix = x in algebra. As with 

rings and modules, one would like some meaningful way by which to relate pairs of 

module categories. There we have functions preserving module structure (linearity) 

and here we have functors preserving module category structure, so called module 

functors. One primary difference in the categorical setting is that here we have a way 

of relating pairs of module functors. Since module functors themselves are required 

to satisfy certain axioms (again taking the form of commuting diagrams) we may 

define module transformations as transformations preserving this structure in the 

appropriate fashion. -

Just as modules over a fixed ring form a category, module categories over a fixed 

monoidal category form an appropriately enriched structure, called a 2-category. Just 

as in certain circumstances the category of modules over a fixed ring may itself have 

the structure of a monoidal category (under tensor product of modules) so may the 

associated 2-category of module categories have under certain conditions a monoidal 

structure making it a monoidal 2-category. As we move from monoidal category to 

monoidal 2-category the basic data expressed in diagrams (2-dimensional versions 

of equations in the lower-dimensional case) are replaced by 3-dimensional diagrams, 

polytopes, which represent restrictions on the ways cells of various levels are allowed to 

interact. Now instead of just 0-cells (objects) and l-cells (morphisms) we have 2-cells 

(morphisms between morphisms). A priori there is no reason why the theory should 

fail to continue beyond level two yielding 3-cells, 4-cells etc. Although it is possible to 
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define higher level structures leading to n-categoies, and even oo-categories, we leave 

this to future endeavor. 

The basic "nice" condition allowing us to define a tensor product between module 

categories occurs when we require that module categories are really bimodule cate

gories. One instance in which this happens arises naturally when we stipulate that 

the underlying monoidal category is braided, a notion generalizing the idea of ring 

commutativity in an appropriately categorical way. In such a case we can define a 

tensor product of bimodule categories in a way reminiscent of the definition of the 

tensor product of modules; by stipulating an object universal for certain types of 

functors. If the bimodule categories in question are taken over a fixed monoidal cat

egory C we denote this new tensor product £3c- As the notation suggests lElc reduces 

to a well known product for abelian categories developed by Deligne in [Del90]: in 

the case that C = Vec, the category of vector spaces, we have E3c = £3-

A major part of this thesis has focused on asking and answering basic theoretical 

questions about G3C and the associated monoidal 2-category of bimodule categories. 

It turns out that G3c shares, in categorical analogue, many properties of the classical 

module theoretic tensor product, e.g. weak associativity, Frobenius reciprocity, and 

unitality with respect to the underlying monoidal category. These results, as in the 

classical case, provide powerful tools required for difficult calculations and form a 

basic starting point from which to develop algebraic aspects of the theory. 
\ 
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0.2 Thesis outline 

First steps in denning this extended product involve defining balanced functors from 

the Deligne product of a pair of module categories. This approach mimics the classical 

definition of tensor product of modules as universal object for balanced or middle 

linear morphisms. Tensor product of module categories is then defined in terms of 

a universal functor factoring balanced functors. In Theorem 2.3.1 we prove that the 

tensor product exists; explicitly we prove that, for Ai a right C-module category and 

N a left C-module category there is a canonical equivalence A4McAf — Func(A4op, M) 

where the category on the right is the appropriate category of C-module functors. 

In order to apply the tensor product of module categories we provide results in 

§2.3 giving 2-category analogues to classical formulas relating tensor product and 

hom-functor. In this setting the classical horn functor is replaced by the 2-functor 

Func giving categories of right exact C-module functors. 

In §4.1 we prove 

Theorem 0.2.1. For any monoidal category C the associated 2-category B(C) of C-

bimodule categories equipped with the tensor product fflc becomes a (non-semistrict) 

monoidal 2-category in the sense of [KV91]. 

In Chapter 5 we discuss the tensor product for a special class of module categories. 

Here we assume our module categories are equipped with the structure of fusion 

categories and that their centers contain a faithful image of some fixed braided fusion 

category V (such categories are said to be tensor over V, see Definition 5.0.7). Under 

these circumstances the tensor product itself has the structure of a fusion category. 
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If the module categories are braided the tensor product is braided. We describe these 

structures explicitly. 

As an immediate application we prove in Chapter 6 that de-equivariantization of 

a tensor category can be represented as a tensor product over Rep(G), the category of 

finite dimensional representations of a finite group G. Let A be the regular algebra in 

Rep(G). For tensor category C over Rep(G) the de-equivariantization CQ is defined 

to be the tensor category of ,4-modules in C. This definition was given in [DGNO10] 

and studied extensively there. We prove 

Theorem 0.2.2. There is a canonical tensor equivalence Co — C ^Rep(G) Vec such 

that the canonical functor C —> C ^Rep(G) Vec is identified with the canonical (free 

module) functor C —> Ca

in §7 we introduce the notion of the center of a bimodule category generalizing 

the notion of the center of a monoidal category. We then prove a monoidal-structure 

preserving 2-equivalence between the monoidal 2-category of C-bimodule categories, 

denoted B(C), and Z(C)-Mod, module categories over the center Z(C): 

Theorem 0.2.3. There is a canonical monoidal equivalence between 2-categories B{C) 

andZ(C)-Mod. 

In §8 we give a second application of the monoidal structure in 13(C). To be precise 

we show that, for arbitrary finite group G, fusion rules for Rep((7)-module categories 

over E3Rep(G) correspond to products in the twisted Burnside ring over G (see e.g. 

[OY01] and [Ros07]). As a side effect we show that the group of indecomposable 

6 



invertible Rep(C)-module categories is isomorphic to H2(G,kx) thus generalizing 

results in [ENO09J given for finite abelian groups. 
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CHAPTER I 

PRELIMINARIES, BACKGROUND 

Very little in this section is new. Where it seemed necessary sources have been 

indicated. In most cases what is included here has become standard and so we omit 

references (suggested general references: [MacOO], [BK01], [Kas95] along with those 

already given in the introduction). 

1.1 Abelian categories 

As mentioned in the introduction we are interested in studying an enriched, categori-

fied version of the theory of rings and modules. The proper context in which to do 

this should provide tools and structures allowing us to do something akin to linear 

algebra in this extended region of discourse. In this section we will outline the basic 

sorts of categories with which we will have occasion to work in later sections. 

Definition 1.1.1. An additive category is a category C satisfying the following. 

i) Every horn set has the structure of an abelian group with respect to which 

composition of morphisms is a group homorphism. 

ii) C has a zero object 0 with the property that Hom(0,0) = 0. 

Hi) (Existence of direct sums.) for any objects X\,X2 & C there exists an object 

Z := Xi © X2 £ C and morphisms ji : Xi —• Z, pi : Z —» Xi for i = 1,2 such 
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that pi o j'j = idxi and j \ o px + j 2 o p2 — idz and Z is unique object up to a 

unique isomorphism having this property. 

The object Z in (Hi) is called the direct sum of Xi and X2 and is denoted X\ ®X2. A 

functor F :C —» V between additive categories is said to be an additive functor if the 

associated functions Home(X, Y) —• Homx>(F(X), F(Y)) are group homomorphisms. 

Definition 1.1.2. Let k be any field. An additive category is k-linear if each horn 

set has the structure of a vector space over k with respect to which composition of 

morphisms is bilinear. A functor between A>linear categories is a ^-linear functor if 

the associated functions between horn sets are linear transformations. . 

Let C be an additive category, and / : I - » 7 a morphism in C. Then the kernel 

of / (if it exists) is the unique (up to a unique isomorphism) object K together with 

a morphism K : K —* X such that /OAC = 0 and if K' : K' —> X is any other morphism 

with this property there is a morphism j : K' —> K with K, o j = K'. Typically we 

denote the kernel of / by ker(/). Similarly one defines the cokernel of / to be an 

object coker(/) and a morphism c : Y —• coker(/) with the property that cof = 0 and 

which is universal with respect to this property in a way analogous to the universality 

defining ker(/). If ker(/) = 0 / is said to be injective, and surjective if coker(/) — 0. 

• r • • 

In the case that / is injective we call X a subobject of Y and if / is surjective we call 

Y a quotient object of X. In an additive category there is no guarantee that kernels 

and cokernels exist. We will require that they do. 

Definition 1.1.3. Let C be an additive category. Then C is an abelian category if it 

satisfies the further property that for any morphism / : X —* Y there is a composition 
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ker(/) ^ X - ^ / i r A coker(/) with j o i — f and coker(/c) — I = ker(c). The 

object / is called the image of / . In particular, kernels and cokernels exist in an 

abelian category. 

Definition 1.1.4. In an abelian category C an object is said to be simple if its only 

subobjects are itself and 0. If there are only finitely many isomorphism classes of 

simple objects then C is called finite. If an object Y can be written as the direct sum 

of simple objects Y is called semisimple, and C is called semisimple if all of its objects 

are semisimple. 

Any category for which the class of objects form a set will be called small. An 

important theorem of Mitchell shows that the category of modules over a fixed ring 

is the typical example of an abelian category. We include it here without proof for 

the sake of completeness. See [Fre64] and [Mit64] for a more thorough discussion. 

Theorem 1.1.5 (Mitchell). Every small abelian category is equivalent to a full sub

category of the category of left modules over an associative unital ring. If the category 

is k-linear then the ring is a k-algebra. 

We end this section on abelian categories with a few definitions familiar from 

topology, the theory of modules, and representation theory which will be of impor

tance to us in the sequel. 

Definition 1.1.6. An exact sequence in an abelian category is a diagram of the form 

/i-l v fi v fi+1 v fi+2 
• • • • A j _ j > A ; > A j + i > • • • 
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where ker(/ i+1) is the image of /»• for every i. That is fi+ifi = 0. If all but finitely 

many of the Xi are 0 then this is called a finite exact sequence. 

Definition 1.1.7. Functor F : A —> B is said to be right exact if F takes short exact 

sequences 0—+ A —> B —>C-+ 0 in .4 to exact sequences F(A) —• F(£?) —> F(C) —> 0 

in B. Similarly one defines left exact functors. Denote by FunjA, B) the category of 

right exact functors A —* B. 

1.2 Monoidal and fusion categories 

In the rest of this thesis all categories are assumed to be abelian and fc-linear, have 

finite-dimensional horn spaces, and all functors are assumed to be additive and k-

linear. Even though most of what we do here is valid over fields of positive charac

teristic we assume at the outset that k is a fixed field of characteristic 0. 

Definition 1.2.1. A monoidal category C consists of the following: a category C 

containing an object 1 called the unit of C, an exact-in-both-variables bifunctor <g> : 

C x C —> C, natural isomorphisms a : <g>(<8> x id) —• ®(id x <g>), rx '• X ® 1 ĉ  X, 

lx '• 1 ® X ~ X whenever X € C, required to satisfy the following commutative 

diagrams: 

((WX)Y)Z 

aX,l,Y 

(W(XY))Z (WX)(YZ) (X1)Y ~ >X{IY) 

aW,XY,Z 

W((XV)Z) ^ ^ > W(X(YZ)) 

11 
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for any objects W, X,Y,Z e C. Here, as in the sequel, we may abbreviate tensor 

products as juxtaposition in an effort to save space. The natural isomorphism a is 

called an associativity constraint and £, r unit constraints of C. The monoidal category 

C is said to be strict if all the natural isomorphisms a, r, £ are identity. 

Remark 1.2.2. Denote by E3 the product of abelian categories introduced in [Del90]. 

This is an object in the category of abelian categories universal for right-exact in both 

variables bifunctors from the cartesian product category C xT>. If (C, <8>, I, a, £, r) and 

(V, <g>, 1', a', £', r') are monoidal categories then CMV has the structure of a monoidal 

category as follows: {Xl 12 X2) <g> (Yx E! Y2) = (Xi <g> Yx) M (X2 <8> V2) with associativity 

constraint a 13 a', unit object 1 S 1 ' and unit constraints £S £', r § r'. 

Definition 1.2.3. Let C = (C, ®, a, £, r, 1), X> = (£>, <g>, a', f, r', 1') be monoidal cate

gories. A functor F : C —> V is said to be a monoidal functor if it comes with natural 

isomorphisms fx,y • F(X <g> Y) ~ F(X) <g> F(K) and u : F( l ) ~ 1' satisfying the 

following hexagon and squares for every X,Y-,Z € C. 

F (AT)F(Z) < / x K , z F p K ) Z ) F(a*-y 'z) > F(X(KZ)) 

/x,v®Jd fx,YZ 

(F(X)F(Y))F(Z) F(X)(F(YZ)) 

lF(X),F(Y),F(Z) id®fy,z 

F(X)(F(Y)F(Z)) 

F ( X ) ® F ( 1 ) 

fx.i 

F(X <g> 1) -

-• F(X) ® 1' F( l ) ® F(X) 
u®id 

-> 1' ® F(A-) 

rF(A-) /l.-X" ' CF(X) 

F ( r x ) 
F(X) F ( l <g> X) 

F(<?x) 
F(X) 
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In order to emphasize or designate the linearity constraint / for a functor F we may 

on occasion write (F,f). The functor is said to be a strict monoidal functor if the 

natural isomorphism / is identity. 

Following terminology from regular category theory we will say that two monoidal 

categories are monoidally equivalent if there is a monoidal functor between them which 

is an equivalence. As it turns out, by MacLane's famous "strictness theorem," we 

may justifiably assume all monoidal categories to be strict. We include the statement 

here for completeness and because we will use it extensively in what follows. 

Theorem 1.2.4 (MacLane strictness theorem). Any monoidal category is monoidally 

equivalent to a strict one. 

A nice proof of Theorem 1.2.4 may be found in Joyal and Street's 1993 paper on 

braided tensor categories [JS93]. In what follows we will assome monoidal categories 

strict unless stated otherwise. The primary benefit of having such a theorem is that it 

provides notational convenience simplifying diagrams and calculations. For example 

it allows us to replace the expressions (X <g> Y) <g> Z and X ® (Y ® Z) with the 

now unambiguous expression X <g> Y ® Z, and allows us to dispense with structural 

constraints. 

Definition 1.2.5. Let (F, /),(<?, g) : C —» V be two monoidal functors. A monoidal 

natural transformation r]: F —* G is a natural transformation satisfying the rectangle 

F{X®Y)- ^ ^ >G(X®Y) 

fx,Y 9X,Y 

F W ® F ^ -^^r-+ G(X) ® G(Y) 
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for any X,Y eC. 

As in many familiar classical situations (Rep(G), R-Mod for commutative R, 

pointed toplogical spaces, etc) there is a natural notion of duality. The following 

definition gives a categorical axiomatization of this concept. 

Definition 1.2.6. Let C be a monoidal category, and let X be an object of C, An 

object Y is said to be a right dual of X if there are morphisms ev^ : Y <S> X —• 1 

and coevx "• 1 —• X <g> V, called evaluation and coevalugtion, such that both of the 

compositions 

X = l®X^$X®Y®X^->X®l = X 

Y = Y<8>\?^X®Y®X^L>l®Y = Y 

are equal to identity. Similarly one defines a left dual of X to be an object V together 

with morphisms ev^ : X ® V -* 1 and coev'x : 1 —> V <g> X making both of the 

compositions 

coev'„ ev'„ 

x = x®\—$x®v®x—^\®x = x 
coevV ev'y 

^ = 1 ® ^ $V®X®V-^V®l = V 

identity. 

It is well known that if X possesses any left (right) dual then it is unique up to a 

unique isomorphism. In this case the left (right) dual object of X is denoted *X (resp. 
\ 

X*). Furthermore this process of associating to an object its duals, should such dual 

objects exist, extends to morphisms. Explicitly, if / : X —• Y is a morphism between 

objects X, Y possessing right duals then define the right dual /* : Y* —> X* of / by 
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the composition 

Y* = Y*®l^Y*®X®X*-^^Y*®Y®X*^l®X* = X\ 

Similarly one defines the left dual */ : *Y —• *X. 

Definition 1.2.7. A monoidal category is said to be rigid if every object possesses 

both a right and a left dual object. 

Definition 1.2.8. Let C be an abelian A;-linear monoidal category having finite di

mensional hom spaces with respect to which the bifunctor <8» is bilinear. C is called a 

tensor category if it is finite, rigid and has a simple unit object 1. C is called a fusion 

category if it is tensor and semisimple. 

Also of interest is the notion of invertible object in a tensor category. 

Definition 1.2.9. An object X is invertible if there is an object Y such that X® Y ~ 

1 ~ Y <g> X. If every simple object is invertible the category is said to be pointed. 

1.2.1 Braiding, center. 

The definitions given thus far in §1.2 describe basic categorical analogues to the 

objects of study in the classical theory of rings. The next definition describes the 

categorical version of a commutative ring. 

Definition 1.2.10. A monoidal category C is said to be braided if it is equipped with 

a class of natural isomorphisms 
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satisfying the pair of hexagons 

U(yW) ^ (VW)U (UV)W^W{UV) 

{UV)W V{WU) U{VW) (WU)V 

(VU)W^VVW) U(WV)-zr^(UW)V 
au,w,v 

for all objects U,V,W G C. 

When C is strict these reduce to commuting triangles giving equations 

Cuy®w = (idv ® cUtW)(cuy ® idw) 

Cu®v,w = {cu,w ®idv){idu ®cv,w)-

In any braided monoidal category the isomorphisms cx,y, cYix are composable. We 

adapt the following definition from [MugOO], [Mug03]. 

Definition 1.2.11. Two objects X,Y in a braided monoidal category are said to 

centralize each other ii'Cx,yCY,x = idy®x-

Let V be a fusion subcategory of a braided fusion category C. Following [DGNO10] 

we make the following definition. 

Definition 1.2.12. The centralizer V of T> is the full subcategory of objects of C 

that centralize each objects of V. The centralizer C is sometimes called the Miiger 

center of C. 

In the next two examples G is a finite group. 
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Example 1.2.13. Rep(G), the category of finite dimensional representations of G, 

is a braided tensor category with the usual tensor product. 

Example 1.2.14. The category VedQ of finite dimensional G-graded vector spaces 

twisted by w € H3(G,kx) is a rigid monoidal category. Simple objects are given 

by kg (gth component A;, 0 elsewhere) with unit object A .̂ Associativity is given by 

a-k ,kh,km
 = ^(Qi ^I m)*d on simple objects, tensor product is defined by 

hk=g 

and (V*)g = (*V)g = Vg-i. In general Ved£. is not braided. 

Definition 1.2.15. The center Z(C) of a monoidal category C is the.category having 

as objects pairs (X, c) where X € C and for every YECcy: Y®X^>X®Y is a 

family of natural isomorphisms satisfying the hexagon 

( i ® r ) ® z ^ 4 z ® ( i ® y ) 

X®{Y®Z) (Z®X)®Y 

X®{Z®Y)^r>{X®Z)®Y 
aX,Z,Y 

for all Y, Z € C. Here a is the associativity constraint for the monoidal structure 

\ 
in C. A morphism (X, c) —* (X1, d) is a morphism / € Homc(X, X') satisfying the 

equation c'Y(f <g> idY) = (idy ® f)cy for every Y eC. 

The center Z(C) has the structure of a monoidal category as follows. Define the 
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tensor product (X, c) ® (X1, d) = (X <g> X', c) where c is defined by the composition 

aY,X,X' , , , „x v . cy 
Y®(X® X') ^ 4 (Y®X)® X' - ^ (X ® Y) ® X' 

cv 
ax,v,x' 

(x ® x') <g> r tr— x ® (X' ® y) <-̂ — x ® (r ® x') 
ax,x',v 

If r and ^ are the right and left unit constraints for the monoidal structure in C 

then the unit object for the monoidal structure in Z(C) is given by (l ,r_ 1£) as one 

may easily check. Suppose now that C is rigid and X e C has right dual X* (recall 

Definition 1.2.6). Then (X,c) € Z(C) has right dual (X*,c) where cY := (c7y)* and 

*Y is the left dual of Y. One may also check that Z(C) is braided by C(x,c)®{x-,j) '•= c'x. 

There is a canonical inclusion of monoidal category C into its center given by 

X i—• (X, ex)- It is well known that the center Z(C) is in some sense "larger" than 

C. This differs from the classical analogue in which a ring contains its center. We 

generalize the notion of center in §7. 

1.2.2 Pre-metric groups 

Everything in this subsection may be found in [DGNO10]. We refer the reader 

to [DGNO10], [Kas95] and [BK01] for definitions and other information relating to 

braided fusion categories. 

Recall that a quadratic form on an abelian group G having values in an abelian 

group B is a map q : G —> B such that q{g~l) = q{g) and the symmetric function 

b(9> h) :~ ( ) (h) *s bmvultiplicative. We call b : G x G —> B the bimultiplicative form 

associated to q. If B — kx we call b the bicharacter associated to q. 
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Definition 1.2.16. A pre-metric group is a pair (G, q) where G is a finite abelian 

group and q : G —• kx is a quadratic form. A morphism of pre-metric groups 

(Gi, qi) —> (G2, g2) is a homomorphism <p : Gi —• G2 such that q-ioip — qx. 

The set of isomorphism classes of the simple objects of any pointed braided fusion 

category C form a group G. For g G G denote by q(g) € A;x the braiding cx,x € 

Aut(X <g> X) where X is in g. Then g •—> q(g) is a quadratic form G —> fcx. In this 

way C determines the pre-metric group (G,q). 

Conversely every pre-metric group (G,q) determines a pointed braided fusion 

category C(G, q) as follows. As a fusion category C(G, q) is Vecc, the category of 

(finite-dimensional) G-graded vector spaces. For X homogeneous object of degree g 

define the twist 6x = q(g)- Then the braiding CX,Y '• X 0 Y —» Y <g> X satisfies 

cxycY,x = b(9, h)idy®x (1) 

where b is the bicharacter determined by q. In the special case that q comes from 

a bicharacter /? : G x G —> A;x via the equation q(x) — /3(x,x), the associated 

braiding is cxy — P(9-> h)r for r the linear twist. These two constructions define 

reciprocal equivalences between the category of pre-metric groups and the (truncated 

2-) category of pointed braided fusion categories. 

1.3 Module categories 

In §1.2 we described the basic objects of study for a categorical version of classical 

ring theory. In this section we will define the categorical analogue of the classical 
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theory of modules. The first definition is crucial for this thesis. 

Definition 1.3.1. Let C be a monoidal category. A left C-module category (M,fx) 

is a category M. together with an exact bifunctor ® : C x M - > M and a family of 

natural isomorphisms HX,Y,M '• (X ®Y) ® M —* X ® (Y & M), £M : 1® M —> M for 

X,Y € C and M G M. subject to the coherence diagrams 

{(WX)Y)M 

VX.l.M 
(W{XY))M (WX)(YM) (X1)M — >X(1M) 

V-W.XY.M l*W,X,YM rx®M*\ s^X®lM 

'XM W((XY)M) ^ ^ - • W(X(YM)) 

Similarly one defines the structure of right module category on >1. If the structure 

maps are identity we say M. is strict as a module category over C. 

Example 1.3.2. Any monoidal category C is a module category over itself with 

action given by monoidal structure. This is referred to as the regular module category 

structure on C. 

Example 1.3.3. Let G be a finite group with subgroup H. For 2-cocycle fi € 

H2(H,kx) the category Rep^(//) of projective representations of H corresponding 

to Schur multiplier fi constitutes a Rep(<7)-module category with module category 

structure defined by W <g> V := ves%(W) ® V whenever W e Rep(G), V € Rep^H) 

and res : Rep(G) —• Rep(H) is the restriction functor. 

For any X G C we get a functor Lx '• M. —> M. given by M H-> X <g> M (left 

multiplication by X). It is natural to ask about the existence of adjoints of Lx- The 
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following definition introduces a convenient technical tool for dealing with module 

categories. For the next definition assume A4 is a C-module category for semisimple 

C. Denote by Vec the braided tensor category of finite dimensional vector spaces. 

Definition 1.3.4. For M, N G A4 the internal horn Hom(M, N) is defined to be the 

object in C representing the functor Hom^( ® M,N) : C —» Vec. That is, for any 

object X € C we have 

Honu<(X ®M,N)~ Homc(X, Hom(M, N)) 

naturally in Vec. It follows from Yoneda's Lemma that Hom(M, N) is well defined 

up to a unique isomorphism and Hom(—, —) is a bifunctor. 

Definition 1.3.5. For M.,M left C-module categories a functor F : M. —> Af is said 

to be a C-module functor if F comes equipped with a family of natural isomorphisms 

fx,M '• F(X <8> M) —> X ® F(M) satisfying the coherence diagrams 

F((XY)M) 

F(X(YM)) (XY)F(M) F(1M^ " > F ^ 

fx, YM 

IF{M) 
XF{y^ ^ r — > X(Y(F(M)) 

whenever X,Y € C and M G M.. We may write (F,•/) when referring to such a 

functor. A natural transformation r : F => G for bimodule functors (F,f),(G,g) : 
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Ai —*• M is said to be a module natural transformation whenever the diagram 

T X ® M 
F(X 0 M) — * * M > G(X ® M) 

fx, M 9X,M 

X <8> F(M) — > X <g> G(M) 

commutes for all X G C and M G M.. 

In what follows we will have occasion to deal with categories of module functors. 

We fix notation now. 

Definition 1.3.6. The category of left C-module functors from Ai —> N with mor-

phisms given by module natural transformations will be denoted Func(Ai,Af). The 

subcategory of right-exact C-module functors (recall Definition 1.1.7) will be denoted 

Func(MM). 

It is known that the category Func{M.,N) is abelian. Furthermore if Ai, J\f are 

semisimple then so is Func(M.,N) (see [ENO05] for details). 

In much^of this thesis we will be concerned with categories for which there are 

left and right module structures which interact in a consistent and predictable way. 

In the next subsection we will discuss this in more detail and for now simply give a 

definition. 

Definition 1.3.7. Let C, V be monoidal categories. M. is said to be a (C, V)-bimodule 

category if M. is a C O Z^-module category. If M and hf are (C, £>)-bimodule 

categories call F : M. —* M a (C, V)-bimodule functor if it is a C IS "Dop-module 

functor. 
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Recall MacLane's strictness theorem for monoidal categories stating that every 

monoidal category is equivalent to a strict one (Theorem 1.2.4). Next we prove a 

generalized version for module categories which reduces to the monoidal strictness 

theorem in the regular module case. Our proof mimics the proof of the monoidal 

strictness theorem found in [JS93]. 

Theorem 1.3.8. Any module category is module equivalent to a strict module cate

gory. 

Proof. Let (VW, //, r) be a right C-module category for some strict monoidal category C. 

The strategy is to show that M is module equivalent to a C-module category M! which 

is defined to be a category of functors on which C acts by functor composition and 

which is therefore strict. We begin by recalling that C is monoidally equivalent to the 

category of C-module endofunctors Func(C,C) with equivalence given by X •—*• Fx. 

Fx : C -> C is the functor sending 1 •-> X (1 is unit object in C): FX{Y) - X <g> Y. 

Define M! to have objects given by pairs (F, / ) where F is a functor C —> M. and 

fx,Y '• F{X) <g> Y —* F(X <g> Y) is a natural isomorphism in Ai satisfying the diagram 

F(X) ®{Y®Z) fx-Y®z > F(X ®Y®Z) 

MF(X),y,z fx®Y,Z 

(F(X) ® Y) ®Z——-—>F{X ®Y)®Z 

for every triple X,Y,Z € C. In short, F is a right C-module functor with module 

linearity given by / . A morphism 6 : (F 1 , / 1 ) —> ( F 2 , / 2 ) in M! is defined to be a 

natural transformation 6 : F 1 —> F 2 satisfying the diagram in Definition 1.3.5 making 
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it a module natural transformation. Composition in M! is vertical composition of 

natural transformations. 

Now note that KM is a right C-module category: for X € C and (F, / ) € M! define 

(F, / ) <8> X := ( F o F x , / x ) where / x is defined by 

FFX{Y) ® Z = F (X ® F) <8> Z 7 ^ z F (X <g> V <g> Z) = F F * ( r <g> Z). 

Note that the action of C on .M' is strict since composition of functors is strictly 

associative and F l = id. We show that Ad is module equivalent to AV. 

For M G A4 define functor L ^ : C —+ Ad by left M multiplication in C, i.e. 

X t—• M (g) X. This allows us to define functor L : A4 •—> AV by 

L(M):=(LAf,/iAf,-,-)-

It is evident that L(M) is an object in At': the diagram required of ^M,-,- is precisely 

the pentagon in the definition of module category. We show that L is both essentially 

surjective and fully faithful. 

To see essential surjectivity observe that any (F, / ) € AV is isomorphic to LF(I)-

Indeed fXtX • LFW(X) = F( l ) <g> X ~ F(X) for any X eC, and / l f_ is natural. 

Next let 6 : LM —» £;v be a morphism in AV tor M,N € M. Define the morphism 

<p : M —* N in A4 by the composition \ 

24 



We claim that for all Z €E C one has 6z = <p<8> Z, whence 6 = L{ip) and L is thereby 

full. To see this consider the following diagram. 

M^Z !*^i>(M®l)®Z, |,M,1,Z ) M ® ( 1 ® Z ) ^ ^ >M®Z 

<£<g)Z ei<»z ' 1®Z z 

Rectangle on the left is definition of <p, middle rectangle commutes since 8 is a mor-

phism in Ai', right rectangle commutes on naturality of 6. Top and bottom horizontal 

compositions are identity (two applications of the triangle axiom which forms a part 

of the definition of module category). Thus perimeter is identical to the equation 

<p ® Z = Oz and L is full. On the other hand if L(f) = L(g) for any morphisms 

f,g € M. then the square of naturality for r implies f — g, and L is also therefore 

faithful. This completes the proof that L is an equivalence. 

We now show that L is a module functor and finish the proof of the theorem. 

Define natural isomorphism 

JMX ••= I*M,Y,- • {L(M®Y),HM®Y,-,-) -»• (L(M) ® y,//MiK®-,-). 

Pentagon in the definition of module category implies that JM,Y is a morphism in /A' 

and that J is a module functor. We are done. • 
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1.3.1 Bimodule categories 

For right C-module category M. having module associativity fi define ftx,Y,M = 

IJ-M*Y,'X- Then Mop has left C-module category structure given by (X, M) H-> M® *X 

with module associativity jJTx. Similarly, if A4 has left C-module structure with asso

ciativity a then A4op has right C-module category structure (M, Y) i—> Y* <g> M with 

associativity a~x for &M,X,Y '•= O~Y*,X',M-

Proposition 1.3.9. These actions determine a (T>,C)-bimodule structure 

(Y®X,M)^X*®M®*Y 

on A4op whenever Ai has (C,T>)-bimodule structure. If 7 are the bimodule coherence 

isomorphisms for the left/right module structures in M. (see Proposition 1.3.10), then 

1YM,X = 1X\M*Y are those for M"9. 

In the sequel whenever M, is a bimodule category AA0? will always refer to M. 

with the bimodule structure described in Proposition 1.3.9. 

Proposition 1.3.10. Let C, V be strict monoidal catgories. Suppose At has both 

left C-module and right D-module category structures ft1, fir and a natural family of 

isomorphisms ~fx,M,Y '• (X <8> M) <g> Y —• X <g> (M ® Y) for X in C, Y in V making 
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the pentagons 

((XY)M)Z — ^ (XY)(MZ) (XM)(YZ) — ^ X(M(KZ)) ( lM)1^4 l (Ml ) 

(I(FM))Z 
7 

((iM)r)z id®nr 

X((YM)Z) W J (K(MZ) ) (X(Afr))Z - ^ X((MF)Z) 

M l fAf 

« M 
1M 

commute. Then M. has canonical {C,V)-bimodule category structure. 
s 

Proof. Throughout abbreviate X := X^ El X2 in C IS X>°P. Suppose given nl, JJT 

and 7 as in the statement of the proposition. Observe that C M X>op acts on A4 by 

(X§§Y)®'M := (A"<8»M)®y where the <g> on the right are the given module structures 

assumed for A4. For M G M. define natural isomorphism \i : <8>'(idc®v°p x ®') ~* 

®'(<8>' x id/vi) by the composition 

Thus /ix.F.M : ( (^ i ® r i ) ® Af) <8> (>2 ® *i) -^ (*i <S> ((Xi ® M) ® F2)) <g> X2 in the 

language of left and right module structures . 

Consider the partitioned diagram below whose periphery is the appropriate dia

gram for fx written as the composition which defines it. To save space we elide identity 

morphisms, morphism subscripts, and objects occurring at internal vertices. Label 

the subdiagrams Di. 
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((XlYxZl)M)(Z2Y2X2) • U(XlYiZl)M)Z2)(Y2X2) -> (((*in)(ZiM))z.j)(y2x2) 

(ttXlYlZ1)M)(.Z2Y2))X2 

U(XMYiZi)MMZ2Y2))X2 

(X1(((K,Zi)M)(Z2V2))X2 

D4 

,1 

P 7 

DS ((-XTiV-oa^iMJZa))^^) 

I 

«(X1Y1H(Z1M)Z2))Y2)X2 

I 

> (^ i (n( (ZiM)z 3 ) ) )y 2 )x 2 

(Xi(«nZl)M)Z2)i '2)X2 -»• Ar,(((n(ZlW))Z2)V-2)X2 > (.Xl((Y1((ZlM)Z2))Y2)X2 

Diagrams Dl , £>4 are the associativity diagrams for //", fj,1, diagrams D2, £)3, Z)5, 

D7, D9, D10 are naturality diagrams for either //' or 7, and diagrams £>6 and DS 

are the second and first diagrams given at the beginning of this remark. • 

Remark 1.3.11. For bimodule structure (A4,//), 7 is given by 7X,M,K = A*xHi,iBy,M 

over the inherent left and right module category structures. In this way we get 

the converse of Proposition 1.3.10: every bimodule structure gives separate left and 

right module category structures and the special constraints described therein in a 

predictable way. 

Remark 1.3.12. We saw in Proposition 1.3.10 that bimodule category structure can 

be described separately as left and right structures which interact in a predictable 

fashion. We make an analogous observation for bimodule functors. Let F : (M, 7) —> 

{N, S) be a functor with left C-module structure ff and right V-module structure / r , 

where (A4,7) and (J\f,6) are (C, X>)-bimodule categories with bimodule consistency 
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isomorphisms 7, 8 as above. Then F is a (C,X>)-bimodule functor iff the hexagon 

F(X <g> (M <g> Y)f^YF((X ® M) (8) y / * ^ F ( X ® M ) ® r 

M®V / x . M ® ^ 

X <g> F ( M ® K) ——* X ® (F(M) ® n < (X ® F(M)) ® Y 
X®JM,Y dX,F(M),V 

commutes for all X in C, Y in D, M in Ai. The proof is straightforward and so we 

do not include it. 

1.3.2 Exact module categories 

It is desirable to restrict the general study of module categories in order to render 

questions of classification tractable. In their beautiful paper [EO04] Etingof and 

Ostrik suggest the class of exact module categories as an appropriate restriction in

termediary between the semisimple and general (non-semisimple, possibly non-finite) 

cases. Let P be an object in any abelian category. We say P is projective if the 

functor Hom(P, —) is exact. 

Definition 1.3.13 ([EO04]). A module category M. over tensor category C is said 

to be exact if for any projective object P € C and any M € M. the object P <g> M is 

projective. 

It turns out that module category exactness is equivalent to exactness of certain 

functors. We will not require the general formulation here but give the next lemma 

for exact module categories because exactness ensures adjoints for module functors. 
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Lemma 1.3.14. For Ai,Af exact left C-module categories the association 

Func{M,N) ^ Func{M,M)op 

sending F to its left adjoint is an equivalence of abelian categories. If Ai,N are 

bimodule categories then this equivalence is bimodule. 

Proof. By Lemma 3.21 in loc. cit. such adjoints exist and since adjoints are unique 

up to isomorphism the association is bijective on ismomorphism classes of objects 

(functors). For F : M. —• M linearity of F*"* over C comes from that for F via the 

composition 

aR := Hom^(Fad(X <g> N), R) ~ Honw(X <g> N, F(R)) 

~ HomM(N,X* ® F(R)) ~Rom^(N,F(X* ® R)) 

~ HomM(Fad(N), X*®R)~ HomM(X <g> Fad(N), R) 

for X € C, N e N, R E M. The third ~ is linearity of F . Define 

otF«<L{x<SN){id) : X <g> Fad{N) ^ F^X ® N) 

The diagrams required to show that a gives C-linearity for F0^ in Func(M, •M)op 

are not difficult to draw but tedious and non-enlightening and so we omit them. 

Now assume that the module categories involved are bimodule. Define left and right 
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C-module action on F by the equations 

X <g> Fad := (F ® *X)ad, F ^ ® X := (*X ® F) a d . 

This defines bimodule action ( X S 7 ) ® F0<i := (*F <g> (F <g> *X))ad with bimodule 

coherence the adjoints of those for F: If ^X,Y : X ® (F (g> Y) —> (X ® F) ® Y) are 

those for F then those for Fad are given by ^'XY = (7*r,*x)ad- • 

Note 1.3.15 (Notation). For C and T> finite tensor categories we define a new cat

egory whose objects are exact (C, P)-bimodule categories with morphisms (C,V)-

bimodule functors. Denote this category B(C,V). When C — V this is the category 

of exact bimodule categories over C, which we denote B(C). For M. and M in B(C, T>) 

denote by Func^i-M-.M) the category of (C, "D)-bimodule functors from M. to M. It 

is evident that for exact (C, V) bimodule category M. and (C, £) bimodule category M 

the category of module functors Func{M.,N) has the structure of a (X>, £) bimodule 

category with action (X H Y) ® F := F(— <g> X) ® Y. For finite exact module cate

gories Ai,Af the category of functors Func{M.,N) is known to be an exact module 

category over the tensor category Func{M,N) with action given by composition of 

functors (Lemma 3.30 loc. cit). 

1-3.3 Dominant functors 

Let F : A —> B be an additive functor between abelian categories and define its image 

Im(F) to be the full subcategory of B having objects given by all subquotients of 

objects of the form F(X) for any X £ A. 
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Definition 1.3.16. The functor F is said to be dominant if Im{F) = B. 

It is an easy exercise to show that Im(F) is itself an abelian category. Furthermore 

if A, B are tensor categories and F a tensor functor then Im(F) is a tensor subcategory 

of B. Indeed if A\,AX are quotients of subobjects Zy,Z2 of F(Xi),F{X2) for X{ 

objects of A then exactness of tensor structure <g> of B implies that A\ ® A2 is a 

quotient of Z\ <g> Z2 which is a subobject of F{X\) <g> F(X2) — F{X\ ® X?). Hence 

Ai ® A2 is a subquotient of F{XX <g) X2) and is therefore an object of Im{F). The 

unit object 1 is contained in Im(F) because it is a trivial subobject of F( l ) , and 

constraints come from those in B. 

It is also evident that if A, B are semisimple then dominance of F means that any 

object of B is actually a subobject of F(X) for some X G A. 

1.4 2-categories and monoidal 2-categories 

Recall that a 2-category is a generalized version of an ordinary category where we 

have cells of various degrees and rules dictating how cells of different degrees interact. 

There are two ways to compose 2-cells a, /?: vertical composition (3a and horizontal 

composition ft * a as described by the diagrams below. 

A-9j^B => A U f l , A | « B U C => A h*aC 
V L / h h h' h'h 

It is required that a*0 = (P*h)(f •a) — (h!•a)((3»f) where • signifies composition 

between 1-cells and 2-cells giving 2-cells (see [Lei04] for a thorough treatment of higher 
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category theory and [Ben67], [Kel82] for theory of enriched categories). For fixed 

monoidal category C we have an evident 2-category with 0-cells C-module categories, 

1-cells C-module functors and 2-cells monoidal natural transformations. 

Example 1.4.1. The category of rings defines a 2-category with 0-cells rings, 1-cells 

bimodules and 2-cells tensor products. 

A monoidal 2-category is essentially a 2-category equipped with a monoidal struc

ture that acts on pairs of cells of various types. For convenience we reproduce, in 

part, the definition of monoidal 2-category as it appears in [KV91]. 

Definition 1.4.2. Let A be a strict 2-category. A (lax) monoidal structure on A 

consists of the following data: 

Ml. An object 1 = 1^ called the unit object 

M2. For any two objects A, B in A a new object A <8> B, also denoted AB 

M3. For any 1-morphism u : A —> A' and any object B a pair of 1-morphisms 

u®B:A®B-^A'®B and B ® u : B <g) A —• B <g> A' 

M4. For any 2-morphism 
u 

and object B there exist 2-morphisms 
\ 

t4®B B®u 

A®BlT*BA'®B B® A lB®TB ® A' 

u'<S)B B®u' 
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M5. For any three objects A, B, C an isomorphism CLA,B,C '• A®(B®C) —• (A®B)®C 

M6. For any object A isomorphisms I A : 1 ® A —> A and TA : A <g> 1 —• A 

M7. For any two morphisms u : A —* A', v : B —* B' a 2-isomorphism 

A®B^*A®B' 
u®B u ® B ' 

A'®B^A'®B' 

M8. For any pair of composable morphisms A —> A' —» A" and object i5 2-isomorphisms 

(Vu)®B B®(u'u) 

A ® g V > A" ® ff BOA r >£®A" 
u ® B 

/ l '®£ 

u , u ' , B . 

u'®B 
Btgiu 

B®A' 
B®u' 

M9. For any four objects A, B, C, D a 2-morphism 

A ® ( 5 ® (C ® D ) ) ^ a B , c ? ^ ® ( (£ ® C) ® £>) 

a/l,B,c®D®£> 

(A® 5 ) ® (C ® £>) aA'B'c'D 

a A ® B , C , D 

OA,B(glC,0 

((A ® B) ® C) ® ^ ppO4 ® ( 5 ® C)) ® £> 

M10. For any morphism u : A —> A',v : B —» B'\w : C —* C 2-isomorphisms 

A ® (B ® C) ^ 4 (A ® 5 ) ® C 

u®(B®C) 

A ® (B ® C) ^ 4 (A ® fl) ® C • 

Ou.fl.C (u®B)®C .4®(u®C) "A,i>,C (v4®v)®C 

A'®{B®C)a-r^c{A'®B)®C A ® ( £ ' ® C)„ • (A ® B') ® C 
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A ® (B ® C) ^ 4 (A ® B) ® C 

A®(B®w) aA,B,iv (A®fi)'®w 

A ® (B® C'V • (A ® B) ® C" 

Mil . For any two objects A, B 2-isomorphism 

A® ( 5 ® 1) 
A®rB 

aA,B,l 

>A®B 1 ® (A ® B) 
' A ® S 

<n,x,B 

(A ® B) ® 1 (1® A)® B 

>A® B 

A ® ( 1 ® B ) ^ § ^ > A ® B 

a A , l , B 

(A® 1 ) ® B 

M12. For any morphism u : A —> A' 2-isomorphisms 

1 ® A - ^ 1 ® A ' A ® 1 ^ > A ' ® 1 

iA 

A ->A' 

•A' *A 
Tv. 

^—>A> 

M13. A 2-isomorphism e : n => /^ 

These data are further required to satisfy a series of axioms given in the form 

of commutative polytopes listed by Kapranov and Voevodsky. As well as describing 

the sort of naturality we should expect (extending that appearing in the definition of 

2-cells for categories of functors) these polytopes provide constraints on the various 

cells at different levels and dictates how they are to inteact. For the sake of brevity 

we do not list them here but will refer to the diagrams in the original paper when 
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needed. In [KV91] these polytopes are indicated using hieroglyphic notation. The 

Stasheff poly tope, for example, (which they signify by (•<g)«<g>«<g)«<g>«), pg. 217) 

describes how associativity 2-cells and their related morphisms on pentuples of 0-cells 

interact. In the sequel we will adapt their hieroglyphic notation without explanation. 

We digress briefly to explain what is meant by "commuting poly tope." This notion 

will be needed for the proof of Theorem 0.2.1 Our discussion is taken from loc. cit.. 

In a strict 2-category A algebraic expressions may take the form of 2-dimensional 

cells subdivided into smaller cells indicating the way in which the larger 2-cells are to 

be composed. This procedure is referred to as pasting. Consider the diagram below 

left. 

Edges are 1-cells and faces (double arrows) are 2-cells in A\ T : gh =$>• dk, V : ek =$• be, 

U : fd=>ae. The diagram represents a 2-cell fgh =$> abc in A as follows. It is possible 

to compose 1-cell F and 2-cell a obtaining new 2-cells F * a, a * F whenever these 

compositions make sense. If a : G =$• H, these are new 2-cells FG => FH and 

GF => HF, respectively. Pasting of diagram above left represents the composition 

fgh =$• fdk =^> aek ^> abc. 

For 2-composition abbreviated by juxtaposition the pasting is then (a*V)(U*k)(f*T). 
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In case the same external diagram is subdivided in different ways a new 3-dimensional 

polytope may be formed by gluing along the common edges. Thus the two 2-dimension 

diagrams can be combined along the edges fgh and abc to form the new 3-dimensional 

polytope 

/ > ! 

T 

% 

r 
We have labeled only those edges common to the two original figures. As an aid to 

deciphering polytope commutativity we will denote the boundary with bold arrows as 

above. To say that the polytope commutes is to say that the results of the pastings 

of the two sections of its boundary agree. In such a case we say that the pair of 

diagrams composing the figure are equal: the 2-cells they denote in A coincide. 
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CHAPTER II 

TENSOR PRODUCT OF BIMODULE CATEGORIES 

The next few chapters contain a description of the data giving the 2-category of 

C-bimodule categories for a fixed monoidal category C the structure of a monoidal 

2-category. In the rest of this thesis all categories are assumed to be abelian and k-

linear, have finite-dimensional horn spaces, and all functors are assumed to be additive 

and ^-linear. Even though most of what we do here is valid over fields of positive 

characteristic, we assume at the outset that A; is a fixed field of characteristic 0. 

2.1 Preliminary definitions and first properties 

Recall definition of right exactness (Definition 1.1.7). 

Definition 2.1.1. Suppose (M,fi) right, (Af, rf) left C-module categories. A functor 

F : M £3 Af —• A is said to be C-balanced if there are natural isomorphisms bM,x,Y '• 

F((M <g> X) S N) ~ F(M El {X <g> N)) satisfying the pentagon 

F((M ® (X ® Y)) ® N) >>M,X®Y,N ^ ^ M H ^ x 0 rj 0 N^ 

PM,X,Y VX,Y,N 

F(((M ®X)®Y)®N) F(M H (X ® (Y <g> N))) 

F((M ® X) B (Y <g> N)) 
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whenever X, Y are objects of C and M € Ai. 

Of course Definition 2.1.1 can be extended to functors from the Deligne product 

of more than two categories. 

Definition 2.1.2. Let F : Mi El M2 El • • • El Mn -+ N be a functor of abelian 

categories and suppose that, for some i, 1 < i < n—1, Afj is a right C-module category 

and A4i+i a left C-module category. Then F is said to be balanced in the ith position if 

there are natural isomorphisms bXMu Mn : F(MiE)- • -!3(Mi<8>X)l3Mi+ilS- • -E3Mn) ~ 

F(Ml El • • • El Mi 13 (X <g> Afi+i) El • • • El Mn) whenever M{ are in M ; and X is in C. The 

b' are required to satisfy a diagram analogous to that described in Definition 2.1.1. 

One may also define multibalanced functors F balanced at multiple positions si

multaneously. We will need, and so define, only the simplest nontrivial case. 

Definition 2.1.3. Let M.\ be right C-module, M.<i (C, 2>)-bimodule, and M,j, a left 

Z>-module category. The functor F : A4i El A42 ^ M3 —• M is said to be completely 

balanced (or 2-balanced) if for X € C, Y € V, N € .M2! M 6 Af 1 and P € M3 there 

are natural isomorphisms 

F((M <g> X) E3 iV El P) ~ F ( M El (X ® TV) El P) 

F(M El (TV <g> y ) El P) ~ P ( M El N El ( y ® P)) 

6 M,X,N,P 

b2 
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satisfying the balancing diagrams in Definition 2.1.1 and the consistency pentagon 

F((M <g> X) B (TV ® Y) El P) — > F((M ® X) El TV El (F ® P)) 
| *M®Jf,/V,y,P 

bM,X,N®Y,P 

F(M ®(X®(N® Y)) El P) 

7x,N,Y 

F(M El ((X ® iV) ® r ) El P) — j > F(M ®(X®N)®(Y® P)) 

Here 7 is the family of natural isomorphisms associated to the bimodule structure in 

M2 (see Remark 1.3.10). Whenever F from A-tiEIA^EI- • -^Mn is balanced in "all" 

positions call F (n — 1) -balanced or completely balanced. In this case the consistency 

axioms take the form of commuting polytopes. For example the consistency axiom 

for 4-balanced functors is equivalent to the commutativity of a polytope having eight 

faces (four pentagons and four squares) which reduces to a cube on elision of 7-labeled 

edges. With this labeling scheme the 1-balanced functors are the original ones given 

in Definition 2.1.1. 

Definition 2.1.4. The tensor product of right C-module category M. and left C-

module category M consists of an abelian category M. Elc M and a right exact C-

balanced functor BMjj : Ai El M —> M. Elc M universal for right exact C-balanced 

functors from M. El J\f. 

Remark 2.1.5. In [TamOl] constructions similar to these were defined for fc-linear 

categories as part of a program to study the representation categories of Hopf algebras 

and their duals. Balanced functors appeared under the name bilinear functors, and 

the tensor product there is given in terms of generators and relations instead of 
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the universal properties used here. The tensor product was defined and applied 

extensively by [ENO09] in the study of semisimple module categories over fusion C. 

Remark 2.1.6. Universality here means that for any right exact C-balanced functor 

F : M. El Af —> A there exists a unique right exact functor F such that the diagram 

on the left commutes. 

MmN-^—tA MEUV U 

BM,M &M,M 
F * k 

M®cN M^cN—= 

The category M. McAf and the functor BMJS are defined up to a unique equivalence. 

This means that if U : A^HA/" —* U is a second right exact balanced functor with 

F = F'U for unique right exact functor F' there is a unique equivalence of abelian 

categories a : U —> Ai $$c -N" making the diagram on the right commute. 

Remark 2.1.7. The definition of balanced functor may be easily adapted to bifunc-

tors from M. x Af instead of M. El M. In this case the definition of tensor product 

becomes object universal for balanced functors right exact in both variables from 

M x M (Remark 1.2.2). This is the approach taken by Deligne in [Del90]. One eas

ily checks that our definition reduces to Deligne's for C — Vec. This provides some 

justification for defining the relative tensor product in terms of right-exact functors 

as opposed to functors of some other sort. \ 

Lemma 2.1.8. Let A4,Af be right, left C-module categories for C a monoidal cate

gory. Then the universal balanced functor BMJJ from Definition 2.1.4 is dominant 
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(Definition 1.3.16). 

Proof. Let F be any balanced functor from M. M M, and let F be the unique functor 

from M. E3C H with FBMrtf — F- For the inclusion i : Im{BMjj) c—• M 13c N define 

F' := Fi. Then it is obvious that F'BMJJ = F, hence F factors through Im(BMjf) 

uniquely. As a consequence of the universality of the relative tensor product Ai §§c 

M=Im{BMM)- • 

The following lemma is a straightforward application of the tensor product uni

versality from Definition 2.1.4. We list it here for reference in the sequel. 

Lemma 2.1.9. Let F, G be right exact functors M. £Pc N —+ A such that FBMJS — 

GBMX. ThenF = G. 

Proof. In the diagram 

M^N BM'" >M®CN 

BMM 

MmcN ^A 

for T — FBMJS — GBMJJ the unique equivalence a is id^^M- D 

Definition 2.1.10. For M. a right C-module category and N a left C-module category 

denote by Funbal(M E3 M, A) the category of right exact C-balanced functors. Mor-

phisms are natural transformations r : (F, f) —• (G, g) where / and g are balancing 
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isomorphisms for F and G satisfying, whenever M G M. and N E Af, 

F((M®X)®N) ™®x'" > G((M ® X) ® N) 

IM,X,N 9M,X,N 

F((M H (X ® JV)) - j j ^ r - ^ <?( Af B (X ® iV)) 

for 1 in C. Call morphisms in a category of balanced functors balanced natural 

transformations. Similarly we can define Fun^al(JMIE)- • -E3jMn, A) to be the category 

of right exact functors "balanced in the ith position" requiring of morphisms a diagram 

similar to that above. 

2.2 Module category theoretic structure of tensor product 

In this section we examine functoriality of E^ and discuss module structure of the 

tensor product. 

For AA a right C-module category, Af a left C-module category, universality of 

BMM implies an equivalence between categories of functors 

y : Funbal(M ®Af,A)^> Fun(M ®r Af, A) (2) 

sending F t—» F (here overline is as in Definition 2.1.4). Quasi-inverse W sends G i-+ 

GBMJS with balancing G *b, b the balancing of BMJJ- On natural transformations 

r, W is defined by W(T) = r * BMjs where *\is the product of 2-morphism and 

1-morphism: components are given by W(T)M®N = TBMU(M&N)- One easily checks 

that y\V = id so that W is a strict right quasi-inverse for y. Let J : Wy —* id 
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be any natural isomorphism. Then components of J are balanced isomorphisms 

J(FJ) '• (F, F*b) —> (F, / ) where / is balancing for functor F. Being balanced means 

commutativity of the diagram 

V 

F(M®X®N) F(bM-x'N) > F{M®X®N) 

JMX&N JMRXN 

F(M ®X®N) — • F(M ®X®N) 
JMtX,N 

for any M € A4,X £ C, N £ Af. Hence any balancing structure / on the functor F 

is conjugate to F * b in the sense that 

/M,X,N = JM^XN ° F(bM,x,N) ° JMXEN- (3) 

Remark 2.2.1. Let F, G : M. 13 N —* A be right exact C-balanced functors. To un

derstand how y acts on balanced natural transformation T : F —> G recall that to any 

functor E : S —• T we associate the comma category, denoted (E,T), having objects 

triples (X, Y, q) G S x T x UomT(E(X), Y). A morphism (X, Y, q) -» (X ' , K', q') is a 

pair of morphisms (h, k) with the property that k o q = q' o E(h). For E right exact 

and 5, T abelian, (£ , T) is abelian ([FGR75]). 

Let F be the unique right exact functor having FBMJS
 = F and consider the 

comma category {F,A). Natural balanced transformation r determines a functor 

ST : M MAT - (F, .*), X ^ ( B ^ ^ ( X ) , 0 ( X K r x ) and / ~ (F(f),G(f)). It is 

evident that SV is right exact and inherits C-balancing from that in BMJS, G and r. 

Thus we have a unique functor ST : M§QcN —* (F, .4.) with STBMJS — ST. Write 
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ST = (Si, S2, cr). Using Lemma 2.1.9 one shows that Si = id.M®cN and S2 = G. Then 

o(Y) : F (y ) - • G ( r ) for Y e M ®c N. This is precisely T:~F->G. 

Given right exact right C-module functor F : M. —* Ai' and right exact left C-

module functor G : N -> M' note that BM\M'(F B G) : A< B JV -» A4' B c A/° is 

C-balanced. Thus the universality of B implies the existence of a unique right exact 

functor F^CG := BM'M'iF B G) making the diagram 

M^M-^^M'mW 
&M,M BM',W 

M®cM-^GM'®cN' 

commute. One uses Lemma 2.1.9 (see the next diagram) to show that E3c is functorial 

on 1-cells: (F' ®c E')(F B c E) = F'F B c E'E. 

M®N"-^ M'EAT'-^ M"'®N" 

BM,U M'mcN' 

F^cE 

M®cN 
F'Blc£> 

BM",M" 

F'F^cE'E 
-*M"®CM" 

Thus the 2-cells in M7. of Definition 1.4.2 are identity. If we define F®N :— F^cidu 

(Definition 3.1.5) then the 2-cells in M8. are identity as well. 

Remark 2.2.2. Next we consider how Be can be applied to pairs of module natural 

transformations. Apply Btfjj> to the right of the diagram for the Deligne product of 
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r and <x 
F®E 

giving natural transformation 

(r S<r) ' := BNM. * (r S a) : BMM, (F®E)=> BM^, (G S H) (4) 

having components Bj,/j^i*(T^a)A^B = BJ^J^^TA^^B)- Here * indicates composition 

between cells of different index (in this case a 1-cell and a 2-cell with the usual 2-

category structure in Cat) . 

It is easy to see that this is a balanced natural transformation, i.e. a morphism 

in the category of balanced right exact functors Funbal(A4 BU\f,M G3c JV'). Using 

comma category (F EIC F', M' I3C Af') we get 

r S c c ^ : = ( r E l a ) , : f S c F ' ^ G S c (?'. (5) 

Note also that Sc is functorial over vertical composition of 2-cells: (r'Kcer'X7"^:0") = 

T'T MC a'a whenever the compositions make sense. Though we do not prove it here 

observe also that Oc preserves horizontal composition • of 2-cells: 

(T' • r) ®c O ' •cr) = (T' mcJ) • (r ®c a). ~ 

For the following proposition recall that, for left C-module category M, the functor 

Lx '• -M. —» M. sending M*-+X®M{OT:X€:C fixed is right exact. This follows from 
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the fact that Hom(X* <g> Nr ) is left exact for any N G AA. 

Proposition 2.2.3. Let AA be a (C,S)-bimodule category and Af an (£,T>)-bimodule 

category. Then AA^eAf is a (C, T>)-bimodule category and BMJS is a (C, T>)-bimodule 

functor. 

Proof. For X in C define functor Lx : M ISA/" - • M MAf : MM N •-• (X <g> M) El N. 

Then there is a unique right exact Lx making the diagram on the left commute; 

bimodule consistency isomorphisms in AA make Lx balanced. 

M ®NB-^XM EbJV M ®NB-^YM ®vAf 

BM,N 
R Y 

MmvM M&vAf 

Similarly, for Y in V define endofunctor RY : M E3 TV i-> M § ( J V ® F ) . Then 

there is unique right exact Ry making the diagram on the right commute; bimodule 

consistency isomorphisms in Af make Ry balanced. Lx and Ry define left/right 

module category structures on AA Sf Af. Indeed for \i the left module associativity 

in AA note that BMJJXP-XXM fflidpf) '• Lx LyBMjj ~ LX®YBMSS is an isomorphism 

in Funbal(AA S Af, AA. Kg Af) so corresponds to an isomorphism Lx Ly ~ LX®Y m 

End(.A4 Elf Af) which therefore satisfies the diagram for left module associativity in 

AA ̂ £ Af. Composing diagonal arrows we obtain the following commutative diagram. 

AA 13 AfB^?AA S p Af - ^ AA ®v Af 

RY Lx 
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Note then that 

L\ RYBMM — RY LXBMJJ 

and since Ry LXBMJ^S is balanced Lemma 2.1.9 implies Ry Lx = Lx Ry- Suppose 

Q E M ®£ M. Then (X ® Y) <g> Q := Tx~Ry'Q = TwTx~Q defines (C,£>)-bimodule 

category structure on M ESg M. Note also that since the bimodule consistency iso

morphisms in M S3 TV are trivial the same holds in M §§g M. As a result BMJT is a 

(C, 2>)-bimodule functor. • 

In the sequel we may use Lx to denote left action of X € C in M S M and for 

the induced action on M £3c M. Similarly for Rx-

Remark 2-2.4. The above construction is equivalent to defining left and right module 

category structures as follows. For the right module structure 

® : (MM) B C a^'c M{M®C) - ^ MM 

where a 1 is defined in Lemma 3.1.1 and where tensor product of module categories 

has been written as juxtaposition. The left action is similarly defined using a2 and 

left module structure of M in second arrow. 

Proposition 2.2.5. Let M be a (C,V)-bimodule category. Then there are canonical 

(C, V)-bimodule equivalences M £3p V ~ M ~ CMc M. 

Proof. Observing that the P-module action <g> in M is balanced let IM : M S p V —> 

M denote the unique exact functor factoring <g> through BMT>. Define U : M —> 
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M M V by M H-> M 13 1 and write U' = BM<VU. We wish to show that lM and U' 

are inverses. 

Note first that IMU' = idM. Now define natural isomorphism r : BMtt> => (7'® 

by TM,X = ^MX 1 where 6 is balancing isomorphism for BM,V- AS a balanced natural 

isomorphism r corresponds to an isomorphism r : B/^p — ^M^DV => U'® in the 

category End(A4 E3p X>). Commutativity of the diagram 

M®VV 
f/'® 

->M&vT> 

implies U'IM = U'® so that idM®T,v — U'IM via r . In proving C E3c -M. ~ A4 one 

lifts the left action of C for an equivalence TM '• C§3c .A4 —• Ai. Strict associativity of 

the module action on Ai implies that both TM and IM are trivially balanced. D 

Corollary 2.2.6. Let (F,f) : Ai —> Af be a morphism in B(C) where f is left C-

module linearity for F. Then there is a natural isomorphism FrM -^ r^{idc ®c F) 

satisfying a poly tope version of the diagram for module functors in Definition 1.3.5. 

A similar result holds for the equivalence I. 

Proof. Consider the diagram 

C®M 
BC,M 

TM 

M 

idc^F 

CM^CN 

->cmu 
Best 

TM 

+N 
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The top rectangle is definition of idc £3c F, right triangle definition of functor rvv, and 

left triangle definition of TM- The outer edge commutes up to / . We therefore have 

natural isomorphism / : FrMBCtM ~> ru{idc E3c F)Bcjs- Now observe that, using 

the regular module structure in C we have the following isomorphisms. 

FrMBCM(XY®M) = F((XY)M) 

= F{X{YM)) = FrMBCM{X®YM), 

rM{idc ®c F)BC,M{XY 8 M ) = (XY)F(M) ^ XF(YM) 

= rM(idc®cF)Bcjs(X®YM) 

Here X, Y G C, M E M. and ~ is idx <8> fylj- Using the relations required of the 

module structure / described in Definition 1.3.5 one sees that the second isomorphism 

constitutes a C-balancing for the functor r^{idc He F)BctAf. Thus both functors are 

balanced. Using the relations for / from Definition 1.3.5 a second time shows that / 

is actually a balanced natural isomorphism FTMBCM ~> rAf(idc ^c F)Bcjj- Hence 

we may descend to a natural isomorphism rp := / : FTM —* r/s(idc E3C F). The 

associated polytopes are given in Polytope 4.1.2, Chapter 4. The result for / is 

similar. • 

Corollary 2.2.6 shows, predictably, that functoriality of I, r depends on module 

linearity of the underlying functors. In particular, if F is a strict module functor 

IF and rp are both identity. As an example note that the associativity is strict as 

a module functor (this follows from Proposition 3.1.6) and so vaMMV = id for the 
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relevant module categories. Similarly for I. Thus polytopes of the form (1 <S> • <S> • <8> •) 

(pg. 222 in [KV91]) describing interaction between a, / and r commute trivially. 

Remark 2.2.7. r>< : C^c -M —» M. is itself a strict left C-module functor as follows. 

Let X € C and let Lx be left C-module action in C[3M.. Replacing Lx with id§§c F 

in the diagram given in the proof of Corollary 2.2.6 and chasing around the resulting 

diagram allows us to write the equation 

L'XTMBCM = TMLXBC,M 

where L'x is left X-multiplication in A4 and Lx the induced left X-multiplication in 

C He M. Thus L'xrM = rMLx, which is precisely the statement that TM is strict 

as a C-module functor. Thus Corollary 2.2.6 implies that rTM = id for any C-module 

category M.. If A4 is a bimodule category it is evident that r^ is also a strict right 

module functor and hence strict as a bimodule functor. 

Proposi t ion 2.2.8. For (C,V)-bimodule category A4 and (C,S)-bimodule category M 

the category of right exact C-module functors Func(M.,M) has canonical structure of 

a (V, 8) -bimodule category. 

Proof, p a y ) ® F)(M) = F(M®X)<8> Y defines Z>B£rew-action on Func(MM). 

Right exactness of (X S Y) <S> F comes from right exactness of F and of module action 
\ 

in M, M. V IS Srev acts on the module part / of F by 

((X El Y) <8> f)z,M = lz,F(M®x)yfzM®xF{lz,M,x) 
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where 7 is the bimodule consistency for the left and right module structures in M., 

M (Proposition 1.3.10). The required diagrams commute since they do for / . 

Next let r : F =$• G be a natural left C-module transformation for right exact 

left C-module functors (F,f),(G,g) : M. —• M. Define action of I B 7 on r by 

((X H Y) ® T)M = TM®X ® idY : ((X El Y) ® F){M) -> ((X B K) ® G)(M). Then 

(X IS y) ® r is a natural left C-module transformation. Indeed the diagram 

F((Z <g> M) ® X) ® r T(z®M)®*®"iy> G((Z <8> M) ® X) ® y 

F 7 G 7 

F ( Z ® ( M ® x)) ® y TZ8(M8X)8>idy> G(z ® (M ® x)) ® y 

fz,M®X 9Z,M®X 

{Z®F{M®X))®Y "*»™«'*fr ( Z ® G ( M ® X ) ) ® y 

Z ® (F(M ® X) ® y) ™®*®idr > z ® (G(M ® X) ® y ) 

commutes. The top rectangle is the rectangle of naturality for r . The middle rectangle 

expresses the fact that r is a natural left C-module transformation. The bottom 

rectangle is the rectangle of naturality for 7. Perimeter is the diagram expressing 

that (X £3 Y) ® T is a module natural transformation. D 

Remark 2.2.9. y in equation (2) at the beginning of this section is an equivalence 

of (V, .F)-bimodule categories 

Funb
c
al(MEM,S)-* Func\M ®£ N, S) (6) 

whenever M G B(C, £),J\fe B(£, V), S G B(C, T). If balanced right exact bimodule 
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functor.u : MMM —> U is universal for such functors from M.MN then M^eM ~U 

as bimodule categories. 

To see the first claim let F be ^-balanced left C-module functor Ai&iAf —+ S with 

module linearity / and balancing t. For X G C denote by Lx '• M. S N —• M. 03 hf 

left action of X, and define natural isomorphisms fx • FLx — LxF by (/X)A — fx,A 

whenever A G M^M. Note that LxF has balancing zrf̂  S £ and that FLx is 

balanced by 

^®M,y,yvF(7^M>r B idu) • {FLX){{M ® r ) El JV) ~ (FLX)(M 12 (F ® TV)) 

whenever M £ M , F £ ^ and N £ SS. Using Lemma 2.1.9 one verifies that 

FLx = FoBLx and L * F = L^F . Note that BLx is the induced left action of X in 

MfflsAf which we will also denote Lx. Naturality of / implies that fx is balanced 

hence and application of y gives fx '• FLx — LxF naturally in Fun(Ai §§s -A/". <$)-

One checks that F is bimodule functor with module linearity f X,Q — {IX)Q whenever 

Q G M. Ms Af ( / satisfies required diagrams because / does). 

We may therefore write (F, / ) = (F, / ) for the functor in Func(A4 ^s -A/", <S). 

We now show that y respects the bimodule structure in the functor categories. For 

Y G V, Z G T and Q e MM£M one checks easily that 

y(Y ® F)(Q) = F~J&(Q) = FoBl^(Q) A.F(Q ®Y) = (Y® y(F))(Q) 

and similarly that y(F ® Z)(Q) = (^(F) ® Z)(Q) making y a bimodule functor. 
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For the second claim, universality of both BM^ and u gives unique equivalence 

a. of abelian categories making the diagram 

U—^r~^MmcN 

commute. Thus a is the unique exact functor factoring BMJJ, and since the latter is a 

balanced bimodule functor a inherits this property by the first part of the proposition. 

2.3 Relative tensor product as category of functors 

The purpose of this section is to prove an existence theorem for the relative tensor 

product by providing a canonical equivalence with a certain category of module func

tors. Let A4,Af be exact right, left module categories over tensor category C, and 

define I-.M&M-+ Func(M
opM) by 

/ : M % TV «-> Horn M ( - , M\®N 

where Hom^ means internal horn for right C-module structure in M (Definition 

1.3.4). Using the formulas satisfied by internal hom for right module category struc

ture we see that images under / are indeed C-module functors: 

I{M®N){X®M') = Horn M (A" ® M\ M) ® N = HomM(M', *X ® M) ® N 

= X ® Horn M (AT, M) ® N = X ® I(M El N)(M'). 
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Using similar relations one easily shows that / is C-balanced. Hence / descends to a 

unique right-exact functor / : M $3cAf —• Func(M
op,N) satisfying IBMjy = I. 

In the opposite direction define J : Fjmc{Mop,N) —> M. G3 M as follows. For 

F a C-module functor A4op —»• Af let J{F) be the object representing the functor 

M H N >-+ Kom(N,F(M)), that is KomMmf(M ® N,J(F)) = Honw(N,F(M)). 

Now denote by J ' : Func(A4op,Af) -+ MEkAf the composition BMjjJ. 

Theorem 2.3.1. Let C be a rigid monoidal category. For AA a right C-module cate

gory and Af a left C-module category there is a canonical equivalence 

M^cAf~ Func(M
op. Af). 

If AA, Af are bimodule categories this equivalence is: bimodule. 

Proof. In order to prove the theorem we simply show that / and J ' defined above are 

quasi-inverses. This will follow easily if we can first show that / , J are quasi-inverses, 

and so we dedicate a separate lemma to proving this. 

Lemma 2.3.2. / , J are quasi-inverses. 

Proof. Let us first discuss internal horns for the C-module structure in AAfflAf induced 

by X <g> (M IS N) := (X <S> M) M N. Let X be any simple object in C. Then one 

shows, using the relations for internal horn in AA and Af separately, that the internal 

hom in A4 £3 Af is given by 

H o m ^ ^ M ( g | N, S® T) = HomM(M, S) ® HomYfiV~.T) (7) 
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where the <g> is of course that in C. Using this and the definitions of / and J we have 

HomMmr(M®N,JI(S®T)) = Uom^N, HomM(M, S) ® T) 

= Honyf 1, Hom,f(N, HonaM(M, S) <» D ) 

= Horn^fl, Hom^a^fM &N.SE T)) 

= Hom^HAKM HAT.SBT) . 

The third line is an application of (7). The first and the last line imply that the 

functor AfSIJVw Horn AT(-/V, Horn M(M, S1) ® T) is represented by both S El T and 

JI(S§§ T), and these objects must therefore be equal up to a unique isomorphism, 

hence JI ~ id. 

Next we show that IJ ~ id. Let F be any functor Aiop —> M. From the first part 

of this proof we may write the following equation (up to unique linear isomorphism): 

HomM(N,IJ(F)(M)) = HomM®M(M B N, JIJ(F)) 

= RomMmr(M B N, J(F)) =llomAr(N, F(M)). 

Thus both IJ(F)(M) and F(M) are representing objects for the functor N t—> 

HomMmr(M B N,J(F)) for each fixed M <E X . Thus U(F)(M) = F(M) up 

to a unique isomorphism. The collection of all such isomorphisms gives a natural iso

morphism U{F) ~ F , and therefore IJ ~ id. This, with the first part of this proof, 

is equivalent to the statement that J is a quasi-inverse for / , proving the lemma. D 

Now we are ready to complete the proof of Theorem 2.3.1. Using the definition 
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of J' and / write J'IBMttf = BMJ/JI — BMJJ- By uniqueness (Lemma 2.1.9) it 

therefore follows that J'I ĉ  id. Also IJ' — IBj^^J = /J ~ id, and we are done. • 

As an immediate corollary to Theorem 2.3.1 and associativity of relative tensor 

product (equation 9, given below) we are able to prove a module category theoretic 

version of a theorem which appears in many places, notably as Frobenius reciprocity 

for induced representations of finite groups ([Ser77, §3.3]) and generally as a classical 

adjunction in the theory of modules. 

Corollary 2.3.3 (Frobenius Reciprocity). Let M be a (C,V)-bimodule category, Af 

a (V, T) -module category, and A a (C,jF)-module category. Then there is a canonical 

equivalence 

Func(M®nA/',A) ~ Fun^iM.Fun^M.A)) (8) 

as (S, J-)-bimodule categories. 

Proof. To see this we will first use Lemma 1.3.14 to describe the behaviour of the 

tensor product under op. Observe that 

(M mvN)op ~ Funv(M
opM)op ~ Funv(Af, Mop) ~ Afop ®v Mop 

applying Theorem 2.3.1 twice (first and third) and Lemma 1.3.14 for the second step. 
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Now we may write 

Fmxc{MMT)M,A)^(MmvN)opmcA ~ (N°* B p M
op) 8 C A 

~ M°v mv {M^ ®c A) 

^ Func(//, Funv(M,A)). 

n 

Theorem 2.3.3 states that functor MMV - : B(V,£) -* B(C,8) is left adjoint to 

functor Func(M, - ) : B(C, S) -> B(V, £). i 
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CHAPTER III 

ASSOCIATIVITY AND UNIT 

CONSTRAINTS FOR B(C) 

3.1 Tensor product associativity 

In this section we discuss associativity of tensor product. Let C,V,S be tensor cat

egories. Let A be a right C-module category, M. a C-X>-bimodule category, M a 

"D-£-bimodule category and f a left E- module category. In an effort to save space we 

will at times abbreviate tensor product by juxtaposition. 

Lemma 3.1.1. Am(M®vN) ^ (A®M)®vAf and (MMvAf)MA ~ MMV(MMA) 

as abelian categories. 

Proof. Let F : A M M IS M -+ S be totally balanced (Definition 2.1.3). For A 

in A define functor FA : M El M -+ S by M S N ^ F(A El M IS N) on simple 

tensors and / »—»• F(id,A £3 / ) on morphisms. Note that functors FA are balanced 

since F is totally balanced. Thus for any object A there is a unique functor FA '• 

M EJp M —• S satisfying the diagram below left. The FA allow us to define functor 

F' : A H (M mvN) -+ S : A B Q f-* ~F~A{Q) whenever Q is an object of M ®v M 
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giving the commutative upper right triangle in the diagram on the right. 

M®N AmMmN-^+A^iM^vN) 
FA 

FA 

k 

Since the functors BA&MM-> BMJJ, F a n d F' a r e unique by the various universal 

properties by which they are defined, both A C3 {M £3x> N) and (A ffl M) E3p N are 

universal factorizations of F and must therefore be connected by a unique equivalence 

a%MAT: A B (M ®v M) ^ (A H M) ®v N 

(perforated arrow in diagram). One obtains natural equivalence otj^jJ.A '• (-M ^v 

M) E3 A -^ M. E3© {M E3 .4) by giving the same argument "on the other side," i.e. by 

first defining F^ '• A S M. —> S for fixed N € N and proceeding analogously. Q 

Remark 3.1.2. For bimodule category A Remark 2.2.9 implies that a1 are bimodule 

equivalences. 

Lemma 3.1.3. For a1 in Lemma 3.1.1 (A^c BMM)^\MM
 : (A^c M) E3 M -> 

A Mc (M f&v M) is balanced. 

Proof. Treat Ai as having right C-module structure coming from its bimodule struc

ture, and similarly give J\f its left C-module structure. Recall, as above, we define 

Rx '• -M —> M. and Lx : M —> M right and left action of X G C on M,N re

spectively. We will use superscripts to keep track of where C-action is taking place, 

e.g. Ry1 means right action of Y in M.. Recall also that we have right P-action 
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idA ISIC Rx • A I3c M —> A ^ c M, for X e X>, which we denote also by Rx- Consider 

the following diagram: 

AMM^M Bmd 

B®id 

^AM®N l<MLx>AM®N 

B®id 

A^MMN 

A(M®Af) 

i<McB 

AM®N 

Rx^id 

AM^M-

A&M&M A(MAf) 

BMid 

— > A { M ® N ) 

Leftmost rectangle is (definition of Rx) E3 id/s, top rectangle is tautologically B M 

Lxi upper right and lower left triangles are definition of a1, lower right rectangles 

definition of id A ^ C BMJI and b is idA El (balancing isomorphism for BM^/)- An 

application of Lemma 2.1.9 then gives 

(idA ®c BM^f)oc\MM{Rx B idN) ~ (idA E c BM^)al
AMM{idAmcM ® Lx) 

Since b satisfies the balancing axiom (Definition 2.1.1) for BMJJ it satisfies it here. 

This is precisely the statement that (A^c BM^O^AMM *S balanced. • 

V 

Proposition 3.1.4. If A and M are bimodules we have (A E3c M.) S p N ~ A $c 

(M Hx> N) as bimodule categories. 

Proof. We plan to define the stated equivalence as the image of the functor (.A C3c 
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'BMJTWAMJ* :(A^CM)MN -» A Hc (M ®v N) under y (equation (2)). Lemma 

3.1.3 implies that indeed 3^ is defined there. With notation as above define a1 and a2 

using the universality of B by the following diagrams. 

{A®c M) B N ^ ^ A He (M El N) 

I I 
{AMcM)mvN-—>AEC{M&DN) 

aA,M,M 

A®{M®T>N)a-^%{A®M)WvN 

I I 
A Elc (M ®v M) r—> (A Hc .M) Hp jV 

a* are defined in Lemma 3.1.1.To see that a1 and a2 are quasi-inverses consider the 

diagram 

AM (MM) <-
idAti$BMitf 

•AHMEAT-
B A.MEAT •A(M^Af) 

BA,MM 

A{MN) 

BjWMJS BA,M®M/S 

(.4E!A4)A/ (AM > HAT WASCAJKJV 

5 > (AM)M { • A{MM) 

The triangles in upper left and right are those defining a2, a1 respectively. The 

central square is the definition of B^^-M-p id^, and the left and right squares those 
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defining a2 and a1. Thus the perimeter commutes, giving 

ala2BAMAf(idA H BM<Af) = (icU Efc BMi^)BAMmf 

=> ala2BAtMx(idA M BMM) — BA,MJ^r(idA 13 BMJj) 

=> a a BAMM{OL )~ Bju&M^f = BA>M^-(a )~ BA®MJT 

=>• a a BA>MM = BAtMtf 

=> a a —id^Mtf) 

where the first implication follows from the square defining idA E3C BMJ/, the second 

by the definition of a2, the third by.Lemma 2.1.9 (for BA^MXI BA,MM, resp.). Using 

a similar diagram one derives a2 a1 — id(AM)M hence the a% are equivalences and by 

Remark 2.2.9 they are bimodule equivalences. • 

In what follows denote 

aAMM:=a\MM:(A®cM)®vN-A®c{M®vN). (9) 

In order to prove coherence for a (Proposition 3.1.8) we will need a couple of simple 

technical lemmas together with results about the naturality of a. In the monoidal 

category setting associativity of monoidal product is required to be natural in each 

of its indices, which are taken as objects in the underlying category. In describing 

monoidal structure in the 2-category setting we also require associativity though 
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stipulate that it be natural in its indices up to 2-isomorphism (see M.10 in Definition 

1.4.2). For us this means, in the first index, 

a.F,MSf '• aB,MM(F-M)Af =£ F(M MvM)aAMJ^ 

for bimodule functor F : A —» B. Similarly we need 2-isomorphisms for F in the 

remaining positions. The content of Proposition 3.1.6 is that all such 2-isomorphims 

are actually identity. Before stating it we give a definition to introduce a notational 

convenience. 

Definition 3.1.5. For right exact right C-module functor F : A —> B define l-cell 

FM := Ftx3c idM : AMCM —> B^CM and note that FM is right exact. Similarly 

we can act on such functors from the right. 

Proposi t ion 3.1.6 (Associativity "2-naturality"). We have 

MM-

Analogous relations hold for the remaining indexing valencies of a. 

Proof. We will prove the stated naturality of a for 1-cells appearing in the first index. 

A similar proof with analogous diagrams gives the others. Recall a 1 defined in Lemma 

\ 
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3.1.1. Consider the diagram: 

{AM)M-
{FM)N 

{BM)M 

% . AMJJ 3M,SS 

(AM)mM-
(FM) 

->(BM)MAf 
BA,M 

<,MM[AMMMM-

&A,MMM 

BB,M 

-+B®M^M) aB,MM 

Bt3,M®M 

A(M^M) 
F(MWS) 

^B{M^N) 

•A.BM,tJ BBM,M 

A(MM) 
F(MN) 

N 1 
-> B{MM) 

The top, bottom and center rectangles follow from Definition 3.1.5 and definition of 

tensor product of functors. Commutativity of all other subdiagrams is given in proof 

of Proposition 3.1.4. External contour is the stated relation. • 

Remark 3.1.7. Observe that the proof of Proposition 3.1.6 also gives 2-naturality 

of a1: the center square with attached arches gives the equation 

akMAPM) B idM) = F(M H M)a\MyM. (10) 

Lemma 3.1.8. The hexagon 

A{MM) H V ( aA'M'M {AM)M H V 

aA,MN,T> 

A{MN®V) 

BMM,V 

B(AM)A/,V 

{{AM)M)V 

\aAMM 

A{MM)V) ^ j ^ r - (A(MAf))V 
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commutes. 

Proof. The arrow BA^MAT),P drawn from the upper-left most entry in the hexagon to 

the lower-right most entry divides the diagram into a pair of rectangles. The upper 

right rectangle is the definition of a^MM^e idv and the lower left rectangle is the 

definition of a^MM.v- ^ 

In the case of monoidal categories the relevant structure isomorphisms are required 

to satisfy axioms which take the form of commuting diagrams. In the 2-monoidal case 

we make similar* requirements of the structure morphisms but here, because of the 

presence of higher dimensional structures, it is necessary to weaken these axioms by 

requiring only that their diagrams commute up to some 2-morphisms. Above we 

have defined a 2-associativity isomorphism aM,M,v ' (A4A/")P —• Ai{MV). In the 

definition of monoidal 2-category a is required to satisfy the pentagon which appears 

in the lower dimensional monoidal case, but only up to 2-isomorphism. The content 

of Proposition 3.1.9 is that, in the 2-category of bimodule categories, the monoidal 

structure E3c strictly satisfies the associated hexagon just as in the monoidal category 

setting. For us this means that the 2-isomorphism a^Mj^.r ( s e e M9. Definition 1.4.2) 

is actually identity for any bimodule categories A,M.,N,V for which the relevant 

tensor products make sense. 
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Proposition 3.1.9 (2-associativity hexagon). The diagram of functors commutes. 

((AM)Af)V 

{A{MN))V 

"A,MM,V 

A{{MM)V) 

a-AM,M,T> 
•*(AM)(MV) 

o-A,M,MV 

A&ciM.M.V 
>A{M{NV)) 

Proof. Consider the diagram below. We first show that the faces peripheral to the 

embedded hexagon commute and then show that the extended perimeter commutes. 

{AM)MmV 
*AM,M,T> 

(AM)(Af&V) 

B(AM)M,V 

aA.M,u {{AM)M)V 

4 
A{MM) El V {A{MM))V 

aA,MM,V 

i 

a-AMM.V 
+ {AM){MV) 

aA,MM,r A{{MM)V), 
idj^caMM,-p 

aA,M,SSP 

A{M{NV)) 

aA,A4,AmV 

idA^cBMM.V 

A{MN®V) — 
idA®cal

MNP 

idA^ciidM^vB^-p) 

> A{M{M ® V)) 

The top rectangle is the definition of a_4xjv\:Pi * n e rectangle on the right is naturality 

of a as in Proposition 3.1.6, the bottom rectangle the definition of a tensored on the 

left by A, and the hexagon is Lemma 3.1.8. To prove commutativity of the extended 
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perimeter subdivide it as indicated below. 

(AM)N®V 

"AWJI /BP 

aAMM,T> {AM)(N®V) 

~BAM,M~ 

{AM)mMmv 
aA,M,M 

A{MM)8V tidA!ScBMMA(M ®tf)®P *A,M,MBIV o-A,M,AT 

aA,MM,V 

A{MN®V) 

*A,M®M^P 

A{M^Nmv) 

>A(M{N®T)) 
idA^ca]iAJlfv 

The upper and lower triangles are the definitions of oijy^jfp and A t>3* (definition 

of otj^^-p), respectively (Lemma 3.1.1). Right rectangle is definition of CL^MM^P-

Upper left rectangle is (definition of a^MSf) ^ *P, a n d the lower left rectangle is 

explained in Remark 3.1.7. The central triangle commutes as follows. Using the 

definition of a 1 given in the proof of Proposition 3.1.4 we can draw the diagram 

AMEAf&V 

A ® M H N ® V -^-> A{ M S M) m V <*i 

A(M®N®V) 

where we have abbreviated the various a1 appearing in the statement of the lemma 
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by a.i and associated functors B occurring in their definitions Bi in such a way that 

ociBi = B3, a3B2 = B3, a2Bx = B2. 

These equations imply B3 = a3a2a^lB3 where B3 = B^Mmf&p- Apply Lemma 2.1.9 

to write id = a3a2a'[1. Now equating paths in the large diagram allows us to write 

aAMJ^r^p(aAM^,v)(BAM,M^'P) = {A^al
MM-p){al

AMMv)(aAM<Nmr)BAM^mV 

and a final application of Lemma 2.1.9 gives the relation expressing commutativity 

of outer pentagon. • 

Let M.i be a (Cj_i,Ci)-bimodule category tensor categories Ct 0 < i < n + 1. 

Then one extends the arguments above to completely balanced functors (Definition 

2.1.2) of larger index to show that any meaningful arrangement of parentheses in the 

expression A41 Efci M2 • • • ^c„_i -M.n results in an equivalent bimodule category. 

Remark 3.1.10. Proposition 3.1.9 implies that the 2-morphism described in M9 of 

Definition 1.4.2 is actually identity. The primary poly tope associated to associativity 

in the monoidal 2-category setting is the Stasheff polytope which commutes in this 

case. It is obvious that the modified tensor product C§> with associativity ([KV91] 

§4) is identity and that nearly every face commutes strictly. The two non-trivial 

remaining faces (one on each hemisphere) agree trivially. We refer the reader to the 

original paper for details and notation. 
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3.2 Unit constraints 

Recall from Proposition 2.2.5 the equivalences IM : M^-pT) ~ M. and r x : C^c-M. ^ 

A4. This section's first proposition explains how /, r interact with 2-associativity. 

Proposi t ion 3.2.1. (idM ^v lM)aMj^r,e — IM&T>N, fM^DM{aCMM) ~ rM ^v id//. 

Also the triangle 

aM,T>,M 

M ®v (V S p Af)_,-=-> M Kb M 

commutes up to a natural isomorphism. 

Proof. The first two statements follow easily from definitions of a 1 (Lemma 3.1.1), 

module structure in AAMDN and those of I and r. This means that the 2-isomorphisms 

p and A in Mi l of Defintition 1.4.2 are both trivial. 

The diagram below relating I and r commutes only up to balancing isomorphism 

b for BMJJ where we write 6 : BMrf^{® C3 idjj) =^ BMj^f{idM G3 <8>). 

(M H V)M ttAl,-D,jV 

&M, 

{MV)N 

M H (VM) 

BM.CM 

aM,VM 
M(VN) 
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Top triangle is definition of a1, rectangle is definition of id>M ^z> BVjf, lower right 

triangle is M.^x> (definition of r/v), triangle on left is (definition of l^^-pAf, and cen

tral weakly commuting rectangle is definition of balancing b for Bj^jq. The perimeter 

is a diagram occuring in the proof of Proposition 3.1.4 (we have been sloppy with the 

labeling of the arrow across the top). Since all other non-labeled faces commute we 

may write, after chasing paths around the diagram, 

lM G3z> idjy(BMtV l&p idfif)BM®-DX — {idM Kb rj^)aM<Vj^{BM,v Eta idtf)BM®vM-

Applying Lemma 2.1.9 twice we obtain a unique natural isomorphism 

VMM '• IM Kip idtf —> (idM Hp rtf)a,Mj)M (H) 

having the property that HMJS * {{BM,V ^ b idM)BM®Vtx) = 6, the balancing in 

BMM- O 

71 



CHAPTER IV 

PROOF OF THEOREM 0.2.1 

4.1 The commuting polytopes 

In this section we finish verifying that the list of requirements given in the definition of 

monoidal 2-category ([KV91]), Definition 1.4.2 of this thesis, are substantiated by the 

scenario where we take as underlying 2-category B(C). Recall that for a fixed monoidal 

category C the 2-category B{C) is defined as having 0-cells C-birnodule categories, 1-

cells C-bimodule functors and 2-cells monoidal natural transformations. Ml-Mll are 

evident given what we have discussed so far; explicitly, and in order, these are given 

in Proposition 2.2.5, Proposition 2.2.3, Definition 3.1.5, Remark 2.2.2 (take one of 

the 2-cells to be identity transformation on identity functor), Equation 9, Proof of 

Proposition 2.2.5, Definition 3.1.5 (trivial, composition with id commutes), Polytope 

4.1.3, Proposition 3.1.9 (trivial), Proposition 3.1.6 (aptM,Af = id for bimodule functor 

F), Proof of Proposition 3.2.1. Commutativity of the Stasheff polytope follows from 

Proposition 3.1.9 (see Remark 3.1.10). 

The data introduced throughout are required\to satisfy several commuting poly

topes describing how they are to interact. Fortunately for us only a few of these 

require checking since many of the structural morphisms above are identity. Because 
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of this we prove below only those verifications which are not immediately evident. Re

call (Definition 3.1.5) that we define action M.F of bimodule category M. on module 

functor F. 

Polytope 4.1.1. For M,Af,P G B(C), the pasting<s 

{{CM)M)V 
(rM/S)P 

<*C,M,fS'P °CM,A/,P 

-* (MM)V ((CMW)V /MAf)Z> (MM)V 
arM,M,T> 

{C{MN))V 

ac,MAT,V 

,rMMV 

rMM~P 

PM 

{CM){MV) 
aC,M,M,V 

°-C,M,M:P~-~^^ rM(MV) 

C((MM)V)- — >C{M{MV)) C{{MM)V) 

M{MV) {C{MM))V 

a-C,MM,V r(MM)V 

C&M,M,V 
C{M{NV)) 

correspond to the same 2-cell. 

Proof. Note that every face commutes (all labeling 2-cells are identity) except for 

T°-M,M,V
 m t n e second diagram. Thus the pastings give the same 2-cell if we can 

show raM Nv is also identity. By comments following the proof of Corollary 2.2.6 

this is equivalent to showing that aMjf.v is a strict module functor, i.e., that the 

module linearity w associated to a is identity. For X 6 C note that for simple tensor 

(MN)P = BMVABMJ* ® V)(M B N®P) 

CLMMAX ® (MN)P) = {X® M){NP) = X ® aMMA(MN)P) 

so by two applications of Lemma 2.1.9 w = id. a 

The remaining four polytopes describe 2-naturality of the action of the unit object 
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in our monoidal 2-category (recall that the unit object in B{C) is C itself). The first 

concerns 2-naturality of ju, A and p. 

Polytope 4.1.2. For F : Mt —y M a morphism in B(C) and any C-bimodule category 

M the polytopes 

(MC)M-

{FC)M 

+ M(CM) (MC)M 
VM.M 

(M'C)M J, 
FN 

F(CN) (NC)F 

J, 
*M(CM) 

Itf 
V-M.M 

^MM 

NF 

I'M 
NrF 

M'(CM) (MC)M' J, 
ru 

MM 

V-MM 
lM 

N(CF) 

>M(CM') 

. MM 

commute. Similarly there are commuting prisms for upper left vertex corresponding 

to the remaining four permutations ofMi,C,M with upper and lower faces commuting 

up to either X or p. 

In [KV91] these triangular prisms are labeled (—> <8>1 <g> • ) , (1® —> <g>«), etc. 

Proof. We verify commutativity of the second polytope. Commutativity of the other 

prisms is proved similarly. Denote by * mixed composition of cells. Commutativity 

of polytope on the right is equivalent to the equation 

{idN Sc f){{idu E!c F) * UNM) = MM * (idN®cC ®c F) (12) 

where / is module structure of F and f = rF (recall Corollary 2.2.6). Let LHS 

and RHS denote the left and right sides of (12). Then one easily shows that both 
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LFLS*((Bsf£®cidM)B®MC,M)M®X®N and KRS*((Bx£BcidM)B®Mc,M)MEx®N, for N € 

N, X € C,M € M., are equal to b'NX F,M^ where b' is the balancing for Bj^rtM>. Two 

applications of Lemma 2.1.9 now imply that LHS=RHS. • 

The next poly tope concerns functoriality of the 2-cells IF,TF-

Polytope 4.1.3. Let A4 —» M —> V be composible 1-morphisms in B(C). Then the 

prisms 

rM 

commute. 

Proof. We prove commutativity of the first prism. Commutativity of the second 

follows similarly. It is obvious that ®C,F,G is trivial (it is just composition of functors). 

First polytope is the condition rGF — (G * rf)(ra * CF). Let / be left C-linearity for 

F , g that for G. Then (G,g)(F,f) := (GF,g*f) where (g»f)XM = 9x,F(M)G(fXtM) 

is left C-linearity for GF. One checks directly that 

(G*rF)(rG*CF)*BcM = (9*f)~i-

rGF is defined as the unique 2-isomorphism for which rap * BC,M — {9 * f)~l so 

Lemma 2.1.9 gives the result. • 
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Polytope 4.1 A. For any 2-cell a : F => G in B(C) the cylinders 

I'M ru 

commute. 

Proof. Again we check commutativity of the first polytope. The first cylinder is the 

condition (a * rj^fp = rc(r^f * Cot) where Co is the 2-cell defined by idc Sc a 

and idc means natural isomorphism id : idc => idc- One verifies this directly using 

the bimodule condition on a. Again one checks first that components after right *-

composing with the appropriately indexed universal functor B agree. Thus for X G C 

and M g M w e have 

- l ((a * rM)rF * BC,M)X®M = "xgw/x , M 

(rG{ru * Co) * BC<M)X®M = 9x~M(idx <8> aM) 

and since a is a natural module transformation the compositions on the right agree. 

\ 
Applying Lemma 2.1.9 for BC,M gives the result. D 
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Polytope 4.1.5. For M in B(C), the pastings 

(CC)M /t
acfi'M >C(CM) 

rc^cid-M 

CM 

{CC)M ac'tM >C(CM) 

TC^cid.M 

TM CM 
rjvt 

give the same 2-isomorphism. Each of the remaining two orderings of the mul

tiset {C,CjM} determines an analogous pair of pastings, and hence a unique 2-

isomorphism. 

Remark 4.1.6. Note that the pair of diagrams is determined by the order of the 

objects in the upper left vertex. Keeping parentheses fixed, there are related pairs 

of diagrams for the remaining two orderings of the multiset {C,C, M). Each pair 

determines a pair of pastings, and each such pair of pastings similarly determines a 

unique 2-isomorphism. 

Proof. We give proof in the diagrammed case. The other two are similar. Bimodule 

linearity for r>< is trivial (since r>f is strict a la Remark 2.2.7). The equation 

TM * VCM = id (13) 

is therefore the content of Polytope 4.1.5. To see this choose natural isomorphism 

J : rMBc,M = ® —• <8> = rMBCtM having components JATEJM :~ rM(bXiX,M) where 

b is the balancing for BC>M- According to the definition of fJ,c,M in H we see that 
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(rM * HCM) * {Bc,c ISc idM)Bcmc,M =rM*b. Now using the fact that rM is trivially 

balanced (proof of Proposition 2.2.5) the natural isomorphism J is balanced: that is, 

we have commutativity of the diagram 

rMBc,M(X ® Y El M) = {XY)M {-™*b)x'Y-M
) rMBCM(X ®Y®M) = X{YM) 

JXY®M — (rM*b)l,XY,M Jx&YM=(rM*b)l,X,YM 

rMBCM(X ®Y®M) = (XY)M = — rMBCM{X ®Y ® M) = X(YM) 

This follows from the balancing diagram satisfied by b. Using the relations given 

in the balancing diagram for 6 we derive the relations bixY,M — bix,YMbx,YM and 

bx,i,M — id which together imply 6I,XK,M = id for any X, Y € C, M e M. Thus 

the vertical arrows in the diagram above are identity hence TM * b = id. On an 

application of the uniqueness of the descended 2-cells (Lemma 2.1.9) we must have 

I'M * Hc,M — id, which is (13). • 

This completes verification of the polytopes required for monoidal 2-category 

structure, and therefore completes the proof of Theorem 0.2.1. 
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CHAPTER V 

TENSOR PRODUCT OF FUSION CATEGORIES OVER 

BRAIDED FUSION CATEGORIES 

In this chapter we are interested in examining the relative tensor product of 

monoidal categories. That is, if monoidal categories C\,Oi also happen to be module 

categories over a fusion category V when is C\ §§T> C2 monoidal? When can we give 

C\ E3D CI a braided structure? What is its center? Clearly it is possible to formulate 

.. many interesting questions. We hope to answer some of them here. We will need the 

following definition. 

Definition 5.0.7 ([DGNO10]). Let C be a monoidal category. Then C is said to be 

tensor over braided fusion category V if there is a braided tensor functor ip : V —>• 

Z(C). 

Typically we will identify V with its image in the center Z(C). Evidently this 

gives C the structure of a D-bimodule category: if X € C and D € V define D®X := 

<p(D) <g> X where <g> on the right is in Z(C) and where we identify <p(D) (8) X with its 

image under the canonical surjection Z(C) —> C. Right P-module category structure 

is given by X <8> <p(D). 
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5.1 Tensor product of monoidal categories 

Unless otherwise noted assume all tensor categories are semisimple. Let V be a 

braided fusion category and let ipi : V —> Z(Ci), i — 1,2, be braided inclusions so that 

Ci are tensor over T>. Further assume that the compositions 71"^ are fully faithful 

functors (7T; : Z(Ci) —• Ci are the canonical surjections). We may thus consider T> as 

a braided fusion subcategory of both Cj. 

5.1.1 Monoidal structure of d Kl-p C2 

Let Ci be monoidal categories over braided fusion category T>. Let r : C\^C2 ~* C2§§d 

be the functor X\% Y H-> FISX, and denote by Bh2 : d®C2 —• CI^T>C2 the universal 

balanced functor described in Definition 2.1.4. 

Proposition 5.1.1. C\ Kip C2 has canonical structure of a monoidal category with 

respect to which B\2 is a strict monoidal functor. 

Proof. Denote by T the composition of functors 

r :=d B c2 aci is c2 - ^ d H Ci ta Cb H c2®-^ld B C2 

and define A = Bi2 o I\ It is evident that A is balanced. Thus we get unique functor 

A making the diagram 

\ 

Ci ® C2 El d IS C2 

R l , 3 ^ ^ " ~ ~ " ~ ^ - ^ 

(d ®v C2) 13 ( d Efo C2) -y— > Cx K p C2 
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1 o 

commute. Here Bc'x Cz == Biy2 El Bit2 is the universal functor for right exact functors 

balanced in positions 1, 3 (Definition 2.1.3) from the abelian category at the apex. 

Associativity for A is verified as follows. Abbreviate functors 

Ae := A(r®idCl®c2)--(Ci®C2)
m-^C1mvC2 

Ar := A(idCl®C2 El T) : ( d E) C2)
m -> d ISfo C2. 

We leave verification that A ,̂ Ar are balanced in positions 1, 3 and 5 to the motivated 

reader. One checks easily that At = H(A^idcl^T>c2)B^2 and Ar = A(iofc1BoC2KIA)B^2
3. 

Thus by uniqueness of A ,̂ Ar we must have 

Te = A(AEHdClEbc2) 

A~r = A ^ H p C j H A ) . 

Next let a1 be associativity constraints in C{. Then Bx>2 * a1 El a2 : Ae —> Ar is a 

balanced natural transformation and we thus get a unique natural isomorphism 

5 l i 2 * aTWcfl : A(A El ufciBfeCa) ^ A(icfcl[3oC2 BA) . 

This is precisely the associativity diagram required of A evincing it a bona fide tensor 

structure on C\ Elx>C2- Observe that unit object for A comes from identity objects of 

Ci in the obvious way: 1 = Bli2(l El 1). 

Tensor strictness of BXt2 follows from the fact that monoidal structure in C\ El C2 
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is defined by the functor T. Indeed if U := X El Y and V := X' El F ' are objects in 

Ci El C2 we have, from the definition of A and T, 

Bh2T(U El V) = A(£ l i 2 El £i,2)(£/ El V)-

The LHS is £?ii2 evaluated on the tensor product U ® V in C\ El C2 and the RHS is 

the tensor product £?1)2(£/) ® JBI^CV^) in C\ Elp C2. It is clear that both sides equal 

Blt2((X®X')®(Y®Y')). O 

5.1.2 Functors over V 

In this subsection we are interested in studying the (the as yet undefined) monoidal 2-

category of tensor categories over a fixed braided fusion category. The next definition 

is an essential step in this direction. 

Definition 5.1.2. Suppose C\,Csi are tensor categories over braided fusion category 

V, and denote by tp, the the compositions D t-> Z(Ci) —* Cj. A tensor functor 

F : Ci —* C2 is said to be a junctor over V if Fipi = ip2-

Definition 5.1.2 stipulates that functors over T> are precisely those respecting the 

relevant braided injections. We require one further definition to form the functorial 

counterpart to Proposition 5.1.1. 

Definition 5.1.3. Suppose B,C,T> are tensor categories and let F : C —• B and 

G : V —> B be tensor functors with tensor structures / , g respectively. A relative 

braiding for the pair F, G is a family of natural isomorphisms cxy '• F(X) <g> G(Y) —* 
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G(Y) <g> F(X) satisfying the pentagons 

F{XY)G{Z) -^XF(X)F(Y)G(Z) F{X)G{VZ) - ^ F(X)G(V)G(Z) 

CXY.Z 

CY.Z 

F(X)G{Z)F{Y) *xyz 

cx,z 

cx,v 

G(V)F(X)G(Z) 

\cx,z 

G(Z)F(XY) -j^yG(Z)F(X)F(Y) G(VZ)F(X)-^G(V)G(Z)F(X) 

for all X, Y G C and V, Z e V. 

Assume the category B in Definition 5.1.3 is braided. Then any pair of tensor 

functors into B are related by a relative braiding having components given by the 

braiding indexed by objects in the images of F and G. This follows from naturality 

of the tensor structures / , g and the braiding hexagon. 

Proposit ion 5.1.4. Let C\,C<i,A be tensor categories over braided fusion category V 

and let Fi : Ci —» A be tensor functors over T> related by a relative braiding. Then 

Fi, Fi determine a unique tensor functor Ci S p C2 —• A. 

Proof. Let t, t' be tensor structures for Fi, F2 respectively and let c denote the relative 

braiding as in Definition 5.1.3. Denote by c\ the braided structure in Z(Ci). The 

functors F» determine a tensor functor F : C\ 23 C2 —» A defined by sending I § F M 

Ft(X) <g> Fi(Y). We show that F is a tensor functor below. 

The proof of Proposition 5.1.4 divides into three parts. First'we show that F is 

V balanced. Then we show that the functors F® and <8>(F 03 F) are both tensor 

and balanced, and finally that tensor structure / : F® ^ <g>(F t3 F) is a balanced 

natural isomorphism. This will imply that all these structures descend to the relative 
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product. 

/. F balancing. Denote by bx,D,Y the composition 

F^X ® D) ® F2(K) - ^ F i ( A - ) ® Fx(£>) ® F2(F) - ^ ^ ( X ) ® F2(£> ® F). 

for A" € Ci, V € C2 and D e V. This composition makes sense because Fi(D) = 

F2(D) thanks to Definition 5.1.3. We show that b satisfies the balancing diagram, 

thus balancing for F. This is a straightfoward calculation: simply observe that the 

diagram commutes for D,E ET>: 

F1(XDE)F2(Y) ^ > F1(XD)Fl(E)F2(Y) 
tx.D 

tx,DE 

Fl(X)Fl(DE)F2(Y) <—; Fl(X)F1(D)F1(E)F2(Y) Fl(XD)F2(EY) 

F1(X)F2(DEY) < Fl(X)Fl(D)F2(EY) 
tD,BY 

Note that t^^E = t'DE via Definition 5.1.3. The rectangles are therefore diagrams 

required of tensor structures for Fx, F2 and triangle commutes trivially. Perimeter is 

the balancing diagram for b. 

2. Tensor structure of F. In what follows we will be required to draw diagrams having 

vertices labeled by sextuples of objects. In order to simplify and condense notation 

let us adopt the following convention: write F\(X)F2{Y) := (X)(Y) for the tensor 

product of the images of X e C\,Y E C2 in A. Since all monoidal categories are 

assumed strict we lose nothing by so doing. Denote objects of C\ M C2 using overline 
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and subscripts: X — Xi E] X2 etc. Define natural isomorphisms fey : F(X <g) Y) —> 

F(X) <g> F(Y) by the composition 

F(xF) = (jf1ri)(A:ar2)^(x1)(K1)(jr2)(r2)
 CY-^2 {XX)(X2){YX){Y7) 

= F(X)F(Y). 

We now show that / provides F with the structure of a tensor functor. This will 

require the defining diagrams for the relative braiding. 

F(X Y Z) 
t®t'\ 

t®t' 
-*(X1)(Y1Z1)(X2)(Y2Z2) 

t®t' 

t®t' 
F(X)F(Y Z~) (XlYl)(Zl)(X2Y2)(Z2) - ^ (X1)(Yl)(Zl)(X2)(Y2)(Z2) 

CZ1,X2Y2
 cZt,X2 

F(XY)F(Z) (Xl)(Y1)(X2)(Z1)(Y2)(Z2l^^F(X)(Yl)(Zl)(Y2)(Z2) 

t®t' ^ - — ^ " " " ' ^ Czl'Y2 

(^)(Vl)(X2)(r2)F(Z) — — » F(X)F(Y)F(Z) 

All subdiagrams are either relative braiding diagram or diagrams for tensor structure 

in the F(. Perimeter is tensor diagram for (F,f). 

3. Balancing of F®. In this part of the proof we show that the composition F® : 

(Ci&lC2)
m —» A of F with the mbnoidal structure in CX^C2 is V balanced in positions 

1 and 3. This is necessary for F to descend to a functor from the relative product 

in a way which respects monoidal structure. For D G V define natural isomorphism 
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bl 

Xi,D,X2,Y 
•.F®{XxDmX2mY)~F® (Xi El DX2 H Y) by the composition 

D.*l 
(XlDY1)(X2Y2) -^4 (XlYlD)(X2Y2) 

txlYl,D
 l 

D,X2Y2 

(XXYX){D)(X2Y2) ^ ' 2 {XrY^DXM) 

where we continue to use notation introduced in part 2 of this proof. Note that the 

third expression is not ambiguous because F\, F2 agree on V. Let D,E G V. The 

following diagram shows that 61 provides a balancing of F® in the first position. 

(XlDEYl)(X2Y2) 

cDE,Yl 

(X^DEXX^) 

(XWiDEKXM) 
lDE,X2,Y2 

(XlYl)(DEX2Y2)^-

^ > (XrDYtfXXM) tx^E—> (X1DY1)(E)(X2Y2) 

t-XiYyD^E 

t-D.E 

fl 

->(XlYiD)(E)(X2Y2) 

tXlY1,D\ 

>(XlY1)(D)(E)(X2Y2) 

~D,Yy 

» ' - l 
"E,X2Y2 

(XlDYl)(EX2Y2) 
E,X2Y2 -1 

~D,YX 

E,X2Y2 

lD,EX2Y2 

(x1y1D)(EX2r2) 

(XMKDXEXM) 

Every subdiagram is either braiding hexagon, naturality of t or tensor structure for 

t, t'. One similarly defines b\ n D : F ® (X El YXD ® Y2) ~ F ® (X H Fx H DF2) 

giving balancing in position 2 over £>. 

^. Balancing of <8>(F B F ) . In this part of the proof we show that the composition 

®(FKI F) : (CiMC2)
m -»• .4 of the monoidal structure in .4 with F S F is V balanced 

in positions 1 and 3. Begin by defining natural isomorphism {id®t,QX
x^{tx1,D® id) : 

Fl(XlD)F2(X2)F(Y) -> F1(Xl)F2(DX2)F(Y). Using the diagrams required of £,£' 
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it is easy to show this satisfies the diagram required of a balancing for <8>(F §3 F) in 

position 1. Doing so for position 3 is just as easy. 

5. Balancing of f : F<8> —> ® ( F § F). Recall the definition of the tensor structure 

/ for F from Part 1 of this proof. We show that satisfies the diagram required of a 

balanced natural transformation in both positions 1 and 3. In position 1 this means 

showing that (bXuD,x2 ® id)fXlDmx2y = fx&Dx^x^^Y w h e r e fel i s balancing 

of F® in position 1 as in Part 3 of this proof and b is balancing of F. To show this 

consider the diagram 

(XlDX2)F(F) ^^\X1)(DX2)F(Y) - ^ (X1)(£>)(X2)(r1)(^) - ^ + (X1D)(X2)(Yl)(Y2) 

(-D,X2 ~D,X2 

(XlX2D)F(Y) t^^'\xl)(X2D)F(Y) txt,D 

*XlX2,D 

F(X)(D)F(Y) 

tD,YlY2 

F(X)(DYlY2) 

4x2'D®tX2,Y2 

tx1,X2^t'yiY2 

CX2,Y, 

CXl.Y\ 
{X,D){YX){X2){Y2) 

txx,D 

(X1)(X2)(D)(Y1)(Y2) (X1)(D)(Yl)(X2)(Y2) 

tx1,x2®ti,yi,v2 

D,Yi 

cX2,DYt 

D,YX 

+ (X1)(X2)(PYl)(Y2) - ^ ^ (X1)(DY1)(X2)(Y2) 

Every subdiagram is either naturality or tensor diagrams for t, t' or relative braiding 

of Fi, F2. Since the composition of morphisms across the top is txxD,x2 ® ty y2 the 

perimeter is the balancing diagram for / in position 1. Showing that / i s balanced 

in position 3 requires a similar diagram and is just as easy. 

\ 
Parts 1-5 above imply that there are unique functors and natural isomorphism 

/ : F® -> ®(F B F) : (Ci®v C2)
m -* A satisfying / * E^'= / . Using basic 

properties of the functor Bi2 and the definition of A from Proposition 5.1.1 one 
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shows that F® = F A and ®(F B F ) = <8>(F S F) where F : Ci S p C2 -» -4 is the 

unique functor with FB\2 = F. Thus / provides F with the structure of a tensor 

functor in a canonical way. The proposition is proved. • 

Proposition 5.1.4, though perhaps interesting in its own right, is of immediate 

value in that it implies closure over relative product §3x> of the class of functors over 

V. This we prove in Proposition 5.1.10. 

5.1.3 The fusion category d ®v C2 

In this section we show that the relative product of two fusion categories over braided 

V inherits the structure of a fusion category over T>. Notation is retained from the 

previous section. 

Theorem 5.1.5. Let Ci, i = 1,2 be fusion categories over T>. Then C\ Sx> Ci is also 

a fusion category over T>. 

We break up the proof of Theorem 5.1.5 into two parts: first we will show that 

C\ C3p Ci is fusion and then show in Proposition 5.1.8 that it is fusion over V in the 

sense of Definition 5.0.7. 

Proposition 5.1.6. Under the conditions of Theorem 5.1.5 C\ S p C2 is fusion. 

Proof. Thanks to Proposition 5.1.1 it remains only to check that C\ Hp C2 is rigid 

and semisimple. We begin with a general result.^ Recall that a dominant functor F 

is one for which the codomain category and the category Im{F) coincide (Definition 

1.3.16). 
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Lemma 5.1.7. Let C,T> be semisimple tensor categories with C fusion, and let F : 

C —> T> be a strict dominant tensor functor. Then T> is fusion. 

Proof. Let F denote the tensor subcategory of T> generated by objects in the image 

of F. Since F is a tensor functor F is itself fusion with rigidity inherited from that 

in C: duality is given by F(X)* = F(X*) and evF{x):= F(evx) : F(X)* ® F(X) -> 

F(l) = 1. Similarly coev^(x) := F(coevx)-

It is our task to define duality for a general object in V. To this end fix Y € X>. Let 

X G C be an object such that F(X) contains Y as a subobject. Write F(X) = Y ®Z 

for some object Z € V. Now F{X*) <8> Y is a subobject of F(X*) ® F(X). Define the 

object Z* to be the largest subobject of F(X*) having the property that 

F(evx)\z.®Y = 0. 

Define Y* to be the complement of Z* in F(X*), i.e. F(X*) = Y* e Z*. Thus the 

object F* ® V is a subobject of F(X*) <g> F(X), and we may therefore restrict F(evx) 

to define morphism ey := F(evx)\Y'®Y- To be explicit, let py : Y* <—* F(X*) and 

PK : Y <—> F(X) be inclusions of the indicated subobjects. Then we have defined 

eY := F(evx) o (py ® py). 

Next let 7rr : F(X) -v F and 7ry. : F(X) -* Y* be projections. Then define 

coy := (7Ty (8) 7Ty.) o F(coevx) -' Y ® F* —» 1. Neither eY nor coy is identically 

zero because of the choice of subobject Y*. We claim that ey, coy together with the 

identifications made above make Y* a bona fide left dual for Y € V. It remains to 
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check the usual identities. On the definitions of coy and ey we have 

(1Y <g> coY)(ey <g> ly) - (ly <8> F(evx)){^Y ® Pv^Y* <8> /Or)(^(coevx) <8> l r ) -

Using the basic identity pywy* = idp(x*) — Pz*nz* this becomes a difference of 

two maps with only the "positive" one non-zero because of the definition of Z*. 

The remaining non-zero part fits into the following diagram as the lower horizontal 

composition. 

F { x ) F ( c o e v x ) ^ } F { X ) F ( X . ) F ( X ) i*F^) > F ( X ) 

PY Try 

Y; r> F(X)F(X*)Y ._, > YF(X)Y —-> YF(X*)F(X) —> Y 

All subdiagrams commute trivially. The horizontal composition across the top of the 

diagram is id (this is the equation required of rigidity of X in C). Tracing around 

the perimeter gives (idy ® eY)(coY ® idy) = irypy which is idy (the other basic 

identity relating p and n). The second equation idy = (ey ® idy*)(idy* <g> coy) 

follows similarly. D 

Now we complete the proof of Proposition 5.1.6. By Lemma 2.1.8 the universal 

balanced functor 5 l i 2 : C\ £3 C2 —• C\ E3-p C2 is dominant, hence C\ E3p C2 is rigid. 

Also since Q are both semisimple the category C\ Kp C2 is semisimple because it 

is equivalent to the category of functors Fun-p(C°p,C2) (Theorem 2.3.1) which is 

semisimple by [ENO05, Theorem 2.16]. D 

Proposition 5.1.8. Under the conditions of Theorem 5.1.5 Ci S p Ci is fusion over 

90 



V. 

Proof. Let (pi : V —+ Z(Ci) be the braided inclusions putting fusion categories C; over 

V. Note that V sits inside Z{CX E3D C2) by the composition 

ip:=V^V®V ^ 2 Z(d) IS Z(C2) = Z ( d S Ca) ^ 2 Z ( d Bp C2) (14) 

sending D H-+ (£?ii2(D E] 1),7B1I2(DEII))- Here 7 is the braiding in 2"(Ci Hp C2) as 

in the last part of the proof of Proposition 5.2.3 and ZBi2 is the functor sending 

(A, cA) t—> (-61,2(^)17Bi2(i4)) f°r a n y object (A, CA) in the center of C\ G3 C2. To com

plete the proof of Proposition 5.1.8 we must show that the composition 14 is an 

inclusion and that it is braided. 

1. ip is an inclusion. Since ip\ £3 ip% is an inclusion on account of <pi being so we must 

check only that ZB\$, is an inclusion on the tensor subcategory generated by objects 

of the form (D 13 1, cx
D _ 03 1). But this is obvious. 

2. Braiding of (p. Since both (pi,<p2 are braided the functor ip\ £3 <p2 is also braided 

(this is perfectly general and has nothing whatever to do with the other properties of 

cpi). Note also that ZBi<2 is braided; this follows from the fact that £?i:2 is a braided 

functor (this is shown in Proposition 5.2.3). \ • 

Corollary 5.1.9. For Ci,C2/Z> as in the hypothesis of Theorem 5.1.5 the category of 

D-module functors Funp(Ci,C2) has the structure of a fusion category over T>. 
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Proof. This follows immediately from the comments at the end of the proof of Propo

sition 5.1.6. • 

Now that we have a multiplication in the category of tensor (fusion) categories 

over a fixed braided fusion category it is natural to ask if this extends to morphisms 

of such categories. This is the content of the following proposition. Recall what it 

means for a functor to be a functor over a braided fusion category (Definition 5.1.2). 

Proposition 5.1.10. Let (F,f) : C\ —> E\ and (G,g) : C2 —> S2 be tensor functors 

over T> for C;, Si tensor categories over braided fusion T>. Then F E3-p G has canonical 

structure of a tensor functor over T>. 

Proof. Define functors Ft : C\ —• Si J3x> &i and G2 : C2 —> Si Mv S2 by 

FX{X) := Bla(F(X) IS 1), G2{Y) := B l i 2(l B G{Y)). 

Using the braided inclusions from Proposition 5.1.8 it is easy to check that Fi,G2 

are functors over X>. Observe that Fi(X) ® G2(Y) — G2{Y) ® Fi(X) so we have a 

trivial relative braiding between Fx, G2. Applying Proposition 5.1.4 to <8>(Fi El G2) = 

Si i 2(F ffl G) we get a unique tensor functor C\ C3p CQ, —> Si Op S2. This is exactly 

Fm-oG. : D 

5.2 Tensor product of braided fusion categories 

In this section we discuss when the relative tensor product of a pair of braided fusion 

categories is itself braided. It turns out that in order for such a braiding to exist we 
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will need a restricted version of the phenomenon described in Definition 5.0.7. 

Definition 5.2.1. If C,T) are braided then we say C is braided over V if there is a 

braided inclusion V <—> C where C is the centralizer of C (Definition 1.2. 12). 

Example 5.2.2. Let G* be finite abelian groups and <ft : Gj —> kx quadratic forms 

satisfying qi{g) = 0i(g,g) for some bicharacters /% on Gi, i = 1,2. One easily checks 

that (Gi x G2,p) is a pre-metric group for p(g,h) = qi(g)q2(h)- As a quadratic 

form p comes from the bicharacter on Gi x G2 x Gi x G2 given by (gi, hi,g2,h2) •—• 

Now suppose we have embeddings G <^> G, for a finite group G such that <7i(<7) = 

92(5) f° r a u 9 € G. Then the pair (G,q) is a metric group for g := q^c. Denote by 

G the subgroup of Gi x G2 given by the set {(x,x~l)\x 6 G} and suppose that p 

descends to a quadratic form on (Gi x G2)/G. Since p is constant on G-cosets we 

have q%{x)q{g) = qi(gx)q(l) for x G Gj,# € G. As a result bi(g,x) = ^ ( l ) - 1 and since 

6j(l, 1) = 1 we may conclude that 

bi(g,x) = l (15) 

for i = 1,2. 

Let us translate this into the language of pointed braided fusion categories a la 

§1.2.2. Pre-metric inclusions G •—* Gi correspond to braided inclusions C(G,q) —* 

C(Gi,qi). Equation 15 becomes dXY — 1 (c! the braiding in C(Gi,q
,
i)) whenever X, Y 

are homogeneous objects of VecG{ of degrees g 6 G, x respectively. Thus the images 

of the braided inclusions are contained in Miiger centers C(G^ qi)'. As braided fusion 
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categories it is evident that C(Gi x G2/G,p) ~ C(Gi,qi) ®c(G,q) C(G2,q2). 

The next proposition describes braiding for the tensor category Ci^z>C2 whenever 

Ci are braided over V in the sense of Definition 5.2.1. Note that the Deligne product of 

any pair of braided categories has braiding given by Deligne product of the individual 

braided structures. In what remains of this section we extend this observation to the 

relative product over a braided fusion category. 

Proposition 5.2.3. Letd, i = 1,2 be braided fusion categories braided overV. Then 

C\ E3-p C2 has canonical braiding such that B\<2 is a braided functor. 

Proof. By Propositions 5.2 and 5.3 in [JS93] braided structures on C\ Op C2 are in 

correspondence with tensor structures on the monoidal product <g> : (Ci M-p Ci)®2 —• 

C\ E3p C2. Thus to prove the proposition we consider such tensor structures. 

Let d be braiding on Ci and let A : (Ct El C2)
m —• Cx Kb C2 be as in the proof 

of Proposition 5.1.1. The category (Cx £3 C2)®
2 has monoidal structure coming from 

the one in C\ £3 C2 in the obvious way. We will adopt the convention of abbreviating 

objects of the form XxJ3 X2 € Cx S C2 by X and on occasion write Xi = Xi for the 

"coordinates" of X. Thus (X ®Y)X = Xx0Yx. Any tensor structure ^-X&YIMV '• 

A((X H F ) ® (U H V)) ^ A(X K F ) <g> A(tf S F ) is of the form 

*x®Y,mv -• BX,2{XXUXYXVX ® X2U2Y2V2) ^ Bh2(XxYxUxVx El X2Y2U2V2) 

\ 

where we have used the definition of A to write (co)domain of A in terms of BX2. 
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Given braidings in Ct the most natural possibilities are 

*x®ymv = 5i>2(ix1 ® cl(uu y[) ® iVl B iX2 ® c2(c/2, r2) ® iK2) 

where Cl(A, B) € {c^ B , cl~B A}. Leaving out tensoring with identity the diagram 

needed in order for A to have monoidal structure A is 

HUWYMVXZ) ° W " " » * ( » ™ * i A{V H V)A{W 7MXZ) 

Cl(Yl,V1Xi)MC2(Y2y2X2) C1{Yi,Xi)^C2{Y2,X2) 

A{UW®V X)A(Y® Z)cl(WiVimc2myl)A(U® V)A(WH X)A(YH Z) 

This is really two diagrams: one for C1 and another for C2. The diagram correspond

ing to C1 comes down to showing commutativity of the diagram 

Cl(WY,V)®idx 

WYVX -1—J—• VWYX 
idw®Cl(Y,VX) idvw®Cl{Y,X) 

WVXY——-—+ VWXY 
Cl(W,V)®idXY 

where subscripts have teen left off for simplicity. This diagram commutes if we choose 

C1 = c1 to be the braiding in C\. Similar considerations lead to choosing C2 — c2 to 

be the braiding in C2. 

Lemma 5.2.4. The natural isomorpism A descends to a canonical tensor structure 

onA:(Cl^vC2)
m^C1^vC2. \ 

Proof. To prove the lemma we must only show that A : A® —» <g>(A E3 A) : (d E3 

C2)
m —• d M-D C2 is ©-balanced in positions 1, 3, 5, 7. The 1-balancing of A is 
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equivalent to commutativity of the perimeter 

Bi^XiDUiYiV! El X2U2Y2V2)
 Cu^Bcu^ Bl,2(XlDYlUlVi H X2Y2U2V2) 

cD,U1YlVl 

Bi^XMYMD Kl X2U2Y2V2) 

b 

BiaiXMYM IS DX2U2Y2V2) 

c w 1 ,v 1
a c tr 2 ,y ; 

'D,Y1UiVl 

I Bx^XxYxUxViD-te X2Y2U2V2) 

b 

Bc?r l v 1 , r 1 ' Q K -{ / 2 ,vj i 4 £ u ( X i W ^ 13 DX2Y2U2V2) 

which commutes trivially. Upper and lower horizontals are A^D^y U$v an<^ ^DX&Y U&V 

where XD := XiD^X2 and verticals are A 1-balancing. Balancing in the 7th position 

is similar. The 3-baiancing of A comes down to the diagrams 

XUYDV 
CV,YD 

CU,D 

XYUDV 

» X Y D U V -» DXYUV 

eD,UV CD,XU XDUYV CD,X 

XUYVD -> XYUVD -» XDYUV 

where indices and tensor with identity morphisms have been elided. In the diagram 

on the left c = c1 and on the right c = c2. Each subdiagram is either naturality or 

pentagon for the braiding. The double edges follow from V injecting into the Miiger 

centers. The 5-balancing requires similar diagrams. 

Our discussion implies that A descends to A : A<8> —> <8>(A O A), a natural isomor-
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phism, as indicated in the diagram. 

(C1HC2) 

J l ,2 

(C^VC2) 
®(A8A) 

Using basic properties of £?12 this becomes A : A <g> —* A(A C3 A) and hence a tensor 

structure for A, proving the lemma. • 

In the language of [JS93] the functor A gives C\ E3p C2 a multiplication $ : Ci Kp 

C2 x Cx ®vC2 -+Ci&vC2 defined by $(A, B) = A(A® B). Part of the data describing 

a multiplication in C\ S© C2 involves isomorphisms $(A, 1) ~ A, $(1 , B) ~ B which 

we can assume are identity (on assuming strictness of tensor structure A in CiE3pC2). 

Natural isomorphisms A give an isomorphism $(A, A')<g)$(B, B') ~ $(A®B, A'®B'). 

Proposition 5.3 of loc. cit. implies that CiHx>C2 acquires a braided structure c making 

the diagram commute: 

CA,B 
A(A El 1) <8> A(l H B) = A <g> S — > B ® A = A(l K S ) ® A(A El 1) 

A { ( A K 1 ) ® ( 1 B B ) ) = A(AHB) = A ( ( l H B ) ® ( i 4 B l ) ) 

Denote by Tjj^ip the natural isomorphism Bi^Cfc^yi Kl ĉ 2• y ) : A —* A"? for any pair 
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of objects U, Y G Cx EJ C2 . Note that 

^XEi.iisiF = Bi?{id ® ci,i ®id^id® c\x <g> id) — idA(x^y) 

and 

^nax.Fiai = #1,2 ( c ^ r , ^ CX2,K2)
 = TxiaF-

Balancing of A in positions 3 and 5 implies balancing of 7 in positions 1, 3, hence a 

unique natural isomorphism 7 : A —> A°P satisfying 7 * Z?x | = 7. Uniqueness gives 

AIEI-,_EII = 7 and A_ia11a- = id Thus braiding on the relative tensor product is 

equal to 7: for A, B G C\ t>3r> Ci we have CA,B = 1A,B- Q 

5.3 M o d u l e categories over C\ S p C2 

In this section we are interested in studying module categories over fusion (tensor) 

categories of the form C\ E3p C2 where we retain above notation. We begin with a 

general lemma relating balancing and module category structure. 

Lemma 5.3.1. Let M. be a strict C, V-module category and let M be a left C-module 

category: Then any T>-balanced left C-module functor M. El M —> A descends to a 

functor .M Hr> Af —>• A having canonical C-module structure. 

Proof. Denote by / the balancing ismorphisms for F, and for X € C write <fx,M '• 

F(X®M) —> X®F(M) for C-module structure of F. If Lx is the functor associated to 

left X-multiplication then we can view <p as a natural isomorphism (px '• F(LX$1) —* 

LxF (here 1 = id//). Recall that left X-multiplication in M.^x>M is given by Lx, the 
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unique endofunctor on M^vN determined by BM,M°(^X^ 1) : MMAf —• M&$vN. 

It is trivial to check that both F(Lx^l), LxF are balanced functors MMN —* A with 

balancing coming from / . Also one checks that (px is balanced natural transformation. 

Thus we have unique Tpx~: F(LX §3 1) —»' iocF : Mf&pN —* A. Using basic properties 

of BMM we see that F(Lx Kl 1) = F{Lx) and L x F = LxF- Thus components of 

<£3P are given by Tpx~A : ~F(X <g> A) —> X <g> F(A) for a typical object A e M Mv N. 

Extending this construction to all objects in C we get C-linearity for F. • 

Let us now return to pre Lemma 5.3.1 notation. In what follows assume all module 

categories to be strict, an assumption we can justify thanks to Theorem 1.3.8. The 

next proposition relates module structure over the tensor product to module structure 

over braided fusion category V. 

Proposition 5.3.2. Any module category overC^-pC^ admits a canonical T>-bimodule 

category structure with respect to which the left and right module structures agree. 

Proof. Suppose braided inclusions <pi : T> <̂-> Z(Cj) put Cj over braided C as above. 

Let M. be a left C\ H-p ^-module category. Then define left and right P-module 

category structures on M. in the following way. For M € M. set 

D®M:=Blt2{ipl{D)®l)®M, M® D := B u ( l H <p2(D)) <g> M. 

Note that left module associativity of the action comes from tensor structure of <p\ 

and module associativity on the right comes from tensor structure of ip2. Note also 
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that since 

Blt2(<pl(D)®l)®Bh2(l®<p2(D)) = Bli2(iPl(D)mip2(E)) 

= fli,2(lBy>2(£))®fl1]2(¥>i(£>)Hl) 

left Ci and right C2 module structures are strictly consistent: (D <g> M) 0 E = D <g> 

(M ® E). It is evident that 61|Dii ® idM : D <g> M -^ M <g> D. D 

Theorem 5.3.3. Lei Cj 6e tensor categories over braided fusion category T>. Then 

&£> is a functor C\-Mod §§C2-Mod —• Ci S p C2~Mod. Furthermore (3x> w bilinear with 

respect to composition of functors. 

Proof. Let .M € Ci-Mod, M € C2-Mod and for convenience assume that the braided 

inclusions </?, : V —> Z(Cj) are both strict as tensor functors. Centrality of V in C, 

allows us to define P-bimodule structure on both M and TV by stipulating that left, 

right actions agree. We break up the proof of Theorem 5.3.3 into two parts. First we 

show that E3D has the proper codomain category and then show that it respects the 

relevant structures. 

Proposition 5.3.4. M. SQ-pM has canonical structure of a C\ ̂ t>C2-module category. 
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Proof. Define C\ El© C2-module structure on M. ®v M using the diagram 

T (23) 
•*Cx&M&C2&N 

elmvc2^MmvAf-

For convenience abbreviate T := BMM ° ®2 ° r{23)- We wish to descend T to the 

functor indicated in the diagram by the unadorned horizontal arrow. 

We first check that the composition T is D-balanced in positions 1 and 3 (Defini

tion 2.1.3). Let X,Y,D,M, N be objects in Cud,V,M, N. Then 

( BMMXDM m YN) "^ BMyM(XM H DYN) 

gives balancing bXM,D,YN • T(XDMYMM^N) -»• T(XMDY^M^N) in position 

1 for T. Balacing in position 3 can be written in terms of both balancing for BMM 

and the central structure in C2. Explicitly 

BM^(XMD B YN) -^ BMM(XM ® DYN) ^ BMM{XM ® YDN) 

where as usual cl is the braiding in Z(Ci). It is evident that these candidate balancings 

in positions 1, 3 satisfy the balancing diagrams for those positions, hence T is so 

balanced. We therefore get a unique right exact functor (the unlabeled horizontal 

arrow in the diagram) which we will also call <g>. 
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Next we check module associativity. It is easy to check that the compositions 

(d El C2)
m ® ( M 0 ^ ) ( ^ (Ci El C2) El (M®N)-^M®vN 

and 

( d IS C2)H2 El (A4 El 7V)(^±5)(Ci E b d ) El (A4 gfo A/") -^-> VW S p W 

are equal (here we use T for monoidal structure in C\ El CQ, as in Proposition 5.1.1). 

Also it's easy (but tedious) to show that they are each balanced in positions 1, 3, 5; all 

balancings may be written in terms of cl and balancings for B^2 and BMJ^T- Thus they 

descend to functors T{T E) id) and T(Bh2 El T) : (Ci®vC2)®
2®(M®vAf) - • M®V-M 

which are equal. Using basic properties of universal balanced functors one therefore 

has 

T(AB1) = T ( 1 B T ) 

where again we use A to denote monoidal structure in C\®t>C2 as in Proposition 5.1.1. 

This is precisely the statement that M. Elp A/" has (strict) C\ Elp C2-module category 

structure. Unit object of the action is clearly 1 = #1,2 (1 El 1) and the required unit 

constraints obtain. D 

The next result is the module counterpart to the corresponding result for tensor 

\ 
functors proved above (Proposition 5.1.10) showing that the class of module functors 

over V is closed under the relative product Elp. 

Proposition 5.3.5. Let Fi :\Mi —* Mi, i — 1, 2, be a pair of functors where for each 
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i Fi is d-module. Then Fi Elp F2 : Mi M-p M2 —• M ^v M2 has canonical structure 

of a CI$$T>C2-module functor. 

Proof. Denote by BM the universal P-balanced functor BMl?M2 : Mi El M2 —* 

Mi Elp M2. Similarly define B^. Let Fx have Cx-module structure t and F2 have 

C2-module structure t'. Define F := B/s(Fi^F2) : M1MM2 —• Mi^vM2. One easily 

checks that F is balanced by t?j£NbFl(M),D,Fa(N)tM,D '• F(MD El N) -» F (M El £>iV) 

for M, iV G Mi, M2 and £> € V and where 6 is balancing for B//. We therefore get 

functor Fi Elp F2 : M1 M-p M2 —* Mi Elp A/"2 with the usual uniqueness property. 

We now show that it respects Ci Elp C2-module structure. Then note that we have 

a natural isomorphism 

BM * (t ®t')*T: BM(Fi®, F2®)T -> BM(®(Fi El FJ, <g>(F2 ® F2))T. (16) 

Using the definition of Ci El© I>2-module structure ®Mi ®Af f° r Mi Eip A42 and 

Mi Elp A 2̂ as described in the proof of Proposition 5.3.4 and the definition of the 

tensor product Fi E)x> F2 we see that this is a natural isomorphism (Fi Elp F2) ®AI 

(5i )2 El BM) -* ®x{l El (Fi Elp F2))B1>2 El 5 ^ . All structures are easily seen 

to be balanced therefore equation 16 descends to a unique natural isomorphism 

TWT : (Fi Elp F2)®M -» ®>v(l 13 (^1 Kip ^2))- This is precisely to say that Fx Efo F2 

has the structure of a module functor. • 

With Proposition 5.3.5 we have shown that E)p as described in the statement of 

Theorem 5.3.3 is a functor. This completes the proof of the theorem. • 
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The next result examines functonality of relative tensor product. 

Proposition 5.3.6. LetC^i € {1,2} be categories fusion over braided fusion V, and 

let Adi be right Ci-module categories, Mi left d-module categories. Then there is a 

canonical equivalence (.A4iKbA42)iaCli^C2(MEb.A/2) - (A4iElclA
ri)l£lp(A42l£lc2.A/2). 

Proof. The proposition is proved by showing the existence of unique balanced functors 

L, L', R, R' making the diagram below commute. We present the diagram here in full 

prematurely and explain its various attributes in the following paragraph as we work 

through the proof. To save space we haven't been completely explicit in indexing 

universal balanced functors B, and rely on context to alleviate confusion. 

T(23) T(23) 
Mi B Mi B M2 B M2 —: > Mi B M2 B Mi B M2 > Mi B A/\ B M2 B M2 

B 1 , 1 H B 2 , 2 " . M j B A ^ - A / i B A / ] S l , i a s 2 . 2 

(Mi B C l Mi)-B (M2 B C 2 M2) —)• (Mi B M J ) B C I B B ( J 2 (MI B M2) - J. (Mi B C j Mi) B (M2 B c 2 A/i) 

B Bl,2®Ci®r>C2
B1.2 B 

(Mi B C l Mi) B o (M2 B c 2 M2) -> (Mi B D M2) ®ClBvc2 M Bt> ^ 2 ) — » (A-h H C l Mi) B D ( X 2 B c 2 A/a) 

The functor T(23) permutes the second and third tensorands. It is easy to see that 

the composition BM1^M2MI^J^2 ° r(23) is ©-balanced in positions 1 and 3 (Definition 

2.1.3), hence the existence of unique balanced functor L making the subdiagram in 

the upper left commute. Similarly Z?i]2 ̂ cl'&Dc2 ^1,2 ° L is ©-balanced giving unique 

balanced V making lower left subdiagram commute. 

Moving to the right side of the diagram one checks that composition B\x H £?22 ° 

T(23) is C\ Ep C2-balanced giving unique balanced R making upper right subdiagram 

commute. Existence of the functor R' is slightly trickier. Observe that composition 
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of functors down the vertical center forms half of the diagram defining the functor 

#1,2 ^CX&DC-Z #I ,2 ( t n e rectangular subdiagram in the left of the diagram below). 

Mi m M2 M Mi El M2 

3
 M i a A<2 ,J^i s MZ 

->. (Mi H C l Mi) m-p (M2 Hc 2 M2) 

Bii2GSBl%2 

(M1EM2)RClSS7>C2 (MiBM2) 

(Mi B B M2) H (Mi H o A/i) 

BMl®T,M2,Mi®pM2 

> (A^i H e M2) ®CiBvc2 ( M H e JV2) 

Denote T := B o B ^ ^ B ^ 0 ^ ) . the composition of right-most vertical and top right 

functors. Using the "D-balancing of £?ii and B2i2 as well as the bimodule-linearity of 

functors B one shows that F is D-balanced in positions 1,3 and thus we have a unique 

balanced functor F' : (Mi ®v M2) B (A/i Mv M2) -» (Mi ®Cl M ) 8© (A42 ^ C 2 M ) 

such that F' o £?12 E3 Z?i)2 = T. In fact F' is Ci Elp C2-balanced giving unique balanced 

functor R'. This is precisely R! in the first diagram. 

Every cell commutes and therefore the exterior contour also commutes. Retaining 

notation above this means 

B o Bhi El B2,2 = BlUoBo Biti B B2<2 

since rf 3 = id. Universality of functors B and Z?i;i 03 B2)2 implies that R'L' = id. 

Reasoning similar to the above yields L'R! — id, hence L', Rf are quasi-inverse and 

the proposition is proved. • 

Note 5.3.7. In the case that categories Mi,Mi have bimodule category structure the 

equivalence in Proposition 5.3.6 is an equivalence of bimodule categories. 
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Corollary 5.3.8. Suppose that M, is a Ci-bimodule category, J\f is a Ci-bimodule 

category, and assume 'that Ai and M are invertible. Then M. Kp M is invertible as a 

C\ S© C<i-bimodule category and has inverse fA~l ffi-pN'1. 

Proof. Theorem 5.3.3 implies 

(M He, AT) SC l H o C 2 ( A T 1 E!C2 AT1) ~ (M ®Cl M~l) ®v {M ®c2 AT1) ^ Cx Mv C2 

giving the result. • 

\ 
\ 
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CHAPTER VI 

EQUIVARIANTIZATION AND TENSOR PRODUCT 

6.1 (De)-equivariantization: background 

Most of the background information in this section is taken from [DGNQ10]. Let 

jM be a monoidal category. Recall that an action of M. on C is a monoidal functor 

F : M. —»• End(C) where End(C) denotes the category of fc-linear endofunctors on C. 

For finite group G denote by G the finite monoidal category having objects ele

ments of G, only trivial morphisms, and with tensor product given by multiplication 

in G. Then an action of G on C is the same as an action of G on C. The tensor cat

egory Vecc of finite dimensional G-graded vector spaces identifies with the ^-linear 

hull of G and hence an action of G on C is the same thing as a fc-linear action of Veca 

onC. 

Let Rep(G) denote the braided category of finite dimensional representations of 

G. Then we have an equivalence of 2-categories 

{A;-linear categories with G-action} ^ {fc-line ,̂r categories with Rep(G)-action), 

called equivariantization and de-equivariantization. 
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6.1.1 Equivariantization 

In this section we describe how a category with G-action has canonical Rep(G)-

module structure. Let F : G_ —* End(C), g *-+ Fg be an action of G on C and let 

lg,h '• FgFh — Fgh be the isomorphism giving F the structure of a monoidal functor. 

A pair (X, u) for object X £ C is said to be G-equivariant if there is a natural family 

ug : Fg(X) ~ X of natural isomorphisms making the diagram 

F9(Fh(X)) F * K ) > Fg(X) 

.^W—l^T ^^ 

commute for g,h £ G. Morphisms of equivariant objects are defined to be morphisms 

in C commuting with ug for all g € G. Evidently we have a category of G-equivariant 

objects in C, denoted CG. 

The category C° has Rep(G)-module category structure as follows. For represen

tation (V, p) and (X, u) G CG we define (V <8> X, uv) by the composition 

uv
g := Fg{X® V) ~ Fg(X) ® K "9-M5) X ® K 

6.1.2 De-equivariantization 

Here we describe how a Rep(G)-module category carries a natural structure of a 

category on which G acts. Recall that the regular object A in Rep(G) can be viewed 

as the algebra Fun(G, k) of A;-valued functions on G. As a representation G acts on 

A by right translation. Any Rep(G)-module category V thus contains a subcategory 
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of ^-modules, which we denote by T>G and call the de-equivariantization of V. 

6.2 Monoidal 2-structure and (de)-equivariantization 

We keep notation as above. Braiding of Rep(G) implies an embedding of 2-categories 

Rep(G)-Mod -̂> /3(Rep(G)) into the monoidal 2-category consisting of Rep(G)-bimodule 

categories. This is symptomatic of the observation that every module category over 

a braided monoidal category is really a bimodule category. Denote by B R ^ G ) the 

monoidal 2-structure in J3(Rep(G)). 

Denote by G-Mod the 2-category consisting of categories with G-action. G-Mod 

has monoidal structure as follows. Let T, £ be objects in G-Mod with G-actions 

given by monoidal functors F, E respectively. Then G acts on T^£ via FME. We 

write T © £ to indicate the category T IS £ with this action. 

Proposit ion 6.2.1. The correspondence C i—> CG between the 2-categories G_-Mod 

and B(Rep(G)) respects monoidal structure. 

Proof. Denote by Funo(Vec,C) the category of functors which commute with the 

action of G where we view Vec as having trivial G-action. FungiYec,C) carries 

a natural Rep(G)-module category structure as follows: for (V,.p) € Rep(G) define 

(H, h) <g> (V, p) := (Hv, hv) where HV(W) := H(W) ® V and where hv is given by 

the composition 

hv
g := Hv(Fgk) = H(Fgk) ® ^^FgHW ® V = Fg(H

v(k)). 

One easily checks that the relevant module coherence diagram for hv follows from 
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those satisfied by h and p. 

Lemma 6.2.2. For C € G_-Mod there is a canonical equivalence of Rep(G)-module 

categories C° ~ Fung(yec,C). 

Proof. For (X, u) G C° denote by Hx • Vec —* C the unique functor having Hx(k) — 

X. Then ug : Hx(k) ~ FgHx{k) gives Hx the structure of a G-module functor. 

In the opposite direction any (7-module functor (H, h) : Vec —> C determines a 

G-equivariant object of C: G-module structure h on H corresponds to a natural 

isomorphism hg : H(k) ~ Fg{H(k)) where F : G —> End(C) is the action of G on C. 

Let vg :~ h~l : Fg(H(k)) ~ H(k) and observe that the Cr-module diagram satisfied by 

h translates into the diagram making (H(k),vg) an object in the equivariantization 

CG. Clearly these two constructions are inverse. 

It remains to check that this correspondence respects Rep((7)-module category 

structures. Let (X, u) E CG and (V,p) € Rep(G). Then the functor associated to 

(X <g> V, uv) is {Hx®v,uv) and this is trivially naturally isomorphic to the functor 

(Hx,u)®(V,p). O 

Remark 4.3 in [DGNO10] implies that, as abelian categories, Fung(Vec,C) ~ 

FunyeCG(Vec,C). Write FunvecG{^ec-:^) : = ^- ^ *s trivial that this equivalence 

respects Rep((7)-module structure, and hence as Rep(Gf)-module categories CG ~ C. 

As monoidal categories G-Mod and Vec^-Mod are equivalent. We will use 0 to 

denote monoidal structure in both places. For G-module categories C, V we have the 
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following Rep(G)-module equivalences: 

( 

( C 0 P ) G ~ C 0 P ~ C ®R*P(G) V~CG®Rep(G)V
G. • (17) 

First and last equivalences are Lemma 6.2.2 and the second is Theorem 8.3.2. • 

6.3 On de-equivariantization and relative tensor product 

The main result of this section is the proof of Theorem 0.2.2. We begin with the 

following lemma. 

Lemma 6.3.1. Let C, T> be fusion categories and let F : C —> T> be a surjective tensor 

functor. Let I be its right adjoint. Then 

1. 1(1) is an algebra in Z(C). 

2. V is tensor equivalent to the category Modc(I(1)) of right I (I)-modules in C. 

3. The equivalence in (2) identifies F with the free module functor I H + I ® 1(1). 

Proof. To prove (1) observe that T> is a Z(C)-module category with action X <8> Y :— 

F'(X) 0 Y where F' : Z(C) —> V is F composed with functor forgetting central 

structure. Under this action Hom(l, 1) = 1(1) (see Definition 1.3.4) so by Lemma 5 

in [Ost03] 1(1) is an algebra in Z(C). Note that since 1(1) is an algebra in Z(C) we 

have tensor structure on Modc(/(l)): X <g> 1(1) ± 1(1) <g> X so for /(l)-modules X, Y 

X <8>/(i) Y makes sense. Theorem 1 in the same paper says that Modc(/(l)) ~ P a s 
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module categories over C via F in (3). Observe that 

F(x) ®/(i) F(Y) = (x ® i(i)) ®/(1) (r <8> /(i)) = (x ® r) ® /(i) = F (X ® r). 

Hence F : I H I ® 7(1) respects tensor structure. This completes the proof of the 

lemma. • 

In what follows G is a finite group and we write E := Rep(G), the symmetric 

fusion category of finite dimensional representations of G in Vec. Let G be tensor 

category over E (Definition 5.0.7) which we thereby view as a right ^-module category. 

Let A be the regular representation of G. A has the structure of an algebra in E and 

we therefore have the notion of ^-module in C. Denote by Co the category Modc(A) 

of A-modules in C. There is functor Free : C —> Cc, X i-+ X <8> A left adjoint to the 

functor Forg : CG —• C which forgets A-module structure ([DGNO10, §4.1.9]). We are 

now ready to prove the theorem. 

Proof of Theorem 0.2.2. Let F := BCyec • C IS Vec -> C ®e Vec be the canonical 

surjective right exact functor described in Definition 2.1.4 which is tensor by Propo

sition 5.1.1, and let I be its right adjoint. Lemma 6.3.1 gives us tensor equivalence 

Modc(/(l)) ~ C H f Vec. Denote by A' the image of the regular algebra A in E under 

the composition 

E -» Z(C) -* Cx. (18) 

We claim that / ( l j is A' 

Let X, Y £ C be in distinct indecomposible ^-module subcategories of C. Since 
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the indecomposible £-module subcategories of C are respected by F the images of 

X, Y under F are in distinct £-module components of C Ek Vec. Not only does this 

imply that F(X) and F(Y) are not isomorphic but in fact Hom(F(X), F(F)) = 0. 

Thus if F(X) contains a copy of the unit object 1 e C § £ Vec then X and 1 e C 

must belong to the same indecomposible ^-module subcategory of C. Thus any object 

whose F-image contains the unit object must be contained in the image of S in C 

under the composition (18). 

Note that the restriction of F to the image of S in C gives a fiber functor £ —» 

SS§£ Vec = Vec. By [DGNO10, §2.13] the choice of a fiber functor from 8 determines a 

group Gp — G having the property that FUTI{GF) is regular algebra A in Rep(G) and 

as such is canonically isomorpic to 1(1). Thus we have tensor equivalence Modc(/i) = 

CQ — C 13^ Vec and the proof is complete. Q 
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CHAPTER VII 

MODULE CATEGORIES OVER 

BRAIDED MONOIDAL CATEGORIES 

In what follows C is a fixed tensor category (Definition, 1.2.8) and all module 

categories are assumed to be exact. Recall (Definition 1.2.10) that C is said to be 

braided if C is equipped with a class of natural isomorphisms 

Pvw : V ® W -» W ® V 

for objects V,W € C satisfying a pair of hexagons describing how they interact with 

tensor associativity. When C is strict these reduce to the equations 

?u,v®w — (idv ® cu,w){cu,v ®idw) (19) 

cu®v,w = (cu,w <S> idv){idv <g> cv,w)• (20) 

7.1 The center of a bimodule category 

In this section we describe a construction which associates to a strict C-bimodule 

category M. a new category having the structure of a Z(C)-bimodule category. Note 

that as monoidal categories C^, which we have been using to denote the opposite 
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category, is canonically monoidal equivalent to the category Crev, the category C with 

monoidal product reversed. We will therefore not distinguish between them and use 

the single notation Cop. 

For the first proposition assume C to be braided by cxy '• X <g> Y —• Y <g> X. Our 

first proposition is well known and we provide a proof only for completeness. 

Proposit ion 7.1.1. Let Ai be a left C-module category. Then Ai has canonical 

structure ofC-bimodule category. 

Proof. We begin with the following lemma. 

Lemma 7.1.2. M. is right C-module category via (M,X) i-» X <g> M where <g> is left 

C-module structure. 

Proof. For left module associativity a define natural isomorphism 

a'\t,x,Y = av,x,M(idM ® CX,Y) : M ® (X ®Y) - • (M ® X) ®Y 

for X,Y £ C and M E M. In terms of the left module structure by which M <8> X 

is defined a'MXY = aY,x,M(cx,Y ® ^ M ) = (X <g> F) ® M —» y <g> (X ig> M). We show 

that a' is module associativity for right module structure. Consider diagram 

(XYZ)M C-X,YZ + (YZX)Ma-^y(YZ)(XM)^(ZY){XM) 

CXY,Z 

(ZXY)M 

%ZY,X,M 

CX,Y 

(ZYX)M 

"•Z,YX,M 

0-Z,Y,XM 

O-Z.XY.M 
> Z((XY)M) - ^ Z((FX)M) — > Z(F(XM)) 
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The upper left reetangle is naturality of c, upper right triangle naturality of a, leftmost 

triangle is equation (20), triangle in lower half of diagram is equation (19), central 

bottom rectangle is naturality of a and rightmost rectangle is a-pentagon in C. The 

two directed components of the external contour are precisely a,'MXYZa'Mxrz
 an<l 

ia'M,x,Y® Z)a'MXYiZ- The diagrams for action of unit in C are even easier. • 

Define action of X13 Y € C 13 Crev using left and right actions, i.e. (X13 Y) ® M = 

Y®{X®M). Define 

1X,M,Y = ax,YM(cr,x ® idM)aY]x,M :Y ® (X ® M) ^ X ® {Y ® M). 

In order to verify that the candidate action is indeed bimodule we must show that 7 

satisfies the necessary pentagons (Remark 1.3.10). Commutativity of the first pen

tagon follows from an examination of the diagram below. 

(ZXY)M 
CZ.XY 

(XYZ)M 

azx 

~az,XY,M aXY,Z,M^ 

Y,M 

Z{{XY)M) 

°-X,Y,M 

fXY,M,Z 
•*(XY)(ZM) 

\o-X,Y,ZM VX,YZ,M 

Z(X(YM)f^zX{Z(YM)) ^ f X(Y(ZM)) 
aZ,X,YM^ 

<*X,Z,YM aZ,Y,M 
°-Y,Z,M 

(ZX)(YM) - ^ {XZ){YM\<— (XZY)M ^^MX((ZY)M) - ^ X((YZ)M) 

Every peripheral rectangle is either the definition of 7 or the module associativity 

satisfied by a. Note that top left vertex can be connected to the lower center vertex by 

the map Cz,x®idy®M making commutative rectangle expressing naturality of a in first 
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index. Lower center vertex can be connected to uppermost right vertex by the map 

idx®czy®id,M making commutative rectangle expressing naturality of a in the second 

index. Corrimutativity of this new external triangle is (equation (19))®M. Thus the 

internal pentagon commutes, and this is precisely the first diagram in Remark 1.3.10. 

Commutativity of second pentagon is similar. This completes the proof of Proposition 

7.1.1. • 

Next we generalize the notion of center to module categories. 

Definition 7.1.3. Let M. be a C-bimodule category. A central structure on M, is a 

family of natural isomorphisms <px,M '• X ® M ~ M <g> X, X EC, one for each object 

M € Ai, satisfying the condition 

(XY)M ^ ^ > M(XY) 

aX,Y,M 

X(YM) 

X®vv 

X(MY) 
yx,M,Y 

{MX)Y 

>PX,M®Y 

-*(XM)Y 

whenever Y € C where ae,ar are left and right module associativity in M. and 7 

bimodule consistency (Proposition 1.3.10). tpu is called the centralizing isomorphism 

associated to M. If such a central structure exists M. is said to be central over C. 

Note that when M. is strict as a bimodule category the hexagon reduces to 

VX,M®idy 

XMY > MXY 

XYM 
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In what follows assume C is a strict monoidal category. 

Definition 7.1.4. The center Zc(Ai) of M. over C consists of objects given by pairs 

(M,IPM) where M 6 M. and where ipM is a family of natural isomorphisms such 

that the isomorphisms (px.M : X <g> M ~- M <8> X satisfy Definition 7.1.3 for X E C. 

A morphism from (M,<PM) to (N,(pN) in Zc{M) is a morphism t : M —> N in M. 

satisfying (px,N(idx ® <) '= (* ® idx)<Px,M-

Note 7.1.5. Definition 7.1.4 appeared in [GNN09] in connection with centers of 

braided fusion categories. 

Example 7.1.6. For C viewed as having a regular bimodule category structure 

ZC{C) = Z(C), the center of C. 

Definition 7.1.7. Let A4,Afbe bimodule categories central over C. Then C-bimodule 

functor T : A4. —* M is called central if the diagram 

T(X ® M) — f x M > X <g> T(M) 

T(V>X,M) VX,T(M) 

T(M ® X) ; • T(M) <g> X 

commutes for all X € C, M G .M, where y denotes centralizing natural isomorphisms 

in M. and AT. / is linearity isomorphism for T. A central natural transformation 

T : F => G for central functors F,G : M. —+ N is a bimodule natural transformation 
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F => G with the additional requirement that, for X € C, M € M. the diagram 

X <8> F(M) yx 'F(M) > F(M) (8> X 

X®TM TM<8>X 

X®G{M) y x c ( M ) >G(Af)(g>A-

commutes. 

It is evident that centrality of natural transformations is preserved by vertical (and 

horizontal) composition, and we thus have a category (indeed a bicategory) Z{M,,N) 

for central bimodule categories A4,Af consisting of central functors M. —* N where 

morphisms are central natural transformations. 

Lemma 7.1.8. Zc(A4) is a Z(C)-bimodule category. 

Proof. Assume Ai is strict bimodule category. We have left action of Z{C) on 

ZC{M) given as follows: for (X,cx) € Z(C) and (M,ipM) e ZC(M) define (X,cx) ® 

(M, tpM) = ( X ® M , <PX®M) where for Y e C 

CX Y®^ X6S&V JLf 

VY,X®M := Y ®X <g> M -1—>• X ® y ® M - ^ T X ® M ® Y 

so that X ® M e ZC(M). Define right action of Z(C) by (M,ipM) ® (X,c x ) 

(M <g> X, (fM®x) where 

¥Y,M®X :=Y®M®X > M ® F ® J C =• M <8> X <g> Y 

putting M ®X €. Zc{M). It is easy to check that these actions are consistent in the 
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way required of bimodule action. D 

Proposition 7.1.9. Zc(M) has a canonical central structure over Z(C). 

Proof. <px,M '• (X <g> M, IPX®M) —»• (M ® X, VM®X) is a morphism in ZC{M) as can 

be seen by the diagram 

y®<px,M 

¥>X,M®V >MXY 

Triangles are Definition 7.1.3 for ip and the square is C-naturality of (p. a 

Proposition 7.1.10. For C-bimodule category M. we have canonical Z(C)-bimodule 

equivalence Funcg£av(C, A4) ^ Zc(A4). 

Proof. For simplicity assume M is strict as a C-bimodule category. Define functor 

A : Fun^oJCM) ~ ZC{M) by sending F •-» (F(l) , fr o fe~l) where fx : F(X) ~ 

X <8> F( l ) and / £ : F p f ) ~ F( l ) <g> X are left/right module linearity isomorphisms 

for F. The diagram below implies (F( l ) , fr o / € _ 1 ) G ZC(A4): 

F (1)AT* 

fe
x®Y 

Left and right triangles are diagrams expressing module linearlity of F and square is 

bimodularity of F (Remark 1.3.12). Inverting all t superscripted isomorphisms gives 
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the diagram required for centrality of f o fe . 

To complete definition of functor FwzCBCo,,(C, Ai) —* Zc(Ad) we must define ac

tion on natural bimodule transformations. For r : F =» G a morphism in the category 

of functors Fjmc^Cop(C,M) note that Ti : ( F ( l ) , / r o fe~ ) —y (G(l),gr o ge" ) is a 

morphism in Zc{M): indeed, diagram required of T\ as central morphism is given by 

pasting together left/right module diagrams for r along the edge TX '• F(X) —> G{X). 

We now define quasi-inverse T for functor A. For M e M. denote by FM the 

functor C —> M defined by FM(X) := X <%> M. Right exactness of FM follows 

from (contravariant) left exactness of Hom( , Hom(M, M)). Since M. is a strict C-

bimodule category FM is strict as a left C-module functor. For (M, ipu) G Zc{M) we 

give FM the structure of a right C-module functor via 

FM(X) = X®M^ M®X = FM{1) ®. X (21) 

and with this FM is C-bimodule. Define T(M, ipM) :— FM with the bimodule structure 

given in (21). It is now trivial to verify that A r = id and that TA is naturally 

equivalent to id via fe. Finally, it is easy to see that T is a strict Z(C)-bimodule 

functor. • 

As a corollary we get a well known result which appears for example in [EO04]. 

Corollary 7.1.11. (C£>3Cop)£ ~ Z(C) canonically as monoidal categories. 

Here, as elsewhere, we have used C*M to denote the category of C-module endo-

functors Endc(A
,f) for C-module category M. 
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7.2 T h e 2-eategories B(C) and Z(C)-Mod 

Recall that 13(C) denotes the category of exact C-bimodule categories. The main 

result of this section is Theorem 7.2.3 giving an equivalence B(C) ~ Z(C)-Mod which 

is suitably monoidal. Before we give the first proposition of this subsection recall that 

C has a trivial Z(C)-module category structure given by the forgetful functor. 

Proposition 7.2.1. The 2-functor B(C) -» Z(C)-Mod given by M ^ ZC(M) = 

FunCftCo„(C, Ai) is an equivalence with inverse given by N >—> Funz,C\(C°p,Af). 

Proof. In Proposition 7.1.10 we saw that ZC{M) is a Z(C)-module category whenever 

M. is a C-bimodule category (here module structure is just composition of functors). 

The category of Z(C)-module functors Funz,C)(Cop,J\f) for Z(C)-moduie category M 

has the structure of a C-bimodule category with actions 

(F ® X)(Z) := F(X ® Z), (Y ® F)(Z) := F(Z <g> Y). 

To see that Func^Cop(C, —) and Funz^(Cop, —) are quasi-inverses first note that 

EMHz{c)(Cop,Fmc^coP(C,Af)) ^ FuncBcoriC ®Z(C) Cop,N) - Emicmcop(Z(C)*c,M) 

(22) 

as C-bimodule categories for any bimodule category M where we have used equation 

8 freely. Theorem 3.27 in loc. cit. gives a canonical equivalence (C/U)!M — C for any 

(exact) C-module category M.. In the case that M — C this and Corollary 7.1.11 

imply Z(C)*C ~ ((C S C°P)^ ~ C 13 Cop. Thus the last category of functors in (22) is 
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canonically equivalent to FunCSCoP(C IS Cop,N) ~ A/*. 

In the opposite direction we have, for Z(C)-module category A4, 

Emc^AC,Emz(c)(^,M)) - Fmiz{C)(C
op ^mc^ C,M). (23) 

Note that Cop ®c®c°p C ~ ( C 8 Cop)J ~ Z(C) (Corollary 7.1.11) and thus the last 

category of functors in (23) is canonically equivalent to Funz^(Z(C),M) ~ A4. • 

Lemma 7.2.2. As Z(C)-bimodule categories Zc(M
op) ~ Zc(M)op. 

Proof. For A4, C as above we have the bimodule equivalences 

FuncBCoJC, Mop) ~ Func®c<>r(Mop, C)09 ~ F«ncBco„(C, M) o p . 

The first equivalence is Lemma 1.3.14 and the second uses Corollary 2.3.3. By Propo

sition 7.1.10 the first term is equivalent to 2,
c(.M

op) and the last to Zc{M)op. • 

Theorem 7.2.3. The 2-equivalence Zc : B(C) ~ Z{C)-Mod is monoidal in that 

Zc(M t3c -W) — ZC{M) ^z{C) Zc{M) whenever M,M are C-bimodule categories. 

Proof. We have canonical Z(C)-bimodule equivalences 

Ze{M®cM) ^ FunCBC„(C,M®r.N)~ FunCBCoJMop.Af) 

- 'Funz{c)(Zc(M°p),Zc(M)\- £Mnz(C)(Zc(Myp,ZcW) 

^ Emiz{C){Z{C),Zc{M)^z(c)Zc{U))-Zc{M)mz{c)Zc{N) 

The first equivalence is Proposition 7.1.10, the second and fifth are Corollary 2.3.3, the 
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third follows from the fact that the equivalence of 2-categories Z(C)-Mod ~ (CG3Cop)£-

Mod (Corollary 7.1.11) preserves categories of 1-cells, and the fourth follows from 

Lemma 7.2.2. Example 7.1.6 shows that Zc preserves units. • 

Corollary 7.2.4. Let Ai be a C-module category for finite tensor C. There is a 

canonical 2-equivalence 13(C) ~ 3(0^) respecting monoidal structure. 

Proof. Corollary 3.35 in [EO04J says that Z(C) ~ Z{C*M). The result follows from 

Theorem 7.2.3. O 
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CHAPTER VIII 

Fusion rules for Rep(G)-module categories 

8.1 Burnside rings 

Much in the beginning of this section is basic and can be found for example in 

[CR87J. Let G be a finite group. Recall that the Burnside Ring £l(G) is defined to be 

the commutative ring generated by isomorphism classes of (?-sets with addition and 

multiplication given by disjoint union and cartesian product: 

(H) + (K) = G/H U G/K 

(H){K) = G/HxG/K 

Here (H) denotes the isomorphism class of the G-set G/H for H < G and G acts 

diagonally over x. Evidently we have 

(H){G) = (H), (H)(1) = [G:H}(1) 
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so 0(G) is unital with 1 = (G). It is a basic exercise to check that multiplication in 

Q.(G) satisfies the equation1 

(H)(K)= Y, (H^aK). 
HaKeH\G/K 

We are interested in a twisted variant of the Burnside ring. Here we take as basis 

elements (H,a) where G/H is a G-set and a is a A;x-valued 2-cocycle on H. Multi

plication of basic elements takes the form 

(H,li)(K,a)= ^ (HnaK,fiaa) 
HaKeH\G/K 

where on the right //, aa refer to restriction to the subgroup H D aK from H, aK, 

respectively. The cocycle aa : aK x aK —> A;x is defined by aa{x, y) = a(xa, ya). 

Note 8.1.1. The decomposition for twisted Burnside products described above oc

curred in [OY01] in order to study crossed Burnside rings, and in [Ros07] in connexion 

with the extended Burnside ring of semisimple Rep(G)-module categories M. having 

exact faithful module functor M. —• Rep(G). 

Recall that indecomposable Vec^-module categories are parametrized by pairs 

(H,n) where H < G and p, G fP(H,kx). Denote module category associated to 

such a pair by A4(H,fi). Explicitly simple objects of A4(H,n) form a G-set with 
\ 

stabilizer H and are thus in bijection with cosets in G/H. Module associativity 

1 0ne uses the fact that there is a bijection between the G-orbits of (xH,yK) € G/H x GjK and 
double cosets H \ G/K given by (sH,tK) >-* Hs~1tK. The orbit corresponding to the coset HaK 
contains (H,aK) with stabilizer HC\aK, thus orbit 0G(H,aK) of (H,aK) is G/(HnaK) as G-sets 
giving the formula. 
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is given by scalars fj,(gi,g2)(X), for \i e Z2(G, Fun(G/H,kx)), associated to the 

natural isomorphisms (gig2) ® X —• gi ® (g2 <8> .AT) whenever gi € G and X 6 G/H. 

Module structures are classified by non-comologous cocycles so we take as module 

associativity constraint any representative of the cohomology class [/A]. Identifying n € 

H2(G,Fun(G/H,kx)) = H2(GJnd%kx) with its image in H2(H,kx) by Shapiro's 

Lemma we may classify such constraints by H2(H,kx). 

8.2 KecG-Mod fusion rules 

The categories Veca and Rep(G) are Morita equivalent via Vec: (Vecc)yec — Rep(G) 

(send representation (V, p) to the functor Vec —• Vec having F(k) = V with Vecc-

linearity given by p). Since Rep(G) is braided the category Rep(G)-Mod has monoidal 

structure E3R6P(G) (see Proposition 7.1.1). Although Veca is not braided the category 

Vecc-Mod has monoidal structure as follows. For M.,N G Vee<3-Mod define Vecc-

module category structure on M 03 M by g <g> (m 13 n) := (5 ® m) 13 (# <g> n) for simple 

object A;ff := g in Kecc and linearly extend to all of VCCQ- Let MQN denote M^M 

with this module category structure. 

Proposit ion 8.2.1 (Vecc-Mod fusion rules). With notation as above 

M(H,n)oM(K,a)~ 0 M ( / r n ° / r , / a r ° ) . 

HaK£H\G/K 
\ 

Proof. Send (H,a) to module category A4(H,a). This association is clearly well 

defined and respects the action of G. Applying the proof above for decomposition of 

basic elements in Q(G) to simple objects in M(H,n) QAf(K,a) verifies the stated 
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decomposition on the level of objects. We must check only the module associativity 

constraints for the summand categories. To do this we simply evaluate associativity 

for a simple object in the summand category having set of objects G/H n aK. We 

may choose representative H13 aK. For g, h € G we have 

gh®(H^ aK) ~ g ® (h <g> H) El g <g> (h ® a/f) 

via fi(g,h)(H) El <r(g,h)(aK). Noting that G/K ~ G/ a / f as G-sets, restricting y> : 

H2(G,Fun(G/K,kx)) ~ H2(aK,kx) to coset aAT on the right gives y>(a)(Jfci, fc2) = 

<7(Jfc1>fc2)(a/iT) for A;i,A;2 e
 aK. Thus ^ " O ^ ) = V^X^i .*?) € H2(aK,kx), and 

this we simply denote by <ra; module associativity is /x El <r° which is idential to fxaa 

since each is a scalar on simple objects. • 

Corollary 8.2.2. The group of invertible irreducible Veco-module categories is iso

morphic to H2(G,kx). 

Proof. Without taking twisting into consideration invertible irreducible Vec^-module 

categories correspond to invertible basis elements of the Burnside ring Q,(G). Suppose 

(H)(H') = (G) in Q(G). Then £ < t f n "fl7) = {G) which can happen only if there is 

a single double coset HH' and if if fl aH' = G, and this occurs only if H = H' = G. 

It follows from Proposition 8.2.1 that 

\ 

M(G, n) QM(G, / /) = M(G, fifi') 

Sending M.(G,fi) to fi gives the desired isomorphism. • 
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8.3 Rep(G)-Mod fusion rules 

In this section we use the results of the last section together with the equivalence 

of 2-categories Vecc-Mod —» Rep(G)-Mod to derive fusion rules for the free Z+-ring 

generated by simple Rep(G)-module categories. The equivalence is defined by sending 

M. <-* Ai where 

M:=FunVeca(Vec,M). (24) 

Observe that FunveCG{Vec, Vec) acts on FunveCG(Ai,Af) on the right by the formula 

(F®S)(M) = F(M)QS(k) whenever M e M and S : Vec -> Vec is a VecG-module 

functor. F <g> S is trivially a Vecc-module functor: 

(F®S)(g®M) ~ (g ® F(M)) Q S(k) 

= (g®F(M))Q(g®S(k)) 

= g ® (F(M) O S(k)) 

= g®(F®S)(M). 

The isomorphism is Kec^-linearity of F and the second line follows from the fact 

that simple objects of Vecc (one dimensional vector spaces) act trivially on Vec. Let 

\ 
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T : Vec —• Vec over Vecc. Associativity of the action is also trivial: * 

(F®ST)(M) = F(M).QST(k) 

= F(M)®S(k®T(k)) 

= F(M)Q(S(k)®T(k)) 

= (F(M)QS(k))QT(k) 

= (F®S)(M)QT(k) = ((F®S)®T)(M) 

The second line is tensor product (composition) in FunvecG{Yec,Vec) and the iso

morphism is due to the canonical action of Vec on Af given by internal horn: 

Honw(V ® N, N) := KomVec(V, Honw(iV, N)). (25) 

Proposition 8.3.1. For H < G and fi G H2(H, kx) denote by Rep^H) the category 

of projective representations of H with Schur multiplier fi. Then Rep^{H) ~ M(H, n) 

as Rep(G) -module categories. 

Proof Send functor F : Vec —» M.(H,n) to F(k). Rep((7)-module structure on 

RepM(i/) is given by res® id: for V G Rep(G) and W G Rep^(H) the action is denned 

by V ® W :— res^r(V) ® W where ® on the right is tensor product in Repp(G). • 

One of the main results of this section is the following theorem. 

Theorem 8.3.2. The 2-equivalence .M «-> M. between (Veca-Mod, ©) and (Rep(G)-
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Mod, $QfuP(G)) i-s monoidal in the sense that 

MQN ~ M ®Rep(G) 77 

as Rep(G)-module categories. 

The action of Rep(G) ĉ  FunvecG(yec-> Vec) is given by composition of functors. 

Since the correspondence is an equivalence of 2-categories we may identify abelian 

categories of 1-cells: 

FunVecc(M,N) - FunKev{G)(M,7I). (26) 

In what follows we provide a few lemmas which show that useful formulas provided 

earlier for monoidal 2-categories hold also over the category of Kecc-modules. 

Lemma 8.3.3. The 2-equivalence M. *-* M. from V ecG-Mod to Rep(G)-Mod when 

restricted to 1-cells is an equivalence of right Rep{G)-module categories. 

Proof. The equivalence of 1-cells C : Funveca(M,Af) ~ FunRep(G)(M,7?) takes func

tor F : M. —>• M over Vecc to the functor defined by Q •—> FQ for Rep(6?)-module 

functor Q : Vec —• M. We must check that this correspondence respects Rep(C) 

action. 

Any functor E : Vec —»• Vec over VecG determines representation E(k), and any 

representation V determines functor Ev{k) — V. V € Rep(G) ~ Vec right-acts on 

F € FunKep{G){M,U) by (F ® V)(Q) = F{Q) o Ev. Writing < ((F),Q > for the 
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functor in 77 determined by F, Q we have, for W G Vec, 

<((F®EV),Q>(W) = (F®EV)(Q)(W) 

= FQEV(W) 

= <((F)®EV,Q>(W). 

• 

Lemma 8.3.4. Let M, M be left Veca-module categories. Then MoAf ~ Fun(Mop,Af) 

as left Vecc -module categories. 

Proof. Let ML :— A4(H,fi) and M := Ai(K,cr) as above. Define 

$:MQX-> Fun(Mop,Af), $ ( M O N)(M') := Hom(M', M) ® N. (27) 

Clearly $ is an equivalence of abelian categories (see Lemma 2.3.2 for example) and it 

remains to show that it respects Vec^-module structure. The category Fun(Mop,N') 

carries Kec^-module structure (g ® F)(M) := g ® F(g~x ® M) for simple objects g 

in Vecc- Left action on ,Mop is given by X ®op M — X ® M with inverse module 

associativity. We have 

(gh®F)(M) = gh®F{h-lg-l®M) 
\ 

~ g®{h®F{h~l®{g'1® M))) 

= g ® (h ® F^g'1 ® M) = (g ® (h ® F))(M) 
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where ~ is a{g,h)n l(h l,g l) which is cohomologous to cr(g,h)fj,(g,h), i.e. module 

associativity on functors is given by fia. For simple objects M, M' in A4, N € Af 

(g ® <$>(M Q N))(M') = g ® (Hom(p_1 <g> M', M) ® N) 

~ Hom(M', g ® M) ® (g ® N) 

= $(g<8>(M.(DN))(M') 

where ~ is canonical. 4> respects Kec^-module structure. Q 

Lemma 8.3.5. FunVeCG{M.,M) ~ M°v 0 M as right Rep(G)-module categories. 

Proof. We have an equivalence ip : FunVeCG(A4,N) —> AA°V 0 Af, F t-+ if>F where 

tpF(V)(M) := F{M) 0 V whenever V e Vec,M e M and where we have used 

Lemma 8.3.4 to express A4op 0 Af as category of functors is an equivalence, ip has 

quasi-inverse F *-* F(k): 

<^{F®V),W >{M) = (F(M)QV)QW 

~ F(M)Q(V®W) 

= i)F{V®W)(M) 

= i>F(Ev(W))(M)=<4>FoEv,W> (M). 

a 

Lemma 8.3.6. A4°P ~ M. as Rep(G) -module categories. 

Proof. FunVeCG(Vec,M°p) ~ FunVeca(M,Vec) ~ FtmRep(G)(A4,Rep(G)) where 
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first ~ is Lemma 8.3.4 and the second comes from the 2-equivalence. The first term 

is M°P and the last is >T P . D 

Proof of Theorem 8.3.2. With notation as above, 

MQM ~ FunVeCG(Mop,M) 

~ FunKep{G)(M^^) 

- FunRep(G)(M°p, JJ) ^ M ER e p ( G ) Jf. 

First line is Lemma 8.3.5, second is Lemma 8.3.3 and third is Lemma 8.3.6. • 

Theorem 8.3.2, together with the observation in Remark 8.3.1, immediately gives 

a formula for Rep(G)-module fusion rules. 

Corollary 8.3.7 (Rep((7)-Mod fusion rules). The twisted Bumside ring fl(G) is 

isomorphic to the ring K0(Rep(G)-Mod) of equivalence classes of Rep(G)-module cat

egories with multiplication induced by ̂ Rep(G) • That is, for irreducible Rep(G)-module 

categories Rep^{H),Rep,j{K) we have, as Rep(G)-module categories 

Rep^H) ®Rep(G) ReP<T(K) ~ ® Rep^(H n aK). (28) 
. HaKeff\G/K 

Corollary 8.3.8. The group of invertible irreducible Rep{G)-module categories is 

isomorphic to H2(G,kx). \ 

Proof The proof is equivalent to that of Corollary 8.2.2. D 
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Note 8.3.9. Corollary 8.3.8 generalizes Corollary 3.17(ii) in [ENO09] where it was 

given for finite abelian groups. Indeed when A is abelian VCCA — Rep(/T) for A* 

group homomorphisms Hom(v4, A;*). 
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