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ABSTRACT

CONJECTURING IN DYNAMIC GEOMETRY: A MODEL FOR CONJECTURE-

GENERATION THROUGH MAINTAINING DRAGGING

by

Anna Baccaglini-Frank

University of New Hampshire, September, 2010

The purpose of this research is to study aspects of the impact of Dynamic

Geometry Systems (DGS) in the process of producing conjectures in Euclidean

geometry. Previous research has identified and classified a set of dragging schemes

spontaneously used by students. Building on these findings, the study focuses on

cognitive processes that arise in correspondence to particular dragging modalities in

Cabri. Specifically, we have conceived a model describing what seems to occur during a

process of conjecture-generation that involves the use of a particular dragging modality,

described in the literature as dummy locus dragging. In order to accomplish this goal, we

preliminarily introduced participants to specific dragging modalities, re-elaborated with a

didactic aim from those present in the literature. In particular dummy locus dragging was

re-elaborated into what we introduced as maintaining dragging (MD). This study aimed

at developing and testing our model of conjecture-generation through MD by analyzing

dynamic explorations of open problems in a DGS. The general experimental design was

articulated in two phases, an introductory lesson on dragging modalities and interview

sessions in which students were asked to solve conjecturing-open problems. Subjects

were high school students in Italian "licei scientifici", a total of 31 . Data collected

included: audio and video recordings, Screenshots of the students' explorations,

xvi



transcriptions of the task-based interviews, and the students' work on paper that was

produced during the interviews. The study shows appropriateness of the model, which

we refer to as the MD-conjecturing Model. Furthermore the study shed light onto a

relationship between abductive processes and use of MD, and motivated the introduction

of the notion of instrumented abduction. The study has implications for the design of

activities based on the use of maintaining dragging with the educational objective of

introducing students to conjecturing and proving in geometry.
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CHAPTER I

CONTEXTUALIZATION of the study within the literature

In this chapter we contextualize our study within the literature, describing how it is

situated within the educational issue of conjecturing and proving in Geometry, and in

particular how a dynamic geometry system (DGS) might contribute to mathematics

teaching and learning in this field. Dragging is a characterizing feature of a DGS,

therefore we focus especially on how it has been studied in the literature. We then

introduce a general version of the research questions we set out to investigate, and the

main goals of the study.

1.1 Contextualization of the Research Problem

This study is situated in the educational context of conjecturing and proving, and

in particular on how a DGS may contribute to the conjecturing phase of open problem

activities. Therefore in this section we present literature on conjecture-generation and

the use of open problems activities in this educational context. Moreover we discuss the

role of technology in mathematics education and in particular that of computer-based

learning through a DGS. We then look at how a DGS seems to impact conjecture-

generation in Geometry.

1.1.1 Conjecture-generation and Open Problems

Research has shown that when a theorem is introduced as a ready-made
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object, the need for justification is totally absent. Furthermore students do not

seem to be naturally inclined to prove theorems given to them as statements that

are easy to believe. In particular, studies suggest that surprise, contradiction and

uncertainty might be key elements in promoting a feeling of necessity to prove

(Hadas, Hershkowitz, & Schwarz, 2000; Goldenberg, Cuoco & Mark, 1998). The

terminology "open problem" (Silver, 1995) refers to a problem (or question)

stated in a form that does not reveal its solution (or answer). When an open

problem is assigned, the solver not only has to find hypotheses justifying a fact,

but also has to look for a fact to be justified. In other words open problems can be

used to foster conjecture-generation.

In this section we describe studies that suggest how the process of

developing a conjecture to prove can be beneficial for the subsequent production

of a proof. Then we discuss how open problems can be used to foster conjecture-

generation.

Conjecturing and Proving. Literature reveals a debate concerning the

relationships between argumentation, conjecture and proof. First it is useful to define

argumentation and conjecture (as proof has already been discussed) in the context of

open problem investigations. Argumentation can be viewed from a structural point of

view, or from a functional point of view (Pedemonte, 2007a). Within discourse, the role of

argumentation is to provide a rational justification for a claim (Hanna, 1991 ; Hoyles &

Healy, 1999). In this sense proof can be considered as a particular argumentation in

mathematics (Pedemonte, 2007b). In parallel with the definition of theorem (Mariotti et

al., 1997; Mariotti, 2000), conjecture can be defined as a triplet (Pedemonte, 2007b): a
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statement, an argumentation, and a system of conceptions (Balacheff, 2000; Balacheff &

Margolinas, 2005).

While argumentation is the process leading to the development of a conjecture,

the proof is a subsequent product (Pedemonte, 2003, 2007b). Passing from the
development of a conjecture to the construction of a proof is a delicate process. Some

authors have underlined that there is a cognitive and epistemologica! gap between

argumentation and proof (Duval, 1995), while others stress the existence of a continuity.

This continuity is referred to as "cognitive unity", a notion introduced by Boero, Garuti,

and Mariotti, who described it as follows:

During the production of the conjecture, the student progressively works out
his/her statement through an intense argumentative activity functionally
intermingled with the justification of the plausibility of his/her choices: during the
subsequent proving stage, the student links up with his process in a coherent
way, organizing some of the justifications ("arguments") produced during the
construction of the statement according to a logical chain (Boero, Garuti &
Mariotti, 1996, p.113).

In other words, cognitive unity is established when there is continuity between the

argumentative activity that occurs during the conjecturing stage, and the process of

formal justification that occurs during the proving stage.

Pedemonte (2003) has developed hypotheses about what kinds of reasoning

lead to rupture or cognitive unity between the phase of experimentation-argumentation-

conjecturing, versus the phase of proving. By using Toulmin's model (1958) to study and

compare the content and the structures of argumentations and of proofs, she has been

able to anticipate occasions in which cognitive unity occurs, and cases in which there will

be rupture.

Open problems. In the context of open problems students are faced with a

situation in which there are no precise instructions, but rather they are left free to explore
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the situation and make their own conclusions. More precisely, in Geometry, open

problems have been characterized in the following way.

The statement is short, and does not suggest any particular solution method or
the solution itself. It usually consists of a simple description of a configuration and
a generic request for a statement about relationships between elements of the
configuration or properties of the configuration.
The questions are expressed in the form "which configuration does. ..assume
when...?" "which relationship can you find between...?" "What kind of figure
can.. .be transformed into?". These requests are different from traditional closed
expressions such as "prove that...", which present students with an already
established result. (Mogetta et al., 1999, pp. 91-92)

In some of the previous research, the production of conjectures is an explicit request in

the text of an open problem (for example, Boero et al., 1996a, 2007; Arzarello et al.,

2002; Olivero, 2001 , 2002). When this is the case, we will use the terminology

conjecturing open problem, to distinguish it from other types of open problems.

When a conjecturing open problem is assigned, the solution involves elaborating

a conditional relationship between some premise and a certain fact. This relationship

may be expressed by means of a conditional statement relating a premise and a

conclusion. Such conditional statement constitutes the formulation of the conjecture.

Moreover, as research points out (Boero et al., 1996b, pp. 113-114) the process of

producing a conjecture may be accompanied by an active recourse to argumentation

supporting the acceptability of the conjecture according to the solver's system of

conceptions. Assuming this perspective, the production of a conjecture can be related to

the production of a theorem, conceived as the system of statement, proof and theory

(Mariotti et al., 1997; Mariotti, 2000). Since research has shown that there can be an

opposition between argumentation (leading to the development of a conjecture) and

proof (Pedemonte, 2007b; Duval, 1996, 1998, 2006), a distinction must be made

between the conjecturing stage and the proving stage of an open problem activity.
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Often the conjecturing stage requires the generation of conditionally after a

mental and/or physical exploration of the problem situation (Mariotti et al., 1997). As

research has pointed out, this process seems to require the "crystallization" of a

statement from a "dynamic" exploration of a problem to a "static" conditional expression,

through the focus on a "temporal section" (Boero et al., 1999; Boero et al., 2007).

...the conditionally of the statement can be the product of a dynamic exploration
of the problem situation during which the identification of a special regularity
leads to a temporal section of the exploration process that will be subsequently
detached from it and then "crystallized" from a logic point of view ("if... then...").
(Boero et al., 1996a, p. 121)

This involves the identification, within a dynamic experience, of the two components of a

(static) conditional statement: a "condition" that will become the premise and a "fact" that

will become the conclusion. Searching for a "condition" is frequently referred to during

the explorations as finding "when" (Arzarello, 2000, 2001) something happens.

Therefore the term "when" becomes particularly significant because it is an element that

makes explicit an attempt of linking the world of experience, embedded in real time, to

the crystallized formal world of Euclidean Geometry, organized through conditionally.

1.1.2 The Contribution of Dynamic Geometry Systems

Mathematics education supervisors and leaders have been encouraging the use of

technology in the classroom (Noss & Hoyles, 1996; NCTM, 2000, 2006; De Villiers, 2004;

Mariotti, 2005) to foster mathematical habits of mind (Cuoco, 2008). NCTM's document

Principles and Standards for School Mathematics (2000) states: "Technology is essential in

teaching and learning mathematics; it influences the mathematics that is taught and

enhances students' learning." (p. 1 1). A means through which the use of technology is

implemented is computer-based learning.
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Computer-based learning in the mathematics classroom involves the following

specific form of interaction between the learner and the computer. The student's interaction

with the computer requires a process of interpretation, which is typical of the mathematical

activity. This is described in Balacheff & Kaput (1996, p. 470): "The interaction between a

learner and a computer is based on a symbolic interpretation and computation of the

learner's input, and the feedback of the environment is provided in the proper register

allowing its reading as a mathematical phenomenon." This is one of the reasons why

computer-based learning in the mathematics classroom is potentially very powerful. Noss

and Hoyles (1996) like to think of the computer as a window that should be looked through

to understand the process of meaning-making, because it allows (or forces) all of its users to

communicate in the language of the software being used, or of the "microworld" described

by the software. In other words, the computer is a channel through which communication

can happen and a window through which this can be seen. In Section 1 .2.1 we will illustrate
how a DGS can be conceived as a microworld.

Computer-based learning can be useful not only for observing a student's

mathematical activity, but also for developing approaches for making conjectures and

solving problems in different mathematical fields (NCTM, 2000). In the next section we will

introduce issues that arise within a particular type of computer-based learning, that is

working in a DGS, which is the context in which our study is situated.

Computer-based learning in the context of a DGS. Technology can be integrated

into the teaching and learning of Geometry through particular software programs referred

to as Dynamic Geometry Systems (DGS). Several studies in the teaching and learning of

Euclidean Geometry (for example, Choi-Koh, 1999; Mariotti, 2000; Christou,

Mousoulides, Pittalis & Pitta-Pantazi, 2004; De Villiers, 2004) have shown that a DGS
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can foster the learners' constructions and ways of thinking, and it can help students

overcome some cognitive difficulties that they encounter with conjecturing and proving

(for example, Noss & Hoyles, 1996; Mariotti, 2000).

In particular, studies show that a DGS can be motivational for students, because they

gain a better understanding and visual grasp of the mathematics they are investigating

(Garry, 1997). Students find the feedback they get from a DGS to be efficient and exciting,

and they describe computer learning as an alternative style of working which they enjoy

(Ruthven & Hennessy, 2002). Moreover, a DGS can be used to overcome some of the

difficulties encountered when approaching proof in Geometry, by providing visual feedback

and supporting the construction of situations in which "what if" questions can be asked and

explored (DeVilliers, 1997, 1998).

In a DGS, it is common for students to use the visual feedback to be convinced of a

conjectured attribute on a whole class of objects. Such feedback comes through the use of

the dragging function (Mariotti, 2001 ; Herrera, Sanchez, 2006). Although some teachers are

reluctant to use a DGS in the classroom, because they believe that a DGS may prevent

students from understanding the need and function of proof (Yerushalmy, Chazan & Gordon,

1993), studies have shown that activities which provide opportunities for the creation of

uncertainties (Goldenberg, Cuoco & Mark, 1998; Hadas, Hershkowitz & Schwarz, 2000) lead

students to feel the necessity of elaborating a proof.

De Villiers (1997, 1998) illustrated how a DGS provides the perfect situation for

asking 'What if?' questions. These questions enrich investigations, because they lead

students to generalizations and discoveries. In this sense, he claims that the search for

proof becomes an intellectual challenge, stemming from the need to understand why. 'What

if?' questions are also typical of problems that 'go somewhere' mathematically.
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Another reason why several studies in the teaching and learning of Geometry, like

those conducted by Choi-Koh (1999), by Mariotti (2000), by Christou, Mousoulides, Pittalis,

& Pitta-Pantazi (2004), or by De Villiers (2004), support the use of a DGS in the classroom,

is that dynamic geometry systems mediate the interaction between teacher and students.
The studies listed above and other studies have shown that a DGS can foster the learners'

constructions and ways of thinking, by making tangible the dialogue between learners and

their constructions (Noss & Hoyles, 1996; Mariotti, 2000). This can occur, because when

using a DGS, students can generate and examine objects on the computer screen and have
a common referent for their discussion (NCTM, 2000). For example, research on students

"playing with Cabri" has shown that the students find themselves constantly using proper

terminology for the objects that they need. This helps them achieve a correct idea, for

example, of concepts like "ray", "polygon", "perpendicular", or "parallel" that are otherwise

not always immediately understood (Brigaglia & Indovina, 2003).

Finally, a DGS can be used for the exploration of open problems. Research has

shown that a DGS impacts students' approach to investigating open problems in

Euclidean Geometry, contributing particularly to students' reasoning during the

conjecturing phase of open problem activities (for example, Goldenberg, 1993, 1998; De
Villiers, 1998, 2004; Laborde, 2000, 2001 ; Mariotti, 2000a, 2000b, 2001 , 2003,2005;

Arzarello, 1998a, 1998b, 2002; Olivero, 1999, 2002). The DGS's contribution to the

investigation of open problems is based in dragging, because it allows the solver to be

guided and supported by interacting with the software, as described by Laborde and
Laborde:

... the changes in the solving process brought by the dynamic possibilities of
Cabri come from an active and reasoning visualisation, from what we call an
interactive process between inductive and deductive reasoning (Laborde &
Laborde, 1991, p. 185).
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This brings us to a central feature of explorations in a DGS, that distinguishes this

environment from any other. The central feature, upon which our study is founded, is

dragging. Dragging, and the dynamism it induces on DGS objects, is a distinguishing

feature of a DGS in particular with respect to the static domain of Euclidean Geometry. In

the following section we describe aspects of the relationship between a DGS, built to

incorporate aspects of the Theory of Euclidean Geometry (TEG) and the domain of

Euclidean Geometry itself. Then we present a review of crucial research on various

aspects of dragging in a DGS.

1 .2 Dragging in the Literature

We find it important to underline the relationship that can exist between a DGS

built to incorporate particular aspects of the Theory of Euclidean Geometry (TEG) and

Euclidean Geometry itself. We will underline this relationship by introducing the

conception of a DGS as a "microworld" (Paperi, 1980) and describing how aspects of

dynamic explorations within a DGS can be put in relationship with the TEG. The most

delicate aspect of the transition between the two domains has to do with dragging and

how it can mediate meanings between the two domains. For example, Lopez-Real and

Leung see dragging as a conceptual tool in the following way:

It seems that dragging in DGE can open up some kind of semantic space
(meaning potential) for mathematical concept formation in which dragging
modalities (strategies) are temporal-dynamic semiotic mediation instruments that
can create mathematical meanings, that is, a window to enter into a new semiotic
environment of how geometry can be re-presented (re-shaped). (Lopez-Real &
Leung, 2005, p. 666).

1.2.1 A DGS as a Microworld

A fundamental concept, when speaking about a DGS, is that of "microworld"
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(Paperi, 1980; Noss & Hoyles, 1996; Mariotti, 2006). A concise and eloquent description

of the concept of microworld is contained in Balacheff & Kaput (1 996, p. 471 ):

A microworld consists of the following interrelated essential features: a set of
primitive objects, and rules expressing the ways the operations can be performed
and associated, which is the usual structure in the formal system in the
mathematical sense; a domain of phenomenology that relates objects and
actions on the underlying objects to phenomena at the 'surface of the screen'.
This domain of phenomenology determines the type of feedback the microworld
produces as a consequence of user actions and decisions, (emphasis in original).

A microworld can be built to resemble a mathematical world, such as Euclidean

Geometry. This is the case of a DGS like Cabri, which contains "objects" such as points,

lines, circles, and ways to "manipulate" the objects. These "objects" are made to

mathematically resemble a set of objects from a mathematical world (the world of

Euclidean Geometry in the case of the DGS used in this study). In other words, the

"objects" included offer the opportunity for the user to experiment directly with the

"mathematical objects" (Mariotti, 2006), because the logical reasoning behind the objects

in the microworld is designed to be the same as that behind the real mathematical

objects that they represent. This feature is a key aspect of microworlds in mathematics

education, because a DGS that embodies the domain of Euclidean Geometry is not the

only kind of microworld that can be created. For example, mathematicians and

programmers have constructed microworlds that represent non-Euclidean geometries

(Noss & Hoyles, 1996), or other systems of axioms in the field of algebra or analysis.

1.2.2 The Spatio-graphical Field and Theoretical Field in Cabri

The relationship between the physical world (generally referred to as Space) and

the theoretical domain is complex. Traditionally the move from observation to theory is

considered "natural," but the complexity of these connections correspond to the

complexity of teaching and learning, and they are embodied by the contradiction in
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curricula, which separates the geometry of observation and the geometry of proof

(Mariotti, 1993). In particular, geometric concepts are related to spatial properties of

reality, i.e. they are strictly related to images. On the other hand a geometric concept is

an active element of thought (Piaget & lnhelder, 1966), which is symbolic from the

beginning, and the associated image becomes more and more secondary. Therefore a

geometric figure has a spatio-geometric component (which will be referred to here as

figurai), and a theoretical component (which will be referred to here as conceptual). The

theoretical component is the domain of relations and operations on the object, as well as

judgments about it (Laborde, 2002).

A similar distinction as that brought forth by the spatio-graphical field and

theoretical field is the distinction between figurai and conceptual components of an

activity within a DGS. These notions are developed by Mariotti (2006) from Fischbeine

notion of figurai concept (Fischbein, 1993). Fischbein describes how Geometry deals

with mental entities (the so-called geometrical figures), which possess simultaneously

conceptual and figurai characters.

A geometrical sphere, for instance, is an abstract ideal, formally determinable
entity, like every genuine concept. At the same time, it possesses figurai
properties, first of all a certain shape. The ideality, the absolute perfection of a
geometrical sphere cannot be found in reality. In this symbiosis between concept
and figure, as it is revealed in geometrical entities, it is the image component
which stimulates new directions of thought, but there are the logical, conceptual
constraints which control the formal rigor of the process" (Fischbein, 1993).

The figurai component of an activity is its connection to the physical world, its

concreteness, and the empirical approaches that a student may take when working on it.

On the other hand, the conceptual component of an activity is its connection to the

theoretical world in which it is situated. In a DGS like Cabri this theoretical world is the

Theory of Euclidean Geometry (TEG), with its definitions, axioms and theorems.
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Research has shown (Bartolini Bussi, 1993) that when dealing with a geometrical

problem, students need to relate the spatio-graphical field to the theoretical field and vice

versa in a dialectic process, alternating "experimental movea* (based on actions on the

mechanism and visual experiments) and "logicai moveä' (including the production of

statements deduced from other statements accepted as valid). Cabri embodies both a

theoretical world, the world of Euclidean Geometry, and a spatio-graphical world, its

phenomenological domain, characterized by being mechanical and manipulative.

Therefore, if used appropriately, Cabri can foster an interconnected dialectic between

the two fields, by providing diagrams whose behavior is controlled by the theory.

Furthermore, as stated by Laborde,

the computer not only enlarges the scope of both possible experimentation and
visualization but modifies the nature of the feedback. The feedback is visual on
the surface, but it is controlled by the theory underlying the environment
(Laborde, 2002).

However, we must not make the mistake of "collapsing" the TEG upon the.

phenomenology of a DGS, interpreting as "geometrical" everything that occurs in the

DGS. For example, studies have shed light onto misleading aspects of DGS that are

intrinsically linked to being software programs (for example, Noss et al., 1994; Hölzl,

2001 ; Strässer, 2001). We 'will discuss other aspects of a DGS, related to dragging, that

contribute to highlighting the gap between the phenomenology of a DGS and the TEG in

Chapter 3 and, more extensively, in Chapter 7.

1.2.3 Dragging: a General Overview

Different aspects of the potential of dynamic geometry systems (DGSs) have

been widely documented (for example, Laborde 1995; Mariotti 1997, 2002; Noss &

Hoyles 1996; Olivero 2002; Hollebrands, 2007). Our study focuses in particular on
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exploratory activities in which the goal is to produce conjectures, and the main

contribution of the DGS to this type of exploration is the possibility it offers the solver to

use the dragging function. Dragging is a characterizing feature of dynamic geometry that

allows direct manipulation of the figure on the screen (Laborde & Strässer, 1990),

inducing transformations which can be visualized as movement of these figures. This

way, exploring a figure in dynamic geometry can become a search for interesting

properties and relationships between these properties perceived as invariants. The

identification of such invariants lies at the heart of a dynamic exploration (Laborde, 2005;

Laborde et al., 2006; Hölzl, 1996; Arzarello et al. 1998a, 1998b, 2002; Olivero 2002;

Healy & Hoyles 2001 ; Baccaglini-Frank et al., 2009).

In this section we will introduce some element from the literature on "dragging",

following its evolution, situated within the more general empirical research on use of

DGSs in the classroom. Gawlick (2002) highlights three stages of such research, that

are: (1) research concerning the exploration of the various capabilities of a DGS; (2)
research on the students' interaction with the software and their construction of

knowledge with respect to the mathematical structures aimed at; (3) research on the use

of DGS in the classroom, that investigates both students' uses of dynamic geometry with

respect to specific mathematical tasks, and the role of the teacher in the construction of

mathematical meanings from situated experiences within the DGS.

The First Stage. During the first stage studies focused on potentials of dynamic

geometry, situating their considerations in the perspective of a DGS as a microworld

(see also Section 1 .2.1). Early studies describe how within a DGS, like Cabri-Géomètre

(Laborde & Bellemain, 1993-1998), the following two features have impact on the

learning of geometry: 1) "geometrical knowledge" is embedded in Cabri-Géomètre, and
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the behavior of the software is controlled by a theory comprising primitives and the drag

mode; 2) theoretical concepts are reified and can be handled as material entities

(Laborde & Laborde, 1995, p. 243). A fundamental characterizing feature of a DGS is

that figures can be constructed starting from a set of basic elements from which other

objects are constructed according to a set of given properties describing the dependency

relations between them, and base (or basic) points of the figures can be dragged on the

screen. During the dragging process the properties according to which the construction

was made are maintained, and these may be perceived as invariants.

Various studies address (or contain, even if they are not explicitly focused on it)

the use of the drag mode (see, for example, Laborde & Strässer, 1990; Laborde &

Laborde, 1991 ; Laborde, 1992; Noss et al., 1994; Healy et al., 1994; Goldenberg &

Cuoco, 1998; Hölzl, 1996, 2001). Most of these studies have underlined the potential of

dragging with respect to validating a geometrical construction. For example, Healy,

Hölzl, Hoyles and Noss (1994) elaborated the idea that a figure might or might not be

"mess up-able", that revealed to be quite powerful for students. Later, Healy (2000)

introduced the notions of robust construction and soft construction to explain students'

different ways of interacting with a DGS as they identified and induced geometrical

properties on the figures. Although many studies focused on the potentials of dynamic

geometry, research also took into consideration some pitfalls (Balacheff, 1993; Healy &

Hoyles, 2001), leading to reflection upon different ways in which dragging might affect

the learning of Geometry (Hölzl, 1996). This leads to the second stage of research,

characterized by a constructivist approach aimed at analyzing students' construction of

knowledge as they interacted with the microworld.
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The Second Stage. Research became focused on the knowledge constructed by

students during technology-based experiences with respect to potential mathematical

ideas the technology-based experiences might have contained or been aimed at. Noss

and Hoyles's (1996) studies show that the knowledge students would construct during

such experiences was tightly linked to the specific environment it was developed within.

As mentioned above, HoIzI (1 996) described how a DGS may subtly interfere with the

intended understanding of Geometry, leading for example to the perception of "false

invariants." These are properties that look like invariants of a dynamic figure even though

they are not explicitly added as properties during the construction steps nor are they

consequences of them. These invariants arise from howihe software is programmed. As

a consequence, the drag mode is not "heuristically neutral" (HoIzI, 1996, p.171).

Researchers and educators thus became aware that this and other features of a DGS

may change the students' working style (Healy & Hoyles, 2001) and even their

conception of Geometry (Balacheff, 1993; HoIzI, 1996). This explains how dynamism

cannot be conceived per se as a didactical advantage (HoIzI, 1999), but instead as a

non-neutral feature of dynamic geometry to be used consciously.

The awareness of non-neutrality of a DGS, in particular due to the dragging

feature within it, recently led to hypothesizing the possibility of introducing a new

"grammar" through which statements constructed via dynamic explorations may be

expressed (for example, Lopez-Real & Leung, 2006, p. 666). This of course re-opens the

issue of potentially conceiving a new theory built upon the "axioms" to be defined.

The Third Stage. More recently research has been concerned with

implementation of DGS within classroom settings. Among these studies many are

focused on cognitive aspects of the students' use of dragging during explorations. These
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studies provide different ways of analyzing and different interpretations of students'

activity. Some of them reveal students' difficulties in being aware of the different status of

elements comprising a dynamic figure. For instance, Talmon and Yerushalmy (2004)

shed light on the complexity of grasping and controlling hierarchical dependency induced

on the elements of a figure by the construction steps. The consciousness of the fact that

the dragging process may reveal a relationship between geometric properties embedded

in the Cabri-figure directs the way of transforming and observing the screen image.

Other studies, that are particularly significant with respect to our research,

concern the description of different dragging modalities spontaneously used by students

during an open problem exploration (for example, Arzarello et al., 1998a, 1998b, 2002;

Olivero, 2002; Leung, 2003, 2008; Lopez-Real & Leung, 2006). Because of their

significance for the study presented in this dissertation, they will be presented separately
at the end of this Section.

Another group of studies focuses on classroom activities that make use of a

DGS. Some of them overcame the conception of a DGS as a "visual amplifier" and

explore how its role in fostering the construction of mathematical meanings. In particular,

researchers have started investigating how the use of dragging during a dynamic

exploration can be interpreted in terms of logical dependency (Mariotti, 2006, 2010;

Laborde, 2003; Gousseau-Coutat, 2003). "Feeling motion dependency", which can be

interpreted in terms of logical dependency within the mathematical context is a key

feature in the development of conjectures originating from the investigation of open

problems in a DGS. The solver has to be capable of transforming perceptual data into a

conditional relationship between what will become premise and conclusion of the

statement of a conjecture (Mariotti, 2006).
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In the context of these studies, other interesting aspects, differently related to the

management of classroom activities, have been taken into account: the design of the

tasks as a DGS in the classroom to make mathematical meanings emerge (for example

Laborde, 2001 , 2003; Gousseau-Coutat, 2003; Healy, 2004; Restrepo, 2009); and the

role of the teacher in organizing and orchestrating the activities and discussions (for

example, Bartolini Bussi & Mariotti, 1999, 2008; Mariotti, 2002) .

As far as the design of the task in concerned, the work by Gousseau-Coutat

(2003) is particularly significant for our study. The teaching experiment implemented in a

middle school classroom is aimed at fostering the understanding of conditionally by

introducing soft constructions. This mediates the distinction between premise and

conclusion in a conditional statement.

Let us give an example, consider the following task (Laborde, 2005, p.32-33):

"Construct any quadrilateral ABCD , its diagonals and the midpoint of each diagonal.

Drag any vertex A, B, C or D so that the midpoints are coinciding." The essence of the

task consists in imposing a condition by dragging (here the coincidence of midpoints)

and consequently inducing a visible change on the figure (here it becomes a

parallelogram). A teaching experiment developed by Restrepo (2008) stemmed from a

similar assumption: fostering students' awareness of relative dependency in a DGS with

the aim of clarifying the distinction between "drawing and figure" (Laborde & Capponi,

1994).

Arzarello et al.'s Cognitive Analysis of Dragging. In the late 90's a team of

researchers, Federica Olivero, Ferdinando Arzarello, Domingo Paola, and Ornella

Robutti, analyzed subjects' spontaneous development of dragging modalities during

investigations of open problems in dynamic geometry. The investigations centered upon
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the use of dragging from a cognitive point of view, focusing on the way dragging may

affect students' reasoning process. This led to a classification (Arzarello et al., 2002;

Olivero, 2002) of different dragging modalities that students might use in solving

problems, which have been referred to as the "dragging schemes". These dragging

schemes can be described as particular ways of dragging points of a dynamic figure on

the screen, that is particular uses of the dragging tool, exploited by the user in order to

accomplish a task (or sub-task). The classification of the dragging modalities can be

summarized as follows:

• Wandering dragging: moving the basic points on the screen randomly, without a

plan, in order to discover interesting configurations or regularities in the figures.

• Bound dragging: moving a semi-draggable point (it is already linked to an object).

• Guided dragging: dragging the basic points of a figure in order to give it a particular

shape.

• Dummy Locus (or lieu muet) dragging: moving a basic point so that the figure

keeps a discovered property; that means you are following a hidden path {lieu muet),

even without being aware of this.

• Line dragging: drawing new points on the ones that keep the regularity of the figure.

• Linked dragging: linking a point to an object and moving it onto that object.

• Dragging test: moving dragable or semi-dragable points in order to see whether the

figure keeps the initial properties. If so, then the figure passes the test; if not, then the

figure was not constructed according to the geometric properties you wanted it to
have.

Students showed different uses of dragging according to the different aims that

direct the solution process: exploring the configuration looking for regularities, making

conjectures, testing and validating conjectures, justifying conjectures. The research
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studies carried out by Olivero, Arzarello, Paola, and Robutti (Olivero, 2000; Arzarello, et

al., 1998a, 1998b, 2002) consider expert solvers' production of conjectures and propose

a theoretical model describing the whole process developing from the dynamic

exploration to the formulation of the conjecture and to its validation. The model is based

on the theoretical distinction between "ascending" and "descending" control (Saada-

Robert, 1989; Gallo, 1994) and hypothesizes the emergence of abduction when a

passage from "ascending control" to "descending control" occurs.

Ascending control. This is the modality according to which the solver 'reads' the

figure in order to make conjectures. The stream of thought goes from the figure to the

theory, in that the solver tries and finds the bits of theory related to the situation he is

confronted with. This modality relates to explorations of the given situation.

Abduction (Peirce, 1960; Magnani, 1997). In the model, abduction means

choosing 'which rule this is the case of, that is the subject browses his theoretical

knowledge in order to find the piece of theory that suits this particular situation.

Explorations are transformed into conjectures.

Descending control (Gallo, 1994). This modality occurs when a conjecture has

already been produced and the subject seeks for a validation. S/he refers to the theory in

order to justify what he has previously 'read' in the figure and validates his conjectures.

The model assumes that abduction plays an essential role in the process of

transition from ascending to descending control, that is from exploring to conjecturing

and then to proving. Abduction guides the transition, in that it is the moment in which the

conjectures are produced and expressed in a conditional form "if... then". Moreover,

Arzarello et al. 's studies suggest that the abduction occurs in correspondence to use of
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dummy locus dragging. However the model presented above does not allow to gain

detailed insight into this delicate transition point that the study refers to. We will illustrate

how Arzarello et al. analyzed students' explorations through this model and their

"dragging schemes" in Chapter 2, as we elaborate the elements of the theoretical

background of our study.

1 .3 Research Questions (General) and Goals of This Study

Building on the work of Olivero and Arzarello (Olivero, 1999; Arzarello et al,

1998a, 1998b), we have conceived a model for a cognitive process that can occur during

the conjecturing stage of open problem investigations in a DGS. We will introduce this

model in Chapter 2 as part of our theoretical background. The contextualization of the

problem has led to the following general research questions:

1 . During the conjecturing phase of an open problem in a DGS, what forms of

reasoning are used and how?

2. Is it possible to associate particular forms of reasoning to particular uses of the

dragging tool? If so, how can the association be described?

3. Is it possible to describe a somewhat "general" process leading to the formulation of

a conjecture when the solver uses the dragging tool in particular ways? If so how

might this process be described?

In Chapter 2 we will introduce the theoretical background we chose and elaborated for

our study. Once we have described the constructs we use, we will present the detailed

research questions we set out to investigate during this study.

Through this qualitative study we potentially seek validation and refinement (if the

initial model seems to be valid) of the model, through a spiraling process of

experimentation and revision. The final goal is to give a detailed description of some
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cognitive processes related to conjecturing when particular dragging modalities are

adopted in dynamic geometry, thus providing a base for further research and for the

development of new curricular activities. In particular we proposed to:

• describe a "general" process of conjecture-generation associated with particular

uses of the dragging tool;

• gain insight into cognitive aspects of this process of conjecture-generation,

describing potential difficulties that might arise for the solvers;

• and specifically investigate whether there is a relationship between abductive

reasoning and specific dragging modalities.
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CHAPTER II

THEORETICAL BACKGROUND

This chapter contains descriptions of the concepts and tools that other

researchers have developed and that we will make use of in this study. Moreover, we

elaborated particular theoretical constructs introduced by other researchers, so that they

would become appropriate tools for this study. Our theoretical background takes into

consideration and elaborates on the notion of "dragging" within a phenomenological

perspective (Section 2.1), basic aspects of the "instrumental approach" (Section 2.2),

and the notion of "abduction" (Section 2.3). In Section 2.4 we present the first version of

our model together with a hypothesis on introducing solvers to particular ways of

dragging. Then we present the dragging modalities we have elaborated from those

present in the literature, to introduce to solvers (Section 2.5). This theoretical

background allows us to present our more detailed research questions in Section 2.6.

2.1 Dragging Modalities in Our Theoretical Background

When analyzing what has changed in the geometry scenario with the advent of

DGSs we can notice a transition from the traditional graphic environment made of paper

and pencil, and the classical construction tools like the ruler and compass, to a virtual

graphic space, made of a computer screen, graphical tools that are available within a

given software environment and a particular mode, the dragging mode, that allows the
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transformation of ¡mages on the screen, giving the effect of "dragging them". (Mariotti,

2010). The dragging tool can be activated by the user, through the mouse. It can

determine the motion of different objects in fundamentally two ways: direct motion, and

indirect motion.

The direct motion of a basic element (for instance a point) represents the

variation of this element in the plane - or within a specific geometrical domain, a line, a

segment, a circle when "point on an object" is activated. The indirect motion of an

element can occur after a construction has been accomplished. In this case dragging the

base points, those from which the construction originates, will determine the motion of

the new elements obtained through the construction. Therefore, use of dragging can

allow the user to feel "motion dependency", which can be interpreted in terms of logical

dependency within the geometrical context (Mariotti, 2010). In this section we will

analyze dragging from this phenomenological perspective.

In particular we will discuss how dragging can be used to perceive invariants

(Section 2.1.1), and highlight a distinction, described by Mariotti (2010), into two

fundamental uses of dragging in a DGS: dragging to test a construction (Section 2.1 .2)

and dragging to produce a conditional statement (Section 2.1.3). We focus on this

second use of dragging and in section 2.1 .4 we use an example to analyze some

differences in conjecture-generation in a DGS with respect to the paper-and pencil

environment, induced by dragging. In particular this kind of dragging can be further

separated into exploring the consequences of a certain set of premises (Section 2.1 .4.1),

and into finding the premise of a conditional statement (Section 2.1 .4.2). This

corresponds to identifying under which conditions a given configuration takes on a

certain property (as in Arzarello et al., 2002; Olivero, 2002). Our study focuses

particularly on this use of dragging.
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2.1.1 Dragging and Perceiving Invariants

The dragging mode allows the transformation of ¡mages on the screen by

producing a sequence of new ¡mages. Each image Is reconstructed after the user's

choice of a new position for a specific point s/he is dragging, by clicking on it and moving

the mouse. The high number of ¡mages in this sequence and the speed at which they

are produced on the screen give a visual effect of continuity, analogous to what is seen

in a movie. The changes in the image on the screen are perceived in contrast to what

simultaneously remains invariant, and this constitutes the base of the perception of

"movement of the image" (Mariotti, 201 0).

In general, and this is the case in a DGS like Cabri, the invariants are determined

both by the geometrical relations defined by the commands used to accomplish the

construction, and by the relationship of dependence between the original relations of the

construction and those that are derived as a consequence within the theory of Euclidean

Geometry (Laborde & Strässer, 1990). All these invariants appear simultaneously as the

dynamic-figure is acted upon, and therefore "moves". However there is an a-symmetry

between the types of invariants, which is fundamental for conceiving logical dependency

within the DGS. Specifically, the a-symmetry leads to a distinction in direct invariants,

corresponding to geometrical properties defined during the construction of the dynamic-

figure, and indirect invariants, corresponding to geometrical properties that are

consequences of the construction. Perceiving and interpreting invariants is a complex

task for a non-expert geometry student. This has been observed and discussed in

different studies (Talmon & Yerushalmy, 2004; Restrepo, 2008; Baccaglini-Frank et al.,

2009; Mariotti, 2010).

We highlight a distinction, proposed by Mariotti (2010), between two fundamental

uses of dragging in a DGS. The distinction aims at describing two situations that
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correspond to two different specific goals a user might have in mind when using

dragging.

• Use of dragging to test whether an accomplished construction is correct, that is

dragging that corresponds to check a given goal (for example, if the goal was to

construct a square, dragging is used to check the correctness of the

construction); ;

• Use of dragging to formulate a conjecture: given a certain construction the goal is

to produce a conditional statement that expresses the logical dependency

between properties that can be perceived through dragging the configuration.

2.1.2 Dragging to Test a Construction

In this case perceiving the figure globally will allow the identification of the

invariants necessary in order to recognize the correctness of the construction, with

reference to a particular definition or characterizing property. The reason such invariants

are present, as a direct effect of the construction commands or as a consequence of

such commands, may not be important to the user. Instead the evaluation of the

correctness of the construction will occur at a global level and It will occur in relation to a

system of expectations that the solver will have with respect to the final construction. Let

us consider the following type of activity to be carried out within a DGS.

Construct a square. Does your figure correctly represent a square? Why?

This type of activity has been widely described and discussed in various studies (for

example, Strässer, 2001 , pp. 327-329), so we will not analyze particular solutions here.

Instead we will discuss how dragging can be used during an activity of this sort. First we

need to consider what it means for a dynamic-figure to "correctly represent" a square.

This means to create an object that somehow "incorporates" the conceptual properties
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and characteristics of the geometric shape (NCTM, 2000), so a correct construction

should lead to a dynamic-figure that has such properties as invariants. Such a

construction will lead to a dynamic-figure that is "unmess-up-able" (Healy et al., 1994) or

"robust" (Healy, 2000), that is, when any of its base points are dragged in any way, the

figure remains a square. In this sense a construction that, for example, incorporates the

properties (1) angle in A right, (2) angle in B right, (3) segment AD congruent to AB, (4)

segment BC congruent to AB will be un-mess-up-able, because these properties are

also sufficient for obtaining a robust square. On the other hand, a construction that does

not have the sufficient properties for being a square will get deformed if some of its base

points are dragged. We will refer to a property that may be induced, but that is not

robust, as "soft", in accordance to the terminology introduced by Healy (2000).

This was an example of how dragging can be used to test a construction. Of

course such a task may become a subtask during a more complex activity, or a sub-goal

developed by a solver who's aim is to solve a more complex problem. We will now

discuss aspects of the use of dragging in conjecture-generation, that constitute a basis

for the present study.

2.1.3 Dragging to Produce a Conditional Statement

The use of Cabri in the generation of conjectures is based on the interpretation of

the dragging function in terms of logical control. In other words, the subject has to be

capable of transforming perceptual data into a conditional relationship between a

premise and a conclusion. The consciousness of the fact that the dragging process may

reveal a relationship between geometric properties embedded in the Cabri-figure directs

the way of transforming and observing the screen image (Talmon & Yerushalmy, 2004).

At the same time, that consciousness is needed to exploit some of the tools offered by
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the software, like the 'locus of points' or 'point on object'. Such a consciousness is strictly

related to the possibility of exploiting the heuristic potential of a DGS.

Dragging for conjecture-generation clearly presents a higher complexity as

compared to dragging to test a construction, since it involves not only observing the

figure globally and recognizing characterizing properties but also analyzing and

decomposing the elements of the figure and the properties they have in order to "see"

relationships between such properties. In other words, when the goal is to generate the

statement of a conjecture, the interpretation of perceived invariants in terms of a

geometric statement is based on the interpretation of dragging in terms of relationships

between properties of a figure, and more specifically in terms of invariance during

dragging of such relationships between properties of elements of the figure (Mariotti,

2010).

2.1.4 Some Differences in Conjecture-generation in a DGS with Respect to the

Paper-and-pencil Environment. Induced by Dragging

Let us consider the following construction, and use it as an example to introduce

particular aspects of conjecture-generation in a DGS when the dragging tool is used.

ABCD is a quadrilateral in which D is chosen on the parallel line to AB through C, and

the perpendicular bisectors of AB and CD are constructed.

Dp
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Figure 2.1.4.1 : ABCD as a result of the construction described in the example above.
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In a paper-and-pencil environment geometrical properties are static and "at the

same level" with respect to the solver's perception. The perpendicular bisectors appear

to be parallel and segments AB and CD appear to be parallel. It is up to the conjecturer

to introduce a logical dependence between the properties s/he perceives. If we think

about the figure the solver is making conjectures on (so a mental construction of the

solver) as a figurai concept (Fischbein, 1993; Mariotti, 1995, p. 112), we may consider its

figurai components and its conceptual components. It is under the conceptual control

that the solver may imagine certain properties as logically dependent upon others. In this

case "AB parallel to CD" implies "perpendicular bisectors parallel". Furthermore, in the

paper-and-pencil environment, no element of the figure is privileged with respect to

others, and reasoning on a specific unique drawing that represents a class of figures

requires a high harmonization between the figurai component and the conceptual

component.

On the other hand, in a DGS, properties can be perceived as invariants with

respect to dragging. In this example, the constructed parallelism and perpendicularity are

conserved during dragging, but also the parallelism between the two perpendicular

bisectors. The leap in complexity is constituted by becoming aware of the hierarchy

induced on the properties of the construction and on the fact that such a hierarchy

corresponds to logical relationships between the properties of the "geometric figure".

Therefore the figurai component that the solver deals with may profit from a dynamic

representation. The distinction between direct and indirect movement may be interpreted

in terms of a logical dependence of one property upon another of a certain figure. This

distinction can, in the example we are considering, lead to the following conjecture: "if

two sides are parallel, then the corresponding perpendicular bisectors are parallel." The

interpretation of dragging in terms of conservation of the relationship between invariants
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corresponds to a logical control over the generality of the relationship between properties

of a given figure. We use this idea to develop our hypothesis on how the sensation of

"causality" may occur through dragging in a DGS, as part of the cognitive model we

describe in Chapter 4.

Another factor that needs to be taken into account when describing dragging in

conjecture-generation is that a dynamic figure depends on its base points, and the

figure's possible movements depend on the steps of the construction that induce

corresponding invariant properties of the figure. This constitutes an essential aspect of

the "being dynamic" of a Cabri-figure. In the example above, A, B, and C are base-points

of the dynamic-figure with two degrees of freedom. Therefore they can be dragged to

any place on the screen, while D can only be dragged along the parallel line to AB

through C. Dependent elements of a construction, like the perpendicular bisectors in our

example, cannot be directly acted upon. The basic and constructed elements of a figure

are determined by the steps of the construction, and their different status determines

how the dynamic-figure will behave during dragging. However, it is up to the solver to

translate "these steps" into geometrical properties, reach other derived properties

through deductive reasoning, and discover new properties that are logically linked to one

another. Therefore we have shown how in a DGS the analysis of the status of the

different elements of a figure, and first of all of points, can support the solver in

determining and checking properties of figures and relationships between them.

However the solver still is completely responsible for the non-trivial task of making sense

of what s/he experiences, and s/he may encounter various difficulties along the way. In

fact this task of sense-making is neither simple nor spontaneous, and it may take a

considerable amount of time and training for the solver to be able to conquer it.
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Moreover, when "exploring" a figure in a paper-and-pencil environment the solver

may perform mental experiments on the figure and help him/herself by re-drawing the

figure after having imposed a desired change. In order to do this the solver must keep

track of the conceptual components of the figure and make sure that these are all

present in the new drawing. Typically the solver will produce the drawing of a

"transformed" figure in a position that is "quite a bit" different from the original

configuration. On the other hand, in a DGS, deformations can be performed

"continuously" and each new figure will automatically exhibit all the properties according

to which the original figure was constructed. In this manner the solver does not have to

keep track of all the conceptual components and reconstruct the figure after each move.

Instead s/he can observe change and invariance through small perturbations of the

figure, that is, dragging a base point "only a little" to explore the figure. This allows a

different type of exploration that involves a "dialogue" with the software: while in the

paper-and-pencil environment the "moves" have to be conceived mostly in the solvers'

head before s/he represents them on the paper, in a DGS the solver may use a trial-and-

error technique using "small moves" and "continuous dragging".

This difference may be particularly evident in explorations that involve the search

for conditions under which a certain property is verified by a figure, as we will describe in

Section 2.1 .4.2. In a paper-and-pencil environment the solver may have to represent a

sequence of images, each of which is "quite deformed" with respect to the previous one,

and each ¡mage represents the previous figure after one of its elements have changed

their position (and consequently all the elements that depend on this first one, since the

conceptual properties of the figure must remain unvaried). In a DGS the sequence

appears to be continuous and it is obtained by clicking on a base point of the initial

dynamic-figure and dragging it along the screen. A potential regularity in the movement
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of the dragged-base-point may become evident to the solver at this point. Vice versa, in

the paper-and-pencil environment the solver will have had to conceive the property

corresponding to such regularity before redrawing the figure, in order to produce the

discrete sequence of ¡mages.

2.1 .4.1 Dragging to Find The Conclusion of a Conjecture. A key element for the

interpretation of the Cabri-figure resides in the relationship between the properties

defined during the construction of the figure, through the commands used and the

properties that are consequences of these. A conjecture can emerge from the

observation of the link between the properties that have been constructed and the

properties that can be observed, but that have not been directly constructed, and that

can be unexpected. This link can be interpreted as a conditional relationship expressed

by a statement in which the constructed properties constitute the premise, while the

"new" invariant properties observed constitute the conclusion. Naturally all this is referred

to as the conservation of invariants with respect to dragging of any base point. In

mathematical terms, this is equivalent to exploring the consequences of a certain set of

premises. The premises are represented by the set of properties established by the

commands used during the construction of the dynamic figure.

Although exploring the consequences of a certain set of premises has been the

main focus of many studies in the literature, it is possible to use dragging for generating

conjectures in a different way that involves the induction of soft invariants (Laborde,

2005). This corresponds to identifying under which conditions a given configuration

takes on a certain property (as in Arzarello et al., 2002; Olivero, 2002). Our study

focuses particularly on this use of dragging.
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2.1 .4.2 Dragging to Find the Premise of a Conjecture. Base points may be

dragged in particular ways, for example in order to induce soft properties on a dynamic-

figure (Laborde, 2005). In the example we have been analyzing above (presented in

Section 2.1 .4) it is possible to try to induce a soft invariant like "coinciding perpendicular

bisectors".
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Figures 2.1.4.2a - b: The figures show the effect of dragging ABCD's base point C while trying to
maintain the coincidence of the perpendicular bisectors.

In terms of invariants, identifying under which conditions a given configuration takes on a

certain property means establishing the invariance of a particular property with respect

to a particular movement, that is inducing a soft invariant. The special movement

corresponds to the figure's assuming a specific condition. This way of dragging was

initially described as dummy locus dragging (Arzarello et al., 2002). The model we are

going to introduce aims at describing aspects of a process of conjecture-generation that

seem to occur when this type of dragging is used.

2.2 The Instrumental Approach

In Chapter 1 we have discussed how the guiding role of dragging has been

described in the previous literature and specifically by Arzarello et al., who introduced

the classification of specific ways of dragging (Arzarello et al., 2002), and by Leung, who
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has provided an interpretation of dragging through the lens of variation (Leung, 2008). In

the previous section we described aspects of dragging that are relevant to our theoretical

framework. Although Arzarello's classification is not explicitly framed in the

instrumentation approach, it is possible to consider dragging after the instrumentation

approach (Vérillon & Rabardel, 1995; Rabardel & Samurçay, 2001), as has been done

fruitfully by other researchers (for example, Leung & Lopez-Real, 2006; Leung, 2008;

Strässer, 2009). Under the lens of the instrumental approach, dragging may be

interpreted as an explorative tool that can support the task of conjecture-generation, and

the use of which may be acquired through a process of instrumental genesis (Rabardel

& Samurçay, 2001 ; Rabardel, 2002). This process occurs when an individual is

confronted with a task and, having an artifact at his/her disposal, s/he develops specific

utilization schemes. In this section we will introduce the notions of artifact, instrument, ~

and utilization scheme, developed within the instrumental approach, (Section 2.2.1) and

how we use them to interpret dragging (Section 2.2.2).

2.2.1 Artifacts. Instruments, and Utilization Schemes

The instrumental approach has been developed as a perspective that puts

forward a psychological conceptualization of artifacts as instruments, with the aim of

making "the conceptualization equally pertinent in ergonomics and in didactics"

(Rabardel, 2002, p. 18). Rabardel conceives

the instrument in the essence of its constituting relation: the subject's use of the
artifact as a means he/she associates with his/her action. The point of view
adopted will be that in which machines, technical objects, symbolic objects and
systems, i.e. artifacts, will be considered as material or symbolic instruments.
(Rabardel, 2002, p. 18)

In particular the instrumental approach may be used as a perspective through which to

look at human-computer interactions. The instrumental approach "was developed so the
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user could have a view of the system in which people, machines, tasks and materials

are seen as interconnected in a terminology founded in the realm of tasks significant to

the user" (Rabardel, 2002, p.7).

Within this perspective a cognitive model is outlined that describes the integration

of tools in different activities. The model introduces a crucial distinction between the tool

itself (called artifact) and the combination of this tool and the modalities of its use to

solve problems. We could give a very concise overview of the model as follows. The

model assumes that for each subject the use of an artifact gives rise to a mental

construction, called instrument, that denotes the psychological construct of the user: "a

whole incorporating an artifact (or a fraction of an artifact) and one or more utilization

schemes" (Rabardel, 2002, p.65). The user develops procedures and rules of actions

when using the artifact and so s/he constructs utilization schemes, during a process of

instrumental genesis. Our study focuses on describing a possible utilization scheme for

the artifact "dragging" with respect to the task of generating a conjecture, but it will not

take into consideration the process of development of the utilization schemes (that is the

process of instrumental genesis). Therefore in the following we are going to focus our
discussion on the notions of artifact, instrument, and utilization scheme, as developed

within an instrumental approach.

Artifact. Different approaches aimed at analyzing human interaction with objects

(we have called these artifacts until now) have referred to these "objects" of interaction

as "technical objects", "material objects", or "artifacts". The psychological definition of the

notion of instrument - that used within Rabardel's instrumental approach - replaced the

term "technical object" with "Fabricated Material Object (FMO)" (Rabardel & Vérillon

1985), to be able to examine the technical object from other points of view than that of
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the technique itself (Rabardel, 2002, p. 38-39). The terminology FMO was then replaced

by the shorter, lighter, and more neutral word artifact

The term "fabricated material object" was chosen to allow the most neutral
possible name and avoid anticipating the analysis perspective to be adopted.
This undertaking seems even more essential today given the issues at stake in
technocentric and anthropocentric design. But we feel the term fabricated
material object, a heavy circumlocution, should now be replaced by that of
artifact. This word is almost synonymous and its usage is fairly widespread,
particularly in the field of human sciences (Rabardel, 2002, p.39).

The notion of artifact does not specify a particular type of relation to the object, nor is it

necessarily a material object; it is "the thing liable to be used and elaborated so as to

participate in finalized activities" (p. 39). Within the instrumental approach the artifact is

analyzed in light of its functions, as a means of action, "placed in a finalized activity from

the viewpoint of the person using it" (p. 41).

Finally, a central issue is the relations between human activity and artifacts,

which can be analyzed, thanks to the notion of artifact described above, along two lines:

design activities, to gain a better understanding of the mechanisms and processes by

which artifacts are designed to provide designers with real aids that must integrate the

activity rather than hinder or even prevent it; and usage and utilization activities,

analyzing and understanding what these activities are from the perspective of the users

themselves (Rabardel, 2002). Our study is situated within the second line, that of usage

and utilization activities, since it aims to construct a model for particular utilization

activities for the artifact "dragging" with respect to the task of generating a conjecture.

Future studies that might arise from our findings should investigate the line of "design

activities" for which our study can only provide some experimental hypotheses to be

further elaborated and tested. We will now describe the notion of utilization scheme.
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Utilization Scheme. When a person uses an artifact to accomplish a task, s/he

structures the activity and actions in relatively structured ways. These have been

referred to as utilization schemes (Rabardel & Vérillon, 1985). This notion makes use of

the Piagetian construct of action scheme, "a structured group of generalizable features

of the action that allows the same action to be repeated or applied to new contents"

(Rabardel, 2002, p.65). Moreover, according to Piaget a scheme is

a means that allows the subject to assimilate the situations and objects with
which he/she is confronted They are the structures that prolong biological
organization and share with the latter an assimilating capacity to incorporate an
external reality into the subject's organization cycle: everything that meets a need
is liable to be assimilated. (Rabardel, 2002, p.70).

While Piagetian psychology was centered on logical structures, Vergnaud put forward a

theory on conceptual fields, placing his reflection within cognitive psychology. He

describes behavior organizing schemes, in which the subjects' knowledge in act (i.e. the

cognitive elements that allow the subject's action to be operational) can be recognized.

In particular, for Vergnaud (Vergnaud, 1990) a scheme comprises

• anticipations of the goal the subject is aiming for, and of the potential

intermediate steps in this process;

• rules of action, like "if.. .then," which allow the generation of a sequence of

actions;

• inferences (reasoning) that allow the subject to calculate rules and anticipations

based on information and the operational invariants system he/she disposes of;

• operational invariant, that allow the subject to recognize the elements pertinent to

the situation, and to collect information on the situation being analyzed.

The instrumental approach makes use, in particular, of the notion of operational

invariant, which "allows us to identify the characteristics of situations that subjects truly

take into consideration. These may be familiar situations for which operational invariants
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are already constituted, or situations in which their elaboration is underway" (Rabardel,

2002, p.79-80).

Instrument. Finally, Rabardel conceives instrument from a psychological point of

view, as a mixed entity, "a whole incorporating an artifact (or a fraction of an artifact) and

one or more utilization schemes" (Rabardel, 2002, p.65). The instrumental approach

sees the instrument as one of the poles engaged in instrument utilization situations.

These are: the subject (e.g.user, operator, worker, agent), the instrument (e.g. tool,

machine, system, utensil, product), the object towards which the action, aided by the

instrument, is directed (e.g. matter, reality, object of the activity). The model of

Instrumented-mediated Activity Situations (IAS) describes this situation (Rabardel &

Vérillon, 1985) bringing out the multiplicity and complexity of relations and interactions

between the different poles.

As in previous literature, within the instrumental approach, an instrument is

conceived as an intermediary entity, "a medium term, or even an intermediary world

between two entities: the subject, actor, user of the instrument and the object of the

action" (Rabardel, 2002, p. 63). Moreover,

The instrument's intermediary position makes it the mediator of relations between
subject and object. It constitutes an intermediary world whose main feature is
being adapted to both subject and object. This adaptation is in terms of material
as well as cognitive and semiotic properties in line with the type of activity in
which the instrument is inserted or is destined to be inserted. (Rabardel, 2002,
p.63).

The mediation may be of an epistemic nature - from the object to the subject, here the

instrument is a means allowing knowledge of the object - or of a pragmatic nature - from

the subject to the object, here the instrument is a means of a transforming action

directed towards the object. Moreover, since instruments are conceived as a means of
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action, depending on the type of action, they may be material instruments (for a

transformation of a material object with a hand-held tool), cognitive tools (for cognitive

decision making, for example in a situation of managing a dynamic environment),

psychological tools (for the management of one's own activity), or semiotic tools (for a

semiotic interaction with a semiotic objector with others).

Because of the goals of this study we are particularly interested in instruments

conceived within the instrumental approach, as cognitive tools. In studies that may be

developed from ours, as consequences and continuations of our research, the notions of

semiotic instrument and of psychological tool may become essential elements of the new

theoretical frameworks. For now we will concentrate on the notion of cognitive tool, as a

last element of this part of our framework.

Cognitive Tool. Some aspects developed in the instrumental approach can be

recognized in Norman's notion of cognitive artifact (Norman, 1991). In particular he

analyzes approaches to activity distinguishing several dimensions of influence of

artifacts on the distribution of actions in time (precomputation), the distribution of actions

among people (distributed cognition) and the changes in actions required by individuals

in order to perform the activity. Moreover Norman suggests distinguishing between

passive artifacts such as books and active artifacts such as computers, and he focuses
on analyzing the object's influence on the tasks the user is facing (Norman, 1991).

Within Norman's perspective, activity is taken into consideration within a triadic

model, similar to the IAS initially developed by Vérillon and Rabardel (1985). The triadic

model is composed of a person, a task, and a cognitive artifact. Norman defines a

cognitive artifact as "a device designed to maintain, display, or operate upon information
in order to serve a representational function" (Norman, 1991). In particular, according to
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Norman, a cognitive artifact has the role of changing the nature of the task performed by

the person. Moreover, he conceives a cognitive artifact as something that expands and

enhances the cognitive capabilities of its user.

The notion of cognitive tool is developed within the instrumental approach which

goes beyond an approach in terms of tasks, taking into consideration the activity as well

(Rabardel, 2002). In this sense a cognitive tool is a concept similar to Norman's notion of

cognitive artifact, but enriched with an activity-centered perspective. We will consider the

artifact "dragging" and describe how it can be conceived as a cognitive tool, and more in

general as an instrument.

2.2.2 Dragging within the Instrumental Approach

In this study we consider dragging to be an artifact and place a user in the

context of solving a problem, in particular of generating a conjecture (task). The solver

can associate to the dragging artifact a variety of utilization schemes in order to

accomplish the task of generating a conjecture, thus obtaining an instrument. We would

like to highlight how the notion of "dragging schemes" developed from the original

definition by Arzarello et al. (Arzarello et al., 2002) and how we will make use of it in this

study. The terminology "dragging schemes" was used for the first time by Arzarello and

his colleagues who gave an a posteriori description and classification of expert solvers'

uses of the dragging mode, from a cognitive point of view. We described Arzarello et

al. 's classification in Chapter 1 , together with other dragging modalities, also referred to

as "dragging stratagies" that have been identified by Leung and other researchers

(Lopez-Real & Leung, 2006; Leung et al., 2006; Leung, 2008).

In this study we propose to describe, in further depth with respect to the previous

research, cognitive processes associated to particular ways of dragging. We make a
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distinction between "ways of dragging" or "dragging modalities/strategies" and "dragging

schemes" to separate what might be observed externally as a particular way of dragging

from the description of a utilization scheme (an internal mental construct of the solver)

associated to a particular way of dragging. In this sense our model proposes the

description of a potential utilization scheme associated to the dragging modality dummy

locus dragging or lieu muet dragging, as previous literature has described it (Arzarello et

al., 2002; Olivero, 2002).

We mentioned how in the research that led Arzarello et al. to the cognitive

description of the dragging modalities were determined after the observation of the

solvers' exploration. On the contrary, in order to study how the expert use of specific

dragging modalities may influence the generation of conjectures, in this study we

decided to introduce students to such modalities in order to observe the use that might

be made of them. In Section 2.5 we will describe the dragging modalities we adapted

from previous research and introduced to students through appropriate in-class activities

that we will describe in the Chapter 3. Here, as far as the theoretical frame is concerned,

we note that we conceived introducing our dragging modalities to the participants of the

study as providing them with a cognitive tool, that might enhance their capabilities with

respect to the task of conjecture-generation in a DGS. Moreover, we interpreted the

dragging modalities as a potential instrument in the following sense. If the solvers

developed appropriate utilization schemes - and in particular a utilization scheme

associated to dummy locus dragging that we intend to describe through a specific model.

40



2.3 Abduction

In this section we describe the notions of abduction that we chose as theoretical

tools for this study. A goal of this research is to unravel a possible relationship between

particular dragging modalities and abduction that previous research has hypothesized

(Arzarello et al., 2002; Olivero, 1999, 2002). Therefore we will consider the notion of

abduction introduced by Peirce (1960), which was used by Arzarello, Micheletti, Olivero,

Paola, and Robutti (Arzarello et al., 1998; Olivero, 2002; Arzarello et al., 2002) to

analyze solvers' development of conjectures when their "dragging schemes" were being

used. This is the notion we initially used to conceive our first hypothetical model. We will

then highlight some problematic issues of this notion when analyzing abduction in

conjecture generation, and how we therefore enriched our framework with another

conception of "abduction", Magnani's more recent description, which is more in line with

Peirce's description of abduction in the second phase of his work.

Other researchers have studied various uses of abduction in mathematics

education (for example, Simon, 1996; Cifarelli, 1999, 2000; Reid, 2003; Ferrando, 2006),

using different approaches with respect to that of Peirce. In particular, Cifarelli has

studied relationships between abductive approaches and problem-solving strategies.

The purpose of his work was to clarify the processes through which learners construct

new knowledge in mathematical problem solving situations. He focused particularly on

instances where the learner's emerging abductions or hypotheses help to facilitate novel

solution activity (Cifarelli, 1999). The basic idea is that an abductive approach may serve

to organize, reorganize and transform problem solvers' actions. Specifically, Cifarelli

analyzed how the cognitive activity of "within-solution posing, in which one reformulates

a problem as it is being solved" (Silver & Cai, 1996, p.523) may aid the solver to

consider "hypothesis-based" questions and situations (Silver & Cai, 1996, p.529), and
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may aid the solvers to abduce novel Ideas about problems during the solution process

(Cifarelli, 1997, 1998, 1999, 2000). Although conjecture-generation in open problem

situations may be seen as a form of problem solving, we do not analyze abduction with

respect to solvers' reformulation of the problem they are solving, as in Cifarelli's studies,

so our perspective is different with respect to that described above.

After presenting the example of analysis using Peirce's first conception of

abduction (Section 2.3.1), we will present our considerations on abduction in conjecture

generation that led to our use of the more general notion of abduction introduced by

Magnani, along the lines of Peirce's later conception (Section 2.3.2). Moreover we found
it useful to consider the distinction between "selective" and "creative" abduction and

Hoffmann's distinction of abduction into six types (Hoffmann, 2007), together with

Magnani's notion of manipulative abduction (Magnani, 2001).

2.3.1 Arzarello et al.'s Use of Abduction as a Tool of Analysis

Our study is grounded within the research of Arzarello, Micheletti, Olivero, Paola,

and Robutti (Arzarello et al., 1998; Arzarello et al., 2002; Olivero, 2002), that made use

of the following notion of abduction developed by Peirce.

According to Peirce, of the three logic operations, namely deduction, induction,
abduction (or hypothesis), the last is the only one "which introduces any new
idea; induction does nothing but determine a value, and deduction merely
evolves the necessary consequences of a pure hypothesis. Deduction proves
that something must be; induction shows that something actually is operative;
abduction merely suggests that something may be." (CP, 5.171). Abduction looks
at facts and look for a theory to explain them, but it can only say a "might be",
because it has a probabilistic nature. The general form of an abduction is:

a fact A is observed
if C was true, then A would certainly be true
So, it is reasonable to assume C is true.

An example illustrates this concept. Suppose I know that a certain bag is full of
white beans. Consider the following sentences: A) these beans are white; B) the
beans in that bag are white; C) these beans are from that bag. A deduction is a
concatenation of the form: B and C, hence A; an induction would be: A and C,
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hence B; an abduction is: A and B, hence C (Peirce called hypothesis the
abduction). (Peirce, 1960, p.372).

In this section we will show an example of how this notion of abduction was used in

these analyses. Our goal was to "zoom into" cognitive processes that occur in

correspondence to what Arzarello et al. had described as "the most delicate cognitive

point" of the conjecture generation and that Arzarello et al. characterized by the

presence of an abduction (Arzarello et al., 1998, p. 30). In doing so, we found that the

conception of abduction described above did not seem to always provide insight.

Therefore we enriched our framework with the definition of abduction presented by

Magnani (2001), which is also more in line with the conception that Peirce reached in the

second phase of his thinking. We use this second conception of abduction more as a

frame of reference to discuss the general nature of a process than as a tool of analysis,

as we will describe in detail in Chapter 6.

In the following paragraph is an example of subjects' spontaneous use of

dragging for investigating a given task. The analysis shows how the notion of abduction

is used to look at the exploration, and it puts the subjects' use of dragging modalities in

relationship to changes in cognitive levels of investigation.

Task: Let ABCD be a quadrilateral. Consider the bisectors of its internal angles and

their intersection points H, K, L, M ofpairwise consecutive bisectors. Drag ABCD,

considering all its different configurations: what happens to the quadrilateral HKLM?

What kind of figure does it become ?

Episode 1 : They use guided dragging in order to get different shapes of ABCD.
Ascending control is guiding their experiments, as their aim is to get some
conjectures about the configuration. The last step allows them to see a
degenerate case: HKLM disappears into one point.
Episode 2: Now a regularity is discovered; so they use dummy locus dragging.
They drag ABCD so to keep the property they have just found out. They are still
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in the stream of ascending control, as they are exploring the situation, but now
they have a plan in their mind: they look for some common properties to all those
figures which make HKLM one point.
Episode 3: Even if the locus is not explicitly recognized by the students, it is this
kind of dragging that allows them to discover some regularity of the figures. Here
they make an abduction, because they select 'which rule it is the case of: this is
the case of circumscribed quadrilaterals. Referring to the example by Peirce, one
can say that: A is "the sum of two opposite sides equals the sum of the other
two", B is "a quadrilateral is circumscribed to a circle if and only if the sum of two
opposite sides equals the sum of the other two", i.e. something you know while C
is "these quadrilateral are circumscribed". Their reasoning is: A & B, then C.
Once they have selected the right geometric property, they can 'conclude' that
this is the case of circumscribed quadrilaterals. The conditional form is virtually
present: its ingredients are all alive, but their relationships are still reversed, with
respect to the conditional form; the direction after which the subjects see things is
still in the stream of the exploration through dragging, the control of the meaning
is ascending, namely they are looking at what they have explored in the previous
episodes in an abductive way. The direction of control now changes: here
students use the construction modality (and the consequent dragging test) to
check the hypothesis formulated through abduction and at the end they write
down a sentence in which the way of looking at figures has been reversed. By
dummy locus dragging, they have seen that when the intersection points are kept
to coincide the quadrilateral is always circumscribed to a circle. Now they
formulate the conjecture in a logical way, which reverses the stream of thought: if
the quadrilateral is circumscribed then the points coincide.
Episode 4: At the end they check their conjecture. Now they are using the
dragging test and their actions show descending control. (Arzarello et al., 2002).

We highlight Arzarello et al. 's analysis of the abduction:

Referring to the example by Peirce, one can say that: A is "the sum of two
opposite sides equals the sum of the other two", B is "a quadrilateral is
circumscribed to a circle if and only if the sum of two opposite sides equals the
sum of the other two", i.e. something you know while C is "these quadrilateral are
circumscribed". Their reasoning is: A & B, then C.

After introducing elements that we used to enrich our framework with respect to the

notion of abduction, in the next section we will re-analyze the exploration described

above. This way we hope to show how we inherited the conception of abduction present

in Arzarello et al. 's framework and enriched it with elements that help gain further insight

into abduction in conjecture-generation.
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2.3.2 Abduction in the Formulation of Conjectures

Let us consider the first definition of abduction given by Peirce.

a fact A is observed
if C was true, then A would certainly be true ,
So, it is reasonable to assume C is true. (Peirce, CP 5.189)

Using Peirce's conception of abduction described above, we needed to establish what

the product of the abduction was in the case of conjecture-generation. Is it what Peirce

called the "abductive hypothesis" (C with respect to the definition above)? or is it the

"rule" (B with respect to the definition above), which can be a conditional statement

containing the abductive hypothesis itself? Peirce discussed this issue in the following

terms: 'The hypothesis cannot be admitted, even as a hypothesis, unless it be supposed

that it would account for the facts or some of them." Therefore A can be abductively

conjectured only when its entire content is already present in the "rule" 'If A were true, C

would be a matter of course'" (CP 5.189), which shows how the phenomenon would be

produced, come about, or result in case the abductive hypothesis A were true. An

abduction may "consist in making the observed facts natural chance results, as the

kinetical theory of gases explain facts; or it may render the fact necessary" (CP 7.220).

We therefore elaborated our framework taking into consideration another

description of abduction. Starting from a later characterization provided by Peirce, that is

abduction as "the process of forming an explanatory hypothesis" (Peirce, CP 5.171),

Magnani proposed the following conception of abduction:

the process of inferring certain facts and/or laws and hypotheses that render
some sentences plausible, that explain or discover some (eventually new)
phenomenon or observation; it is the process of reasoning in which explanatory
hypotheses are formed and evaluated. (Magnani, 2001 , pp. 17-18).

While using Peirce's first definition illustrated by the example of the bag of beans, the

product is the abductive hypothesis, a fact (these beans are from that bag), while
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choosing Magnani's conception of abductive process, we may consider the product to be

the conditional link between the hypothesis and the observation (if these beans are from

that bag, then they are white, what Peirce called "rule"). The conditional link is by all

means an "explanatory hypothesis" in Magnani's words, developed to explain a situation

as a whole. In the context of dynamic geometry, in the process we studied, this rule

arises from capturing the logical dependence of two (or more) invariants. When solvers

explore an open problem situation in dynamic geometry and are asked to formulate

conjectures on a certain geometrical object, they frequently notice invariants, that is,

properties of the figure that remain constant during the dragging of a point. Through a

conjecture the students try to logically link two (or more) of such geometrical invariants,

finding an "explanatory hypothesis" for the observed phenomenon.

Therefore the solver's perceiving one invariant can lead to the observation of

another, and to the idea that this second one might explain the first. The final product of

the abductive process, in this case, is the statement of a geometrical conjecture. If we

describe the process as a whole, from the initial random dragging of points to the

formulation of a conjecture, and therefore consider the final conjecture to be the final

product of the process, Magnani's description seems to be appropriate. In fact in an

open problem what is required as an answer is a statement expressing the conditional

link between the hypothesis and the observation. If instead we "zoom in" and focus on

the steps at which the students find a second invariant (that seems to be invariant when

the first invariant is maintained), and (implicitly) link it to the first, stating, for example:

"This property is true [the property is the second invariant]" we claim that an abduction

has occurred and that the statement "This property is true [the property is the second

invariant]" is Peirce's abductive hypothesis. We note that this statement is not a simple

observation of another invariant of the figure (which can also occur), but instead a
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tentative explanation (not yet in the form of a conjecture) of why the first invariant is

maintained. This can be seen in various protocols when the students express

themselves using phrases like: "Because/since/every time (Italian: "poiché, ogni

qualvolta") this property is true [the property is the second invarianti, this property is true

[the property is the first invarianti": or like: "In order that (Italian: "affinchè")/so that

(Italian: "perché") this property is true [the property is the first invariant], this property

is/has to be true [the property is the second invariant]."

A second issue we took into consideration in analyzing possible abductions was

the fact that the formulation of a conjecture requires generating the rule itself, and this

may occur in different ways.

Selective and Creative Abduction. Generation of the rule in the abduction may

occur through different modalities. Let us start by considering Peirce's bean example,

again, which seems similar to examples that may be found in Eco (1983; Meyer, 2010),
such as: I see smoke, I know that when there is smoke there is a fire, so there is a fire.

Notice that "I know that when there is smoke there is fire" is analogous to "the beans in

that bag are white" in that these are rules that come from a knowledge set that a

particular person assumes to be true. In these cases one is finding the rule in one's "bag

of already-known rules" that fits the initial observation (fire or white beans). On the other

hand, especially when generating a conjecture, the rule introduced by the solver may not

belong to his/her "bag of already-known rules".

We may phrase the question as whether abduction is the logic of constructing a

hypothesis, or the logic of selecting a hypothesis from among many possible ones.

Peirce analyzed this issue, as well, and seemed to treat the logic of constructing a

hypothesis versus that of selecting a hypothesis as the same question. In fact in some of

his writings he maintains: "Abduction consists in studying facts and devising a theory to
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explain them" (CP 5.145); "Abduction is the process of forming an explanatory

hypothesis" (CP 5.171); or abduction "consists in examining a mass of facts and in

allowing these facts to suggest a theory" (CP 8.209). However in other writings he

regards abduction as "the process of choosing a hypothesis" (CP 7.21 9). We found it

useful to consider Meyer's description of two general patterns of abduction, based on

Peirce's description of abduction as: "The surprising fact, C, is observed; But if A were

true, C would be a matter of course. Hence, there is reason to suspect that A is true"

(Peirce, CP 5.189). Meyer describes two general patterns of abduction, that can be

represented as follows.

result R(X0) result R(X0)
rule: Vi:C(^)=»Ä(x#) rule: Vi: C(Js,) =>/?(*,)
case: C(X0) case: C(X0)

Figure 2.3.2.1 : Two general patterns of abduction.

The first case represents the cognitive 'flash of genius', while the second

represents abduction as a process of making a hypothesis plausible (Meyer, 2008, p. 2).

The first form of abduction - when a new rule emerges - has been described as

"creative" by Eco (1983, p.207). On the other hand Eco describes "undercoded" or

"overcoded" abductions as those in which the explanation of given facts occurs through

already-known rules. Thus the generation of one discovery can imply a) a new case (all

kinds of abduction), b) the relationship between the observed facts and the associated or

the generated rule (all kinds of abduction) and c) a new rule (by a creative abduction). As

these aspects can only be hypothetical at first place, they have to be verified in the next

step (Meyer, 2008). Magnani refers to these two forms of abduction as "selective" and

"creative": selective abduction is a process through which the right explanatory
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hypothesis is found from a given set of possible explanations, while creative abduction is

a process which generates the (right) explanatory hypothesis (Magnani, 2001).

Moreover, Hoffmann, viewing abduction as the generation of a new idea

(Hoffmann, 2007), considered two issues that we found relevant with respect to the

analyses we needed to make. These issues are: (1) whether the ideas we introduce in

the abduction is only new for us as individuals or new for our civilization, or not new at

all; (2) whether the idea is the result of a reification, that is something that can be

represented by a singular concept, or by a symbol, or a new perspective on the same

data as produced by a theoretical transformation (Hoffmann, 2007, p. 4). Based on

Peirce's work, Hoffmann proposed a distinction of six types of abduction based on

combining the different issues.

For our research it was important to focus on the solver's perspective. Therefore

we did not need to take into consideration whether the idea was already part of the

culture's knowledge or not. We simply considered whether the idea was new or not for

the solver, and used this distinction to characterize selective versus creative abductions.

We interpreted Hoffmann's theoretical transformation, as a movement between different

contexts, for example, a change of the theory used to explain certain facts. This can

change aspects of the explanation, such as the systems of representation used, the

types of arguments used, and the domain of their validity. We therefore created a

template, adapted from Hoffmann's table (2007, p. 4), aimed at classifying different

types of abduction. The template is displayed the following Table (2.3.2.2).
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"idea" based on reification "idea" based on combining
within a single context different perspectives on

data (passing between
_________________________________________________different contexts)
the explanation is possible
by referring to an idea
already in the solver's mind
(selective abduction) ¡
the explanation is possible
by referring to an idea that
is new for the solver
(creative abduction) |
Table 2.3.2.2: Our template for the analysis of abduction, adapted from Hoffmann's table.

Finally, we added a last notion to our theoretical framework, that of Magnani's

manipulative abduction (Magnani, 2001 , 2004):

Manipulative abduction happens when we are thinking through doing and not
only, in a pragmatic sense, about doing. It refers to an extra-theoretical behavior
that aims at creating communicable accounts of new experiences to integrate
them into previously existing systems of experimental and linguistic (theoretical)
practices. Gooding (1990) refers to this kind of concrete manipulative reasoning
when he illustrates the role in science of the so-called "construals" that embody
tacit inferences in procedures that are often apparatus and machine based. The
embodiment is of course an expert manipulation of objects in a highly
constrained experimental environment, and is directed by abductive movements
that imply the strategic application of old and new templates of behavior mainly
connected with extratheoretical components, for instance emotional, esthetical,
ethical, and economic. (Magnani, 2004, p.2).

We then used the framework we constructed to re-analyze some of Arzarello et al. 's

data, before using it for analyzing our own data. In the next section we will show an

example of what our re-analysis of Arzarello et al. 's data led to. As will be discussed in

Chapter 6 the interpretation of our results within this framework finally led us to

conceiving a new form of abduction that we described as instrumented abduction.
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Analysis of Arzarello et al.'s example through our new framework. In the example

of Arzarello et al.'s cognitive analysis of dragging we highlighted their description of the

abduction:

Referring to the example by Peirce, one can say that: A is "the sum of two
opposite sides equals the sum of the other two", B is "a quadrilateral is
circumscribed to a circle if and only if the sum of two opposite sides equals the
sum of the other two", i.e. something you know while C is "these quadrilateral are
circumscribed". Their reasoning is: A & B, then C. (Arzarello et al., 2002)

With respect to Meyer's description of the two patterns of abduction, we can classify this

abduction differently, depending on whether the solvers knew the rule "a quadrilateral is

circumscribed to a circle if and only if the sum of two opposite sides equals the sum of

the other two" from their theoretical knowledge or not. In the following diagram the two

possible classifications are explained.

Selective abduction Creative abduction

Result: The sum of two opposite sides is
equal to the sum of the other two.

Rule: A quadrilateral can be circumscribed
if and only if the sum of two opposite sides
is congruent to the sum of the other two
Case: These quadrilaterals are
circumscribable

Result: The sum of two opposite sides is
equal to the sum of the other two.
Rule: A quadrilateral can be circumscribed
if and only if the sum of two opposite sides
is congruent to the sum of the other two

Case: These quadrilaterals are
circumscribable

Figure 2.3.2.3: Our template for the analysis of abduction, adapted from Hoffmann's table.

Moreover, using the template introduced above, we may place this abduction in one of

the cells of the first column of our table. This is the case because the idea resides

entirely in the domain of the Theory of Euclidean Geometry (TEG), that is, in a single

context.
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"idea" based on reif¡cation
within a single context

"idea" based on combining
different perspectives on
data (passing between
different contexts)

the explanation is possible
by referring to an idea
already in the solver's mind
(selective abduction)

Example: the abduction
described in Arzarello et
al's analysis (selective
form)

the explanation is possible
by referring to an idea that
is new for the solver
(creative abduction)

Example: the abduction
described in Arzarello et
al's analysis (creative form)

Table 2.3.2.4: Placement of examples in the literature within our template for the analysis of
abduction.

However, if we continue analyzing the exploration according to our conception of

abduction in conjecture-generation, we can observe a second inference that we would

classify as an abduction. In particular, it seems to be the "invention of a rule".

• The solvers observe a first fact: the internal quadrilateral "collapses" in these

cases;

• they observe a second fact: the sum of two opposite sides is equal to the sum of

the other two. The two facts occur simultaneously.

• The solvers introduce a rule (they did not know): if a quadrilateral has the sum of

two opposite sides congruent to the sum of the other two, the quadrilateral

formed by the intersections of the internal bisectors collapses.

If we look at the process of conjecture-generation as a whole, leading to the statement of

a conjecture as the final product, the process could be illustrated as follows.
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rule: if a quadrilateral has the sum of two opposite
sides congruent to the sum of the other two

Abduction:

observed fact: Thelsum of two opposite sides is equal tc

rule (from TEG): A quadrilateral can be circumscribed if
opposite sides is congruent to the sum of the other two
hypothesis: These quadrilaterals are circumscribable

*

conjecture: If the quadrilaterals are circumscribable

Figure 2.3.2.5: Description of the process of conjecture-generation a:

If we were to place the conjecture, as the product of an abdu

go in the cell that represents a creative abduction in which th

contexts.

observed fact: The sum of two opposite sides is equal to the sum of the other two.

Figure 2.3.2.5: Description of the process of conjecture-generation as a whole.

If we were to place the conjecture, as the product of an abduction in our table, it would

go in the cell that represents a creative abduction in which there is a passage between
contexts.

the explanation is possible
by referring to an idea
already in the solver's mind
(selective abduction)
the explanation is possible
by referring to an idea that
is new for the solver
(creative abduction)

"idea" based on reification
within a single context

Example: the abduction
described in Arzarello et
al's analysis

the quadrilateral of the
intersections of the
internal angle bisectors
collapses

and only if the sum of two

the quadrilateral of the
intersections of the
internal angle bisectors
collapses

"idea" based on combining
different perspectives on
data (passing between
different contexts)

Example: the product of the
process described in our re-
analysis of Arzarello et al. 's
example

Table 2.3.2.6: Placement of the abductions described above within our template.

The framework we elaborated with respect to the notion of abduction helped us

analyze this delicate process in the context of conjecture-generation. In this context the
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framework was enlightening because it allowed us to unravel aspects of a particular

abductive process involved in conjecture-generation when dummy locus dragging is

used by the solver. In particular, this framework led us to anew conception of the form of

abduction used in the complex process analyzed in our study, that of instrumented

abduction (Chapter 6).

2.4 The Initial Version of the Model

This section presents our first ideas for a model that could potentially describe a

process of conjecture-generation when dummy locus dragging is used by the solver. In

order to test the validity of these initial ideas, we tried to use them to analyze

descriptions of students' work contained in the research by Olivero, Arzarello, Paola, and

Robutti (Olivero, 2000; Arzarello, et al., 2002). This led to an initial version of the model

that we describe here together with an example of how it can be used to analyze a

hypothetical exploration of one of the activities we developed for the study. Although

there are similarities between the analysis of the exploration we present here and

Arzarello et al. 's examples of their cognitive analysis of dragging, a distinguishing feature

of our research is that it does not attempt to classify students' activity but instead to

describe cognitive processes involved in a process of conjecture-generation that are

associated to particular ways of dragging. In particular we concentrate on the potential

abductive reasoning that may occur in relation to certain dragging modalities, with

particular focus on the details of cognitive processes related to dummy locus dragging

that may occur during this conjecturing stage. We noticed how an elaboration of our

model could be complementary to Olivero's work, since it could evolve into a refined

description of a process, which takes place and is present in Olivero's episodes. While

Olivero focused on students' different uses of the dragging tool during the development
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of a conjecture, our model focuses on the mental process that might take place in

relation to the use of such dragging modalities (especially of dummy locus dragging).

From the perspective of the instrumental approach, our model attempts to

describe a utilization scheme for a particular way of dragging, dummy locus dragging.

Moreover, a difference with respect to previous research is that we preliminarily

introduce solvers to certain dragging modalities, "giving them as an artifact to be used in

solving geometrical open problems". This allows us to study a particular utilization

scheme associated to the artifact and constructed by the solvers with respect to the

general task of conjecture-generation. The decision of introducing certain dragging

schemes to the solvers brought us to reason upon which dragging modalities to

introduce, and how to introduce them.

In the following sections we will describe the framework within which we

constructed our model, discuss our hypothesis on what introducing certain dragging

modalities would lead to, introduce the first version of our model, and finally describe the

dragging modalities we decided to introduce and the terminology we used to introduce
them.

2.4.1 Constructing the Model and Our Hypothesis on Introducing Dragging
Modalities

A goal of this study was to describe, from a cognitive point of view, a process of

conjecture-generation when a particular dragging modality was used by the solver. The
construction of a model describing such process, if possible, seemed to be the best way

of finding answers to accomplish this. In this section we will describe our rationale with
respect to this decision, and then explain our hypothesis on how the introduction of

certain dragging modalities would facilitate our study.
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The ¡dea of constructing a model of the structure of thought, or cognitive model,

can be found in Piaget's introductory chapter to The Child's Conception of the World

(1929). Referring to Piaget's work, Ginsburg (1981) describes how the investigation of

activities of the mathematical mind should have three aims: "the discovery of cognitive

activities (structures, processes, thought patterns, etc.), the identification of cognitive

activities, and the evaluation of levels of competence" (p. 5). As cognitive activities are

discovered, a model may be constructed (and successively refined as more is

discovered), then such model becomes functional to identifying the cognitive activities

when they occur since it provides a lens through which these can be seen and

discussed. Moreover, the model may be used by an external

observer/researcher/teacher to evaluate the solver's level of competence in tasks that

involve cognitive processes described by the model.

Since we wanted to "zoom into" certain cognitive aspects of the process of

conjecture-generation we aimed to describe, and these aspects were related to the use

of dummy locus dragging which in the literature was described as a dragging modality

spontaneously but rarely used by students (Arzarello et al., 2002), we conceived a

hypothesis that might allow us to observe more occurrences of this dragging modality. In

a way our hypothesis would hopefully lead to an "unnatural" experimental setting in

which we would be able to observe many more occurrences of our desired phenomenon

than in a "natural setting". Of course this hypotheses about introducing particular

dragging modalities not only has consequences with respect to potentially observed
phenomena, but also, and more importantly, it has potential didactical consequences

that we will discuss within this thesis, in particular in Chapter 7.
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In order to introduce our model, let us start with an example of solvers' use of

dragging modalities in conjecture-generation, described by Olivero, Arzarello, Paola, and

Robutti (Olivero, 2000; Arzarello, et al., 2002).

Task: Construct two points (A, B) and a third point C so that the angle ACB is 60

degrees. Are there other choices of C for which this is possible? Make a conjecture.

You can start to drag C (wandering dragging). You notice that there are other
places on the screen in which the angle ACB is 60 degrees, so you start to drag
trying to maintain this property (guided dragging). You start to "see" a path along
which you can drag C and maintain the property, so you stay along it (lieu muet)
... You might decide to mark a few points along the path in order to visualize the
path more explicitly (line dragging). The path looks like two arcs of circles through
A, B. Now you make a conjecture: "If C is on the greater arc of the two circles
through A, B (as drawn below), then the angle ACB is 60 degrees." To draw the
circles and test your conjecture you need to know more about how to draw the
circles (Olivero, 2000).

Based on Arzarello et al. 's analyses, similar to the one above, and on some preliminary

observations we carried out, we developed a schematic description, through four steps,

of what might occur during the conjecturing stage as a solver approaches an open

problem in the Cabri environment, not having been introduced to the dragging
modalities.

Step 1 : experimentation with transformational reasoning and discovery of different
dragging strategies

4

Step 2: conscious use of different dragging strategies to further investigate
(in particular dummy locus dragging)

1

Step 3: abduction using the path
i

Step 4: formulation of a conjecture (through an inversion of the abduction)
Figure 2.4.1.1 : Our first schematic description of solvers' explorations.
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Our hypothesis about introducing solvers to particular dragging modalities (especially

dummy locus dragging) is the following:

By introducing subjects to the dragging strategies during activities before the

assigned open problems, step 2 can be directly induced. That is, the types of

reasoning that occur in subjects who spontaneously become familiar with the

dragging strategies are analogous to those of subjects who have been given the

dragging strategies "a priori".

Preliminary observations and a pilot study seemed to confirm our hypothesis, and the

initial version of the model we will describe below. Therefore we developed our study

upon this framework. We will now introduce our initial model and provide an example of

how it could potentially be used as a tool of analysis.

2.4.2 Our Initial Model and an Example

We built our initial model making the hypothesis that after being introduced to

particular dragging modalities, in particular dummy locus dragging, solvers would

proceed more or less as described in the steps introduced in the previous section. In

particular, the initial version of our model is described below.

Step 1 : conscious use of different dragging strategies to investigate the situation

after wandering dragging, in particular dummy locus dragging to maintain a

geometrical property of the figure (we name such property intentionally induced

invariant, or III), and use of the trace tool.

Step 2: consciousness of the locus that appears through dummy locus dragging

this marks a shift in control from ascending to descending - and description of a

second invariance (invariant observed during dragging, or IOD).
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Step 3: hypothesis of a conditional link between the intentionally induced invariant and

the invariant observed during dragging, to explain the situation. Other forms of

dragging may be performed: line dragging, linked dragging, and the dragging test.

Step 4: the formulation of a conjecture of the form 'if IOD then III' emerge as product of

abduction.

We used this first version of the model for preliminary observations of solvers'

conjecturing process and on hypothetical explorations. These seemed to show that the

model was indeed appropriate. Below is an example of a hypothetical exploration

analyzed through our initial model.

The activity is one of the activities we developed for the study. We introduce

these activities in Chapter 3.

Activity: Draw three points A, M, K, then construct point B as the symmetric image of A

with respect to M, and point C as the
c

symmetric image of A with respect to K.

Construct point D as the symmetric

image of B with respect to K. Drag M

and make conjectures about ABCD.

Then try to prove your conjectures.

A Response: Through wandering

dragging solvers may notice that ABCD

can become different types of

parallelograms. In particular, they might

Figure 2.4.2.1 : Dragging with the trace tool can
help a student notice a locus (or lieu).
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notice that in some cases ABCD seems to be a rectangle (they can choose this as the

III). With the intention of maintaining this property as an invariant, solvers might mark

some configurations of M for which this seems to be true, and through the trace tool, try

to drag maintaining the property, as shown in Figure 2.4.2.1 . This can lead to noticing

some regularity (IOD) in the movement of M, which might lead to awareness of an object

along which to drag (the circle of diameter AK, potentially not yet recognized as "a

circle"). At this point, when such awareness arises, we can speak of path with respect to

the regularity of the movement of M.

If solvers recognize the path to be a familiar geometrical object, like in this case,

they might be inclined to constructing it, as shown in Figure 2.4.2.2, and dragging along

it (line dragging), or even linking the

free point to it {linked dragging) and

performing a dragging test. Through

this abductive process, as an attempt

at explaining the experienced

situation, as Magnani (2001 )

describes, solvers may hypothesize a

conditional link between the III and

IOD. At this point the abduction leads
Figure 2.4.2.2: M is being dragged along the path
(line dragging). to a hypothes¡s 0f the form 'if IOD

then III', and therefore to a conjecture

like the following: "If M is on the circle of diameter AK, then ABCD is a rectangle," or (if

they discover or derive a property of the base-points which is equivalent to M lying on

the circle): "If AKM is a right triangle, ABCD is a rectangle."

D

K

M
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In the case of the first conjecture, here is how we hypothesize the abduction

(creative abduction) might go.

Ill: ABCD is a rectangle.

IOD: when M dragged along the path, fact A seems to be true. The path is a

known geometric figure: the circle of diameter AK.

Product of the abduction: If point M lies on the circle of diameter AK, ABCD is a

rectangle.

This product of the abduction coincides with a formulation of a conjecture. However,

solvers might also perform a second abduction (this time a direct abduction) linking the

property "M belongs to the circle" to a property of the base-points of the construction. In

this case this may lead to a formulation of the conjecture like: "If the triangle AMK is a

right triangle (with ZAMK as the right angle), ABCD is a rectangle." In this case the

further elaboration of the geometrical properties recognized in the path will have led to a

key idea (Raman, 2003) of a possible proof.

The Notion of Path. The example of Olivero's analysis (2000) we introduced in

Section 2.4.1 contained a reference to how dummy locus dragging involves dragging

along a hidden path. Such a path can then be made explicit and it can be used for line

dragging, linked dragging, and the dragging test. We focused on the role of such path,

imagining that some pre-conceived notion of it may guide the solvers' production of the

conjecture, and though it may play a role in the abduction, it may no longer appear in the

formulation of the conjecture. However at this preliminary phase of elaboration of the

model we did not explicitly define the term path, since we wanted to reach a definition as

a potential result of the study. Here path refers to "what can be made explicit" through

the trace mark, and we used the terms in informal discussions as a synonym of
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"trajectory" as used by Arzarello et al. (2002), "set of points with a property", or "locus of

validity", as used by Leung and Lopez-Real (2002). In this section, we will try to

introduce our initial considerations on the concept of path and its significance for the

model.

One of the dragging schemes, dummy locus dragging, involves dragging a point

with the intention of maintaining a given property of the figure (which becomes the III).

Some regularity may appear during this dragging stage, leading to the discovery of

particular constraints that the dragged point has to respect (that can be expressed in the

IOD). Because of their origin from dragging, such constraints may be interpreted as the

property of the point to move on a particular trajectory (to belong to a particular figure). In

mathematical terms, we can speak of a hidden locus (dummy locus). However we note

that it does not necessarily coincide with the mathematical notion of locus, which would

be the set of all points of the plane that guarantee verification of the III when the base

point is chosen from within the set. Instead the path may be a proper subset of the locus

of points with the characterizing property. The path can be made explicit by the trace

tool, through which it appears on the screen. During dummy locus dragging the solver

notices regularities of the point's movement and conceptualizes them as leading to an

explicit object. We refer to this object as a path when the solver gains consciousness of

it, as it is generated through dragging, and consciousness of its property that if the

dragged point is on it, a geometrical property of the Cabri-figure is maintained. In this

sense a path is the reification (Sfard, 1991) of an abstract idea, similar to that of locus,

that can be used to "control the figure", in a "descending control" mode (Arzarello et al.,

2002). Zooming into Step 2, above, we observe that this is the point of the process in

which the notion of path arises, and we can add a step to indicate the (potential)
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geometric interpretation of the path, in order to (potentially, after Step 3) perform line

dragging, linked dragging, and the dragging test along such path.

We expected the path to play an important role in relation to the abductive

processes that originate a conjectures in a DGS. In particular, we advanced the

hypothesis that recognizing a path might be necessary to foster the formulation of a

conjecture, although it may no longer explicitly appear in the formulation of the

conjecture.

2.5 Dragging Modalities to Be Introduced in the Classroom

The hypothesis on the effect of introducing particular ways of dragging implied, at

a theoretical level, an explicit distinction between dragging schemes and dragging

modalities in order to be consistent with an instrumental approach (Vérillon & Rabardel,

1995; Rabardel & Samurçay, 2001 ; Rabardel, 2002) to dragging. In Section 2.2.2 we

made a distinction between "ways of dragging" or "dragging modalities" and "dragging

schemes" to separate what might be observed externally as a particular way of dragging

from the description of a utilization scheme (an internal mental construct of the solver)

associated to a particular way of dragging. Moreover, at a practical level, our hypothesis

implied an elaboration of specific dragging modalities to be introduced. In this section we

will describe the dragging modalities we chose to introduce solvers to, and the

terminology we elaborated to do so.

"Our" Dragging Modalities. In order to determine the dragging modalities to be

introduced to students, we elaborated Arzarello et al. 's findings (Arzarello et al., 2002).

We considered dragging modalities that seemed particularly significant for the
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investigation for the solution of open problems and that could be easily introduced as

tools to solve them. The four modalities we elaborated are described below:

• wandering/random dragging (Italian: "trascinamento libero"): randomly dragging a

base point on the screen, looking for interesting configurations or regularities of

the Cabri-figure;

• maintaining dragging (Italian: "trascinamento di mantenimento"): dragging a

base point so that the Cabri-figure maintains a certain property;

• dragging with trace activated (Italian: "trascinamento con traccia"): dragging a

base point with the trace activated;

• dragging test (Italian: "test di trascinamento"): dragging free or semi-free points to

see whether the constructed figure maintains the desired properties. In this mode

it can be useful to make a new construction or redefine a point on an object to

test a formulated conjecture.

We described wandering dragging to the students as randomly dragging a base point on

the screen. However we made it explicit that this mode could be used to look for

interesting configurations or irregularities of the Cabri-figure. In this sense this scheme is

a sort of fusion between wandering dragging and guided dragging, described by

Arzarello et al. (2002). Once a particularly interesting potential property of a figure is

detected, the user can use maintaining dragging (MD) to try to drag a base point and

maintain the interesting property observed. For example, the solver may notice that a

certain quadrilateral, part of the Cabri-figure, can "become" a square, and thus attempt to

drag a base point trying to maintain the quadrilateral a square. In other words,

maintaining dragging (MD) involves the recognition of a particular configuration as

interesting, and the user's attempt to induce the particular property to become an
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invariant during dragging. Using Healy's terminology (2000) such invariant is a soft

invariant.

We chose this terminology as opposed to dummy locus dragging (Arzarello et al.,

2002) because we did not want the name to suggest any particular mathematical idea

(for instance that of locus) to the students. Moreover, our definition of maintaining

dragging differs slightly from what in literature has been referred to as dummy locus

dragging. In literature this dragging modality is described as "wandering dragging that

has found its path", a dummy locus that is not yet visible to the subject (Arzarello et al.,

2002, p. 68). Instead, we consider maintaining dragging to be the mode in which a base

point is dragged with the specific intention of the user to maintain a particular property.

With dragging with trace activated we intend any form of dragging after the trace

function has been activated on one or more points of the figure. This tool arises from the

combination of two Cabri functions, "dragging" plus "trace", which together constitute a

new global tool that can be used in the process of conjecture-generation. Combining

maintaining dragging with the trace activated on the selected base point can be

particularly useful during certain processes of conjecture-generation. Although during the

introductory lessons we did not explicitly specify particular points to activate the trace on,

we only proposed to activate it on the base point selected to be dragged.

Finally the dragging test refers to a test that a figure can be put through in order

to verify whether it has been properly constructed or not (Olivero, 2002; Laborde, 2005).

The dragging tesi after having reconstructed the figure we were investigating, adding a

new property (by construction) to it that we had hypothesized might induce the original

interesting soft invariant to become a robust invariant. Thus the dragging test was

applied to test whether the originally desired property was actually maintained during

dragging. An expert might say we were using the dragging test to test a conjecture, even
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if the statement of such conjecture might not have been explicit at that point. In this

sense the dragging test we introduced was slightly different from the one introduced in

literature. We introduced the dragging test in a broader way, without constraining the

properties to be observed during the test to necessarily being robust (Healy, 2000). In

fact we consider the dragging test Xo be the dragging mode in which a base point is

dragged with the intention of observing two invariant properties (which may be soft)

simultaneously. We view this dragging mode as distinct from maintaining dragging

because in this mode the two invariants that the user intends to observe have already

been explicitly identified.

2.6 The (Specific) Research Questions

Given the theoretical framework we developed and presented in this Chapter, we

now introduce the specific research questions we set out to investigate through our

study.

1 . What relationship do the forms of reasoning used by solvers during the

conjecturing stage of an open problem in a DGS, have with the ways in which

solvers use the dragging tool?

2. When a solver engages in the activities proposed in this study within a DGS there

seems to be a common process used to generate conjectures through use of

maintaining dragging (MD).

a. Does our model describe this process adequately?

b. How does the model describe the dragging scheme and how can we

refine the description?

c. What insight into the process of conjecture-generation can be gained

when using our model as a tool of analysis for solvers' explorations?
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d. What is the role of the path within this model? Moreover is the path, as a

part of the model, a useful tool of analysis?

e. How does the model highlight abductive processes involved in conjecture-

generation when MD is used?

3. In cases where students do not use MD, is it possible to outline how they might

develop effective use of MD?
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CHAPTERIII

METHODOLOGY

In Chapter 1 and Chapter 2 we described the literature in the field with

respect to the initial problem we were interested in, and developed a theoretical

background for this study from existing theoretical constructs elaborated in other

research studies. This allowed us to reach a detailed set of research questions

focusing on forms of reasoning and associated dragging modalities potentially used

by solvers during the conjecturing stage of an open problem in a DGS. In particular

we wanted to focus on a possible process of conjecture-generation that might be

common to various solvers who use particular dragging modalities, "zooming into"

solvers' use of maintaining dragging, and relating it to some cognitive processes

involved. We decided to do so by constructing and refining a model that describes a

specific processes of conjecture-generation that may be carried out when the solver

uses maintaining dragging. We described our initial model in our theoretical

background (Chapter 2) of this study. In this chapter we will describe our

methodological choices for the study.

In particular, in Section 3.1 we will discuss our choice of methodology for the

study, briefly introducing the methodological tools of clinical interviews and teaching

experiments, and explain the rationale for our choice. In this section we will also

illustrate the experimental design of our study. Then, in Section 3.2 , we will explain

how our data were collected, describing in detail how we made use of the

methodological tools we chose. This section includes a description of the introductory

lesson, how we modified it after the pilot study, and how we carried out the
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semi-structured clinical interviews in the pilot study and in the final study. Finally we

provide an a priori analysis of an activity proposed during the interviews. In Section

3.3 we describe the data collected and how they were analyzed, focusing on the

outcomes of the different ways in which they were analyzed.

3.1 Choosing a Methodology

Our study aims at investigating and describing particular cognitive processes

related to dragging and involved in conjecture-generation in dynamic geometry. The

study achieves this goal by elaborating a model through which such cognitive

processes can be described and analyzed. Therefore the study has an empirical and

qualitative nature. In particular, there are two aspects of the study that influenced our

choice of the methodology to utilize. First we needed to be able to observe solvers

during open-problem activities in dynamic geometry that involved the development of

conjectures. We needed to also be able to interact with the solver in cases in which

external observation did not give sufficient insight. This motivated our choice of using

clinical interviews.

Second, we were particularly interested in cognitive processes associated

with a specific way of dragging, maintaining dragging, and we knew from previous

research that this was not usually spontaneously used. Therefore we wanted to be

able to "provoke" explorations in which this way of dragging occurred. To this end we

developed an introductory teaching intervention during which a researcher worked

within a classroom, introducing four "ways of dragging". The solvers for the interviews

were then chosen from within the classrooms in which the ways of dragging had

been introduced. This teaching intervention exhibits characteristics of a very brief

teaching experiment, however we prefer to not define it as such for reasons we will

explain in the next section. Instead we will refer to this teaching intervention as the



"introductory lesson". In the next section we will briefly introduce the methodological

tools of clinical interviews and teaching experiments, explaining why we chose them

for our study. Then in Section 3.1 .2 we will describe the experimental design of our

study.

3.1.1 Clinical Interviews and Teaching Experiments

The clinical interview is a research methodology that has its roots in Piaget's

méthode clinique (Piaget, 1929), which was developed as "a flexible method of

questioning intended to explore the richness of children's thought, to capture its

fundamental activities, and to establish the child's cognitive competence" (Ginsburg,

1981 , p. 4). This methodology aimed at developing a theory to explain the individual

cognitions of children and that also takes into account the social context in which

learning takes place, recognizing the fundamental role of language and the

importance of clarification of meaning as researchers ask questions and pose

problems (Hunting, 1997). In this sense it is possible to find some common roots

between the méthode clinique and in the Vygotskian teaching experiment (Hunting,

1997, p. 146). Further analogies can be seen in a common aim of the two methods,

that of building and testing theory about mathematics learning and teaching

"searching for explanatory patterns and principles, anomalies and alternative ways of

conceptualizing problems in the field" (Hunting, 1997, p.146). Moreover, both

methods aim at investigating what might go on in children's heads and how it might

go on, by constructing models relative to the child's goals-directed mathematical

activity (Steffe , 1991).

However the teaching experiment differs from the clinical interview. We will

briefly discuss some fundamental differences between these methodologies that

reside at the levels of (1) the time over which they are carried out, (2) the types of
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interactions they take into consideration, and (3) their design. With respect to the

issue of time, the teaching experiment "is directed toward understanding the progress

students make over extended periods" (Steffe & Thompson, 2000), while the clinical

interview is aimed at describing what might be going on in a child's mind at the time

of the interview. As for the types of interaction involved, a teaching experiment takes

into consideration interaction between the teacher and the students, and between

students. Moreover, in a teaching experiment, the interactions (at least some of

them) are aimed at supporting learning. Instead, a clinical interview can be described

as "a one-to-one encounter between an interviewer, who has a particular research

agenda, and a subject" (diSessa, 2007). The focus, in the case of a clinical interview

is shifted towards the interviewee's words and actions, instead of on his/her

interaction with the interviewer. The interviewer's role could be described as that of

an "active observer": his/her aim is to "see" what is in the interviewee's mind, but

since there is no direct access, s/he must ask appropriate questions and "pry" at the

interviewee's words and actions to test the model s/he is using to interpret such

words and actions.

We now come to the issue of the design of a teaching experiment with

respect to that of a clinical interview. A teaching experiment "involves

experimentation with the ways and means of influencing students' mathematical

knowledge" (Steffe & Thompson, 2000). Thus it is designed to investigate and

support students' learning, potentially describing learning trajectories and elaborating

tools to help the teacher foster them. The learning process that the teaching

experiment aims to investigate therefore plays a fundamental role in the design.

Moreover the role of the teacher is also built into the design and studied explicitly. A

teaching experiment is not typically limited to a series of problematic situations

71



presented to students who are then asked to engage in solving them while being
observed.

On the other hand, during a clinical interview,

The interviewer proposes usually problematic situations or issues to think
about and the interviewee is encouraged to engage these as best he/she can.
The focal issue may be a problem to solve, something to explain, or merely
something to think about. An interviewer may encourage the subject to talk
aloud while thinking and to use whatever materials may be at hand to explore
the issue or explain his/her thinking. (diSessa, 2007, p. 525).

While in a teaching experiment a goal may be to affect students' learning through

intervention, during a clinical interview the interviewer may attempt to perform

minimal intervention, in order to least affect the solvers' performance (Steffe &

Thompson, 2000; diSessa, 2007). Instead, the interviewer tries to make inferences,

constructing and testing a model portraying a cognitive structure to represent what

might be in the solver's mind (Ginsburg, 1981). The inferences are made on solvers'

behavior, which includes physical actions and language (Steffe & Thompson, 2000;

Hunting, 1997; diSessa, 2007) used during the dynamic explorations. The inferences

the researcher continually makes postulate possible meanings that lie behind

students' language and actions (Steffe & Thompson, 2000, p. 277), and s/he does

this in a flexible way, adapting the inquiry to the solver's responses (Ginsburg, 1981 ;

diSessa, 2007). Such inferences, together with the observations of the solver's

behavior, can allow the description of the solver's "goal-directed action patterns",

taking "action" to refer to mental as well as physical action (Steffe, 1991 , p. 179).
Important inferences can also be made from the analysis of "essential mistakes"

(Steffe & Thompson, 2000), since "essential mistakes provide stability in a dynamic
living model of students' mathematics" (Steffe & Thompson, 2000, p. 278).

If on the one hand the interviewer wants to observe as much as possible and

interfere as little as possible with the interviewee's cognitive processes, in order to

test and modify his/her inferences, the interviewer needs to interact with the
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interviewee. Thus s/he can develop a set of questions and prompts ahead of time, to

use at specific moments of the interview, and that interfere as minimally as possible

with the interviewee's thought process. In developing our questions and prompts, our

underlying assumption was that human knowledge and activity patterns are

"generative" (diSessa, 2007), that is

People learn much of the time, and a significant part of the knowledge that
they have will be directed toward generating new knowledge and new ways of
behaving. Generativity may show in short-term adaptation to a particular
problem or even to a particular prompt from the interviewer... (diSessa, 2007,
p. 530).

The clinical interview is designed to investigate the structure of thought by reaching a

"clear description of mind" (Ginsburg, 1981), and it is particularly appropriate for

studying specific cognitive processes (Cohen & Manion, 1994). Our main goal as

researchers was to construct, refine and test a cognitive model describing processes

that might go on in the mind of a solver engaging in a particular kind of open

problems. Therefore we chose the clinical interview as the main methodological tool

for our study.

Finally, our model may be seen as describing a utilization scheme (Rabardel,

P., & Samurçay, R., 2001 ; Vérillon, P., & Rabardel, P. ,1995), as described in Chapter

2, associated to the artifact "maintaining dragging". Since a scheme is a mental

construct, it cannot be accessed directly, but only inferred through the activity the

solver engages in and that can be observed. Furthermore a scheme is difficult to "put

into words", but it can emerge from the search for invariant organizations of a

determined activity (Bourmaud, 2006). In particular a scheme may be inferred from:

regularities in the solver's behavior, the existence of a choice among different

possible ones, the transformation of the situation knowing the effect of such activity

on the situation, and from how the activity is carried out (Zanarelli, 2003; Bourmaud,

2006). In this sense our model aims at describing a scheme by analyzing an invariant
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Organization of the activity of conjecture-generation when maintaining dragging is

used. In order to make inferences and construct and refine our model, we developed

various questions and prompts to use during the interviews if the solver exhibited

certain behaviors. Therefore we refer to our interviews as semi-structured clinical

interviews. We will describe these questions and prompts in Section 3.2.2.

As mentioned in the introductory paragraph to this section, an issue we

needed to deal with was the fact that according to previous research, maintaining

dragging was not usually spontaneously used. Therefore in order to be able to

"provoke" explorations in which this way of dragging occurred, we developed an

introductory teaching intervention, introducing four "ways of dragging". The solvers

for the interviews were then chosen from within the classrooms in which the ways of

dragging had been introduced. This teaching intervention exhibits characteristics of a

very brief teaching experiment, however we prefer to not define it as such for reasons

we will explain in the next section. Instead we will refer to this teaching intervention

as the introductory lesson, and we will describe it in more detail in Section 3.2.1 .

3.1.2 The Experimental Design of the Study

We first conceived a preliminary model to test and refine during a pilot study,

using clinical interviews (Ginsburg, 1981; Steffe, 1991; Hunting, 1997; diSessa,

2007) based on open-problem-activity tasks (Goldin, 2000), as we will describe in

Section 3.2. Before conducting the clinical interviews with the participants, we had

them take part in an introductory lesson during which they were introduced to the four

ways of dragging we had elaborated (these are described in Chapter 2). We used

every interview to test and refine our model and prompts. This "spiraling process" has

been successfully used by other researchers in qualitative studies that involve the

construction and successive re-elaborations of a theoretical framework and/or of a
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model (Hadas, Hershkowitz, & Schwarz, 2000; Steife & Thompson, 2000). Once the

model was sufficiently refined, we used it as a tool of analysis through which to

interpret the data obtained.

The DGS we chose to use is "Cabri-Geometry Il Plus," developed by Laborde

and Bellemain (1993-1998). Both the pilot study and the final study were structured in

the following general way. Solvers were students from three Italian high schools (licei

scientifici) between the ages of 15 and 18, who had been using Cabri in the

classroom for at least one year prior to this study: 9 (3 single students and 3 pairs)

students for the pilot study and 22 (1 1 pairs) for the final study. First solvers were

introduced to the dragging schemes during an introductory lesson that took place

during their regular school hours. Then we conducted the semi-structured clinical

interviews with the solvers. Between the pilot study and the final study we applied the

necessary modifications to the activities proposed during the interviews, to the

research questions, to our cognitive model, and to the prompts to be used during the

interviews.

3.2 How Data Were Collected

As described above, we first had our participants take part in an introductory

lesson in which they would become familiar with the four ways of dragging we were

interested in studying. In particular our aim was to help students become somewhat

comfortable with maintaining dragging, which they do not tend to use spontaneously,

according to previous research. In Section 3.2.1 we will describe this introductory

lesson and how we modified it after the pilot study. The rest of this section is

dedicated to the characteristics of the semi-structured clinical interviews we carried

out (Section 3.2.2) with a particular focus on how we prepared for the interviews and
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on how we conducted the interviews, and on a description of the open-problem

activities we used during the interviews (Section 3.2.2).

3.2.1 The Introductory Lesson

The lesson was focused on the dragging schemes: as students explored,

they were asked to drag points in particular ways and describe their observations and

perceptions (for example, how they moved their hand while dragging) with respect to

a particular configuration. Students were asked to share their ideas with the whole

class, in a discussion guided by the instructor who gave names to specific "ways of

dragging" while the students explained how they used them. While exploring with the

four dragging modalities during the introductory lessons, the dragging with trace

activated scheme was only activated on the base point being dragged. No reference

to the formulation of a conjecture was made, nor were any indications for using the

dragging schemes given at this point. Students were told that these ways of dragging

"may be useful for exploring figures in dynamic geometry", but that they were free to

do whatever they felt worked best for them during the interviews. The teaching

intervention had the limited aim of introducing students to different ways of dragging

and to new terminology which (we hoped) they could use during the interviews. The

only 'leaching" that occurred had to do with the ways dragging, not with a particular

process of conjecture-generation. This was important because our goal was to test

whether our model was appropriate for describing the scheme developed by students

in correspondence to the ways of dragging and to maintaining dragging in particular.

During the introductory lessons the interviewer/instructor explained how she

was interested in understanding a thought process and how solvers could help her

achieve this goal by speaking out loud and explaining as much as they could to her

aloud. She also explained that any time she would ask "why?" it did not mean that
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the solver was wrong (Hunting, 1997; diSessa, 2007), but that she was seeking for

an explanation with the aim of understanding the solvers' thought process, thus

valuing any clarification the interviewee might be able to provide and refraining from

any type of judgment (Hunting, 1 997; Ginsburg, 1 981 ).

After the pilot study we revised the introductory lesson, and decided to add a

part aimed at helping students overcome some difficulties related to the control of the

different status of objects of Cabri-figures. Therefore the lesson was carried out over

two class periods. The first lesson was developed around recognition of base points

and dependent points of a Cabri-figure that originated from a step-by-step
construction the students were asked to make.

In the final study the intervention consisted of two one-hour lessons with the

following goals and activities.

Goals of Lesson 1

• to distinguish between base points (in general, objects) and dependent points

(in general, objects) of a Cabri figure that originated from a step-by-step

construction (given explicitly);

• to experience how different Cabri figures that can represent "a parallelogram"

(robustly) can originate from different step-by-step constructions and thus

have different base points (in general, objects) and dependent points (in

general, objects);

• and to experience the different behaviors of such Cabri figures when their

base points are dragged.

Goals of Lesson 2

• to explore a Cabri-figure that originated from a given step-by-step

construction by dragging its base points;
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• to experience (physically) and describe different ways of dragging base points

of a Cabri-figure;

• to learn names for four "ways of dragging": wandering dragging, maintaining

dragging, dragging with trace activated, dragging test;

• to attempt to formulate conjectures on the Cabri figure being explored through

dragging, but with no guidance from the instructor.

3.2.2 The Semi-Structured Clinical Interviews

As described in Section 3.2.2 and in Section 3.5, the activities proposed were

open-ended tasks (we will discuss our specific open-problem activities in Section

3.3.3. This form of activity, being unstructured and open-ended, is designed to give

the solver the opportunity to display his/her "natural inclination" (Piaget, 1929), and it

seems to be optimal for providing a window into solvers' thinking by maximizing the

opportunity for observation and reflection upon their thought process (Hunting, 1997;

Ginsburg, 1981). Moreover this type of activity allows detailed follow-up-questions

(Hunting, 1997), which are appropriate for testing cognitive models. In the following

paragraphs we will describe the interviewer's preparation for the interviews and how

they were conducted.

Preparation for the interviews is fundamental in obtaining significant data

(Hunting, 1997). As interviewers, we kept in mind our developing model, but were

aware of not knowing whether it was appropriate or not. Therefore we were open to

different interpretations of the solvers' activity while formulating questions on-line and

off-line (Ackermann, 1995; diSessa, 2007), that is during the interviews and between

one interview and the other. While the materials provided to the solvers (the Cabri

environment, paper, a pen) and the activities were the same, the interviewer's

78



prompts and questions would depend on the solvers' responses. Typical requests to

a solver were to explain an action, to describe what s/he was looking at or trying to

accomplish, or to provide clarification or elaboration of a statement s/he made

(diSessa, 2007). However subsequent prompts and requests would be formulated

using the solvers' language, in an attempt to make confirm an interpretation or test

an alternative one (Ginsburg, 1981).

Moreover, we elaborated some questions and prompts that we would use

when a solver seemed to "get stuck". We were aware of the fact that certain prompts

might change the solver's processes of thoughts and actions, however we wanted to

be able to observe certain types of explorations even if they did not occur

spontaneously. Furthermore we were aware that solvers could make remarkable

progress with basic assistance (Hunting, 1997), and that they can adapt to a

particular problem or prompt by generating new knowledge (diSessa, 2007).

Therefore we also analyzed students' responses to our prompts, searching for

potential recurring behaviors that might further shed light onto the process described

by our model. We kept track of the different types of questions and interventions we

chose to use during the interviews, and whether they would be asked in recurring

sequences. These sequences were then analyzed as a second level of findings

(Chapter 6).

We will now describe the questions and prompts we prepared for the

interviews, refining them after the pilot study. We took into consideration different

difficulties that solvers had encountered during the pilot study and tried to present the

solvers with new tasks (more or less) implicitly related to the original tasks. We would

choose to lead solvers to a different interpretation of the activity when the solvers did

not seem to be making sense of the interviewer's inquiries (diSessa, 2007). We also

developed a series of prompts that could be used interchangeably when the solvers
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seemed to be experiencing a particular difficulty related to maintaining dragging. Our

use of the prompts also depended on the solvers' responses.

The questions and prompts we prepared were the following:

• So how can you construct a . . .[the type of quadrilateral the solver had been

exploring]. . . that passes the dragging test and that follows the steps of the initial
construction?

The idea behind this intervention is to lead the solvers to further explore the

interesting configuration, and generate new conjectures. Moreover we expected it

to help them become aware of the different status of objects of the construction

and look for "constructable properties" to add to the steps of the construction that

will induce the desired type of quadrilateral robustly.

• Are there other ways to obtain a robust. . .[the type of quadrilateral the solver had

been exploring]?

• So how about trying maintaining dragging, do you remember? Like what you tried

in class.

or

You mentioned the property that made ABCD a. . . Can you try to maintain that?

or

Is it not possible to maintain that property? Can you tell me why not?

With these questions we would try to foster the use of maintaining dragging by

asking the solvers explicitly, in cases in which they had not used it previously.

• Ok, I know it's difficult, but can you ask your partner to help tell you where to

move the point?

We used this prompt if a solver was experiencing difficulties performing

maintaining dragging.



• Do you remember that we used dragging with the trace activated in class? Do

you want to try that here?

We used this question if the solvers were not able to describe regularities in the

movement of the dragged base point during maintaining dragging.

• Ok, so this . . .[object in the geometric description of the path (GDP)J. . . moves as

you drag. Can you try to describe one that does not move?

We used this prompt in cases in which the solvers had reached a GDP that was

not P-invariant (if P was the base point dragged) and they were experiencing

difficulties performing a robust dragging test.

• So can you give me a conjecture now?

or

How about a conjecture that describes what you have done till now?

We used these prompts if solvers would not provide a conjecture after an

exploration, in particular one that might have involved the use of maintaining

dragging.

Finally, in preparing for the interviews, we took into consideration the issue of

length of each interview (Hunting, 1997; diSessa, 2007). After the pilot study we

decided that the ideal time to optimize the collection of significant data with the

participants of this study and the type of activities used was one hour and thirty

minutes per pair of students.

Conducting the interviews. With respect to diSessa's description of the clinical

interview methodology we introduced in Section 3.1 , the interviews we conducted in

our final study differed in that we worked with pairs of students instead of one-on-

one. In the pilot study we experimented with both types of settings, but it became

clear that students seemed to share their thoughts more openly when interacting
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principally with a fellow student, as opposed to only with the interviewer. This finding

is in line with what has been found in other studies (for example, Clements, 2000;

Hadas, Hershkowitz, Schwarz, 2000; Schoenfeld, 1983). Moreover, a fundamental

characteristic of clinical interviews is putting the interviewee at ease (Ginsburg, 1981 ;

Steffe, 1991 ; Hunting, 1997; diSessa, 2007), and peer interaction seems to foster this

(diSessa, 2007, p. 551).

When conducting the interviews a fundamental goal was to pose questions

that appeared to be sensible inquiries to the interviewee (diSessa, 2007, pp. 527-

528). The questions posed in our activities came from "the context" of the

introductory lessons, however a goal of the interviewer during the open-problem-

activity sessions was to uncover the solvers' understanding of the task and capture

the sense the interviewees were making of the problems by asking them to help her

see their ideas (Ginsburg, 1981 ; diSessa, 2007). The interviewer would have this

secondary goal in mind when constructing hypotheses and responding on-the-fly

(Ackermann, 1995), or choosing which prompt to use during the interviews.

Moreover, the interviewer would try to be flexible in formulating hypotheses on the

solvers' behavior (Ginsburg, 1981) and in using the language of the solvers by

repeating and rephrasing statements that they made (Hunting, 1997; Ginsburg,

1981).

Another aspect we considered when conducting the interviews was the

"redistribution of authority and responsibility" (diSessa, 2007). The interviewer would

ask questions and prompt the interviewees, but she would not be the "holder of

knowledge" nor judge the solvers' responses. However the role of the interviewer

was asymmetric since the interviewees had met her for the first time during the

introductory lessons in which she was the instructor. This was another reason why

being the "observer" of peer interactions was more functional to the study than a one-
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on-one interaction with a single solver. This way the interviewer could remove herself

from the "action" in the exploration. This was accomplished also by physically

standing (or sitting) behind the solvers during the final study, and intervening only to

ask for clarification or to suggest prompts from the guiding sequence. Moreover the

interviewer explicitly stated that there were no "right or wrong" answers. She would

repeat this whenever solvers seemed to be looking for confirmation or asking

whether a particular comment or answer was "right?". When, during the interviews,

solvers would hesitate after being asked "why?" they had said or done something,

the interviewer would explicitly repeat what she had explained during the introductory

lessons, that is that her intention was not to point out anything "right or wrong" but

instead to understand what the solver was thinking.

3.2.3 Open-Problem Activities for the Interviews: Step-by-step Construction

Problems

As described in Chapter 2, the terminology "open problem" (Arsac et al.,

1988; Silver, 1995) refers to a problem or question stated in a form that does not

reveal its solution or answer. In the context of open problems students are faced with

a situation in which there are no precise instructions, but rather they are left free to

explore the situation and make their own conclusions. In other words, when an open

problem is assigned, the solution consists in elaborating a conditional relationship

between some premise and a certain fact. Often the solving process requires the

generation of conditionality after a mental and/or physical exploration of the problem

situation (Mariotti et al., 1997). In some of the previous research, the production of

conjectures is an explicit request in the text of an open problem (for example, Boero,

1996a, 2007; Arzarello, 2002; Olivero, 2001, 2002). When conjectures are explicitly
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requested in the text of the problem, we will use the terminology conjecturing open

problem, to distinguish it from other types of open problems.

The dynamic nature of the exploration of open problem situations becomes

particularly evident in the context of a DGS, where the figures can actually be

explored dynamically through the dragging mode. This makes DGSs an ideal

environment for posing conjecturing open problems and for observing and

investigating processes of generation of conjectures. In a DGS, a conjecturing open

problem typically takes the form of a generic request for a statement about

relationships between elements of the configuration or between properties of the

configuration. The questions are expressed in the form "which configuration does...

assume when...?" "Which relationship can you find between...?" "What kind of figure

can... be transformed into?" (Olivero, 2001). For example, a conjecturing open

problem ask: "Construct two points (A, B) and a third point C so that the angle ACB is

60 degrees. Are there other choices of C for which this is possible? Make a

conjecture."

To explore the validity of our model we constructed conjecturing open

problems, characterized by a sequence of steps, which students are asked to follow,

leading to the construction of a dynamic figure, followed by an open question

explicitly asking for a conjecture. We will refer to this type of conjecturing open

problems as step-by-step construction problems. We constructed these step-by-step

construction problems so that explorations in which solvers would search for

invariants using maintaining dragging would be fruitful, that is it would be possible to

make a path explicit using the trace mark and observe an invariant during dragging

(IOD). We developed and used the following step-by-step construction problems for

the study.
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Problem 1

• Draw three points: A, M, K.

• Construct point B as the symmetric image of A with respect to M

• and C as the symmetric image of A with respect to K.

• Construct the parallel line / to BC through A.

• Construct the perpendicular to /through C,

• and construct D as the point of intersection of these two lines.

• Consider the quadrilateral ABCD.

Make conjectures on the types of quadrilaterals it can become, trying to describe

all the ways in which it can become a particular type of quadrilateral.

Problem 2

• Draw a point P

• and a line rthrough P.

• Construct the perpendicular to rthrough P

• and construct a point C on this line.

• Construct the symmetric image of C with respect to P and call it A.

• /-separates the plane in two semi-planes. Choose a point D on the semi-plane
that contains A.

• Construct the line through D and P.

• Construct the circle with center in C and radius CP.

• Let B be the second intersection of the circle with the line through D and P.

• Consider the quadrilateral ABCD.

Make conjectures on the types of quadrilaterals it can become, trying to describe all

the ways in which it can become a particular type of quadrilateral.



Problem 3

• Draw three points: A, M, K.

• Construct point B as the symmetric image of A with respect to M

• and C as the symmetric image of A with respect to K.

• Construct D as the symmetric image of B with respect to K.

• Consider the quadrilateral ABCD.

Make conjectures on the types of quadrilaterals it can become, trying to describe

all the ways in which it can become a particular type of quadrilateral.

Problem 4

Draw three points: A, B, C.

Construct the parallel line /to AC through B,

and the perpendicular line to /through C.

Construct D as the intersection of these two lines.

Consider, the quadrilateral ABCD.

Make conjectures on the types of quadrilaterals it can become, trying to describe

all the ways in which it can become a particular type of quadrilateral.

A-priori Analysis of Problem 4. We developed the step-by-step construction

problems for the study so that the use of maintaining dragging on certain (if not all)

base points of each dynamic-figure would potentially lead to the discovery of a new

invariant, an 1OD. In this section we will analyze Problem 4, as an example, to show

how we thought they might be explored.

Problem 4

• Draw three points: A, B, C.

• Construct the parallel line /to AC through B,
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• and the perpendicular line to /through C.

• Construct D as the intersection of these two lines.

• Consider the quadrilateral ABCD.

Make conjectures on the types of quadrilaterals it can become, trying to describe

all the ways in which it can become a particular type of quadrilateral.

C mumm®,-
«?**»

A j
Figure 3.3.3.1 : the quadrilateral ABCD as a result of the step-by-step construction.

From the steps of the construction, immediate conclusions are:

1 ) the angles ACB and CBD are congruent because BD is parallel to AC;

2) the angle ACD is right, because CD is perpendicular to /, which is parallel to AC;

3) the triangle BCD is right, and therefore inscribed in a semicircle with diameter BC;

4) ABCD is a right trapezoid.

The presence of two right angles implies that the only quadrilaterals it may be

possible to explore are right trapezoids, rectangles, and squares.

There are three base points, A, B, C, that can be dragged to explore other possible

configurations. Dragging any of these base points it is possible to obtain a rectangle.

The GDPs for each of these base points when maintaining the property "ABCD

rectangle" are:

• for A, the circle with diameter BC;

• for B, the perpendicular line to AC through A;
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• for C, the perpendicular line to AB through A.

Figure 3.3.3.2: if A is dragged maintaining ABCD rectangle, a GDP is the circle with diameter BC.
Il

C fissís'";»--3-^D

Â jB

Figure 3.3.3.3: if B is dragged maintaining ABCD rectangle, a GDP is the perpendicular line to
AC through A.

Ct J>

A;

Figure 3.3.3.4: if C is dragged maintaining ABCD rectangle, a GDP is the perpendicular line to
AB through A.
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These GDPs are invariant with respect to the base point dragged to determine them,

and they do not depend in any way from the base point being dragged to determine

them. Therefore it is possible to redefine the dragged base point upon each of them

to obtain a robust rectangle.

• Once A is redefined on the circle, the angle CAB is a robust right angle,

because inscribed in a semicircle. Therefore three of ABCD's angles are right,

which implies that they are all right and ABCD is a robust rectangle.

• Once B is redefined on the perpendicular line to AC through A, the angle CAB

is a robust right angle and therefore we have the same conclusion as in the

previous case.

• Once C is redefined on the perpendicular line to AB through A, the angle CAB

is a robust right angle and therefore we have the same conclusion as in the

previous case.

The only other possible configuration to explore is "ABCD square". This configuration

can be obtained again dragging any of the base points, but it may not be maintained

during dragging. A square may bè obtained in the following ways:

• positioning A on one of the intersections of the circle with diameter CB with

the perpendicular bisector of BC;

• positioning B on one of the intersections of the circle with radius AC and

center in A with the perpendicular line to AC through A;

• positioning C on one intersections of the circle with radius AB and center in A

with the perpendicular line to AB through A.
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Figure 3.3.3.5: One of the two positions of A to obtain a square.
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Figure 3.3.3.6: One of the two positions of B to obtain a square.
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Figure 3.3.3.7: One of the two positions of C to obtain a square.

3.3 The Collected Data and How They Were Analyzed

The data collected included: audio and video tapes and transcriptions of the

introductory lessons; Cabri-files worked on by the instructor and the students during
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the classroom activities; audio and video tapes, Screenshots of the students'

explorations taken at 1 -second intervals with screen-capturing software that would

run in the background while the students were working in Cabri; transcriptions of the

task-based interviews, and the students' work on paper that was produced during the

interviews.

We analyzed the data collected through different filters. At one level, we

looked at how solvers used the dragging tool during the process of conjecture-

generation, searching for recurring behaviors, and trying to link such behaviors to the

forms of reasoning that might be involved. In particular, we used the data to confirm

and refine our model by looking for and trying to describe an invariant behavior

corresponding to the use of maintaining dragging. The final model, as presented in

Chapter 4 is the outcome of such analysis. Throughout this chapter we also highlight

the aspects of the model that were added and refined during the study.

A second level of analysis consisted in using the model itself as a tool of

analysis of the data generated from the interviews. We interpreted solvers' behaviors

through the lens of the model, using it in particular to gain insight into difficulties that

solvers seemed to be facing. These difficulties that solvers encountered can be

considered "essential mistakes", using the terminology of Steffe and Thompson

(2000). In our case we considered "essential mistakes" the solvers' difficulties and
behaviors that deviated from the model that seemed to "fit" for other solvers. This

second type of analysis allowed us to also advance hypotheses on specific sources

of difficulties, which we describe in Chapter 5.

We then used a third filter, that of the model (Chapter 4) together with the

factors that seemed to contribute to solvers' difficulties (Chapter 5) to further

elaborate and refine our conception of "expert behavior" with respect to maintaining

dragging. This third level of analysis allowed us, in particular, to develop the notion of
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path and highlight its significance, and to "capture" the abductive process involved in

conjecture-generation when maintaining dragging is used, according to the

description provided by our model. Finally, the analysis through this lens of solvers'

responses to our prompts and of the order in which the prompts were given, led to

some insight into a possible process through which solvers would become "experts".

We present the findings of this third level of analysis in Chapter 6.
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CHAPTER IV

THE MD-CONJECTURING MODEL

Our main goal was to interpret and describe cognitive processes leading to the

formulation of a conjecture, when certain dragging schemes are used. In particular we

wanted to zoom into the crucial point described in Arzarello et al. 's model (Arzarello et

al., 2002), in which dummy locus dragging seemed to be used by the solvers. Therefore

we focused specifically on developing a new model describing a way in which

maintaining dragging (MD) may be used to generate conjectures when exploring a step-

by-step open problem. In this chapter we present our model describing "expert use" of

MD in the process of conjecture-generation. We therefore refer to our model as the MD-

conjecturing Model.

The MD-conjecturing Model consists of a series of phases characterized by specific

tasks that the solver accomplishes, and described through novel key concepts and the

relationships between them. These concepts and relationships seem to be the main

ingredients that come into play during the conjecturing process and that are elaborated

into the final conjecture (considered as the product of this process). Our initial

hypothetical model includes the following notions and the relationships between them:

intentionally induced invariant (III), invariant observed during dragging (IOD), path,

geometric description of the path (GDP), conditional link (CL).

During the study we collected data in order to see whether our model could be

suitable to describe the process we were interested in. Analyzing the data through the
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lens of the model led to a refinement and later to a redefinition of the model. We would

like to show examples of how we used the initial model to analyze transcripts, and how

certain analyses led to refinements of the model itself. Therefore in this chapter we first

introduce the initial model through a simulated exploration in section 4.1 ; then sections

4.2, 4.3, 4.4, and 4.5 introduce the phases of the model, leading to the formulation of a

conjecture and characterized by the presence of specific elements and their mutual

relationships. In each of these sections the phase will be described and then exemplified

through students' transcripts, analyzed through the lens of the model. In addition, where

refinements of the model took place we will have such refinements emerge from

students' transcripts. The new notions and processes that emerged from the analyses

include: (basic and derived) construction-invariant, point-invariant, basic property,

minimum basic property (section 4.2). As mentioned above, the episodes from the

transcripts of students' interviews presented in this chapter represent cases that have

been classified as "experts' use" of the schemes, that is the use made by solvers for

whom maintaining dragging has become an acquired instrument with respect to the task

of producing a conjecture.

Finally, the analysis of the transcripts led us to notice the centrality of invariants,

of which different types are described in the model, and solvers' perception of them

during the explorations. This led to a new conception of the model, which we present in

section 4.6. Here we re-describe the model through the particular types of invariants the

solver may treat throughout a dynamic exploration.

4.1 Introduction of the Model through a Simulated Exploration

In this section we will show how the initial elements of the model come into play

in an example of a hypothetical exploration based on a step-by-step-construction
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Figure 4.1 .1 ABCD as a result of the step-by-
step construction.

problem. We briefly recall that we defined a

step-by-step construction problem as a

sequence of steps, which students are asked

to follow, leading to the construction of a

dynamic figure, followed by an open question

explicitly asking for a conjecture (for the

definition see Section 3.2.3). We will use

Problem 2 introduced in Section 3.2.2.

- Draw a point P

- and a line /-through P.

- Construct the perpendicular line to ? through P

- and choose a point C on it.

- Construct a symmetric point to C with respect to P and call it A.

- On the semi-plane identified by ? containing A, draw a point D.

- Construct the line through D and P.

- Construct the circle with center in C and radius CP.

- Let B be the second intersection of the line through P and D with the circle.

- Consider the quadrilateral ABCD.

Make conjectures on the types of quadrilaterals that it can become, describing all the

possible ways it can become a certain quadrilateral. Write your conjectures and then

prove them.

Let us assume we decide to start dragging the base point D. While dragging, we

see that the quadrilateral ABCD may become something that "looks like" a

parallelogram. We can try to use maintaining dragging to move point D while trying to

keep ABCD a parallelogram.
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Figure 4.1.2 Effect of maintaining dragging with the
trace activated on the dragged base point.

With respect to the maintaining dragging

scheme, we say that the property "ABCD

parallelogram" that we are inducing is

called an intentionally induced invariant

(III). While we drag we can look for some

regularity to emerge from the movement

of the point we are dragging (D in this

case). We are looking for what the model

refers to as an invariant observed during

dragging (IOD). In order to make the

transition from a regularity to an invariant (which can then be interpreted as a geometric

property), we can look for a path, or a set of points along which we can drag our base

point in order to maintain (indirectly) the intentionally induced invariant (III).

Then we can try to give a

geometric description of the path (GDP)

thus potentially obtaining a new

geometrical property that can be

applied to the figure. Maintaining

dragging with the trace activated can

help us make the path explicit, and help

us conceive a geometric description of

the path (GDP).

In this case we could interpret the trace as something like a circle, providing an

argumentation like: "as we go down we have to also move over and move like B moves

on the circle" to reach a description of the path as a symmetric circle to the existing one.

Figure 4.1.3: A GDP has been constructed and a
dragging test may now be performed.
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Continuing the dragging of D we can keep on checking our geometric description of the

path (GDP) by looking at the two (assumed) invariants (D on path and ABCD

parallelogram) occur simultaneously.

This is already a soft version of the dragging test. We refine our geometric

description of the path (GDP) until we reach a constructible one, like a symmetric circle

with respect to the one in the steps of the construction, with center in A, and radius PA.

At this point we can perform a more convincing, but still soft dragging test by dragging D

along the constructed circle and making sure the two invariants occurred simultaneously.

We may even want to link D to the circle and obtain two robust invariants that now we

can observe that now we can observe occurring simultaneously when dragging any base

point of the construction. The properties we concentrate on now during this robust

dragging test are: D on the circle and ABCD parallelogram.

We can now formulate a conjecture taking our invariant observed during dragging

(IOD) as the premise and our intentionally induced invariant (III) as the conclusion of this

statement. Since the invariant observed during dragging (IOD) was "D belongs to the

constructed circle1" and the intentionally induced invariant (III) was "ABCD

parallelogram" we obtain the following conjecture; If D belongs to the circle centered in A

with radius AP, then ABCD is a parallelogram.

We might prefer to describe the IOD in a more "static" way, for example, by

noticing that "D belongs to the constructed circle" implies "AD congruent to AP", and vice

versa. In this case we could decide to substitute the premise expressed in the original

conjecture with the new one "AD congruent to AP", obtaining a new

conjecture: IfAD is congruent to AP, then ABCD is a parallelogram.

1 Notice the transition from "D is dragged along the circle" to this crystallized form. We
will discuss this in more detail in Chapter 7.
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In the remainder of this section and in Section 4.2, in order to become

accustomed to the terminology, we will continue to write each element of the MD-

conjecturing Model completely, including the abbreviation in parentheses. From section

4.3 on, we will only use the abbreviations.

We can describe the exploration as a sequence of tasks - or sub-tasks of the

main task of generating a conjecture - to be accomplished during the process of

conjecture-generation when the maintaining dragging scheme is used.

• Task 1 : Determine a configuration to be explored by inducing it as a (soft)

intentionally induced invariant (III): through wandering dragging the solver can

look for interesting configurations and conceive them as potential invariants to be

intentionally induced.

• Task 2: Look for a condition that makes the intentionally induced invariant (III)

visually verified through maintaining dragging. This can occur through

o a geometric interpretation of the movement of the dragged base point

o or a geometric interpretation of the trace.

The "condition" may be considered the movement of the dragged base point

along a path which can also acquire a geometrical description (GDP). The

belonging of the dragged base point to a path with a geometric description

determines the (IOD). When the two invariants are observed simultaneously, the

solver will have direct control over the invariant observed during dragging (IOD)

and indirect control over the intentionally induced invariant (III). This may guide

the conception of a conditional link (CL) between the two invariants.

• Task 3: Verify the conditional link (CL) through the dragging test. This requires
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the accomplishment of at least some of the following subtasks:

o representing the invariant observed during dragging (IOD) through a

construction of the proposed geometric description of the path (GDP);

o performing soft dragging test by dragging the base point along the

constructed geometric description of the path (GDP);

o performing a robust dragging test by providing (and constructing) a

geometric description of the path (GDP) that is not dependent upon the

dragged base point and redefine the base point on it in order to have a

robust invariant, then perform the dragging test.

The table below contains the key elements of the model, the abbreviations used to

denote them, and their definitions.

Intentionally Induced Invariant (III) Property (or configuration) that the solver
chooses to try to maintain

Path Set of points with the following property: if the
dragged-base-point coincides with any of
these points then the intentionally induced
invariant (III) is (visually) verified

Geometric Description of the Path (GDP) Geometric characterization of the path

Invariant Observed During Dragging (IOD) Property (or configuration) that seems to be
maintained by the Cabri-figure while an
intentionally induced invariant (III) is being
induced through maintaining dragging

Conditional Link (CL) (implicit) logical connection between the
invariant observed during dragging (IOD) and
the intentionally induced invariant (III)

Conjecture (explicit) statement with a premise and a
conclusion that expresses the conditional link
(CL) explicitly.

Table 4.1.4 Key elements of the MD-conjecturing Model
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4.2 Intentionally Induced Invariant (III)

As shown in the previous section, the first task described by our model is the

determination of an interesting configuration to explore. An "interesting configuration" in

this case is a configuration in which the solver recognizes a particular property that s/he

conceives as potentially invariant with respect to some kind of movement. In this case

the solver may become interested in "when" the Cabri-figure maintains a certain

property, for example "when it becomes a particular type of geometrical figure". In other

words, the solver begins to search for "the conditions under which" the interesting

property is obtained and maintained, that is conditions under which the property

becomes an invariant with respect to movement. To accomplish this the solver may

decide to apply the maintaining dragging scheme. We therefore define the intentionally

induced invariant (III) as

a property (or configuration) that the solver finds interesting and chooses to try to

maintain during dragging.

After the intentionally induced invariant (III) has been chosen, the solver will concentrate

on maintaining it, visually, while dragging a base point of the Cabri-figure. This means

that at this point the intentionally induced invariant (III) is a soft property1 of the Cabri-
figure, and therefore maintaining it approximately while continuously dragging a base

point may not be a simple task, if it is possible at all, which also depends heavily on the
manual skills of the solver.

Moreover, we refer to the intentionally induced invariant (III) as an indirect

invariant, in that it can only be controlled indirectly, through the dragging of a base point.

1 We recall that a "soft property" is a geometrical property that a Cabri-figure may assume if the
solver positions its base points appropriately, but it is not a property that can be derived from the
steps of the construction and therefore it will not automatically be maintained by Cabri during
dragging. The terminology "soft" and "robust" properties was introduced by Healy (2000) and
discussed in Chapter 2.
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In other words, it is a property that ¡s indirectly related to these base points, and in

particular to the one being dragged, and can be maintained by dragging a base point in a

way that is not immediately accessible or obvious. Applying the maintaining dragging

scheme in this manner guides the search of "the conditions" for which the intentionally

induced invariant (III) can be maintained, and these conditions are immediately

controllable by the solver, in that they are described through the solver's interpretation of

the movement s/he is imposing directly on the base point. In this sense, such

"conditions" can be interpreted as the premise of the statement of the future conjecture.

While the property maintained as an intentionally induced invariant (III) is already

expressed geometrically, the invariant observed during dragging is first perceived

through haptic and visual sensations of movement. Therefore these "conditions" that

emerge need to be re-elaborated into what will become the premise of the conjecture

through a non-trivial process. This motivated our separate introduction of the definition of

geometrical description of the path (GDP) and invariant observed during dragging (IOD).

The first excerpt below illustrates how a student, J, decides to explore "when" the

quadrilateral considered is a parallelogram, and how he induces this property as an

invariant using maintaining dragging.

Excerpt 4.2.1. This excerpt is from a student's work on Problem 2 and it

illustrates the initiation of maintaining dragging: an intent to explore "when" ABCD is a

parallelogram, as a property to induce as an invariant during dragging.

Episode Brief Analysis

[1]J:So... The student J chooses the

[2] J: parallelogram... property "parallelogram" ([2]) as

[3] J: When is it parallelogram? his intentionally induced

101



[4] J: Well, ok, more or less.. .[dragging P]

[5] I: Are you trying to make one or to maintain it a

parallelogram?

[6] J: To maintain it.

...[he switches to dragging a different base point]

[7] J: Here. ..maybe

[8] J: Oh dear!

[9] J: Somewhere over there, anyway...

[10] J: hmmm

invariant (III) and tries to

maintain it ([6]) first dragging the

base point P ([6]) and then the

base point D ([7]).

J recognizes that there will be

other good positions "over there"

([9]).

Table 4.2.1 : Analysis of Excerpt 4.2.1

J seems to have conceived the property "ABCD parallelogram" as a potential

invariant to intentionally induce (III), because he seems to be focusing on it with respect

to movement. In particular he seems to conceive it as a potential III with respect to the

movement of different base points (he switches from dragging P to dragging D). Further

evidence that he has conceived the property with respect to movement (and thus an III

as described by our model) is that J recognizes that there will be other good positions

"over there" ([9]). Overall J's manual skills seem good and allow him to coordinate hand

movement with observation of the intentionally induced invariant (III) ([4]). This will help J

make the transition to the perception of an invariant observed during dragging (IOD).

The example we just saw in Excerpt 4.2.1 was an example of a behavior which

appeared to be perfectly coherent with what our initial model described. Now we would

like to describe what various students' transcripts showed as a recurring behavior that

occurred before the identification and induction of an intentionally induced invariant (III).

These observations led to an enrichment of our initial model, which we will describe

through examples below.
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4.2.1 A Preliminary Phase

Frequently, the first part of each exploration was characterized by a use of

wandering dragging, during which solvers' attention is caught by properties that are

invariant for random dragging of the base point being considered, and potentially for

random dragging of the other base points as well. These invariants appear to be "robust"

(Healy, 2000) or "un-mess-up-able" (Healy et al., 1994), and they seem to capture

students' attention before other properties that are not "always verified", or "soft"

invariants (Healy, 2000). This is interesting because different behaviors that can precede

the use of maintaining dragging emerge. In this sense we speak of a "preliminary

phase".

In order to have an appropriate terminology to describe students' recurring

behaviors when encountering robust invariants, we coined the notions of "construction-

invariant" and of "point-invariant" (Baccaglini-Frank et al., 2009). We will discuss each of

these notions in the paragraphs below and give examples of excerpts which led to their

emergence. Moreover, the investigation of these robust invariants can culminate in a first

conjecture, which frequently makes use of a characterizing property of the type of

quadrilateral being investigated (we refer to these ad "basic conjectures" and provide a

definition and discussion in Chapter 5).

4.2.1.1 Construction-invariants. During this preliminary phase, solvers frequently

use wandering dragging to move the various base points of the construction. During this

phase of the exploration, the solver may notice construction-invariants, that is,

geometrical properties of the figure which are true for any choice of the base

points.
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Typically/construction-invariants are described by the solver as "things that are always

true", indicating generality with respect to the step-by-step construction. In particular, the

solver may recognize the geometrical figure s/he is asked to consider as "always being"

a specific type of geometrical figure. In the initial example in section 4.1 , ABCD in

general is not any specific type of quadrilateral, however, for example, the property "PA

congruent to PC" is a construction-invariant, and thus students might refer to it as being

"always" true for any movement of the base points.

The solver may give an argumentation as to why s/he thinks the property is

"always" maintained by the considered figure, and in doing this, s/he will link back to the

description of the step-by-step construction. During this process the steps are

"translated" into mathematical properties which become the premise of a possible first

conjecture. These mathematical properties are linked to the construction-invariant, which

will become the conclusion of the possible conjecture, as the "reasons" why it is true.

The argumentation may proceed deductively, using theorems from Euclidean geometry,

from the reinterpretation of the steps as conditions for the interesting property that was

perceived.

It is interesting how although various construction-invariants can be perceived,

the construction-invariant that is typically featured in a conjecture is not explicitly

expressed in any of the construction steps. Therefore, it seems useful to make a

distinction between construction-invariants that are explicitly expressed by the steps of

the construction - we will call these basic construction-invariants - versus construction-

invariants that can be derived from the steps of the construction through deductive

arguments - we will call these derived construction-invariants. The excerpts below show

two examples of how students perceive what we have defined derived construction-

invariants, before they even start dragging.
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Excerpt 4.2.2. This excerpt is from two students' work on Problem 1 , and it shows

how the property "ABCD is a right trapezoid" is perceived as a derived construction-
invariant.

SiJ.

Figure 4.2.2: A Screenshot of V&R's exploration

Episode

[1] V: Always a trapezoid. ..because it's

constructed so that...

[2] V:. ..at least when...

[3] R: also always...

[4] V: ....it becomes a parallelogram

[5] R: ...always a right trapezoid, because

this is perpendicular to...

[6] V: to...

[7] R: ..the base

[8] I: Ok.

[9] V: This one here is perpendicular to this

Brief Analysis

V perceives a construction-invariant.

Recurring use of the word "always".

The justification of why ABCD not only

appears to be a right trapezoid, but it

actually "is always" such a figure seems to

be: line /is constructed as parallel to

segment BC, and CD is constructed as

perpendicular to /, and thus to BC.

V makes the deduction explicit. As she
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one, and so since both are

[10] R: and so...

[1 1] V: these two here parallel, therefore...

[12] R: Right, and so ok.

[13] I: ok.

[Written conjecture: "The quadrilateral

ABCD is always a trapezoid, because two

bases are parallel. It is also a right

trapezoid, because DC 1 to CB."]

says "this one" ([9]) she points to DC and

DA. She deduces that since DC is

perpendicular to /(construction step), and /

is parallel to BC (construction step), a

theorem guarantees that CD will also be

perpendicular to BC.

Table 4.2.2: Analysis of Excerpt 4.2.2

The episode occurs before any dragging, immediately after the steps of the

construction are complete. We interpret this as evidence that the solvers perceive the

property "ABCD right trapezoid" as a derived construction-invariant, because the

behavior indicates that they have perceived the property at a theoretical level: the

students seem to interpret the steps of the construction as premises to start their

deductive reasoning from. We think the solvers have perceived the property at a

theoretical level because of R's (and later of Vs) argumentation. R feels the need to

justify the claim that ABCD is a right trapezoid, referring to a fact that he has derived

from the steps of the construction.

Further evidence to support our claim that the property is being perceived as a

derived-construction-invariant comes from the use of the word "always [Italian:

"sempre"]. In this excerpt "always" seems to refer to a fact that the solver assumes will

be true no matter what (no matter how or which points one drags, in this case): "always

a trapezoid" ([1]), "always a right trapezoid" ([5]).
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Finally, the formulation of the written conjecture shows how properties in steps of

the construction have become the premise (they follow the "because"), while the

perceived derived-construction-invariant has become the conclusion of the statement.

However, this formulation shows traces of steps of the argumentation, and it is written in

a form that contains the conclusion "ABCD ¡s a trapezoid", moreover a "right trapezoid",

before the premise "the bases are parallel and DC ± to CB". The facts in the premise are

still used as justifications in the argumentation and have not been completely elaborated

into an "if... then statement". We will deal with the formulation of the conjecture in section

4.5 of this chapter. What seems to be important for this section is to highlight the

dominant role of the derived-construction-invariant within the conjecture. This seems to

strengthen our claim that construction-invariants interest solvers in this preliminary

phase of the explorations, because they seem to be discoveries, worth spending a

conjecture to highlight.

Excerpt 4.2.3. This excerpt is from two students' work on Problem 3, and it is an

example of how two students perceived a derived construction-invariant without dragging

any of the base points.

w^wîl ™^|? nw^l CI?L^'U^ ^>A»~^4 „~~i:^:,~Ji

Figure 4.2.3: A Screenshot of Ste & Sim's exploration.
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Episode

[1] Ste: Make conjectures on the types of

quadrilaterals.. [rereading the

assignment]. ..ok, good.

[2] Sim: AM equals MB, ...

[3] Sim: BK...equals KD, no?

[4] Ste: ehm, wait

[5] Sim: CK equals KA.. .it's always a

parallelogram, therefore.

[6] Sim: Because the diagonals intersect

[7] Sim&Ste: at their midpoints.

[8] Sim: Ok.

[Written conjecture: "ABCD is always a

parallelogram."]

Brief Analysis

Ste re-reads the task.

Sim immediately refers to the steps of the

construction to explain why ABCD is

"always" a parallelogram ([5]). The

explanation occurs through a deduction,

using the theorem: "if the diagonals of a

quadrilateral intersect at their midpoints,

the quadrilateral is a parallelogram",

together with the fact that BK equals KD

([3]) and CK equals KA ([5]) from the

properties contained in the steps of the

construction.

Table 4.2.3: Analysis of Excerpt 4.2.3

The students seem to immediately perceive the property "ABCD parallelogram" a

derived construction-invariant, because they seem to immediately interpret the property

at a theoretical level as in Excerpt 4.2.2, without needing to move the figure at all to

check generality. In fact during the entire excerpt the students do not move the figure.

Instead they seem to recognize a familiar type of quadrilateral, a parallelogram, and

recognize it as significant in order to respond to the question they read in the task ([1]).
This strengthens our claim that construction-invariants interest solvers in this preliminary

phase of the explorations.

Further evidence that derived construction-invariants seem to be perceived as

"discoveries" is that in the final formulation of the written conjecture ("ABCD is always a
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parallelogram") the premise (that consists of the steps of the construction) is implicit. The

only reference to the premise can be seen in the use of "always" which seems to link the

Cabri-figure to the steps of the construction which the students used as arguments to

prove the statement. It seems as if the perception of a construction invariant as a

property of the figure which is "always" true overpowers the need to write a proper

mathematical "if... then statement". Although the students perceive various construction

invariants (AM congruent to MB, BK congruent to KD, CK congruent to KA), the

construction invariant that is featured in the conjecture (ABCD parallelogram) is not

explicit from any of the construction steps. It seems likely that the solvers choose to

make a conjecture having this invariant in it because part of the task is to find which

types of quadrilaterals ABCD can become. In any case, our distinction between basic

construction-invariants and derived construction-invariants seems to be insightful for

describing such behaviors.

4.2.1.2 Point-invariants. When solvers investigate invariant properties of a Cabri-

figure, they may be deceived by properties that seem robust invariants when a certain

base point is dragged, but that are not robust invariants when a different base point is

dragged. We therefore conceived a point-invariant as

a geometrical property that is true for a particular choice of a base-point of the

construction, while the other base-points are fixed.

If the particular base-point considered is P, we will call such invariant a P-invariant.

In the excerpt below we will show how two students can perceive a point-invariant and

how the notions of point-invariant and (basic and derived) construction-invariant can be a

useful tool of analysis.
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Excerpt 4.2.4. This excerpt is from two students' work on Problem 1 . It shows

how two students notice and describe a point-invariant. The name of the solver who is

holding the mouse is in bold letters.

fC ^JMM^ MJ AU ~ ' " „ _ 1 !_.„. ,. ',,., _

¦ Xi ¦

Figure 4.2.4: A Screenshot of Ale & Pie's exploration

Episode

[1] Pie: the segment BC. ..if it varies what does it

depend on?

[2] Pie: So, point B is the symmetric image of A...

[3] Ale: I think that the segment [pointing to BC] is

fixed.

[4] Pie: ...and C is the symmetric image of A with

respect to K. Therefore if I vary A, C varies too.

[5] Pie: because. ..they are... I mean A has

influence over both B and C.

[6] Ale: But the distance between B and C always

Brief Analysis

The solvers become interested in

segment BC and how it varies ([1])

or is "fixed" ([3]), while dragging the

base point A.

Ale perceives the length of segment

BC as fixed.

Pie perceives the dependence of BC

on A because, as he says, B and C

are both symmetric images of A and
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stays the same.

[7] Pie: Here there is basically AK and KC are the

same and AM and BM are always the same.

[8] Ale: Yes, try to move it? [referring to point A]

[9] Pie: yes.

[10] Ale:Hmm...

[1 1] I: What are you looking at?

[12] Ale: No, nothing, just that.. .I wanted to. ..now

we can also put that the distance between B and

C always stays the same... in any case it does not

vary.

[conjecture: As the exploration continues, Ale's

idea is overcome before the students write a

conjecture. Instead Pie focuses on the derived

construction-invariant "MK parallel to BC" and

writes the conjecture: "The segment MK is

parallel to BC."]

therefore varying only A will make

them both vary ([2], [4], [5]).

Ale interrupts insisting on the

invariance of the length of BC ([6]).

Pie attempts to describe the

behavior of the figure while dragging

A.

Ale insists on wanting to see the

invariance of BC during dragging.

Pie seems to agree with Ale's

observation on the length of BC, but

seems less convinced.

Ale strongly states once again his

perception of the length of BC being

invariant.

Table 4.2.4: Analysis of Excerpt 4.2.4

We propose this excerpt as an example in which our new terminology with

respect to invariants seems useful for analyzing the solvers' behavior. Such terminology

allows us, for example, to interpret Ale's insistence on the length of BC being constant

as his perception of such invariant as a (derived) construction-invariant. We believe this

because he uses "always" in [6] and in [12], and strengthens his claim by adding that "in

any case it does not vary" ([12]).
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Moreover, our terminology allows us to explain Pie's behavior, in this excerpt and

in the continuation of the exploration before the formulation of the written conjecture, as

his correctly interpreting the length of BC as an A-invariant. We claim this because later,

after this episode but before writing a conjecture, Pie will show that the length of BC is

not a construction-invariant, by dragging a different base point, and showing that it

varies. Moreover, during this excerpt Pie seems to focus more on explaining why the

invariance might be the case ([7]), referring to point A frequently in his interventions. This

seems to show that Pie seems more inclined to correctly perceive the property "length

BC constant" as an A-invariant. However, faced with Ale's strong belief in "length BC" as

a derived construction-invariant, for the moment Pie seems to accept it as such. The

notions of construction-invariant and point-invariant have revealed themselves to be very

useful in the analysis of other similar episodes in different solvers' explorations.

4.2.1.3 Basic Properties and Minimum Basic Properties. We also observed a

recurring behavior related to the perception and choice of an invariant to induce. When

looking for particular types of geometrical figures during wandering dragging, the solver

may either notice that the considered figure can become a different (more particular)

type of geometrical figure for some positions (or dispositions) of the base points, or s/he

may try to make the figure into a particular configuration. In this second case the guided

component (see Section 2.5 on our introduced dragging modalities) of our notion of

wandering dragging becomes evident. In order to accomplish the task of investigating

whether a certain type of geometric figure can occur, the solver may choose to substitute

the whole figure with a characterizing property that may be easier to induce on the Cabri-

figure. For example in the simulated exploration in Section 4.1 the solver could have

worked with the property "diagonals intersecting at their midpoints" to investigate the
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case of the parallelogram. This phenomenon of substitution of a property with one that is

considered "easier" to maintain is recurrent, and led us to introduce the following

definition of basic property.

a property immediately taken from a definition or characterization of a type of

geometrical figure.

This property is in a logical relation, in this case a double implication, with the type of

geometrical figure the solver is investigating, and it may serve as a bridge during the rest

of the exploration. In fact the solver may refer to this property instead of to the type of

geometrical figure s/he is exploring, because the conclusion, which describes the type of

geometrical figure, is implied by the basic property being true. In particular, the solver

may use a basic property of the theoretical geometrical figure s/he is referring to and

apply it (mentally) to the construction, linking it and comparing it to the premises

obtained from the steps described in the step-by-step construction. If part of the basic

property is already in the premise, then the solver may "slim down" this basic property to

a minimum basic property. Such a minimum basic property, together with the

hypotheses from the steps of the construction, logically implies the conclusion, which is

the type of geometrical figure investigated. For example, in the simulated exploration the

solver could have induced "PD congruent to PA" in order to explore the case of the

parallelogram. In this case the basic property, which may also be a minimum basic

property, becomes the intentionally induced invariant (III) that is used during the

maintaining dragging applied to the figure.

Sometimes solvers use basic properties, or minimum basic properties, to make

the task of maintaining dragging easier. In this case, the minimum basic property is not

conceived until after the maintaining dragging starts with the induction of an intentionally

induced invariant (III), like "a type of geometrical figure". If this happens, the initial
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intentionally induced invariant (III) is substituted with the minimum basic property which

becomes the new intentionally induced invariant (III) that the solver tried to induce.

With respect to the formulation of a conjecture, "the case" of a particular

geometric figure that is recognized will become the conclusion of the future conjecture,

while the solver proceeds to search for conditions that give such case. The substitution

of the whole "case" with a basic property or minimum basic property makes this search

easier. However, once conditions are obtained, through the geometric description of the

path (GDP) and the invariant observed during dragging (IOD) (see section 4.2 for

details), the solver skips over the basic property or minimum basic property directly to

the "case" s/he was interested in initially. Thus we also refer to the basic property or

minimum basic property as a "bridge property."

The following excerpts are taken from various students' work, and they show

different occurrences of bridge properties. Excerpt 5 illustrates how solvers notice and

make use of a minimum basic property, while Excerpt 6 shows how a minimum basic

property is conceived to help the solvers carry out maintaining dragging.

Excerpt 4.2.5. This excerpt is taken from two students' exploration of Problem 2,

and it exemplifies the identification of a basic property, slimmed down to a minimum

basic property, which the solvers use to obtain the configuration they are interested in.

The name of the solver who is performing the dragging is in bold letters.
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Figure 4.2.5: A Screenshot of F & G's exploration

Episode

[1] F: wait, it is a... let's try to for

example make it become a

parallelogram.

[2] G: No... yes, go.

[3] F: Like this.

[4] G: So, for it to be a parallelogram.

I think it always is a parallelogram.

[5] F: Let's try?

[6] G: No, no, there, it's a

parallelogram...

[7] F: because like this it's...

[8] G: I understand! so, C... we have

to have the diagonals that intersect

each other at their midpoints, right?

[9] F: Right.

Brief Analysis

F proposes to try to make ABCD a

parallelogram ([1]) and seems to be unsure

about how to drag the base point D in order to

do this.

F's initial dragging suggests to G, for an instant,

that "ABCD parallelogram" might be a

construction-invariant (notice the use of

"always" in [4]), but then further movement of

the base point leads G to quickly discard such

hypothesis ([6]).

G conceives a basic property that might help F

make ABCD into a parallelogram, and he

exclaims: "I understand! [it: ho capito!]" ([8]).
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[10] G: And we know that CA ¡s

always divided by P.

[11] F: exactly, so...

[12] G: therefore it's enough that PB

is equal to PD.

[13] F: exactly.

[14] G: you see that if you do, like,

"maintaining dragging"... trying to let

them more or less be the same

[15] F: exactly... well, okay.

G proceeds to "slim down" the basic property

making it into a minimum basic property: "it's

enough that PB is equal to PD" ([12]). Making

use of the fact "CA is always divided by P"

([1O]) G concludes that a sufficient condition

(notice the "for it to be" [4] and "it's enough that"

[12]) for ABCD to be a parallelogram is "PB is

equal to PD" ([12]), and therefore proposes this

as an intentionally induced invariant (III) ([14]).

Table 4.2.5: Analysis of Excerpt 4.2.5

We think that this excerpt is a good example of how a basic property, with

respect to the initial III that has been conceived, can be "slimmed down" to a minimum

basic property and used to make maintaining dragging manually easier. Initially F seems

to be struggling with maintaining dragging, trying to maintain the III "ABCD

parallelogram". Then G notices that this is equivalent to maintaining the quadrilateral's

diagonals intersecting at their midpoints (basic property), and "slims down" this property

to "PB congruent to PD" (minimum basic property). Moreover he recognized that this is a

sufficient condition in order to maintain the basic property and thus the initial III.

Therefore the solvers are able to use the property "PB congruent to PD" as a "bridge" to

their initial III. in order to proposes He proposes to use the property "diagonals that

intersect at their midpoints" as a basic property, in that its being satisfied will definitely

imply the desired property to induce (ABCD parallelogram). We speak of a "bridge"

property because the minimum basic property acts as a bridge to the III both throughout

the maintaining dragging and when the solvers are ready to formulate the conjecture. In
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fact, ¡? the written conjecture the solvers produce after finding an invariant observed

during dragging (IOD) in this exploration, the solvers do not refer to the property "PB

equal to PD", but directly to "ABCD parallelogram" as the conclusion of the statement of

their conjecture.

Excerpt 4.2.6. This excerpt is from two students' work on Problem 2, and it shows

how two students make use of a minimum basic property to make the task of maintaining

dragging easier to accomplish.

Figure 4.2.6: A Screenshot of Giu & Ste's exploration

Before the moment when this excerpt starts the two students have made conjectures

about when ABCD is a parallelogram, but they have not been able to drag the base point

D maintaining such property. This seems to stimulate Giu to come up with the property

"this thing here" (concurrence of the intersection if the two circles and the line PD) that

he refers to in [1].

Episode

[1] Giu: Try to see... so that [It: "in modo che"]

this thing here. ..remains... [concurrence of an

Brief Analysis

Giu seems to have thought of the

minimum basic property ([1]) by using
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intersection of the two circles and the line

through P and D].

[2] Ste: and let's do trace of D.

[3] Giu: Actually... I was thinking òf the trace.. .no,

you're right because B is always on the circle...

[4] Ste: what a big idiot!...

[5] Giu: and do the trace of D, exactly.

[6] Ste: So, let's call this one.. .B so this way it

looks nice, there.

[7] Giu: At least this way we can refer to them

somehow!

[8] Ste: Exactly. So...

[9] Giu: Go, trace...

[10] Giu: Try to maintain all these things here

[pointing to the intersection of the two circles and

line PD, where B is marked]

[11] Ste: It'll be hard...

[12] Giu: Try!

[13] Ste: There...

[14] Giu: There, more or less.. .yes, yes, yes, not

too much, there.

[written conjecture: "If D G circle with radius PC

and center P, and PD passes through the

intersection of the two circles=>ABCD is a

the basic property "diagonals that

intersect at their midpoints", which he

refers to earlier during the activity.

The minimum basic property arises

because of the desire to drag the

base point D maintaining ABCD a

parallelogram, a property that seems

to be too difficult to maintain without

a simplification of what to observe

during maintaining dragging and

maintaining dragging with trace

activated ([1], [10]).

The basic property "diagonals that

intersect at their midpoints" is

slimmed down to "PB congruent to

PD" and then to "this thing

here'Vthese things here" ([1]/[10]).

To maintain seems to be easier for S

than maintaining "ABCD

parallelogram". In fact he is afraid it

will be hard , but then succeeds, with
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rectangle."] support from Giu ([14]).

Table 4.2.6: Analysis of Excerpt 4.2.6

In this excerpt we focus on how the minimum basic property ("this thing here"

([1])) is successfully used to make the task of maintaining dragging easier. In fact we

chose to begin this excerpt with the solvers' identification if a property to maintain during

dragging instead of their initial III. This property has been reached through the slimming

down of the basic property "diagonals intersecting at their midpoints", reduced to "PD

congruent to PB", and highlighted by the concurrence of three objects (two circles and a

line) in the solvers' figure. We do not focus on the slimming-down process here, but

instead on the practical function that this minimum basic property has with respect to the

task of maintaining dragging. The solvers then succeed to perform maintaining dragging

and perceive an invariant observed during dragging (IOD), which they use as a premise

in their final conjecture, in which the conclusion is "ABCD parallelogram".

However in this episode the minimum basic property seems to be solely used as

a tool to overcome a manual difficulty, and thus as a "bridge" for maintaining dragging

but not for the formulation of the conjecture, which still contains traces of it in its premise.

This is why in this excerpt we prefer not to refer to the minimum basic property as a

bridge property; its potential of "bridging" seems to be only partially exploited, in

particular it does not seem to act as a bridge to the conjecture.

4.3 Invariant Observed During Dragging (IQD). Path, and Geometric Description of

the Path (GDP)

According to our model, the exploration process continues with the search for a

"way" to maintain a certain property invariant during dragging. This "way" to maintain

may be interpreted as a "condition under which" the III is (visually) verified. Thinking
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about the DGS, which is the domain of phenomenology in which such interpretation of a

relationship of conditionality occurs, "conditionality" may be associated to "causality".

That is, the connection between direct and indirect movement of objects can have the

effect of leading the solver to link the idea of "cause of an effect" (direct movement

"causes" indirect movement) to "condition for...", and finally to logical dependency

("if... then..."). This may happen because while dragging the base point trying to maintain

the III, the solver's attention can shift to the movement of the dragged base point (and

keep shifting back and forth to and from it). The combination of sight and haptic

perception may guide the solver's interpretation of "some regularity" in the movement of

the base point. Moreover, an expert will have activated the maintaining dragging scheme

with the explicit intention of looking for such regularity. In this case the solver is confident

about the fact that dragging continuously the base point considered and maintaining the

chosen III is possible. The solver may refer to the "dragging continuously" as a unit, as

"something," which can allow him/her to express the regularity of such continuous

dragging as what s/he is looking for. We call this "something", which does not yet have

the regularity expressed but that withholds the potential of being expressed through it, a

path, and provide the following definition:

a path is a continuous set of points on the plane with the following property: when

the dragged-base-point coincides with any point of the path, the III is visually
verified.

Summarizing, the characteristics of a path are:

- being a continuous set of positions for the dragged-base-point,

- when the dragged-base-point is in any of the positions of the points of the path the III

"happens",

- it has the potential of making some regularity in the movement become explicit.
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The possibility of explicitly dealing with the object we define as path seems to be

fundamental in expert use of maintaining dragging, and it therefore plays a central role in

the cognitive model. We have further developed the notion of path, as a finding of our

research, and will focus on such notion in Chapter 6.

Dragging with trace activated is a tool that the user may choose to use in order to

have additional guidance in making the potential regularity evident is on the dragged-

base-point. This may help the solver describe the regularity s/he was looking for, as s/he

may use it to propose a geometric description of the path (GDP), that is

a description of the path in terms of a known geometrical object linked to the

Cabri-figure.

After the activation of the trace, a set of points - linked to a possible regularity in

movement - appears on the screen as a trail left by the dragged-base-point. This mark

may suggest a precise geometrical object. which can be described in relation to the rest

of the Cabri-figure. For instance, in our initial example, it may become clear that a GDP

is a circle, and more precisely, the circle with center in A and radius AP. From a GDP the

solver can reach the property s/he was looking for during maintaining dragging, that is

the invariant observed during dragging (IOD). In the simulated exploration in section 4.1 ,

this would be: "D belongs to the circle with center in A and radius AP".

We will now show how the path, its expression through the geometrical

description of the path (GDP), and its elaboration into an invariant observed during

dragging (IOD) come into play in various excerpts from the transcripts of some students'

explorations. The first excerpt is an example of two students searching for a GDP using

maintaining dragging with the trace activated. Their GDP seems to coincide with how

they interpret the mark left by the trace. The second excerpt illustrates how two students

seem to have conceived a GDP, which does not seem to be confirmed by the mark left
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by the trace during maintaining dragging with the trace activated. In fact in this excerpt

an initial GDP is rejected thanks to characteristics of the path brought out by the trace.

The third excerpt shows how an IOD emerges from a GDP obtained by correctly

interpreting the trace, and how the IOD is then constructed by the solvers.

Excerpt 4.3.1

This excerpt is taken from two students' work on Problem 4, and it shows how

two solvers, who seem to have conceived a path, reach a GDP which they seem

satisfied with. The bold letters refer to the solver who is dragging. Since the excerpt of

the transcript is rather long we have divided it into several episodes.

Episode 1

[1] Ste: I have to make it so that the...

[2] Giu: B stays

[3] Ste: that. ..uh, B remains on the -«

intersection.

[4] Giu: Exactly.

[5] Ste: which ¡S...I mean I have to drag this, right?

[6] I: Maintaining the property rectangle...

Brief Analysis

The solvers resort to the bridge

property (see section 4.2.1 .3) "B

on the intersection" ([3]) to make

the task of maintaining dragging

easier.

The solvers have chosen "ABCD

is a rectangle" as an III.

Episode 2

[12] Ste: Identical...ta-ta-ta-ta...ta-ta-ta

[13] I: Giu, what are you seeing?

Brief Analysis

While Ste is concentrated on

maintaining the III ([12]-[14]), Giu

seems to be looking for a GDP,

and recognizes a continuous curve
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[14] Giù: Uhm, I don't know.. .I

thought it was making a pretty

precise curve. ..but it's hard to

...to understand. We could try

to do "trace"

[15] Ste: trace!

[1 6] Giu: This way at least we can see if..

?.
''B-

("pretty precise curve" [14])

instead of discrete positions. He

then wants to better understand

([14]) and "see" ([16]), so he

proposes the use of the trace tool

([14]).

Episode 3

[17] Ste: Where is it?

[18] Giu: Uh, if you ask me...

[19] Ste: Trace! [they giggle as they search for it in

the menus]

[20] Ste: Trace of A...

Brief Analysis

After the trace is activated ([1 7]-

[20]) Ste starts maintaining

dragging again.

Episode 4

[28] I: So Ste, what are you

looking at to maintain it?

[29] Ste: Uhm, now I am

basically looking at B to do

something decent, but...

[30] I: Are you looking to make sure that the line

goes through B?

[31] Ste: Yes, exactly. Otherwise it comes out too

sloppy...

Brief Analysis

Ste is using the property "the line

goes through B" as his III ([29],

[30]).

Both students show the intention

of uncovering a path by referring

to "it" ([31], [33], [34]).
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[32] I: and you, Giù what are you looking at?

[33] Giu: That it seems to be a circle...

[34] Ste: I'm not sure if it is a circ...

[35] Giu: It's an arc of a circle, I think the curvature

suggests that.

Giu, in particular concentrates on

describing the path geometrically

and he seems to recognize in the

trace a circle ([33]) or an arc of a

circle ([35]).

Episode 5

[36] Ste: Yes, but..

[37] Giu: But passing through B

[38] Ste: Ah yes, B

[39] Giu: B because it can also become a line

[40] Ste: Yes, it could be B.

[41 ] Ste: I would dare to say *c

with center in C?. ..no, it

seems more, no.

[42] Ste: It seemed like

[43] Giu: No, the center is more or less over

there. ..in any case inside

[44] Ste: Hmm

[45] Giu: Ok, do half and then more or less you

understand it, where it goes through.

[46] Ste: But C is staying there, so it could be that

BC is.. .is

[47] Giu: right! because considering BC a diameter

of a circle,

Brief Analysis

The solvers' attention seems to

shift to the mark left on the screen

by the trace. Now that a first GDP

is given, the solvers try to

ameliorate the description by

adding properties: "(a circle)

passing through B" ([37], [38], [39],

[40]), "with center in C" ([41]), with

BC as a diameter ([46], [47]). As

Ste continues to drag, Giu checks

and confirms the suggested

properties and tries to justify them

providing argumentations based

on visual observations, recognition

of geometrical properties, and the

knowledge of particular theorems

([49], [55]).

124



[48] Ste: Well yes, actually it passes through C also

because if then I make it collapse, uh,

[49] Giù: Exactly because CB is...consider it a

diameter. A.. .so ABC is a right triangle

[50] Ste: Aaaaa...because when A

[51] Giu: B...

[52] Ste: because when it comes to the point

when...yes, well, anyway, we understand, then it

arrives to C.

[53] Giu: Yes, because this way, since it is right,

[54] Ste: and this one here is a diameter

[55] Giu: exactly. Since the angle in A is always

right, ABC can be inscribed in a semicircle.

[56] I: Ok.

[57] Giu: ...which is what is being

traced by A. . . "** ^i***»-*

[58] Ste: Exactly...very theoretically.

[59] Ste: Well...

[60] Ste: I wouldn't call this. ..aaaa...there

[61] Ste: No, but it jumps, when it's closer it's

easier.

For example, he justifies the

property "BC is a diameter" using

the theorem "a triangle inscribed in

a semicircle is right" ([49]) together

with the consideration that the

angle in A needs to be right in

order to have a rectangle, which

Ste agrees with ([55]).

Ste seems to have some difficulty

dragging as he drags A closer to

C, but is able to overcome the

manual difficulty.

Episode 6

[62] Ste: It surely can look like a circle.

[63] Giu: Well, in theory.. .you can see it goes

Brief Analysis

Ste continues to drag and both

solvers seem to be checking the
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through B and C.

[64] I: Ok, are you sure of this?

[65] Giu and Ste: Yes.

proposed GDP, confirming it ([62],

[63]) with considerable confidence

([65]).

Table 4.3.1 : Analysis of Excerpt 4.3.1

In this Excerpt we can see how the GDP arises and is used to conceive an IOD.

In Episode 1 Ste is using a bridge property (see section 4.2.1 .3) to simplify the task of

performing maintaining dragging, although he still seems to describe it as being difficult

throughout this episode. In Episode 2 Giu seems to be searching for a GDP and

identifies some regularity in the movement of the dragged-base-point. In particular this

suggests that the solvers have conceived a path. Reaching a GDP, however does not

seem to be a simple task. Ste's initial hesitation in Episodes 1 and 2 seems to be

evidence confirming our idea that the coordination of visual and haptic sensations with

an "overall" view of the figure is not easy to achieve, and it may be aided through the

trace tool, which Ste immediately proposes to activate.

The solvers seem to help each other by separating tasks: as Ste concentrates on

maintaining his bridge property invariant, Giu can focus on recognizing the mark left by

the trace as "a pretty precise curve" ([14]). Moreover, there seems to be the intention of

looking for something, which we interpret as making the path explicit, that is searching

for an IOD though movement of the dragged-base-point along a GDP. In fact the solvers

seem partially satisfied when they reach a first GDP in Episode 4. However, throughout

Episode 5 they continue to refine their GDP, helping themselves with other geometric

properties. These strengthen their argument about the correctness of their suggested

refinements, and finally the solvers seem to be satisfied in Episode 6.
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The solvers seem to confirm an IOD as they drag A along the circle with diameter

BC in Episodes 5 and 6. Overall this Excerpt is a good example of how the GDP can

arise and be used to develop the IOD, and therefore complete the search for a condition

for the III to be (visually) verified.

Excerpt 4.3.2

This excerpt is taken from two students' work on Problem 2. It shows the solvers'

belief in the existence of a path and traces of an implicit idea for the GDP. However the

conceived GDP doesn't seem to correspond to what they observe during the maintaining

dragging. They want to therefore make the path explicit through activation of the trace,

and they use the trace to reject an incorrect GDP. The lines of the transcript are marked

by their times relative to the beginning of the excerpt in order to show the development

over time of this part of the investigation. In particular we chose not to include parts of

the exploration in which the solvers were not investigating "the case of the

parallelogram", as they refer to it. The bold refers to the solver who is holding the mouse.

Episode 1

(0:41) F: exactly, [he drags D a bit, in a

way that looks like he is trying to maintain

the property parallelogram]

(0:48) G: you see that if you do, like,

maintaining dragging ... trying to keep

them more or less the same...

(0:57) F: exactly [murmuring]... well, okay.

Brief Analysis

F and G decide to use maintaining

dragging to investigate "when ABCD is a

parallelogram" (intent repeated in (2:41)

and (3:05)). In a previous episode they

have noticed that the property "ABCD

parallelogram" can be substituted with the

sufficient property "diagonals of ABCD
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Episode 2

(2:41) F: For the parallelogram, uh, let's try

to use "trace" to see if we can see

something.

G: go, let's try [speaking together with

him]. ..uh, "trace" is over there.

[They have a little trouble activating the

trace]

Episode 3

(3:05) G: and now what are we doing? Oh

yes, for the parallelogram?

(3:07) F: yes, yes, we are trying to see

when it remains a parallelogram.

(3:18) G: yes, okay the usual circle comes

out.

(3:23) F: wait, because here... oh dear!

where is it going?

(3:35) I: What are you looking at as you

drag?

(3:38) F: I am looking at when ABCD is a

parallelogram. You try [handing the mouse

to G]

congruent", a bridge property (0:48).

F proposes to activate the trace in order to

"see something" (2:41).

Brief Analysis

G reminds himself what their intention was

and seems to be concentrating on the

movement of the dragged-base-point,

while F, who is dragging, concentrates on

maintaining the property "ABCD

parallelogram" (3:07). G (too?) quickly

proposes a GDP (3:18). It is not clear

what "usual" refers to: maybe to a previous

investigation. However what F sees does

not seem to be the circle he had in mind

(maybe the circle centered in P with radius

AC) and he appears unhappy and

confused when he does not understand



"where it is going" (3:23). After repeating

his intention of investigating "when ABCD

is a parallelogram" (3:38) F hands the

mouse to G, asking him to try.

Episode 4

[G tries dragging some other points looking

for the "draggable" ones, and there is a

short diversion on "the case of the

rectangle". Then G starts dragging point

D.]

(4:17) F: ...turn it. No, it's not necessarily

the same circle, because, I don't know at

some point I don't know, keep going... by

tomorrow... keep going... careful you are

making it too long ...

Brief Analysis

F uses what he sees to discuss why his

initial idea (involving some circle he never

describes explicitly) does not seem correct.

He also tries to guide G while he tries to

perform maintaining dragging with the

trace activated.

Table 4.3.2: Analysis of Excerpt 4.3.2

We consider this Excerpt to contain evidence that the solvers have conceived a

path, because when using MD in Episodes 1 and 2, the students express their intention

either in a generic way ("to see something") or in a more specific way (to see "when"

ABCD is a parallelogram). That is, the solvers seem to want to find a situation or

configuration that "happens" simultaneously with the III, because they believe in the

existence of "something" that will make the "parallelogram happen". Our model refers to

this "something" as path.

In Episodes 3 and 4 the GDP plays a fundamental role in the solvers' conceiving

and then rejecting a geometrical object along which the dragging may be thought to
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occur. F's "same circle" probably refers to the one he has in mind, which didn't coincide

with what he saw in his trace (4:17 and 5:01). This leads to a rejection of the initial GDP.

Overall the Excerpt seems to be evidence of the fact that the solvers, F in particular,

have conceived a path and that they seem to know that they will need to describe it

geometrically. Moreover they seem to be "expecting" it and "looking for it".

Excerpt 4.3.3

This excerpt is taken from two students' work on Problem 4. The solvers activate

the trace while using maintaining dragging and they are able to reach a GDP and IOD

that satisfy them, and proceed to construct the IOD. The bold refers to the solver who is

dragging.

Episode 1

[1] F: so... Let's take A. Wait, let's first put

A so that it is a nice rectangle. It seemed

too good...

[2] F: "trace"...A.

[3] F: to maintain the property rectangle.

[4] G: you are not maintaining it.

Episode 2

[5] G: circle with...

[6] F: no

[7] G: eh, no.

[8] F: look at C. C doesn't move.

Brief Analysis

F wants to perform dragging with trace

activated to gain insight into when the

property rectangle is maintained ([3]), and

starts to perform maintaining dragging,

dragging the base-point A.

Brief Analysis

Notice how G, who is not dragging,

observes both the property to be

maintained ([4]) and the emergence of a

GDP ([5] and following). G "sees" a circle
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[9] G: I see a kind of circle with...

[10] F:... with radius CB, and center...

[1 1] G: No, with diameter AD, I see.

[12] F: Ah, wait I am...

[13] G: I see it with diameter AD. like with

diameter AD.

([9]), while F (who is dragging) seems to

be focusing more on what is and is not

moving. He notices that C does not move

([8]), and seems to want to use this point to

enhance the GDP that G has started to

provide ([5], [9]). G, instead, insists on a

GDP as the circle with diameter AD.

Episode 3

[14] F: wait, no, let's.. .uhm...

[15] G: with diameter CB instead, that... as

a consequence...

[16] F: I would say that I made it very ugly,

but... no, I would say... I would trace CB

and its

[17] F&G together: midpoint

[18] G: for the radius

[19] F: Exactly!

[20] G: go! Get rid of...

[21] F: then the radius

[22] G: get rid of the trace.

Brief Analysis

The solvers briefly discuss which GDP to

use and by line [17] they both seem to

agree on what to construct as the GDP

([17], [18]). The conflict between the GDPs

is resolved, as F and G agree on the GDP

as the circle with diameter BC passing

through B.

Episode 4

[23] G: Ok, go.

[24] F: okay, so let's draw.. .yes... no first

Brief Analysis

The solvers now construct a circle with

center in the midpoint of BC and passing
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let's draw

[25] G: no, it's enough that you do, I think,

midpoint.

[26] F: Should we call it?

[27] G: Circle, do circle.

[28] G: eh, let's choose...

[29] F: well, I would say B and C because

they are the two points that don't

move. ..here. ..yes, because actually now

we take A.

[30] G: eh, we did it... cute!

[31] F: yes, definitely.

through B which is the GDP they have

agreed upon.

F feels the need to explain again why he

prefers the diameter BC to AD, basing his

argument of the fact the former points do

not move ([29]), as if this gave them a

different status (which unfortunately he

does not make more explicit than this). To

make sure the constructed GDP is a good

one, F drags A along it, and the solvers

seem to be satisfied ([30], [31]).

Table 4.3.3: Analysis of Excerpt 4.3.3

During the exploration, before the part this excerpt is taken from, the solvers

were uncertain whether the interesting configuration "ABCD rectangle" was possible to

maintain during dragging or not, and therefore whether a (continuous) path existed or

not. The solvers reached the conviction that there is a path by noticing more and more

"good positions" for the dragged-base-point. Thus in [1] F demonstrates belief in the

existence of a path and he wants to perform dragging with trace activated to gain insight

into such path ([3]). G seems to focus on the mark left by the trace and on trying to

describe what he sees emerging.

The conflict that emerges between the two GDPs seems to provide evidence that

the solvers have conceived a path and are looking for a condition for the III to be

maintained. They are looking for such condition as "dragging along some regular path"
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that they expect to be able to describe geometrically. In particular, we notice how in [1 6]

F refers to "it" as the mark he "made". The mark left by the trace seems to be an "object"

for the solvers, and it seems to have the purpose of making something else visible. This

something else is the path.

We interpret G's not wanting to use the trace any longer ([22]) as evidence that

the solvers make use of the trace solely to make the GDP explicit and to simplify the task

of providing a GDP, visualizing it through the trace instead of only through the movement

of the dragged-base-point. Moreover the solvers want to construct the object

representing their GDP and to try dragging along it. Doing this, both students seem to be

checking the validity of their final GDP, probably by making sure the III is visually

maintained while dragging along it. Thus the GDP allows the solvers to have a good

description of the object-to-drag-along, which can then be interpreted as the IOD, which

is "A moves on a circle with diameter BC" or "A belongs to a circle with diameter BC".

Once the IOD is conceived this checking of the GDP becomes a (soft) dragging test in

which a conditional link between the IOD and the III is being confirmed, as we will

discuss in section 4.4 of this chapter.

4.4 Putting Together the III and the IOD: the Conditional Link (CL)

At this point of the conjecture-generation process the solver is dealing with two

invariants that seem to be occurring simultaneously: the one s/he induced intentionally

(III), and the one observed during dragging (IOD). Although the two invariants may be
established by now, it is possible that a relationship between them may not have yet

been established, or that the solver is not even aware that a link between them exists or

should exist. We will describe these situations of difficulty in Chapter 5. A first link

between these two invariants may be a link of "mechanical causality", that is a
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relationship that arises within the phenomenological realm of the DGS. In this realm one

invariant, the IOD, is controlled directly, while the III can only be induced indirectly, in a

"mechanical" way by acting on the IOD. According to the MD-conjecturing Model, this

mechanical causality needs to be interpreted geometrically, as a conditional link (CL),

which we define as:

a relationship of logical dependency between two invariants perceived by a

solver, and interpreted within the world of geometry.

A first link between the two perceived invariants is given by their simultaneity, and in

addition, after discovering the IOD, the solver can directly act on the base point to

maintain it, and indirectly feel and observe the maintaining of the III, as a consequence.

This may guide the solver to perceive "mechanical causality" within the DGS, and

ultimately "conditionality" within the world of geometry. The conditional link will finally be

explicitly expressed as a conditional statement, the conjecture, in which the IOD can

become the premise and the III the conclusion of the statement.

We suggest that a bridge between the experiential field in the phenomenological

domain of a DGS and the formal world of Euclidean geometry may be established

through the interpretation that may be summarized briefly as follows:

simultaneity + control -> causality within Cabri -> conditionality in Geometry

simultaneity + direct control -» premise of the final statement

simultaneity + indirect control -» conclusion of the final statement.

Expert users of the maintaining dragging may easily interpret - almost unconsciously -

the emergence of simultaneous invariants as a conditional link between the

corresponding geometrical properties. Therefore the process of conjecture formulation

may lead, in a straightforward manner, to a successful outcome, that is the formulation of
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a conjecture linking two perceived invariants. We will describe this behavior in Chapter 6.

However, in some cases solvers may experience simultaneity and control with

respect to two invariants, but not conceive a CL between them (at least not in a way that

can be perceived by an external observer). This may be due to an inability of the solver

to capture mechanical causality within a DGS, or the inability to make the transition from

the world of Cabri and the phenomena that occur within it to Geometry and conditional

links between geometrical properties. As a consequence, a conjecture may not be

produced. In this case a link between invariants may be perceived in the world of Cabri,

but no conditional link seems to be conceived. We will discuss these possibilities in

Chapter 5 and Chapter 6.

Once the two invariants are identified, we can observe different manifestations of

the solver's belief in a CL between them. These manifestations have to do with different

ways of dragging with the intention of checking the link. In order to become more

convinced of the existence of a link between these properties, the solver may behave in

the following ways. After constructing the object that corresponds to the GDP, s/he may

drag the base point approximately along this object with the intention of verifying the

simultaneity of the III and IOD. We refer to this kind of dragging check as a soft dragging

test. If, instead, s/he constructs the IOD robustly and drags the base point, verifying the

simultaneity of the III and IOD, s/he has performed a robust dragging test. In particular,

through a robust construction of the GDP and a re-construction of the Cabri-figure with a

new property the solver can express the change of both the epistemic and the logical

value of the IOD. The new property consists in the dragged-base-point now being linked

robustly to the object representing the GDP: such a property is no longer a possibility,

but a fact expressing something "true". After the redefinition of the base point, if the III

also becomes a robust invariant, the dragging test is passed, establishing a precise
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logical status of the relationship between the invariants. The robust dragging test is

extremely convincing: in fact, constructing one property robustly will have led to the

robustness of another. This not only shows the fact that the IOD and III do occur

simultaneously, but also that there is a precise conditional relationship between them. At

this point the solver can express the link of simultaneity (and potentially of mechanical

causality) between the III and the IOD into a conditional link between the corresponding

properties, and think something along the lines of: "the robustness of one property

implied the robustness of another."

When a solver performs a dragging test in the ways described above, it shows

that s/he is aware of a CL. Further evidence is provided by what solvers say, and by their

effectiveness in checking the behavior of the various elements they are keeping track of.

It is worth remarking that most evidence of the solver's awareness of a CL is indirect, as

shown in the excerpts below. In particular, the excerpts provide different examples of

evidence of the solvers' awareness of a CL.

In the first excerpt (Excerpt 4.4.1) we will show the smooth emergence of a CL

described through the evidence of effective use of checking through a form of the

dragging test. The second excerpt (Excerpt 4.4.2) shows how evidence may be provided

by the solvers' realization that a particular GDP and dragging along it do not provide a

satisfactory IOD, so the solvers make new hypotheses and modify their proposed GDP

and IOD. The evidence provided by realizing that a particular GDP and moreover an IOD

are not satisfactory can affect the GDP and the IOD themselves. Sometimes the

modification is a generalization of the GDP (section 4.4.1). We present an example of

this in Excerpt 4.4.3.
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Excerpt 4.4.1

This excerpt ¡s taken from a student's work on Problem 2, and it shows how the

student shifts her attention from the movement of the dragged base point to the III she is

maintaining. Even though she has not constructed the circle that represents her GDP,

her dragging witnesses that she has established a CL.
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Figure 4.4.1 : A Screenshot of Isa's exploration.

Episode

[1] Isa: parallel. ..here, ok, it collapses.. .it

becomes a line, I mean all the points of all

the lines coincide.

[2] Isa: and over here. ..ok.. .no, no, no, no

[3] Isa: There it collapses.. .so...

[4] I: What is it that you are looking at here

to do it?

[5] Isa: I am trying to make a

parallelogram, uh, to put two sides parallel.

Brief Analysis

As Isa drags D she explains that she is

looking at the sides of the quadrilateral and

trying to keep them parallel ([1], [5], [6]).

Isa's III during this application of MD is the

"two sides parallel" ([5]). She hesitates
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[6] Isa: and so AD and BC.

[7] I: uhm.

[8] Isa: So now I need to go back a

second... no, no, no, no...

[9] I: eh, it's hard when you go close...

[1 0] Isa: alright, anyway, here it

should. ..how nice!. ..be here.

[11] Isa: There...

[12] I: Let's continue over here...

[13] Isa: So, like this.. .uhm. ..here it

becomes easier...There, more or less

[14] I: uhm.

[15] Isa: So, let's see to try it. So, if I

construct, uh, if I move D on a circle with

center in A, and, theoretically, radius AP...

[16] l:...hmmm

[17] Isa: ...I find that the quadrilateral is a

parallelogram, except when, uh, D comes

to lie on the line CA.

when the quadrilateral seems to collapse

([1], [3]), and expresses increasing and

decreasing levels of difficulty in using

maintaining dragging ([9], [13]).

Isa seems to have conceived an IOD,

which she states explicitly in line [1 5] ("I

move D on a circle with center in A, and,

theoretically, radius AP"), because she is

able to predict what "should" happen ([1O]).

This indicates that she is focusing also on

the IOD and while she is dragging she is

establishing a CL between the IOD and the

III.

In the conditional statement ([15], [17]),

which is her first expression of a conjecture

(see section 4.5) the GDP (circle with

center in A and radius AP), the IOD

(moving D on the circle), and a CL (if IOD

then III) are made explicit.

Table 4.4.1 : Analysis of Excerpt 4.4.1

Overall this is an example in which the two invariants, the III and the IOD, and the

CL between them emerge fluidly, almost as if the process of conjecture generation was

occurring "automatically". We will return to this idea later in Chapter 6. Moreover, we use

this Excerpt to highlight Isa's use of "when" ([9], [17]). As in other excerpts, the word
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"when" seems to refer to a time that corresponds to a specific position during the motion,

which, according to the solver, corresponds to an exceptional phenomenon. In this case

the exceptional phenomenon seems to be the "collapsing" of ABCD - exceptional with

respect to the general "being a parallelogram" or even "a quadrilateral". While in other

occasions the word "when" seemed to be used to refer to a phenomenon that occurs

over time (a movement for example), here Isa seems to use it to refer to an instant in

which something interesting happens.

What the two uses of the word seem to have in common is that they also refer to

a second phenomenon noticed by the solver that occurs simultaneously with the first

exceptional phenomenon. In this case the second phenomenon is "D comes to lie on line

CA" ([17]). Therefore a relationship of simultaneity is established between the two

phenomena, expressed in a form such as: "when... occurs, ...occurs". The a-symmetry of

the statement establishes an order in the simultaneity, which adds to the word "when" a

causal meaning (within the world of the dynamic geometry) in addition to its temporal

meaning. This may be the seed that gives origin to a CL that can then become a

conjecture.

Excerpt 4.4.2

This excerpt (FS_Ud_F&G_p6_CLparall1 from 9:18 to 12:46) is taken from two

students' work on Problem 2. In the excerpt the students try testing a CL between an

IOD they have conceived and the III. The students seems to be aware of a CL between

a generic IOD and their III, and through a soft dragging test they reject the initial GDP

that had led to the IOD and conceive a new GDP and IOD. They test the new CL with a

soft dragging test. The excerpt is taken from the continuation of the exploration shown in

Excerpt 4.3.2, thus the lines are labeled with their times relative to the times of that
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excerpt ¡? order to show the solvers' progression over time. The bold letters refer to the

solver who is dragging.
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Figure 4.4.2: A Screenshot of F & G's exploration

Episode

(5:01) F: but you see? This one is always

longer than that one... it's too long, if you

go, let's say, along the circle here, this one

is too long. So, maybe it's not necessarily

the case that D is on a circle so that

[Italian: "in modo che"] ABCD is a

parallelogram.

(6:36) F: exactly. Now there is this problem

of the parallelogram in which we can't

exactly find when it is.

Brief Analysis

With his argumentation F rejects the

proposed GDP, and re-launches the

search for an IOD (6:36). In the

argumentation a CL emerges between "D

on a circle" and "ABCD parallelogram"

(5:01).

Restatement of the
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(6:44) G: eh, uh, we discovered when...

(6:50) G: Let's try to think about it without,

like... because if when you move this,

maintaining always the same distance,...

(7:02) F: because you see, if we then do a

kind of circle starting from here, like this,

it's good it's good it's good it's good, and

then here... see, if I go more or less along

a circle that seemed good, instead it's no

good... Because, you see, in a certain

sense B, at this point the circle

(7:24) G: eh, it's linked to the circle

(7:25) F: exactly, and so in a certain sense

it goes ... down along a slope and so... it's

no... no good. So, when is it any good?

(8:05) G: because I think if you do like, a

circle with center

(8:07) F: A, you say...

(8:09) G: symmetric with respect to this

one, you have to make it with center A.

(8:10) F: uh huh

(8:11) G: Doit!

(8:13) F: with center A and radius AP?

G seems to conceive "PB congruent to PD

as an III."

Back to his argumentation (7:02) F tries to

explain why a circle seems to be "no good"

(he probably still has in mind "his" circle

described in the analysis above). Although

such circle is never described

geometrically, F and G seem to have a

similar object in mind. Most importantly the

solvers seem to have in mind a CL

between the III and a hypothetical IOD that

they are still searching for (6:36 and 6:44).

As F discusses why the circle he had in

mind is no good, F's attention seems to

shift to the movement of point B (7:02) and

then to the figure as a whole. At this point

G has handed the mouse back to F who

starts using MD without the trace. Now G

proposes a new GDP and F proceeds to

construct this geometrical object.



(8:14) G: with center A and radius AP. I, I

think...

(8:20) F: let's move D. more or less...

(8:24) G: it looks right doesn't it?

(8:27) F: yes.

(8:29) G: Maybe we found it!

When F and G refer to it looking right

(8:24) and to having found it (8:29) it is

reasonable to assume that they are

verifying a CL.

Table 4.4.2: Analysis of Excerpt 4.4.2

Overall this excerpt shows how the solvers seem to already start out their search

for a GPD as if they already knew how to reach their IOD from it. They seem to be

implicitly assuming that the invariance they will observe will be something like "D is on a

...[path to be made explicit through a GDP]". This implicit assumption seems to guide

their exploration and make all the pieces fall together in an almost "automatic" way. This

phenomenon will be further discussed in Chapter 6, where we will discuss the process

underlying expert use of MD for conjecture-generation.

In this particular Excerpt, in spite of the incorrectness of the specific GDP, we can
observe F's consciousness of a conditional link between the ill and the IOD he had

hypothesized at time 5:01 . In his rejection of the GDP we can see the CL appear

between D being on a circle and ABCD being a parallelogram through his words: "so that

[Italian: "in modo che"]". In other words, the fact that ABCD is (or will become) a

parallelogram is linked to the movement of D along a hypothetical circle, and linked in a

way that implies conditionality: the movement is so that the particular configuration

occurs. Moreover, after the construction of the new GDP (a circle with center in A and

radius AP (8:17)), the solvers seem to feel the need to check their idea, and they use a

soft dragging test to become convinced that dragging D on the constructed object

guarantees the simultaneous appearance of the III. In this case, the soft dragging test
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seems to have an exploratory nature, and be part of an argumentation that makes use of

the dragging tool to convince and give confidence in a certain idea. We will discuss

these types of arguments in further detail in Chapter 6.

In the following subsection we will present two excerpts in which verifying the CL

through dragging tests leads to a generalization of the preconceived path.

4.4.1 Generalization of the Preconceived Path

As the solver tests the validity of a hypothesized IOD, s/he might realize that the

GDP s/he has provided may be "generalized" to a larger set of points. Frequently the

GDP that the solver provides is a geometrical figure that s/he may have recognized only

a "piece" of. In this case the dragging test can show that the III is actually verified along

the "whole" object. In order to verify "the goodness" of a certain GDP, that is to verify that

the path is "more than" s/he had initially conceived, the solver needs to be able to

concentrate on both the III and the IOD simultaneously (or switch quickly and frequently

from one to the other). Therefore, checking the CL may also lead to what we call

"generalization of the preconceived path". We consider this to be a phenomenon that
provides further evidence of solvers' awareness of a CL between the IOD and the III,

and of the relationship between the GDP and the IOD.

Excerpt 4.4.3 shows an example of this generalization of a preconceived path

through a soft dragging test, however the process may also occur through a robust

dragging test, as shown in Excerpt 4.4.4.

Excerpt 4.4.3. This excerpt is from two students' work on Problem 2. It is the

continuation of Excerpt 4.4.2, and it shows how checking a CL can lead to the
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generalization of a preconceived path. The lines are marked with the times relative to the
beginning of Excerpt 4.3.2 (continued in Excerpt 4.4.2).
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Figure 4.4.3: A Screenshot of F & G's exploration

Episode

(12:50) F: but maybe... maybe only along

this [pointing to the lower right part of the

circle, the region in which he had

performed the maintaining dragging]

(12:51) G: Let's try to

(12:53) F: let's try to, right, go the whole

way around

(12:54) G: like this yes, like this yes, like

this yes

(12:55) F: yes, yes, yes

(12:58) G: over here too, I think

(13:00) F: yes

Brief Analysis

The solvers have constructed the circle

with center in A and radius AP and they

seem to conceive only part of it as the

path. This can be inferred from F's words

in (12:50). The solvers seem to have

conceived the IOD as "D belonging to the

path" or "D moving along the path" as

shown in (12:50), and in (12:51) and

(12:53) when the solvers want to "try"

to see if it works "the whole way around".

As F drags D along the circle the solvers

seem to be checking a CL, and when they
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(13:01) G: yes. reach the upper part of the circle, they

(1 3:02) F: I would definitely say so. seem to be quite satisfied with what they

(13:03) G: okay we found it. see [(12:58)-(13:02)].

(1 3:06) F: Okay, so that's write that. . .

Table 4.4.3: Analysis of Excerpt 4.4.3

We assume that "trying" refers to testing the CL between the IOD (D on the

object representing the GDP) and the III (ABCD parallelogram, or PB=PD for G who

seemed to be using the bridge property in previous episodes of this exploration). In this

sense, the solvers' actions let us infer their conception of a CL. Further evidence that

they seem to have conceived a CL is their "checking something" in various instances, as

marked by the repeating of "yes" rhythmically while watching D move along the circle

(12:55-(13:01). We can infer that as D moves they are checking that the rest of the circle

constitutes "good choices" for the dragged base point. That is, positions that guarantee

the III to be visually verified.

When F and G finally exclaim: "I would definitely say so" (13:03) and "okay we

found it" (13:06), they seem to be confirming their hypothesis for what the generalized

GDP and the IOD might be. This confirmation comes from a very careful check that

dragging along the "whole" circle (IOD) guaranteed that ABCD remained a parallelogram

(III), and thus that it was correct to conceive the CL as existing between these two

properties. The two solvers then have no trouble in immediately making the transition to

the formulation of the conjecture (even in a written form!) as if it were "automatic" from

what they experienced. Such automaticity will be further discussed in Chapter 6.

»I

Excerpt 4.4.4. This excerpt (FS_Ud_FG_p1 between time 37:27 and 38:50) is

taken from two students' work on Problem 4. It is a continuation of Excerpt 4.3.3, and it
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shows the process of generalization of a preconceived path through a robust dragging

test.

EàSBŒBSM^.....^

,¦/?

Figure 4.4.4: A Screenshot of F and G's exploration.

Episode

[1] F: so... ah, wait! ehm, so, not exactly all

the circle... we would have to say that... I

mean, do you understand?

[2] G: No...

[3] F: It's not exactly on all of the circle.

[4] G: No, it is you who.. .[unclear]

[5] F: No, no. ..wait... here is good. It's

good, it's good,

[6] G: it's good...

[7] F: more or less... it's good

[8] G: come on. ..[in a low voice]

[9] F: let's try... how do we.. .eh, let's link A

to the circle, so we can see well. How do

Brief Analysis

As in Excerpt 4.4.3, the solvers have

conceived a path that F thinks Is only

partially described ([1], [3]) by the circle

they have drawn (with diameter BC),

because as he manually follows (soft

dragging test) the circle ([4]-[7]) he is

unsure of the acceptability of this GDP

when he approaches points C and B

(previous part of exploration and here in

[5], [7]). G, however, seems convinced (but

not strongly) that it is a F "who is not"

dragging properly ([4]) and he says he

does not understand what F is referring to
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you do link? Wait, wait...

[10] G: "redefinition of an object"

[11] F: let's take A...

[12] G: "point on an object"

[1 3] F: wait, let's move A off from

there..."redefinition of an object"..."this

point" let's do point...

[14] G: No, "point on an object"

[15] F: Point on an object that is on this

circle.

[16] G: There.

[17] F: there, now we can see it well.

[18] F: Good, here there are no problems.

[20] G: always!

[21] F: Yes, it was I who was...

[22] G: yes...

[23] F: Yes, it is always, always.

[24] F: So, write...

([2]). To get over this indecision F

proposes to link A to the circle (and thus

perform a robust dragging fesr), and does

this ([9]-[15]) in order to "see it well" ([17]).

G seems not to be surprised at seeing that

the III is maintained on what he had

conceived as the entire GDP ([2O]), and F

realizes it was he who was not being

precise while dragging ([21]), and agrees

that the property rectangle (III) is

maintained along the whole circle ([23]).

Table 4.4.4: Analysis of Excerpt 4.4.4

This passage can be read as F's generalization of what he initially conceives as

the GDP (only some of the circle), and as a verification, for both solvers, of the CL

between the IOD and III. Now the CL between "when it is a rectangle (III)" (expressed

previously in the exploration), that led to "A on the circle" (IOD), has been verified, and

the solvers seem to immediately (almost "automatically") make the transition to the
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expression of a conjecture in "static" logic terms, right after line [24]. We will discuss this

in the next section of this chapter.

4.4.2 Concluding Remarks

In this section we have presented excerpts that seem to provide evidence that

the solvers have conceived a conditional link between two invariant properties

discovered during the exploration. The evidence of such conceptualization is necessarily

indirect, and expressed through different behaviors that we could observe. In particular,

we showed how evidence of a CL may be interpreted as an effective use of checking the

IOD and the III simultaneously through a form of the dragging test, as occurs smoothly in

Excerpt 4.4.1 . We provide a different form of evidence of the conception of a CL in

Excerpt 4.4.2, by showing how the solvers' realize that a particular GDP and dragging

along it do not provide a satisfactory IOD and so they make new hypotheses and modify

their proposed GDP and IOD. The last two excerpts show how having conceived a CL

allows the solvers to perform a soft (Excerpt 4.4.3) or robust (Excerpt 4.4.4) dragging

test which can leadlo a generalization of a GDP and IOD.

Although evidence of the conception of a conditional link (CL) is necessarily

indirect, the notion seems to be a useful one, because it sheds light onto the process of

conjecture-generation when MD is used. Such process can be seen as a slow

adjustment and falling-into-place, during the exploration, of all the pieces and the

relations between them that we have described in the MD-conjecturing Model. Once

everything has been put into place, the conjecture, an explicit statement given by the

solvers (in written or oral form), can be formulated. We describe this last step in the next

section, and we remark here that unlike the parts of the model that we have described

until now, the conjecture is the only element of our model that can be accessed directly.
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In fact, as we will describe in the next section, in the context of the MD-conjecturing

Model, we have decided to consider the conjecture to be only the explicit (oral or written)

statement through which students directly describe the CL between the invariants they

have observed. We will give our working definition of "conjecture" in the following

section.

Before closing the section we would like to discuss the transition from a CL to a

conjecture. We have defined the CL to be "a relationship of logical dependency" which

the solver has conceived but not yet expressed. Of course, as discussed above, the

notion seems to be quite useful, but it cannot be accessed directly by an external

observer, since it is part of the knowledge the solver is developing and using to carry out

the process of conjecture formulation. We have decided to describe the CL as a

relationship of logical dependency, or conditionality, however it is possible that the solver

needs to first conceive "causality". We could imagine a "causal link" to be what a solver

can conceive when s/he interprets the experience still within the Cabri world, or the

phenomenological world more in general, dominated by time. The point at which a

"causal link" becomes a "conditional link" is not clear, and, as before, if it occurs, such a

transition can only be seen indirectly by the observer. All we can see directly is the

outcome of the process of interpretation of Cabri-phenomena as geometrical objects and

logical relationships between them, that being, what we refer to as conjecture. In the

next section we will show how the conjecture can be formulated in a variety of

acceptable ways. However it is when the final conjecture is expressed as a "static" form

that we have direct evidence of the transition having occurred completely and

successfully, a transition that has occurred through the establishment of the CL, and in

which simultaneity and the solver's control seem to play an important role.
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Previous research has described a similar transition as a "crystallization" of a

statement from a "dynamic" exploration of a problem to a "static" logic expression,

through the focus on a "temporal section" (Boero et al., 1999; Boero et al., 2007) of the

exploration, also described in Boero et al. (1999) as a PGC1 ( "a time section in a

dynamic exploration of the problem situation: during the exploration one identifies a

configuration inside which B happens, then the analysis of that configuration suggests

the premise A, hence "if A, then B"). We are not sure this description completely

illustrates the case in our model. However we think that this PGC does describe rather

accurately some students' other behaviors that we have observed, that do not involve

use of the maintaining dragging scheme (MDS) in a DGS. We will discuss the MD-

conjecturing Model with respect to Boero et al. 's PGCs in Chapter 7.

4.5 Formulating and Testing the Conjecture

Once the solver has reached a GDP and interpreted dragging along it as an

invariant, the IOD, and once the solver has conceived a CL between the IOD and the III,

s/he may want to test the appropriateness of the IOD through a soft dragging test, as

described in the previous section. For expert users "testing the appropriateness of the

IOD" means visually verifying that in fact the direct movement of the dragged-base-point

along a specific GDP does have the effect of preserving the III. This can be thought of as

the IOD "causing" the III, or that "it is a condition under which" the III is visually verified.

In other words this dragging test is verifying the CL that the solver has hypothesized

between the two invariants that s/he is trying to induce. We have described how in the

analyses of students' transcripts the CL can only be captured indirectly, through different

manifestations (like different forms of the dragging test) that allow us to infer its
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existence. In a way, we could consider the CL developed between the IOD and the III as

the seed of a conjecture, or as a non-explicit conjecture. However, for clarity of the

model and of the analyses that can be obtained through it, we prefer to separate what

solvers express explicitly from what can be inferred from their behaviors. In particular,

we separate the moment in which the solvers explicitly formulate their conjectures in an

oral and/or written form. Therefore, in our model, we consider a conjecture to be

an explicit statement, that can be written or oral, of the CL, conceived by the

solver, between the IOD and the III.

If we refer to the conjecture as stated above, we clearly have an element that can be

accessed directly. Moreover, it is the only element of our model that we have direct

access to, since all the elements we introduced until now can only be perceived

indirectly in the analyses, through students' words, actions, and, in general, behaviors.

Our data shows that solvers' conjectures are not all expressed analogously. In

the excerpts below we will show the different types of formulations that various solvers

used, and that we considered consistent with respect to our model. With "consistent" we

mean that the conjecture seemed to correctly express a CL between the perceived

invariants, and to yield a proper conceptualization of the premise and the conclusion of

the conjecture. Such consistency could also be captured through how solvers addressed

premises and conclusions when they attempted to prove their conjectures, however we

do not analyze proofs in this study.

In the following analyses, we will also highlight how the same solvers may

express their conjecture in successively more geometrical ways. For example, some

solvers state a conjecture orally before writing it down, and the two formulations of the

conjecture differ; other solvers give different oral formulations before reaching the one

they choose to write down. This allows us to capture aspects of the non-trivial transition
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that solvers using the MDS make from the dynamic Cabri environment to the static world

of traditional Euclidean geometry.

Moreover, we have noticed that many solvers choose to perform a robust

dragging test after they have formulated a conjecture, as a corroborating test of their

conjecture. This type of dragging test seems to be more efficient than the soft dragging

test for checking both the IOD and the III at the same time. We advance the hypothesis

that the consciousness of the reconstruction of the Cabri-figure with a new property

given by the IOD (now constructed robustly), or the construction of the GDP and

redefinition of the dragged base point upon it, cognitively replaces the role of the solver's

"direct control" over one of the invariants. The CL between the IOD and the III could be

verified by consciously controlling the IOD and watching the III occur simultaneously, as

a consequence. As we described in section 4.4, the recognition of "a condition" and "a

consequence" may occur through the type of control exercised over each invariant:

simultaneity + direct control leads to "a condition", while simultaneity + indirect control

leads to "a consequence". During the transition to the conjecture, these then need to be

interpreted as a premise and a conclusion. In this sense, when solvers check their

conjecture with a robust dragging test, the direct (or indirect) control is substituted by

knowing that the figure has been reconstructed with a specific added property (and not

with another). Simultaneity can then be perceived in a stronger way than before, since, if

the conjecture is valid, the IOD and the III will occur simultaneously for the dragging of

any base point. Therefore the solver can check the separation the two invariants into

premise and conclusion of the conjecture.

Some solvers choose to test their conjectures in a different way, without

dragging. Although this was not introduced during the introductory lessons on the

dragging modalities, some solvers are aware of the command that we refer to as "ask
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Cabri". This is a command that allows the user to select pairs of objects of a Cabri-figure

and click on an icon (the 8th item on the top command bar in Cabri-Géomètre Il Plus) and
select a question, like "parallel?", which opens a window that contains the software's

answer to the question, such as "the two objects are parallel". We did not expect

students to use this command, however we witnessed different occasions in which they

did in the following way, after they had formulated a conjecture. The solvers would

robustly construct the property expressed in the premise of the conjecture, and then

consider a property that characterized the type of quadrilateral described in the

conclusion of the conjecture. They would use this property to ask Cabri, through the

appropriate tool in one of the menus in the toolbar, whether such property was verified.

In this sense we consider this behavior as another way of checking a conjecture, other

than using the dragging test. One of the excerpts we present in this section shows an

example of such behavior. For clarity, we have divided the excerpts and examples we

present into the following subsections: transition to the conjecture (subsection 4.5.1),

various formulations of conjectures (subsection 4.5.2), and testing the conjecture

(subsection 4.5.3).

4.5.1 Transition to the Conjecture

In Section 4.4 we discussed the conditional link (CL) that the solver conceives

between two invariants of the Cabri-figure s/he is exploring. When the CL is made

explicit, it can contain traces of the dynamic exploration that gave origin to it. Sometimes

the process of making the CL explicit can be difficult for the solver to carry out, and it

may not lead to a conjecture that is coherent with our model. In the following subsection

we consider the case in which the transition from a CL to a conjecture is successful.

Such a transition occurs internally, in the solver's mind, so once again we can only
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gather evidence of the process indirectly through what can be observed and inferred

through students' behavior, words and actions.

In this subsection we provide examples that seem to yield evidence of the

transition from the conception of a CL to the formulation of a conjecture, as anticipated at

the end of Section 4.4. The first excerpt shows an example of how the transition can

occur smoothly without any apparent difficulties. The second excerpt is an example of a

slightly less smooth transition: the solvers first orally give a concise narrative of their

exploration, and then they provide a written conjecture.

Excerpt 4.5.1 .1. The excerpt below shows a smooth transition from the

construction of a GDP to the formulation of a written conjecture. The two students seem

satisfied with their proposed GDP, through which they have characterized their IOD.

Without apparent difficulties, the students express their conjecture orally in a static form,

and immediately write it down. The excerpt is the continuation of the exploration carried

out by the students of Excerpt 1 in section 4.3 of this chapter, in which they had used

maintaining dragging to induce "ABCD parallelogram" as an III and search for an IOD.

ijSäJÜiJ
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Figure 4.5.1.1 : A Screenshot of the exploration
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Episode 1

[I] Giù: So I was thinking something like this

[as he constructs the circle centered in A with

radius AP]. Let's see if it goes, let's see if it

goes, let's see if it goes...

[2] Ste: yes

[3] Giu: Yesss!!

[4] Ste&Giu: Yes, nice! [laughing]

[5] Ste: If CP is equal to PA, say by definition

[10] Giu: We have lots of things.

[II] Ste: We could say... construct two

circles... these two.

[12] I: Well, one you have already

[13] Giu: It's enough to say that PA has to

always be the same as AD, because if they

are the same, it [D] has to necessarily be on

the same circle, because they are two radii.

Episode 2

[14] I: Let's write.

[15] Giu: So let's say: if A... so we already

have that this is equal to this, that this is

Brief Analysis

After having conceived a GDP, the circle

with center in A and radius AP, and an

IOD (D moving along the circle

described as the GDP) Giu proposes to

construct the object representing the

GDP while leaving the trace visible on

the screen ([1]). Both solvers seem to

be quite satisfied ([2]-[4]) in seeing how

the construction nicely fit the trace.

The solvers seem to be discussing ([5]-

[13]) what a sufficient condition in order

to have "D on the same circle" ([13])

might be. They seem to find a condition

that implies their IOD (D on the circle):

the congruence of two segments, PA

and AD which become radii of this

circle.

Brief Analysis

Giu proposes the conjecture "If PA

equals PD... ABCD is a parallelogram"

([15H17]).
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equal to this, so if PA equals AD. . .

[16] Ste: everything we said...

[17] Giu: also...well, ABCD is a parallelogram.

[They write: "ABCD is a parallelogram if PA is

equal to AD"] In the written conjecture the conclusion

precedes the premise.

Table 4.5.1.1 : Analysis of Excerpt 4.5.1.1

Although the solvers seem to approve of the proposed GDP and of the IOD as "D

belonging to this object" when they construct the circle that represents their GDP, the

solvers do not use this IOD directly in the conjecture. Instead they seem to elaborate

their findings in lines [5]-[13] and express the premise as "PA equals AD" ([15]). The

argumentation that leads to an oral conjecture seems to go back along some of the

steps that led to the construction of the second circle ([11]). In order to reach their written

conjecture, the solvers seem to re-elaborate what they have observed during the

exploration, starting from some properties of the construction, and searching for a

sufficient condition (or a chain of such conditions) ultimately implying the III.

The only difference between the conjecture proposed in lines 15-17 and the one

they write, is the order of the premise and conclusion, which is reversed in the written

conjecture. This could indicate a desire to focus on "the case of the parallelogram" which

is what they had explored until then. However the condition that generates this case is

still clearly marked by the "if" that makes it the premise of the written statement.

Excerpt 4.5. 1.2. This excerpt contains another example of transition, this time

from an oral expression of a conjecture in a narrative and dynamic form, to a different
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written one. The excerpt is taken from two students' work on Problem 2. The episode

starts with Rai's response to the interviewer's insistent request for a conjecture.

^ -s*-«-.^ ?*w-> ??* ^«wf1*^
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Figure 4.5.1.2: A Screenshot of the exploration

Episode

[1] Rai: Ok.

[2] Rai: That if, uhm, we want to maintain,

uhm. ..PB equal and symmetric to PD,

[3] Rai: ...we can draw a circle with center in A

and through P.

[4] Lo: So if D belongs to the circle with center

in A

[5] Rai: and through P

[6] Lo: and through P, then the polygon ABCD

¡s a parallelogram.

Brief Analysis

Rai seems to be considering this ([2])

as his III.

Rai seems to propose a geometric

condition that realizes the invariance of

the III. He seems to be trying to

express geometrically what he had

observed during the exploration, while

Lo ([4]-[6]) gives an oral conjecture,

trying to restate Rai's idea.
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[They write: "If D belongs to the circle through The solvers seem to agree upon such

P and with center in A, ABCD is a reformulation, choosing to write it down

parallelogram."] as their conjecture.

[7] Lo: I would say that this is what we said.

Table 4.5.1 .2: Analysis of Excerpt 4.5.1 .2

The first statement ([2]-[3]) is expressed in an "if. . .then. . ." form, however it is still

embedded in the experience of dragging in the Cabri environment, expressing a

geometric condition that they used to obtain the invariance of the III. Lo seems to re-

elaborate on Rai's description and make the transition to a geometrical description of the

IOD ([4]). In the first formulation, Rai's "premise" contains reference to wanting to

"maintain" a property, which is they key to the formulation of the written conjecture. This

in fact occurs instantly after the expression of the oral one, in lines [4]-[6], before the
solvers decide to move on to a different case.

Concluding Remarks. As mentioned above, the transition to a conjecture is not a

trivial process and it can constitute a difficulty for some students. In the analyses above

we tried to capture evidence of the transition from inferences we made based on the

comparison between certain oral or written statements of the solvers. We have observed

that frequently, even after having expressed a conjecture, solvers feel the need to

perform a dragging test to become more convinced of the goodness of their conjecture,

or to check their conjecture once it has been formulated. In subsection 4.5.3 we provide

examples of such behavior, however first, in the following subsection, we will present

different ways in which the statements of the generated-conjectures were formulated by
different solvers.
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4.5.2 Various Formulations of Conjectures

We discussed how conjectures are an explicit expression of a conceived CL

between invariants. Thus different conjectures may be expressing the same CL. This

allows us to talk about classes of conjectures, each class expressing a given CL

between given invariants. For example, there may be differences between an oral and a

written expression of what the same solver sees as "the same conjecture". There may

also be differences among conjectures in a same class expressed by one or the other

solver, when they are working in pairs and discussing what to write down as their final

conjecture. In some cases there is negotiation or an argumentation in favor of a

particular formulation, but frequently some expressions are used interchangeably, which

we take as indirect evidence of the reference to the same CL.

In the subsections below, we identify three characteristics that different

conjectures from the same class may present: conjectures that contain traces of the

dynamic exploration (subsection 4.5.2.1), "transitional conjectures" in which "when" and

"if" seem to be used interchangeably (subsection 4.5.2.2), and conjectures that do not

contain traces of the dynamic exploration (subsection 4.5.2.3).

4.5.2.1 Conjectures with Traces of the Dynamic Exploration. In this subsection

we describe some conjectures that contain dynamic aspects. That is, they contain terms

that seem to refer to the Cabri world, like "move", "stay on", "remain", and so on. In the

section we consider various formulations of conjectures in which the solvers seem to

have correctly conceived the premise and the conclusion. Evidence of such

conceptualization is necessarily indirect. However strong evidence of the correct

conceptualization can be found in cases in which the solvers transition fluidly to proof,

making explicit the distinction between premise and conclusion of their conjecture.
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Although such fluid transition Is not necessarily present for all proper conceptualizations

of the CL, the cases in which it is present definitely suggest that the CL has been

conceived coherently with respect to our model. Therefore in this section we use

presence of this fluid transition as a criterion for selecting examples of different

formulations of conjectures of the same class.

First we show an example in which the solver states in her written conjecture that

a point "stays on" a certain intersection point. The second example shows a formulation

of an oral conjecture in which the solvers use the words "moves" and "remains". Finally

we present an excerpt from two students' exploration, in which they formulate a

conjecture on a derived-construction invariant as a statement with strong dynamic

aspects.

This example is taken from a student's exploration of Problem 2.

Written conjecture (4.5.2.1.1):

"If D stays on the point of intersection of the circle with radius

I AP (center A) and the circle with radius PA (center P), then

){ ABCD is a rectangle." [Italian: "Se D sta nel punto

- i d'intersezione tra la circonferenza di raggio AP (centro A) e

circonferenza di raggio PA (centro P), allora ABCD è un

\ rettangolo."]

Figure 4.5.2.1.1 Notice how the expression "D stays on" seems to indicate a
Screenshot of the

solvers' exploration when strong link to the dynamic exploration. However the conjecture
they expressed a

onj u ' is expressed as an "if... then... "statement and the solver
showed no difficulty in recognizing the premises she was to begin with when

constructing a proof.
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Figure 4.5.2.1.2 Screenshot of the
solvers' exploration when they
expressed a conjecture.

The following example

(PS_Fin_ValeRic_p3_c4) is taken from a

student's exploration of Problem 3. The student

gives the following oral conjecture (4.5.2.1 .2):

"If M moves along a line through M and

perpendicular to segment MK, then the

figure remains a rectangle." [Italian: "Se

M si muove su una retta per M e

perpendicolare al segmento MK, allora la

figura rimane un rettangolo. "]

The dynamic aspects of this oral conjecture are evident in the expressions "move on"

and "remains". The solver is expressing the IOD in a dynamic form, as movement along

the GDP, and the III is also expressed dynamically as ABCD remaining a rectangle.

Time is still present in the formulation of this conjecture that seems to summarize the

exploration experience. However the premise and conclusion have been clearly

separated and the CL correctly established, as the complete "if... then..." statement
indicates.

Excerpt 4.5.2.1 .3. This excerpt is taken from two students' exploration of Problem

1 . The bold letters refer to the solver who is performing the dragging.
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Figure 4.5.2.1.3 Screenshot of the solvers' exploration

Episode 1

[1] F: Good, so we can say, about the

quadrilateral, that as A varies, uh, we always

obtain a trapezoid.

[2] G: a right trapezoid.

[3] I: Ok.

[4] F: a right trapezoid.

[5] I: Ok, a trapezoid that is also a right

trapezoid.

[6] F: Yes, a right trapezoid.

Brief Analysis

The solvers have been dragging the

base point A and have conceived the

property "ABCD is a right trapezoid"

([1]> [2], [4], [5], [6]) as an invariant.

A first conjecture is stated by F in line

[1]: "as A varies, uh, we always

obtain a trapezoid"

Episode 2

[7] F: [writing] moving A...

Brief Analysis

A second conjecture, in the same
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[8] F: ...a right

[9] F: trapezoid.

[10] F: Yes.

[11] F: Ok.

[12] I: So this is a conjecture...

[13] F: Yes.

[1 4] I: on the quadrilateral?

[15]F&G:Yes.

They write: "Moving A freely we always get a

right trapezoid." It: "Muovendo A liberamente

otteniamo sempre un trapezio rettangolo."

equivalence class as the first, is:

"Moving A freely we always get a

right trapezoid."

Both conjectures contain dynamic

elements: a reference to movement

in the premises, and a temporal

reference, "always" in the

conclusions.

Episode 3

[16] G: Let's prove this one right away.

[17] F: So, in the hypotheses we have CD is

perpendicular to AD.

[18] I: Yes

Brief Analysis

We have evidence that the

conjectures refer to the same CL

because F immediately starts the

proving process by stating the

premises explicitly ([17] and following

omitted from the excerpt).

Table 4.5.2.1.3: Analysis of Excerpt 4.5.2.1.3

4.5.2.2 Use of "when" and "if" as synonyms. As mentioned above, we can only

infer that the terms "when" and "if" are sometimes actually used as synonyms, but some

behaviors seem to favor such interpretation. In particular, we consider the words to be

used as synonyms in at least three situations. (1) When the conjecture is expressed

using "when" but when the solvers start proving the conjecture they use the condition

expressed through the "when" as the premise, and the other part of the statement as the
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conclusion, or "what needs to be proved". An example of this situation is shown in

Excerpt 4.5.2.2.1 . (2) When solvers use one of the expressions orally (usually "when"),

but they immediately write the conjecture using the other expression (usually "if"), as

shown in Excerpt 4.5.2.2.2 and in Excerpt 4.5.2.2.3. (3) When one student uses one

word ("if" or "when") and the other in a very similar expression, immediately after the first

statement, as shown in Excerpt 4.5.2.2.4.

Excerpt 4.5.2.2.1. This excerpt is taken from a student's work on Problem 1 .

Episode

[1] Ste: written conjecture: "When K coincides with M, the

quadrilateral ¦'

ABCD =:;::;;:- "" \
becomes a

triangle

because band .':¦*

c coincide." [Italian: "Quando K coincide con M, il

quadrilatero ABCD diventa un triangolo in quanto bec

coincidono."]

[2] Ste: argumentation in which he uses the premise "K

coincident with M" to prove "B and C coincide" and so

"ABCD becomes a triangle."

Brief Analysis

The solver writes down this

conjecture ([1]).

He immediately delves into

an argumentation ([2]).

This shows that what Ste

refers to after "when" is the

premise of his conjecture.

Table 4.5.2.2.1 : Analysis of Excerpt 4.5.2.2.1

In the excerpt above we saw an example of "when" being used, logically, as "if".

Sometimes it seems that the use of "when" or "if" can refer to a distinction between the

phenomenological domain of Cabri and the theoretical world of geometry, that is, a

reinterpretation in geometrical terms of what has been observed in Cabri. Such

164



reinterpretation seems to frequently culminate with the transition from an oral statement

to a written statement. Moreover we notice how Ste states his conjecture in a way that

seems to be "dynamic." He writes about a quadrilateral becoming a triangle, but then has

no trouble providing a correct proof of his conjecture. The appearance of dynamic

elements in conjectures seems to be a recurring phenomenon when conjectures are

developed as the outcome of explorations in dynamic geometry.

Excerpt 4.5.2.2.2. This excerpt is taken from two students' exploration of Problem 1 .

formal iJEJidisLJIi

Figure 4.5.2.2.2 A Screenshot of the solvers' exploration at the moment of the conjecture.

Episode

[1] Vale: When DA is equal to CB, that is, when

BA is parallel to DC, so also when these here are

right angles, it is a rectangle. [Italian: "Quando

DA è uguale a CB, cioè quando BA è parallelo a

DC, quindi anche quando questi qua son retti è

un rettangolo."]

[2] Vale: [writing] "If DA=CB then rectangle"

Brief Analysis

Orally the solvers use the "when" to

refer to what is written after "if" as

the premise in the written

conjecture. The two conjectures are

expressing the same CL.

In the written conjecture the

argumentation chain linked by
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[Italian: "se DA=CB allora rettangolo"] when" has disappeared.

Table 4.5.2.2.2: Analysis of Excerpt 4.5.2.2.2

Excerpt 4.5.2.2.3. The excerpt below is taken from the student G's work on

Problem 2.
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Figure 4.5.2.2.3 A Screenshot of the solver's exploration at the moment of the conjecture

Episode

[1] G: So when AD is equal to AP...

[2] I: Ok

[3] G: ..it could be a parallelogram.

[4] G: [writing] If.. .AD is equal to AP

[5] I: Ok

[6] G: ABCD is a parallelogram.

Brief Analysis

In lines [1]-[3] G expresses her conjecture orally.

This statement is not in the form "if... then..."

however the student seems to interpret it as

such because when she formulates it in writing

immediately after speaking, she writes: "If AD is

equal to AP, ABCD is a parallelogram" ([4]-[6]).

Table 4.5.2.2.3: Analysis of Excerpt 4.5.2.2.3

The word "when" (Italian: "quando") is used in the oral statement, in which G also

expresses a degree of insecurity ("it could be"). "When" seems to mark the transition

from what is observed on the screen, related to movement, and what can be stated in

the static formal world of Euclidean geometry. On the screen G can observe a sequence
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of instances (that may seem continuous) in which the property "AD equal to AP" may

seem to be satisfied. Therefore a reference to time is appropriate, and "when" seems to

catch the occurrences of this event. However the word "when" also refers to a CL

between events (or occurrences of properties in our case) and this may explain the use

of the term immediately followed by the reformulation in formal language in the written

conjecture ([4]-[6]). The fluid transition from the oral statement to the written one seems

to indicate that the terms "when" and "if" are used by the solver as synonyms, or at the

very least, as two ways of referring to the premise of the conjecture.

Excerpt 4.5.2.2A This excerpt is taken from two students' work on Problem 2.
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Figure 4.5.2.2.4 A Screenshot of the solver's exploration at the moment of the conjecture.

Episode 1

[1] Sim: So, ...

[2] I: hmmm

[3] Sim: eh, when AD

[4] Sim: when D belongs to the circle, we

have a parallelogram,

[5] Sim: because.. .uh, but now...

Brief Analysis

In lines [3] and [4] Sim uses the word

"when" referring first to AD and then to D

belonging to the circle they have drawn as

a GDP.

In line [4] there is a first formulation of a

conjecture: the CL between the IOD (D
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[6] Sim: D.. .because AD, since AP is equal

to CP, it means that the radii are the same,

and so also AD equals BC.

[7] Sim: and since the two circles.. .are

tangent...

[8] Sim: eh, they are.. .how can we say that

they are parallel?

[9] Tom: Wait, first mark them [he murmurs

something].

[10] I: So, what is your conjecture?

[11] Sim: So, since we constructed the

circle, AD, uh D. ..ADCB is a parallelogram

when D belongs to the circle.

[12] Tom: So. ..[writing]

belongs to the circle) and the III (ABCD

parallelogram) is made explicit through the

"when". Evidence for such interpretation is

provided in lines [6]-[9] when the solvers

seem to engage in an argumentation in

which they attempt to prove their

conjecture. In particular, in [8] Sim is

looking for a way to "say that they are

parallel", i.e. to prove what is missing in

order to "say that there is always a

parallelogram" ([25]).

Again Sim uses "when" ([1 1 ]) to separate

the condition "D belongs to the circle" from

"ABCD is a parallelogram" ([11]).

Episode 2

[13] Tom: ...if

[14] Sim: Because these two

[15] Tom: ...[murmurs as he writes]

[16] Sim. ..[murmurs as he thinks and

draws the segments]

[17] Tom: [writing] ...with center.. .and

radius AP...

[18] Sim: Now, so...

[19] Tom: [writing]... the quadrilateral...

Brief Analysis

Tom immediately interprets this as an

"if... then..." statement which he writes

down ([12]-[28]) as: "If we construct a circle

with center in A and radius AP the

quadrilateral ABCD is a parallelogram."

In the meantime Sim proceeds in his

attempt at proving his conjecture, but stops

again at the need to prove the two
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[20] Sim: these are also radii [marking AD,

AP, PC, and BC].

[21] Sim: and so these two are equal

[pointing to AD and BC].

[22] I: uhm.

[23] Tom: [writing]...ABCD...

[24] Sim: so. but now we need to prove

that they are parallel.

[25] Sim: because this way we can say that

there is always a parallelogram.

[26] I: ok.

[27] Sim: and so

[28] Tom: Right? [reading what he wrote] If

we construct a circle with center in A and

radius AP the quadrilateral ABCD is a

parallelogram.

[29] Sim: Eh, not always.. .you have to say

"if D belongs to the circle".

[30] Tom: [writing]. ..when

[31] Sim: when D belongs to the circle.

opposite sides to be parallel ([24]).

With respect to the conjecture, when Tom

reads to Sim what he has written, Sim

Instantly translates his original "when D

belongs to the circle" ([4]) into "If D belongs

to the circle" ([29]).

Tom adds the new condition to the written

conjecture as "when..." ([3O]) and SIm

repeats his original "when D belongs to the

circle "([31]).

Table 4.5.2.2.4: Analysis of Excerpt 4.5.2.2.4

This almost unconscious switching the terms with great ease seems to indicate

interchangeable use of the words "if" and "when", as synonyms to refer to a condition

that leads to the conclusion stated in the conjecture.
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In the next subsection we give examples of conjectures without traces of the

dynamic exploration, in which the "if... then..." form is used.

4.5.2.3 Conjectures without Traces of the Dynamic Exploration. In this subsection

we provide some examples of conjectures stated in formal language, and belonging

completely to the "static" world of Euclidean geometry. These conjectures clearly show

that the transition from "dynamic" to "static" has successfully occurred through a proper

interpretation of the Cabri experience in mathematical terms. This subsection contains

four examples of conjectures formulated in a "static form", through different techniques:

use of the logical "if... then..." form (potentially omitting the "then"); use of the symbol of

logic implication; or separation of the premise from the conclusion through labeling.

The first example (4.5.2.3.1) is what two students wrote during their exploration

(PS_Fin_GiuAlb_p6_c2) in Problem 2.

"If D is on the circle with radius PA then the

quadrilateral ABCD is a parallelogram." [Italian: "Se D

è sulla circonferenza di raggio PA allora il quadrilatero

ABCD è un parallelogramma."]

?·¦ "H

Figure 4.5.2.3.1 A
Screenshot of the figure at
the moment of the
expression of the
conjecture.
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The premise and the conclusion are clearly separated by the "if" and the "then", and the

language used does not suggest movement. The only traces of the exploration may be

found in the words "D is on the circle with radius PA", in which D plays the main role as

the acting-element. From "moving along a

circle" it is now conceived as "being on".

Possibly the premise of the conjecture could

have been expressed in an even more "static"

form as "D belongs to the circle".

The following example (4.5.2.3.2) is

what two students wrote during their

exploration (PS_Fin_ValeRic_p3_c5) in

Problem 1 .

-------(p~ ¦ ¦'H#J~
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Figure 4.5.2.3.2 A Screenshot of the figure
at the moment of the expression of the
conjecture.
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"If K belongs to the perpendicular bisector of AB,

ABCD rectangle"

\ IZ m [Italian: "Se K appartiene all'asse di AB, ABCD
rettangolo."]

The "then" and the verb in the conclusion of the

statement are omitted, but the distinction

between the premise and the conclusion is

marked clearly by the "if" and the comma after "AB".

The statement (4.5.2.3.3) below is what two students wrote during their

exploration in Problem 1 , using the symbol of logic implication.

"If A belongs to the line i to I through M => ABCD is a rectangle."

[Italian: "Se A appartiene alla retta l ad I passante per M => ABCD è rettangolo"]

Figure 4.5.2.3.3 A Screenshot of the figure
at the moment of the expression of the
conjecture.
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This written conjecture is formulated in completely static geometric terms, and It even

makes use of the symbol of logic implication to link the premise and the conclusion.

In this example (4.5.2.3.4) two students working on Problem 1 shows how a

conjecture may be stated by separating explicitly the

h premise from the conclusion.

/ V^fK "hyp: M E circle with center N (midpoint of KA)
c·

/ and radius NA. Ths: <ABC=<BCD=<CDA=<DAB"

[Italian: "hp: M E circonferenza con centro N
Figure 4.5.2.3.4 A Screenshot of
the figure at the moment of the . M ,. ..,,.. . ... -,-expression of the conjecture. (Punt° medl° dl KA) e ra99>o NA. Ts:

<ABC=<BCD=<CDA=<DAB. "]

Here the premise and the conclusion are labeled as such explicitly ("hyp", "ths"). We can

infer that the labeling yields meaning for the students because when proving the

conjecture they start by assuming as true what is described in their "hyp".

4.5.3 The Last Step of the MD-conjecturing Model: Testing the Conjecture

We have noticed that some solvers choose to perform a robust dragging test

once their conjecture is formulated. Through this form of dragging, they seem to be

checking that a robust construction of the IOD generates a robust III on the Cabri-figure

they have explored. Excerpts 4.5.3.1 and 4.5.3.2 provide examples of this. In Excerpt

4.5.3.1 the solver redefines the dragged base point as a point on the object she has

constructed as her GDP, and then proceeds to drag the linked base point. In Excerpt

4.5.3.2 the solvers reconstruct the Cabri-figure following the steps of the construction

and adding a property to one of the bade points in order to construct the IOD robustly
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and proceed with the dragging test. Finally Excerpt 4.5.3.3 is the continuation of Excerpt

4.5.2.2.3, and it shows how the command "ask Cabri" can be used to test a conjecture.

Excerpt 4.5.3.1 . This excerpt shows how a student makes use of the robust

dragging test to test her conjecture, after having written it down. The excerpt is taken

from a student's work on Problem 2, and it is the continuation of the exploration from

which Excerpt 4.4.1 is taken. Through maintaining dragging with the trace activated, Isa

has conceived a GDP and expressed the IOD as D moving along a circle. She has not

constructed the GDP or performed a dragging test, and when she writes her conjecture

(at the beginning of the excerpt below) she does not seem to be convinced enough to

start proving it, but instead she prefers to test it with a robust dragging test.
í>iFa&y!.w&i?é s'arsii *«* ;#MMIMMM|MWflWÉIff^
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Figure 4.5.3.1 A Screenshot of the solver's exploration during the following episode.

Episode Brief Analysis

[1]...[she writes: "If I move point P on the After Isa writes her conjecture which still

circle with center in A and radius AP, then contains traces of the dynamic exploration
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the quadrilateral is a parallelogram."]

[2] Isa: eh, for now I'll try to construct it...

[3] I: Ok.

[4] Isa: So...this, now I need to construct a

circle [she constructs a circle centered in A

with radius AP]. ..where is it [the

command]? to link D to the circle?

[5] I: Under the perpendiculars.

[6] Isa: Ok, now let's try to move...

[7] [she starts dragging D, now linked to

the circle]

[8] Isa: Yes. ..here it becomes a single

point. ..and here again. ..Now we can also

turn the trace off.

[9] I: Now you seem to be pretty convinced.

[10] Isa: Yes.

([1]), she proceeds by constructing the IOD

robustly: she constructs the object that

represents the GDP she has provided ([4]),

and she then redefines point D upon it.

As she does this, Isa does not deactivate

the trace.

Isa drags D and notices that in certain

points the quadrilateral "collapses", but she

seems to conceive these as special cases

of the general parallelogram.

At this point she seems to be looking at

both the III and the IOD simultaneously

thus conceiving the Cabri-figure as a

whole. In fact she even wants to turn off

the trace as it is of no use any more.

Table 4.5.3.1: Analysis of Excerpt 4.5.3.1

The fact that Isa does not disactivate the trace when she first constructs the IOD

robustly ([4]-[5]) may indicate that she is not completely convinced that her GDP is

correct. As she drags she seems to get confirmation that the whole circle is actually a

good GDP ([7]-[8]), and thus is ready to disactivate the trace. Visualizing the two
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invariants simultaneously being verified and knowing how the construction was modified

seem to make Isa become convinced of her conjecture, as she confirms in [10].

Excerpt 4.5.3.2. This excerpt is the continuation of Excerpt 4.5.1 .1 (numbering is

continued), and it shows how the two students test their conjecture ("ABCD is a

parallelogram if PA is equal to AD") by reconstructing the Cabri-figure and performing a

robust dragging test.
;o rxa>:;
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3íu: There.

Figure 4.5.3.2 A Screenshot of the solvers' exploration during the following episode.

Episode

[18] Giu: There

[19] Giu: Now we need to make all those

nice circles

[20] Ste: Yaayy!!!

[21] Giu: So this. ..through there

[22] Ste: This one...yay!

[23] Giu: So...

Brief Analysis

To test their conjecture, the students

proceed by reconstructing the whole Cabri-

figure, adding the premise of their

conjecture as a new robust property ([1 8]-

[28]). They use the IOD ("D on the circle

with center in A and radius AP") to construct

the property "PA equal to AD". After
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[24] Giù: Bravo! Wait.. .that one is B.. .no,

no, no don't do it.

[25] Ste: Yes!

[26] Giu: No, because.. .because it

depends on that one [pointing to D]!!

[27] Ste: Really? Oh yeah! That's right.

[28] Giu: Eh!! So draw the circle that goes

through this one and through this one

[with center in A and radius AP].

[29] [Ste drags point D]

[smiles from both the solvers]

constructing point B, the solvers insist on

constructing the circle centered in P ([28]),

with radius PB, which probably indicates

their desire to check the property "PB

congruent to BD". This makes sense

because this was the bridge property they

used as an III to induce "ABCD

parallelogram" through maintaining

dragging.

They seem quite satisfied with the robust

dragging test they perform in [29].

Table 4.5.3.2: Analysis of Excerpt 4.5.3.2

As Ste reconstructs the Cabri-figure adding the new condition that they are

testing, Giu seems to be guiding the choice of which points to use to construct the new

elements of the figure: in particular the circle representing the GDP, on which D will be

chosen ([24]-[27]). Although it can lead to the same outcome, the idea of reconstructing

the whole figure "adding" a new robust property to the properties that descend from the

steps of the construction is a different technique with respect to simply constructing the

IOD robustly by constructing the GDP and linking the dragged-base-point to it. As the

solvers reconstruct the whole quadrilateral they seem to revisit and summarize steps of

the exploration process. Finally, the robust dragging test allows the solvers to

simultaneously observe "AD congruent to PA" (or "D on the circle") and "PD equals PB"

(or "ABCD parallelogram"), and thus confirm their conjecture.
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Excerpt 4.5.3.3. This excerpt is the continuation of Excerpt 4.5.2.2.3 (numbering

is continued), and it shows how the solver used the command "ask Cabri" to test her

conjecture.

ihdtçJïilfîïitîï^TtC*» tj,,,^, j

W- ':~JdiM Malia AJ, .viJ

G: To test it I could draw a circumference

Figure 4.5.3.3 A Screenshot of the solver's exploration during the following episode.

Episode

[7] G: To test it I could draw a circle

[8] I: yes...

[9] G: with radius AP

[10] I: ok

[11] G: So then I could put D on this circle

and then see...

[17] G: I wanted "redefine object", yes but

first I wanted to ...ok

[18] I: Ah, you wanted to do it over..

[19] G: Then I do "redefine object". ..this

point...point on an object?

Brief Analysis

G has written the conjecture and

expresses the desire to test the conjecture

explaining what she intends to do.

She constructs the circle and links the

dragged base point D to it successfully

([19]-[21]).
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[20] I: yes...

[21] G: On this circle

[22] G: Now what should I try, should I ask

it if they are parallel?

[27] G: Is this segment is parallel to this?

[as she clicks on the objects]

[28] I: There, now it should open.

[29] G: Ok [murmuring something and she

seems satisfied]

[30] I: Ok.

[31] G: Should I try to move it? I'll try to

change the position.

Giu wants to use the command "ask Cabri"

to see whether the pairs of opposites sides

of ABCD are in fact parallel ([22]).

When G uses the command "ask Cabri"

she inquires about a property which

defines "parallelogram" and is therefore

basically the III ([25]-[28]). Reading Cabri's

reply "the two segments are parallel" on

the screen seems to convince G of her

conjecture more than dragging the

redefined point.

Table 4.5.3.3: Analysis of Excerpt 4.5.3.3

It seems that for G it is less important to visualize the two invariants simultaneously than

to be sure that according to Cabri her new construction ¡s a parallelogram. Only after

having read the answer does G spontaneously propose to "move it" and "change the

position" ([31]).

Concluding Remarks. At this point we have completed our introduction of the

main elements of our model and the relationships between them. Our model describes

the perception of invariants, the search for new invariants, the conceived link between

them, and how the premise and conclusion of the conjecture fall into place. Below is a
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visual representation of our model that summarizes the various elements and their

mutual relationships.

Ill
task 1: determine art

interesting property to
intentionaliy induce
as an invariant

type of dragging:
wandering dragging

IOD
task 2 (part 1 }: search for

a "condition" that
makes the III visually
verified, as movement
of a base point along
a path

'type of dragging:
maintaining dragging
and dragging with
trace activated

through a
geometric

interpretation oí
the trace or of
the movement
of the dragged

base point

J

CL
task 2 (part 2): interpret
(within the world of
geometry) the IOD as a
condition under which the

I III is verified
„•

J CL check
Í task 3: verify the CL
I through a dragging test
I type of dragging: soft or1 robust dragging test

Figure 4.5.1 : A representation of the interplay of the elements of the MD-conjecturing Model

Using the model as a tool of analysis led us to some refinements and new

notions, many of which related to various types of invariants and how they emerge from

the exploration. The central role of these different invariants within our model has led us

to a new description and partial generalization of the model itself. This new description is
the main focus of Section 4.6.

4.6 Model as Invariant-Type Phases

Through the analyses of transcripts and video recordings of students' work on the

activities proposed, we have shown how our initial model seems to appropriately

describe processes that may occur during the explorations. Moreover the model was
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enriched with new elements that were recognized as recurring in many explorations. In

particular, with respect to the initial model, we conceived and added new notions, many

of which were related to a characterization of invariants that seemed to help describe

students' work. The types of invariants we added are point-invariants and construction-

invariants (either basic or derived), and additional construction-invariants, that is,

invariants that are constructed as a robust invariant after having been observed (or

induced) as a soft invariant, or potential property of the Cabri-figure considered, as

described in Section 2.1 . These new notions and further reflection upon the analyzed

transcripts led us to focus on the central role played by invariants throughout the

explorations. Therefore we now provide a new description of our model as phases, each

characterized by the particular type of invariant investigated. The phases are: (1) the

point-invariant and construction-invariant phase; (2) the intentionally-induced-invariant

phase; and the (3) additional-construction-invariant phase. Before delving into the

descriptions of each phase, we present a second hypothetical exploration of Problem 1 ,

in which we highlight the new elements introduced in the preceding sections of this

chapter with particular attention towards different types of invariants.

4.6.1 The Invariant-type Phases

Many students' behaviors during the exploration of Cabri-figures seem to be

characterized by the perception of invariants of different types. As we have seen in

Section 4.2.1 many solvers start to drag the base points looking for regularities in the

behavior of the Cabri-figure (or of subfigures), noticing what we have defined as point-

invariants and construction-invariants (section 4.2.1.1 and 4.2.1.2). Solvers may express

their first conjectures relating these invariants at this time. Such conjectures do not deal

with "conditions under which a certain configuration is obtained", but rather they are
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"general Statements" about the step-by-step-construction, that relate basic and derived

construction invariants, and potentially point invariants.

Then solvers may proceed by noticing that a particular property has the potential

of being induced upon the Cabri-figure, as described in Section 4.2.1 .3 and in the rest of

Section 4.2. Therefore a second phase of the exploration may be characterized by the

solver's attempt to explain (through a conjecture) how to induce a particular III through

dragging. The conjectures that arise during this phase of the exploration are the ones

our initial model described in detail. However, we have observed that sometimes the

discovery of basic properties (section 4.2.1 .3) leads to conjectures (basic conjectures,

which we introduce in Chapter 5) in which they are expressed in the premise instead of

being overcome by a condition found during MD. We will describe this phenomenon in

Chapter 5.

Finally, solvers may construct a new property (typically an IOD) robustly in order

to continue the exploration within a subset of Cabri-figures of the initial set defined by the

step-by-step construction. In this case we can define a new class of invariants,

additional-construction-invariants.

After having constructed new additional-construction-invariants, the exploration

may continue, starting from the first phase we described, since the solver is now in front

of a new figure. During this phase new construction-invariants and point-invariants may

be noticed (a new phase 1), and successively new Ills may be induced by the subject

with the intention of producing new conjectures (a new phase 2). Below is a more

detailed description of the three phases.

Phase 1 : point-invariant and construction-invariant phase

The solver uses wondering dragging of the various base points of the construction and

notices a certain property that seems to always be true (for the dragging of a specific
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base point or of different base points). Conjectures during this phase may be of the type:

"the figure is always a ..." or "the figure always has the property ...". The premises of

such conjectures are frequently implicit in the final formulations of these conjectures.

Such premises are the properties (or a subset of them) assigned to the figure by the

steps of the construction.

During this phase it is also possible for the solver to notice two construction (or point)

invariants in particular and try to link them. The solver may either

a) link the two invariants through a conditional link (CL) choosing a rule of which they are

a case of from his/her bag of mathematical knowledge (known theorems);

b) or he/she links the two invariants through a CL expressed as a conjecture to be

proved (the conjecture is not a known theorem).

Phase 2: Intentionally-induced-invariant phase

The solver encounters an interesting configuration (frequently through wondering

dragging), and decides to investigate "when the initial construction falls into this case"

using maintaining dragging. Here our cognitive model described in sections 4.1 , 4.2, 4.3,

4.4, and 4.5 applies, leading to a conjecture that links and IOD and an III.

The exploration of the particular interesting configuration may continue with the repetition

of the phases described above, when dragging a different base point of the construction.

Phase 3: additional-construction-invariant phase

The solver notices (or looks for) a new interesting configuration, which s/he recognize(s)

as a subcase of a previously explored case. In order to investigate this new case (for

example the case "square" after having analyzed "rectangle" as an III) the solver

modifies the initial construction by linking a base point to a curve (the geometrical

description of a path) that s/he has discovered implies the more general case. The

solver then proceeds through the phases described above, exploring the new
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construction. More cycles of exploration of this type may be added depending on the

possible subcases of a given initial construction. For example, the exploration of a

quadrilateral may have at most four cycles2: 1) trapezoid; 2) parallelogram; 3) rectangle
and rhombus; 4) square.

In the following section we provide an example of what an exploration that takes

into account all the elements of the model we have introduced might look like. We will

then re-describe the model in terms of tasks and subtasks that the solver can engage in

during each phase described above, to relate our new description of the model to our

previous task-based one.

4.6.2 A Complete Hypothetical Exploration

The step-by-step open construction problem presented in Problem 1 is the

following.

- Draw three points: A, M, K;

- construct point B as the symmetric image of

A with respect to M; / \
/ \- construct point C as the symmetric image of / .·< \

A with respect to K; \ ,^*""*"'

- construct the parallel line /to BC through A; ?

- construct point D as the intersection of /with
. . .. . . , ,. . ~ Figure 4.6.2 ABCD as a result of the step-by-the perpendicular to / through C. 8¿p construction.
- Consider the quadrilateral ABCD. Make

2 Given a construction with additional constraints like in our activities there are fewer cycles,
because some cases become coincident under the construction constraints.
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conjectures on the types of quadrilaterals that it can become, describing all the possible

ways it can become a certain quadrilateral. Write your conjectures and then prove them.

We can start by dragging the base point A and noticing that points B, C and D

move as a consequence of A's movement. The length of segment BC, however, seems

to remain invariant for any movement imposed on A. This can lead to perceiving the

length of BC as an A-invariant or as a (derived) construction invariant. At this point we

could either go back to the steps of the construction and try to get a better grip on the

nature of the length of BC, or we could drag a different base point to see if it still seems

to be invariant. Let's assume we try to drag point M. As soon as we start dragging this

point, if we are still focused on the length of BC, we will very likely see that the length is

not an M-invariant. Therefore the length of CB cannot be a construction-invariant. We

might now focus on what seems to be another property of ABCD, that it appears to

"always" be a right trapezoid. Therefore this property is likely to be a construction-

invariant. The observation may lead to a first conjecture: "ABCD is a right trapezoid", and

we could provide an argumentation involving basic and derived construction-invariants

(the right angle in D and thus in C, and the parallel bases BC and I) as to why this might

be the case.

At this point we could start looking for other possible types of quadrilaterals that

ABCD might become. We could have noticed during our previous dragging that the

configuration "rectangle" seemed to appear sometimes, or we might not have noticed

this and we can start dragging a base point, say M, to see if this configuration is possible

to obtain visually. It could help us to.use a characterizing property of rectangles like "a

rectangle is a quadrilateral with four congruent right angles" (basic property), that we can

slim down to "the angle ABC is right" thanks to the construction-invariants of our figure.
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Having seen a few different possible rectangle-configurations may help us

believe in the existence of a path along which dragging the base point M will induce the

angle ABC to be right (thus our potential III). Therefore, now we can try to use

maintaining dragging to maintain the III and search for a GDP in order to reach an IOD.

Activating the trace of M may help us to perceive and describe a GDP, as shown in the

figure.

The red mark left by the trace tool together with

the haptic perception can lead us to a GDP like

"the circle with diameter AK". The IOD, therefore,

could be "M moves along the circle with diameter

AK". Once we have reached an idea for an IOD

«esto puftiff

Df \
K

Figure 4.6.3 ABCD as maintaining
dragging with the trace activated is
performed.

we may try to

focus our

attention both on the III and on the IOD (or quickly

alternate or focus from one to the other repeatedly) and

try to check their simultaneity. At this point we can try to

check our idea by intentionally dragging along the GDP

(which we may also decide to construct geometrically)

and checking that the III is actually maintained. This is a

soft dragging test that allows us to check the existence of a CL between the IOD and the

Figure 4.6.4 Soft dragging test
after having constructed the
GDP.
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At this point we may feel convinced enough to formulate a conjecture, but we

might also decide to construct the IOD robustly, thus creating an additional-construction-

invariant to the Cabri-figure. We can do this by

linking M to the circle we constructed. Now any

base point we drag should allow us to perceive our

original III (angle ABC is right) as a (derived)

construction-invariant. Moreover, since the III was

a bridge property, a sufficient condition for ABCD
A \

to be a rectangle, the property "ABCD rectangle"
Figure 4.6.5 Wandering dragging on the

should now appear to be a (derived) construction- J"» Cabri-figure dragging base point
invariant. The verification of these facts occurs during a robust dragging test.

A possible conjecture we could formulate is: "If M is on the circle of diameter AK, then

ABCD is a rectangle." In this case our figure passes the robust dragging test and our

conjecture seems like a "good one" that we can now try to prove.

We can decide to continue our exploration by seeing whether ABCD can become

other types of quadrilaterals. Since we have robustly constructed a rectangle at this

point, adding a construction-invariant to the

initial figure produced by the step-by-step

construction, we might decide to use wandering f"—"**""

dragging on the new Cabri-figure to try to induce ^ , \
types of quadrilaterals that are particular types / \ I

of rectangles, for example squares. \ "\,/^*.-—--*¦
'''-^ZZ^ ' D

Once we visually perceive that a new
, ,. *¦ ¦ ·¦_ ? 4.6.6 The property AM congruent to MK isparticular configuration is possible, we can constructed robustly.
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proceed as before, trying to induce this property (or a minimum basic property) as an

invariant through maintaining dragging. In this case wandering dragging shows us that it

is not possible to "maintain" continuously the property "ABCD square", however we can

find two choices for M along the circle which seem to induce the desired property. We

can try to characterize these positions (a sort of discrete path) and formulate a new

conjecture. For example, in both "good positions" the segments KM and AM seem to be

the same length. We can check the sufficiency of such property by dragging M (a sort of

soft dragging test). Moreover we can construct the property robustly by constructing the

perpendicular bisector of KA and redefining M on the intersection of the circle and such

perpendicular bisector, as shown below.

We now have a new additional-construction-invariant, which induces a whole

new set of (derived) construction-invariants on the new Cabri-figure. Performing a

(robust) dragging test on the new Cabri-figure visually confirms the simultaneity of the

occurrence of the invariants we are interested in ("ABCD square" and "AM congruent to

MK"), thus verifying a CL and leading to the formulation (or confirming it) of a conjecture

like: "If M lies on the circle of diameter AK and AM congruent to MK, then ABCD is a

square."

Conclusion. We can generalize the steps introduced in the simulated exploration, as

we did in section 4.1, adding the new tasks introduced in the simulated exploration

above.
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• Task 1 : Search for construction invariants.

o This can occur through a distinction of point-invariants from construction-

invariants.

o Initial conjectures may be expressed on derived-construction-invariants.

• Task 2: Determine a configuration to be explored by inducing it as a (soft)

invariant (III): through wandering dragging the solver can look for interesting

configurations and conceive them as potential invariants to be intentionally

induced. It may help to

o search for a basic property (usually a necessary and sufficient condition)

that induces the interesting configuration;

o slim down the basic property to a minimum basic property (sufficient

condition).

• Task 3: While maintaining the interesting configuration (or the minimum basic

property) using maintaining dragging and maintaining dragging with the trace

activated, look for "a condition" that makes the III be visually verified. This can

occur through

o a geometric interpretation of the trace

o a geometric interpretation of the movement of the dragged base point.

The "condition" may be considered the movement of the dragged base point

along a path which can be described geometrically. The belonging of the dragged

base point to a path with a geometric description (GDP) determines the invariant
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observed during dragging (IOD), and since this invariant arose as a "cause" for

the III, a conditional link (CL) between the IOD and III may be also determined.

• Task 4: Verify the CL through the dragging test. This requires the

accomplishment of (at least some of) the following subtasks:

o represent the IOD through a construction of the proposed GDP;

o perform a soft dragging test by dragging the base point along the

constructed path;

o perform a robust dragging test by providing (and constructing) a GDP that

is not dependent upon the dragged base point and redefine the base

point on it in order to have a robust invariant, then perform the dragging

test.

• Task 5: Construct the additional-construction invariant (the IOD found above)

robustly (if not already done in previous step) and continue the exploration

investigating configurations that are subcases of the previously induced

configuration by repeating tasks 1 , 2 and 3.

Table 4.6.1 : A more complete task-based description of the MD-conjecturing Model

(Basic or Derived) Construction-Invariant Geometrical property of a construction that
is described explicitly in its steps (basic
construction-invariant) or that can be
deductively derived from the basic
construction invariants (derived
construction-invariant). A construction
invariant is property that is true for any
choice of the base points, and therefore it
is a robust property.

Point-Invariant (P-invariant) Geometrical property that is true for any
choice of base point P of the construction,
while the others remain fixed, a P-invariant
is a robust property under dragging of P.

Basic Property Geometrical property that characterizes the
interesting configuration that the solver
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wants to investigate
Minimum Basic Property Basic property "slimmed down" (thanks to

the properties derived from the steps of the
construction) to a sufficient condition to
induce the interesting configuration.

Additional-Construction-lnvariant Newly added robust property of the Cabri-
figure

Table 4.6.2: New key elements of the MD-conjecturing Model

4.7 Concluding Remarks

Throughout this Chapter we have described our cognitive model for conjecture-

generation, and used it as a tool of analysis for different excerpts of students'

explorations. During the exposition we have highlighted some critical moments of the

process of conjecture-generation described by the model, such as the determination of

an III, using maintaining dragging to induce it as an invariant, conceiving a path and an

IOD and conditionally linking it to the III, checking the CL, and formulating a conjecture.

In Chapter 5 we will describe students' difficulties that arose with respect to these critical

moments. Before doing so, we provide a table summarizing the subtasks related to the

invariant-type phases of the model and the dragging modalities used during each of

them.
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Phase of the Model Subtasks Dragging Schemes
Used

point-invariant and construction-
invariant phase

distinction of point-
invariants from
construction-invariants

wandering dragging

formulation of initial
conjectures

dragging test (robust)

intentionally-induced-invariant
phase

determine an III wandering dragging

find a (minimum) basic
property

no dragging, wandering
dragging, dragging test
(soft) to test sufficiency of
condition

maintain the III maintaining dragging

find a GDP and provide
an IOD

maintaining dragging,
dragging with trace
activated

verify the CL dragging test (soft and/or
robust version)

additional-construction-invariant
phase

construct the IOD from
previous phase robustly

redefinition of point on
object

repeat previous phases
on new construction

all the dragging above

Table 4.6.3: Model as invariant-type phases with related subtasks.
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CHAPTER V

THE CONJECTURING PROCESS UNDER THE LENS OFTHE MD-CONJECTURING

MODEL: SOME STUDENTS' DIFFICULTIES

In the previous chapter we saw how different solvers seemed to use maintaining

dragging in an efficient and spontaneous way, after the in-class introduction, and we

referred to such appropriated use as "expert use". In this chapter we interpret students'

difficulties related to expert use of MD that arose during the activity-based interviews.

We base such interpretation on what we have identified as four fundamental

components that a solver seems to need to master in order to use the MD as a tool for

conjecture-generation. The components seem to be rooted in some of the major

differences between conjecturing in a paper-and-pencil environment and in a DGS that

we have described in Chapter 2. In particular, we advance the hypothesis that if a solver

does not perceive a Cabri-figure dynamically but statically as if s/he were using paper

and pencil, s/he will encounter difficulties in differentiating geometrical properties of a

figure (even though this may be a Cabri-figure) from invariants of a dynamic-figure. An

outcome of this behavior seems to be what we will describe as is a difficulty to overcome

"basic conjectures" (Section 5.1).

In addition, the MD-conjecturing Model can be used to highlight difficulties in the

perception of invariants, especially of soft invariants. In this regard we advance the

hypothesis that the solver needs to be mentally flexible: as a soft invariant is
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being induced the solver might perceive new induced invariant properties which appear

simultaneously, but this can occur only if the solver is able to balance his/her

expectations with mental flexibility in order to not lock onto particular ideas that inhibit the

formation of new ones. In this chapter we will introduce these and other difficulties that

have to do specifically with the process of conjecture-generation described by the MD-

conjecturing Model through examples that arose during students' explorations.

The first four sections of this chapter are each dedicated to one of these

components: developing transitional basic conjectures (Section 5.1), conceiving a

property as an III (Section 5.2), being mentally flexible (Section 5.3), being aware of the

status of objects (Section 5.4). Finally in the last section of the chapter we introduce

some spontaneous behaviors that solvers exhibited for overcoming difficulties related to

maintaining dragging (Section 5.5), and from which we developed prompts to help other

students address similar difficulties.

5.1 Developing Transitional Basic Conjectures

Analyzing the data generated from the activity-based interviews, we found that

many solvers start their explorations with a preliminary phase, before starting to use

maintaining dragging. During this phase the solvers would develop what we call "basic

conjectures". Per se basic conjectures are not "inappropriate" with respect to conjecture-

generation as described by our model, however if not overcome, they may hinder the

use of maintaining dragging during the rest of the exploration. Moreover, for some

students basic conjectures seem to dominate the exploration, inhibiting the generation of

other conjectures that link an III and an IOD even when these invariants have been

found through use of maintaining dragging.
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In the introduction to this chapter we highlighted differences in possible

processes of conjecture-generation in a paper-and-pencil environment and in a DGS.

We advance the hypothesis that solvers' inability to perceive such differences can lead

to difficulties in exploiting the potential of the DGS. In particular, if a solver does not

perceive a Cabri-figure dynamically but statically as if s/he were using paper and pencil,

s/he will encounter difficulties in differentiating geometrical properties of a figure (even

though this may be a Cabri-figure) from invariants of a dynamic-figure. For example, let's

assume a solver has constructed a Cabri-figure corresponding to the steps of an activity,

and s/he starts dragging and stops when s/he thinks the configuration is "interesting"

because "it is a parallelogram". At this point the solver freezes the image and treats the

figure as if it were in a paper and pencil environment, formulating conjectures about the

configuration "parallelogram". Therefore these conjectures will have "the quadrilateral is

a parallelogram" as a conclusion and some basic property the solver has thought of as a

premise. In this case the solvers seem to perceive a relationship of logical dependency

between the basic property and the interesting configuration - treated also as a

geometrical property - but they do not seem to conceive these properties as invariants

with respect to dragging, that is with respect to the movement of a particular base point

or even of any base point at all. It is with respect to such frozen figure and to the

properties that solvers assign to them that we observe the emergence of what we called

a basic conjecture:

a particular type of conditional statement in which the conclusion is an

"interesting configuration" and the premise is a basic property (or minimum basic

property) with respect to the interesting configuration described in the conclusion

of the conjecture itself.
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Therefore basic conjectures do not lead to the introduction of new information with

respect to the interesting configuration, however basic conjectures can be held by the

solver with a strong degree of belief. This seems to be the case because they are based

on definite knowledge (definitions or theorems, usually, that the solver knows). Therefore
some solvers seem to be satisfied with them and do not feel the need to continue their

exploration in a different direction. In subsection 5.1.1 we provide examples of basic

conjectures developed in a first phase of different solvers' explorations, and we show

how sometimes these are spontaneously overcome whereas other times solvers seem

to "fix on" them and do not spontaneously feel the need to continue their exploration. In

this case we speak of a "block at a basic conjecture" which needs to be overcome in

order to proceed with maintaining dragging. Then, in subsection 5.1 .2 we show how

"fixing on" basic conjectures may inhibit the accomplishment of other tasks described in

the MD-conjecturing Model even when maintaining dragging is performed by the solvers.

5.1.1 Basic Conjectures in the Preliminary Phase

For various solvers, once a basic conjecture is expressed on a static

configuration, there does not seem to be a need to go on and further explore the

particular interesting configuration. Below are some examples of students reaching basic

conjectures during a preliminary phase of the exploration. The first excerpt (5.1 .1 .1)

shows an example of two solvers developing a basic conjecture, but immediately

overcoming it and initiating maintaining dragging spontaneously. The second (5.1.1.2)

and third (5.1 .1 .3) excerpts show examples of solvers feeling satisfied with basic

conjectures. In these cases the solvers did not initiate maintaining dragging

spontaneously, and felt they had completed the activity by providing the basic

conjectures they wrote down.
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Excerpt 5.1 .1 .1 (same as 4.2.5). Let us now consider this excerpt, from two

students' exploration of Problem 2. We used it in Chapter 4 to exemplifies the

identification of a basic property, slimmed down to a minimum basic property, which the

solvers use to obtain the configuration they are interested in. We use the excerpt here to

show how the solvers have actually developed a basic conjecture, but immediately

overcome it, with the intention of performing maintaining dragging. The name of the

solver who is performing the dragging is in bold letters.

Figure 5.1.1.1: A Screenshot of F & G's exploration

Episode

[1] F: wait, it is a... let's try to for

example make it become a

parallelogram.

[2] G: No... yes, go.

[3] F: Like this.

[8] G: I understand! so, C... we have

Brief Analysis

F proposes to try to make ABCD a

parallelogram ([1]) and seems to be unsure

about how to drag the base point D in order to

do this.

G conceives a basic property ([8]), which
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to have the diagonals that intersect

each other at their midpoints, right?

[9] F: Right.

[10] G: And we know that CA is

always divided by P.

[11] F: exactly, so...

[12] G: therefore it's enough that PB

is equal to PD.

[13] F: exactly.

[14] G: you see that if you do, like,

"maintaining dragging"... trying to let

them more or less be the same

[15] F: exactly... well, okay.

implies a basic conjecture like: "If the diagonals

of ABCD intersect at their midpoints, it is a

parallelogram". Notice the "have to have" ([8])

implying logical dependency with the property

"ABCD parallelogram".

G proceeds to "slim down" the basic property

making it into a minimum basic property,

leading to a second implied basic conjecture: "If

PB is equal to PB then ABCD is a

parallelogram." The solvers do not stop at this

basic conjecture, but use its premise as a

bridge property to pursue maintaining dragging.

Table 5.1 .1 .1 : Analysis of Excerpt 5.1 .1 .1

In this case the solvers do not even seem to be interested in writing down the

basic conjecture they have developed. Instead they seem to make use of the condition

expressed in the premise as a bridge property to help induce the III they have chosen

through maintaining dragging. In other words, the solvers do not consider the basic

conjecture to be a solution to the initial task, but instead an intermediate step in the

description of the configuration they are investigating. As we will discuss in further depth

in Chapter 6, overcoming a basic conjecture seems to become spontaneous in expert

solvers, and in particular who have developed such scheme as a tool for searching for a

"cause" of a given invariance - which will be interpreted geometrically as a "condition

under which" the given invariance occurs. For solvers who intend to "search for a cause"

of invariance of the III, the premise of a basic conjecture does not provide a satisfactory
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answer, thus they will spontaneously continue the exploration using maintaining

dragging.

We would like to note that these behaviors provide insight into the solvers'

interpretation of the task of formulating conjectures. The mathematical meaning of such

a request is not obvious or simple to capture, nor had it been explicitly clarified. However

it seems like the development of expert use of maintaining dragging comes together with

a particular interpretation of the task of formulating conjectures. We will discuss this

further in Chapter 7.

Excerpt 5.1 .1.2. In this excerpt the solvers start from the interesting configuration

of "rectangle" and find a potential minimum basic property through dragging. They then

argue why this is enough using a basic property which they then try to make into their

minimum basic property and justify their choice through an argumentation that does not

involve any dragging at all. They are satisfied with their conjecture and write it down,

without wanting to continue the exploration any further. The solvers then explain why

they are convinced to have answered the question of the activity.
§. Rfc.- Sditi- Ofîiori 5«RCPe Rum
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Figure 5.1.1.2: A Screenshot of the solvers' exploration.
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Episode 1

[1] Pie: If, uhm, it ¡s a rectangle, M. ..uhm, AB has to be

perpendicular to AD.. .and let's see if only this property,

that...

[2] Ale: Yes,

[3] Pie: that brings along, let's say, all the others.

[4] Pie&Ale: It looks like yes.. .[they speak together and it is

hard to understand]

[5] Pie: If AB were perpendicular to I, ...it means that...

[6] Ale: So if it's perpendicular to I it means

[7] Pie: ..that AD is equal to BC. ..let's see why

[whispering]. ..because BC

[8] Ale: No, AB is equal to CD. Because AD is equal to BC,

uh. ..is by construction, I mean =»- /X "^

we constructed it parallel. é \¿

[9] Ale: If we have, uhm, AB e /

perpendicular to I, and CD x-

perpendicular to I, then they »

are both parallel.

[10] Pie: Well, CD perpendicular to I...

Brief Analysis

Pie seems to start from the

interesting property

"rectangle" ([1]) and work

backwards through basic

properties which he slims

down through an

argumentation.

Pie picks up his minimum

basic property ("AB

perpendicular to I" ([5])

again and seems to argue

why it is sufficient, calling

into the picture properties

derived from the steps of

the construction.

Episode 2

[11] I: Uhm, so the conjecture, excuse me, what is it?

because I do not know what you are starting from.

[12] Ale: ...from the rectangle. A rectangle is the figure that

Brief Analysis

The interviewer asks for

the solvers to make their

conjecture explicit.
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has two sides.. .the opposite sides parallel.

[13] I: uh huh...

[14] Ale: and all the angles of 90 degrees.

[15] I: Ok.

[1 6] Ale: So, if we know that
¦ v\

by construction we have AD

parallel to BC, ...by < '

construction...then we made \

CD by construction parallel to

/ N,.

[21] I: Yes, perpendicular.

[22] Pie: Yes, it's right. Yes, because, I mean the segment

AD is always parallel to BC.

[23] I: Ok.

[24] Ale: Yes.

[25] Pie: CD by construction is perpendicular to AD,

[26] I: ok...

[27] Pie: so therefore we have.. .this way we have one pair

of parallel sides

[28] I: Yes...

[29] Pie: So if we put that AB is perpendicular to I... and

since CD is perpendicular to I...

[30] Ale: Then they are...

Ale restates a basic

property his is starting his

reasoning with ([12], [14]).

The solvers go over the

argumentation once again

leading to the minimum

basic property they have

obtained ("AB

perpendicular to G ([29]).

The solvers perform no

dragging in this episode.
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[31] Pie: two straight lines that are perpendicular to the

same object are parallel themselves...we could say.

Episode 3

[32] I: So.. .what's the conjecture?

[33] Pie: That if AB is perpendicular to I, then the

quadrilateral ABCD is a rectangle.

Brief Analysis

Pie states the conjecture, a

basic conjecture, which the

solvers are satisfied with.

Episode 4

[I has asked whether they feel that they have answered

the question proposed in the activity]

[34] Ale: Yes, because they are the only figures that have

two sides, uh two right angles..

[35] Pie: and two parallel sides.

[38] Pie: Therefore we could do ...some other exploration

[starting to drag the base point A].

[39] Pie: I mean it

doesn't.. .[he starts dragging

K]. ..see it doesn't 2:-

[40] Pie: without taking N. /

those types of figures. /

[41 ] Ale: Uh, we had to ...

[42] Pie: In this case we have always varied. ..[he goes

back to dragging A].

Brief Analysis

The solvers seem to be

uncertain how to continue

the exploration, but they

seem to be satisfied having

looked at the cases of

figures with two parallel

sides and two right angles.

Pie tries to move different

base points, but Ale

interrupts emphasizing the

fact that they have already

obtained all possible

figures.
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[43] Ale: The only figures that we can obtain are those.

Episode 5

[44] I: Ok. So let's try to answer the question "trying to

describe all the ways in which it is possible to obtain a

certain type of quadrilateral."

[45] Ale: so...

[46] I: You can maybe concentrate on the rectangle?

[47] Ale: So, first of all we can say that in order to obtain a

quadrilateral, I mean the quadrilateral that we have to

obtain has to have to sides, uh two right angles and two

parallel sides.

[48] Pie: It always has two, I mean the quadrilateral ABCD

by construction always has a pair of parallel sides and two

consecutive right angles, C and D.

[49] Ale: Ok. Therefore the figures that we can obtain are a

rectangle, a square, or a right trapezoid...

[50] I: Ok.

[51] Ale: We have said. ..we made the conjectures on each

of these figures.

Brief Analysis

The interviewer prompts

the solvers to think about

the initial question and to

try to respond thoroughly.

The solvers give their

response and seem to be

satisfied with having

provided basic conjectures

for the different types of

quadrilaterals that they

thought it was possible to

obtain.

The solvers perform no

dragging in this episode.

Table 5.1.1.2: Analysis of Excerpt 5.1.1.2

In Episode 1 the solvers develop the premise of their basic conjecture: "AB

parallel to ? by slimming down a basic property. They finally state their conjecture and

write it down when prompted (for the second time) in Episode 3. It seems that they need

to convince themselves of the conjecture through oral argumentations (Episodes 1 and

2) and not through dragging. Using oral argumentations seems to be a recurring feature
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of preliminary phases of explorations in which basic conjectures are developed.

Moreover we can notice how in the argumentations related to the slimming down of the

basic property and to the basic conjecture there are all the necessary steps for a formal

proof of the conjectured-statement. It is possible that the solvers feel satisfied in having

produced such a convincing argument (very close to a proof) and thus that they feel

confident they have "explained the case of the rectangle."

The solvers' attention to basic properties seems to inhibit their perception of other

properties or the relationships between them as invariants with respect to dragging.

Instead it seems as if they perceive simultaneity of properties and relationships between

them in a particular instant that they want to freeze. Episodes 4 and 5 show how the

solvers are not able to overcome their basic conjecture, feeling that they have thoroughly

answered the question asked in the Problem. Although Pie starts to drag some base

points (A and then K) in Episode 4 to "do some other exploration" ([38]), when Ale

interrupts him and then explains why it is enough to do what they had done, Pie seems

to become convinced that no more dragging is necessary. So no more conjectures are

generated and no maintaining dragging is used.

Excerpt 5.1 .1.3. This excerpt provides an example of the formulation of a basic

conjecture in the preliminary phase of an exploration, in terms of "finding conditions to

add" in order to obtain a particular type of quadrilateral. The solvers seem to be satisfied

with their basic conjecture, and are not able to overcome it and start using maintaining

dragging. Up to this point the excerpt is similar to the previous one, however, after a

destabilizing prompt of the interviewer who asks them to re-read the question in the

activity, they check which points can be dragged and formulate a new conjecture, though
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still a basic one. This shows the strength of basic conjectures and the difficulty to

overcome them.

Episode 1

[1] Sa: because it's perpendicular to that other one.

[2] Gian: Yes.

[3] Gian: So, if we don't

add any condition, it's a . s M

right trapezoid. We have Ä

two right angles, and

perpendicularity. Y

[4] Gian: Then if we add the condition that also AB is

perpendicular to I, we have a

rectangle.

[5] Sa: uh huh

[The solvers get involved in

formulating a basic conjecture for the

"case of the square".]

Brief Analysis

The solvers seem to

interpret the task in terms

of conditions on the base

points, to add in order to

obtain particular types of

quadrilaterals.

They choose the condition

"AB perpendicular to G

and state their basic

conjecture ([4]).

Episode 2

[15] I: So let's work on the rectangle, like before.

[16] Gian: Yes.

[1 7] I: Try to answer the question to describe all the ways in

which it is possible to obtain a certain type of quadrilateral.

[18] Gian: uh huh. So, these cannot be moved, so...

Brief Analysis

I prompts the solvers to go

back to answering the

question in the activity,

concentrating on the case

of the rectangle.
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[19] Sa: B can't be moved

[20] Gian: No, and C neither, so only A, M and K.

[21] Sa: like before.

[22] Gian: So,

[23] Gian: when...AB

is perpendicular to ...

[24] Sa: when MK is

perpendicular to

MA.. .it is a rectangle.

[25] Gian: Yes.

The question leads Gian

to trying to drag to check

which points move and

thus which points are

base points. This seems

to lead Sa to finding a new

condition related to the

base points, which she

uses as a new premise to

the basic conjecture.

Table 5.1.1.3: Analysis of Excerpt 5.1.1.3

In Episode 1 the solvers seem to interpret the task of the activity in terms of

"adding a condition" to a quadrilateral in order to obtain a more particular type of

quadrilateral. The basic conjecture they formulate is reached through a wandering

dragging strategy which only allows the solvers to reach a case of the interesting

configuration and visualize and confirm hypotheses on what a sufficient condition might

be to obtain the interesting configuration. The conjecture they reach is a basic conjecture

because the condition expressed in the premise is a minimum basic property.

In Episode 2 the solvers are prompted to reply to the question in the activity, and

although this seems to lead Gian to some dragging, it does not lead the solvers to

overcoming their basic conjecture. The attention to the base points seems to only lead

Sa to perceiving a new minimum basic property referred to the base points of the Cabri-

figure instead of only to vertices or sides of the quadrilateral ABCD. Although the basic

conjectures have not been overcome, the new conjecture is a step forward with respect

to the search for a condition that depends on the base points.
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5.1.2 Persistence of Basic Conjectures in Later Phases of the Exploration

As we described in the previous section (5.1 .1 ) we found that the fixity of basic

conjectures may influence the preliminary phase of explorations in which maintaining

dragging might otherwise be used. The exploration leads to an interesting configuration

which the solver freezes and treats as if it were in a paper and pencil environment,

developing basic conjectures strengthened by arguments based on theorems and

definitions. At this point solvers feel satisfied and convinced that they have answered the

question in the activity.

We have also found that in cases in which an exploration apparently is coherent

with what we describe in our model - and solvers use maintaining dragging either

prompted by the interviewer or on their own - some solvers are not able to perceive an

IOD, or, when they are, they might not be able to (or interested in?) reach(ing) a

conjecture that links the IOD and the III conditionally, and they resort to a basic

conjecture. In particular, in this subsection, we will show how persistence of a basic

conjecture can inhibit the discovery of an IOD in a case in which solvers are prompted to

use maintaining dragging by the interviewer (Excerpt 5.1.2.1). Moreover, especially

when maintaining dragging is prompted by the interviewer, we have witnessed different

cases in which even after the emergence of an IOD, the solvers would resort to their

basic conjecture instead of linking the III and the IOD at the end of their exploration (see

Excerpt 6.1 .2). What we found even more interesting were cases in which solvers would

spontaneously use maintaining dragging but then be unable to put together the III and

the IOD in their final conjecture, ultimately resorting to a previous basic conjecture. We

will show an example of this in Excerpt 5.1 .2.2.
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Of course probably difficulties in conceiving the invariants in the terms we

describe in our model will have been present before the final phase of the formulation of

the conjecture, but as external observers we can only catch such difficulties when they

arise and lead to behaviors that are not consistent with what our model might predict.

Thus we say that the fixity of basic conjectures may have influence over the final phase

of conjecture-formulation, since this is the phase in which such difficulties surface in
most cases.

The origin of difficulties which are manifested as resorting to a basic conjecture

even after what seems to have been appropriate use - in the eyes of an external

observer - of maintaining dragging may be different for different solvers. Definitely

making the final transition from the physical experience and the perception of invariants

in a dynamic environment to the static world of Euclidean geometry is not a simple

matter since it involves conceiving the invariants (properties with respect to movement)

once again as static geometrical properties (as traditionally perceived in a paper-and-

pencil environment, for example). Moreover there may be difficulties in interpreting the

haptic perception in terms of logical dependency of the geometrical properties

corresponding to the perceived invariants, that is, in making the transition from

simultaneity plus direct or indirect control to logical dependency. However we propose

an explanation as to why solvers might not be able to overcome a basic conjecture even

after having performed maintaining dragging in a way that seems coherent with our

model. Such explanation involves the solvers' interpretation of what is happening during

the exploration from a meta-level, as a key to most of the difficulties we have witnessed

at this point of the process of conjecture-generation, as we will describe also in Chapter

6. The key element that seems to lead solvers to success or non-success in the

formulation of conjectures as described by our model seems to be the solvers'
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understanding of maintaining dragging as a tool to search for a "condition" or a "cause"

of a certain III to be visually maintained. Moreover such "cause" may be expected as

dragging a point along some path to be made explicit during the explorations. It seems

like when there is such an intention in the solvers' actions, the exploration is easily

"made sense of and the pieces of the conjecture seem to naturally fall into place. On the

other hand, when there does not seem to be such awareness or the intention of

searching for a cause and conception of a path, maintaining dragging may be performed

in a technically "correct" manner, but it may not lead to insight in developing a

meaningful conjecture that links the IOD and the III logically. Thus many solvers seem to

resort to basic conjectures even after having performed maintaining dragging in a way

that (in the eyes of an external observer might have) seemed coherent with the model.

We will discuss this in further detail in Chapter 6 when we introduce the notion of

instrumented abduction through which we describe the overarching cognitive process

that seems to be associated with solvers' use of maintaining dragging as an instrument.

Once again, we are dealing with indirect evidence, since we cannot directly

access what is going on in solvers' minds, but only make inferences based on their

words and behavior. As described in earlier sections of this chapter and in Section 4.4, it

is difficult, within the data we have collected, to obtain evidence of the fact that the solver

has perceived a conditional link, as it can only be observed indirectly through behaviors

that can be considered "symptoms" of its existence or not in the mind of the solver. The

relationship between what can be directly seen, the figure, the solvers' words, and their

thoughts is very delicate and it may only be inferred through interpretation of the

observable data. The main evidence we use to infer a difficulties in overcoming basic

conjectures once maintaining dragging has been performed is a hesitation or block at the

formulation of a conjecture after an investigation. We also consider evidence of these
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difficulties to be cases in which solvers seem to use maintaining dragging in a way that

is apparently coherent with our model, but then formulate conjectures which do not take

into consideration the IOD or the III they had seemed to be working with. We

hypothesize that there are difficulties at different levels in this final process, and we will

analyze some in detail in the excerpts below.

Excerpt 5.1 .2.1. This excerpt is taken from two solvers' exploration of Problem 4.

The solvers seem to properly perform maintaining dragging with the trace activated, and

even recognize a circle from the trace, but they do not link this finding to the property

being maintained. They even explicitly state that maintaining dragging is not possible,

after having recognized the circle, and explain their experience in terms of a basic

conjecture. The name of the solver who is holding the mouse is in bold letters.

/7

Episode 1

[1] Ha: ...parallel to AB and CA has to always be

parallel [perpendicular?] to AB.

[2] I: Alright. And so you are

saying that there is no way of

dragging A maintaining this

property? /

[3] Em: [murmuring]. ..because

wait /

[4] Ha: Yes, well, but even if we ' ^
move it in this case. ..it is as if there were a circle.

[5] Em: you don't say!! [ironic]

Brief Analysis

Ha restates the previous

conjecture ([1]), in an attempt to

explain why maintaining

dragging is not possible in this

case. The interviewer tries to

make the explanation explicit by

asking for confirmation of this

impossibility of performing

maintaining dragging ([2]).

The solvers once again attempt

to perform maintaining dragging
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[6] Ha: [murmurs something]

[7] Ila: Excuse me, do a circum...give me! [she grabs

the mouse]

[15] Ha: So, I think there

is ...in order for it to be a

rectangle [it: "perchè V""*

sia"]. ..well, but ... \ „--*""*"

[16] Ila: or-

ti 7] Em: Or maybe, I think we have to do, put

[18] Na: B there!

[19] Em: B there. ..and see when it maintains the

property, no?

[20] Ha: When it moves. ..it forms a circle.

[21] Em: Yes, but try to see where the center is. I think

the center...

[The solvers have some

difficulties constructing

the circle.]

with the trace activated. This

time they seem to be

successful, and they even

recognize a circle ([4]) in the

trace, which they proceed to

describe and construct ([7]-

[30]).

Ha seems to repeat how she

sees a circle and a rectangle,

but she does not seem able to

relate them logically ([15], [29],

[31]).

Em seems to be attempting to

make the connection. In

particular she seems to be

interested in seeing "when it

maintains the property" ([19]),

but she does not seem to see

"dragging along the circle" to be

this "when" or even less a

cause for the maintaining of the

property.

The solvers seem to notice the

circle, but not be able to
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conceive movement along such

circle as an IOD.

Episode 2

[28] I: What are you looking at while you...?

[29] Ha: It's that I think a

circle is being formed. I

mean... /

[30] Em: Yes. /
[31] Ha: There is a rectangle /

and we can move A...

:~1v

Brief Analysis

The interviewer asks the

solvers to explain what they are

"seeing".

Na seems to notice the circle

([29]) in correspondence with

the "rectangle" and movement

of A ([31]) but she does not

seem to relate these elements

logically.

Episode 3

[37] Ha: and B, too, has to stay on the circle.

[38] Ila: In order for it to be a rectangle...

[39] Em: Eh!

[40] Ha: yes.

[41] Em: but if I move A. Our intent is that we have to

start...

Brief Analysis

Although an III and an IOD

seem to be present the solvers

do not seem to be able to make

sense of them.

Episode 4

[46] Em: No, I think it is not possible to move it,

because we start between...from the instant in which,

Brief Analysis

Finally Em states that "it is not

possible to move it" ([46]), even
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eh, it ¡s a rectangle. I mean I already say that this ¡s though she Is unable to provide

perpendicular. a satisfactory argument to this

[47] Na: Right. claim, and Na seems to agree.

Table 5.1 .2.1 : Analysis of Excerpt 5.1 .2.1

Probably since the solvers are not completely convinced by their argument, they

once again attempt to perform maintaining dragging with the trace activated. Although

they proceed to describe and construct this "circle" ([7]-[30]), it does not seem to be

related to the properties the solvers are interested in. In other words, they seem to

dissociate the circle which they observe as an independent object ([4], [29]) from two

lines remaining perpendicular, which seems to the minimum basic property they want to

use for their III ("ABCD rectangle"). Na seems to repeat how she sees a circle and a

rectangle, but she does not seem able to relate them logically ([15], [29], [31]). Moreover

Na seems to be relating the circle to other parts of the Cabri-figure: point B ([36]), the

rectangle as a whole being "inside the circle" ([33], [35]); however she is not relating it to

the movement of A. This further supports our claim that the circle is not conceived as a

GDP and furthermore a path does not even seem to be conceived at a generic level as a

"cause" for maintaining the III.

We found this excerpt to be quite interesting and surprising since to an external

observer, all the elements seemed to be in place for the solvers to conceive an IOD and

formulate a conjecture that put the belonging of A to the circle in relationship with ABCD

being a rectangle. However since in the end the solvers do not even believe it to be

possible to perform maintaining dragging in this case, we are led to interpret the episode

as being due to a difficulty in properly conceiving a path. The circle that is recognized

does not seem to be linked to movement or to the maintaining of the III, thus it is not a

path according to our model.
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Excerpt 5. 1.2.2. In their exploration, before this excerpt the solvers have found a

basic conjecture, written it, and then continued their exploration using maintaining

dragging. They reach what seems to be an IOD and they state a conjecture linking their

III and IOD. However when they write their conjecture they switch the premise and the

conclusion, and they mix it with their previous basic conjecture. The dominance of the

basic conjecture over the new conjecture appears also in the solvers' answer to the

interviewer's request to repeat the conjecture: the solvers repeat their basic conjecture,

not the one obtained by linking the IOD and the III that emerged during maintaining

dragging. The excerpt is taken from two solvers' exploration of Problem 3.

E J-'-iiU-dd-Uili:

Figure 5.1.2.2 A Screenshot of the solvers' exploration.

Episode 1

[1] Gin: I was thinking [murmurs something]

[2] Gin: So, therefore, eh yes, for now this part of the
circle.

[3] Dav: Eh!

Brief Analysis

The solvers seem have

conceived a path a provided
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[4] Gin: We have to say that to construct...that

[5] Gin: Eh, moving A it always remains a rhombus...

[6] Gin: if A belongs to a circle with center M and radius

MK?

[7] Dav: Yes.

[8] I: So, write this one...

[13] Gin: A belongs to the circle with center M [He writes:

"AC-LBD => ABCD rhombus => AG CM"]

a GDP as the circle with

center M and radius MK ([6]).

The first conjecture they

state is: "ABCD rhombus

implies A belongs to the

circle with center M and

radius MK" ([1O]-[1 5]).

There is no dragging in this

episode.

Episode 2

[18] Gin: Because this way BKA

[19] Dav: Yes. Yes, because...

[20] Gin: ..is right...

[21] Dav: Exactly, to this way ...yes, necessarily because

it is inscribed in a semicircle...

[22] Gin: So necessarily also the other three are right...

[23] Gin: and it necessarily remains a rectangle.

Brief Analysis

Argumentation about why the

conjecture makes sense. It

seems that the solvers are

using "Ae CM" as their

premise an trying to prove

that ABCD is a rhombus.

Episode 3

[24] I: Wait, what are you starting from to make these

considerations?

[25] Gin: Well, so... that ABCD is a parallelogram.

Brief Analysis

I asks for a clarification about

what the solvers are arguing.

The new argumentation

provided seems to invert

premise and conclusion,
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[26] I: Ok.

[27] Gin: In orderte ...a

parallelogram with

perpendicular diagonals is a

rhombus.

[28] I: Hmm...
¦'©

[29] Gin: Therefore, in order for ABCD to be a rhombus,

it has to have AC and BD perpendicular.

[30] I: Ok.

[31] Dav: So BK...

[32] Gin: So BKA is 90 degrees.

[33] Gin: eh, here it happens, here BKA is 90 degrees, in

this picture, because

[34] Gin: It is an angle inscribed in a circle, that insists on

a diameter, which is AB.

[35] I: Ok.

[36] Dav: Yes.

Episode 4

[37] I: and this proves what conjecture?

[38] Gin: That...

[39] I: can you repeat the statement?

[40] Gin: Well, we said that if AC is perpendicular to BD,

ABCD is a parali, is a rhombus.

[41] Dav: Yes.

again, showing instability in

the status of the two

properties the solvers try to

link in their conjecture.

There is no dragging in this

episode.

Brief Analysis

This leads to the

interviewer's question about

what the conjecture they

want to prove in ([37]).

After a slight hesitation Gin

gives the original basic

222



conjecture as the answer.

Table 5.1 .2.2: Analysis of Excerpt 5.1 .2.2

Although the solvers seem to have reached a new conjecture through the use of

maintaining dragging, this conjecture seems to be destabilized by the original basic

conjecture the solvers have formulated. The instability of the new conjecture can also be

seen thanks to the following elements of the episode. First we notice that the direction of

the logical implication in the first conjecture is reversed with respect to what we describe

in our model. It is not incorrect mathematically, and moreover it is provable, however it

seems to denote instability in the perception of causality (if in fact there is any). They first

seem to use "A belongs to a circle with center M and radius MK" as the premise of the

conjecture ([6]), however then Dav and Gin state the conjecture together using this

property as the conclusion. This may happen because there is no dragging going on

during this excerpt. Therefore the haptic sensation of dependent and independent

objects and properties is completely absent (it could have been present only in the

sensory memory of the solver who had performed the maintaining dragging) and cannot

guide the transition to a logical interpretation of the relationship between the perceived
invariants.

Moreover the fact that the figure is left static seems to foster the "flattening" of all

properties onto a same level, as in the paper-and-pencil environment. Through the

argumentation the solvers use the theorem that any angle inscribed in a semicircle is a

right angle ([18]-[22]), and then the focus on what property to use in order to prove that

ABCD is a rhombus ([29]) seems to lead the solvers to no longer take into account any

experience of movement. Their argumentation also shows instability in the status of the

two properties the solvers try to link in their conjecture, because once again premise and

conclusion seem to be reversed.
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When the interviewer asks what the conjecture they want to prove is ([37]), after

a slight hesitation Gin restates the original basic conjecture. This shows interference and

moreover dominance of the basic conjecture over the new conjecture.

Concluding Remarks. In this section we have introduced basic conjectures and

discussed how they can interfere with other tasks described in our MD-conjecturing

Model. In the following section we introduce a second necessary ingredient that solvers

need to use in order to be able to formulate conjectures according to the MD-

conjecturing Model. In particular we will describe difficulties in conceiving a property of a

dynamic figure as an III. If such difficulties are present they can inhibit the perception of

an III and the possibility of continuing the exploration using maintaining dragging.

5.2 Conceiving a Property as an III

In Section 5.1 we described basic conjectures and how some solvers would feel

satisfied with such conjectures, instead of using them to transition to conjectures

developed according to our model, or return to them even after "discovering" properties

that could have been used to formulate a conjecture according to the process described

by our model. In this section we will analyze solvers' behaviors that are not consistent

with Task 1 of our model (Section 4.1): "Determine a configuration to be explored by

inducing it as a (soft) invariant intentionally induced invariant (III)". We describe these

behaviors as difficulties in conceiving a property as an III. We attempt to provide a fine

analysis of such difficulties by separating the different factors that need to be considered

when accomplishing Task 1 of our model. In the paragraph below we highlight each of

these factors and then use them in the analyses of excerpts from solvers' work during

the interviews.
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In Chapter 4 we define the III as: "a property (or configuration) that the solver

finds interesting and chooses to try to maintain during dragging" (Section 4.2). The idea

of "maintaining during dragging" condenses the awareness that the III is a property that

may become an invariant thanks to some induced continuous movement of a specific

base point. We can separate out four factors that seem to be condensed in such

awareness, and that seem to cause the difficulties encountered by solvers at this point of

the exploration. These factors are described below:

1) The III is a potential invariant of the dynamic-figure, that is, it does not vary with

respect to some movement, as described in Section 2.1 .1 , and such movement is

produced by dragging a base point in a particular way. Conceiving a property as

invariant with respect to the movement of a base point occurs through haptic

perception, a "feeling" that the solver can experience and that is generated by visual

and manual feedback from the Cabri-figure. Therefore, as illustrated in section 5.1 ,

an III is fundamentally different from a "static" property that can be perceived in the

paper and pencil environment.

2) The possible movement through which the III may be maintained as a property is

intimately related to the base point chosen for the dragging. In particular, different

choices of the base point to drag will imply different movements necessary to

maintain the selected property. Moreover, for any choice of the base point to drag,

some points will remain fixed while others will move, depending on their status with

respect to the construction that generated the Cabri-figure. Difficulties in conceiving a

property as being induced by the movement of a specific base point seem to occur in

cases in which solvers lack control over of the status of the various points of the

Cabri-figure. We will discuss this issue further in section 5.4. Difficulties in conceiving

this aspect of the III may also arise from a particular configuration of the dynamic-
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figure, in which the trajectory of the movement of the dragged-base-point is difficult to

distinguish from an element of the figure (for example, if the trajectory is a line that

seems to "go through" a side of the dynamic-figure). In this case the solver might

perceive the variation of the element of higher dimension (the side in our example)

instead of the variation of the dragged-base-point alone (Duval, 1995, 1998).

3) The movement of the dragged-base-point is perceived as continuous, and therefore it

guarantees the maintaining of the III "always" during the time lapse in which the

dragging is performed. When trying to determine whether a certain property is

maintainable, the solver may proceed by making "small perturbations" in order to get

a feeling for how to carry out the movement, if in fact it is possible, and by searching

for "good positions", as described in the analysis of Excerpt 4.2.1 . In this case,

difficulties may arise if the solver does recognize occurrences of the desired property

in any "close position" and thus interprets the "good position" as being isolated and

guaranteeing a form of "stable equilibrium" to the Cabri-figure. Even in cases in

which the solver does recognize a number of discrete "good positions" that give this

kind of perception of "equilibrium", s/he may not be inclined to think that it is possible

to "connect" these positions continuously while maintaining the interesting property,

which in this case would become the III.

4) The III is a soft invariant (Section 2.1 .2 and Section 4.2), so maintaining the III is

"controlled" or "caused" by dragging within the DGS, and in particular by the specific

movement induced by the solver on the base point s/he is dragging. Solvers who

seem to be aware of this and who want to focus both on the III and on the movement

of the dragged-base point can encounter difficulties in coordinating haptic perception

and multiple visual perceptions. In fact some solvers seem to be unable to proceed

using maintaining dragging if they have not previously envisioned some "way" of
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carrying out the dragging. These solvers, who need to conceptualize the movement to

induce on the dragged-base point in order to carry out maintaining dragging, may

encounter difficulties in conceiving a property as an III, as they may tend not to

separate the property to induce from the idea of how to move the base point through

which it can be induced. We have observed that this sort of difficulty arises frequently

during solvers' attempts to use maintaining dragging. However it seems to be a

particular consequence of difficulties arising from a more general factor that comes

into play in various problem-solving activities, that of being flexible/ having a free

mind. In this case the solver seems to fix his/her attention on specific properties

(usually basic properties) of the configuration and tries to link the idea of how to move

the base point to such properties even though they might not be directly related. We

discuss other consequences of difficulties related to being flexible/having a free mind

in section 5.3.

Each of these aspects of an III seems to potentially be a source of difficulty for solvers

attempting to identify an III and perform maintaining dragging. In the excerpts below we

will show how difficulties emerge during this phase of the exploration, and how they can

be interpreted with respect to the aspects we separated and described above. Below is a

brief overview of the Excerpts we present in this section.

Excerpt 5.2.1 : The solver performs maintaining dragging with the trace activated

in a way that seems successful to the interviewer, but he quickly formulates a conjecture

that has nothing to do with the trace. The solver seems to not be conceiving the property

to induce through dragging with respect to movement (aspect 1) and he seems to not

relate the movement or the induced property to the base point being dragged (aspect 2).

Excerpt 5.2.2: The two solvers do not seem to conceive the property to induce as

an III with respect to movement (aspect 1). Moreover, when the solvers try to perform
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maintaining dragging in response to the interviewer's prompting, they seem to recognize

the regularity in the movement in terms of a basic property (aspect 4).

Excerpt 5.2.3: The solvers oscillate between acknowledging the possibility of

using MD or not, unsure whether there are only a few discrete "good positions" (aspect

3) or whether the induced property can be maintained through a continuous movement.

Almost "by chance" (and through symmetry of the figure) the solvers notice the first

"good positions", and then rapidly more and more, which leads them to treat the induced

property as an III and perform maintaining dragging.

Excerpt 5.2.4: The solvers initially conceive only one good position, as a sort of

stable equilibrium (aspect 3), but then they find more good spots for the point they are

dragging. Unlike the solvers in Excerpt 5.2.3, these solvers are not able to proceed using

maintaining dragging, and they resort to their original basic conjecture, probably due to a

lack of flexibility (aspect 4): the solvers seem to not let go of the property they have

initially conceived and to not separate it from a potential movement of the dragged base

point.

Excerpt 5.2.5: The solvers seem to conceive a property with respect to

movement, but they do not "let go" of basic properties (aspect 4) which seem to

dominate their perception and inhibit the proper conception of an III. The solvers limit

their description of how to maintain the property "ABCD rectangle" to an "up and down"

movement that they do not clearly define with respect to the dragged-base-point (aspect

2), and they seem to be satisfied with their original basic conjecture.

Excerpt 5.2.6: The perception of basic properties seems to inhibit the conception

of an III (aspect 4). Unlike the previous example in Excerpt 5.2.5 in which the regularity

in the movement seemed coherent with the basic property (they both involved a "line"),

228



in this case the trace produced during maintaining dragging seems to create a conflict

with what the solver has in mind, and this seems to generate confusion.

Excerpt 5.2.1

This excerpt is taken from a student's work on Problem 1 ; it shows an example in

which the solver performs maintaining dragging with the trace activated in a way that

seems successful to the interviewer, but he quickly formulates a conjecture that has

nothing to do with the trace, as if it was of no importance at all. From this excerpt the

solver seems to not be conceiving the property to induce through dragging with respect

to movement (aspect 1) and he seems to not relate the movement or the induced

property to the base point being dragged (aspect 2).

In the previous part of this exploration, Sim has fixed points M and K with nails in

order to concentrate on dragging A. He has become interested in the property "BD

passes through K", a property that he seemed to want to use as a minimum basic

property.

Episode

[1] I: You just have to move A...you already have M

and K fixed, right?

[2] Sim: Yes.

[3] I: Ok, so now you move A trying to maintain BD

passing through K.

[4] Sim: Yes.

[5] I: Ok. Let's try to see if we are

able to say something about it.

Brief Analysis

The interviewer proposes to

use the property "BD passes

through K" as an III ([3] and

[4])·
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[6] I: Uhm [observing the dragging]

[7] I: If you want, you can help yourself...

[8] Sim: It looks to me like it is always ....

[9] I: ...with the trace tool, eh?

/% ¦¦

[15] Sim: now.. .[murmuring] /*

[16] I: Ok....yes. ^ *
[17] Sim: no. ..[murmuring]

[18] I: there [whispering]

[19] I: Ok...

[20] I: Try to go the other way... to the other side, so

you know that this mark is good...

[21] I: continue... %

[22] I: uh huh

[23] Sim: I wanted to

consider that if K is the

intersection of the diagonals, it is always a rectangle.

[24] I: You think that it is always a rectangle

[25] Sim: Yes.

[26] I: Yes.

[27] Sim: because...

The interviewer is quite

insistent in trying to prompt

Sim to use maintaining

dragging and activate the trace

([9], [11]), and this seems to

lead Sim to performing

maintaining dragging in a

proper way ([13]-[22]).

However what Sim seems to

"see" as an outcome of his

dragging are the properties "K

is the intersection of the

diagonals" and "it is always a

rectangle" ([23]), which he

links logically in his conjecture.

That is, the III basically

becomes his premise and the

conclusion is the original

interesting case "ABCD

rectangle".

Table 5.2.1 : Analysis of Excerpt 5.2.1
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Although the trace appears in a neat manner on the screen and a lot of attention seems

to be devoted to performing the dragging correctly, Sim does not seem to pay attention

to it at all, but instead he seems to "use" the dragging to strengthen a conjecture on

statically-conceived properties (aspect 1). It seems unclear what Sim is trying to maintain

during the dragging even though the interviewer had suggested trying to maintain "BD

passing through K" ([3]). From what he states in his conjecture, he seems to transition

from "BD passing through K" to "K is the intersection of the diagonals". In any case the

new premise of the conjecture does not involve A, the base point being dragged, nor the

trace conceived as any representation of the path, which does not seem to be conceived

at all.

Moreover, the fact that Sim had fixed with nails the other base points could have

helped him relate an object appearing from the movement of the base point to the base

point being dragged (the only free one), and conceive an III (aspect 2). However this did

not occur even though the maintaining dragging was carried out precisely, and

everything seemed to be in place for the solver to proceed according to the model and

conceive an IOD as "A belonging to a line".

We may provide different interpretations and give different hypotheses as to why

this might be the case. Here we prefer to insist on the lack of conception of an III,

according to all the aspects described in the introduction of the section. The lack of such

conception seems to be clearly visible, and it may explain the solver's inability to

perceive properties related to movement of particular points and to make sense of what

is happening in his DGS experience in the terms described by our model.

Finally this excerpt shows that it is possible to "provoke" behaviors that are
coherent with the ones described in our model, but this does not mean that awareness of

"what maintaining dragging can be used for" has been achieved by the solver. In
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particular, the solver does not seem to use maintaining dragging to search for a cause of

the induction of a certain invariant (2). We will describe this in detail in Chapter 6 and

Chapter 7. Here we argue that this excerpt provides evidence that "performing"

maintaining dragging does not mean being aware of what it can show. That is, a solver

can use maintaining dragging as a tool only if s/he has developed a mental scheme

associated with it that allows the various elements to be identified and geometrically

interpreted according to our model.

Excerpt 5.2.2

This excerpt shows how two solvers do not seem to conceive the property to

induce as an III with respect to movement (aspect 1). Moreover, when the solvers try to

perform maintaining dragging in response to the interviewer's prompting, they seem to

recognize the regularity in the movement in terms of a basic property (aspect 4). The

excerpt is taken from the solvers' exploration of Problem 1 . In this excerpt and all of the

following ones the bold refers to the solver who is using the mouse.

Before the beginning of this excerpt the solvers had formulated two basic

conjectures. The oral conjecture was: "If AD is perpendicular to CD, then ABCD ¡s a

rectangle." The written conjecture was: "If DA=CB then rectangle."

Episode 1

[1] Vale: ...rectangle...

[2] I: For example.. .maybe let's try to think about

other ways in which we can obtain a rectangle...

[3] I: Uhm

[4] I: So Rie seems to be dragging M. ..with the

Brief Analysis

The solvers are interested in the

configuration "rectangle" so the

interviewer proposes to look for

other ways of obtaining a rectangle

([2]). Rie, who was dragging, states
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idea of maintaining rectangle?...or not?

[5] Rie: Well, no, I don't know.

[6] I: You were dragging ^

freely? .·»«<,,

[7] Rie: I was studying the

figure...

[8] I: Ok.

[9] Rie: Ok, yes it is possible...

[10] I: So you were doing wandering dragging?

[11] Vale: Maybe ...if...adding the diagonals DB

and CA. Try adding

DB and ... "f

[12] Rie:

[murmuring as he

draws] DB and CA.

[13] Vale: and putting like rectangle.

[14] Rie: With M?

[15] Vale: I don't know [It: "boh"]

[16] Rie: Whatever [he starts dragging A]

that he was only "studying the

figure" ([7]) through wandering

dragging ([5], [7]), while Vale

suggests drawing the diagonals

([11]) and using them to look for a

new property ([13], [16]). Rie

seems to share this perception, as

can be inferred from his words:

"Well, no. I don't know. I was

studying the figure." which he

states even though the interviewer

was insisting on prompting the use

of maintaining dragging ([5], [7]).

Vale's suggestion leads us to infer

that she is not relating the property

"ABCD rectangle" to movement in

any way.

Rie switches from dragging M to

dragging A ([14], [16]), and seems

unsure about any difference this

choice would make.

Episode 2

[24] I: Uhm, is it only possible to choose A like that

Brief Analysis

When the interviewer asks whether
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to have a rectangle?

[25] Vale: I don't think so.

[26] Rie: Well like this too I can say it is a

rectangle [as he drags

A in different "good

positions"]

[29] Rie: Yes.

there might be other positions for A

in order to have a rectangle, the

solvers seem to agree that there

are other positions.

Episode 3

[30] Vale: Well more or less I think ...

[31] Rie: I think all the positions in which AB is

perpendicular to CB.

[32] I: ...in which AB... is perpendicular...

[33] Rie: and as she said DA is congruent to CB.

[34] I: Ok. Wait, so

try to tell me the + <«*» »

conjecture again.

It seems similar to ¦''¦-

what you had said

before: AB.. .ah, H*8iar

no, you had said...

[35] Rie: So,

[36] I: ...you said DC...

[37] Rie: If.. .no I had said before if AD is

Brief Analysis

These positions do not seem to be

conceived with respect to a

trajectory, but more "statically" with

respect to the basic properties "AB

perpendicular to CB" ([31]) and "DA

congruent to CB" ([33]).

For Rie the exploration seems to

have only strengthened his original

basic conjecture. Here he seems to

conceive a new premise, that is

"AB is perpendicular to CB" ([31]),

but he recognizes the equivalence

of the premises ("It is the same
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perpendicular to CD, then ABCD is ...

[38] I: Ok.

[39] Rie: ...a rectangle

[40] I: Ok, on the other hand now you said: If AB.

[41] Rie: Well, no, I said the same thing...

[42] I:.. .is parallel

thing" [41]).

Table 5.2.2: Analysis of Excerpt 5.2.2

Vale's behavior characterized by looking at a static configuration and "guessing"

at some additional property to use as a premise in the conjecture ([11]) seems to be

typical of a paper and pencil environment. In fact Vale's suggestion leads us to infer that

she is not relating the property "ABCD rectangle" to movement in any way (aspect 1).

Instead she seems to perceive it as an interesting configuration with nothing more to it

than if it had been in a paper and pencil environment. The property "ABCD rectangle"

never becomes an III, because throughout the excerpt it never seems to be perceived

with respect to movement (aspect 1). This can also be seen in the ease with which Rie

switches from dragging M to dragging A ([14], [16]), unsure about any difference this

choice would make (aspect 2).

When the interviewer asks whether there might be other positions for A in order to have

a rectangle, the solvers seem to agree that there are other positions. However these

positions do not seem to be conceived with respect to a trajectory. Instead they seem to

be conceived "statically" with respect to the basic properties "AB perpendicular to CB"

([31]) and "DA congruent to CB" ([33]), that might have easily been perceived this way in

a paper and pencil environment. The solvers' perception seems to be dominated by

basic properties, and the little dragging that Rie does perform seems only to strengthen

his original basic conjecture. In fact in his new conjecture the only difference is in the
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premise, that ¡s "AB is perpendicular to CB" ([31]), but he recognizes the equivalence of

the hypotheses ("It is the same thing" [41]).

Moreover, the solvers resist using maintaining dragging throughout the

interviewer's prompting and they resort to techniques that are typical of the paper and

pencil environment, using dragging at most to confirm their statically-developed insights,

leading to a more robust belief in the original basic conjecture. In Chapter 6 we will

discuss how this behavior may hinder the development of the notion of path. In

particular, the solvers might be seeing the vertical movement of the base point A as the

invariance of "perpendicularity of segment AB to BC" instead of as the movement of A

along a line. The fact that the figure-specific path in this case is a line on which a whole

segment (AB) rests when the III is maintained may be leading the solvers to continue

"seeing" the basic properties of ABCD that led to the original basic conjecture (aspect 4),

instead of to overcome them and conceive a path with respect to point A. In the next

excerpts we will show examples in which such interpretation seems to be the most

convincing.

Excerpt 5.2.3

In this excerpt the solvers oscillate between acknowledging the possibility of

using MD or not, unsure whether there are only a few discrete "good positions" (aspect

3) or whether the induced property can be maintained through a continuous movement.

Almost "by chance" (and through symmetry of the figure) the solvers notice the first

"good positions", and then rapidly more and more, which leads them to treat the induced

property as an III and perform maintaining dragging. The excerpt is taken from two

students' exploration of Problem 4.
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Episode

[1] G: and when... do like maintaining dragging

when it is a rectangle.

[2] F: Never... I mean one Ax

point and that's it. A^ /*·¦·
[3] G: really? If you move... x"

moving A... let's write moving. ..[G

starts to write] ~K~~1

[4] F: Moving A... \
[5] G: Moving A... there is only one

point... but are you sure,

even going over there? Can't /\

you go over there? \ x x,

6] G: There... Already two... \ /*¦
7] F: two...

8] G: eh, no.

9] F: No, here. ..no it does funny things.

10] G: wait,... no that is the one from before.

1 1] F: Exactly. This is the one from before...

12] G: two... Vf
13] F: two... I mean, one... \ \
14] G: one. ..two. ..three, \\

ou r. . .twenty thousand ! \¿ ·

15] F: yes, there are really many of them

Brief Analysis

Initially F thinks that the property

"ABCD rectangle" cannot be

maintained through dragging, as it is

verified in "one point and that's it" ([2]).

G seems uncertain and proposes to

check "over there" ([5]). His idea seems

to be guided by a sort of perception of

symmetry, which in fact leads to the

discovery of another "good point" ([6]).

This strengthens his belief that there

are other good points and F's difficulty

in dragging is soon overcome: when he

goes back to start at the original good

position, he discovers another "good

position" along the way ([13]) and

immediately after a whole set of good

points ([14]).

This seems to encourage the solvers

who now propose to perform

maintaining dragging with the trace
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[laughing]... let's do trace... we made a

mistake. There are really too many.

activated.

Table 5.2.3: Analysis of Excerpt 5.2.3

In this excerpt the solvers find discrete "good configurations" that guarantee the

visual verification of the property "ABCD rectangle" that they are interested in. As they

discover more and more "good positions", for the solvers, the property "ABCD rectangle"

seems to transit from the status of "potential III" to proper III. Evidence of this proper

conception can be seen in the solvers' desire to activate the trace and make the path

explicit. As we will discuss further in Chapter 6, what seems to be guiding the solvers'

experience is the "expectation" of being able to induce the property "ABCD rectangle"

through dragging along a path. This allows them to overcome the initial perception of

their being only discrete good positions, and expect to describe a regularity in the

movement of the dragged-base-point by observing the trace mark left during maintaining

dragging.

In the following excerpt the solvers use a similar technique to explore the Cabri-

figure and in particular the possibility to maintain a certain property. However the solvers
will not be able to overcome the block. We think the difference in the behavior resides in

the expectations developed by the different solvers with respect to maintaining dragging.

We will describe this theory in further detail in Chapter 7, through the notion of

maintaining dragging scheme.

Excerpt 5.2.4

This excerpt from Em and lla's work on Problem 1 , shows an example of solvers

who attempt to perform maintaining dragging. They start by looking for "good positions",

that is choices of the dragged base point that seem to induce the desired property (the
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potential III). Initially they conceive only one good position, as a sort of stable equilibrium

(aspect 3), but then they find more good spots for the point they are dragging. This

technique seems to give them a hint about some regularity in a possible continuous

movement of the dragged base point, however, unlike the solvers in Excerpt 5.2.3, these

solvers are not able to proceed using maintaining dragging, and they resort to their

original basic conjecture. We interpret this second difficulty as related to flexibility

(aspect 4): the solvers seem to not let go of the property they have initially conceived

and to not separate it from a potential movement of the dragged base point.

Episode 1

[I]IIa: So,

[5] I: Because you are telling me that it is possible,

but you are not showing it to me.

[6] Emi: Uhm.

[7] I: and so maybe it is not possible.

[8] Ma: I do not think it is possible, because you see

that... in any case if I move point A farther away, it is

never equal to 90!

[9] Ma: There will never be

a point equal to 90. There

is only that point there.

[10] Emi: Can I try?

[11] Emi: No, there is no

point.

I

\

Brief Analysis

Ha states that she does not think

it is possible to perform

maintaining dragging with point A

and the property "ABCD

rectangle" ([8]). As an argument

she uses her perception that she

does not think there will ever be

another "point equal to 90" ([9]).

Emi, too, seems to believe that it

is not possible to perform

maintaining dragging, as she tries

to drag A.
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Episode 2

[12] IIa: Yes, there is. See, look.

[13] Ha: You see? [she murmurs something as she

takes the mouse back]

[14] Ma: Excuse me but now let's do something.

[15] Emi: Uhm.

??-[16] Ila: Pointer.

[17] Ila: This has to be

90 degrees.

[18] IIa: Eh.. .90

[19] Ila: Uhm. ..now like

this. I make a point

[27] Ma: and I'll call it [she writes "lui" (English: "him")

on the point she draws]

[28] I: ...go back and get it.. .ok.

[29] Ha: I go get A again 4^' ,

[30] I: Ok

[31 ] Ila: B is 90...

[32] I: and look for

another one.

[33] Ua: But see that... no,

wait.

[34] Ha: 90! You always go back THERE.

"*$$**-*>&*-?%&

Brief Analysis

However Ha does not seem to be

completely convinced, and is

ready to change her mind,

spotting another "good position".

She comes up with a strategy

([14]) for looking for other "good

points". She proceeds by placing

a free point called "him" ([27]) on

the "good position" for A ([17]-

[28]) which she recognizes by the

measure of the angle she has

marked on the Cabri-figure ([17],

[18]).

Ha, on her own, seems unable to

find other good positions in the

vicinity of the point she has

marked "lui" ([29]-[33]), and

seems to think there is only one

good position ([34], [35]).

The interviewer tries to perturb
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[35] Ha: always there.

[36] I: Move a lot. Let's see if there is something

else. There now try to look for...

[37] Ha: There seems to

be one here '*"

too...theeeere!

[38] Ha: No.

[39] Val: There! , ?

[40] Ha: There [she

labels the point "lui"

again]

her belief of there being a single

good position by asking her to

"move a lot" ([36]). She still

seems quite uncertain, but maybe

seeing the angle measure

become very close to 90 in a

place "so far" from her original

good point leads her to believe

that there is another good point,

which she finds and marks "lui"

again ([4O]).

?

Episode 3

[41] Ha: Another 90. ..there! It's along there.

[42] Emi: Eh, yes.

[43] Ha: See?

[44] Emi: Uhm.

[45] Emi: Ok. :;'"'"

[46] Ha: Therefore,

[47] Ha:... they have to

...I mean the points ...eh they have to...

[48] Ha: But then we are ...

[49] Emi: They have to be on...

[50] Ila: It's always the same thing as before

[51] Emi: Right!

-/'

Brief Analysis

At this point Na seems confident

enough to look for another good

point and she seems to recognize

a path when she exclaims "along

there" ([41]).

The difficulty might have been

overcome, and Emi seems to

conceive something the points

need to be on, as she starts

murmuring in line 49.
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[52] Ha: It has to always be, uh, CD has to always

be parallel to AB

However Ha interrupts her and

states that it is "the same thing as

before" ([5O]) and imposes her

original basic conjecture.

Table 5.2.4: Analysis of Excerpt 5.2.4

The technique used by Ha to decide whether maintaining dragging is possible

seems similar to the one used by F and G in Excerpt 5.2.1 , and although it was not a

strategy presented in class during the introductory lessons, it seems similar to the

spontaneous scheme described as "line dragging" by Arzarello et al. (2002). However in

the previous excerpt, the solvers were able to overcome the initial uncertainty, and

propose to use maintaining dragging with the trace activated. Here the solvers do seem

to recognize a regularity ("It's along there!" [41]), which suggests a seed of conceiving

the III as "caused" by dragging (aspect 4), but such regularity does not seem to be

conceived with respect to the movement of the base point A (aspect 2). Instead it seems

to be a sort of generalization of a statically-conceived set of good positions, which

cannot be considered in relation to a movement and, therefore, to the invariance of any

property with respect to such movement.

The solvers do not seem to conceive dragging along the discovered "good

positions" as the "cause" of the invariance (aspect 4) of the induced property ("ABCD

rectangle"), and they resort back to a basic conjecture to explain the figure's behavior.

This shows how strongly basic conjectures can be rooted and how they can guide other

perceptions during an exploration. In the end lla's original basic conjecture appears to be

strengthened by this episode, and not overcome. We hypothesize that this can occur

when solvers have not developed an adequate way of thinking with respect to the use of

maintaining dragging (we will discuss this in further detail in Chapter 6), so, in particular
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they are not using it to search for a cause of the maintaining of an invariant conceived

dynamically. Moreover, lla's perception seems to be dominated by basic properties of

the class of quadrilaterals she is interested in, and she does not seem to be able to free

her mind and overcome this view of what she is experiencing (aspect 4).

Since Na seems to be unable to conceive "how to move her dragged-base-point"

(aspect 4), she seems to proceed by "trial and error". Moreover, she seems to perceive

the initial "good position" that she has named "lui" as a sort of point of stable equilibrium

for the dynamic-figure (aspect 3). Ha moves point A very slightly and seems to be using

"small perturbations" to explore whether a property can be imposed at some level of

generality on the Cabri-figure, and she keeps returning to what she thinks is her initial

good position, in which the angle she has marked is 90 (according to the software). Only

after being prompted in line 36 (l:"Move a lot. Let's see if there is something else. There

now try to look for...") does Na start looking for another good position "far away" from her

marked point. Again she behaves as if this were another point of stable equilibrium for

the dynamic-figure. Even after identifying a third good position she does not seem to

conceive a "good movement" that might connect them. Instead she recognizes the basic

property she had used in the first conjecture. Therefore we assume Na has not properly

conceived a path, nor an III according to our model.

Excerpt 5.2.5

This excerpt is taken from Val and Ric's exploration of Problem 1 . The solvers

seem to conceive a property with respect to movement, but they do not "let go" of basic

properties (aspect 4) which seem to dominate their perception and inhibit the proper

conception of an III and of a potential path as an object to drag along in order to induce

the III. Instead the solvers limit their description of how to maintain the property "ABCD
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rectangle" to an "up and down" movement. The solvers seem to be satisfied with their

original basic conjecture.

Episode

[1] I: and it was called "maintaining dragging", and so

you now are interested in the property rectangle

[2] Val: Yes, but in the f *«** :-«·

end, like moving A up ? i,
and down...

[3] I: Alright, so you already saw that moving A up and

down. ..what is this "up and down"?

[4] Val: Yes, alright, uh.. .I mean that in any case, right,

AB

[5] Rie: You have to move...

[6] Val: AB has to remain parallel to DC, or anyway ABC

has to be right.. .yes. f- 1,Ä" *

[7] I: uhm. r-

[8] Val: Always.. .and so "

you can do.. .making, let's

say, segment AB longer.

Brief Analysis

The solvers describe the

dragging as "moving up and

down" ([2]).

However they do not seem to

perceive the movement not

as a movement of A along

some object. Instead Val

seems to recognize it as "AB

has to remain parallel to DC"

([6]).

In her final remark ([8]) Val

seems to try to describe how

this dragging occurs, by

"making, let's say, segment

AB longer".

Table 5.2.5: Analysis of Excerpt 5.2.5

The solvers do not seem able to conceive the property "ABCD rectangle" as an III

as we describe in our model, because they do not seem to be able to conceive it with

respect a movement of A alone (aspect 2). In fact Val seems to see the "up and down"

movement as the "making segment AB longer" instead of A moving along a path. We

advance the following hypothesis. Val may be unable to conceive the movement of A as
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independent from that of AB because the trajectory of its movement (a sort of line

parallel to CD) guides her attention (aspect 4) towards the basic property she "sees" and

uses as a premise in her basic conjecture: "AB parallel to DC". The fact that she does

not seem able to conceive the regularity in the movement of A as the movement along

an object which is independent from segment AB - a path - seems to inhibit her

conception of an III and the process of conjecture-generation through maintaining

dragging in general, as we will describe in Chapter 6. The fact that Val is able to

recognize her basic property in the movement of the base point A probably strengthens

her basic conjecture and definitely it does not seem to create confusion or perplex her in

any way.

In the following excerpt we recognize a similar phenomenon: the solver's inability

to properly conceive an III as an invariant with respect to some movement of the

dragged-base-point which is independent from any basic properties (aspect 4). However

in the following example the movement of the dragged-base point does not seem to help

the solver recognize basic properties, instead it seems to create a conflict with what the

he has in mind, and to create confusion and uncertainty.

Excerpt 5.2.6

This excerpt is taken from a student's exploration of Problem 1 and it is an

example of how the perception of basic properties (aspect 4) seems to inhibit the

conception of an III as an invariant with respect to some movement of the dragged-base-

point. Unlike the previous example in Excerpt 5.2.5 in which the regularity in the

movement seemed coherent with the basic property (they both involved a "line"), in this

case the trace produced during maintaining dragging seems to create a conflict with

what the solver has in mind, and this seems to generate confusion.
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Before this excerpt, in this exploration, Ste had dragged the base point A, and

used maintaining dragging to reach a conjecture, which he wrote as: "Maintaining A on

the line through M and perpendicular to MK, the quadrilateral ABCD is a rectangle."

Episode 1

[1]Ste:M

[2] I: Ok.

[3] Ste: Also M has to...

[12] Ste: So. ..[he starts to drag M]

[13] I: Maybe to stay on the screen we could move

A closer to K...

[14] Ste: Uhm, yes.

[15] I:

Because then .,...·¦¦¦ -"""T

it's smaller, \_ ...-¦·¦¦¦¦'**'

the triangle.
-a

[16] I: Ok.

[17] Ste: Theoretically, uh... I always have the

rectangle

[18] I: uh huh...

[19] Ste: Uh, yes, if M, uh. ..if the line through A and
M

[20] I: uh huh...

Brief Analysis

Now, once Ste has erased the line

and repositioned his figure ([1]-

[1 6]) he tries to use MD dragging

M and maintaining the property

"ABCD rectangle". He proposes a

first conjecture ([17]-[19]): "I

always have a rectangle ...if the

line through A and M..."

Even though it is no longer drawn

on the page, the line from the

previous conjecture seems to still

play a main role in Ste's

perception of properties of the

figure. Ste does not seem to see

M as moving along a path, but

instead he seems to see a

"property" that should be satisfied

by the rectangle he is trying to

maintain during dragging,
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conceived as a generic rectangle.

Episode 2

[21] Ste: and therefore, eh, yes, it's the same thing

as before.

[22] I: The same thing

as before only

[23] Ste: M has to \ \,
stay on the line

[24] I: Wait now you >,4

are moving M.

[25] Ste: Yes.

[26] I: Right? So there is not the line from before

any more, because the line from before was

defined by M and K. But now M is moving.

[27] Ste: Uh huh...

Brief Analysis

Ste realizes the conjecture is the

same as before ([21]).

Ste does not seem to be able to

conceive the movement of M

independently from the basic

property he has in mind which has

to do with the perpendicular line to

MK through M.

Episode 3

[28] I: Ok. So maybe try to move very freely with M,

ok, and try to see if you are able to maintain this

rectangle.

[29] I: Ok, now when you move M it leaves the red

mark.

[30] Ste: So, maintaining rectangle,

Brief Analysis

Ste is using the trace and dragging

the base point M in a way that the

interviewer perceives as

successful maintaining dragging.

Ste seems to be linking the

maintained property to movement

("Moving M" [34]). However, Ste

does not seem to be able to
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A

[31] I: Go.

[32] Ste: Eh, only

in that point ^c";

there...

[33] I: Uhm.

[34] Ste: moving M.

[35] I: Try, try. You are doing it.

[36] Ste: Ah! I

understand!

[37] Ste: I mean,

...no.

[38] I: What are you seeing?.

[39] Ste: Uh, ...no, that...

[40] I: Keep going, maybe

go back along there and

see if you did well and

keep going on the other side to see.. .if you can still

doit.

perceive regularity in the

movement, interpret the trace as

the path becoming explicit, or even

conceive a path, probably because

the basic property he has in mind

is creating a conflict with the trace

mark that is appearing on the

screen.

There is a moment in which the

trace seems to change status (Ah!

I understand!" [36]), but the

transition does not seem to occur

([39]) and Ste ends up not does

not continuing the investigation in

this direction.

Table 5.2.6: Analysis of Excerpt 5.2.6

Ste seems to be having a conflict between the basic property he has in mind and

the trace mark left on the screen by the dragged-base-point during maintaining dragging.

We interpret this excerpt as representative of an improper conception of the III, since Ste

does not seem to be able to conceive the movement of M independently from the basic

property (aspect 4), as the movement along a path (Episode 2). While in other cases the

same lack in conception of the III during maintaining dragging would lead to

248



strengthening of a basic conjecture (for example in Excerpt 5.2.5), in this case it leads to

a conflict because the trace mark does not resemble any of the basic properties Ste

seems to be considering while looking at the Cabri-figure.

Concluding Remarks on the Section

In the analyses of the excerpts above we started to introduce the issue of

conceiving a path as a source of various difficulties in performing maintaining dragging

and proceeding coherently with respect to what we describe in our model. In particular,

in the last excerpt we presented (Excerpt 5.2.6) there seems to be no reference to any

kind of path: neither at a "general" level, as something (not better described) to drag the

base point along in order to maintain the desired property; nor at a "figure-specific" level,

as a particular geometrical curve described in relation to specific points of the figure. In

line [36] the solver exclaimed: "Ah! I understand!", but then goes back to his original

conjecture without interpreting the trace at all. We believe that if the solver had properly

conceived an III relating the movement of the dragged-base-point to some regularity -

dragging along a generic trajectory which the trace could have been made figure-specific

- he probably would have anticipated a path and "seen" the trace mark as an arc of

circumference (GDP) along which the dragged-base-point was moving. This would have

allowed him to overcome the conflict with the basic property involving the perpendicular

line to MK through M, and probably conceive an IOD as M belonging to the figure-

specific curve described through the GDP.

In Chapter 6 we will explain how we consider the conception of a generic path to

be at the base of expert use of maintaining dragging. In fact the generic notion of path

withholds the possibility of maintaining a property as an III through dragging along a

trajectory - a figure-specific path - and dragging along such trajectory may be
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interpreted as a regularity in the movement of the dragged-base-point, a new invariant,

the IOD. Thus the notion of path connects the two invariants and leads to an

interpretation of the IOD as a cause of the maintaining of the III.

5.3 Being Mentally Flexible

In the previous sections we have analyzed two factors that seem to be necessary

for the elaboration of a conjecture according to our model; first the necessity to

overcome a basic conjecture, and second that of conceiving a property as an invariant to

intentionally induce. We have identified a third necessary component which we will

describe in this section: being mentally flexible, that is being able to "let go" of the

various properties that one might have in mind, in order to perceive "new" properties

during the exploration. This ability could be described as a particular case of a more

general problem-solving technique introduced by Polya as a "change in perspective"

(1988). A change in perspective can help the solver overcome a perceptual block that

might have occurred because s/he is only seeing what s/he expects to see or because

s/he is locking on an idea that came to mind previously and is ignoring further ideas. This

is not to say that a solver should not have expectations. On the contrary, success

depends on a dynamic tension between the solver's expectations and his/her being

mentally flexible. Mason describes this key problem-solving ability as being able to

perform a shift in attention, alternatively "seeking for relationships and perceiving or

applying properties" (Johnston-Wilder & Mason, 2005, p. 251).

In terms of figurai concepts (Fischbein, 1993; Mariotti, 1995, p. 112), we could

say that what needs to be "let go" are particular aspects of the conceptual component

evoked in the solver by the Cabri-figure. We consider having in mind a necessary
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component because it seems that in cases in which the solver is not able to "let go" of a

property that is pre-conceived with respect to the exploration s/he seems unable to

perceive new properties that could make continuing the exploration easier or possible at

all. For example, in Excerpts 5.2.6 and 5.2.7 we saw how pre-conceived basic properties

can inhibit the conception of an III and/or the performance of maintaining dragging. As

described in the analyses of these excerpts, when the solver seems to be concentrated

on a basic property and s/he attempts to perform maintaining dragging, the movement of

the Cabri-figure seems to either strengthen the solver's perception of the pre-conceived

basic property (as in Excerpt 5.2.6) or create a conflict with it (as in Excerpt 5.2.7). In the

first case the strengthening of the basic property frequently leads to a basic conjecture

which the solver tends to be satisfied with, therefore preventing the search for new

conjectures involving the particular type of quadrilateral. In the second case the conflict

unfolds into an inability to perform maintaining dragging until the solver is able to be

mentally flexible and free his/her mind from the property guiding his/her expectations.

In this section we will show two examples (Excerpt 5.3.1 and Excerpt 5.3.2) of

how the inability to be mentally flexible and free their mind from a pre-conceived property

inhibits the performance of maintaining dragging, or the perception of an IOD while

maintaining dragging is attempted. In particular, in Excerpt 5.3.2 the solvers are not able

to strike a balance between expectations and being mentally flexible. Their pre-

conceived properties inhibit the development of appropriate expectations with respect to

maintaining dragging. On the other hand, in Excerpt 5.3.3 the solvers elaborate proper

expectations with respect to maintaining dragging, but a strong pre-conceived idea for

the GDP does not allow them to properly interpret the trace mark. In this case the

resistance to letting go of a previous idea leads to a conflict between the solvers'

expectations and the trace mark that appears on the screen. However the conflict does
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not hinder the solvers' correct expectations with respect to the possibility of performing

maintaining dragging. This is a sign of expert behavior, as we will describe later in

Chapter 6.

Excerpt 5.3.1

In this excerpt the solver seems to be unable to perform maintaining dragging,

because of a conflict created between the movement of the dragged-base-point and the

basic property he has in mind and from which he cannot free his mind. The excerpt is

taken from a solvers' exploration of Problem 4.

Episode

[1] Gin: I was thinking... I mean, moving A.. .we

can't, we can't solve it.

[2] Gin: It should remain. ..B...

[3] I: You think that moving A it does not remain

a rectangle?

[4] Gin: I mean, yes...

[5] I: Try to explain to me why

[6] Gin: I mean yes, but B would have to anyway

be on that perpendicular line.

[7] Gin: Because. ..uh, since this line

rotates...with center C, I mean the

rotates with center C,

basically...

[8] I: Uh huh...

Brief Analysis

Gin seems to be trying to maintain

the property "ABCD rectangle" while

dragging the base point A, in order to

"solve it" (line [1]). The interviewer

inquires about this in lines [3] and [5],

which leads to Gin's to explain why

he thinks the property cannot be

maintained dragging A.

Gin appears to be confused about

the behavior of the figure when

dragging A. He first keeps on moving

A left and right, sort of maintaining

AC at a constant inclination, as if that
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[9] Gin: Uh, B on the other hand does not move.

I mean, it always stays in the same position.

[10] Gin: Therefore B, uh, I mean in order for this

figure to be a rectangle, B has to anyway

[Italian: "comunque"] be on the perpendicular

line.

were the only movement possible.

Moreover, Gin seems to concentrate

on B, which appears to be fixed ([9])

and on the perpendicular line ([1O])

while he thinks that the rest of the

figure "rotates with center C" ([7]).

Table 5.3.1 : Analysis of Excerpt 5.3.1

From what has happened during the exploration, before the beginning of this

excerpt, we infer that with "solve it" he is probably referring to the problem of maintaining

the property "ABCD rectangle" while dragging. Gin seems to be considering a minimum

basic property during dragging, that is "B would have to anyway be on that perpendicular

line" ([6]), which seems to inhibit his dragging. He does not seem to be able to be

mentally flexible and free his mind from the property. Moreover this property combined

with the observation that B "does not move" ([9]) during dragging seems to generate

confusion, as can be seen when Gin is not able to explain both the "rotation" he

perceives and the basic property "B on the perpendicular line" at the same time. We

might infer from Gin's attempts to perform maintaining dragging that (at least for some

time) he also thinks that the only way of maintaining a "general rectangle" is dragging A

so that the line through AC maintains a constant inclination (see his dragging in lines [1]-

[5]). Such idea together with the inability to "let go" of the property "B belonging to the

perpendicular line" (which seemed possible only when A was in a particular position)

seems to lead Gin to the conclusion that maintaining dragging is not possible. However

Gin does not explicitly state whether maintaining dragging is or is not possible. Instead

he prefers to state the property he is convinced of ([1O]). This property may have such a

strong appeal to Gin because it seems to come from the conceptual part of the figurai
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concept he has developed (a rectangle has four right angles, in particular <ABD must be

right, so B must be on the perpendicular line he has constructed), and so it must be

correct and important.

Finally, we remark that the solvers in this excerpt, which comes from the first

exploration they engage in, do not seem to be expert solvers, yet. We consider the fact

that they do not seem to be expecting a path evidence for such interpretation, as we will

discuss in Chapter 6. Moreover, the solvers' resistance to letting go of their previously-

conceived property hinders the development of such expectation, and therefore the

possibility of using the maintaining dragging scheme. In this episode, the solvers do not

seem to have perceived any regular movement of the base point being dragged as "a

cause" for their III to be visually verified, and instead of expecting a path, they seem to

accept some basic property (B on the perpendicular line) as the "cause" of the III, which

becomes a condition and the premise in their conjecture.

Excerpt 5.3.2

This excerpt is taken from two students' exploration of Problem 4. The solvers

have formulated a first written conjecture on how ABCD can be a rectangle: "ABCD

rectangle (when AB is perpendicular to CA and AB * AC)." This Excerpt shows how the

solvers' inability to be mentally flexible and free their mind from pre-conceived properties

inhibits the carrying out of maintaining dragging. In particular, the properties the solvers

seem to be thinking of involve parallel and perpendicular lines, while an appropriate GDP

for the dragged-base-point would be a circle. This contributes to making the conflict that

emerges as the solvers try to interpret the trace mark particularly evident. The student

who is holding the mouse is marked in bold in the transcript below.
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Episode 1

[I] Em: Basically a line [murmuring]

[2] Ila: Yes

[3] Ila: Basically the parallel line to CD.

[4] I: What were...

[5] Ila: Uhm, it can move along ...

[6] I:. ..you looking at while you were moving it?

[7] Ha: Because basically I was looking at the fact that this

segment here...

[8] I: uhm...

[9] Ila: Has to always be parallel to this

[pointing to AB and CD].

[10] I: Ok.

[I I] Ha: So that the angles are always 90

and also if I do... I activate trace, for example, I will get the

parallel line to CD.

[12] Ma: It will always be a rectangle when I move A and B,

so on the parallel that I can construct.

Brief Analysis

Em and Ha provide a first

GDP, with respect to the

movement of A, as a

"parallel line to CD" ([1],

[3])-

Na describes the property

she has in mind, which

seems to be guiding her

perception.

She even anticipates

what the trace mark will

look like and proposes to

construct the object

representing her GDP.

Episode 2

[15] Ma: Parallel line through this point ...

[16] Ma: ...through this.. There, now if I move A...

[17] Ma: Ah no, but I need to fix B too.

[18] Ma: This

Brief Analysis

Na realizes that the figure

does not behave as she

expected. She tries to
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[19] Em: [murmurs something]

[20] Ha: Wait! Right! /
[21] Em: Move it. /
[22] Ha: Wait, no no. \ /

""-4
[23] Ua: No, it's enough to do...

[24] Ha: No...

[25] Ha: [murmuring] Theoretically I need "parallel"

[26] Ila: parallel

[27] Ha: through this point...

[28] Ha: No! What the heck!

take B into consideration

and she seems to want

to "fix" it ([17]) in order to

maintain the parallelism

she was expecting.

Episode 3

[29] Em: Why are you... I don't understand.

[30] Ha: No, no. I made a mistake.

[31] Ha: Because.

[32] Ha: I also need to fix this point ...

[38] Ha: but this point too has to be fixed

on the parallel line. So..

[42] Ha: It's the same thing as before! I «

mean. ..A has to always belong to that famous line that we

put in the hypothesis.

Brief Analysis

Both solvers seem

confused, and Ma returns

to her idea of wanting to

have B "fixed to the

parallel line" ([38]).

She finally goes back to

considering either the

condition expressed in

the first conjecture AB

perpendicular to CA or

AB parallel to CD.

Episode 4

[Ha tries to perform MD again]

Brief Analysis

The solvers seem unsure
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[55] Em: Eh, every time that you.. .the more you make it

longer, the more you

[56] Em&lla: [together] take it down.

[57] Ua: and the more I go up.. .no.. .the more

[58] Em: the more you shorten the more you raise.

[59] Ha: It's as if it followed...the line. ..but

[60] Em: Raise a little.

[61] Em: Lower.

[62] Ha: see that if I...I mean

[63] I: What are you looking at?

[64] Ha: I don't know. I am looking .,.--^

at the fact that it is as if.. .I am t « -"" /

trying to follow this line here, that \ /
is the parallel to CD,

[65] I: Uhm...

[66] Ha: However, even if I follow it [showing the movement],

B goes farther and farther away.

[Ha decides to activate the trace]

[79] Ha: So, trace.. .this point here.

[80] Ha: It's as if it is only in that point there.

[81] Ha: Wait, right.

[82] Ha: Yes!! Because if I move A,

whether it is possible or

not to perform

maintaining dragging. Em

tries to guide Ha in her

attempt to perform

maintaining dragging.

Ha describes the property

she is using to guide her

attempt at performing

maintaining dragging. As

she tries to do this she

realizes once again that

the figure, in particular B

is not behaving as

expected.

She decides to activate

trace on the dragged-

base-point. Once again
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[83] I: Yes..

[84] Ila: B.. .no, it doesn't stay still. ..but if I move A

¿f" y

[87] Ila: No, it's there.

[88] IIa: See that...

[89] Em: Try to maintain...

[90] Ua: ...only in that point, I think.

[91] Em: Go down! Go further down.

[92] Em: Lower.. .ok.. .keep going down

[93] Ha: down. ..[murmuring]. ..there

y

Em tries to help her

guiding the movement

orally.

Episode 5

[94] Ila: It has to follow.. .it has to be.. .see that it is...

[95] Em: [murmurs something]

[96] Ha:.. .basically the parallel.

[97] Em: No...

[98] Ha: Look: if I follow...

[99] Ila: this parallel line here...

[100] Ha: See? Look.

[105] Ma: Point A.. .

[106] Em: Bring it up.

[107] Ila: There! See that ...no.

[108] Em: No, I don't think.. .it's a rectangle

[109] Ha: It's not a rectangle, you're right.

Brief Analysis

Again Na seems to only

be able to interpret the

movement of A only in

terms of "following a

parallel line" ([96]-[99]).
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[110] Ila: No, but there ¡s something that ...

[111] Ma: Because ...

[1 1 2] Ha: It's as if A had to stay fixed there.

[113] I: Uhm.

[114] Ila: It has to...

[115] I: But you were moving it... «r*""'*"""""'

[116] Ma: Eh.

[117] Ua: I mean, yes, but I'm ^^^„„.,^"""
saying in order for it to remain a f

rectangle.

[1 18] I: Uhm...

[1 1 9] Ha: It's as if it had to stay fixed there.

[120] I: "There" where?

[121] Ila: In, uhm, between the intersection. ..between the

line that...

[122] Ha: Between A..., basically between this line here

[pointing to AC], and this one here [pointing to AB].

Ha seems to be confused

again, and decides that

A, too, needs to be

"fixed" ([112], [119])

between the intersection

of AB and AC, as she

indicates to the

interviewerai 21 ]-[1 22]).

Table 5.3.2: Analysis of Excerpt 5.3.2

Initially the solvers seem to be interested in moving point A and maintaining the

property "ABCD rectangle" (their III). Then the Ha seems to shift her attention to a

property she recognized in the Cabri-figure she is exploring ([7], [9]): "the segment

here... has to always be parallel to this." We can interpret this as part of the conceptual

component of the figurai concept Ha has built from the Cabri-figure. In other words, Ila

seems to be interpreting the Cabri-figure as a rectangle, a figurai concept, with the

parallelism between two sides as a property of the conceptual component. She seems to
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show a desire to relate this property to the trace, and in line 1 1 she even predicts

(incorrectly) what the trace would represent if she activated it and dragged A trying to

maintain her III.

Ila's prediction leads her to draw the parallel line to CD through A (lines [14] and

[1 5]) and to try to move A along it. As doing so she expresses the need to "fix B too"

([17]), which indicates the beginning of a conflict arising between the predicted and the

actual behavior of the Cabri-figure. She repeats her intention in lines 32 and 38 while

she is trying to redraw her line and explain her thinking (unsuccessfully) to Em. Ila's

argumentation is built around her pre-conceived property which she does not appear to

want to abandon. Even though Ha does not seem to be able to successfully drag A along

the line she has conceived, she states again that "A has to always belong to that famous

line" ([42]).

The conflict becomes more evident when, trying to perform maintaining dragging

again and getting help from her partner (we will discuss this collaborative behavior in

section 5.5), Ha keeps on looking at "this line here, that is the parallel to CD" ([64]) and at

the behavior of B as well ([50], [66], [84], [122]). Initially Ha seems to be successful at

performing maintaining dragging, however shifting her attention to the movement of the

dragged-base-point A, she is not able to overcome her original idea of moving along "the

parallel" ([96]). Ila's pre-conceived property, AB parallel to CD, leading to her idea of

having to move A along a parallel line, seems to inhibit the carrying out of maintaining

dragging, even after Em tries to guide her in an attempt that in the eyes of the

interviewer seems successful ([49]-[67]). Furthermore, Ha seems to reach the

conclusion, and be pretty convinced, that it is not possible to perform maintaining

dragging with this base point and this III ([80], [82], [90], [112]). The conflict is now

evident and Ha seems to be confused, but still unable to let go of her pre-conceived
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property. She only seems to be able to let go of the particular parallel line she was

considering to substitute it with another (possibly to BD this time) in order to try to

resolve the conflict when Em prompts her to continue dragging, since she seems not to

agree with Na ([97]) and wants to "do all the trace" some other way ([102]). All Na seems

to be able to perceive is that dragging along her imaginary parallel line does not induce

the III ([107]-[109]), which strengthens the conflict. In the end, Na states that maintaining

dragging is not possible, since A need to "stay fixed" ([112], [119]) in an intersection

([121], [122]). Again her reasoning seems to revolve around the pre-conceived property

which she cannot let go of.

Ila's attachment to her pre-conceived property leads her to uncertainty and

difficulties in performing maintaining dragging. Moreover the strength of her belief may

be augmented by the roots of the pre-conceived property. Again Ha seems to be

interpreting the Cabri-figure as a rectangle, a figurai concept, of which the pre-conceived

property is part of the conceptual component. The strength of Ila's pre-conceived

property appears again clearly later in the exploration, which unfolds in the following way

(see Excerpt 6.2.2 in Ch6). The solvers, prompted by the interviewer, are eventually able

to perform maintaining dragging in a way that seems consistent with our model, but are

unable to make sense of the "circle" that appears on the screen when the trace is

activated (Excerpt 6.2.2). Although all the elements were in place for the solvers to let go

of their incorrect GDP (the "parallel line" [99], Excerpt 5.3.2) and provide a new one ("the

circle" [8], Excerpt 6.2.2), they do not do this. Instead they ask themselves "why" a

couple times and, unable to reach an explanation, settle on a basic conjecture in which

the premise is "AB parallel to DC, that is when AB is perpendicular to CA".

Overall, we seem to have been able to describe the solvers' difficulties in this

excerpt in terms of solvers' reluctance to freeing their mind. We did so by showing that
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the pre-conceived property inhibited the performance of maintaining dragging and led to

a conflict that the solvers were not able to resolve. The conflict originated from the

coexisting idea of parallel and perpendicular lines and the observation and haptic

perception of the movement of the base point A (circular) during attempts to perform

maintaining dragging. The inability to be mentally flexible and free the mind from the pre-

conceived property made it impossible for the solvers to reach a harmonic interpretation

of their experience. In particular it seems like any interpretation of the trace mark was

linked to the pre-conceived property instead of potentially leading to a new detached

geometrical object along which to drag.

Finally, as in Excerpt 5.3.1 , the solvers in this excerpt do not seem to be expert

solvers. We will discuss this aspect in further detail when we discuss issues related to

the appropriation of the maintaining dragging scheme, in Chapter 6. Although there

seems to be expectation of a path, the prediction of its geometric description is

dominated by the strong conceptual components of the figures the solvers seem to be

dealing with. Moreover, the properties of the conceptual component are conceived

statically and the solvers' resistance to letting go of these properties inhibits their

perception of a regular movement of the base point being dragged as "a cause" for their

III to be visually verified. As in Excerpt 5.3.1 , the solvers seem to accept a basic property

as the "cause" of the III, which becomes a condition and the premise in their conjecture.

Excerpt 5.3.3

This Excerpt features two solvers, who we consider "experts" with respect to

maintaining dragging, but that encounter difficulties performing maintaining dragging

because they resist letting go of a previously-conceived idea. This leads to a conflict

between the solvers' expectations and the trace mark that appears on the screen.
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Episode

[I] G: you see that if you do, like, maintaining dragging

["trascinamento di mantenimento"]... trying to keep them more

or less the same

[2] F: exactly [ murmuring]... well, okay.

[3] G: Ok, uh, then what had we done? parallelogram.

[4] F: For the parallelogram, uh, let's try to use "trace" to see if

we can see something.

[5] G: go, let's try [speaking together with him]. ..uh, "trace" is

over there. There, no there, there!

[6] F: Trace, we have to do D, well for now let's do a

parallelogram like this, okay, so of this point... with respect to
what?

[7] G: With respect to what? [not understanding] only that

point.

[8] F: Only this point. Okay so I'll take it and go.

[9] G: and now what are we doing?

Oh yes, for the parallelogram?

[10] F: yes [as he drags D with the

trace activated] yes, we are trying \
to see when it remains a parallelogram.

[I I] G: yes, okay the usual circle comes out.

Brief Analysis

G has identified a

minimum basic

property (PD=PB) to

use as an III.

F decides to activate

trace on the base

point D and maintain

"ABCD parallelogram"

as an III.

The solvers seem to

give a first GDP as a

circle, however the

circle they have in

mind does not seem to

"fit" what appears on

the screen as F

performs maintaining

dragging. This conflict
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[12] F: wait, because here... oh dear! ["accidenti"] where is it leads F to question the

going? hypothesis of D being

/-" Xn on a circle in order to
[13] F: So, maybe it's not necessarily ;f ?« maintain the III.
the case that D is on a circle so that N i .. '

["in modo che"] ABCD is the

parallelogram.

Table 5.3.3: Analysis of Excerpt 5.3.3

We consider the solvers in this excerpt to be "experts" since they have

successfully used maintaining dragging and generated conjectures in a way that was

coherent with our maintaining dragging scheme in previous explorations. In this

exploration as well the solvers seem to expect the maintaining of the III to be "caused"

by the movement of the chosen base point along a path ([4]), which can indicate

appropriation of the scheme as we will describe in more detail in Chapter 6. However, as
soon as the idea of "circle" comes to mind - and moreover of a particular circle ([11]) -

the solvers seem unable to free their mind from such conception and are unable to make

sense of the trace mark, even doubting that the GDP is a circle at all ([13]). The circle

they seem to have in mind seems to be the circle centered in P and with radius 2PC.

This idea seems to inhibit the conception of other circles and even the performance of

maintaining dragging; the exploration continues with an argumentation about why their

initial idea does not work, during a second attempt at performing maintaining dragging,

and eventually with G deciding to "think about it" without the trace or any dragging (we

will show this in Chapter 6). In other words the idea of movement along a certain circle

the solvers cannot free their mind from is strong: it inhibits the perception of other

invariants and even the performance of maintaining dragging since it creates a conflict

iere is ¡t going?
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with what appears on the screen. In the end the conflict is overcome when one of the

solvers lets go of the idea and thinks about the situation in a different way (Excerpt

6.2.3).

5.4 Being Aware of the Status of Objects

As described in Chapter 2, a Cabri-figure is constructed from a set of basic

objects which the user initially places on the screen as s/he pleases. New objects are

then constructed from this basic set according to specific geometrical properties. Such

properties (and all derived properties) are maintained by the Cabri-figure during

dragging, that is when the user acts upon the figure. The user can act upon the Cabri-

figure by dragging any of the basic objects through which it is defined. In the step-by-

step constructions that lead to the Cabri-figures in our activities, the basic objects

through which figures can be acted upon are mainly points.

Awareness of the different status of objects of a Cabri-figure - that is of the basic

elements, those that can be acted upon directly, as opposed to the elements that are

dependent from these, and that cannot be directly acted upon - can guide the solver

when s/he is deciding how to proceed in the exploration. However gaining such general

awareness is not trivial and many solvers seem to exhibit a lack of it. For example, recall

Excerpt 5.3.2 from the previous section. Na constructs the parallel line to CD through A

(lines [26] and [27]) and then tries to drag A along it, as if the line were independent from

A. Her hypothesis is that A moves along such line, as she repeatedly expresses (lines:

[42], [66], [98], [99]). Her lack of general awareness over the status of the different

objects leads to perplexity ([28]) and a state of confusion when she tries to move A along

the line and realizing that the line moves with A ([1 12]-[1 17]). Moreover, her lack of

awareness of the status of different objects seems to even lead to an erroneous
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perception of objects that move or stay still during the dragging she is performing. Ha

explicitly states that B does not stay still when she tries to move A ([82]-[84]) even

though it actually does, as shown on the screen and justified by the fact that B is not

constructed as dependent from A in any way. However Ha does not seem to be able to

realize this, and instead concludes that the whole figure must basically "stay still" as it is

good "only in that point" ([9O]).

As described in the example above, a general level of awareness of the different

status of objects of a Cabri-figure is fundamental for dynamic explorations, whether they

include the use of maintaining dragging or not. This type of awareness is necessary for

the solver to be able to act upon the dynamic-figure, either dragging its base points or

constructing new robust properties to add to the ones inherited from the steps of the

construction. In particular, being aware of the different status of the geometrical objects

that the Cabri-figure is made of - which is necessary for having control over the Cabri-

figure - fundamental for generating conjectures according to our model.

Although general awareness is necessary for exploring and making sense of the

dynamic-figure, it is not sufficient. There seems to also be a figure-specific level of

awareness that allows solvers to control the Cabri-figure. When general awareness is

present, even in cases in which initially the solvers do not seem to have control at a

figure-specific level, solvers seem to be able to reason about the various elements of the

dynamic-figure and quickly gain control over their different status. On the other hand,

when general awareness seems to be lacking, solvers do not seem to be able to

proceed in the exploration. In the excerpts we present in this section we will provide an

analysis that takes into consideration the general level and the figure-specific level of

awareness, to show the roles played by each of them and how they are woven into

processes of conjecture-generation.
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First we present two excerpts that show evidence of solvers' awareness of the

different status of objects of a dynamic-figure. In particular Excerpts 5.4.1 and 5.4.2

show respectively how awareness of the dependence of certain objects from other basic

ones allows solvers to decide how to proceed in an exploration, and how a discussion

over which points are base points allows the solvers to overcome a block at a basic

conjecture. We then proceed by analyzing three excerpts shed light onto other

consequences that the lack of awareness of the different status of objects of a Cabri-

figure either at a general level and/or at a figure-specific level can have on the

explorations. In particular, for solvers who have general awareness, a lack of figure-

specific control may just make the dragging test manually harder but not hinder the

process of conjecture generation (Excerpt 5.4.3), while solvers who do not seem to have

awareness at a general level (Excerpts 5.4.4 and 5.4.5), may experience blocks in the

process and difficulties in developing the maintaining dragging scheme, the utilization

scheme associated to maintaining dragging and the task of conjecture-generation, as

described by our cognitive model.

Excerpt 5.4.1

This excerpt shows how general awareness of the different status of objects of

the Cabri-figure allows the solvers to decide how to proceed in the exploration. The

solvers are exploring Problem 2. As usual, the name of the solver who is holding the

mouse is marked in bold letters.

[1] Giu: So D is independent and it stays on its own...

[2] Ste: ...however...yes
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[3] Giù: Yes.. .exactly.

[4] Ste: A depends... [they speak

together]

[8] Giu: A is dependent from C because it is at the same

distance to is remains like that.

[9] Ste: It's an axial symmetry, so I can't do anything about it.

[10] Giu: Good for you.

[11] Giù: uh, B is dependent both from C and from D, right?

[12] Ste: But can I move it?.. .no

[13] Giu: Of course not!! [they laugh]

[14] Ste: right, actually...

[15] Giu: Because if you move C...

[16] Ste: if I move C...

[17] Giu: IF YOU MOVE C...

[18] Ste: I am moving C! what's wrong?

[They tease each other

and Giu takes the mouse] f ¦-*

[21] Giu: Ok. I am not

responsible for whatever it is that I am doing. ..yes. ..if you move

C, B also moves. ..if you move D.

[22] Ste: It's the same.

[23] Giu: it moves.. .so B is dependent from D and from C...

The solvers refer to

the steps of the

construction in which

C is defined as the

symmetric image of C

with respect to P.

They predict that A is

not a base point and

try to drag it, which

confirms their

reasoning.

Referring to how B

was constructed they

also conclude that B is

"dependent" and

therefore not

draggable.

They seem unsure as

to whether B is

dependent from C as

well or not, so they

test it by dragging.

They see that C does

influence B, and
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[24] Ste: from C and from D.

[25] Giu: from C and D exactly. [Ste takes the mouse back]

[26] Giu: Therefore we need to find the way to.. .so the possible

conditions are C and D, because only moving C and D we can

have something that changes.

[27] Ste: right.

[28] Giu: Otherwise... \ s
[29] Ste: right, actually here ·*¦¦'. |,
I can't do.. .oh no, I can... /

[30] Giu: eh, I can chaaange

[he drags P] yes

[31] Ste: Yes, because that point too can move this line here,

so...

[32] Giu: But it is like changing D.

decide that the points

that influence the

behavior (in order to

"have something that

changes") of the

Cabri-figure are C and

D.

They finally notice that

P is also a base point,

but decide not to use it

for the exploration,

since they see

dragging it as "like

changing D".

Table 5.4.1 : Analysis of Excerpt 5.4.1

The excerpt shows how the solvers are aware of the hierarchy of objects of the

Cabri-figure at a general level. Among the objects that the Cabri-figure is made of, they

seem to pay particular attention to points, deciding which ones depend on others, thus

gaining figure-specific awareness. While they figure out which points are base points

they mix theoretical properties ([8], [9]) derived from the steps of the construction with

empirical arguments based on trying to move the points with the pointer ([13], [18], [21]).

The solvers' reasoning and exploring general awareness of the hierarchy of the various

points of the Cabri-figure allow them to quickly gain figure-specific control, identifying the

base points. This is a prerequisite for deciding which base point to choose in order to
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perform maintaining dragging. They choose to use D as their selected base point and

the property "ABCD parallelogram" as their III, and proceed according to our model.

Excerpt 5.4.2

This excerpt shows how awareness of the different status of objects and of the

role of the base points in determining the behavior of the Cabri-figure allows the solvers

to overcome a block at a basic conjecture they had formulated earlier in the exploration.

The solvers had been working on Activity 3 and had written the following basic

conjecture: "If AB is perpendicular to /, then ABCD is a rectangle." Not knowing how to

continue the exploration, Pie thinks of dragging the base points and tries to explain his

idea. The solvers then continue the exploration trying to perform maintaining dragging

with the different base points.

[1] Ale: [murmurs something about angles.]

[2] Pie: Let's say this: If it is a rectangle, we can say that AB

has to be, I mean the only case in which, uh, the quadrilateral

is a rectangle, is when AB is perpendicular to line /.

[3] Pie: and that seems to make sense to us.

[4] Ale: Yes.

[5] Pie: Now we would need to see if moving the base points

we can obtain more... I mean in other ways, changing the base

points, we can obtain AB. ..perpendicular to /.

[6] Ale: [murmuring] only in this case...

[7] Pie: perpendicular to I. Which is what I was saying before,

that maybe it could be that moving K or M. ..that is [dragging M].

Pie repeats the basic

conjecture they had

reached earlier in the

exploration.

He then argues that

the condition "AB

perpendicular to /',

necessary and

sufficient for ABCD to

be a rectangle, may
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[8] I: Ok, so let's work in this

direction. \

[9] Ale: Yes, but in any case, uh, -*.

even if we move M or K.. .AB has *

to in any case be always

perpendicular to I in order to have "

a rectangle.

[10] Pie: Yes, and that we said is OK. Only in that case, in the

sense that if and only if AB is, uh, perpendicular to /, we have a

rectangle.

[11] PIe: But what I'm'saying is that maybe having three base

points...

[12] Ale: Yes. ->._.¦

[13] Pie: ...that we can move, it ^
could be that moving, in particular

one of those, [as he drags K] uh

points, we can obtain that AB is

a.. .that AB is, uh, perpendicular.

be obtained by

"changing [dragging]

the base points".

Although Ale is not

convinced by this

argument, Pie -

maybe encouraged by

the interviewer's

comment - tries to

explain again how it

might be possible to

obtain the desired

condition by "moving,

in particular one of

those... points", and

simultaneously he

tries dragging them.

Table 5.4.2: Analysis of Excerpt 5.4.2

In this excerpt Pie seems to have awareness of the different status of the points

A, M, and K with respect to the other points of the Cabri-figure both at a generic level

and at a figure-specific level. This is evident in his argumentation about why there may

be other ways to explore the case of "ABCD rectangle". In particular he argues that

although the condition they had expressed in the first conjecture (AB perpendicular to I)

is necessary and sufficient for ABCD to be a rectangle ([2], [1O]) there may be other
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ways to "obtain it" by dragging the base points ([5], [11], [13]). This awareness allows Pie

to conceive the condition of the first conjecture as a bridge property, which can be used

as a temporary III (see Ch 4), in order to find new conditions under which ABCD might

be a rectangle. In other words, the awareness at both levels seems to allow Pie to

overcome a global static apprehension of the figure and of the conceptual relations

between its elements - which had been used for generating basic conjectures - and

choose to proceed inducing the property "ABCD rectangle" through movement of the

base points. This way the solvers overcome their original (basic) conjecture and

proceed in the exploration using maintaining dragging.

Excerpt 5.4.3

The excerpt shows consequences that the lack of figure-specific control over the

different status of objects of a Cabri-figure can have on the explorations. This excerpt is

from an exploration of Problem 4 in which the solvers are experts and have performed

maintaining dragging using the base-point A, activated the trace, and reached a GDP,

which they describe at the beginning of the excerpt. Instead of constructing an A-

invariant object that represents their GDP, they construct an object that is dependent on

the dragged-base-point. In doing this they do not seem to be controlling the different

status of points. Although in this case the decision does not hinder the process of

conjecture generation, it makes the (soft) dragging test manually more difficult to perform

and a robust dragging test impossible to perform.

[1] Gin: So. ..circle again. Gin describes the GDP

[2] I: Hmm. as a circle.

[3] Gin: Yes. The solvers

[4] Gin: so... successively refine the
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[5] Dav: [murmurs something]

[6] Gin: Yes.. .it is

[7] Dav: ...it is the midpoint of C and

B

[8] Gin: It is the midpoint of...

[9] Dav: It is the intersection of the

diagonals

[10] Gin: diagonals

[11] Dav: of the diagonals.

[12] Dav: and since it is a rectangle, it is also the.. .the.. .uh the

center of the circumscribed circle.

[13] Gin: whatever.

[14] Dav: Eh, they are all on the circle.

[15] Gin: yes.

[16] Gin: hmm.

[17] I: Now, are you sure of this?

[18] Gin: eh, yes....

[19] I: Because you have traced only

[20] Gin: ...pretty much

[21] I: a little piece. Hmm.

[22] Gin: there.

[23] Gin: Well, we could try to

continue.

GDP trying to decide

where the center of the

circle might lie. They

then proceed by

constructing the circle

that represents their

GDP as the circle with

center the midpoint of

BC and passing

through A.

The solvers seem to be

describing aspects of

the new Cabri-figure on

the screen.

The solvers seem

convinced by their GDP

and are able to predict

what the rest of the

trace mark should look

273



[24] Dav: exactly.

[25] Gin: So now let's ...

[26] Gin: more or less along there

[27] Gin: nooo [as a little circle

appears when he clicks another

point on the screen because he had

not finished using the command "circle"]

[28] Gin: Good here...

[29] Dav: No...

[30] Gin: Yes, alright, it looks like it is

good [Italian: "sembra di sì"]

[31] Gin: Yes, good. It could be.

[32] Dav: Yes, it looks like it is good.

[33] Gin: yes.

[34] Dav: Careful you are going out...

like.

Although the circle they

have constructed is not

A-invariant the solvers

seem convinced that it

correctly describes their

observations as they

perform a soft dragging

test.

Table 5.4.3: Analysis of Excerpt 5.4.3

The solvers have performed maintaining dragging and activated the trace on the

base point that they are dragging. They seem to notice a circle appearing ([1]). They

proceed to give further details of their GDP, describing the center of the circle as the

midpoint of BC ([7]), or the intersection of the diagonals ([9]-[1 1]). Notice how these

descriptions do not take into account the status of different objects with respect to the

construction: defining a circle by its diameter defined by base points that are not being

dragged (B, C) is fundamentally different - in terms of behavior of the resulting

construction - than defining the center of the circle as the intersection of the diagonals

(thus necessarily dependent from the dragged base point and other dependent objects).
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However they construct the object that represents their GDP as the circle with center the

midpoint of BC, through A, the base point being dragged. This ¡s a GDP that is not an A-

invariant, and it creates difficulties in performing any type of dragging test, as shown in

the excerpt. The solvers need to drag point A trying to keep the constructed circle still

and the III to be visually verified, and at the same time check their IOD. Gin, with some

difficulty, does seem to be able to perform the dragging and both students seem to have

conceived the IOD as "A belongs to the circle".

The solvers do not seem to be aware of the difficulties that their GDP is creating

in performing the dragging, and they seem to be able to overcome such difficulties by

cooperating: Dav seems to check that all vertices of the rectangle are on the circle (a

bridge property he perceives as an III instead of "ABCD rectangle"), while Gin seems to

be trying to keep the circle still and drag A "along it". It seems like this collaboration is

fundamental given all that the solvers need to keep under control (for more on

"collaboration" see Section 5.5). Such difficulty would not have arisen if the GDP had

been an A-invariant object.

This example shows how the figure-specific control over the different status of

objects comes into play at different phases of our model. In Excerpt 5.4.2 we have seen

how it contributes to the initial phase of a dynamic exploration, and now we have seen

how it can affect the behavior of the object constructed to represent the GDP, making

such behavior non-ideal for the dragging test (especially a robust dragging test). The

solvers in this excerpt did not seem to have difficulty formulating their conjecture even if

they could only perform a soft dragging test. This seems to be the case because they

were aware, at a general level, of the hierarchy of constructed elements that determined

the dependence of certain objects from others. However, for solvers who do not seem to

have this general awareness this situation might have been puzzling. In the next two
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excerpts we will show cases in which the solvers do not seem to have awareness at a

generic level, and how these affects their explorations.

Excerpt 5.4.4

This excerpt shows how a student provides a GDP for the base point she is

dragging. However she does not seem to take into account the different status of the

objects she considers in her description, and does not define an object that is

independent from the base point she is dragging. The solver does not seem to have

awareness at a generic level, which seems to make it difficult for her to providing a GDP.

This interpretation of ours is supported by the fact that she overcomes the difficulties

only through an intervention of the interviewer aimed at fostering awareness of the base

points. The excerpt is taken from a student's exploration of Problem 11.
Episode 1

[1] I: you are moving A...with the intention of?

[2]Giu: Of leaving it...
?
I

[3] Giù: of making coincide the line AC f
and...

[4] I: uh huh

[5] Giu: I mean, uh, to make the perpendicular bisector of AB

go through K.

[6] I: Ok.

[7] I: and what are you seeing?

Brief Analysis

Giu is using a bridge

property to maintain

ABCD a rectangle while

dragging A.

1 Since this exploration was part of the pilot study, the interviewer was "more active" than
in the interviews of the final study. However the solver's lack of control over the status of
objects seems quite apparent, so we chose this excerpt even given this limitation.
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[8] Giù: Eh, that it moves along the

perpendicular line.

[9] I: Uhm

[10] Giù: I mean.

[1 1] I: Ok, so let's try to describe this perpendicular line.

[12]Giu: Eh.Jt'sthethethe

[16] Giù: Ehm, the perpendicular

line to AD, that is to the line / that

we constructed

[17] I: uh huh...

[18] Giu: through A.

[19] I: Ok, let's try.

[20] Giu: there.

She provides a first GDP

as "the perpendicular

line".

When prompted she tries

to refine her GDP and

describes it as the

perpendicular line to AD

through A.

She proceeds to

construct the object that

represents her GDP.

Episode 2

[21] Giu: Eh, B has to be...

[22] Giu: I would have to fix B.

[23] I: Hmm...B is a constructed object...

[24] Giu: Then I have to do the line through.

[25] Giu: Hmm...so...[she starts >-

dragging A again.]

[26] Giu: So I want A...

[27] Giu:. .here.

[28] Giu: There. ..so...

Brief Analysis

She seems to realize the

line she constructed does

not have all the

properties she had

hypothesized, in

particular it does not

contain B. She tries to

find another way of

describing "the place" to
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[29] I: Or also ¡? another place, you may want it, right? There

are a number of places^.

[30] Giu : Yes.

[31] I: Ok. Also all that [as Giu drags A]..you may want.

[32] Giu: All that.

[33] I: So let's try to describe this.

[34] I: There no [as Giu

goes "off track"]

[35] Giu: No. G

[36] I: Ok. _ r:.-·^-'"-:':.....
- 'p ?a _

[37] I: So try to explain I ..

to Cabri and to me what is the "here yes and here no".

[38] Giu: [smiling]

[39] I: Let's define a bit better the "here yes".

[40] Giu: [sighing] eh, it would be the perpendicular.. .only

have already drawn it! but it doesn't stay...

Episode 3

[41] I: Eh, but it moves. Why does it move?

[42] Giu: Because...

[43] I: Because who are you moving?

[44] Giu: Because I move A and so the parallel, uh, the

perpendicular moves too.

put A in order to obtain

the property she wants.

She describes "the place"

visually in terms of good

and bad zones on the

plane: "here yes" and

"here no".

However she seems to

keep on conceiving the

"here yes" zone as the

perpendicular line she

has already constructed.

Brief Analysis

The interviewer prompts

her to think about which

points make other

objects move.

Giu does not seem to be
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[45] I: Yes, because you defined it through A.

[46] Giu: Ok.

[47] I: So let's maybe try to define it not using A.

[48] Giu: [together]... not using A...

[49] Giu:.. .but instead...through B.

[50] Giu: ...through M?

[51] I: Ok, M does not move, for example,

[52] Giù: uhm.

[53] I:. ..so it might be a good one.

[54] Giu: was it this one? p ; ,.

[56] I: That one, yes, we f"T

don't want it any more. ¿, ^ .
[57] Giu: Hmm,...l have to do ü /

the perpendicular line [as she constructs the line] to this one

[she selects BC] through this [she selects M].

aware of the hierarchy of

the objects of the Cabri-

figure: she proposes to

use B to define the line,

as if she were just

guessing randomly, and

finally she decides to use

M - maybe because of

the response of the

interviewer.

Giu finally constructs an

object, representing her

GDP, that is A-invariant.

Table 5.4.4: Analysis of Excerpt 5.4.4

The III that Giu seems to be inducing is "the perpendicular bisector of AB goes

through K" ([5]), a bridge property that she seems to be using to study the case of the

rectangle (previous episodes of this exploration). She notices that A "moves along the

perpendicular line" ([11]), but she seems to have trouble describing it geometrically in a

more precise manner. Giu does not seem be aware (neither at a generic level nor at a

figure-specific level) of the hierarchy of the various elements of the Cabri-figure she is

investigating. She constructs a line to represent her GDP which is not an ?-invariant: she

describes it as being "perpendicular to AD" ([16]) and "through A" ([18]), so actually it is

doubly-dependent on the dragged base point. The object she constructs therefore
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moves when she tries to drag A along it. This causes difficulties in Giu's exploration,

since she does not seem to be able to distinguish (at a generic level) between a line

defined through a point versus a point belonging to a line. In dynamic geometry these

two situations are fundamentally different: while in the second case the point can only be

dragged along the line (it would be linked to it and therefore dependent from it) and the

line would not move, in the first case dragging the point makes the whole line move and

only dragging in a particular way (which Giu was trying to do) can the solver obtain the

perception of a point moving on a fixed line. Eventually, only after intense prompting

aimed at fostering awareness of the different status of elements of the dynamic-figure,

she reaches a GDP which is A-invariant and she formulates the following conjecture: "If

A lies on the perpendicular line to KM through M, then it's a rectangle."

We consider the difficulties portrayed in this excerpt to depend on Giu's lack of

generic awareness of the different status of objects of which the Cabri-figure is made. It

seems as if she were conceiving the figure "statically", or still very much in paper and

pencil mode, which leads to construction of an object that she imagines dragging A

along, and that moves when A is dragged. In other words Giu seems to conceive the

Cabri-figure as a whole, with properties that are analogous to paper-and-pencil

properties, which are not related to movement, and thus not invariants according to our

definition. In a static paper-and-pencil environment the situations "point on a line" or "line

through a point" are represented in the same way, and therefore in a certain sense

"equivalent", however in a DGS they are clearly different situations that the solver needs

to become aware of. We advance the hypothesis that this might be causing her lack of

generic awareness of the hierarchy of objects of the Cabri-figure, which of course implies

not having control over the status of different objects in a Cabri-figure generated through

the construction steps.
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Excerpt 5.4.5

In this excerpt the solvers recognize "a line" in the trace mark left when they

perform maintaining dragging using the base-point A. However lack of generic

awareness of the hierarchy of elements of the dynamic-figure seems to block their

construction of the IOD, since they are not able to provide a GDP which is A-invariant.

The excerpt is taken from two students' exploration of Problem 1 .

Episode

[I] Gin: What did you want to do?

[2] Dav: Eh, we should be able to move A...

[3] Gin: [murmurs something]

[4] Gin: you need to move it...

[5] Dav: eh...hmmm...

[6] Dav: no, it's not a.. .[murmurs

something]

[7] Dav: Yes, it is a

rectangle... before it goes out.

[8] Gin: I see.. .in the meantime.. .what movement it makes.

[9] Dav: Yes, it could be ...

[10] Dav: Only I think moving

[II] Gin: Yes.

[12] I: Eh, Gin, what movement is it

Brief Analysis

Dav seems to consider

A a base point, but he

wants to check by trying

to drag it. He tries to

perform maintaining

dragging with "ABCD

rectangle" as his III.

Gin concentrates on the

movement of the

dragged-base-point, but

does not seem to be

able to describe any

regularity at first. Then
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making?

[13] Gin: Eh, I don't know, I don't

[14] Dav: Let's try to trace.

[15] Gin: It looks like a line, but I'm not sure

[16] Gin: I mean, I don't understand well.

[17] Dav: Let's try now...or a very big circle.

[18] Gin: I was...

[19] Dav: No, I'm inside

[murmuring] --*e~

[20] Gin: Ok, now you are.

[21]Gin:Hmm..out

[22] Dav: yucky! ,_

[23] Dav: Let's try on the other side.

[24] Gin: Yes, it could be a line.

[25] Dav: Yes, like a line.

[26] Gin: It is a line ...uh. ..a line through

[27] Dav: It looks like a line on AB.

[28] Gin: Yes.

[29] Dav: Yes, it looks like a line

[30] Dav: The extension of AB.

[31] Dav: why does it disappear?

[referring to the trace mark disappearing]

[32] Gin: Yes, but the extension of AB is a particular case.

[33] Gin: it could be "any" extension of AB.

he gives a first GDP as

a line, which Dav

interprets as potentially

a "very big circle".

Dav continues to

perform maintaining

dragging with the trace

activated.

They refine their GDP

as a "line on AB" or "the

extension of AB".

However the solvers do

not seem satisfied with

this GDP. In particular

Gin doesn't think their

definition is cyclic ([37],
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[34] Dav: when. ..eh, yes.

[35] Dav: eh, when ...AB has to lie on...

[36] Dav: when it is on the circle.

[37] Gin: AB has to stay on the extension of AB seems to be

a bit...

[38] Gin:. ..forced [Italian: forzato].

[39] [they murmur something]

[40] Dav: Otherwise what? What else can we say? AB...

[38]). Instead of refining

the GDP Dav takes into

consideration a new

condition "when it is on

the circle", and seems to

be confused about how

to give a different

description of the

proposed line.

Table 5.4.5: Analysis of Excerpt 5.4.5

The solvers seem to be able to perform maintaining dragging, and they perceive

a regularity in the movement of the dragged-base-point (it moves along a "line" [15] or a

"very big circle" [17]). The solver also seems to be using a bridge property as an III

during maintaining dragging: keeping the rectangle inscribed in a circle they have drawn

([4H7])- The solvers spontaneously activate trace ([14]) to see what movement the base

point is following ([8]), and they seem to recognize "a line" ([15]) or a piece of "a very big

circle" ([17]). They then proceed to provide a more detailed GDP as a "line through AB"

([25]-[27]), and then as "the extension of AB" ([3O]), which is dependent upon the base

point being dragged. This seems to create difficulties for the solvers, and in particular

Gin seems to be unsatisfied with this description ([37]), but is unable to provide an

alternative one. We attribute this behavior to lack of generic awareness of the different

status of objects of the Cabri-figure they are exploring.

What seems to confuse the solvers is the GDP being dependent on the elements

through which they have defined it. Gin claims such a description is "forced [Italian:

forzato]" ([38]), and the solvers start looking for different conditions, like all the vertices of
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the quadrilateral being on the circle ([36]) and are not able to describe an IOD that has to

do with the regularity of the movement of the dragged-base-point. In this sense we

consider the solvers to lack awareness of the status of objects at a generic and figure-

specific level. Only through an intervention of the interviewer aimed at fostering such

awareness will the solvers be able to formulate a conjecture coherently with the

maintaining dragging scheme model. We will describe this in Chapter 6.

5.5 Some Spontaneous Behaviors for Overcoming Difficulties Related to

Maintaining Dragging

In the previous sections of this chapter we introduced four components that seem

to be necessary for expert use of maintaining dragging for conjecture-generation as

described by our model. We argued that each component seems to be necessary in the

process of conjecture-generation, and we did this by showing examples in which a lack

of a specific component hinders or inhibits expert use of MD. In particular this involved

analyzing cases in which the solvers' behavior was (completely or in part) not coherent

with our model. In this section we describe two spontaneous behaviors that solvers

exhibited in overcoming difficulties related to maintaining dragging. We consider such

behaviors particularly interesting because they recurred during different solvers'

explorations, in other words they were somewhat general. Moreover, after witnessing

different spontaneous occurrences of the behaviors, we developed prompts to foster the

behaviors in other solvers experiencing similar difficulties.

The first behavior, that we show in Excerpts 5.5.1 and 5.2.2, has to do with

performing maintaining dragging. Let us quickly return to what seems to happen when

this way of dragging is used. Once a property has been conceived as a potential III, in
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order to carry out maintaining dragging successfully, the expert solver seems to

concentrate on the property to maintain and trust that the dragging strategy will allow

him/her to "see" something. In order for the solver to observe the "something" arising

from the movement of the dragged-base-point and/or from the trace mark s/he must

simultaneously exercise haptic control - and therefore deal with the manual aspects this

task - over the dragged-base-point, checking that the III is maintained at every instant,

and concentrate on the movement of the dragged-base-point as a whole - and therefore

deal with theoretical aspects of the task. In various cases we have observed solvers

unable to drag because they seemed to feel the need to know "how to move" the chosen

base-point, as if trying to control both the induction of the III and the perception of an

unknown "way of moving" was too much to manage simultaneously. Some solvers

spontaneously developed the following strategy: a separation of tasks involved in

performing maintaining dragging. The solver holding the mouse would concentrate on

maintaining the III, ignoring potential regularities in the movement of the dragged-base-

point, while the solver watching would concentrate on perceiving regularities in the

movement of the dragged-base-point. In this manner one solver would conquer the

manual difficulties of inducing the III while the other solver could identify a GDP.

The second behavior we observed, and that we show in Excerpt 5.5.3, has to do

with the construction of an object that represents a particular GDP identified by a solver.

This behavior consists in constructing the object by "approximate" points that the solver

marks on the screen "by eye [Italian: a occhio]". For example, a solver might describe a

GDP as "a circle" and then approximately mark various points on the screen that s/he

thinks the circle goes through and construct a circle that seems to go through the

marked points. This behavior arose particularly in cases in which the solvers would
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search for a GDP by generalizing from a discrete set of points, as, for example,

described in Excerpt 5.2.2.

In Excerpts 5.5.4 and 5.5.5 of this section we show how we used the prompts we

developed after analyzing the spontaneous behaviors, to help other solvers overcome
similar difficulties.

Excerpt 5.5.1

This excerpt shows how two solvers spontaneously separate tasks involved in

performing maintaining dragging.

Episode

[1] Ste: There. Ok. It'll be difficult. [He starts dragging A with

the trace activated.]

[2] Ste: umh [murmuring]

[3] I: So Ste, what are you looking at to try to maintain it?

[3] Ste: Uhm, now I am basically looking at B to do

something decent, but...

[4] I: Are you looking to make sure that

the line goes through B?

[5] Ste: Yes, exactly, otherwise it comes

out too sloppy... I

[6] I: and you, Giu, what are you looking n& .h

at?

[7] Giu: That is seems to be a circle...

Brief Analysis

Ste is trying to maintain

"ABCD rectangle" as an

III by dragging the base

point A.

Ste explains that he is

trying to maintain the

perpendicular line to BD

through A going through

B, a bridge property for

the III.

Giu, on the other hand, is

concentrating on the

trace mark.

Table 5.5.1 : Analysis of Excerpt 5.5.1
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Before the beginning of this episode the solvers had found a bridge property ("the

perpendicular line to BD through A passing through B") for inducing the property "ABCD

rectangle", the III they had chosen. In this excerpt the two solvers seem to be carrying

out very different tasks: Ste is dragging, exercising haptic control over the figure, but

concentrating on a very local property (the bridge properly "the perpendicular line to BD

through A passing through B") in order to do so; while Giu can concentrate on the figure

as a whole and perceive the regularity in the movement of the dragged-base point,

highlighted by the trace mark.

Excerpt 5.5.2

This excerpt is another example of how solvers spontaneously separate tasks

involved in performing maintaining dragging in order to overcome difficulties related to

this way of dragging.

Episode

[1] Giu: Try to maintain these things here.

[2] Ste: It'll be hard.

[3] Giu: You try!

[4] Ste: eh, what am I doing?

[5] Giu: There, more or less.. .yes, yes, yes, not too much,

there.

[6] I: In the meantime you, Giu, tell me what you are looking

at.

[7] Giu: Come on, come on...

[8] Giù: Uhm. ..it seems to be a curve. Unless it's him who is

Brief Analysis

Ste is trying to

simultaneously maintain

the concurrence of the

two circles and of the line

through PD, a bridge

property for the III "ABCD

parallelogram".

Giu is guiding Ste orally,

helping him adjust the

manual movements, and
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/

not able to do anything...

[9] Ste: It's really hard! It moves!! [laughing]

[10] Giu : I know. /""" ~ X
[11] Giu: I can only // \

1 1 " s ;;.:.:
imagine.. .but I think \ -·¦¦¦- ¦¦""'""
that is it also, uh, that it \ "

\ ì /
is a circle...with center

in A.

[12] Giu: and maybe with radius P.

[13] Giu:.. .exactly...

[14] Ste: What do you mean with center in A and radius P?!

[15] Giu: AP!

[16] Ste: Ah! No, eh, I didn't...

[17] Giu: Radius a point is impossible! But...

[18] Ste: No, I think the radius is AD necessarily, in any

case, you should have AP equal to AD.

[19] Giu: Maybe I also understand why...

simultaneously

concentrating on the

regularity in the

movement of the

dragged-base-point A.

Once Ste has overcome

some manual difficulties,

he can shift his attention

to the trace mark and to

properties of the circle

that Ste has proposed as

a GDP.

Table 5.5.2: Analysis of Excerpt 5.5.2

Controlling the simultaneous concurrence of the two circles and the line through PD

during dragging is a manually-difficult task that seems to require all of Ste's (the solver

who is dragging) attention. Spontaneously Giu offers oral guidance during the dragging

task, as he can concentrate on the figure as a whole, not having to exercise manual

control over the figure. Moreover Giu takes on the task of interpreting the regularity in the

movement of the dragged-base-point using the hint of the trace mark left on the screen.
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Through this collaboration the two solvers are able to overcome difficulties involved in

performing maintaining dragging and perceiving an IOD.

Through first two excerpts we showed how some solvers spontaneously

developed the strategy of separating some tasks involved in performing maintaining

dragging. The solver holding the mouse would concentrate on maintaining the III,

ignoring potential regularities in the movement of the dragged-base-point, while the

solver watching would concentrate on perceiving regularities in the movement of the

dragged-base-point. In this manner one solver can conquer the manual difficulties of

inducing the III while the other solver can identify a GDP.

Excerpt 5.5.3

This excerpt shows a particular way of providing a GDP: the solver marks "good

positions" on the screen and then connects them with a curve that he thinks represents

the GDP. The constructed GDP therefore is an object that does not depend on the

dragged base point.

Episode

[1] I: Ah, so you clicked the...

[2] An: Eh, yes.

[3] I: Ok.

[4] An: Eh, I got the line instead of tal

[5] I: Ah.

[6] I: Go on "undo".

[7] An: Point D.

Brief Analysis

Giu searchers for

positions of D in which

the measures of PB and

PD seem to be the
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[8] An: Where are you. ..there [murmuring]

[9] [he murmurs as he reads the measures of the segments

he has marked]

[10] An: In the end.. .if I do a nice drawing...

[11] An: Yes, more or less we have it.

[12]l:Hmm.

[13] An: I'll do.. .a circle [as he

constructs it]

[14] An: Yes, that ...I was saying

[15] An: If it is a parallelogram, the

side, well, obviously the diagonals

have to be congruent, they have to

cut each other at their midpoints. \

[16] An: But even more importantly the opposite sides have to

be congruent.

[17] I: Yes.

[18] An: In this case, if we already know that AC are, uhm,

well, AC is divided in half, is always divided in half

[19] An: and we put as condition that AD is nqnciriient tn CB.

so that D f

[20] I: uh huh

[21] An:. .lies on the circle that, uh, centere . >-^<:'

[22] I: uh huh
V"''a

same (up to two

decimals).

He now perceives the

points as belonging to a

circle, which he

proceeds to construct.

An perceives a property

of the parallelogram he

had not considered

previously: opposite

sides being congruent.

This strengthens his

belief of having found an

appropriate condition for

obtaining a

parallelogram, that is D

belonging to a circle

centered in A and

through P.

290



[23] An: We know that AD is congruent to CB..always.

[24] An: And this puts us closer to the, uh

[25] An: to the parallelogram. ..now let's see.. .moving D a bit.

An then proceeds to

perform a dragging test.

Table 5.5.3: Analysis of Excerpt 5.5.3

This second behavior seems to potentially help when maintaining dragging is

difficult to carry out, or when a solver has trouble perceiving regularity in the movement

of the dragged-base-point during maintaining dragging. Although An describes the circle

he constructed as the circle centered in A and through P, he constructs it as the circle

centered in P and through one of the points he had marked as a good position for D. A

consequence of such choice is that the dragging test can only be performed

"approximately". However this does not seem to bother the solver.

An "approximate" construction of a GDP can help in such cases, by providing

visual feedback to check an initial idea. The constructed object is "approximate" in the

sense that it depends on points that were placed "by eye". However it can provide good

support for transitioning towards a new GDP that depends on the base points of the

dynamic-figure that are not being dragged.

After we had observed solvers spontaneously use these first two behaviors to

overcome difficulties they encountered when using the maintaining dragging scheme, we

decided to develop two types of interventions aimed at inducing such behaviors in other

solvers. We show how through these interventions solvers were able to overcome

difficulties in the following two excerpts (5.5.4 and 5.5.5).
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Excerpt 5.5.4

This Excerpt shows how prompting aimed at inducing a separation of tasks can

be used to help solvers succeed in performing maintaining dragging and reaching an

IOD. The solvers are exploring Problem 2.

-.¿*f .

Episode

[1]V:No

[2] I: Eh, you Val maybe tell /

her a little more up, down, ¡Eft" -~f— ~ ™
right, left... . \

S,„; _1..„.„, .¿J\»
[3] V: Go down. ..no, no, no

up.. .up.. .up, up.

[4] V: Go up moving a little

[3] M: But it's not any more

[4] V: go up moving a bit to the right... it's still a parallelogram.

[5] V: Up, no, no, go like in diagonal a little. ...there.

[6] V: There, perfect, a bit further down. ..like that.

[7] M: Maybe... /"
/

[8] V: a circle ^^"^^^i ¦¦-· ~-~:::^""
[together] /' \

/ ....... -%( /
[9] M: ...a circle 4 ; " ;-- ¦-""'"
[10] V: With center A and radius AP?

[11] M: Let's try to do it.

[12] M: One second...

[13] M: So, circle. ..with center in A

Brief Analysis

The interviewer

prompts the solvers

to help each other by

asking the solver

who is not dragging

to orally guide the

solver dragging.

The solver who is

guiding (Val) is able

to consider the figure

as a whole, while the

solver dragging

seems to

concentrate locally

on the point she is

dragging. The

solvers seem to

simultaneously
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[14] M: center A, are you sure?

[15] V: uh huh...

[16] M: and radius AP.

[17] M: Trace on D.. .Let's start from

here and let me go... hey, tell

me if it remains, ok?

[18] V: Yes. /
f
Í

[19] V: Yes, yes yes yes.. .yes, \

it remains.

¦\- /

recognize a circle.

Val is able to provide

a more precise GDP

as a circle centered

in A and with radius

AP. M constructs the

GDP and performs a

dragging test.

Table 5.5.4: Analysis of Excerpt 5.5.4

The interviewer's prompt seems to induce the appropriate behavior, the same

that other solvers had spontaneously exhibited. One solver looked at the figure globally

and was able to guide the other solver, who was dragging and concentrated on local

properties of the figure. The separation of tasks led to success in conceiving a GDP and

IOD. The solvers in fact perform a dragging test and formulate the conjecture: "If D

belongs to the circle with radius AP, then ABCD is a parallelogram."

Excerpt 5.5.5

This Excerpt shows how an intervention that suggests the construction of an

object that stays fixed during dragging of a certain base point seems to help the solvers

overcome difficulties in providing a GDP and reaching' an IOD for their conjecture.

Episode 1

[1] I: There, so you saw that moving A "up and down".. .what

is this "up and down"?

[2] Val: Yes, well, uh, I mean that in any case...

Brief Analysis

The interviewer prompts

the solvers to describe

their observations by
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[3] Rie: it has to move...

[4] Val: AB has to remain parallel to DC, and yes, well, ABC

has to be right...

[5] I: uhm.

[6] Val: ...always, and so you G "B" f

can do...extending segment I^ v "

[7] I: ...extending AB [thinking to herself]. So you say "drag A

on the extension of AB"?

[8] Val: Yes. **"

[9] Val: Ah, ok [as she i

constructs a line through M and "*'. \

A]

[10] Val: Eh, but this line here varies when we vary...

Episode 2

[1 1] I: So what do we need? An object that does not vary.

[12] Rie: Yes.

[13] Val: Eh no, because if you move A...

[14] Rie: Then let's do...

[15] Val: ...it is not a rectangle any more, I mean they are not

right any more, the angles that we move.

[16] Val: I mean...

[17] Rie: I know but I wanted to add a point that does not
move.

using the same words

they had used to

describe the movement

of the dragged-base-

point, "up and down". Val

immediately provides

basic properties as

explanations, then she

suggests "extending AB".

She tries to construct the

object representing her

GDP, but realizes that it

moves when dragging A.

Brief Analysis

Rie suggests drawing

points that stay fixed, but

is not able to carry out

his suggestion.

The interviewer then

suggests drawing an

object the

"approximately"

represents the GDP to
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[18] Val: like...

[19] I: ...the line that you drew.. .maybe for now you could

draw it approximately [Italian: "a occhio"] and then we can

see, and ...we'll keep it still and then let's see if we can

redefine it in a better way. Ok [as Val constructs it].

[20] I: You think that it's more or less this line, right?

[2 1 ] Val : More or less. | r >«« ;:

[22] I: along which you to *

drag A. Ok.

[23] Val: More or less it looks like a rectangle.

[24] I: More or less it seems like a rectangle.

[25] Val: Yes.

then redefine it some

other way.

Val proceeds with the

construction of a line

through M and roughly in

the "up and down"

direction.

The solvers seem

satisfied.

Episode 3

[26] I: So how could we describe this line?

[27] I: Who are the base points?

[28] Val: A, M, K

[29] I: uh huh

[30] Val: Well, yes, it goes through M.

[31] I: Ok.

[32] Val: because M is the midpoint of AB.

[33] I: Great.

[34] Val: and it should theoretically be parallel to DC, but

they derive from...

[35] I: But DC. uhm.

Brief Analysis

The interviewer prompts

the solvers to focus on

the base points of the

figure to redefine the

GDP.

Val reaches a refined

GDP. Although she

defines the new GDP as

a line through M and
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[36] Val: Maybe ...it's perpendicular to KM.

[37] I: Eh, so try.

[38] Val: I should do.. .[while she constructs

it]. ..perpendicular to the line I had constructed through M, it

should go through K. I don't know if it does...

[39] I: Ok. Yes, well in any case you did it approximately

[Italian: "a occhio"]. t ¡s»s H

[40] Val: Yes, well ok. £»»

perpendicular to KM she

leaves the approximate

line and constructs the

perpendicular line to it

through M, hoping it will

go through K. There

seems to be a lack of

control over the status of

objects, which leads to

the next intervention of

the interviewer.

Episode 4

[41] I: Ok, so try to maybe to the opposite. Construct KM and

then do the perpendicular and see if it was exactly that one.

[42] Val: So [constructing the line through KM]

[43] Val: Through K.. .and M

[44] I: Ok.

[45] Val: Perpendicular to this through M.

[46] I: Ok.

[47] Val: Eh, it looks like it * «« *

could do. iK°\

[48] I: It looks like it could...

[49] Val: So A can be redefined on the line.

[50] I: Ok and now you are testing the conjecture.

Brief Analysis

The solvers seem

satisfied and they

redefine the dragged-

base-point on the line

representing their GDP,

and test their conjecture

with a robust dragging

test.

The conjecture they
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-'S«»

[51] I: Right? How was this conjecture? It was: if...

[52] Val: If, uhm A moves on a line through M and

perpendicular to ...to the segment KM,

[53] I: Ok.

[54] Val: the figure is a

rectangle, it remains a "^ -- y

rectangle.

[55] Rie: Yes. i «»*> :'>

[56] I: Ok.

[57] Val: and also from the measures it looks like it because

in any case, yes, well, the sides...

formulate uses the IOD

they have reached as

premise and the

interesting configuration

(ABCD rectangle) as its

conclusion, as described

by our model.

Table 5.5.5: Analysis of Excerpt 5.5.5

In Episode 1 the solvers are facing difficulties providing an appropriate GDP, so

the interviewer's first prompt is aimed at guiding the solvers to a new one that does not

vary as the dragged-base-point moves ([11]) even if it might be constructed

"approximately" for the time being ([19]). In her second prompt in Episode 2 ([19]), the

interviewer remarks on how the description of the object the solvers are tying to deal with

can be refined successively. The solvers seem to be satisfied with the "approximate"

GDP that they construct in response to the interviewer's prompt. Then, in Episode 3 the

interviewer tries to guide the solvers to re-describing the constructed line in terms of the

base point of the dynamic-figure. This leads to the construction of a new object, a

perpendicular line to the one constructed "approximately", that according to the solvers

highlights another property that the figure - interpreted as a rectangle - should exhibit:

this newly constructed line should go through K (and it does "by eye").
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The solvers now are aware of conceptual properties that link the object

representing the GDP to the base points of the dynamic-figure. Therefore in Episode 4

they respond to the last prompt by constructing a new object that represents the GDP

appropriately. Moreover they are able to redefine the dragged-base-point upon it and

perform a robust dragging test.

The prompting sequence used by the interviewer in these episodes is

representative of the type of intervention that would be carried out during the interviews

when solvers faced difficulties providing an appropriate GDP. In section 6.3 of Chapter 6

we will describe the interviewer's prompts in greater depth.
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CHAPTER VI

A SECOND LEVEL OF FINDINGS: THE MAINTAINING DRAGGING SCHEME

Throughout the previous chapters we have mentioned "expert use" of maintaining

dragging (MD), intending cases in which the exploration of the Cabri-figure that emerged

from the steps of the construction proceeded according to our model. A key element,

necessary for expert use of MD, seems to be conceiving MD as a tool that can help

answer the question "what might cause the maintaining of the property I am interested

in?" by leading to the answer "dragging a particular base point along a (generic) path

that I will try to make explicit". A second key element that seems to be tightly connected

to expert use of MD and with the response to the question above is the notion of path. In

Chapter 4 we introduced the notion of path which we had conceived in our first

description of the MD-conjecturing Model, and now we will present a further elaboration

of such notion. In particular, we will distinguish two components of the notion of path: a

"generic path" and a "figure-specific path".

In this chapter we will also describe how the becoming conscious of how an

invariant may be induced by dragging a specific base-point along a generic path seems

to belong to a meta-cognitive level with respect to the dynamic exploration being carried

out. This meta-cognitive level seems to influence the interpretation of the phenomena

that occur on the screen, and to control the whole development of the exploration

process. Constructing this meta-level knowledge seems to allow some students
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to transition to using MD during an exploration, and exhibit expert behavior. In other

words, having focused on searching for a cause for a certain type of quadrilateral to be

maintained may guide the interpretation of the task in terms of developing conjectures in

which the condition in the premise may be reached through MD. The description of

expert behavior requires an extension of the analysis, from the cognitive level to the

meta-cognitive level. While the figure-specific component of the notion of path resides at

the cognitive level, the generic component of such notion, conceived as a cause, resides

at the meta-cognitive level.

These considerations have led us to a new interpretation of "where" abduction

may lie within our model. In section 6.2 we therefore introduce a new notion, that of

instrumented abduction, describing the type of abduction that may be seen in

explorations leading to conjecture-generation that feature expert use of MD. Moreover

we describe instrumented abduction as a particular type of instrumented argument,

which we also introduce in this section. Finally, in Section 6.3, we provide a glimpse into

recurring aspects of a process of development of expert use of MD. We accomplish this

by describing a possible sequence of prompts that was used by the interviewer to foster

solvers' awareness about the use of MD for producing a conjecture, and that seemed to

lead solvers to progress in a process of development of expert use of MD.

6.1 Elaborating the Notion of Path

In Chapter 4 we introduced the notion of path (Section 4.3) that we had

elaborated during the data analysis we used to confirm and refine our model. New

considerations about our idea of path, when focusing on expert use of the MD, have led

us to further elaboration of the notion, that we will present in this section. We will do this

through an example offered by an excerpt that we have previously introduced, and that
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we include again in this section for ease of the reader. In particular we will illustrate the

generic and figure-specific components of the notion of path. For simplicity we will refer

to these components as generic path and figure-specific path.

This distinction between "generic" and "figure-specific" has revealed to be very

effective in the analysis of solvers' explorations. On one hand the idea of generic path

seems to play a key role in the development of expert use of MD. While on the other

hand, the notion of figure-specific path seems to be very helpful when analyzing the

emergence of elements related to the path in a specific exploration. Moreover, we note

and recall that this distinction has been quite useful in the description of other factors

involved in the exploration process leading to the conjecture, that we described in

Chapter 5. For instance the distinction between generic and figure-specific awareness of

the status of objects of the Cabri-figure allowed us to analyze and explain different

difficulties that solvers encountered during their explorations (Section 5.4).

Let us recall the first two episodes of Excerpt 4.3.2 that we introduced and

analyzed in Chapter 4.

Episode 1

(0:41) F: exactly, [he drags D a bit, in a

way that looks like he is trying to maintain

the property parallelogram]

(0:48) G: you see that if you do, like,

maintaining dragging ... trying to keep

them [the diagonals] more or less the

same...

(0:57) F: exactly [murmuring]... well, okay.

Brief Analysis

F and G decide to use maintaining

dragging to investigate "when ABCD is a

parallelogram" (intent repeated in (2:41)

and (3:05)). In a previous episode they

have noticed that the property "ABCD

parallelogram" can be substituted with the

sufficient property "diagonals of ABCD

congruent", a bridge property (0:48).
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Episode 2 Brief Analysis

(2:41) F: For the parallelogram, uh, let's try

to use "trace" to see if we can see F proposes to activate the trace in order to

something. "see something" (2:41 ).

G: go, let's try [speaking together with

him]. ..uh, "trace" is over there.

Table 6.1.1 : Analysis of Excerpt 6.1.1

In Episode 2 F says: "For the parallelogram, uh, let's try to use "trace" to see if

we can see something" (2:41). There seems to be "something" he is referring to that has

to happen for the parallelogram to happen. At this point it is not important "what" the

"object" along which dragging will occur is, but that such an object exists in the mind of

the solver. Moreover, the analyses of this and of other transcripts showed that for

solvers to apply MD they need to have conceived "something" to look for. We describe

this behavior as "anticipation of a generic path", and it seems to occur through an

objectification of the movement induced on the dragged-base-point. This seems to be a

key aspect of expert use of MD.

On one hand this "something" at this point of the exploration is not associated to

a particular geometric shape (or curve), in this sense it is a generic idea. Therefore it is

what we have identified as generic path. On the other hand, this generic idea may be

developed during the solvers' experience with MD, and it may lead the solvers to

determine a figure- specific path. The anticipation of a figure-specific path can be seen in

the excerpt above when the solvers state their intention to use the trace tool to help them

"see" something (2:41).
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6.1 .1 Generic Path and Figure-Specific Path

In the previous paragraph we introduced the distinction between "generic" and

"figure-specific" to describe different components of the notion of path. We now provide

definitions for these two components. We will refer to generic path as the condensation

of a complex relation of elements:

a movement of a base point that is recognized to be regular and causing an

interesting property to be maintained, the possibility of describing such

movement through a property of points belonging to a potential trajectory, that is

positioning the dragged-base-point on any point of such trajectory the III is

visually verified.

This characterizing property leads from a dynamic conception to a static one, allowing

the movement to be objectified into a static whole. We define the figure-specific path to

be

the particular set of points that satisfy the characterizing property described

above, and that is related to the particular Cabri-figure being considered.

The "figure-specific path" is what may be recognized as a particular geometrical curve

and described geometrically in the GDP.

In the example above, the idea of generic path seems to be present since the

solvers talk about "something" to look for, while the figure-specific path is what becomes

explicit through the trace mark. The figure-specific path can be described as a

geometrical object with the property that when the dragged base point D is on "it", in this

particular exploration "the parallelogram happens" or the property "ABCD parallelogram"

is (visually) verified. As the exploration continues, the solvers interpret the trace mark as

the figure-specific path, providing various GDPs until they reach a satisfactory one as the
circle with center in A and radius AP. We would like to stress how the trace mark is not
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the path, but a new ¡mage that may provide hints as to what an appropriate geometric

description of the figure-specific path may be, that is what form the generic path might

take on in this specific case.

In Chapter 5 when analyzing solvers' difficulties in conceiving a property as an III

(Section 5.2) we frequently referred to the issue of "conceiving a path" and how this

seemed to influence expert use of MD. We may now look at such difficulties as being

related to conceiving a generic path. In particular, Excerpt 5.2.4 showed an example of

behavior that was consistent with various steps of our model, but in which the solver was

not able to make sense of his findings. Excerpt 6.2.2 will show another example of a

similar behavior, which we will interpret in terms of difficulties in conceiving a generic

path. In the following paragraph we discuss conceiving a generic path and contend that it

is a key notion which is necessary for developing expert use of MD, and a notion that,

like the necessary component "generic control over the status of objects" resides at a

meta-level with respect to the specific exploration. This means it has to be developed a

priori with respect to the exploration in order for the solver to exhibit expert behavior in

performing MD for generating-conjectures according to our model. On the other hand,

conceiving a figure-specific path resides at the level of the specific exploration, and

occurs during the exploration, much like the development of figure-specific awareness of

the status of different objects of the Cabri-figure.

6.1.2 Conceiving a Generic Path

We find it useful to view the process of becoming experts in using MD for

conjecture-generation and making sense of an exploration in terms of the developing the

notion of generic path as a response to conceiving a new task to solve. This new task

consists in searching for a cause for the III to be maintained (see Section 4.3). We
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discuss this idea of searching for a cause and what cognitive processes it leads to more

in depth in Section 6.2, while here we focus on the necessity of conceiving a generic

path in order to look for and make sense of the soft invariants that emerge during the

exploration. Conceiving the idea of generic path is necessary because it "incorporates"

both the III, since dragging along such object makes the III visually verified, and the

potentiality of an IOD, since a regularity may emerge as the movement of the dragged-

base-point along a trajectory that may be described geometrically.

Moreover, the generic path has aspects that belong to the phenomenology of the

DGS and aspects that belong to the world of Euclidean geometry, so it provides a bridge

that can guide the interpretation of the experience within the phenomenology of the DGS

in geometrical terms. Specifically, the generic path has a "dynamic" nature in that it can

be conceived as a trajectory along which a point can be dragged, and dragging along

such trajectory "makes something happen". That is, the generic path is part of an

"action" that leads to phenomena that occur in particular ways and times: we described

how the roles of simultaneity and a feeling of "control" are fundamental in making sense

of the exploration within the phenomenology of the DGS. Therefore within the

phenomenology of the DGS the generic path withholds the seed of a causal link between

the invariants perceived during the exploration. However the generic path can also be

conceived as a continuous set of points that a certain point of the Cabri-figure may

"belong to". Such "belonging to" is a geometrical property that may be perceived as "the

condition" for a second property to be verified, since this is exactly the defining property

of the points of such continuous set. In other words, the generic path can be considered,

within the phenomenology of a DGS, as a trajectory with respect to movement, a

movement that coordinates the dragged-base-point with the III, causing the III to be

visually verified. In geometry, this trajectory which becomes figure-specific, may be seen
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as a geometrical object that a point can belong to, a mathematical locus (in the cases in

which the belonging of the point implies an "if and only if" with the geometrical property

expressed by the III, otherwise it is a subset of the locus), a condition for a second

property to be verified.

As discussed above, in order to develop the idea of generic path, it seems to be

necessary to have developed awareness of the fact that an answer to the "search for a

cause" (Section 4.3 and 6.2) for the III to be maintained within the phenomenology of the

DGS may be found as a regularity in the movement of a base point that can be induced

by the solver, and that can "make" the III be visually verified. Such awareness is

dependent upon another form of awareness, that of the dependencies of objects of a

Cabri-figure from one another, and of how these dependencies influence the behavior of

the dynamic-figure. Awareness of these dependencies, or of the different status of

objects of the Cabri-figure, as we called it in Chapter 5, must be previously developed by

the solver at a generic level. Therefore we now have introduced another reason why the

component "awareness of the different status of objects of the Cabri-figure", introduced

in Chapter 5, is necessary for carrying out an exploration using MD as an expert.

Moreover, as for generic and figure-specific awareness of the status of objects of the

Cabri-figure, the figure-specific component of path can be developed "on the spot" and

fostered easily through prompting if the solver has developed the idea of the generic

component. On the other hand, the idea of generic path needs to be developed a priori

with respect to the specific exploration, it is more difficult to foster, and it may take a

longer time to develop.
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6.2 Argumentative Processes in the Model: Where is Abduction Situated? The

Notion of Instrumented Abduction and of Instrumented Argument

In the previous section we introduced the idea of a meta-level of sense-making,

necessary for the development of expert use of MD. In particular we discussed the

necessity of developing the idea of generic path in order to make use of MD in a manner

that seems to be coherent with our model. As mentioned in the introduction to this

chapter, another idea that seems to be necessary for the development of expert use of

MD, leading to making sense of what emerges during an exploration, seems to be

conceiving MD as a tool that may help answer the question "what might cause the

property I am interested in to be maintained". This question paired with the developed

notion of generic path allows the solver to search for a cause of the maintaining of the III

as dragging the considered base point along a path which will have a figure-specific

description in each particular exploration, depending on the construction, the property

chosen to maintain, and the base point chosen to drag.

We have introduced the idea of developing the subtask of "searching for a cause"

in Chapter 4 and used it to analyze transcripts in Chapter 4 and Chapter 5. Here we

highlight how setting this subtask resides at a meta-level with respect to the particular

exploration being carried out, and it seems to be a key intuition leading to becoming an

expert with respect to MD. We may now describe expert solvers as solvers who have

developed the necessary meta-level knowledge related to the use of MD, specifically the

notion of generic path and the idea of using MD to "search for a cause". With this in

mind, we re-analyzed the solvers' explorations and conceived the following table

describing how the explorations could now be classified. The two components we

considered are the presence of the "meta-level knowledge", or in other words, whether

the solvers were experts or not, and how MD was used. We described the use of MD as
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"use that leads to an III and an IOD", and "no (or Incomplete use of MD". The first use Is

present in cases in which MD allowed the solvers to behave coherently with our MD-

conjecturing Model up to (at least) what, to an external observer, might have seemed an

IOD. While we classified as cases with "no (or incomplete) use of MD" cases in which

the solvers did not use MD or tried to use it but could not reach an IOD and abandoned

this type of dragging.

MD that leads to an III and
an IOD

no (or incomplete) use of
MD

meta-level not present non-expert use of MD
Excerpt 6.2.2 in this section

no use of MD or use
inhibited by difficulties

Various cases of non-
appropriation described in
Chapter 5

meta-level present expert-use of MD
Excerpt 6.2.1 in this section
(which is also Excerpt 4.3.1
of Chapter 4)

interiorized MD
Excerpt 6.2.3 in this section
(which is the continuation of
Excerpts 4.2.5 and 4.3.2)

Table 6.2.1 Different uses of MD together (or not) with the presence of the meta-level.

In Chapter 5 we have already discussed cases in which the meta-level was not

present and MD was not carried out thoroughly by the solvers. In Chapter 4 we have

shown expert use of MD and so we will re-analyze one of these excerpts here (Excerpt

6.2.1) to show how the presence of meta-level knowledge leads to the formulation of

conjectures as described by our model. We will use such excerpt to describe how sense

is made of the elements that emerge during the exploration, and how once solvers

become experts, use of MD can become "automatic". We compare such behavior to that

described in an excerpt in which two solvers were not able to make sense of their

findings even though these were coherent with the MD- conjecturing Model (Excerpt

6.2.2). We argue that in this second case the meta-level understanding is not present, in

other words appropriation is not complete and a conjecture that puts together the

findings cannot be formulated. Moreover, we use such examples to advance our
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hypothesis that when considering expert use of MD the abduction that previous research

has focused on (Arzarello et al., 2002) is "incorporated" into the meta-level knowledge

and in the utilization scheme developed by the solver with respect to MD, the

maintaining dragging scheme (MDS), and it no longer occurs at the level of the

exploration.

Finally, we take our considerations one step further and describe how a different

form of "expert use" of MD may occur even when MD is not actually used. That is, we

have evidence (in Excerpt 6.2.3) that some solvers interiorize the MD-artifact to the point

that it becomes a psychological tool (Vygotsky, 1978, p. 52 ff.) and no longer needs to

be supported by the physical enactment of MD. In this case abduction does seem to

occur at the level of the exploration, allowing the conception of a second invariant

property which plays the role of the IOD described in the maintaining dragging scheme

(MDS).

6.2.1 Expert and Non-expert Use of MD

Let us first analyze a case of expert solvers using MD to reach what, to an

external observer, seem to be an III and an IOD, consistently with our MD-conjecturing

Model. Using MD the perception of a second invariant, the IOD, can occur in a rather

automatic way. As a matter of fact, when MD is possible, the IOD may "automatically"

become "the regular movement of the dragged-base-point along the curve" recognized

through the trace mark, and this can be interpreted geometrically as the property

"dragged-base-point belongs to the curve (described through a GDP)". In Excerpt 4.3.1 ,

which we include below for ease of the reader, we saw how two experts, Giu and Ste,

reached a conjecture through MD coherently with our model. They seem to behave in an

"automatic" way, that is, the solvers proceed smoothly through the perception of the III
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and the IOD and immediately interpret them appropriately, as conclusion and premise

respectively, in the final conjecture.

Excerpt 6.2.1 (also Excerpt 4.3.1). This Excerpt is taken from Giu and Ste's

exploration of Problem 4. The solvers followed the steps that led to the construction of

ABCD, as shown in Figure 6.2.1 , and soon noticed that it could become a rectangle. Ste

was holding the mouse (as shown by his name being in bold letters in the excerpt

below), and followed Giu's suggestion to use MD to "see what happens" when trying to

maintain the property "ABCD rectangle" while dragging the base point A. In such

situation the selected property "ABCD rectangle".

Episode 1

[1] Ste: I have to make it so that the...

[2] Giu: B stays

[3] Ste: that.. .uh, B remains on the ,·«
'S3

intersection.

[4] Giu: Exactly. ;-*

[5] Ste: which is... I mean I have to drag this, right?

[6] I: Maintaining the property rectangle...

Brief Analysis

The solvers resort to the bridge

property (see section 4.2.1 .3) "B

on the intersection" ([3]) to make

the task of maintaining dragging

easier.

The solvers have chosen "ABCD

is a rectangle" as an III.

Episode 2

[12] Ste: Identical... ta-ta-ta-ta...ta-ta-ta

[13] I: Giu, what are you

seeing?

[14] Giù: Uhm, I don't know.. .I

thought it was making a pretty

Brief Analysis

While Ste is concentrated on

maintaining the III ([12]-[14]), Giu

seems to be looking for a GDP,

and recognizes a continuous curve

("pretty precise curve" [14])
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precise curve.. .but it's hard to ...to understand. We

could try to do "trace"

[15] Ste: trace!

[16] Giu: This way at least we can see if...

instead of discrete positions. He

then wants to better understand

([14]) and "see" ([16]), so he

proposes the use of the trace tool

([14]).

Episode 3

[17] Ste: Where is it?

[18] Giu: Uh, if you ask me...

[19] Ste: Trace! [they giggle as they search for it in

the menus]

[20] Ste: Trace ofA...

Brief Analysis

After the trace is activated ([1 1]-

[20]) Ste starts maintaining

dragging again.

Episode 4

[28] I: So Ste, what are you looking at to maintain

it?

[29] Ste: Uhm, now I am .c,fJ

basically looking at B to do

something decent, but...

[30] I: Are you looking to make

sure that the line goes through B?

[31] Ste: Yes, exactly. Otherwise it comes out too

sloppy...

[32] I: and you, Giu what are you looking at?

[33] Giu: That it seems to be a circle...

Brief Analysis

Ste is using the property "the line

goes through B" as his III ([29],

[30]).

Both students show the intention

of uncovering a path by referring

to "it" ([31], [33], [34]).

Giu, in particular concentrates on

describing the path geometrically
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[34] Ste: I'm not sure if it is a cir...

[35] Giu : It's an arc of a circle, I think the curvature

suggests that.

and he seems to recognize in the

trace a circle ([33]) or an arc of a

circle ([35]).

~£kktí$&$¡M®, '

Episode 5

[36] Ste: Yes, but..

[37] Giu: But passing through B

[38] Ste: Ah yes, B

[39] Giu: B because it can also become a line

[40] Ste: Yes, it could be B.

[41] Ste: I would dare to say with center in C?.. .no,

it seems more, no.

[42] Ste: It seemed like

[43] Giu: No, the center is

more or less over there. ..in

any case inside

[44] Ste: Hmm

[45] Giu: Ok, do half and then more or less you

understand it, where it goes through.

[46] Ste: But C is staying there, so it could be that

BC is.. .is

[47] Giu: right! because considering BC a diameter

of a circle,

[48] Ste: Well yes, actually it passes through C also

because if then I make it collapse, uh,

Brief Analysis

The solvers' attention seems to

shift to the mark left on the screen

by the trace. Now that a first GDP

is given, the solvers try to

ameliorate the description by

adding properties: "(a circle)

passing through B" ([37], [38], [39],

[40]), "with center in C" ([41]), with

BC as a diameter ([46], [47]). As

Ste continues to drag, Giu checks

and confirms the suggested

properties and tries to justify them

providing argumentations based

on visual observations, recognition

of geometrical properties, and the

knowledge of particular theorems

([49], [55]).

Ste seems to have some difficulty
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[59] Ste: Well...

[60] Ste: I wouldn't call this.. .aaaa...there

[61] Ste: No, but ¡t jumps, when it's closer it's

easier.

dragging as he drags A closer to

C, but is able to overcome the

manual difficulty.

Episode 6

[62] Ste: It surely can look like a circle.

[63] Giu: Well, in theory.. .you can see it goes

through B and C.

[64] I: Ok, are you sure of this?

[65] Giu and Ste: Yes.

[They construct the circle and drag A along it, and

then they write the conjecture: "ABCD is a

rectangle when A is on the circle with diameter

BC."]

Brief Analysis

Ste continues to drag and both

solvers seem to be checking the

proposed GDP, confirming it ([62],

[63]) with considerable confidence

([65]).

Table 6.2.2: Analysis of Excerpt 6.2.1

Giu seems to be looking for something, which he describes for the time being as

a "pretty precise curve" ([14]). This intention seems to indicate that Giu has conceived a

generic path. Moreover he is trying to "understand" ([14]) what the figure-specific path

might be, that is he is searching for a geometric description of the path (GDP). To do this

he suggests activating the trace tool. Giu then identifies a regularity in the movement of

the dragged-base-point, "a pretty precise curve" ([14]), then "a circle" ([33], [34])

"considering BC a diameter" ([46], [47]). This seems to all occur in a smooth, "automatic"

way. The solvers have used MD before and exhibit expert behavior which in this case
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guarantees a transition to the conjecture with no apparent difficulties involved.

Reaching expert behavior is not trivial, as shown by the fact that many solvers we

interviewed did not seem able to make sense of their discoveries even when they

appeared to be using MD in a way that seemed to lead to the perception of an III and an

IOD. In particular, even when invariants are perceived, it seems that their simultaneous

perception does not guarantee the interpretation of such phenomenon in causal terms.

Moreover, putting the geometrical properties which correspond to the III and the IOD in a

conditional relationship with each other within the world of Euclidean geometry is not

always straightforward. The excerpt below shows a case in which two non-expert solvers

have used MD maintaining the property "ABCD rectangle" as their III dragging A, they

have provided a GDP and perceived the invariant "A on the circle" as an IOD. However

they do not seem to make sense of what they have discovered.

Excerpt 6.2.2. In this excerpt the solvers carefully carry out maintaining dragging

with the trace activated and reach a GDP, that they seem to use in constructing an IOD

and in performing what seems to be a dragging test. However they do not consider the

IOD in the conjecture that they formulate; instead they go back to a basic conjecture they

had used previously. One solver even explicitly refers to what she sees now as "like we

said before", and seems to completely ignore the circle that has appeared and that was

constructed.

314



m^M^MBsmai

Figure 6.2.2 A Screenshot of the solvers' exploration

Episode 1

[1] Na: passing through. ..through. ..oh my goodness!

[2] Val: no.

[3] Na: Yes, but make it go through, eh, it isn't...

[4] Ha: I mean you have to ...

[5] Val: Do "control Z"

[6] Ha: Nooo!

[7] Val: But ok, it doesn't matter!

[8] Ha: Circle...

[9] Ha: Good! We have seen that it follows.

[10] Val: Yes, this is the trace.. .in brief.

Brief Analysis

The solvers have

constructed a circle that

is not A-invariant and

seem to be trying to

compare it to the trace

mark that they have

obtained through MD.

Episode 2

[11] Ha: But.. .wait, because there there are points.

[12] Val: what points do you have to make?

[13] Ha: Well,. ..oh dear! No.

Brief Analysis

The solvers do not

seem to be convinced

of what they have
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[14] Val: Wait.

[15] Ila: I am tracing now...

[16] Val: Yes.

[17] Val: Move A on the circle.

[18] Ha: Eh!

[19] Ha: You look to check that it stays...

[20] Val: There, it remains, it remains a parallelogram.

[21] Val: Yes, I mean a parallelo.. .it remains a rectangle.

[22] Ila: a rectangle.

[23] Val: Yes, more or less.

[24] Ha: Yes, ok.

[25] lia: But...

[26] Val: Ok....why?

[27] Ha: Because...

[28] Val: Why?

found.

Val proposes to try to

drag A "on the circle"

even thought the circle

is not A-invariant. They

seem to notice that the

properties "A on circle"

and "ABCD rectangle"

occur simultaneously.

However the solvers do

not seem to be able to

make sense of this.

Episode 3

[29] Val: So.. .I know that, uh, so

[30] Ha: But B has to always be in that point there.

[31] Val: Where?

[32] Val: So I think.. .this remains a rectangle

[33] Val: ...when AB is perpendicular to DC, ok but in this case

it would also be BA is equ, perpendicular to CA.

[34] Ha: Basically, uh, it's like we said before

[35] Val: and...

Brief Analysis

Na tries to make sense

of the behavior of the

figure, but she does not

seem to be able to. Val

then suggests the

same property as they

had used in a previous

basic conjecture and Ma
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[36] Ila: No that basically uh DB has to always be parallel to

CA, and, uh the segments AB, also AB, AB, no we had the

points...

[37] Ha: Wait.. .this was fixed. ..these two were, right! I mean

that CA and DB have to always be parali, uh perpendicular to,

uh...

[38] Na: to the line, uh, parallel to DC.

seems to agree. The

solvers end up

"explaining" the

exploration through a

basic conjecture

containing this property

they had previously

used.

Table 6.2.3: Analysis of Excerpt 6.2.2

The solvers seem to have conceived a figure-specific path, and they even

manage to provide a GDP which is independent from the base point being dragged ([8]-

[11]). Val suggests to move A on the circle ([17]) and she notices that in this case it

"remains a rectangle" ([20]-[21]). The solvers seem to agree and we would think they

have successfully performed a soft dragging test, having proceeded according to our

model. However when they start asking themselves "why" ([26], [28]) they seem to

exhibit confusion. Na starts talking about point B ([3O]) and they start discussing

properties of the figure as a whole, looking at sides of the quadrilateral, and recognizing

only "what we said before" ([34]), that is a basic conjecture involving DB being parallel to

CA ([36]). The solvers do not seem able to make sense of what they have discovered in
terms of what we describe in our model.

Although they seemed to have used an III and conceived an IOD during the

exploration, there does not seem to be understanding at the meta-level which allows the

interpretation of the IOD as a "cause" for the maintaining of the III. In other words, they

do not seem to have conceived a generic path. This can also be inferred from the

solvers' insistence on trying to conceive "why" ([26], [28]). Even though this question

317



might have arisen out of surprise as to "why" a circle (the figure-specific path), it seems

that it also refers to the meta-level of "why dragging along a path" would guarantee the

maintaining of an invariant, an important aspect of the generic path. In any case the

solvers do not seem to be aware of the meta-level relationship between the arising

invariants.

The solvers do not seem to be able to establish a connection between the static

property they were using to characterize the rectangle (AB parallel to CD) and the idea

of dragging the base point they were considering along a path. In particular they do not

seem to have developed the idea of generic path, so they are unable to interpret the

property "A on the circle" as a cause for the property "ABCD rectangle" to occur.

6.2.2 The Notion of Instrumented Abduction

Unlike Na and Val, expert solvers seem to withhold the key for "making sense" of

their findings, which seems to be conceiving the IOD as a cause of the III within the

phenomenology of the DGS, and then interpreting such cause as a geometrical condition

for the III to be verified. In other words, the solvers establish a causal relationship

between the two invariants generating - as Magnani says - an explanatory hypothesis

(Magnani, 2001) for the observed phenomenon. Moreover, as soon as they decide to

use MD to explore the construction, experts seem to search fora cause of the III in

terms of a regular movement of the dragged-base-point. This idea is key; it seems to lie

at a meta-level with respect to each specific investigation the solvers engage in, and

possessing it, together with the notion of path, seems to lead to expert behavior with

respect to MD, culminating in the formulation of the conjecture. If we consider MD to be

an instrument with respect to the task of conjecture-generation, we can consider the

utilization scheme associated to it, which we will call the maintaining dragging scheme
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(MDS). The MDS ¡s described by our model, and we will from now on refer to "expert

behavior" as exploitation or use of the MDS.

We mentioned above that the process of conjecture-generation as described by

our model seems to become "automatic" for expert solvers. Moreover automatic use of

the MDS seems to condense and hide the abductive process that occurs during the

process of conjecture-generation in a specific exploration: the solver proceeds through

steps that lead smoothly to the discovery of invariants and to the generation of a

conjecture, with no apparent abductive ruptures in the process. Thus our research

seems to show that,

for the expert, the abduction that previous research described as occurring

within the dynamic exploration occurs at a meta-level and is concealed within the

MD-instrument.

We introduce the new notion of instrumented abduction to refer to the inference the

solver makes when exploiting the MDS to formulate a conjecture.

6.2.3 Interiorization of MD

We now take our reflections on the MDS one step further. We have found

evidence that experts may use the MDS as a "way of thinking" freeing it from the

physical dragging-support. In the following excerpts we will show how the MDS guided

the process of conjecture-generation of two experts, F and G, even though they were not

able to reach an IOD through MD.

Excerpt 6.2.3

The solvers were working on Problem 2. Excerpts 4.2.5 and 4.3.2 are taken from

the solvers' exploration that originated from this Problem. We provide summaries of what

was is contained in such excepts and we pick up from the end of Excerpt 4.3.2. Then we
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provide excerpts from how the exploration ended. We refer to the sequence of Excerpt

4.2.5, Excerpt 4.3.2 and the additional excerpt as Excerpt 6.2.3. In Excerpt 4.2.5 the

solvers identify a basic property, slim it down to a minimum basic property, which they

use to obtain the configuration they are interested in. Excerpt 4.3.2 shows the solvers'

belief in the existence of a path and traces of an implicit idea for the GDP. However the

conceived GDP doesn't seem to correspond to what they observe during the maintaining

dragging. The solvers want to therefore make the path explicit through activation of the

trace, and they use the trace to reject an incorrect GDP. The lines of the transcript are

marked by their times relative to the beginning of the excerpt in order to show the

development over time of this part of the investigation. In particular we chose to cut parts

of the exploration in which the solvers were not investigating "the case of the

parallelogram", as they refer to it. The bold refers to the solver who is holding the mouse.

Episode 1

[1] (3:05) G: and now what are we doing? Oh

yes, for the parallelogram?

[2] (3:07) F: yes, yes, we are trying to see when

it remains a parallelogram.

[3] (3:18) G: yes, okay the usual circle comes

out.

[4] (3:23) F: wait, because here... oh dear!

where is it going?

[5] (3:35) I: What are you looking at as you

drag?

[6] (3:38) F: I am looking at when ABCD is a

Brief Analysis

G reminds himself what their intention

was and seems to be concentrating

on the movement of the dragged-

base-point, while F, who is dragging,

concentrates on maintaining the

property "ABCD parallelogram" (3:07).

G (too?) quickly proposes a GDP

(3:18). It is not clear what "usual"

refers to: maybe to a previous

investigation. However what F sees

does not seem to be the circle he had
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parallelogram. You try [handing the mouse to

G]

[16] F: So, maybe

it's not necessarily ?
\ /

the case that D is i /
7 V.

Xon a circle so that

ABCD is the

parallelogram.

[40] F: Because you see, if we then do a kind of

circle starting from here, like this, it's good it's

good it's good it's good, and then here... see, if

I go more or less along a circumference that

seemed good, instead it's no good... so when is

it any good?

in mind (maybe the circle centered in

P with radius AC) and he appears

unhappy and confused when he does

not understand "where it is going"

(3:23). After repeating his intention of

investigating "when ABCD is a

parallelogram" (3:38) F hands the

mouse to G, asking him to try.

F and G seem to have conceived a

GDP ([3]) that does not coincide with

the trace mark they see on the screen

as F performs MD ([4]). This leads the

solvers to reject the original GDP

([16]) and search for a new condition

("when" [40]).

Table 6.2.4: Analysis of Excerpt 6.2.3

The solvers are not able to reach a condition for ABCD to be a rectangle using

MD because of manual difficulties they encounter as the exploration continues. This

leads G, who is not holding the mouse, to conceive a condition without external support

from the MD-instrument as shown in the following excerpt.

Episode 2

[43] G: eh, since this is a chord, it's a chord right? We

have to, it means that this has to be an equal chord of

another circle, in my opinion with center in A. because I

Brief Analysis

The solvers' search for a

condition as the belonging of D

to a curve defined through
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think if you do, like, a

circle with center

[44] F: A, you say...

[45] G: symmetric with

respect to this one, you

have to make it with \ /
X /

center A.

[46] F: uh huh

[47] G: Do it!

[48] F: with center A and radius AP?

[49] G: with center A and radius AP. I, I think.

[50] F: let's move D. more or less...

[51] G: it looks right doesn't it?

[52] F: yes.

[53] G: Maybe wë found it!

other base points of the

construction is now complete,

as they construct the circle

with center in A and radius AP

and proceed to link D to it in

order to check the CL. The

solvers seem quite satisfied

and formulate their conjecture

immediately after the dragging

test, proceeding in accordance

to the MDS model.

Table 6.2.5: Analysis of Excerpt 6.2.3

Although the "search for a cause" through use of MD with the trace activated

failed, the solvers are able to overcome the technical difficulties and reach a conjecture

by conceiving a new GDP without help from the MD-instrument. In other words the

solvers seem to have interiorized the instrument of MD to the extent that it has become a

psychological tool which no longer needs external support. Moreover the abductive

process supported by MD in the case of an instrumented abduction now occurs internally

and is supported by the theory of Euclidean geometry (BP and PD are conceived as

chords of symmetric circles). Taking a Vygotskian perspective (Vygotsky, 1978, p. 52
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ff.), we can say that the MD has been internalized and the actual use of the MD-artifact

has been transformed, becoming internally oriented, into a psychological tool.

Concluding Remarks. Summarizing, we have now seen examples from each of

the four situations described by our table. In particular, the model of the MDS seems

appropriate for describing the processes of conjecture-generation when MD is used by

experts, providing evidence to a correlation between the introduction of the dragging

schemes, and MD in particular, and a specific new (with respect to those in literature)

cognitive process described by the model. We have referred to such process as a form

of instrumented abduction, a new notion that we hope can be generalized to other

contexts in which abduction is supported by other instruments. Furthermore, we seem to

have captured the key ideas which may lead to developing and using the MDS, and we

described how these key ideas reside at a meta-level with respect to each specific

exploration in which MD is exploited by experts. Finally we described how for expert

solvers the MDS might be transformed into a way of thinking that can take place when

MD is not used at all. In this sense it may lead to the construction of fruitful

"mathematical habits of mind" (Cuoco, 2008) that may be exploited in various

mathematical explorations leading to the generation of conjectures. We will discuss this

further in Chapter 7.

6.2.4 The Notion of Instrumented Argument

Stepping back for a moment we may consider abductive arguments to be

particular types of arguments within the argumentation that a solver can make during the

conjecturing phase of his/her exploration. We have developed the notion of instrumented

abduction to describe a particular type of abductive process of which the reasoning
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described in the MDS seems to contain an example. At this point it seems reasonable to

extend the potential of being "instrumented" to other types of arguments, which naturally

leads to the more general notion of instrumented argument. In this section we would like

to introduce some examples of what we might call "instrumented arguments". However

at this point we will not define the notion in general, since we believe further discussion

and richness of examples - potentially in which different instruments are used - seems

to be necessary. For now we discuss characteristics of the notion limited to examples we

noticed in some of the episodes we analyzed in this study.

Instrumented arguments seem to be used when the solvers need to convince

themselves or each other that of a certain idea. For example, in Episode 1 of Excerpt

6.2.3 F continues his argumentation leading to the rejection of the previous GDP ([4O]).

In such argumentation he uses arguments with visual and haptic characteristics: "kind of

circle starting from here [as he drags point D showing G what he means]", "you see", "in

a certain sense it goes... down along a slope [mimicking the movement with his hand]".

Another example can be found in Excerpt 4.3.3, which showed how checking a

CL can lead to the generalization of a preconceived path. The solvers provide a GDP

that they do not seem sure of. In particular F does not seem to be convinced that ABCD

remains a parallelogram when D is dragged along the whole hypothesized circle. He

therefore performs a soft dragging test which definitively convinces him and G of the

GDP. Frequently we have observed that students use the words "try it" with respect to an

idea (or possibly yet unexpressed conjecture) when they intend to perform a robust

dragging test. From the transcripts we have so far analyzed within our study, this seems

to be an even more convincing argument for solvers.
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The analysis of our protocols highlighted a particular form of argument used by

the solvers and strictly related to the exploration within the DGS. We called it

instrumented argument, and see it as

an argument - thus part of an argumentation supporting a logical step - in which

the warrants are supported by an Instrument, in this case dragging.

Its goal is to convince oneself or someone else of a specific claim, thus changing its

epistemic status. In other cases the instrument could be other features of the DGS, the

DGS itself seen as an instrument, or other types of instruments. Instrumented arguments

in DGSs seem to be frequently used in conjunction with different versions of the dragging

test, as in the episodes analyzed above.

We have also observed other examples of instrumented arguments in solvers'

explorations. One example can be seen in the transition from a soft to a robust

construction before a final (robust) dragging test is performed. Redefining the dragged

base point to a constructed object that represents the GDP the IOD becomes robust,

and the solver may subsequently refer to this property, in the argument, as being "true".

This may also occur if the solver reconstructs the Cabri-figure in order to add a property,

with respect to the ones that already originate from the steps, to its base points. These

are acts that may correspond to geometrical ideas, but that first of all acquire meaning

(and not necessarily a geometrical meaning) within a DGS. The (implicit) claim to

defend is that a CL holds between the IOD and the III, and the instrumented argument

consists in showing that when the IOD becomes "true", the III in the new construction

also becomes a construction-invariant (at a visual and physical perceptual level), thus

robust, and therefore "true". The warrants for such claim rely heavily on the software.

Another example can be found in arguments in favor of a certain GDP. Before

constructing the geometrical object that hypothetical^ represents the path, the solver
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may try to argue that his/her idea is right, speaking about the movement of the dragged

base point in physical terms and showing what s/he means by physically enacting the

dragging movement on the screen. Thus, dragging and the feedback provided by the

software are used as warrants supporting the solver's ideas about the GDP. This type of

instrumented argument is also used to reject a given GDP. This can be seen in Episode

1 ([4]) of Excerpt 6.2.3 when the visual feedback seems to provide F with confirmation

that what he had thought of as the GDP was "no good". Frequently the instrumented

arguments used to reject a GDP (in the most convincing way) make use of the dragging

tesi after the GDP has been constructed. In this case the solver argues that while

dragging the base point along (or even having linked it to) the hypothetical object that

represents the GDP the III is not maintained.

Moreover, when a solver has found a good candidate for basic property, with

respect to a certain type of geometrical figure, to use as a bridge property (section

4.2.1.3) to continue the exploration, s/he may provide an argumentation in defense of

such candidate. The implicit claim is: "if the (minimum) basic property is true, then the

interesting type of geometrical figure is obtained." In the argument s/he may drag a base

point to visually obtain a configuration (or various configurations) that seems to exhibit

the candidate property and show him/herself and/or another person that in these cases

the Cabri-figure seems to also become the geometrical figure s/he was initially interested

in. In a way we can consider this argument as a kind of soft dragging test: imposing the

hypothesized property, the solver checks that the original property that s/he was

interested in is also visually verified. Furthermore, the solver may use what apparently

looks like maintaining dragging in his/her argument when it is possible to continuously

drag a base point in a way that the basic property is visually maintained. However, the

focus of the instrumented argument in this case is the fact that the interesting type of
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geometrical figure is maintained while the basic property is maintained. Thus we say that

the instrumented argument makes use of a sort of soft dragging test that gives rise to

simultaneity, a warrant that is supported by the DGS.

Below is a flow chart that shows typical occurrences of instrumented arguments

during explorations in which MD is used.

1 ; ' 2
10fa ! »! searehtora

generic path ! figure-specific

3b
dragging with trace

activated white
performing maintaining

3a
-J maintaining

dragging and
I juessing · ,

"-"" instrumented zs*·
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* proposal of a GDP
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Figure 6.2.4: Typical occurrences of instrumented arguments during an expert use of MD.
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We conclude with a last example of what we consider to be an instrumented

argument of a slightly different nature than the ones described above.

Excerpt 6.2.4. In this Excerpt two solvers use an instrumented argument In an

indirect argumentation to decide whether a certain property of a triangle should be

Included In the premise of a conjecture they develop. The excerpt is taken from the

solvers' exploration of Problem 1 during the pilot study. This is why the interviewer's

prompts are more frequent than in excerpts from the final study.

??— Su3DB

?- -r-rm

Figure 6.2.5 A Screenshot of the solvers' exploration

Episode 1

[1] G: Eh, wait. I was thinking. ..should we try with the square?

[2] F: Eh, right! Let's try to obtain a square, moving A.

[3] I: Ok, moving A.

[4] F: Like this.

[5] I: Ok.

[6] G: I think it looks like when AM is equal to MK.

[7] F: Ah, you mean when AMK is an isosceles right triangle!

Brief Analysis

The solvers identify a

potential III.

G notices a property

that emerges

simultaneously with

the property "ABCD
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[8] I: Uhm. So how is this conjecture?

[9] I: IfAMK...

[1 0] F: Is a right isosceles triangle, then ABCD is a square.

[11] I: Ok. Write.

[They write the conjecture: "If AMK is a right isosceles triangle,

..." then F interrupts G's writing]

square" and F adds a

second property.

The solvers state their

conjecture, but when

writing it seem unsure

about the premise.

Episode 2

[12] F: No, we don't know it!

[13] I: It depends on what you want.

[14] I:. ..to put in the premise.

[15] F: No, we have to say it, because I think if this is not right

[pointing to the angle AMK]...

[1 6] I: Well, try to move and see.

[17] F: Wait, let's see.

[18] G: in the meantime...

[19] F: We have to move M, yes, so I vary AMK.

[20] I: You were moving A before.

[21] F: Yes.

[22] I: But ok. Because you are moving M to try to get rid of the

right angle?

[23] F: Exactly, I was verifying that if I get rid of, eh see, if I get
rid of ...

[24] G: Eh, but you have to put AM and KM equal.

[25] F: KM and AM equal...

Brief Analysis

The solvers start

investigating whether

triangle AMK should

also be "right" or not in

the premise of their

conjecture.

F decides to seek an

answer by varying

angle AMK.

F tries to make angle

AMK not right, but

maintain AM equal to

KM in order to have an
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[26] G: Yes, because we have already written that AMK is an

isosceles triangle, we know...

[27] F: Eh no, wait, let's see.

isosceles triangle.

Episode 3

[28] I: So to maintain an isosceles triangle how should you

move M?

[29] G: Eh, along, along the perpendicular bisector of AK.

[30] I: Ok, so try to move M like that.

[31 ] F: Like this. No, what do I have to do?

[32] I: He wanted to maintain only the property "isosceles

triangle"...

[33] G: You have to move, ...that is what we were discussing,

right?

[34] F: Yes.

[35] G: Eh, so more or less like this.. .eh, yes, see? Here it is

more or less isosceles.

[36] F: Ahhhh...

[37] G: Here it is more or less isosceles...

[38] F: Yes, but do you see a square?

[39] G: Exactly, it is not a square, so we need to write that ...

[40] F: It has to also be right.

[41] G: Yes.

[42] F: Eh, you see?!

[43] G: I was also writing it!!

Brief Analysis

In response to the

interviewer's prompt,

G suggests dragging

M along the

perpendicular bisector

ofAK.

F seems to be

interested in trying to

maintain "ABCD

square" but performs

the dragging along the

perpendicular bisector

and notices that his

property is not

maintained.

This leads him to

conclude, through an

indirect instrumented

argumentation, that
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[They laugh] "AMK right" must also

[44] F: Ok, write: "and is also right" be in the premise of

[45] F:. ..then ABCD is.. .a square. their conjecture.

Table 6.2.6: Analysis of Excerpt 6.2.4

The argumentation is indirect, because F is trying to convince himself and G that

if AMK is not right, ABCD is not a square, as he starts to state in line 15: "...because I

think if this is not right [pointing to the angle AMK]..." That is, that the condition "AMK is

right" is necessary for ABCD to be a square. Furthermore F wants to convince himself

that "AMK isosceles" alone is not a sufficient condition for ABCD to be a square. G as

well seems to engage in trying to convince himself that such condition alone is not

necessary and proposes to maintain the condition "AMK isosceles" by dragging the base

point M along the perpendicular bisector of AK. To propose this, G has implicitly used

the conjecture (or theoretical knowledge) that "if M belongs to the perpendicular bisector

of AK, AMK is an isosceles triangle (with base AK)", together with the idea that

maintaining dragging along the figure-specific path "perpendicular bisector of AK" will

assure the invariance of the property "AMK isosceles" but not necessarily the property

"AMK right". This way the effect of the condition "AMK isosceles but not right" can be

seen upon the quadrilateral ABCD. The "dragging argument" seems to be decisive in

convincing the solvers that both conditions need to be included in the premise of the

conjecture. Since the argumentation relies on the use of the instrument (in particular on a

form of maintaining dragging, in this case) we claim it is another significant example of

instrumented argument.
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6.3 Overcoming Difficulties: Induction of Maintaining Dragging Leading to

Development of the MPS

In Chapter 4 we introduced our cognitive model of the MDS and gave various

examples of solvers behaving according to such model. In Chapter 5 we then proceeded

to describe difficulties that various solvers encountered, due to the lack of certain

fundamental components that we identified. Some of these difficulties would inhibit the

expert use of MD. Moreover, in the first two sections of this chapter we discussed how

acquiring the notion of "path" and reaching the idea of "searching for a cause" for the

maintaining of the III, seen as a phenomenon within the world of the DGS, are key

aspects of the MDS that lie at a meta-level with respect to the figure-specific elements

described in our model that emerge during an exploration when MD is used. However

we have not yet described how solvers might develop the MDS. In this section we would

like to describe a basic sequence of prompts that the interviewer would use to "guide"

the development of expert behavior in cases in which the solvers did not exhibit it

spontaneously during their explorations. The prompting sequence emerged a posteriori

from the analyses of our interventions and of solvers' responses. In particular we noticed

the recurring use of a sequence of prompts that would foster similar patterns of

responses. Moreover, in many cases, once the solvers had worked through a sequence

(or two) of prompts, they would proceed in the following explorations using MD by

themselves, and showing expert behavior.

We stress that the prompts were not aimed at leading solvers to behave

according to the MD-conjecturing Model, but to foster awareness of aspects of the

exploration that might lead them to overcoming the impasse. In other words, the prompts

were conceived to act at the meta-cognitive level, to foster development of the MDS.
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6.3.1 The Prompting Sequence

Step 1 : A first "new" task

When solvers would not feel the need to overcome a basic conjecture, the

interviewer would ask them to consider the particular type of quadrilateral they used in

their conjecture and try to construct one that passed the dragging test and that respected

all the steps of the initial construction in the Problem. The idea behind this intervention

was to lead the solvers to become aware of the different status of objects of the

construction and look for "constructable properties" to add to the steps of the

construction that would induce the desired type of quadrilateral robustly. With

"constructable properties" we intend properties that are compatible with the steps of the

construction and that can be added to the steps of the construction without altering them.

Solving this task should not only lead to awareness of the different status of the objects

of the Cabri-figure, but it should also plant the seed of the idea of needing to "search for

a cause" for the particular type of quadrilateral to "happen". Moreover, the property in the

premise of most solvers' initial conjecture would be a (minimum) basic property that was

not immediately constructable, so this new task would lead to the search for a new

property that could potentially induce the initial property in the premise of the original

conjecture. In this sense the task would lead the solvers to make their (minimum) basic

property into a bridge property (defined in section 4.2.1 .3).

Most solvers would respond by thinking about the construction and the status of

the different objects of which the Cabri-figure was made. Some would think of a new

property through an abduction, using known theorems; others would find difficulties and

not be able to quickly find a way to solve the task; a few thought of using maintaining

dragging and proceeded according to the MDS model from here.

Step 2: Prompting MD
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Once the first "new" task had been given, if solvers had not started using MD on

their own, the interviewer would prompt them to use it, in different ways. If the solvers

had been able to reconstruct the type of quadrilateral they were considering so that it

passed the dragging test, the interviewer would ask them whether it was possible to

obtain that type of quadrilateral robustly "in other ways", and, shortly after, she would

explicitly propose using MD. If the solvers were having difficulties with the first task, the

interviewer would ask if they remembered "maintaining dragging" used in class during

the introductory lessons, and suggest trying it.

Step 3: Overcoming difficulties with MD

Performing MD leads to various conceptual and manual difficulties, and

frequently solvers who had not decided to use it spontaneously would experience

various difficulties. In some cases after a first try solvers seemed to decide maintaining

dragging was not possible for that given base point and III to maintain, so the interviewer

would explicitly ask them whether they thought it was possible or not, and if it was not

she would ask for an explanation. When solvers seemed to believe maintaining dragging

was possible, but still not be able to perform it, the interviewer would ask one solver to

concentrate on the property to maintain, and the other to "help" their partner by telling

him/her in which direction to go. Sometimes the interviewer would also guide the solvers

to use a property they had thought of as a bridge property for the MD. Usually once

solvers were able to perform maintaining dragging they would perceive some regularity

in the movement of the dragged base point and try to describe it, or help themselves

"see" by activating the trace. When solvers didn't seem able to "see" and did not think of
using the trace tool, the interviewer would suggest to activate it.
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Step 4: Reaching a new conjecture

In different cases "seeing" the movement of the dragged base point and/or

"recognizing" the trace mark as some known geometrical object was enough for the

solvers to spontaneously formulate a new conjecture describing their (guided)

exploration. However in some cases it did not seem to be. The interviewer at this point

would explicitly ask for a conjecture. In some cases this would lead to a statement with

dynamic elements which then the solvers would translate into an "if ...then" statement in

more "static" terms. However in other cases it would lead to uncertainty and to a return

to the original conjecture or to one containing a new property that had been found and

used as a bridge property for MD. If the solvers' conjecture at this point still did not

include the IOD perceived during MD, the interviewer would try to get the solvers to

focus on such IOD again and construct it robustly. The interviewer would either ask for

the solvers to construct the object they "discovered" using MD and try to solve the

reconstruction task (in Step 1), or she would ask the solvers to formulate a

"constructable conjecture" from what they had found in their exploration, one that would

lead to a quadrilateral passing the dragging test.

Once the solvers had successfully responded to this sequence (or a to a

subsequence of this sequence) of prompts they tended to then use MD spontaneously in

later explorations, and with a scheme that was coherent with the MDS.
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Step 1: "So how can you construct a ... that passes
the dragging test and that follows all the steps of the
initial construction?"

if solvers do not solve jT ^*******-**!! $olvers solve new tasknew task jf ^****%
jf Step 2: "Are there other ways to obtain a

Step 2: "So how about trying MD, do you robust...?"
remember? Like what you tried in class.'

"So how about trying MD, do you remember'
Like what you tried in class."

if solvers do not start

using MD

SJêp_1: various prompts if difficulties with MD arise:
a. 'You mentioned property... that made ABCD a... Can you try to maintain that?"
b. "Is it not possible to maintain the property...? Can you tell me why not?"
c. "Ok, I know it's difficult, can you try dragging and get help from your partner? S/he can tell you how to m
d. "Maybe try activating trace. Do you remember how we did dragging with trace activated in class?"

¡if solvers do not formulate conjecture with
, new IOD discovered

Stgp_4.: if the solvers have not formulated a new conjecture and/or have a GDP that is not P-invariant with respect to
point being dragged at this point, the following prompts:

a. "So can you give me a conjecture now?"
b. "Can you give me a constructabie conjecture given all this that you have discovered?"
c. "Ok, so this ...(object in GDP) you mentioned, it seems to move as you drag, so the reconstruction might be hai
d. "So how about a conjecture that describes what you have done till now?"

Figure 6.3.1 : Sequence of prompts to guide development of expert behavior with respect to MD.

We would now like to give an example of how this sequence of prompts played

out. The solvers' responses to the interviewer's prompts in the example we propose

below were similar to various others' responses. We provide summaries of the various

episodes from the sequence, and brief excerpts of particularly significant moments. The

episodes are taken from two solvers' exploration of problem 1 , and they lead to the

solvers' 6th conjecture on this Problem.

Episode 1 (t17:03-t19:57). The first episode starts after the solvers have

constructed a robust rectangle by linking the base point B to the perpendicular line to AC

through A, having successfully solved the task posed by the interviewer, as in Step 1 of
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the prompting sequence. This excerpt begins with the interviewer explicitly prompting the

use of MD, starting from the initial construction. The solvers seem to still have in mind a

basic property as they start dragging and then activate trace. They also seem to be

uncertain which base point to drag. They do not seem to have conceived the idea of

generic path yet, even though they are able to maintain ABCD a rectangle by dragging

B. There is a discussion about whether the quadrilateral is or is not a rectangle.

Episode 1

[3] I: Can you try to do maintaining dragging? You arent too used

toit

[4] Dav: Yes, ok.

[5] I: ...so I'll push you a bit to do it. So given the initial

construction,

[6] I: So B anywhere.. .it's enough to just unlink B.

[7] Dav: So this away.. .what did we have to do? [rereading the

steps of the construction] B anywhere...

[8] I: Yes.

[they murmur as they remake the construction]

[9] Dav: Eh, B.. ..parallel. ..[as he constructs]

[14] Dav: and then segment AB. Ok now we have to try to drag.

[15] Gin: Yes. ..it has to be along, uh the perpendicular to AC

through A.

[16] Dav: Ok.

Brief Analysis

Prompting according

to Step 2.

The solvers follow

the steps in the

activity and

construct ABCD.

They start dragging

the base point A. Gin

seems to have in

mind a basic
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[17] Gin: Take it, do "trace".

[1 8] Gin: Mark an angle of 90.

[1 9] Dav: where? "trace"

[20] Gin: Trace of B.

[21] Dav: and moving.. .A,

[22] Gin: A and B.

[23] Gin: but we have to.. .do, wait, do the perpendicular through

A.

[23] Gin: a line perpendicular through A.

[24] Dav: Ah! Ok, now I understand.

[25] Gin: Yes, good.

[26] Gin: Yes, but now we are not sure it is a rectangle...we have

to mark the angle or else we do not know it is a rectangle...

[27] Dav: Ok.. .Yes, well, ok that's true.

[28] Gin: I mean put like DBA, put the angle so it's 90 and we

know that it is a rectangle.

[29] Dav: I put DBA 90? eh, it's what we did before.

[30] Gin: Yes, no, put the measure of the angle.

[31] Dav: Yes, that is equivalent to putting B on this line, since

here in any case it would be 90, and here 90.

[32] Gin: but here you can also move B like this [showing a

horizontal movement with his hand.] I mean B, in this case you

can also move it like this.

[33] Dav: Yes.

property.

The solvers activate

trace on B and drag

the base point B.

Dav switches to

dragging B after Gin

mentions both

points.

Dragging along the

line described in the

basic property turns

out to work.

Gin seems to

associate ABCD's

"being a rectangle"

to it having angle

DBA being right.

However Dav

suggests that that is

equivalent to having

B on the line he was

dragging along.

Gin seems to insist
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[34] Gin: But if you put this angle here. ..we know ...when, uh the

quadrilateral is a rectangle.

[35] Dav: Yes.

[36] Gin: Otherwise this way we do not know that it is a rectangle,

we only hypothesize it.

[37] Gin:. ..moving like this.

[38] Dav: Yes, but we can prove that if B remains on ...on

the.. .line there, on the parallel to, perpendicular on A, it is a

rectangle.

[39] Dav: We proved it before.

[40] Gin: Yes. Oh, yes, that's right.

[41] Dav: If B is on that line, we already know it is a rectangle, in

theory.

on marking the

angle, as if that

would give the

quadrilateral the

status of rectangle.

Dav, instead argues

that they can prove

that if B is on the

line, ABCD is a

rectangle.

Table 6.3.1.1 : Analysis of Episode 1

In Episode 1 the solvers respond to the interviewer's prompt by trying to first

briefly drag the base point A, and then they switch to dragging B as they decide to

activate the trace. The solvers' behavior seems to show that they have trouble freeing

their minds from the minimum basic property (angle DBA right) they had reached earlier

in the exploration. Dav seems to be uncertain about how to drag A, so as soon as his

partner mentions B, while he is activating the trace, he switches to dragging B. Before he

starts dragging, Gin predicts that it will be enough to move B along the perpendicular line

through A to AC, which they had used to solve the reconstruction task. This suggests

that Gin has not yet conceived key elements of the concept of generic path: its

independence with respect to basic properties of the type of quadrilateral being

considered, and its dynamic nature, as a trajectory. Moreover, Gin worries about not
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"knowing" that the quadrilateral is a rectangle unless a certain angle is marked and its

measure reads "90 degrees". This difficulty might arise from the property "ABCD

rectangle" not being constructed robustly, unlike in the previous part of the exploration.

Another hypothesis is that he might be frustrated because he does not think of mentally

deriving the fact that ABCD is a rectangle "given" that B is on the perpendicular line. He

seems to be reassured when Dav explains how they had already proved that "if B is on

that line, we already know it is a rectangle, ¡n theory" ([41]).

Episode 2 (t19:57- 122:07). The interviewer prompts the solvers to activate the

trace on the base point A, and seeing that the solvers are having trouble dragging, she

asks questions from Step 3 of the prompting-sequence. The solvers get confused when

they redefine B obtaining again a robust rectangle. This does not allow performance of

maintaining dragging, since the III is no longer a soft property. The solvers realize the

redefinition of B was not useful and proceed to unlink it spontaneously.

Episode 2

[1] I: Ok, let's go back to what you were doing. ..you wanted

to activate trace on something else...you were dragging A,

but I didn't understand ...could you repeat...

[2] Dav: No, I was thinking about what to do, I mean...

[3] I: hmm.

[4] Dav: Thinking about it, I mean moving A...we can't solve

it.. .it should stay...

[5] I: You think that dragging A it does not remain a

rectangle?

[6] Dav: I mean...

Brief Analysis

Prompt d in Step 3.

Dav expresses his

difficulties in dragging A

using maintaining

dragging.

The interviewer uses

prompt b from Step 3.
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[7] I: Ok, then try to explain why.

[8] Dav: I mean yes, but B would have to In any case stay on

the perpendicular, because since the line, this line

rotates...with center in C [as he drags A], I mean all the

figure rotates with center in C, basically,

[9] I: uh huh...

[10] Dav: Eh, instead B does not vary. I mean it always

remains in the same position.

[11] Dav: Therefore B, uh, I mean, in order for this figure to

be a rectangle, B has to in any case be on the

perpendicular.

I: Ok.

[12] Dav: Therefore, uh,...

[13] I: So it is not possible to move A...

[14] Dav: So moving A, I mean yes...

[15] Dav: But we would have to move it like along. ..a circle?

maybe...

[16] Gin: but.. .no, I don't think so. Try.

[17] Dav: Maybe so...

[18] Gin: Link B to ...to the perpendicular...

[19] Dav: Uh.. .where is it? "redefinition"?

[24] Dav: Point on this line.

[murmuring as he goes back to dragging]

Dav seems to be mixing

the preconceived

property with a GDP for

A, and seems unable to

relate the behavior of the

figure that he perceives

to conceiving a path for

A.

The interviewer uses

prompt b from Step 3

again.

Dav seems to conceive a

possible new GDP

leading him to believe

that maintaining dragging

is possible.

However Gin seems to

still be confused by soft

and robust properties of

the Cabri-figure and

proposes to redefine B

on the perpendicular line,

again.

341



[25] Gin: You have to do trace.. .the trace of A [the trace is

now active on both B and A]...you don't need the trace of B.

[26] Dav: Yes, but now, I mean, now it always remains a

rectangle, however you move A!

[27] Gin: Ah, that's true, right.

[28] Dav: So it's not good,

[they murmur as Dav unlinks B]

After they construct a

robust rectangle again

they realize this was not

helpful and it prevents

MD from working.

Table 6.3.1.2: Analysis of Episode 2

In this episode the interviewer's prompts seem to lead to a destabilization of the

solvers' belief that performing maintaining dragging using the base point A was not

possible. Dav seems to perceive a regularity in the movement of the base point he is

dragging and provides a GDP as "a circle" ([15]). While Dav seems to have developed a

proper conception of generic path at this point, Gin does not seem to have developed

one yet since he again proposes to construct a robust rectangle by linking B to the same

perpendicular line as in Episode 1 . Moreover this shows that Gin has not yet managed to

free his mind from the preconceived property. However this time both solvers seem to

realize that this was not a useful move. Overcoming the belief that maintaining dragging

was not possible seems to be what led to the behavior we will see in Episode 3, which

was not prompted by the interviewer in any further way.

Episode 3 (t22:17-t26:15). The solvers try to perform maintaining dragging with

the trace activated on A, again. This time they seem to anticipate a path, and show a

proper conception of such idea. However they have some difficulties providing a GDP.

They finally reach a GDP that is not A-invariant but that seems to satisfy them.
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Episode 3a

[I] Dav: Let's try to put B like it was before.. .like...

...[the solvers unlink B]

[4] Gin: Yes, so now we can move it

[5] Dav: yes.

[6] Dav: So [he starts dragging A] now

[7] Gin: go back.. .yes. Ok, now put trace of A.

[8] Dav: Yes, now we'll do the trace of A and moving A we

can see how it comes out...

[9] Dav: So [as he starts dragging]. ..I'll take it from here.

[10] Gin: Yes.

[II] Dav: No, no better if you do it [handing the mouse to Gin]

[12] Gin: Yes, ok, but it's not like I am better.. .so wait a

second let's put it straight.

[13] I: If now you could tell me what each of you is looking

at...

[14] Gin: Eh, I am trying to move A maintaining B on the

perpendicular...

[15] I: Ok.

Brief Analysis

The solvers unlink B to

obtain the initial

construction and try

maintaining dragging

once again with trace on

A.

Dav shows that he is

anticipating a figure-

specific path.

Gin seems to

concentrate on a bridge

property (B on the

perpendicular line) as he

is dragging A.

Table 6.3.1.3: Analysis of Episode 3a

Episode 3b (Excerpt 5.4.3)

[1] Gin: So. ..circle again.

[2] I: Hmm.

[3] Gin: Yes.

Brief Analysis

Gin describes the GDP

as a circle.

The solvers
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4] Gin: so...

5] Dav: [murmurs something]

6] Gin: Yes. ..it is

7] Dav: ...¡t is the midpoint of C

and B

8] Gin: It is the midpoint of...

9] Dav: It is the intersection of

he diagonals

10] Gin: diagonals

11] Dav: of the diagonals.

12] Dav: and since it is a rectangle, it is also the.. .the. ..uh the

center of the circumscribed circle.

13] Gin: whatever.

14] Dav: Eh, they are all on the circle.

15] Gin: yes.

16] Gin: hmm.

17] I: Now, are you sure of this?

18] Gin: eh, yes....

19] I: Because you have traced only

20] Gin: ...pretty much

21] I: a little piece. Hmm.

22] Gin: there.

23] Gin: Well, we could try to continue.

successively refine the

GDP trying to decide

where the center of the

circle might lie. They

then proceed by

constructing the circle

that represents their

GDP as the circle with

center the midpoint of

BC and passing

through A.

The solvers seem to be

describing aspects of

the new Cabri-figure on

the screen.

The solvers seem

convinced by their GDP

and are able to predict

what the rest of the
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[24] Dav: exactly.

[25] Gin: So now let's ...

[26] Gin: more or less along there

[27] Gin: nooo [as a little circle

appears when he clicks another

point on the screen because he had

not finished using the command "circle"]

[28] Gin: Good here...

[29] Dav: No...

[30] Gin: Yes, alright, it looks like it

is good [Italian: "sembra di sì"]

[31] Gin: Yes, good. It could be.

[32] Dav: Yes, it looks like it is

good.

[33] Gin: yes.

[34] Dav: Careful you are going out...

trace mark should look

like.

Although the circle they

have constructed is not

A-invariant the solvers

seem convinced that it

correctly describes their

observations as they

perform a soft dragging

test.

Table 6.3.1.4: Analysis of Episode 3b

Now the solvers seem to have properly conceived a path: they have anticipated it

([8]) and seem to be aware that dragging along "something" that can be identified

through the trace mark and the movement of the dragged-base-point "causes" the

maintaining of the III (in this case the bridge property that they have already proved to be

sufficient to obtain a rectangle). The solvers seem to be "convinced" ([31]-[33]) of their

findings, as they perform a soft dragging test, but have not yet stated a conjecture.
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Episode 4 (t26:15-t27:58). During this episode I asks the solvers to focus on the

circle they constructed in the previous episode, questioning its "movement". The

intervention is aimed at overcoming the non-A-invariant GDP so that a robust

construction of the added property might be possible. Although the solvers propose an

alternative GDP which is A-invariant, they do not spontaneously construct it.

Episode 4

[1] I: Why are you talking about "one" circle? I mean, I see that

it moves...

[2] Dav: Eh, because...

[3] Gin: Yes, right because moving A theoretically the circle

changes... ,^'"'^7 ^- ^ /
[4] Dav: Yes, but.. .if it gets /

/
/

bigger it is not any more...wait, j
\ '

move it... \

[5] Dav: Move it up. See, it does

not stay any more... it is the

circle through A and B and C

[6] Dav: I mean they are together

[7] Gin: Yes, through A and B.

[8] Dav: Through A, B, and C exactly. I mean a circle through

A, B, and C because if I assume a circle this one has to be...

Brief Analysis

This is prompt c from

Step 4 of the prompting

sequence.

The solvers propose

alternative GDPs.
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[9] Gin: Yes [as he

continues dragging]

[10] Gin: Yes, right it ¡s a

circle through A, B and C

[11] Dav: Or else we could

say it with.. .eh, center the

midpoint of BC. ..and radius

[12] Gin: [murmurs something]

[13] Dav: Eh. ..eh, no. Yes, because you can't say that the

radius is neither one nor the other, unless you say that they

are the same.

[14] Gin: Yes, exactly.

[15] Gin: I mean it has to be...

[16] I: So can you repeat what your idea is?

[17] Dav: That this circfe, so...

[18] Gin: That the quadrilateral is a rectangle... if A

[19] Dav: Yes...

[20] Gin: rotates around. ..the

circle...

[21] Dav: it is on the circle with

center...

[22] Gin: with center

[23] together: the midpoint of...

[24] Gin: between B and C, where, uh

Dav proposes a new

GDP which is A-

invariant and the

solvers seem to agree.

The interviewer asks

the solvers to re-

explain their idea,

prompting for a

conjecture (Step 4).

The solvers are now

able to verbally

describe their new

GDP.
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[25] Dav: and radius...

[26] Gin: and radius... I mean

[27] Dav: uh

[28] Gin: OC equal to OA equal to OB.

[29] Dav: and radius OB, because if you say that it is there.

Table 6.3.1.5: Analysis of Episode 4

The interviewer's prompting leads to a new GDP which is A-invariant. Moreover,

by the end of this episode, the solvers are able to verbally formulate what seems to be a

conjecture linking the III ("the quadrilateral is a rectangle" [18]) with the IOD ("A rotates

around the circle" [20]). We infer that the solvers have now conceived the idea that

dragging along a trajectory can induce a configuration to become in invariant property of

a dynamic-figure. This is a key aspect of the notion of generic path. However they do not

spontaneously write down the conjecture or try to reconstruct the IOD robustly to perform

a robust dragging test. Therefore the interviewer prompts such behavior in the following

Episode.

Episode 5 (t27:58-t29:39). The interviewer asks for a dragging test for the idea

the solvers had expressed in the previous episode ([18]-[28]). This leads to robust

construction of the proposed IOD and to further conviction of the appropriateness of the

conjecture, which the solvers now write down.

Episode 5

[1] Dav: Because if you say that it is there. ..yes, and radius OB.

[2] Gin: radius OB.

[3] I: Ok so try to do the dragging test of this that you have just
told me.

Brief Analysis

The interviewer asks
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[4] Dav: We have to drag. ..uh [as Gin rereads the text of the

activity]. ..yes.

5] Dav: Ok, we can, uh...

6] Gin: Eh, construct...wait go down,

erase the line...

7] Dav: Yes.

8] Dav: We can construct the circle with radius.. .OB

9] together: yes.

10] Dav: Let's call this O. ~~

11] Dav: and then. ..[as he drags]. ..try

o maintain it on this new circle.

12] Gin: but I think you need to link it,

wait link it.

5-5S5ÌÌ jWTi£3C?t?^3?»

I/
I

X,

\\/
-G

M \
\

-y
?

M.<

13] Dav: ah, we forgot. ..right.

14] Dav: we need to link it.. .where is it? here

15] Gin: A.

16] Dav: "point on object"

17] Gin: ..."object"

18] Dav: and then

19] Gin: circle

20] Dav: erase one.

21] Gin: "hide/show" right.

22] Dav: "point on object"...A "point on object"

23] Gin: and now do circle.

Qliïa'â ^WÛ'i

the solvers to verify

their idea with a

dragging test (Step

4).

The solvers

construct the IOD

robustly by

constructing a circle

that is A-invariant

and redefining A

upon it.
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[24] Dav: circle, ok.

[25] Dav: [as he drags the newly linked point] Now we can get rid

of the trace.

[26] Gin: Yes, ok always a rectangle.

[27] Dav: Yes. It should be a rectangle,

yes.

The solvers perform

a robust dragging

test and seem to be

convinced of their

idea.

Table 6.3.1.6: Analysis of Episode 5

The solvers respond positively to the prompt, and are able to construct a robust

IOD. When the perform the dragging test, they seem to be satisfied and almost relieved

to see that the figure's behavior corresponds to their expectation that after this

reconstruction the quadrilateral should in fact be a rectangle. The robust dragging test

seems to be convincing for the solvers, who now write down their conjecture: "ABCD is a

rectangle when A G C0, with O midpoint of BC and radius OB."

Although through the prompting sequence the solvers proceed coherently with

our model and reach a conjecture linking the III with the IOD, they do not exhibit

"automatic" behavior at this point. They seem to still be developing expertise with respect

to MD during the exploration they engage in after this one, hesitating on providing a GDP

which is invariant with respect to the dragged-base-point. However after such hesitation

the solvers seem to exhibit expert behavior in their final explorations.

6.4 Conclusion

In this chapter we elaborated the notion of path that we had introduced with our

model in Chapter 4, emphasizing its centrality in the development of expert use of MD. In

particular we described how the generic path resides at a meta-cognitive level with
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respect to the dynamic exploration being carried out. This meta-cognitive level seems to

influence the interpretation of the phenomena that occur on the screen, and to control

the whole development of the exploration process. Moreover, constructing this meta-

level knowledge seems to allow some students to transition to using MD during an

exploration, and exhibit expert behavior. The meta-cognitive level seems to also conceal

the abduction that previous studies have identified during dynamic exploration that

involve the use of maintaining dragging (previously known as dummy locus dragging).

We therefore introduced a new notion, that of instrumented abduction, describing this

type of abduction, and others that may be supported by an instrument. Finally, in Section

6.3, we identified recurring aspects of a process of development of expert use of MD by

describing a possible sequence of prompts that was used by the interviewer to foster

solvers' awareness about the use of MD for producing a conjecture, and that seemed to

lead solvers to progress in a process of development of expert use of MD.
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CHAPTER VII

CONCLUSIONS, IMPLICATIONS AND DIRECTIONS FOR FUTURE RESEARCH

In this concluding chapter we will explicitly explain how the MD-conjecturing

Model led to significant findings with respect to the research questions we had set out to

investigate. Concisely, the model provides an adequate description of the process of

conjecture-generation when maintaining dragging (MD) is used by the solver; it also

provided a lens through which it was possible to analyze solvers' explorations and gain

further insight into cognitive aspects of this particular process of conjecture-generation.

In particular, it shed light onto the relationship between an abductive process and use of

the dragging tool, specifically MD.

As mentioned in the description of the methodology, our findings have no

statistical ambitions because of the limited number of cases analyzed. However, the fine

grain qualitative analysis that was carried out for every case provided a richness in detail

and depth which would not have otherwise been possible. Furthermore, many

commonalities emerged during the analyses, outlining a common process of conjecture-

generation through MD, thus giving sense to a definition of expert use of MD. All this

leads us to think that, in a search for more general results, quantitative research can be

fruitfully grounded upon our findings.

In this chapter, after answering our research questions, we will contextualize our

findings within the field of mathematics education. The contextualization of our research
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within the broader perspective of the field as a whole will serve to describe implications

of this study and directions for further research.

7.1 Answers to The Research Questions

The research questions we proposed to investigate were:

1 . What relationship do the forms of reasoning used by solvers during the

conjecturing stage of an open problem in a DGS, have with the ways In which

solvers use the dragging tool?

2. When a solver engages in the activities proposed in this study within a DGS there

seems to be a common process used to generate conjectures through use of

maintaining dragging.

a. Does our model describe this process adequately?

b. How does the model describe the dragging scheme and how can we

refine the description?

c. What insight into the process of conjecture-generation can be gained

when using our model as a tool of analysis for solvers' explorations?

d. What is the role of the path within this model? Moreover is the path, as a

part of the model, a useful tool of analysis?

e. How does the model highlight abductive processes involved in conjecture

generation?

3. In cases where students do not use maintaining dragging (MD), is it possible to

outline how they might develop effective use of MD?

In the following paragraphs we will provide answers to each of the questions with

respect to our findings described in Chapter 4, Chapter 5, and Chapter 6.
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7.1.1 Answer to Question 1

The MD-conjecturing Model unravels the delicate point of transition marked by an

abduction and use of dummy locus dragging (Arzarello et al., 2002). As such, our model

provides a tool of analysis that allows us to "zoom into" this transition point and look at

different concurring features that contribute to its complexity. In particular, with our model

we were able to analyze in further detail the relationship between maintaining dragging

and particular forms of reasoning, including abduction. The model proposes a

classification of robust invariants that provides a window through which solvers'

reasoning can be viewed and analyzed. In particular our notions of basic and derived

construction-invariant and of point-invariant have revealed to be insightful tools of

analysis. They allow us to highlight the solvers' ability to use theoretical knowledge to

interpret invariants, and, more importantly, the cognitive process through which solvers

can link these simultaneously-observed properties together in a conditional relationship.

Wandering dragging is used to perceive these robust invariants, which can then be used

in what we have defined as basic conjectures, during a preliminary phase of

explorations. For example, these notions allow us to interpret exclamations such as

"always a trapezoid" ([1], Excerpt 4.2.2) and put them in relation with the subsequent

conjectures generated by solvers.

As the exploration proceeds and the solver searches for interesting

configurations, we can recognize a form of guided dragging (Arzarello et al., 2002) or

use of a drag-to-fit strategy (Lopez-Real & Leung, 2006), which seems to be a

manifestation of the solver's use of his/her conceptual knowledge to induce a particular

configuration on the dynamic-figure by acting on its base points. Our model introduces

the notions of basic property and minimum basic property io describe a particular use of

theoretical knowledge to reach a desired configuration. These notions are also useful for
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interpreting solvers' behavior as they are trying to maintain a desired property, through

maintaining dragging. For example, when G exclaims: "I understand! so, C... we have to

have the diagonals that intersect each other at their midpoints, right?" ([8], Excerpt 4.2.5)

he has conceived a minimum basic property which he uses to make the task of

maintaining dragging easier.

Moreover, by identifying two types of soft invariants, intentionally induced

invariants and invariants observed during dragging, the model allows us to put the

(potentially) subsequent use of maintaining dragging in relation with the idea of

"searching for a cause" and, in general, with an abductive cognitive process. We will

analyze this relationship in depth in our answer to Question 2. Here we highlight an

aspect of this cognitive process, related to use of maintaining dragging with the trace

activated as a means to reach a GDP. Recall, for example, episodes like that described

in Episode 4 of Excerpt 4.3.1 , when, activation of the trace on the base point being

dragged leads to Giu's observation: "It's an arc of a circle, I think the curvature suggests

that...." ([35] Episode 4, Excerpt 4.3.1).

The terminology we introduce for soft invariants helps describe reasoning that

occurs in correspondence with the use of the soft dragging test. If the solver is exploring

the figure dynamically and has perceived two soft invariants, potentially an ///and an

IOD, that seem to occur simultaneously, s/he might drag a base point to induce one

property directly and the other one indirectly and check that they are visually verified

simultaneously. Our model sheds light onto how causality between the invariants in the

DGS may be interpreted as conditionality between geometrical properties in Euclidean

Geometry and to how a CL may be established, leading to the formulation of a

conjecture. For example, we analyzed how the use of the word "when" can mark the

conception of a CL between soft invariants. We can recall exclamations like: "Now there
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is this problem of the parallelogram in which we can't exactly find when it is" ([6:36],

Excerpt 4.4.2), or: "I find that the quadrilateral is a parallelogram, except when, uh, D

comes to lie on the line CA" ([17], Excerpt 4.4.1).

A similar form of reasoning seems be used in correspondence to the robust

dragging test. This may be performed by the solver after a redefinition of the dragged-

base-point on the geometrical object s/he constructed to represent the figure-specific

path. The solver this way can test his/her conjecture in a robust and "general" way. As a

matter of fact, now the solver can only perceive simultaneity of the two invariants, which,

if the conjecture is provable, have now become robust invariants, and can be conceived

as new construction invariants (see also the description of the model in phases, Section

4.6 and 7.2.2).

7.1.2 Answers to Questions 2a. 2b and 2c

The data analysis appears to confirm that there is a common process of

conjecture-generation when maintaining dragging (MD) is used, and this process is well-

described by the MD-conjecturing Model. Moreover, the model provided a lens through

which we could analyze students' difficulties, which led to the identification of four

components that seem to be necessary for expert use of MD. We used these four

components to describe the solvers' difficulties in Chapter 5. The analysis of solvers'

difficulties allowed us to gain further insight into cognitive aspects of conjecture-

generation that we had set out to study, leading to the identification of a figure-specific

level and a generic level of the MD-conjecturing Model. These were described in Chapter

6. In the following paragraphs of this section we will highlight significant aspects of these

findings.
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This initial model presented in Chapter 2 was found to be appropriate, but not

sufficient to describe various aspects of the process we were investigating. Therefore

this initial model was refined and elaborated into the MD-conjecturing Model which was

introduced in Chapter 4. We found it useful to present the MD-conjecturing Model as a

sequence of tasks and sub-tasks that a solver can decide to carry out during his/her

dynamic exploration. The tasks we identified and described are the following.

• Task 1 : Determine a configuration to be explored by inducing it as a (soft)

invariant intentionally induced invariant (III);

• Task 2: Look for a condition that makes the intentionally induced invariant (III) be

visually verified through maintaining dragging;

• Task 3: Verify the conditional link (CL) through the dragging test.

Ill
task 1: determine an

interesting property to
intentionally induce
as an invariant

type of dragging:
wandering dragging

IOD \
task 2 (part 1 ): search for I

a "condition" that j_ _,,
makes the IH visually ^
verified, as movement
ofabasepointaiong
a path

type of dragging:
maintaining dragging
and dragging with
trace activated

through a
geometric

interpretation of
iie trace or of
the movement
of the dragged ¿

? base point y

V

CL
task 2 (part 2}: interpret
(wittiin the world of
geometry) the IOD as a
condition under which the

I is verified

CL check
task 3: verify the CL

through a dragging test
type of dragging: soft or

robust dragging test
v..

Figure 7.1 .1 : Interplay of the main elements of the MD-conjecturing Model.
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Throughout Chapter 4 we highlighted the additions that the data analysis led to, and

broadened our description of the process of conjecture-generation. Although use of MD

is still central in this new description of the process of conjecture-generation, we added

the description of a phase that appeared in many explorations, in which solvers seemed

to explore robust invariants.

Moreover, with respect to the initial model, we noticed how most of the additions

to our initial model were related to a characterization of invariants that seemed to help

describe students' work. The types of invariants we added are point-invariants and

construction-invariants (either basic or derived), and additional construction-invariants,

that is, invariants that are constructed as a robust invariant after having been observed

(or induced) as a soft invariant, or potential property of the Cabri-figure considered. We

therefore proposed an alternative description of the process of conjecture-generation

characterized by the particular type of invariant investigated: (1) the point-invariant and

construction-invariant phase; (2) the intentionally-induced-invariant phase; and the (3)

additional-construction-invariant phase. The phases describe how an exploration may be

carried out over time, through a process that could repeat cyclically. This second way of

describing the model seems to complement the first description, and the combination of

the two descriptions revealed to be useful in analyzing solvers' explorations. Below is a

table that represents the description of the MD-conjecturing Model as invariant-type

phases.
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Phase of Model Subtasks Dragging Schemes Used

point-invariant and construction-
invariant phase

distinction of point-
invariants from
construction-invariants

wandering dragging

formulation of initial
conjectures

dragging test (robust)

intentionally-induced-invariant
phase

determine an wandering dragging

find a (minimum) basic
property

no dragging, wandering
dragging, dragging test
(soft) to test sufficiency of
condition

maintain the III maintaining dragging

find a GDP and provide
anlOD

maintaining dragging,
dragging with trace
activated

verify the CL dragging test (soft and/or
robust version)

additional-construction-invariant
phase

construct the I OD from
previous phase robustly

redefinition of point on
object

repeat previous phases
on new construction

all the dragging above

Table 7.1.2: The MD-conjecturing Model as invariant-type phases with related subtasks.
As mentioned above, the MD-conjecturing Model also allowed us to gain further

insight into cognitive aspects of conjecture-generation we had set out to study. If we

focus specifically on the solver's use of MD, the analysis we carried out through the lens

of the MD-conjecturing model allowed us to describe what we called expert use of MD

for conjecture-generation. Moving to a meta-cognitive level, it is possible to describe key

aspects that seem to determine such expert use. In particular, in Chapters 4 and in
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Chapter 6, we have introduced the idea of developing the subtask of "searching for a

cause". We highlighted how expert use of MD seems to be characterized by an open

and flexible attitude during use of MD. In other words, the expert does not expect

anything specific, but simply is open to the possibility of perceiving a regularity that might

be transformed into a geometrical condition for verification of the interesting property

induced. Conceiving MD as a tool that may help answer the question "what might cause

the property I am interested in to be maintained" seems to be necessary for the

development of expert use of MD, leading to making sense of what emerges during an

exploration. We believe that this question paired with the developed notion of generic

path (Section 6.1) supports the solver in searching for a cause of the maintaining of the

III as dragging the considered base point along a path which will have a figure-specific

description in each particular exploration, depending on the construction, the property

chosen to maintain, and the base point chosen to drag.

These considerations allowed us to describe expert solvers as solvers who have

developed the necessary meta-level knowledge related to the use of MD, specifically the

notion of generic path and the idea of using MD to "search for a cause". Combining our

description of the meta-cognitive level with the elements of the model that illustrate the

use of MD during the dynamic exploration, leads to what we have defined the

maintaining dragging scheme (MDS). Taking an instrumental perspective, we can

characterize expert use of the MD through the description of the utilization scheme that

solvers seem to build in correspondence to MD with respect to the task of conjecture-

generation in open problems in a DGS. The utilization scheme is the combination of the

two components we described: the cognitive component at the level of the exploration,

and the meta-cognitive component that we introduced to describe expert behavior.
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7.1.3 Answer to Question 2d

The role of the path is fundamental within the MD-conjecturing model. Through

its two components, the figure-specific path and the generic path, it bridges the two

levels of the MD-conjecturing Model. Moreover, the notion of path was found to be a

useful tool of analysis, giving an indication of what phase of the model the solver

seemed to be proceeding through, and providing insight into difficulties when solvers did

not use MD effectively. In particular, the (re-elaborated) notion of path, and especially its

generic component described in Chapter 6, allowed us frequently to identify the crucial

point of many of the difficulties. This is the case, because the notion of generic path

"incorporates" fundamental aspects of the intentionally induced invariant (III) - since

dragging along "the path" makes the III visually verified - and the potentiality of an

invariant observed during dragging (IOD) - since a regularity may emerge as the

movement of the dragged-base-point along a trajectory that may be described

geometrically.

Furthermore, the generic path expresses a link between the phenomenology of

the DGS and the world of Euclidean Geometry. Conceiving a generic path guides the

interpretation of the experience within the phenomenology of the DGS in geometrical

terms. We described how this seems to be the case because within the phenomenology

of the DGS the generic path withholds both the seed of a causal link between the

invariants perceived during the exploration and of the conditional link (CL). In particular

the generic path can be considered, within the phenomenology of a DGS, as a trajectory

with respect to movement, a movement that coordinates the dragged-base-point with the

III, causing the III to be visually verified. In Geometry, this trajectory which becomes

figure-specific, may be seen as a geometrical object that a point can belong to, a

mathematical locus (or a subset of it), a condition for a second property to be verified.
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Difficulties can arise in cases in which solvers identify a figure-specific path, but not

being able to conceive a generic path, they are not able to relate what they experience

within the phenomenology of the DGS to a geometrical statement expressing a

conjecture.

7.1 .4 Answer to Question 2e

Through the MD-conjecturing Model we were able to successfully "zoom into" the

delicate transition point that Arzarello et al. (1998) describe as marked by abduction.

There seems to be a correspondence between abduction and use of MD, situating the

abduction at a meta-level with respect to the exploration. We express this idea through

the notion of instrumented abduction (Section 6.2). When conjectures are generated

coherently with the MD-conjecturing Model, use of MD seems to become "automatic" for

expert solvers who exploit the corresponding utilization scheme (MDS). Moreover

automatic use of the MDS seems to condense and hide the abductive process that

occurs during the process of conjecture-generation in a specific exploration: the solver

proceeds through steps that lead smoothly to the discovery of invariants and to the

generation of a conjecture, with no apparent abductive ruptures in the process. In other

words, our research seems to show that,

for the expert, the abduction that previous research described as occurring

within the dynamic exploration occurs at a meta-level and is concealed within the

MD-instrument.

Instrumented abduction is the main type of abduction that we seemed to find occurring in

correspondence with MD, and that characterizes the maintaining dragging scheme.

However, our data seemed to also suggest that if MD is also internalized by

solvers, thus becoming a psychological tool (Vygostky, 1981 , p. 162), it may be freed
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from the physical artifact of dragging within the DGS. When MD is developed into a

psychological tool, it seems to become a way of thinking that can be used to solve a

different problem: no longer that of maintaining a property through dragging, but that of

searching for a cause. We described this case at the end of Section 6.2: although the

"search for a cause" through use of MD with the trace activated failed, the solvers were

able to overcome the technical difficulties and reach a conjecture by conceiving a new

GDP without help from the actual use of the MD. In other words the solvers seem to

have interiorized the use of the MD to the extent that it has become a psychological tool

which no longer needs external support. This is also very interesting with respect to the

abduction involved, because our data suggested that when MD is used as a

psychological tool, the abduction seems to occur internally and is supported by the

theory of Euclidean Geometry. This abduction is not an instrumented abduction, but an

abduction that resides at the level of the dynamic exploration, and that leads to the

emergence of geometrical properties of the GDP which in the case of an instrumented

abduction do not emerge.

7.1.5 Answer to Question 3

Many solvers did not exhibit expert behavior during their explorations, especially

during their first explorations. In general, during the study we did not observe the

possible process of development of expert use of MD, nor did we attempt to describe a

process of instrumental genesis (Rabardel, 2002). However some of the solvers did

reach an expert or nearly expert behavior by the end of their interviews. The evolution of

expert behavior did not seem to be completely spontaneous. In fact we developed a

number of prompts to use in situations in which solvers seemed to have encountered

some sort of impasse, or would not be able to proceed. These prompts were not aimed
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at leading solvers to behave according to the MD-conjecturing Model, but to foster

awareness of aspects of the exploration that might lead them to overcoming the

impasse. In other words, the prompts were conceived to act at the meta-cognitive level,

to foster development of the MDS.

Somewhat unexpectedly, as we analyzed our interventions and solvers'

responses during the interviews, a prompting sequence emerged. In particular we

noticed the recurring use of a sequence of prompts that would foster similar patterns of

responses. In Section 6.3 we described the basic sequence of prompts that emerged

from the analysis of the interventions and the solvers' responses. From this sequence it

is possible to identify a series of four steps that seem to outline how solvers might

develop effective use of MD.

We stress that this sequence of prompts is not the only one that may foster the

development of expert use of MD, nor can we state that it is the most effective one. Its

significance resides in the fact that it emerged from the analyses as a recurrent

sequence from an otherwise orderless set of prompts we had prepared for the

interviews. The order in which the prompts were used and the consistency of solvers'

responses led us to the considerations above. However the relatively small number of

cases analyzed in this study does not allow us to make significant claims on the

"generality" of the process, which may be studied in future research.

7.2 Contextualization of Our Findings

In this section we situate our findings within the field of mathematics education. In

particular we discuss how our results can be considered with respect to Arzarello et al. 's

analysis of dragging in Cabri, to Leung's variational analysis of dragging, and to Boero's

processes of generation of conditionality.
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7.2.1 Our Findings with Respect to Arzarello et al.'s Analysis of Dragging in Cabri

Our research has its roots within the research developed by Arzarello, Olivero,

Paola and Robutti (Arzarello et al., 1998a, 1998b, 2002) that provided a cognitive

analysis of dragging practices in Cabri environments. Our study advances this line of

research by explicitly describing in detail certain possible steps of the cognitive

processes that may occur when students engage in particular dragging practices among

the ones described by Arzarello et al.'s research. More precisely, our model illustrates a

process of conjecture-generation that can occur when maintaining dragging is used by

the solver. Maintaining dragging is essentially Arzarello et al.'s dummy locus dragging

(Arzarello et al., 2002), with the essential difference that it is a way of dragging "given" to

solvers instead of observed and classified a posteriori. While Arzarello et al.'s research

led to a detailed description of dragging practices during the solution of open problems in

Cabri, our primary goal was to further investigate specific cognitive processes that

seemed to occur during the phase of conjecture generation in the solution of open

problems when the use of the specific MD modality is promoted. In this sense our

research aimed at unraveling what Arzarello et al. had described as the delicate

transition from ascending to descending control, guided by abduction, and occurring in

correspondence to use of dummy locus dragging. Through our model we intended to

"zoom into" this delicate transition point and analyze, in a fine manner, the processes

involved. Consistently with this goal we took a different approach to studying the use of

dragging: we chose to introduce particular dragging modalities, and in particular the

maintaining dragging modality, to the participants.

This approach to our investigation allowed us to develop and test our model,

which provided insight into processes that Arzarello et al.'s research had hinted at, and
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¡? particular it led us to recognize where" abduction seems to lie within this process of

conjecture-generation. As we described in Chapter 6, when maintaining dragging is used

by expert solvers in an "automatic" way, no abduction seems to occur at the level of the

dynamic exploration. Instead it is supported by the instrument of maintaining dragging,

and concealed within the instrument, in particular at a meta-cognitive level within what

we described as the maintaining dragging scheme. These considerations led us to

define the notion of instrumented abduction, a main finding of our research. This way our

findings are consistent with previous studies carried out by Arzarello et al., but deepen

them with respect to the use of MD and to the presence of abductive processes that

become indwelling of the meta-cognitive component of the MD scheme.

7.2.2 Our Findings with Respect to Leung's Variational Lens

Similarly to how we developed our model to gain insight into specific processes in

DGS explorations, Leung has developed a different lens that provides a tool of analysis

from a cognitive perspective. The lens of variation (Leung, 2008) is introduced to help

capture and explain cognitive components of experiences involving dragging, as

described in Chapter 1 . Moreover, he used such lens to introduce a discernment

framework that can mediate geometrical knowledge (Leung, 2008, p.152-153). This

opens the delicate issue of the relationship between the phenomenological domain of a

DGS and the world of Euclidean Geometry (EG), introduced in previous research (for

example Lopez-Real & Leung, 2006; Strässer, 2001).

The perspective introduced by Leung presents an interesting and complementary

perspective in respect to our own. Thus in a recent and ongoing research collaboration

with Leung, we developed the complementarities between our MD-conjecturing Model

and the lens of variation, constructing a combined-lens that sees elements of the MDS
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and of the lens of variation fused together. We used the combined-lens to analyze

students' work to try to gain insight into aspects of the dynamic relationship between the

Cabri-world and the world of EG that arise when MD is used. The combined-lens,

through the elements that constitute it and their relationships, seems to in fact provide

deeper insight into cognitive processes involved in conjecture-generation when MD is

used. Moreover, analyzing solvers' explorations through the combined-lens seems to

lead to a new perspective on the transition from sense-making within the DGS to

mathematical interpretation within EG, a transition that is needed to reach the

formulation of a geometrical conjecture (a conjecture in geometrical terms).

The Combined-lens - We now introduce our combined-lens for describing

conjecture-generation when MD is used, and summarize it in the table below (Table

7.2.2.1), which spells out the complexity involved. The table combines the main

elements that have arisen from our study with those previously developed by Leung

(Leung, 2008), describing them within the phenomenology of a DGS together with the

cognitive components involved in their perception (column 1) and illustrating their

interpretation within EG (column 2). The system of relationships is presented in the table

through placing corresponding elements in parallel. Accordingly, we describe the

combined lens following the organization of the table row-by-row, which corresponds to

separating different key elements of the process of conjecture-generation, expressing

some of the possible cognitive components involved and how each element of the

process develops across the two worlds.
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Phenomenology of a DGS EG Interpretation

Level-1 -Invariants (Perceived Invariants): robust invariants
and induced soft invariants. One of these may be chosen as
an III. The IOD will later emerge as another of these
invariants during the process.
Cognitive components: functions of contrast and separation

Geometrical
interpretation of level-1
invariants as
geometrical properties

Level-2-lnvariants (Perceived Invariant Relations between
Invariants): perception of an invariant relation between the
and the IOD.
Cognitive components: coordination between different
functions of variation and synchronic simultaneity

Geometrical
interpretation of levels-
invariants as
geometrical relations
between geometrical
properties

Locus of Validity (LoV): a figure-specific path. It can be of
type I (traced path), type Il (soft path), or type ill
(robust/generalized path)
Cognitive components: functions of separation, diachronic to
synchronic simultaneity, generalization, fusion

Geometrical
interpretation and
description of the LoV
(GDLoV) as a
geometrical object

Critical Link 1 (CrL1): transition from the first to the second
level of invariants
Critical Link 2 (CrL2): interpretation of CrL1 as the answer to
the "search for a cause"
Cognitive components: simultaneity together with the
sensation of direct and indirect control over the III and the
IOD

Interpretation of the
CrL2 as a Conditional
Link (CL): a relationship
of logical dependency
between geometrical
properties

Table 7.2.2.1 : Elements of our combined-lens with respect to the phenomenology of a DGS and their
interpretation within the world of EG.

Row 1: A Level-1 -invariant is a property of a dynamic-figure that remains invariant while

other properties change under different dragging modalities. Level-1 -invariants may be

interpreted within the domain of EG as geometrical properties of figures. While some

invariants are properties that the dynamic-figure maintains for any movement of a

specific base-point (or all base-points) being dragged, other invariants are properties

that may be "induced" to be invariant by particular movements of the dragged-base-

point. Using Healy's terminology (Healy, 2000), the first type are robust invariants, while

induced invariants are soft invariants. The solver may choose to use MD, i.e. to drag
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intentionally trying to induce a property as a (soft) invariant, that is to obtain an

Intentionally Induced Invariant (III). Other soft invariants may then be perceived. We

refer to these other invariants as Invariants Observed during Dragging (IODs), as in our

MDS model. Different functions of variation (Leung, 2008) seem to explain how the

perception of the different types of invariants may occur. For example, when determining

and maintaining an III the solver mainly uses the function of contrast to identify a certain

property which the figure can have "sometimes" but not "always".

Row 2: A more complex type of invariant that can be perceived during a dynamic

exploration is an invariant relation between level-1 -invariants, we refer to invariants of

this type as level-2-invariants. These are perceived within the DGS through awareness

of synchronic simultaneity between two or more level-1 -invariants. In the domain of EG

these correspond to relations of logical dependency between geometrical properties.

Row 3: As the solver performs MD, s/he can determine a locus of validity, Lo V (Leung &

Lopez-Real, 2002), that is, a sketch of a trajectory along which to drag the base point in

order to maintain the III. Coming up with a LoV can be quite difficult, and using the trace

tool activated on the dragged-base-point may help. This can lead to a geometrical

description of the LoV (GDLoV). A new invariant may be perceived: the "belonging of the

dragged-base-point to the LoV", an IOD.

Row 4: Within the phenomenological domain of a DGS the transition from perceiving two

level-1 -invariants to perceiving an invariant relation between them is delicate. We can

describe this transition as follows. A first Critical Link (CrL1) is established as awareness

of a level-2-invariant between an III and an IOD, such awareness is fostered by

synchronic simultaneity of the two level-1 -invariants. Moreover, a sense of direct/indirect

control over each invariant may guide the conception of a second critical link (CrL2)

between the invariants. A CrL2 is established when the solver can interpret the IOD as
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"causing" the III to occur within the phenomenological domain of the DGS. In the realm of

Euclidean Geometry, critical links can be interpreted as a conditional link (CL) between

the geometrical properties corresponding to the IOD and the III. Such a CL may be

expressed in the conjecture. Soft or robust dragging tests may be used by the solver to

test the hypothesized critical link and CL, using the functions of contrast, synchronic

simultaneity, fusion, and generalization.

7.2.3 Our Findings with Respect to Boero's PGCs

Through our model we have described how conditionality seems to arise through

the geometrical interpretation of causality determined by a combination of the perception

of simultaneity plus direct or indirect control over the invariants observed when MD is

used (Section 4.4). The complexity of the process can also be seen from a different

perspective: during the process described by our model it is possible to identify several

of the processes of generation of conditionality (PGC) introduced by Boero, Garuti and

Lemut (Boero et al., 1999). In this section we propose a combined analysis to explore

the consistency of our model with the PGCs described in the literature. During the

complex process of conjecture-generation described by our model we have identified

different possible PGCs . We believe that describing complementarities with the PGCs

present in literature not only serves to contextualize our research, but it also serves as a

basis for future research on the semiotic potential of the dragging tool with respect to

the TEG and mathematics in general. Once we have described how our MD-conjecturing

Model seems to feature a combination of PGCs, in Section 7.4, we will illustrate the

mathematical meanings that can emerge from dynamic explorations that involve MD in

generating conjectures, and that could be featured in future research on semiotic

potential of dragging.
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PGC1 in the MD-conjecturing Model - When solvers are exploring a particular

configuration, focusing on a specific property and asking themselves "when" it might

occur, they frequently seem to "freeze" the image and suddenly conceive a condition for

the particular configuration to occur. This seems to occur mostly during the preliminary

phases of an exploration, when basic conjectures are formulated, or bridge properties for

MD are conceived. This behavior may be interpreted as an occurrence of a PGC1 , that

is

a time section in a dynamic exploration of the problem situation: during the
exploration one identifies a configuration inside which B happens, then the
analysis of that configuration suggests the condition A, hence "if A then B\
(Boero et al., 1999, p.140).

Consider the following example of such behavior.

Excerpt 7.2.3. 1 - The two solvers are working on Problem 1 , and they identify an

interesting configuration: "ABCD rectangle". They seem to analyze the configuration

leaving it static, as if frozen, and they provide a condition for this configuration to occur.

Episode

[1] F: a rectangle ...

[2] G: A rectangle.

[2] F: More or less [he moves M so that ABCD looks like a

rectangle].

[3] G: eh, look at the measures...when it comes out to be a

rectangle.

[4] F: eh.. .I don't know, well, about like this...

[5] I: ok.

[6] F: rectangle when...

Brief Analysis

The solvers identify an

interesting

configuration for the

figure being a

rectangle.
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[7] G: when... eh, wait...when the perpendicular, I think, when

the perpendicular to AB through M is also through K...

[8] F: exactly [together]

[9] G: ...it's a hypothesis.

[10] F: Wait, when the perpendicular... it's a conjecture [he gets

ready to write it]

[11] G: ...through ...The

perpendicular to AB through M is

also through K.

[12] F: Ok.

[13] G: Try to draw it...

¿*~~_
ssfcs»

/
/3.10 on

They identify a

condition that they

consider sufficient for

the interesting

configuration to be

verified. They leave

the image frozen on

the screen.

Table 7.2.3.1 : Analysis of Excerpt 7.2.3.1

Once they have placed the base-points in a way that makes ABCD look like a

rectangle, the solvers do not perform any type of dragging. Instead they seem to freeze

the configuration and identify a condition A inside which they think B occurs. The

phenomenon B in this case is "ABCD rectangle" ([1], [2]) and the condition A is "the

perpendicular to AB through M is also through K" ([7], [11]). The relationship between A

and B is expressed by the solvers through the word "when" ([17], [10]). This process of

generation of conditionality has also been eloquently described as follows:

the conditionality of the statement can be the product of a dynamic exploration of
the problem situation during which the identification of a special regularity leads
to a temporal section of the exploration process that will be subsequently
detached from it and then "crystallize" from a logic point of view ("if..., then...").
(Boero et al., 1996).

The word "when", used by the solvers to express the conditional relationship between A

and B, seems to mark the "crystallization" described by Boero.
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PGC2 in the MD-conjecturinq Model - When solvers are determining the figure-

specific path by searching for a GDP they frequently use MD (with or without the trace

activated) and continuously check "when" the desired regularity, B, is maintained, in a

continuous manner. They seem to do this by generating the condition, A dynamically

through continuous trials and errors during which they check that "when the dragged-

base-point is not on the hypothesized figure-specific path" ("not A") the regularity B fails

to happen. This behavior seems to be well described by a PCG2, that is:

noticing a regularity B in a given situation then identifying, by exploration
performed through a transformation of the situation, a condition A, present in
the original situation, such that B may fail to happen if A is not satisfied. (Boero
et al., 1999, p.141).

Consider the following example of such behavior.

Excerpt 7.2.3.2 -The excerpt is taken from the same exploration as in Excerpt

7.2.3.1 . Here the solvers are refining their GDP and they seem to be using a process of

generation of conditionally of the second type.

Episode

[22] F: Ah, it

looks like a

curve!

[23] G: Again

a nice circle? 2^r

[24] F: Like this...

[25] F: It's definitely not a straight line.

[26]l:hmm...

[27] F: Soifs a curve...

Brief Analysis

GDP1:acurve

refinement of the GDP1 : "a nice circle"

Here there is a change in the dragging

mode.
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[28] F: Let's

go the whole

way around

and

see...what

happens...

[29] I: Wait, not you are going around

without maintaining the property, I think.

[30] F: Well, more or less... no?.. .like this?

[31] G: eh, here, here... here I don't think it

isa rectangle...

[32] F: No, no. ..you're right you're right.

[33] F: So more or less we were starting

from here ...

jJiJcm
[34] I: eh...

[35] F: It

looks like it

goes through

A...

[36] G: ...and through K.

[37] F: Where?

[38] G: It looks like a circle...with diameter

AK.

Instead of looking at the III, F seems to

concentrate on the "circle" and he finishes

to "go the whole way around". This is a

version of the soft dragging test, at least

for G who seems to also keep on checking

the III.

Now they refine the GDP1 adding the

property "passing through A" and then

"through K". Therefore we now have a

GDP2: a circle through A and K; and then

a GDP 3: a circle with diameter AK.
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[39] F:

Yes, that's

what it

looks like,

exactly. It looks like a circle with diameter

AK.

Table 7.2.3.2: Analysis of Excerpt 7.2.3.2

During this episode the solvers are performing MD, moving the dynamic-figure

and proposing successively more refined GDPs. Condition A in this case is "M moves (?)

on a circle" and the regularity B is "ABCD rectangle". During the refinement of the GDP,

once F has dragged "the whole way around" but without paying attention to the III, the

solvers seem to be noticing and describing a regularity A, through the refined GDPs,

such that "B may fail to happen if A is not satisfied". In fact the final GDP seems to arise

dynamically, from a series continuous trials-and-errors, as an object such that if the

dragged-base-point is not on it the regularity B is not verified.

PGC3 in the MD-conjecturing Model - When determining a GDP the solvers start

searching for a regularity from the movement (and the trace mark if the trace activated).

Solvers seem to be associating some perceived regularity to other regularities previously

discovered in other experiences. Moreover, reasoning through "selection and

generalization" (Boero et al., 1999) seems to be used by solvers who select a subset of

positions from the movement (or points from the trace if activated) that have in common

some property (for example that of being equidistant from an imagined point in the case

of a circle) and from which a "general rule" can be inferred. We think this process could
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also be described as a "continuous" case of Boero, Garuti, and Lemut's description of

PGC 3, that is

a 'synthesis and generalization' process starting with an exploration process of a
meaningful sample of conveniently generated examples (Boero et al., p. 141).

Consider the following example of such behavior.

Excerpt 7.2.3.3 - This excerpt was presented in Chapter 4 (Excerpt 4.3.1), and

here we repropose an episode from it to illustrate how PGC of the third type seem to

take place when the movement of the dragged-base-point and the trace mark are used

to reach a GDP and an IOD.

Episode

[28] I: So Ste, what are you looking at to maintain

it?

[29] Ste: Uhm, now I am basically looking at B to

do something decent, but...

[30] I: Are you looking to make »c.:n

sure that the line goes through

B?

[31] Ste: Yes, exactly.

Otherwise it comes out too sloppy...

[32] I: and you, GIu what are you looking at?

[33] Giu: That it seems to be a circle...

[34] Ste: I'm not sure if it is a clrc...

[35] Giu: It's an arc of a circle, I think the curvature

suggests that.

¦» -a

Brief Analysis

Ste Is using the property "the line

goes through B" as his III ([29],

[30]).

Both students show the intention

of uncovering a path by referring

to "it" ([31], [33], [34]).

GIu, in particular concentrates on

describing the path geometrically

and he seems to recognize in the

trace a circle ([33]) or an arc of a

circle ([35]).

Table 7.2.3.3: Analysis of Excerpt 7.2.3.3
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As the solvers look at the trace mark left by the dragged-base-point while they

perform MD, they conceive an idea about what a GDP might be. They are able to do this

through an exploration with MD in which they conveniently generate a significant sample

of examples. From these examples they generalize the perceived regularity, from a

movement along an arc of a circle to a whole circle ([33]-[35]).

The complexity of the process of conjecture-generation described by our MD-

conjecturing Model becomes evident once again, in a new way, if we emphasize the

presence of various PGCs within it, as we have tried to do. Not only does a combination

of PGCs seem to be present during the process, but there is also a new element with

respect to the initial description of the PGCs: continuity that is induced by the specific

kind of motions that occurs in a DGS. While the examples provided for each of the

described PGCs in literature have mostly been of a "discrete" nature, the presence of

dragging, and MD in particular, attributes a new "continuous" nature to the processes.

Although dynamicity seems to provide support for this particular process of conjecture-

generation, making it more "natural", it may turn into an obstacle as far as the aim to

formulate conjectures within the "static" TEG, where it becomes necessary to "eliminate"

time. We will discuss this issue briefly in Section 7.3.2.

7.3 Implications of the Study and Directions for Future Research

In Chapter 1 we introduced the importance within the field of mathematics

education of ameliorating the teaching and learning of Geometry, and how the use of open

problems can be a means to achieve this goal. Particular issues within this line of research

arise when studying the didactic potential of open problems in dynamic geometry. Our

results specifically address questions in this field that involve dragging and its possible role
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within the teaching and learning of Geometry. Our results shed light onto possible answers

and avenues of research that could lead to more complete answers to some questions that

were posed in different moments by researchers in this field. In particular our MD-

conjecturing Model describes a process for generating conjectures in a way that can

become "mechanical" as we have described in Chapter 6. Reasoning about the use of MD

and fostering awareness of the process of conjecture-generation achieved with its support

can be used by the teacher to trigger a process of semiotic mediation centered on the use

of dragging with respect to mathematical meanings like "premise", "conclusion",

"implication", and "conjecture". In Section 7.3.1 we will interpret our findings within the frame

of semiotic mediation and highlight their didactic potential with respect to the construction of

these specific mathematical meanings. Specifically, we will describe how our model seems

to support the design of activities that could be used in the classroom to exploit the use of

MD to mediate these particular mathematical meanings. This didactical implication is

important since these activities can be used to have the students engage in discussions with

classmates and the teacher that can foster their development of these mathematical notions

useful in the overarching context of proof. This is emphasized, for example, in Principles and

Standards for School Mathematics (NCTM 2000) that states: "Reasoning and proof are not

special activities reserved for special times or special topics in the curriculum, but should be

a natural, ongoing part of classroom discussions, no matter what topic is being studied." (p.

342). Moreover such activities give students the opportunity to use their prior knowledge as

they enhance their learning, while engaging in a physical experience within a DGS, to

actively build new mathematical knowledge.

However, with respect to the issue of teaching and learning proof, our findings

suggest different hypotheses to be refined and investigated in future research. We will

frame our description of these implications considering the theory of reference with
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respect to which a proof of a particular statement may be constructed. Such a

conception has been introduced by Mariotti (2000) through the following characterization

of "theorem":

...any mathematical theorem is characterized by a statement and a proof and
that the relationship between statement and proof makes sense within a
particular theoretical context, i.e. a system of shared principles and inference
rules. Historic-epistemological analysis highlights important aspects of this
complex link and shows how it has evolved over the centuries. The fact that the
reference theory often remains implicit leads one to forget or at least to
underevaluate its role in the construction of the meaning of proof. For this
reason it seems useful to refer to a 'mathematical theorem' as a system
consisting of a statement, a proof and a reference theory (Mariotti, 2000, p.29).

Pedemonte has proposed a similar characterization of "conjecture" (2007), as a triplet

consisting of a statement, a system of conceptions (Balacheff, 2000; Balacheff &

Margolinas, 2005), and an argumentation. Considering the symmetry between the two

definitions we will analyze the potential cognitive gap that emerges between an

argumentation developed within a DGS and a proof, if the theory of reference is the

Theory of Euclidean Geometry (TEG). Sections 7.3.2 and 7.3.3 are devoted to different

aspects of this gap: first a description of elements that may make the transition from the

phenomenology of a DGS to the TEG problematic, and then an interpretation of the

cognitive gap within the perspective of cognitive unity (Boero, Garuti & Mariotti, 1996).

Framing the gap between argumentation and proof, when the solvers' system of

conceptions is related to the phenomenology of a DGS and the theory of reference is the

TEG, will serve to outline our hypotheses on how the gap may be (partially) bridged if the

MDS is used as a psychological tool, freed from the support of the instrument.

7.3.1 Semiotic Potential of Our Findings with Respect to the Elaboration of a

Statement
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We have described how our cognitive model sheds light onto a process leading

to the formulation of a statement that makes a conditional link (CL) between two

invariants explicit (Section 4.5). Within our model we have referred to this statement as a

conjecture. Maintaining this perspective, we can frame our findings within the theory of

semiotic mediation (TMS) and describe the didactic potential withheld by the

conjecturing process described by our model with respect to important mathematical

notions such as premise, conclusion, implication, conjecture, and theorem. We will first

briefly introduce aspects of the TMS that we will use to frame our findings, and then we

will describe the specific semiotic potential of dragging highlighted by our findings, and

our hypotheses on how this semiotic potential might be exploited. These hypotheses can

be used in future long term teaching experiments that investigate the semiotic potential

of dragging and of MD specifically.

Brief Introduction to the Theory of Semiotic Mediation (TMS) - Semiotic mediation

in the field of mathematics education is a form of mediation between students and

mathematical knowledge that occurs through signs. Researchers have recently adapted

the idea of semiotic mediation, introduced by Vygotsky (1987), to the context of school

mathematics (Mariotti, 2001, 2002; Bartolini Bussi, Mariotti & Ferri, 2005; Falcade,

Laborde, & Mariotti, 2007; Mariotti & Maracci, 2009; Bartolini Bussi & Mariotti, 2008). We

stress what is intended with semiotic mediation as opposed to mediation tout-court. The

latter is the mediation that occurs when a tool acts as a prothesis, in that it only serves

for helping the user accomplish a task. For example, a fishing rod mediates (tout-court)

the task of fishing. Instead, the former occurs when a tool is used not only to accomplish

a task, but also to put the user in contact with another "theory/world." For example Cabri

not only can be used to help solve a problem, but it also puts the user in touch with the
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world/theory of Euclidean Geometry, and it can be used purposefully with this intent by

the teacher. Of course the two kinds of mediation are interrelated; in particular, acting by

means of a tool may constitute the basis of the subsequent functioning of the same tool

in the process of semiotic mediation, triggered by the teacher.

Bartolini Bussi and Mariotti developed the ideas of tool of semiotic mediation and

of semiotic potential of an artifact.

...any artifact will be referred to as a tool of semiotic mediation as long as it is (or
it is conceived to be) intentionally used by the teacher to mediate a mathematical
content through a designed didactical intervention (Bartolini Bussi & Mariotti,
2008).

When an artifact is used to mediate meanings, we can speak of its semiotic potential

(Bartolini Bussi & Mariotti, 2008):

on the one hand, personal meanings are related to the use of the artifact, in
particular in relation to the aim of accomplishing the task; on the other hand,
mathematical meanings may be related to the artifact and its use. This double
semiotic relationship will be named the semiotic potential of an artifact." (p. 754).

The analysis of the semiotic potential of an artifact can focus on the possible interaction

between students and the artifact during appropriately designed activities, the artifact

and the mathematical meanings evoked during these activities, and on how the teacher

can guide the development of mathematical meanings from the personal meanings by

interacting with the students and using the artifact. Computers, in general, and a DGS, in

particular, can be considered tools of semiotic mediation (Mariotti, 2006; Bartolini Bussi

& Mariotti, 2008).

If a goal of education is to have students engage in sense-making and

argumentation with respect to specific mathematical content (for example, NCTM, 2000),

teachers need to have a variety of activities available to propose and integrate into the

Geometry curriculum. This section presents issues to be taken into consideration in

designing activities that can be used in the Geometry classroom within the perspective of
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semiotic mediation. When designing and using activities of this sort it is fundamental not

to forget the complexity involved in mathematical sense-making process, leading

potentially to a variety of difficulties. These may be analyzed through the lens of our

model which hopefully will provide useful insight into both understanding and helping

students overcome their difficulties. Further research involving long term teaching

experiments in this area is necessary to test our hypotheses and to better describe how

the semiotic potential of dragging, and maintaining dragging in particular, may be

exploited. In the next section, considering "dragging" as an artifact, we use our findings

to highlight the semiotic potential of dragging with respect to particular mathematical

meanings.

The Semiotic Potential of Dragging from Our Findings - Our model focuses on a

particular process of conjecture generation that sees the emergence of a premise and a

conclusion from different invariants perceived

during a dynamic exploration. In this section

we will analyze this process of emergence of

the premise and conclusion of a conditional

statement, and discuss how these findings

contribute to the analysis of the semiotic

potential of MD with respect to particular
/b

mathematical meanings such as "premise",
Fig 7.3.1.1 ABCD as a result of the step-by-

"conclusion", "implication", "conjecture", and step construction.

"theorem". Moreover we will describe how our distinction of different types of invariants

highlights how the potential of MD could be exploited elaborating on the different types of

invariants.

/

C

/
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Let us consider an activity like Problem 2 (Section 3.3.3). A step-by-step

construction is given and the solver is asked to make a conjecture about the possible

configurations that can occur. If we consider activities like this, or in general, activities

that contain a series of steps followed by a question like: "what can you say about the

figure?, or what can you say about.. .when...?, or under what conditions can the figure

become a...?", it is possible to clearly/explicitly distinguish the invariants destined to

originate the conclusion and the premise of the conjecture that is the outcome of the

exploration as it can be carried out by the student. In particular the invariant (the III) that

is destined to become the conclusion of the conjecture has the following characteristics

that make it clearly recognizable:

1) it is a first soft invariant that may be induced,

2) it is induced indirectly and it is a configuration that can be acted-upon by moving

different base points,

3) once a second soft invariant is perceived (the IOD) with respect to the dragged-base-

point, the two invariants appear simultaneously but the control over the III is indirect.

On the other hand the invariant destined to originate the premise has the

following characteristics:

1) it is a soft invariant perceived while a first one (the III) is being induced,

2) it is searched for in response to the question "what might cause the III to be

maintained?",

3) it is related to a specific base point and therefore can be induced directly by dragging

this base point,

4) it is perceived simultaneously with the III but differs in the type of control that the
solver exercises over it.
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The characterization of the invariants can be used by the teacher during collective

discussions and in so doing exploiting the semiotic potential of maintaining dragging

with the aim at developing the mathematical meanings of premise and conclusion of a

conditional statement.

Another component of the MD-conjecturing Model that has an important

counterpart in the development of the idea of conjecture is what we have described as a

"bridge property" (Section 4.2.1 .3), that is a property that implies the property

corresponding to a previously conceived III, and that therefore can be used during MD in

substitution of the original III. The emergence of bridge properties, may give the

opportunity of introducing the idea of implication. As a matter of fact, the relationship that

links the selected property (III) and these new properties has a counterpart in the theory

in a logic relationship that may become the aim of the didactic intervention.

The Role of the Task in the Analysis of the Semiotic Potential - Although the

analysis of soft invariants in step-by-step construction problems seems to have a strong

semiotic potential with respect to the development of mathematical meanings such as

premise and conclusion of a conditional statement, analyzing different types of robust

invariants in step-by-step construction problems also withholds semiotic potential.

Various activities can be constructed around step-by-step constructions in order to foster

the development of these mathematical meanings from .. ç /
the analysis of robust invariants. In particular, we will / \ /

show that the type of problems we developed for the / / ~"s
interviews, can be used within a context of semiotic ' / ." «

mediation to help students construct the meanings of ik
Figure 7.3.1.2: ABCD as a result
of the step-by-step construction.
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"implication" and more in general of "conjecture" and "theorem". Let us consider the step-

by-step construction in our Problem 4 (Section 3.3.3):

• Draw three points: A, B, C.

• Construct the parallel line /to AC through B,

• and the perpendicular line to /through C.

• Construct D as the intersection of these two lines.

• Consider the quadrilateral ABCD.

Students can be asked to list all the information about ABCD that they know given the

steps of the construction. Within such a list different robust invariants will emerge, and

basic construction invariants and derived construction invariants (Section 4.2.1.1) may

both be present. For example, a student may produce the following list of properties of

ABCD:

• AC parallel to BD,

• angle ACD right,

• angle CDB right,

• ABCD right trapezoid.

The first two properties in the list are basic construction invariants, while the second two

are derived construction invariants, since "angle CDB right" is not explicitly contained in

the steps of the construction, but it can be derived through logical implication from the

first two properties. Reflection upon differences between these two types of construction

invariants can help the construction of the meaning of "implication" within a theory. In this

sense it could be a step towards the construction of the meaning of "theorem" conceived

as a triplet (statement, theory, proof) in Mariotti's terms (2000).

Once students have reflected upon the construction invariants, it can be made

explicit how the geometrical properties that correspond to these invariants will always be
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part of the premise (although maybe implicitly) of any conjecture developed on ABCD. In

order to foster awareness of these properties and of their meanings, the teacher can ask

students to list them explicitly for a number of conjectures, before allowing that these

properties be used implicitly.

We showed how the notions of basic and derived construction invariants can be

used to distinguish between properties of a figure that emerges from a step-by-step

construction, leading to the development of the meaning of "implication". The notion of

point-invariants (Section 4.2.1.2) may also be useful to distinguish between robust

invariants that correspond to derived-construction invariants as opposed to invariants

that are robust only for the dragging of particular base points, and that therefore do not

correspond to general properties of the geometrical figure represented by the product of

the step-by-step construction.

Asking students to compare and discuss their solutions to activities like the ones

described, designed to foster the emergence of meanings of particular mathematical

notions, can be useful within a process of semiotic mediation towards notions like

premise and conclusion of a conditional statement. Moreover, as described, students

can gain awareness of logical dependencies between geometrical properties by

constructing and perceiving the corresponding invariants. In particular students can be

guided to reason about what they perceive, on how a dynamic-construction can be used

to show relationships between properties, and, more generally, about what a logical '

implication might me, abstracting from the situated context (Noss & Hoyles, 1996).

During the discussion various issues may arise, such as how the perception of

simultaneity plus direct or indirect control over an invariant property can be interpreted

statically as logical dependence of one property from another. A discussion centered

around the relationship between steps of a construction and geometrical properties
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explicitly stated in the conjecture may serve to develop further understanding of the

notions of premise and conclusion of a conditional statement, and of logical implication.

Moreover, engaging in activities similar to the ones described students will have the

opportunity of engaging in explorations that require flexibility in recalling and using

different definitions and representations of the figures involved.

7.3.2 The MD-conjecturinq Model with Respect to a Theory

In the previous section and throughout our study we used the word "conjecture"

to refer to particular kinds of statements originating from an open problem and still

requiring a proof. Now we will consider these statements with respect to the solver's

system of conceptions (Balacheff, 2000; Balacheff & Margolinas, 2005) and to the

argumentation they are generated through, according to Pedemonte's definition (2007).

This conception of conjecture is symmetric with respect to Mariotti's definition of theorem

as the triplet consisting of a statement, a theory of reference, and a proof (Mariotti,

2000). Thus this conception of conjecture introduces a correspondence that may be

used to describe the relationship between the exploration phase, when the conjecture

statement is produced and the proof phase when such statement is proved, or is to be

proved.

Let us consider the case in focus when the production of the conjecture is

accomplished through the use of MD and the proof is expected in the TEG. The

cognitive gap that may arise is potentially quite wide if the argumentation is constructed

within the solver's system of conceptions in the phenomenological domain of a DGS and

the.theory of reference is the Theory of Euclidean Geometry (TEG). Although there might

be the possibility of bridging such cognitive gap by choosing to introduce a different

theory of reference that might be constructed upon "axioms of a DGS", we choose the
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TEG as the theory of reference. Therefore, we must consider the complex issue of

transitioning from a dynamic conception in which dynamism (and therefore time) is

present, to a generalized and static domain, that of the TEG, ordered by logical

implications and in which time is no longer present. In the following sub-section we will

discuss the complexity of this task, through a few considerations on the elimination of

dynamism in order to interpret the findings geometrically and generate a conjecture with

a statement that is provable within the TEG.

Here we would like to highlight an interesting feature of our findings. Mechanical

use of MD can be a powerful tool for generating conjectures: expert use of MD seems to

lead smoothly to sense-making of the findings of a dynamic exploration in terms of a

conjecture that could be proved within the TEG. However few elements of the

argumentation leading to the conjectures are transferrable to the TEG. In fact frequently

only the invariants corresponding to the premise and the conclusion of the final

conditional statement are interpreted within the TEG. This contributes to widening a

discontinuity between argumentation and proof. The phenomenon can be interpreted

within the perspective of cognitive unity as we will do in Section 7.3.3.

Transitioning from the Phenomenology of a DGS to the Theory of Euclidean

Geometry: the Elimination of Dynamism - We have described how personal meanings

concern the idea of dependent movement as it emerges from students' activities in a

DGS, characterized by dynamism; while mathematical meanings concern the ideas of

logical dependence between premise and conclusion of a conjecture in the context of the

TEG. The dragging tool is the means connecting dynamism to logical statements, in a

process through which the solver gains theoretical control, moving from personal

meanings to mathematical meanings of his/her observations. Goldenberg and Cuoco
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(1998) provide an insightful example of how invariants are such with respect to the

dragging and therefore to a dynamic perception.

We hypothesize that when an endpoint of a stretchy segment is moved, and the
segment is the only object present, the user perceives the movement as a translation
of the point. That is, dragging A to A' may feel psychologically like a translation. The
display may also tend to be seen more as a mapping of A (in its various positions) to
C (the midpoint of AB), than as a mapping of A and C to A' and C respectively. But
other situations may lead to very different perceptions. For example consider the
same construction with a perpendicular to AB at B. A comparable movement of A
now appears to rotate the system; the sense that A is being translated is now
considerably diminished...What do students make out of this we don't yet fully know
(p. 352).

A major difficulty ¡s that it is hard to "translate" these dynamic observations into logical

propositions. The literature indicates that dynamic thinking seems to be useful for

generating conjectures (for example, Hadamard, 1949; Polya, 1962; Schoenfeld, 1985;

Thurston, 1995; Simon, 1996; Boero et al., 1996, 1999) long before the advent of

dynamic geometry. However little is known on how the elimination of the dynamic

components of processes of conjecture-generation may occur. In the following

paragraphs we will describe aspects of the complexity of this translation when the

dynamism is situated within the domain of a DGS.

Conjectures generated within a DGS can be based on a crucial element, which

has a dynamic nature, but the dynamic nature of this element can conflict with the static

nature of the theorems available in the TEG (Mariotti, 2000). The literature is filled with

cases in which subjects are not able to find compatibility between geometric static

knowledge and the perceptions of "movement" generated by the software. This can be

explained as follows. When the figurai part is dynamic and the conceptual part is static,

there is a conflict. For example, it can be very difficult to conceptually control the

phenomenon of a point moving on a circle through the definition of locus of points in

Geometry. When using dragging, and in particular movement along a path, it is possible
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to end up in similar situations because of the simultaneously dynamic and static nature

of the path, as described in Section 6.1 .

Another aspect of the translation from dynamism within the DGS to staticity within

the TEG has to do with the perception of generality of a figure accomplished through the

"condensation of dynamism". As described by Mariotti (2010), the dynamism of a Cabri-

figure is perceived as change in contrast to what remains simultaneously invariant: the

interaction between what changes and what does not is at the basis of the perception of

movement of the image. The invariants, that remain unchanged constitute the identity of

the figure on the screen, that is they allow recognition of the image on the screen as a

unitary object "in movement" and perhaps as a particular "geometric figure", for example

a trapezoid or a parallelogram. The dialogue between invariants and variation is at the

basis of the process of conceptualization: it allows us to recognize very different objects

as belonging to a same class of geometrical objects, or to recognize a person's face

after many years. So in a DGS variation represents generality of a concept. For

example, a Cabri-figure represents a "general square" because of its potential variation

during dragging, a variation that maintains the theoretical properties of a square as

invariants (Mariotti, 2010).

Dominating generality in dynamic terms is not trivial, because it requires

"condensing" the dynamism. When does a solver say that a certain figure (or part of a

figure) "is the same" object, or "is always" something? Let us think a bit more about it

using an example. Assume that a certain Cabri-figure is constructed so that it is a robust

parallelogram. What does perceiving a Cabri-figure as a generic parallelogram mean?

First of all, the perception lies within the mind of the perceiver, in our case the solver, so

the Cabri-figure will be compared to the solver's figurai concept of parallelogram

(Fischbein, 1993; Mariotti, 1995). As the solver moves the Cabri-figure, s/he may
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recognize various instances that correspond to his/her figurai concept of parallelogram,

and no instances that do not correspond to such image. In this case the solver may

mentally "condense" the instances and recognize the Cabri-figure as a generic

parallelogram. However, depending on how it has been constructed, the Cabri-figure

may only represent a subset of all possible parallelograms. In this case the solver will

probably recognize it as a "parallelogram", but is it still a generic parallelogram?

Difficulties may emerge as the solver compares his/her conception of a figure

with the dynamic-figure on the screen. For example, the solver may be thinking of a

specific subset of parallelograms, say all homothetic parallelograms with respect to a

particular one, and s/he may be identifying "parallelogram" with this conception. In this

case, if the Cabri-figure is dragged into a configuration that does not belong to the set of

homothetic parallelograms, the solver may not perceive it as a parallelogram any longer.

There may be further subtleties in the process of recognizing different screen images as

instances of something more general. Moreover, when a property is not constructed

robustly within a Cabri-figure, complications in the process of perceiving generality seem

to increase.

Concluding Remarks - In conclusion, our model describes how the process of

conjecture-generation through expert use of MD makes use of dynamism within the

phenomenological domain of the DGS. This, on one hand seems to facilitate the process

of conjecture-generation, but, on the other, it makes it necessary to eliminate the

dynamic component if we choose to work towards a theorem that has the Theory of

Euclidean Geometry (TEG) as the theory of reference (Mariotti, 2000). Thus there is a

potential cognitive gap between an argumentation within the phenomenology of a DGS,

based on a system of conceptions that is dynamic, and a proof within the TEG. The next
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section is dedicated to a further analysis of this gap, and to some new hypotheses we

advance with respect to conjectures generated when the MDS is used as a

psychological tool, freed from the external support of the instrument.

7.3.3 Links to Proof

In this section, according to Mariotti's definition of theorem, we will consider the

conditional statement of a conjecture as a potential statement of a theorem. Within this

perspective we will discuss implications and hypotheses that arise from our findings with

respect to proof. First we will consider different types of conjectures that arose from the

dynamic explorations our solvers engaged in, characterizing them through the process

by which they were generated. Then we will advance hypotheses on how the process of

generation of each conjecture may foster (or not) its proof within the TEG. We will frame

these considerations within the construct of cognitive unity (Boero, Garuti & Mariotti,

1996; Pedemonte, 2007b).

We described how expert use of MD leads to "automaticity" in the process of

conjecture-generation in which it is used. On the other hand this automaticity seemed

not to be present in the case of internalization of MD (Section 6.2.3). If we consider

conjectures generated in these two ways, the differences do not reside in the statement

of the conjecture: expert use of MD seems to lead to statements in which the premise

and the conclusion are "distant". In other words, conjectures generated through expert

use of MD seem to exhibit a "gap" between the premise and the conclusion, and no

bridging geometrical properties emerge from the exploration leading to the statement of

the conjecture. On the other hand, it seems that internalization of MD leads to

conjectures accompanied by geometrical arguments bridging the premise and the

conclusion.
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The relatively small amount of data analyzed in our study does not allow us to

make general statements about the observation we illustrated above. Moreover our

study was not focused on investigating the internalization of MD and its transformation

into a psychological tool. These are secondary findings that we briefly introduced in

Chapter 6. However they can be considered as potentially interesting directions for

future research. At this point we focus on the two types of conjectures, those with a "gap"

that emerge through expert use of MD and those that emerge as a product of an

internalization of MD, and we advance our hypotheses on their respective relationships

with proof.

Although proof was not taken into consideration in this study, in some cases

solvers would proceed to give an oral proof of some of their conjectures. This happened

after F and G reached their strong conjecture described in Episode 2 of Excerpt 6.2.3.

We present this episode below for ease of the reader, highlight the geometric properties

that emerge through an abduction, and then describe the oral proof provided by the

solvers.

We remind the reader that F and G in this exploration, before this episode, have

attempted to use MD having chosen "ABCD parallelogram" as their III and "PB=PD" as a

bridge property.

Episode 2 of Excerpt 6.2.3

[43] G: eh, since this is a chord, it's a chord right?

We have to, it means that this has to be an equal

chord of another circle, in my opinion with center in .

A. because I think if you do, like, a circle with

center

Brief Analysis

G uses the theory to interpret what

he is seeing. G seems to focus on

DP and PB and interpret them as

chords of symmetric circles. As if

the movement of these chords (not
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[44] F: A, you say...

[45] G: symmetric with respect to this one, you

have to make it with center A.

[46] F: uh huh

[47] G: Do it! /-" ^
/

/

[48] F: with center A \j
and radius AP?

[49] G: with center A

and radius AP. I, I

think...

/ \

X

[50] F: let's move D. more or less...

[51] G: it looks right doesn't it?

[52] F: yes.

of D) led him to the second circle.

The abduction (in Pierce's terms)

seems to proceed as follows:

• fact: DP=PB (and their

behavior during maintaining

dragging)

• rule: given symmetric circles

with PB and PD symmetric

chords, then PB=PD (and

they would behave like this)

• abductive hypothesis: there

exists a symmetric circle with

center in A and radius AP.

Table 7.3.3.1 : Analysis of Episode 2 of Excerpt 6.2.3

In the brief analysis we presented next to the excerpt we highlighted how the

abduction (described in Pierce's terms) makes use of elements of the TEG, in particular

geometrical properties that link the circle on which D is assumed to move to the III

("ABCD parallelogram"). Once the solvers have tested the conjecture "D belongs to the

circle centered in A with radius AP implies ABCD parallelogram", they engage in an oral

proof. The proof they develop proceeds as follows:

• the circles are symmetric so AD is congruent to AP which is congruent to PD

and to therefore to BC;

• the isosceles triangles APD and PBC are congruent because they have

congruent angles, since the angle DPA is opposite at its vertex to CPB;

• therefore PD is congruent to PB,
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• so ABCD has diagonals that intersect at their midpoints and therefore it is a

parallelogram.

A key idea (Raman, 2003) in the proof is the interpretation of PD and PB as chords of

symmetric circles, which emerged in the conjecturing phase of the investigation. The use

of properties of symmetric circles is fundamental both to the development of the

conjecture and of the proof. We advance the hypothesis that when MD is internalized

and used as a psychological tool, reasoning used in the conjecturing phase (and

abduction in particular) leads to the emergence of geometrical properties that logically

relate the premise to the conclusion of the conjecture and that can be re-used in the

proving phase.

When such a way of thinking is developed the abductive reasoning has the

advantage of involving geometrical concepts, like in the case of F and G. Our hypothesis

is that the geometrical concepts that emerge in this case can become "bridging

elements" with respect to the proving phase, since they can be re-elaborated into the

deductive steps of a proof. On the other hand, expert use of the MD seems to lead to

conjectures in which no geometrical elements arise to "bridge the gap" between the

premise and the conclusion. In other words, although expert use of MD seems to offer

the possibility of generating "powerful" conjectures that solvers might have trouble

reaching without support of the dragging-support (since the IOD which becomes the

premise may be cognitively "quite distant" from the conclusion), generating conjectures

"automatically" through the MDS supported by the dragging-support, may hinder the

proving phase in which these "bridging elements" are essential.

In terms of cognitive unity (Boero, Garuti & Mariotti, 1996), it seems like strong

conjectures generated through mechanical use of MD will lead to cognitive rupture. This

seems to be the case because the process of conjecture-generation, or the
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argumentation phase, is supported by the DGS. In particular we have described

particular types of arguments that are used by solvers during the conjecturing phase of

an open problem activity and that are supported by the DGS conceived as an

instrument. In Section 6.2 we introduced the notion of instrumented abduction as a

particular type of instrumented argument. Further research is necessary to generalize

and elaborate these notions, however what we stress here is that the warrants of such

arguments are supported by an instrument, in our case dragging or the DGS more in

general. As a consequence the arguments make use of many elements that do not

directly correspond to geometrical properties and that therefore cannot be re-used in a

proof residing within the TEG. This leads to a potential strong rupture between the

conjecturing phase and the proving phase that may be manifested through solvers'

potential difficulties with proof of a statement generated through mechanical use of MD.

On the other hand, we hypothesize that if expert solvers interiorize MD

transforming it into a psychological tool, or a fruitful "mathematical habit of mind" (Cuoco,

2008) that may be exploited in various mathematical explorations leading to the

generation of conjectures, there might be a greater cognitive unity between the

conjecturing phase and the proving phase. In other words, our hypothesis is that when

the MDS is used as a psychological tool, the conjecturing phase is characterized by the

emergence of arguments that the solver can set in chain in a deductive way when

constructing a proof (Boero et al., 1996). We think this may occur if, as in the case of F

and G, abduction in which the rules are taken from the domain of TEG is used during the

conjecturing phase. An abduction of this sort seems to expose key ideas to use in the

proof, and geometrical properties that bridge the gap between the premise and the

conclusion. At this point a logical re-ordering of these properties might be sufficient for

the construction of the proof. Again, we do not have enough data to support the claims
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we are making in this section, but our data suggests that these may be important issues

to study in order to gain insight into how a DGS can be used (or not) in the context of

proof.

7.3.4 Directions for Future Research

We would like to conclude this Chapter by introducing some general questions

that arise from our study, and by outlining two possible directions for future research that

might be carried on from our study. First, given our findings, a discussion should be

opened about whether, as a mathematics education community, we are interested in

fostering a process of conjecture-generation as described by our model, and therefore

whether specific dragging modalities, and maintaining dragging in particular, should be

taught as part of the mathematics curriculum. If we decide to add the dragging schemes

to curricula we must consider issues related to fostering an instrumental genesis of MD.

In particular, how to develop students' construction of both components of the MDS, but

also related to fostering the internalization of MD that might induce use of abduction

leading to the emergence of bridging elements in sight of proof. Moreover, we would

need to consider students' difficulties in developing the maintaining dragging scheme;

how long a potential teaching sequence should be; which dragging modalities (and

schemes?) should be taught and how; what (if any) elements of our model should be

made explicit during the teaching sequence. Moreover, might it be possible, through

particular teaching strategies, to avoid some of the potential cognitive difficulties that the

dragging schemes seem to induce? If not, what strategies might be developed to

overcome such difficulties? Furthermore, it would be beneficial to investigate whether

there are particular types of students who benefit more (or less) from being introduced to

the dragging modalities (and schemes). On the other hand, if we choose not to introduce
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specific dragging modalities at the classroom level, would it be beneficial (and in what

ways) for teachers to be aware of possible utilization schemes like the one for

maintaining dragging described by our model, since dynamic geometry is already being

used in many classrooms?

As for the two lines of research we outline, one aims at developing research from

our findings within the theory semiotic mediation, to investigate how the semiotic

potential of dragging, and maintaining dragging in particular, might be exploited; the

second investigates our hypotheses with respect to proof and cognitive unity that we

introduced in Section 7.3.3.

Studies on the Semiotic Potential of Dragging - Studies on the semiotic potential

of the artifact dragging in a DGS based on the development of precise hypotheses from

our study, with respect to tasks that involve conjecture-generation. The hypotheses

would emerge from our reflection on our findings with respect to semiotic mediation, as

presented in Section 7.3.1 , involving the relationship between the use of dragging and in

particular maintaining dragging and the mathematical meaning of conjecture and the

related notions of premise, conclusion, conditionally, and implication. An appropriate

methodology could be a long term teaching experiment to allow a first validation of the

hypotheses arising for our study.

In particular a long term teaching experiment could allow to observe the

hypothesized unfolding of the semiotic potential of the MD and the evolution of personal

meanings into the mathematical meanings through the semiotic processes triggered and

orchestrated by the teacher in classroom discussions (Mariotti & Maracci, 2010).

Our notions of instrumented abduction and instrumented argument could be further

elaborated in light of the analysis of the effectiveness of the didactical intervention aimed
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at developing mathematical meanings, from the use of maintaining dragging relative to

the notion of conjecture.

Studies on Proof in a DGS - A second line of research could investigate the

hypotheses we advanced in Section 7.3.3 with respect cognitive unity. In particular it

could be insightful to study the process of generation of conjectures in solvers who have

interiorized MD and who are using it as a psychological tool. This way it would be

possible to test out hypothesis on the presence, within this process, of abduction that

uses rules from the TEG, like in the case of F and G, and of potentially other forms of

reasoning that lead to geometrical properties that can bridge the gap between the

premise and the conclusion of the produced conjecture. If this were to be the case, the

study should then compare the conjecturing phases in which the two types of

conjectures are developed with the subsequent proving phase. This analysis could be

used to test our hypothesis on the emergence of geometrical properties during the

conjecturing phase, in the case of conjectures developed through the use of the MDS as

a psychological tool that can be used as key ideas in a proof of the statement of the

conjecture. Confirmation of this hypothesis would be a significant result for designing

activities in dynamic geometry that foster cognitive unity.

Of course we acknowledge the difficulty of implementing such a study, since

finding subjects who have interiorized MD would not be a trivial task. However, some

possible subjects of this kind might be identified during the teaching experiment carried

our during the first study we outlined. This could be a viable possibility since during the

teaching experiment the dragging modalities we introduced in this study would be

introduced again and in a more thorough way with respect to the task of conjecture-

generation.
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Finally, if the first line of research we outlined were to give insight into how to

foster the development of the MDS as a psychological tool, and the second line of

research confirmed our hypothesis on cognitive unity, we would be able to develop

activities in a DGS that involve a process of conjecture-generation with strong links to a

subsequent proving phase. Such activities would be particularly beneficial in the

teaching and learning of proof.
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Al Dirigente Scolastico del Liceo Scientifico

Al fine di attuare lo studio per la tesi di dottorato, la sottoscritta Anna Baccaglini-Frank,
dottoranda alla University of New Hampshire (USA) sotto la direzione della Prof.ssa
Maria Alessandra Mariotti, chiede di poter svolgere due lezioni durante ore di
Matematica della classe ed alcune osservazioni/interviste ad alunni della stessa
classe in orario pomeridiano, sotto la guida della Prof.ssa , nei periodi ottobre-
novembre e febbraio-marzo dell'anno scolastico in corso.

Presentazione

L'obiettivo della tesi, "Sviluppo di Congetture e Dimostrazioni in Geometria Dinamica,"
è di confermare ipotesi di ricerca su processi cognitivi che avvengono nelle fasi di
congettura e di dimostrazione in problemi aperti proposti con lo strumento della
geometria dinamica. In particolare, il software che verrà utilizzato è Cabri, un software
didattico usato correntemente dall'insegnante della classe, Prof.ssa .
Le attività proposte saranno costruite appositamente per la classe in cui verranno attuate e
saranno complementari al regolare percorso didattico della classe. Inoltre le attività
saranno svolte sotto la sorveglianza e con la collaborazione della Prof.ssa .
Sono previsti due cicli (uno a ottobre-novembre ed uno a febbraio-marzo) composti dai
seguenti interventi: lezione introduttiva sugli schemi di trascinamento in Cabri (in orario
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dalla dott.ssa Anna Baccaglini-Frank e dalla Prof.ssa Maria Alessandra Mariotti con la
partecipazione attiva dell'insegnante della classe.

Cordialmente,

La Dottoranda
dott.ssa Anna Baccaglini-Frank
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