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ABSTRACT 

DISRUPTION OF CYTOKERATIN 18-CONTAINING INTERMEDIATE 
FILAMENTS IN BOVINE LUTEAL CELLS: EFFECTS ON FAS EXPRESSION, 
PROGESTERONE SECRETION, AND FAS LIGAND-INDUCED APOPTOSIS 

by 

Alice R.B. Duncan 

University of New Hampshire, December, 2009 

In the current study, the possibility that cytokeratin 18 (CK18)-containing 

intermediate filaments (IFs) protect bovine luteal cells from FasL-induced apoptosis was 

explored. Bovine corpora lutea (CL) from early and late stages of the luteal phase were 

collected and prepared for cell culture. The cultures were exposed to culture medium 

without (control) or with 5mM acrylamide for 4 hr to disrupt CK18 IFs. Subsequently, 

the cultures were exposed to fresh medium without (control) or with FasL (50ng/mL) for 

24 hr to induce apoptosis. Acrylamide disrupted CK18 IFs without affecting 

microtubules, progesterone secretion (P>0.05), or cell viability (P>0.05). Surface 

expression of Fas receptor was relatively high on luteal cells from early and late stage CL 

(84% and 61% of cells, respectively). Disruption of CK18 IFs did not enhance this 

(P>0.05), nor did it augment FasL-induced cell death (P>0.05). The results indicate 

CK18 IFs do not protect bovine luteal cells from FasL-induced apoptosis. 
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CHAPTER I 

LITERATURE REVIEW 

Consequences of Improved Lactation Efficiency on Dairy Cattle Fertility 

The global demand for dairy products such as cheese, butter, and milk has 

increased over the past decade. Increased fluid milk production has largely met this 

demand, although at the expense of cow fertility (1-4). In the United States dairy 

industry, selective breeding and genetic improvement have provided for a steady increase 

in milk production over the years. More specifically, milk production has nearly doubled 

since 1960, increasing from 6252 to over 11,000 kg/year/cow (2). This increase in milk 

production per cow, although beneficial to the dairy industry, has come at a cost: milk 

production has increased while reproductive performance has declined. The decline in 

reproductive performance includes an increase in the number of services per conception, 

or the number of times a cow is inseminated before successful fertilization, and an 

increase in the number of days open, or the number of days from calving to subsequent 

fertilization (2). Although a link between high milk production and decreased fertility 

has been suggested, there are other likely factors contributing to the decline in 

reproductive performance, such as management, disease, and nutrition (1). Nevertheless, 

a substantial number of dairy cows encounter reproductive failure, as noted by a survey 

conducted by the United States Department of Agriculture. In this survey, 26.3% of US 

dairy cattle were culled due to reproductive problems, such as failure to ovulate or 
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conceive (3). Resolving this issue of declining reproductive performance in cows 

requires a thorough understanding of the physiological mechanisms that mediate 

ovulation and maintenance of pregnancy. 

Bovine Estrous Cycle 

The bovine estrous cycle lasts approximately 21 days and is generally divided into 

three stages: the follicular phase, the estrous phase, and the luteal phase. Within the 

ovary are structures called follicles, which are responsible for nurturing individual eggs, 

or oocytes. Follicles consist of a granulosal cell layer, a basement membrane, and a 

thecal cell layer. During the follicular phase of the estrous cycle, follicles are stimulated 

to mature in response to luteinizing hormone (LH) and follicle stimulating hormone 

(FSH). LH stimulates androgen synthesis within thecal cells, while FSH acts on 

granulosal cells by stimulating the conversion of androgens into estradiol (5). The 

increase in estradiol stimulates estrous behavior (estrous phase) and a surge in LH, which 

signals the rupture of the mature follicle. The rupturing of the follicle leads to the release 

of the oocyte, a process called ovulation (5-7). After ovulation, the collapsed follicle 

undergoes a transformation to become a progesterone-secreting structure called the 

corpus luteum (CL) (6-10). In cattle, gestation lasts between 280 and 285 days and the 

corpus luteum is responsible for maintaining pregnancy throughout most of this period 

(5). If pregnancy does not occur, the corpus luteum regresses, stimulating the start of 

another estrous cycle. However, the untimely loss of CL function has been implicated in 

spontaneous embryonic loss and the decline in fertility of the dairy cow. 
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Corpus Luteum Formation, Function and Regression 

Formation and Maintenance 

The transformation of the follicle into the CL is a process called luteinization, in 

which granulosal and thecal cells transform into luteal cells that constitute the CL. It is 

generally believed that granulosal cells transform into what are known as large luteal 

cells, and thecal cells transform into small luteal cells (11). The suggestion that small 

luteal cells transform into large luteal cells as the CL matures has also been put forth 

(11,12). The primary function of the CL is to secrete the hormone progesterone, which is 

produced in response to the anterior pituitary-derived hormone LH (9,13). In vitro, large 

luteal cells produce higher amounts of progesterone than small luteal cells (14); however, 

large luteal cells are also relatively un-responsive to LH. In contrast, small luteal cells 

are responsive to LH, and thus produce comparable amounts of progesterone to large 

luteal cells when exposed to LH (14,15). The lifespan of the CL, called the luteal phase, 

can be divided further into four distinct stages based on progesterone production and 

appearance of the CL. Stage I (early stage) consists of newly formed CL in which the 

tissue secretes relatively low concentrations of progesterone (i.e., 1.5ng/mL) and is 

relatively small. Stages II and III (mid stage) CL produce the maximum amount of 

progesterone (i.e., 6.9-7.8ng/mL) and are larger in size (8,16). The secretion of high 

amounts of progesterone by stage II and III CL not only promotes embryonic 

implantation following conception, but is also thought to prevent the death of luteal cells 

(17). Finally, in the absence of pregnancy, stage IV (late stage) CL are characterized by a 

decline of progesterone production (i.e. 1.2ng/mL) and a decrease in tissue size, which 

marks the start of regression of the CL, an event called luteolysis (8,16). 
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Events During the Regression of the Corpus Luteum 

Luteolysis is defined as the regression of the CL during which a decline in ' 

progesterone production and a decline in luteal mass occurs. In cattle, the pulsatile 

release of uterine-derived prostaglandin F2a (PGF2a) is believed to trigger the initial 

decline of progesterone (10,13,18). PGF2a is known to decrease blood flow to the CL 

(10), decrease plasma membrane fluidity of luteal cells (13,19,20), and disrupt 

lipoprotein-stimulated steroidogenesis (progesterone production) (21,22). The decline in 

size of the CL is triggered by a mechanism of cell death called apoptosis. During the 

regression of the CL, luteal cells (23) and endothelial cells (24) undergo apoptosis, 

contributing to the demise of the corpus luteum. 

Mechanisms of Apoptosis 

Programmed cell death, or apoptosis, is central to homeostasis of tissues. The 

term apoptosis was coined by Kerr, Wyllie, and Currie in 1972, who suggested that 

apoptosis plays an important role in tissue kinetics (25). Apoptosis is characterized by 

changes in mitochondrial function (26), increases in phosphatidyl serine on the outer 

leaflet of the plasma membrane (26,27), nuclear and DNA fragmentation (25-27), 

increases in plasma membrane permeability (26), membrane blebbing (25-27), and 

cytokeratin-intermediate filament cleavage (28-32). 

As is evident from the above description, the mechanisms of apoptosis are 

complex, but generally there are two primary pathways involved: the extrinsic, death 

receptor pathway and the intrinsic, mitochondrial pathway. In the extrinsic pathway, 

4 



ligation of a death receptor leads to the recruitment of a death domain, which activates a 

series of caspases, and ultimately leads to the induction of apoptosis (27,33). In the 

intrinsic pathway, stimuli such as radiation, toxins, hypoxia, hyperthermia, viral 

infections, and free radicals lead to the opening of the mitochondrial permeability 

transition (MPT) pore. The opening of the MPT pore eventually results in the activation 

of caspases, inducing apoptosis (27,33). Within a regressing CL, the intrinsic and 

extrinsic pathways work in concert to induce luteal cell death after PGF2a treatment (34). 

Luteal cells exhibit tell-tale signs of apoptosis, with increased frequency of 

oligonucleosomes (fragmented DNA) and fragmented nuclei (8,23,35,36). 

The process of apoptosis induces striking changes in cellular morphology, and 

within the bovine CL, the regulation of programmed cell death is considered dependent 

on immune system components. This complex interaction between the immune system 

and CL has been the topic of many studies, from which it has been found that signaling 

molecules (cytokines) contribute to morphological changes during CL regression. As the 

CL undergoes luteolysis, the cytokines tumor necrosis factor alpha (TNFa), interferon 

gamma (IFNy) and Fas ligand (FasL) contribute to decreased cellular viability by 

inducing apoptosis. Collectively, these mechanisms are thought to decrease CL weight 

and impair progesterone production, the hallmarks of luteolysis (27). 

Immune System Involvement During Regression of the CL 

Immune Cells within the Corpus Luteum 

The presence of immune cells within the bovine corpus luteum was first described 

in 1968 by Lobel and Levy (37). Since then, studies evaluating the expression of 
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immune cells during the regression of the CL have led to the conclusion that immune 

cells and their secreted peptides called cytokines contribute to luteolysis (38-41). 

Immune cell populations within the CL have been described in the horse (42), human 

(43), mouse (44), rabbit (45), dog (46) and cow (47-49). In horse, human, mouse, rabbit, 

and dog CL, an increase in T lymphocytes is evident before or at the time of luteolysis, 

which is accompanied by an increase in macrophages (42-46). Similarly, in bovine CL, 

T lymphocytes and macrophages increase before the onset of luteolysis (47-49). This 

influx of immune cells prior to luteolysis suggests that immune cells contribute to the 

regression of the CL. What is not entirely clear at present, however, is the mechanism(s) 

by which these cells become activated within the CL and the extent to which they 

influence regression. 

Activation of Immune Cells 

As immune cells invade the regressing CL, major histocompatibility complex 

(MHC) molecules are expressed on luteal cells and are thought to activate immune cells 

through direct cell-cell signaling. MHC molecules are glycoproteins found on the surface 

of target cells that bind T cells via a T cell receptor, rendering it activated (39-41,50). All 

nucleated cells express class I MHC molecules, which are recognized by CD8+ cytotoxic 

T cells. The expression of class II MHC molecules is usually limited to cells of the 

immune system and is recognized by CD4+ helper T cells (39-41,50). 

Class I MHC molecules are found on the surface of luteal cells, possibly 

responsible for the activation of immune cells, and the expression of class I MHC 

molecules coincides with the recruitment of immune cells to the CL (49). More 
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specifically, class I MHC expression increases before the onset of luteolysis, and this 

coincides with an increase in the accumulation of monocytes, macrophages, and T 

lymphocytes (49). Additionally, class II MHC molecules are expressed in human, 

equine, and bovine CL, with elevated expression occurring at the time of luteolysis 

(42,43,47,51,52). Collectively, the presence of class I and II MHC molecules in bovine 

CL, with elevated expression during luteal regression, suggests these molecules activate 

immune cells and possibly trigger their recruitment during luteolysis. 

Cytokine Secretion 

Once activated, immune cells secrete cytokines, which can have cytotoxic effects 

on luteal cells, contributing to the regression of the CL. Studies evaluating the expression 

of mRNA encoding the cytokines TNFa and IFNy reveal these two cytokines are present 

within the bovine CL throughout the estrous cycle (53,54). In late stage CL, however, 

reports of mRNA expression for TNFa are less consistent. One report (53) indicated 

TNFa mRNA did not change from mid- to late-stage CL. In another report, TNFa 

expression increased in regressed CL (54). Petroff et al. used dl8 CL to characterize 

mRNA expression, whereas Korzekwa et al. utilized dl9-20 CL, which may account for 

the discrepancy observed. During induced luteolysis, IFNy mRNA expression increases 

immediately following PGF2a treatment (53,55). Initially, TNFa mRNA was reported to 

remain the same following induced luteolysis (53). More recently, however, TNFa 

mRNA expression was shown to increase following PGF2a treatment (55). One possible 

explanation for the varying reports could be a difference in materials and techniques 

utilized. The approached used by Neuvians et al. (2004) to quantify mRNA expression 
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has been shown to be highly accurate and much more sensitive than the approach used by 

Petroff et al (1999). It is proposed that these cytokines (TNFa and IFNy) exert their 

effects on the CL by increasing prostaglandin synthesis and blocking gonadotropin-

stimulated steroidogenesis, while initiating the mechanism of apoptosis (39-41). The 

presence of cytokine mRNA coupled with the infiltration of leukocytes and presence of 

class I and II MHC molecules in luteal tissue at the time of luteolysis, supports the 

concept that immune cells play a critical role in the regression of the CL. 

Tumor Necrosis Factor-a 

The cytokine Tumor Necrosis Factor-a (TNFa) was first described as an 

endotoxin-induced, secreted serum factor resulting in the necrosis of tumors (56). 

Following the discovery of TNFa, Mannel et al. determined the cellular source of TNFa 

to be macrophages (57). Although macrophages are viewed as the primary source of 

TNFa, other cell types within the ovary have been implicated as sources of TNFa 

secretion, such as endothelial cells (58), luteal cells (59), and granulosal cells (59,60). 

TNFa exerts its effects on target cells by binding to two possible TNF receptors 

(TNF-R), TNF-R1 and TNF-R2. TNF-R1 is expressed in most tissues and activates gene 

expression or induces apoptosis. TNF-R2 is highly regulated and found on cells of the 

immune system where it promotes cell survival. Unlike TNF-R1, TNF-R2 is incapable 

of transmitting an apoptotic signal since it lacks an intracellular death domain. 

Interestingly, TNF-R2 is only fully activated by membrane-bound TNFa, whereas TNF-

Rl is activated by membrane and soluble forms of TNFa, suggesting that TNF-R1 is the 

key mediator of TNFa signaling (61). 
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TNFa activates gene expression through TNF-R1 by triggering the nuclear 

translocation of the transcription factor nuclear factor kappa B (NF-KB). When TNFa 

binds to TNF-R1, SODD (Silencer of Death Domain) dissociates from TNF-R1, 

recruiting the adapter protein TRADD (TNF Receptor Associated Death Domain). 

TRADD allows for the binding of TNF-receptor associated factor 2 (TRAF2) and the 

kinase RIP (Receptor Interacting Protein). The I-KB kinase (IKK) complex is recruited to 

TRAF2, where it is activated by RIP, subsequently leading to the phosphorylation of I-

KB, the inhibitory counterpart of NF-KB. The phosphorylation of I-KB releases NF-KB 

and allows for its translocation into the nucleus. NF-KB targets anti-apoptotic genes, 

such as cFLIP, Bel, and cIAPl (61) (see Figure 1). 

Although TNFa stimulates gene expression, it also induces cell death. Similar to 

the pathway described above, TNFa binds to TNF-R1, resulting in the dissociation of 

SODD and the recruitment of TRADD. TRADD then binds to FADD (Fas Associated 

Death Domain), which triggers a series of caspase enzyme activated cascades. Pro-

caspase-8 is recruited to FADD, where it is cleaved into its active form, caspase-8. 

Caspase-8 activates other pro-caspases, especially pro-caspase-3, which eventually leads 

to apoptosis (61) (See figure 1). 
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Figure 1. TNF Signaling Pathway 
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Within the corpus luteum, TNFa was originally described for its luteolytic 

actions, but more recently, a luteotropic role of TNFa has been revealed (62). The 

actions of TNFa on the secretion of prostaglandins appear to be dependent on the 

concentration of TNFa used in experiments. Treatment of cattle with high doses of 

TNFa (i.e. 10|ag) stimulates progesterone production, lengthening the estrous cycle, and 

stimulates production of luteotropic prostaglandin E2 (PGE2). On the other hand, low 

doses of TNFa (i.e. 1 u.g) stimulates PGF2a secretion and the shortening of the estrous 
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cycle (54,63-65). Although not completely understood, one plausible explanation for the 

control of the dual role of TNFa is the different TNF receptors. It is possible that the 

concentrations of TNFa dictate which receptor it binds to, with lower concentrations of 

TNFa preferentially binding to TNF-R1, inducing apoptosis, and higher concentrations of 

TNFa binding to TNR-R2, promoting survival (64). 

Although TNFa has luteotropic actions, it is predominantly considered to have a 

role in the regression of the corpus luteum. As stated above, during the onset of 

luteolysis, immune cells infiltrate the CL, including macrophages. Samples collected 

from bovine CL using continuous-flow microdialysis reveal that TNFa protein 

concentration increases during the onset of luteolysis, but not until after the initial decline 

in progesterone (66). Similarly, Sakumoto et al. reported an increase in TNFa 

concentrations between days 13 and 18 of the estrous cycle (63). In studies evaluating 

mRNA, some found that TNFa mRNA is elevated in regressed and PGF2a treated CL 

(54,55), whereas others found no difference in TNFa mRNA throughout the estrous cycle 

(47,53,63). Potential methodological differences aside, the presence of TNFa mRNA and 

increased protein concentrations within the regressing bovine CL suggests a functional 

role for this cytokine during luteolysis. In vitro, TNFa inhibits LH-stimulated 

progesterone production and increases prostaglandin (PGF2a) synthesis in cultured 

bovine luteal cells (54,63,67). In porcine luteal cells, TNFa induces apoptosis (68), an 

effect seen only in bovine luteal cells when TNFa is administered concomitantly with 

IFNy (67,69). 
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Interferon-y 

In 1957, Isaacs and Lindenmann described a substance responsible for protecting 

cells from viral infection, naming it the interferon (70). The interferon family is divided 

into type I and type IIIFN. Type IIFN consists of IFNa and IFNP, which are released as 

a result of viral infection. Type II IFN contains only one member, IFNy, which is 

released in response to immune and inflammatory stimuli (71). IFNy is a cytokine 

released by T lymphocytes and natural killer cells that induces its effects through Janus 

kinases (JAKs) and signal transducers and activators of transcription (STATS), forming a 

signal transduction pathway known as the JAK-STAT pathway. Once secreted, IFNy 

binds to the IFN receptor (IFN-R), which contains a receptor a and P chain (IFN-Rp and 

IFN-Ra, respectively). The IFN-Ra and IFN-R(3 chains are associated with inactive 

forms of the Janus family kinases JAK 1 and JAK2. After IFN-R ligation, the receptor 

dimerizes, resulting in the interaction between the IFN-Ra and IFN-Rp chains and 

inactive JAK 1 and JAK2. The close association of JAK 1 and JAK2 provokes 

transactivation of one another. Active JAK1 and JAK2 enzymes phosphorylate the IFN-

Ra chains of the receptor complex, creating "docking sites" for signal transducers and 

activators of transcription (STAT 1) molecules. The docking sites on the IFN-Ra chains 

attract two STAT 1 molecules, which are subsequently phosphorylated by the IFN-Ra 

chains. The STAT 1 molecules dissociate from the receptor complex, creating a 

homodimeric complex which then translocates into the nucleus, activating gene 

transcription (71) (See figure 2). 
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Figure 2. IFN Signaling Pathway 
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IFNy is synthesized in response to immune and inflammatory stimuli and is 

thought to play an important role in the regression of the CL. Throughout the estrous 
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cycle and after PGF2a treatment, IFNy mRNA is present in the bovine CL (47,53,55). In 

murine ovaries, IFNy detection is strongest during structural regression of the CL, which 

corresponds with a peak in T lymphocyte infiltration (44). In cultured bovine luteal cells, 

treatment with IFNy significantly increases the expression of class I and class II MHC 

molecules (51) while inducing PGF2a secretion (72). Additionally, IFNy inhibits LH-

stimulated steroidogenesis, but has no effect on basal progesterone secretion (72). IFNy 

alone induces cell death (69,72), but the incidence of cell death is enhanced by treatment 

with IFNy and TNFa concomitantly (67,69). The synergistic effects of IFNy and TNFa 

in vitro suggest these two cytokines may act in concert to enhance regression of the CL in 

vivo. 

Fas-FasL 

The discovery of the Fas/Apo-l/CD-95 antigen occurred in 1989 when two 

separate groups identified a monoclonal antibody with death-inducing capabilities 

(73,74). After isolating the cDNA encoding the Fas antigen, it was determined that the 

Fas antigen was similar to TNF-R1, TNF-R2, and CD40, suggesting that Fas is a member 

of the TNF receptor superfamily (75). The Fas receptor and its ligand, FasL, is a system 

originally described for its function in the immune system (73,76-79), and areas of 

immune privilege, such as the testes (80) and eye (81). More recently, the Fas-FasL 

system is recognized for a vital role in tissue homeostasis throughout the body. 

The Fas receptor (Fas-R) shares a homologous cytoplasmic death domain with 

TNF-R1 that transmits a death-inducing signal (82). Fas-R is expressed on the surface of 

cells, however, reports indicate that Fas-R resides intracellularly until signaled to 
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mobilize to the surface of the cell (83-85). When expressed on the surface of cells, FasL 

binds to Fas-R, inducing an apoptotic signal. Two cell types have been identified based 

on their intracellular transmission of the apoptotic signal induced by FasL: type I and 

type II cells (86). 

In type I cells, binding of FasL leads to activation of the caspase cascade, and 

induction of apoptosis. In order to transduce the apoptotic signal, Fas-R must trimerize 

after stimulation with FasL. The clustering of Fas-R recruits the adaptor protein FADD. 

FADD contains a death domain at its C terminus, which interacts with Fas-R. The death 

effector domain (DED), located at the N terminus of FADD, binds procaspase-8. Fas-R, 

FADD, and caspase-8 form a protein complex known as the death inducing signaling 

complex (DISC). The self-cleavage of procaspase-8 signals the caspase cascade, which 

leads to the activation of procaspase-3 and apoptosis (82,86) (See figure 3). 

In type II cells, ligation of Fas-R induces apoptosis, but the intracellular 

mechanisms are different from those of type I cells. Clustering of Fas-R occurs after 

stimulation with FasL, which recruits FADD and procaspase-8 (the DISC). However, in 

type II cells, the formation of the DISC is reduced as compared to type I cells, suggesting 

that there is a decreased amount of activated caspase-8. Instead of caspase-8 primarily 

activating procaspase-3, it is responsible for changes observed in the mitochondria. 

There is a loss of mitochondrial transmembrane potential, formation of permeability 

transition pores, and release of cytochrome c into the cytoplasm. The influx of 

cytochrome c into the cytoplasm leads to the activation of procaspase-3 and subsequent 

cell death. In type II cells (e.g. CEM T-cell line), the requirement of the mitochondria to 

induce cell death was demonstrated by over-expressing the mitochondrial suppressor, 
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Bcl-2 (86). In cells with over-expression of Bcl-2, there is a decrease in procaspase-8 

and procaspase-3 activation. This is accompanied by a decreased sensitivity to FasL. 

Additionally, over-expression of Bcl-2 in type I cells does not affect caspase activation or 

the incidence of cell death, giving strong support to the concept that the mitochondria is 

essential in transmitting the death signal in type II cells (86) (See figure 3). 

In both type I and type II cells, FasL induces cell death through a series of 

signaling pathways within the cells. One of the defining characteristics of apoptosis is 

the degradation of chromosomal DNA. Activation of Fas-R leads to the cleavage of 

DNA through caspase-activated DNase (CAD). In unstimulated cells, CAD is 

complexed with its inhibitor, ICAD. However, once FasL stimulates Fas-R, procaspase-3 

is activated, resulting in the cleavage of ICAD and the release of CAD into the nucleus, 

where it cleaves DNA (82,87). Additionally, as described above, caspase-3 is responsible 

for the cleavage of the cytoskeletal element cytokeratin 18 (28-32). The intracellular 

signaling pathway triggered by FasL stimulates the enzymatic cleavage of several 

products, leading to the tell-tale signs of apoptosis (See figure 3). 
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Figure 3: Fas Signaling Pathway 
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Although originally described for its role in the immune system, the Fas-FasL 

system has been described in several other tissue types, including the liver (hepatocytes) 

(84,85,87), lung epithelial cells (88) and the ovary (69,89-102). Within the ovary, 

researchers have investigated the role of the Fas-FasL system in folliculogenesis and 

corpus luteum function. Follicles, granulosal cells and thecal cells express the Fas 

antigen (91,96,98). Furthermore, FasL and Fas mRNA are increased in granulosal cells 

of early atretic follicles as compared to healthy follicles. Additionally, FasL and Fas 

protein expression also increases in granulosal cells of progressed atretic follicles as 
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compared to healthy and early atretic follicles (99). In the bovine CL, Fas mRNA 

increases in the regressed CL (69), and both Fas and FasL mRNA increase within two 

hours of PGF2a treatment (102). In rat CL of pregnancy and postpartum, Fas and FasL 

protein as well as FasL mRNA increase on day 22 of pregnancy and remain elevated 

through day 1 postpartum, the time at which the CL would start to naturally regress (93). 

Finally, in rat CL treated with the luteolytic agent prolactin, FasL protein expression in 

the membrane-bound and soluble form is increased (92). The presence of Fas and FasL 

in ovarian structures suggests that this system influences follicular atresia and luteolysis. 

The source of FasL within the ovary appears to be the immune cells that infiltrate 

at the time of luteolysis. In rat CL, luteal cells can be separated into two populations 

based on size and density. Immune cells, which lack steroidogenic activity, clearly 

express FasL mRNA (94). In contrast, steroidogenic cells lack FasL, but express high 

amounts of Fas mRNA (94). The specific source of FasL is believed to be T cells, as 

demonstrated by the increase of membrane-bound and soluble FasL protein as a result of 

treatment with the T cell activator concanavalin A (ConA) (94). Although Fas and FasL 

are present in CL of different species at the time of luteolysis, FasL is not cytotoxic 

unless combined with IFNy and TNFa, suggesting a synergistic role for these three 

cytokines (69,89,90,95). 

TNF, IFN, FasL 

As mentioned above, TNFa and IFNy synergistically induce cell death in several 

cell types (67,69,103-105). One possible explanation for this effect is the observation 

that IFNy induces TNF-R1 and TNF-R2 expression on the surface of epithelial and 
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myeloid cell lines (106). This increase in TNF-R expression occurs in a dose-dependent 

manner, and is not accompanied by a change in receptor affinity (106). Additionally, the 

activation of STAT1 by IFNy is a critical step for the synergistic effects of TNFa and 

IFNy (107). Activation of STAT 1 stimulates the production of interferon regulatory 

factor 1 (IRF1), which then inhibits NF-KB activity. Collectively, these signals block 

transcription of anti-apoptotic genes. The inhibition of NF-kB primes cells for TNFa-

induced effects, resulting in increased cell death (108) (See figure 4). In luteal cells, 

another possible explanation for the synergy of IFNy and TNFa is the ability of these 

cytokines to stimulate PGF2a secretion in culture (105). Increases in PGF2a may be a 

contributing mechanism to the decreased viability of luteal cells co-cultured with IFNy 

and TNFa. 
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Figure 4: TNF and IFN Signaling Pathway 
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IFNy and TNFa decrease cell viability, but these cytokines also act in concert 

with Fas-R and the Fas-FasL system. In cells treated with IFNy and TNFa, Fas mRNA 

(69,96,101,109,110) and protein expression increases (74,104,110). In addition to 

augmenting Fas mRNA and protein expression, IFNy and TNFa increase cell 

susceptibility to FasL-induced death. Ovarian cells are more prone to death when treated 

with IFNy, TNFa, and FasL as compared to FasL alone, suggesting that these cytokines 

mediate FasL-induced cell death (69,96,109). 

There are several complex mechanisms controlling the regression of the CL. As 

described above, multiple systems work in concert to decrease progesterone production 

and induce cell death. During regression of the CL, the induction of apoptosis is a very 
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cell specific process (111). Immunohistochemical staining for fragmented DNA shows 

that individual cells will undergo apoptosis while neighboring cells appear to be 

unaffected (111). To further understand the cell-specific mechanisms controlling luteal 

cell death, some are investigating the role of intermediate filaments as a possible 

mediator of apoptosis within the CL. 

Cytoskeleton and Intermediate Filaments 

The cytoskeleton of cells consists of microtubules, which are the largest diameter 

filaments; microfilaments, which are the smallest diameter filaments; and finally, 

intermediate filaments with a diameter that ranges between 7 and 11 nm (112). 

Intermediate filaments consist of a family of five different subtypes, which includes 

cytokeratins, vimentin, desmin, neurofilaments, and glial filaments. Cytokeratin-like 

proteins (CK), are generally found in epithelial cells. Vimentin filaments are found in a 

variety of cell types, including Sertoli cells, vascular smooth muscle cells, and a variety of 

cell lines. Desmin filaments are found in myogenic cells, while neurofilaments comprise 

neuronal cells, and glial filaments provide structure for astrocytes (112). Vimentin, 

desmin, and glial intermediate filaments are composed of one type of subunit protein, 

whereas cytokeratin filaments are obligate heterodimers. The dimers forming cytokeratin 

filaments consist of an acidic cytokeratin (type I, K9-K20), and a basic cytokeratin (type 

II, K1-K8) (112,113). The combination of the type I and type II cytokeratins determines 

the nomenclature for that particular intermediate filament. For example, an intermediate 

filament consisting of K8 type II cytokeratin and K18 type I cytokeratin is named 

cytokeratin 8/18, or CK-8/18. Tissue and cells express cytokeratin intermediate filaments 
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composed of different combinations of these dimers (i.e. CK-8/18, CK-8/19 etc.), which 

serves as an "identification tag" for that particular tissue or cell type (114). 

Throughout the years, several different potential functions of intermediate 

filaments have been described. Intermediate filaments provide mechanical integrity to 

cells, contribute to cell stiffness, stiffening behavior, and proliferation. They also act as 

an anchor to desmosomes (intercellular junctions) at the cell membrane, aid in the 

movement of lipid droplets in steroidogenic cells, and play an important role in cell 

spreading (113,115-118). To investigate the role intermediate filaments play in cell 

stiffness and stiffening behavior, coated beads and a magnetic cell twisting device have 

been utilized to induce stress and strain on cultured cells. Cells with vimentin filaments 

are more resistant to twisting and have a greater stiffness than vimentin-deficient cells 

(118). However, treating with acrylamide, an agent known to disrupt intermediate 

filaments, causes vimentin-positive cells to gain characteristics similar to vimentin-

deficient cells in regards to stiffening behavior in response to stress (118). This indicates 

intermediate filaments influence cellular response to stress. Additionally, vimentin-

deficient cells have slower rates of proliferation than wild type cells, as evidenced by 

reduced rates of DNA synthesis (118). 

Intermediate filaments also interact with several types of intracellular proteins. 

One example is the interaction of intermediate filaments with the plaque protein of 

desmosomes (115). Intermediate filaments provide anchorage for the desmosome, 

allowing for intercellular contact. This association is found between cells in stratified 

squamous and simple epithelia, epithelial cells in culture, and in carcinomas (115). In 

addition to desmosomes, there is a close association between vimentin intermediate 
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filaments and lipid droplets (117). Lipid droplets are an essential component of the 

steroidogenic pathway. Lipid droplets contain cholesterol ester, which is utilized by the 

mitochondria to synthesize pregnenolone, a precursor for the hormone progesterone. Due 

to the close association among vimentin, lipid droplets, and the mitochondria, it is 

thought that intermediate filaments influence the movement of cholesterol during 

steroidogenesis. Supporting this hypothesis, cells that lack vimentin are unable to utilize 

cholesterol to the same extent as vimentin containing cells (117). 

Finally, intermediate filaments are implicated in the process of epithelial cell 

spreading. In rounded cells, a coiled cap of intermediate filaments is present (116). As 

the cell spreads, these intermediate filaments migrate from the cap and expand the 

cytoplasm. After the initiation of cell spreading, the cap is no longer apparent, but 

becomes visible again after the intermediate filaments have retracted closer to the 

nucleus. The formation and disappearance of the intermediate filament cap is suggested 

to be under the control of the intermediate filament organizing center, renamed the 

intermediate filament distribution center (IFDC) (116). 

Role of Intermediate Filaments in Apoptosis 

Intermediate filaments, specifically cytokeratin intermediate filaments in simple 

epithelia, are necessary for the development of mid-gestational mouse embryos. Deleting 

the keratin 8 gene in mouse embryonic stem cells prevents filament formation and causes 

lethality at 12-13 days of development (119). Intermediate filament expression 

determines the fate of embryos, but it also plays an important role in cell death 

(apoptosis) as well as survival. 
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During apoptosis, the cytokeratin 18 subunit of CK-8/18 filaments is the target of 

caspase cleavage (120,121). Cytokeratin 18 is cleaved by effector caspases (i.e., caspase-

3) at Asp237 (VEVD) and Asp396 (DALD) (32,120,122) (See figure 5). The cleavage of 

cytokeratin 18 is a useful marker for patients suffering from degenerative liver diseases, 

such as acute liver failure, cirrhosis, and cancers, because as hepatocytes (liver cells) 

undergo apoptosis, cytokeratin 18 is cleaved and diffuses into the serum. Measuring the 

concentrations of cytokeratin 18 in the sera of these patients permits monitoring of the 

severity of the disease in a non-invasive way (30,31). 
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Figure 5: Caspase Cleavage of Cytokeratin 18 (Tao et al., 2008) 
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Diagram of human cytokeratin 18. Represented is the head, rod, 
and tail domain of K18. The rod domain consists of three sub-

domains: IA, IB, and II, which are separated by the linker LI and 
L12. p43, p29, and p23 represent sites of caspase cleavage (Tao et 

al., 2008). 

When a cell undergoes apoptosis, the cleavage of cytokeratin 18 by caspase-3 

leads to the collapse of the intermediate filament structure and subsequent formation of 

cytoplasmic inclusions. The colocalization of cytokeratin 18 and caspase 3 within these 

inclusions verifies their close association during the process of apoptosis (123). 

Recently, the mechanism of caspase-mediated cytokeratin intermediate filament 

disruption has been investigated, leading to the identification of a new protein that 

influences caspase-3 and CK-18 interactions. 
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Caspase-3 is recruited to cytokeratin intermediate filaments through a newly 

identified protein called death effector domain containing DNA binding protein (DEDD) 

(124). The molecule DEDD contains nuclear localization signals, but is found 

abundantly within the cytosol. Immunostaining of DEDD within cells reveals a 

filamentous pattern, resembling intermediate filaments (124). As apoptosis progresses, 

DEDD is no longer filamentous, but rather is expressed in a more aggregated fashion 

contained within cytoplasmic inclusions. While DEDD colocalizes with cytokeratin 

filaments, it is also associated with active caspase-3. This suggests that DEDD forms 

complexes with active caspase-3, therefore mediating the recruitment of procaspase-3 to 

cytokeratin filaments for digestion during apoptosis (122,124). 

Although DEDD is responsible for the recruitment of caspase-3 to intermediate 

filaments, the eukaryotic translation initiation factor 3 (eIF3) subunit, eIF3k, is 

responsible for its release from inclusions. eIF3k is associated with cytokeratin 

intermediate filaments in healthy cells (125). In cells undergoing apoptosis, eIF3k 

colocalizes with cytokeratin 18 within the cytoplasmic inclusions. When eIF3k is 

blocked by silencing RNA (siRNA), cells are less susceptible to cell death, with a 

decrease in ICAD (inhibitor of caspase-activated DNase) cleavage, a step required for the 

fragmentation of DNA (125). Downregulation of eIF3k also leads to the sequestration of 

caspase-3 within the inclusions containing fragmented cytokeratin 18. Thus, it is 

suggested that eIF3k releases caspase-3 from the cytoplasmic inclusions, allowing 

caspase-3 to continue cleaving additional filaments (125). This complementary role of 

DEDD and eIF3k enables efficient degradation of cytokeratin intermediate filaments, 

leading to a loss in cell structure and function. 
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Role of Intermediate Filaments in Cell Survival 

The degradation of cytokeratin intermediate filaments during programmed cell 

death is an essential process during apoptosis, but it has been suggested that cytokeratin 

intermediate filaments are also capable of protecting cells from apoptosis induced by 

TNFa and FasL. Other cytoskeletal components, such as microtubules and 

microfilaments, have been implicated in resistance to death (126), but intermediate 

filaments may be responsible for the sequestration of important intracellular proteins 

required for the progression of apoptosis. 

The influence of cytokeratin intermediate filaments on survival was first 

suggested after the observation that epithelial cells deficient in cytokeratin 8 or 

cytokeratin 18 are 100 times more sensitive to TNFa-induced death than cells expressing 

intact cytokeratin 8/18 intermediate filaments (127). Previously, it was reported that 

ligation of TNF-R2 induces cell death through stimulation of TNF-R1 (128) A close 

association between the NH2-terminus of cytokeratin 18 and the cytoplasmic domain of 

TNF-R2 was found, providing a potential mechanism for the cytokeratin-dependent 

resistance to TNFa induced apoptosis (127). 

To further investigate the role cytokeratin intermediate filaments play in 

resistance to cell death, Inada et al. (129), evaluated the interaction between TRADD 

(TNF receptor associated death domain) and cytokeratin 18. In unstimulated cells, 

TRADD and cytokeratin 18 are associated, but in response to high doses of TNFa, 

TRADD dissociates from cytokeratin 18 and interacts with TNF-R1. In the presence of 

TNFa, while TRADD is still associated with cytokeratin 18, viability is relatively high. 

As the dose of TNFa increases and TRADD interacts with TNF-R1, viability decreases. 
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These observations suggest that in addition to the association between cytokeratin 18 and 

TNF-R2, cytokeratin 18 is also capable of sequestering TRADD, thus protecting cells 

from TNFa-induced cell death (129). 

In addition to TRADD, cytokeratin 18 is also responsible for the sequestration of 

Fas within the Golgi apparatus in murine hepatocytes. In cytokeratin-8 knockout 

hepatocytes, Fas is expressed mostly at the surface of the cells, whereas in cells 

expressing intact cytokeratin 8/18 filaments (wild type cells), Fas is localized mostly 

within the Golgi apparatus (85). Originally, it was described that the differential 

expression of Fas and cytokeratin in these two cell types (knockout vs. wild type) lead to 

a change in viability in response to treatment with Jo2, a Fas antagonist. Cells lacking 

cytokeratin intermediate filaments experienced higher levels of apoptosis than cells 

expressing intact filaments (85). After further investigation, it was discovered that in 

order to induce cell death in type II cells (hepatocytes), Jo2 has to be paired with protein 

A (PA). After this discovery, the relationship between cytokeratin intermediate filaments 

and Jo2+PA-induced cell death was re-evaluated. Contrary to previous findings, Jo2+PA 

did not induce higher levels of death in cytokeratin-8 knockout cells as compared to wild 

type cells; however, the kinetics of cell death differed between the two cell types. Cells 

lacking intermediate filament expression exhibit increased rates of apoptosis, DISC 

formation, and caspase-8 activity as compared to cells with intact intermediate filaments 

(130). The increase in mobilization of the Fas receptor and change in death kinetics as a 

result of intermediate filament loss leads to increased susceptibility to cell death in 

murine hepatocytes (see review: 131) (See figure 6). 
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Figure 6: Cytokeratin-mediated Fas Trafficking 

t 
0 t 

0 
0 

I < I*-,........—•**"-"* """I 

Nucleus 

1||/ rasr\ 

CZ{rp-^-- j Golgi Apparatus 

kM Cytokeratin 
Intermediate 

Filaments 

Localization of Intermediate Filaments within the Ovary 

The expression of intermediate filaments in varying cell types has been explored 

extensively, however, only a few investigations have described expression of 

intermediate filaments in ovarian tissues. Intermediate filament expression in the ovary 

has been characterized in human (132), rat (133), emu (134) and cow (135,136). 

In fetal human ovaries, cytokeratin intermediate filament expression is found in 

the surface epithelium, sex cords, rete ovarii, and primordial and primary follicles. In 

adult human ovaries, cytokeratin is expressed in epithelial cells, and primordial and 

primary follicles, with no expression in preantral follicles. Additionally, nearly half of all 

luteal cells from early stage CL express cytokeratin (132). In rat ovaries, cytokeratin 

expression is limited to follicles, ovarian surface epithelium and CL, with no change in 

expression observed with age of the CL (133). Vimentin expression is also observed in 

rat ovaries, with expression found in thecal cells of follicles, ovarian surface epithelium, 

blood vessels, and CL (133). In the emu, vimentin expression is found in granulosal cells 

of developing and early atretic follicles, the ovarian surface epithelium, and endothelial 
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cells (134). In the cow, desmin, vimentin, and cytokeratin intermediate filaments are 

present in the ovary of fetuses, prepubescent heifers, and cows (136). Desmin is 

detectable primarily in smooth muscle cells surrounding blood vessels, but is not found in 

any other cell-type within the ovary (136). Vimentin is more evident than desmin, and 

occurs in epithelial cells of the cortical cords, fibroblasts, and primary, secondary, and 

antral follicles during fetal development, and in prepubescent heifers, and cows (136). 

Cytokeratin intermediate filament expression is restricted to the rete ovarii, ovarian 

surface epithelium, cortical cord epithelium, and primordial follicles before 7.5 months of 

gestation. In adult heifers and cows, cytokeratin is found in the rete ovarii, surface 

epithelium of follicles, and cortical cords (136). 

In bovine CL, the expression of cytokeratin intermediate filaments varies 

depending on the age of the CL. Evaluation of more than 45 corpora lutea from adult 

cows revealed that cytokeratin expression is highest in early stage CL and lowest in the 

regressed, late stage CL. In early stage CL, there were approximately 61+13 cells per 

field of view that stained positively for cytokeratin. Expression decreased to only 1+1 

cells per field of view positive for cytokeratin in regressed stage CL. Immunoblotting 

confirmed the immunohistochemical results, showing decreased protein expression as the 

CL ages (135, 137). 
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CHAPTER II 

DISRUPTION OF CYTOKERATIN 18-CONTAINING INTERMEDIATE 
FILAMENTS IN BOVINE LUTEAL CELLS: EFFECTS ON FAS EXPRESSION, 
PROGESTERONE SECRETION, AND FAS LIGAND-INDUCED APOPTOSIS 

Introduction 

Since 1960, fertility in dairy cows has been declining, as indicated by an increase 

in the number of services per conception and an increase in the number of days open (2). 

Inadequate dairy management, increased frequency of disease, and increased metabolic 

disorders, many of which are a consequence of high milk production, are all contributing 

factors to the decline in reproductive performance (1,2). Resolving the issue of declining 

fertility in the bovine requires a greater understanding of the physiological mechanisms 

that mediate ovulation and the maintenance of pregnancy. 

The corpus luteum (CL) is a transient ovarian structure in the cow responsible for 

maintaining pregnancy. The lifespan of the CL, called the luteal phase, is generally 

divided into four distinct stages based upon appearance of the CL and the amount of 

progesterone the CL secretes systemically (16). Early stage CL (stage I) are relatively 

small in size and secrete low concentrations of progesterone. Mid-stage CL (stage II and 

III) are larger in size and produce the maximum amount of progesterone. The high 

amount of progesterone secreted by the CL at stages II and III promotes implantation and 

the maintenance of pregnancy if conception occurs. If pregnancy does not ensue, the CL 

advances to a stage of regression (luteolysis), in which the size of the CL decreases 

precipitously and progesterone production declines (late stage; stage IV). However, an 
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untimely loss of CL function has also been implicated in spontaneous embryonic loss and 

an increase in infertility in the dairy cow. 

In cows, the mechanism responsible for regression of the CL includes the 

pulsatile release of uterine-derived prostaglandin F2a (PGF2a) (18). This mechanism is 

thought to trigger the decline of progesterone production and the onset of programmed 

cell death, called apoptosis, which together ultimately culminate in the elimination of the 

CL. During regression of the CL, steroidogenic luteal cells (8,23,35,36) and endothelial 

cells (24) undergo apoptosis. Within the bovine CL, the regulation of apoptosis is 

thought to be dependent upon immune system components. 

Immune cells were first reported within the bovine CL in 1968 (37), and more 

recently, studies evaluating immune cell populations within the bovine CL have revealed 

an increase in T lymphocytes and macrophages before the onset of luteolysis (47-49). As 

immune cells invade the regressing corpus luteum, major histocompatibility complex 

(MHC) molecules are expressed on luteal cells and are thought to activate immune cells 

through direct cell-cell signaling. Class I MHC expression increases before the onset of 

luteolysis (49), as does class II MHC molecules (42,43,45,47,51). Once activated, 

immune cells secrete signaling peptides called cytokines, such as TNFa, IFNy, and FasL. 

TNFa (54,55), IFNy (47,53,55) and FasL (69,102) mRNA are present in the bovine CL at 

the time of luteolysis, and it has been proposed that these cytokines exert their effects on 

the CL by increasing prostaglandin synthesis (72,105), blocking gonadotropin-stimulated 

steroidogenesis (54,63,67,72) and initiating apoptosis (67,69,96,109) 

The Fas receptor (Fas) is a transmembrane protein death receptor in the TNF 

receptor superfamily (73-75). As Fas ligand (FasL) binds to Fas, apoptosis is induced 
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through a series of signaling pathways within the cell. The binding of FasL triggers the 

trimerization of Fas, which recruits Fas associated death domain (F ADD) and pro-

caspase-8 proteins. The self-cleavage of pro-caspase-8 signals the caspase cascade, 

which leads to the activation of pro-caspase-3 and apoptosis (82,86). In the regressed 

bovine CL, Fas and FasL mRNA are present (69,102), implicating this system in luteal 

cell death. In ovarian cells, the cytotoxicity of FasL is exacerbated by concomitant 

treatment with TNFa and IFNy, suggesting these cytokines augment FasL-induced cell 

death (69,96,109) and regression of the CL (69,101). The Fas-FasL system within the 

bovine CL may account for the cell-specific death observed during CL regression. That 

is, during regression of the CL, individual cells undergo apoptosis while neighboring 

cells remain unaffected (111). In the current study, cytoskeletal components, specifically 

intermediate filaments, are postulated to influence the expression of Fas on the surface of 

bovine luteal cells, and hence lend cell specificity to the process of FasL-mediated 

apoptosis. 

The cytoskeleton of cells consists of microtubules, microfilaments, and 

intermediate filaments. Intermediate filaments have a diameter ranging between 7-11 nm 

and consist of a family of five different subtypes (112). One of the subtypes is keratin­

like proteins, called cytokeratins (CK), which are generally found in epithelial cells. 

Cytokeratin filaments are obligate heterodimers, forming filaments of an acidic 

cytokeratin (type I, K9-K20), and a basic cytokeratin (type II, K1-K8) (112,113). The 

more prominent types of CK filaments found in epithelial cells include filaments 

containing K7, K8 and K18, K19 (112). 
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Intermediate filaments have an important role in cell survival. For instance, CK-

18 intermediate filaments protect cells from TNFa- and FasL-induced apoptosis. 

Epithelial cells in which keratin 8 or keratin 18 expression has been genetically knocked-

out are considerably more sensitive to TNFa-induced death than their wild-type 

counterparts (127). In murine hepatocytes, cytokeratin 8/18 intermediate filaments help 

sequester Fas within the Golgi apparatus, thus impairing Fas expression on the cell 

surface and protecting the cells from Fas-induced death (85). Taken together, these 

results suggest cytokeratin intermediate filaments play a role in increasing cell resistance 

to TNFa- and FasL-induced death. 

Intermediate filament expression in the CL of the human (132), rat (133), emu 

(134) and cow (135,136,137) has been characterized. In the bovine CL, the expression of 

CK-18 intermediate filaments varies from being highest in early CL to virtually absent in 

late stage CL (135, 137). These changes in relative expression of CK-18 filaments 

perhaps reflect functional changes in cell viability and possibly resistance to apoptosis. 

Thus, further study of them offers potential insight about the function of CK-18 filaments 

relative to luteal function. 

In the present study, the objective was to investigate the potential role of CK-18 

intermediate filaments in bovine CL during FasL-induced apoptosis. We hypothesized 

disruption of CK-18 filaments in luteal cells of bovine CL increases cell surface 

expression of Fas and susceptibility to FasL-induced apoptosis. Experimentally, cultures 

of bovine luteal cells from early and late stage CL were exposed acutely to acrylamide to 

disrupt the CK-18 filaments. The effects of filament disruption on Fas expression and 

FasL-induced apoptosis were then measured. 
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Materials and Methods 

Corpus Luteum Collection and Dissociation 

Estrous cycles of Holstein dairy cows were monitored using transrectal ultrasonography, 

and corpora lutea (CL) were removed by colpotomy at days 5 (early stage; n=6 cows) and 

16-18 (late stage; n=9 cows) post ovulation (ovulation = day 0). Luteal cells obtained 

from CL at these two stages of luteal function express relatively high and low amounts of 

cytokeratin intermediate filaments, respectively, based upon previous work (135,137). 

Prior to CL removal, blood samples were obtained by coccygeal venipuncture using 

heparinized tubes to measure plasma progesterone concentration by radioimmunoassay 

and verify the stage of the estrous cycle. Corpora lutea and blood samples were 

transported to the laboratory on ice where the CL were enzymatically dissociated using 

collagenase type I (Worthington, Lakewood, NJ) as described previously (138). Briefly, 

CL were cleaned of connective tissue, weighed, minced, and placed in a spinner flask 

containing Ham's F12 culture medium with 0.5% bovine serum albumin. The contents 

of the spinner flask were gently mixed at 37°C in a waterbath. Collagenase was added 

and the tissue was agitated every 10 minutes for one hour using a wide tip pipette. After 

the one-hour dissociation, the medium of the spinner flask was decanted into a 50mL 

tube and fresh collagenase and culture medium were added to the spinner flask for a 

second, hour-long dissociation. The medium in the 50mL tube from the first dissociation 

was centrifuged for 10 minutes at 228xg. Afterwards, the supernatant was removed and 

the cell pellet was resuspended in 50mL Ham's F12 culture medium, followed by 

successive spins and washes at 129xg and 57xg. After the second dissociation, the pellets 
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from both dissociations were combined and the luteal cells counted using a 

hemocytometer. Relative viability of the cells was determined by trypan blue exclusion. 

The cells were then either fixed in paraformaldehyde for flow cytometric analysis of 

cytokeratin and Fas expression, or placed in culture for further experimentation (see 

below). 

For the immediate fixation of luteal cells, 0.3mL of 1.5x10 freshly dissociated viable 

cells added to O.lmL Ham's F12 culture medium was centrifuged using screen-capped 

tubes (Ref # 352235, BD Falcon, San Jose, CA) for 5 minutes at 276xg, 4°C. The filtered 

cells were then fixed for 2 hours on ice by adding 0.4mL 2% paraformaldehyde to the 

0.4mL cell suspension for a final concentration of 1% paraformaldehyde. After fixation, 

the cells either remained in fixative or were rinsed twice with lx PBS and permeabilized 

using 70% ethanol (EtOH). Both the fresh-fixed and permeabilized cells were stored at 

4°C (those held in fixative) or 20°C (those held in EtOH) until further processed for flow 

cytometry. 

For cell culture experiments, freshly dissociated luteal cells were seeded in T25 flasks at 

a density of 2xl06and in 8-well microchamber slides at 2x10 viable cells/well . The 

cells were cultured in Ham's F12 culture medium (Invitrogen, Carlsbad, CA) 

supplemented with insulin, transferrin, selenium (ITS; 5u.g/5ug/5ng/mL; Sigma Aldrich, 

St. Louis, MO) and gentamicin (20ug/mL; Invitrogen [Gibco], Carlsbad, CA) and 

incubated at 37°C, 5% CO2 in air and 95% humidity overnight. The day after seeding, 

the flasks and chamber slides were rinsed and the conditioned medium replaced with 
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fresh culture medium prior to treatments. Initially, flasks and chamber slides were 

treated with either culture medium (control) or 5mM acrylamide (Fisher Scientific, 

Pittsburgh, PA) for 4 hours to disrupt intermediate filaments. After this initial treatment 

period, all flasks and chamber slides were rinsed twice and the medium replaced. Cells 

from several flasks were immediately trypsinized using trypsin-EDTA (Cell Gro 

Mediatech, Manassas, VA) for flow cytometric analysis of cytokeratin and Fas 

expression. Briefly, the flasks were rinsed 2 x 5 minutes with Hank's Balanced Salt 

Solution (Sigma Aldrich, St. Louis, MO), followed by two quick washes with trypsin-

EDTA. After the second rinse, the remaining trypsin was removed and the flasks were 

left un-touched for 10 minutes. Following this 10-minute incubation, the cells were 

collected in Ham's F12 culture medium containing 10% fetal bovine serum (FBS; JRH 

Biosciences, Lenexa, KS), centrifuged for 5 minutes at 276xg, 4°C, and then fixed as 

described above. The remaining flasks were treated with a cytokine cocktail containing 

bovine interferon-y (IFN, 200 IU/mL; R&D Systems, Minneapolis, MN), murine tumor 

necrosis factor-a (TNF, lOng/mL; US Biological, Swampscott, MA), human recombinant 

soluble Fas ligand (FasL, 50ng/mL; R&D Systems, Minneapolis, MN), and murine 

monoclonal anti-6x histidine cross-linking antibody (lmg/mL; R&D Systems, 

Minneapolis, MN) for 24 hours to induce cell death. After 24 hour incubation, the flasks 

were trypsinized and fixed as described above or re-treated with the cytokine cocktail for 

an additional 24 hours, then trypsinized and fixed. Conditioned medium was saved from 

all flasks prior to fixation for progesterone analysis. 
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Cells in microchamber slides were used to evaluate microscopically the efficacy of 

acrylamide as disrupter of cytokeratin intermediate filaments. The cells were fixed using 

4% paraformaldehyde in lx PBS. Briefly, the chamber slides were rinsed twice with lx 

PBS, fixed at room temperature for 20 minutes, and then stored in lx PBS at 4°C until 

analyzed by fluorescent microscopy. 

The heparinized blood samples from the cows were centrifuged at 2056xg for 20 minutes 

at 4°C to obtain plasma, which was then frozen until progesterone analysis. 

Immunodetection of Cytokeratin 18-Containing Intermediate Filaments and 

Microtubules 

Chamber slides containing the previously-fixed luteal cells were rinsed twice with PBS 

containing 0.1% bovine serum albumin (PBS-BSA) followed by a 1 hour 

block/permeabilization step with 0.3% triton x-100 in lx PBS containing 10% normal 

goat serum (Vector Labs, Burlingame, CA) and 3% BSA. The slides were rinsed 3 x 5 

minutes with PBS-BSA and incubated overnight at 4°C with either a mouse anti-human 

CK-18 monoclonal antibody (clone CY-90; Sigma Aldrich, St. Louis, MO; diluted 1:800 

in PBS-BSA with 10% normal goat serum), or a mouse anti-bovine alpha tubulin 

monoclonal antibody (clone 236-10501; Invitrogen, Carlsbad, CA; diluted 1:200 in PBS-

BSA with 10% normal goat serum). The following day, after 3 x 5 minute washes with 

PBS-BSA, fluorescent detection of the CK18-containing filaments or tubulin-containing 

microtubules was achieved by incubating the slides with a goat anti-mouse Alexa 488-

conjugated IgG antibody (CK18; Invitrogen, Carlsbad, CA) or a goat anti-mouse Texas 
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Red-conjugated antibody (Microtubules; Santa Cruz, Santa Cruz, CA). Both secondary 

antibodies were diluted 1:200 in PBS-BSA with 10% normal goat serum (Vector Labs, 

Burlingame, CA). The slides were counterstained with 4',6-diamidino-2-phenylindole 

(DAPI) mounting medium (Vector, Burlingame, CA) and then coverslipped. 

Cell Death Counts 

Cell death was assessed at three different times during the experiment. The number of 

attached luteal cells in five random microscopic fields of view was counted in all of the 

flasks prior to cytokine treatment using a 0.25mm grid (initial cell counts). At 24 and 48 

hours after treatment, the number of attached cells in the flasks was again counted to 

estimate cell loss (post treatment cell counts). All five fields of view per flask were 

averaged and the percent cell death was determined using the following equation: 

% Cell Death = [l-(Post treatment cell counts / initial cell counts)] * 100 

Flow Cytometric Quantification of Fas and CK18 Expression 

Freshly dissociated and luteal cells from cultures were washed 2 x 5 min with lx PBS-

BSA and centrifuged at 276xg for 5 minutes at 4°C between each wash. Following the 

second wash, the cells were stained for Fas using a mouse anti-human Fas antibody 

(clone CHI 1; Millipore, Billerica, MA; diluted 1:25 with PBS with 10% normal goat 

serum). The cells were incubated in primary antibody overnight at 4°C and then washed 

2 x 5 min with lx PBS-BSA with spins at 276xg for 5 minutes at 4°C between each 

wash. Detection of the primary antibody was achieved fluorescently using a goat anti-
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mouse Alexa 488-conjugated IgG secondary antibody (Invitrogen, Carlsbad, CA) diluted 

1:200 with PBS-BSA with 10% normal goat serum. For detection of CK18, both freshly 

dissociated and cultured luteal cells were washed 2 x 5 minutes with lx PBS-BSA and 

spun at 276xg for 5 minutes at 4°C between each wash. The cells were then incubated 

for 1 hour at 37°C with a mouse anti-human CK18 FITC-conjugated antibody (clone CY-

90; Sigma Aldrich, St. Louis, MO; diluted 1:100 with PBS- BSA). Quantification of 

cells expressing Fas and CK18 was accomplished using a 4 color, dual laser FACScalibur 

flow cytometer (Becton Dickinson Biosciences, San Jose, CA) with a 488nm argon laser 

for FITC/Alexa 488 excitation. Data were collected using Cell Quest (Becton Dickinson 

Biosciences, San Jose, CA) and graphs of the results were generated using WinMDI 2.9 

software (Scripps Institute, La Jolla, CA). Relative mean fluorescence intensity (MFI) 

was calculated using the following equation: 

MFI=(Geometric Mean Sample - Geometric Mean neg CTL) / Geometric Mean neg CTL 

Progesterone Measurement in Plasma and Conditioned Culture Medium 

Plasma samples were analyzed for progesterone by radioimmunoassay (RIA) as 

described previously (139). Briefly, the plasma was extracted twice with 10 volumes of 

petroleum ether. The petroleum ether was then evaporated and the samples reconstituted 

in PBS with gelatin. Progesterone was determined by RIA using anti-progesterone-11-

BSA serum. Progesterone concentrations were corrected for recovery. 
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Similarly, progesterone concentration in the conditioned medium from all flasks was 

measured by radioimmunoassay as described previously (140). Once collected, the 

conditioned medium was spun at 276xg, and the supernatant was saved and stored at 

-20°C until analysis. Progesterone was detected using anti-progesterone-11-BSA serum 

(final dilution was 1:10,000). After charcoal adsorption, the supernatant was placed into 

vials and Ready Safe Cocktail was added. Radioactivity was determined in a liquid 

scintillation counter. Progesterone concentrations were normalized to 5x10 cells. 

Progesterone Measurement in Cell Fractions 

An unexpected observation in the current study was that progesterone in the conditioned 

medium of cells undergoing apoptosis was higher than that of controls. There are two 

possible explanations for this: 1) Cell death results in greater synthesis of progesterone, 

or 2) As cells die and break open, a greater amount of progesterone is released into the 

culture medium. To address this issue the amount of progesterone secreted by live cells 

versus dying cells was calculated on a per-DNA basis. Death was induced in luteal 

cultures using 5mM acrylamide for 24 and 48 hours. Following treatment, the 

conditioned medium was spun at 276xg and the supernatant was collected and stored at -

20°C for later analysis. The cell pellet (dead cell fraction) was similarly stored at -20°C 

for progesterone analysis and DNA extraction. Lastly, the attached cells within the flasks 

(live cell fraction) were trypsinized and stored at -20°C until progesterone analysis and 

DNA extraction. Progesterone was extracted from both dead and live cell fractions as 

described for plasma progesterone extraction, and progesterone secretion in the 

conditioned medium was determined as described above. Following progesterone 
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extraction, the dead and live cell fractions were also subjected to DNA extraction. All 

samples were reconstituted in Tris/sodium chloride/EDTA buffer (TNE), to a final 

volume on 0.6mL. Trichloroacetic acid (TCA; 40%) was added to all samples for a final 

concentration of 10% TCA. The samples were incubated on ice for 10 minutes and then 

centrifuged at 1428xg. The supernatants were discarded and the pellets were 

resuspended in 10% TCA to a final volume of 0.6mL. The samples were placed in a 

water bath at 95°C for 30 minutes, followed by 5 minutes to cool on the bench top, and 

then 5 minutes on ice. The samples were then centrifuged at 1428xg and the supernatant 

collected and analyzed for DNA content. For the DNA assay, all samples were 

reconstituted in lmL TNE. Diphenylamine reagent was added to all samples and mixed. 

Next, all samples were placed in a water bath at 95°C for 10 minutes, followed by 5 

minutes to cool on the bench top. Absorbance was measured using Spectronic Genesys 5 

at 600nm and the DNA content of the samples was determined using a standard curve. 

Progesterone concentrations for the dead and live cell fractions were then corrected for 

DNA content. 

HepG2 Culture 

Murine hepatocytes were among the first cells in which cytokeratin intermediate 

filaments were implicated in Fas trafficking (85). Considering this, the current study 

utilized hepatocyte carcinoma cells (HepG2 cells) as a positive control cell type to 

determine if acrylamide disrupts intermediate filaments and alters cell surface expression 

of Fas. HepG2 cells were seeded into T150 flasks at 2x106 cells per flask. For each 

experiment, two vials (1x10 cells per vial) at the same passage were placed in culture. 
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The cells were cultured in EMEM (Sigma Aldrich, St. Louis, MO) supplemented with 

10% FBS (JRH Biosciences, Lenexa, KS) and incubated at 37°C, 5% C02 and 95% 

humidity. At approximately 70% confluency, the HepG2 cells were passaged into T25 

flasks. The cells were washed twice for 5 minutes with Hank's Balanced Salt Solution 

(Sigma Aldrich, St. Louis, MO), followed by two quick washes with trypsin-EDTA (Cell 

Gro Mediatech, Manassas, VA). After the second rinse with trypsin-EDTA, the 

remaining trypsin was removed and the flask was left untouched for 10 minutes. The 

cells were then collected in EMEM with 10% FBS and centrifuged at 112xg for 5 

minutes at 4°C. Numbers of viable cells were determined using trypan blue exclusion 

(Sigma Aldrich, St. Louis, MO) and the cell pellet was divided among six T25 flasks at 

approximately lxl06 cells per flask. The following day, the medium was exchanged and 

the cultures were exposed to vehicle (control) or 5mM acrylamide for 4 hours. Following 

treatment, the cultures were fixed with 2% paraformaldehyde in lx PBS and processed 

for flow cytometry to assess cell surface expression of Fas expression as described above. 

These experiments were repeated a total of 4 times for each stage of CL. 

Statistical Analysis 

The data were analyzed by 1-way or 2-way ANOVA followed by Tukey's multiple 

comparison test in the general linear model of Systat 12.0 (Point Richmond, CA). 

Results are expressed as mean + SEM and a value of P<0.05 was considered significant. 
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Results 

Characterization of CL Collected 

Early stage CL were smaller than late stage CL (3.5 + 0.35 vs. 6.3 + 0.7 grams; P<0.05). 

Similarly, systemic concentrations of progesterone for the cows differed (P<0.05), being 

lower for early stage cows compared to late stage cows. 

Expression of CK-18 Intermediate Filaments in Freshly Isolated Bovine Luteal Cells 

Flow cytometric analysis of CK-18 expression revealed greater numbers of CK-18 

fluorescent luteal cells of early stage CL compared to late stage CL (P<0.05; Fig. 7). A 

two-fold decrease in numbers of CK-18 luteal cells occurred as the tissue transitioned 

from early to late stage CL (Fig. 7b). 

Expression of Fas on Freshly Isolated Bovine Luteal Cells 

The number of luteal cells expressing Fas at the cell surface was higher for early stage 

CL than late stage CL (P<0.05; Fig. 8a,b). Relative mean fluorescence, a measure of 

fluorescent staining intensity on the cells, was higher for early stage CL than late stage 

CL (P<0.05; Fig. 8c). Similar results were seen for the two stages of CL when the total 

amount of Fas (i.e., both cell surface and intracellular Fas) was analyzed (P<0.05; Fig. 9). 

Effects of Acrylamide on CK-18 Intermediate Filaments, Microtubules, and 

Progesterone Secretion 

Acrylamide effectively disrupted CK-18 intermediate filaments in cultured bovine luteal 

cells (Fig. 10). Control cultures exhibited extensive, filamentous networks of CK18 
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staining (Fig. 10a) that became aggregated and punctate following acrylamide exposure 

(Fig. 10c). Conversely, there was no effect of acrylamide on microtubule organization 

when control and acrylamide-treated cultures were compared (Figs. 10b and lOd, 

respectively), verifying the specificity of acrylamide to intermediate filaments. Flow 

cytometric analysis revealed that despite the disruption of CK-18 filament organization, 

acrylamide did not reduce the overall number of cells expressing CK-18 (P>0.05; Fig. 

11). Lastly, acrylamide had no effect on progesterone secretion by the cultures (P>0.05; 

Fig. 12), indicating there was no adverse effects on cell viability. 

As a positive control, HepG2 cells were utilized to assess the effect of acrylamide on CK-

18 intermediate filaments and microtubules (Fig. 13). Acrylamide disrupted CK-18 

filament expression as well as disrupted microtubule organization in HepG2 cells (Fig. 

13c,d). CK-18 filaments and microtubules were aggregated around the nucleus, no 

longer displaying a filamentous network as seen in control cultures. However, the 

structural organization of CK-18 intermediate filaments and microtubules fully recovered 

within 24 hours of removing acrylamide from the culture medium (data not shown), 

indicating that acrylamide treatment was not inducing death in HepG2 cells. 

Effects of Acrylamide-induced CK-18 Filament Disruption on Fas Surface 

Expression 

Although acrylamide effectively disrupted CK-18 filaments, its transient actions failed to 

enhance the number of cells expressing Fas at the cell surface (P>0.05; Fig. 14a,b,c). 

Moreover, CK18 filament disruption failed to enhance Fas cell surface expression in 
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specific cells, as reflected by the lack of change in relative mean fluorescence intensity 

(P>0.05; Fig. 14d). Consistent with the observations of freshly isolated luteal cells, 

cultured luteal cells of early stage CL expressed higher amounts of Fas on the surface 

than cultured cells of late stage CL (PO.05, Fig. 14c,d). 

The disruption of CK-18 intermediate filaments and microtubules by acrylamide resulted 

in slight (Fig. 15a) to pronounced (Fig. 15b,c) changes in surface expression of Fas on 

HepG2 cells. Averaging all three experiments revealed that acrylamide increased the 

number of cells expressing Fas at the cell surface (PO.05; Fig. 16a), but did not increase 

the mean fluorescence intensity (P>0.05; Fig. 16b). 

Effects of CK-18 Filament Disruption on Cytokine-induced Fas Expression, Cell 

Death, CK-18 Intermediate Filaments, and Progesterone Secretion 

After 24 hour cytokine treatment, Fas expression remained unchanged for early stage and 

late stage cultured bovine luteal cells (P>0.05; Fig. 17a). The relative mean fluorescence 

intensity also remained unchanged by cytokine treatment for both early and late stage 

cultured bovine luteal cells (P>0.05; Fig. 17b). Similar results were seen after 48 hour 

cytokine treatment (P>0.05, Fig. 18). 

Visual observations revealed that after 48 hour cytokine treatment, cell viability was 

decreased in cytokine-treated cultures for both early (Fig. 19) and late (Fig. 20) stage CL. 

Cytokine-treated cultures contained substantial cell death as evidenced by numerous 

floating cells (Fig. 19c,d, Fig. 20c,d). A quantitative assessment confirmed visual 
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observations, indicating that cytokine-treatment decreased cell viability (P<0.05; Fig. 21, 

Fig. 22), and CK-18 filament disruption via acrylamide did not enhance this effect 

(P>0.05;Fig. 21, Fig. 22). 

Flow cytometric analysis revealed that 24 hour cytokine treatment did not alter 

cytokeratin-18 expression as compared to control in either early or late stage cultured 

bovine luteal cells (P>0.05; Fig. 23a). Similar results were obtained after 48 hour 

cytokine treatment (Fig. 23b). 

Progesterone secretion by cultures were measured after 24 and 48 hours of cytokine 

treatment. After 24 hours of cytokine exposure, there was no effect on progesterone 

secretion by early or late stage cultured luteal cells (P>0.05; Fig. 24a). However, after 48 

hours of cytokine exposure, progesterone secretion decreased compared to acrylamide-

treated cultures for early stage cultured luteal cells (P<0.05; Fig. 24b). There was no 

effect of 48 hour cytokine exposure on progesterone secretion by late stage cultured 

luteal cells (P>0.05; Fig. 24b). 

Progesterone content was measured for live and dead cell fractions and conditioned 

medium after 24 and 48 hours of acrylamide treatment. Progesterone content from dead 

cell fractions tended to be higher than the corresponding live cell fractions (Fig. 25a). 

The amount of progesterone in the dead cell fraction was highest in cultures exposed to 

acrylamide for 48 hours (Fig. 25a). Secretion of progesterone in 24 and 48 hour 
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acrylamide-treated cultures did not appear to change compared to the control cultures 

(Fig. 25b). 



Figure 7: Expression of cytokeratin-18 intermediate filaments in early and late stage 
freshly isolated bovine luteal cells as determined by flow cytometric analysis. 
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A representative flow cytometric histogram depicting the detection of cytokeratin-18 
intermediate filaments within early and late stage bovine luteal cells (Fig. 7a). The 
relative number of cells expressing cytokeratin-18 intermediate filaments was higher for 
early stage CL than late stage CL (Fig. 7b). Values shown are mean + SEM; different 
letters indicate significant differences (P<0.05; n=6-9 CL/stage). 
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Figure 8: Expression of Fas on the surface of early and late stage freshly isolated bovine 
luteal cells as determined by flow cytometric analysis. 
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A representative flow cytometric 
histogram depicting the detection 
of Fas on the surface of freshly 
isolated bovine luteal cells (Fig. 
8a). Relative number of cells 
expressing Fas at the membrane 
surface was higher for early vs. 
late stage CL (Fig. 8b). Relative 
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Values shown are mean + SEM; 
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significant differences (P<0.05; 
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Figure 9: Total expression of Fas within early and late stage freshly isolated bovine 
luteal cells as determined by flow cytometric analysis 
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A representative flow cytometric 
histogram depicting the total 
amount of Fas detected within 
freshly isolated bovine luteal cells 
(Fig. 9a). Relative number of 
cells expressing Fas was higher 
for early vs. late stage CL (Fig. 
9b). Relative mean fluorescence 
intensity (MFI) was higher for 
early stage CL than late stage CL 
(Fig. 9c). Values shown are mean 
+ SEM; different letters indicate 
significant differences (P<0.05; 
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Figure 10: Effects of acrylamide on cytokeratin-18 (CK-18) intermediate filaments and 
microtubules (MT). 
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Fluorescent detection of cytokeratin-18 filaments (Fig. 10a,c, green fluorescence) and 
microtubules (Fig. 10b,d, red fluorescence) in control (Fig. 10a,b) and acrylamide-treated 
(Fig. 10c,d) cultures. Control cells displayed a filamentous cytoskeleton, which spanned 
the cytoplasm (Fig. 10a,b). Acrylamide-treated cultures exhibited disrupted cytokeratin-
18 intermediate filaments with peri-nuclear aggregation (Fig. 10c). Microtubules were 
unaffected by acrylamide treatment (Fig. lOd). Magnification: 40x. 
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Figure 11: Effect of acrylamide on cytokeratin-18 intermediate filament expression as 
determined by flow cytometric analysis. 
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Figure 12: Effect of acrylamide on progesterone secretion by cultured bovine luteal 
cells. 

Control Acrylamide 

Progesterone secretion by cultured bovine luteal cells remained unchanged after 4 hours 
of acrylamide treatment. No effect of stage (i.e., early vs. late stage CL) was observed 
(P>0.05, n=4 CL/stage), thus the results of the two stages were pooled (mean + SEM). 
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Figure 13: Effects of acrylamide on cytokeratin-18 (CK-18) intermediate filaments and 
microtubules (MT) in HepG2 cells. 
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Fluorescent detection of cytokeratin-18 filaments (Fig. 13a,c, green fluorescence) and 
microtubules (Fig. 13b,d, red fluorescence) in control (Fig. 13a,b) and acrylamide-treated 
(Fig. 13c,d) cultures. Control cells displayed a filamentous cytoskeleton, which spanned 
the cytoplasm (Fig. 13a,b). Acrylamide-treated cultures exhibited both disrupted 
cytokeratin-18 intermediate filaments and microtubules with peri-nuclear aggregation 
(Fig. 13c). Magnification: 40x. 
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Figure 14: Effects of acrylamide on the surface expression of Fas on cultured bovine 
luteal cells as determined by flow cytometric analysis. 
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Representative flow cytometric histograms depicting the effect of acrylamide on the 
surface expression of Fas on cultured bovine luteal cells. No effect of acrylamide was 
seen for early stage CL (Fig. 14a) or late stage CL (Fig. 14b). 
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Figure 14c: 
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Effect of acrylamide on the surface expression of Fas (mean + SEM) on bovine luteal 
cells. The percentage of Fas-positive cells (Fig. 14c) and mean fluorescence intensity of 
Fas expression (Fig. 14d) are depicted. Different letters indicate significant differences 
(PO.05; n=4 CL/stage). 
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Figure 15: Effect of acrylamide on surface expression of Fas on HepG2 cells as detected 
by flow cytometric analysis. 
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Figure 16: Effect of acrylamide on the surface expression of Fas on HepG2 cells. 
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The effect of acrylamide on the percentage of HepG2 cells expressing Fas and the 
relative mean fluorescence intensity (MFI) of Fas expression (mean + SEM). 
Acrylamide enhanced the relative number of cells expressing Fas on the surface (Fi£ 
16a), but did not alter the mean fluorescence intensity (Fig. 16b). Different letters 
indicate significant differences (P<0.05; n=3 experiments). 
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Figure 17: Effects of 24 hour cytokine treatment on the surface expression of Fas on 
cultured bovine luteal cells as determined by flow cytometric analysis. 
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The effect of 24 hour cytokine-treatment on Fas expression (mean + SEM) on the surface 
of cultured luteal cells from early and late stage bovine CL (Fig. 17). Treatment did not 
alter the number of cells expressing Fas (Fig. 17a), or the relative mean fluorescence 
intensity (Fig. 17b). Different letters indicate significant differences (PO.05; n=4 
CL/stage). (CTL = control, Acryl = Acrylamide, Cyto = Cytokines, AC = Acrylamide + 
Cytokines, FasL = Fas Ligand, AFasL = Acrylamide + Fas Ligand) 
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Figure 18: Effect of 48 hour cytokine treatment on the surface expression of Fas on 
cultured bovine luteal cells as determined by flow cytometric analysis. 
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The effect of 48 hour cytokine treatment on the surface expression of Fas (mean + SEM) 
of cultured luteal cells of early and late stage bovine CL (Fig. 18). Treatment did not 
alter the number of cells expressing Fas (Fig. 18a), or the relative mean fluorescence 
intensity within each stage (Fig. 18b). Different letters indicate significant differences 
(P<0.05; n=4 CL/stage). (CTT = control, Acryl = Acrylamide, Cyto = Cytokines, AC = 
Acrylamide + Cytokines) 
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Figure 19: Early stage luteal cell death observed after 48 hours of cytokine treatment. 
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Representative phase-contrast photomicrographs (20x magnification) of early stage 
bovine luteal cells following 48 hours of exposure to cytokines. Control (Fig. 19a) and 
acrylamide-treated (Fig. 19b) cultures were healthy, with a dense monolayer of mostly 
steroidogenic cells. Cytokine-treated (Fig. 19c,d) cultures contained substantial cell 
death as indicated by numerous phase-bright cells. Acrylamide pre-treatment did not 
enhance the effect of the cytokines (Fig. 19d). 
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Figure 20: Late stage luteal cell death observed after 48 hours of cytokine treatment. 
Figure 20a: Figure 20b: 
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Representative phase-contrast photomicrographs (20x magnification) of late stage bovine 
luteal cells following 48 hours exposure to cytokines. Similar to early stage luteal cells, 
control (Fig. 20a) and acrylamide-treated (Fig. 20b) cultures were healthy, with a dense 
monolayer of mostly steroidogenic cells. Cytokine-treated (Fig. 20c,d) cultures 
contained substantial cell death as indicated by numerous floating cells. Acrylamide pre-
treatment did not enhance the effect of the cytokines (Fig. 20d). 
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Figure 21: Quantitative assessment of cell death for cultured luteal cells from early and 
late stage bovine CL after 24 hours of cytokine treatment. 
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Cell death after 24 hour exposure to cytokines for luteal cells of early (Fig. 21a) and late 
stage bovine CL (Fig. 21; mean + SEM). Cytokines induced cell death (P<0.05; n=4 
CL/stage) in both early (Fig. 21a) and late (Fig. 21b) stage CL, whereas acrylamide had 
no effect (P>0.05). (CTL = control, Acryl = Acrylamide, Cyto = Cytokines, AC = 
Acrylamide + Cytokines, FasL = Fas Ligand, AFasL = Acrylamide + Fas Ligand) 
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Figure 22: Quantitative assessment of cell death for cultured luteal cells from early and 
late stage bovine CL after 48 hours of cytokine treatment. 
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Cell death after 48 hour exposure to cytokines for luteal cells of early (Fig. 22a) and late 
stage bovine CL (Fig. 22b; mean + SEM). Cytokines induced cell death (P<0.05; n=4 
CL/stage) in both early (Fig. 22a) and late (Fig. 22b) stage CL, whereas acrylamide had 
no effect (P>0.05). (CTL = control, Acryl = Acrylamide, Cyto = Cytokines, AC = 
Acrylamide + Cytokines) 
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Figure 23: Effect of cytokine treatment on cytokeratin-18 expression in bovine luteal 
cells as determined by flow cytometric analysis. 
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Cytokeratin-18 expression after 24 hours (Fig. 23a) and 48 hours (Fig. 23b) of cytokine 
treatment (mean + SEM). Cytokines did not alter cytokeratin-18 expression for either 
stage. Acrylamide pre-treatment had no effect on cytokeratin-18 expression. Different 
letters indicate significant differences (P<0.05; n=2 CL/stage). (CTL = control, Acryl = 
Acrylamide, Cyto = Cytokines, AC = Acrylamide + Cytokines) 
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Figure 24: Effect of cytokine treatment on progesterone secretion by cultured luteal cells 
of early and late stage bovine CL. 
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Progesterone secretion by cultured luteal cells of early and late stage bovine CL after 24 
hour (Fig. 24a) and 48 hours (Fig. 24b) of cytokine treatment (mean + SEM). After 24 
hours cytokine treatment, progesterone secretion did not change. After 48 hours, 
progesterone secretion started to decrease in response to cytokine treatment. Pre-
treatment with acrylamide did not alter progesterone secretion compared to controls. 
Different letters indicate significant differences (P<0.05; n=3-4 CL/stage). (CTL = 
control, Acryl = Acrylamide, Cyto = Cytokines, AC = Acrylamide + Cytokines, FasL = 
Fas Ligand, AFasL = Acrylamide + Fas Ligand) 
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Figure 25: Progesterone content in cellular fractions and conditioned medium of 
cultured bovine luteal cells following 24hr and 48hr exposure to acrylamide. 
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In 3 of 4 instances, the amount of progesterone extracted from dead cell fractions was 
higher than the corresponding live cell fractions (Fig. 25a) regardless of treatment or time 
of exposure. In acrylamide-treated cultures, progesterone secretion into the culture 
medium tended toward being higher than corresponding controls (Fig. 25b). (CTL = 
control, Acryl = acrylamide). 
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DISCUSSION 

The present study evaluated the functional role of cytokeratin 18 (CK-18) 

filaments in FasL-induced apoptosis in bovine CL. We verified a previous report 

(135,137) that CK-18 filaments are differentially expressed in bovine CL. We also 

demonstrated for the first time that bovine luteal cells express Fas at the surface of the 

cell, with increased expression in early stage CL. Lastly, we determined disruption of 

CK-18 filaments with acrylamide does not enhance Fas expression at the surface of luteal 

cells, nor does it augment FasL-induced cell death. 

Expression of CK-18 filaments is highest in early stage bovine CL and steadily 

decreases with maturity of the CL (135,137). The current study confirmed these 

observations while quantifying the extent of CK-18 expression by flow cytometry. We 

found that numbers of CK-18 positive cells decrease from early to late stage CL by 40%. 

Thus, it is tempting to consider a possible functional role for CK-18 filaments during the 

lifespan of the CL. Intermediate filaments provide mechanical integrity to cells and aid 

in the movement of lipid droplets within steroidogenic cells. Cells with intermediate 

filaments are more resistant to stress and strain than cells lacking these structures (118). 

There is also a close association between intermediate filaments and the movement of 

cholesterol during steroidogenesis, however it is still unknown how cholesterol moves in 

association with intermediate filaments (117). More recently, CK-18 intermediate 

filaments have been implicated in cellular resistance to apoptosis (85,127,129) and 

identified as targets of caspase cleavage during cell death (120,121). The mechanisms by 

which they provide resistance to cell death include sequestering Fas within the Golgi 

apparatus, preventing it from reaching the cell surface and interacting with FasL (85). 
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Additionally, CK-18 filaments sequester TRADD (TNF receptor associated death 

domain), preventing TNFa-induced cell death (129). Conversely, CK-18 filaments 

become targets of caspase cleavage when caspase-3 is activated during apoptosis 

(32,120,122). The cleavage of CK-18 leads to the collapse of the intermediate filament 

structure, which forms cytoplasmic inclusions in which CK-18 and caspase-3 are 

colocalized (123). It is these mechanisms of resistance and susceptibility that formed the 

basis for investigating the potential role of CK-18 intermediate filaments in the current 

study. 

The observation of quantifiably higher Fas receptor expression at the surface of 

early stage than late stage luteal cells was unexpected and at odds with previous studies. 

In previous work, investigators examined Fas mRNA (69, 102) and protein expression 

(91,93) in mice and rat ovaries, and they found that Fas increased in CL undergoing 

regression. Much of their conclusions, however, were drawn from RT-PCR (69,102) and 

immunohistochemical data (91,93). Here, Fas was quantified using dissociated bovine 

luteal cells and flow cytometry. We would argue that immunohistochemical staining is 

generally not considered a quantitative approach to measure protein expression, although 

it would permit the detection of Fas expression in a wide range of cell types compared to 

the current study. Typical ovarian tissue sections contain steroidogenic cells, fibroblasts, 

endothelial cells, immune cells, and red blood cells that are all assessed collectively for 

Fas expression. Dissociation of luteal tissue, as described in the current investigation, 

removes many of these cell types, creating a relatively pure suspension of steroidogenic 

cells with a few contaminating endothelial cells and fibroblasts. Thus, a shortcoming of 

the present study is that not all cell types within the CT were assessed for Fas expression. 
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Moreover, species-specific differences in Fas expression might account for the 

discrepancy in temporal expression of Fas throughout the luteal phase between the 

current study and the cited previous studies. Overall, we observed a 72% decrease in the 

number of luteal cells expressing Fas, and a 59% decrease in the density of Fas expressed 

at the cell surface across the luteal phase. Total Fas expression (surface and intracellular) 

for freshly isolated cells was higher for early stage than late stage CL. For cultured luteal 

cells, Fas surface expression followed a similar pattern, but was enhanced by culture 

particularly in late stage cells. Exposure of the cultured cells to FasL, however, resulted 

in similar numbers of cell death for both stages of the luteal phase. This indicates cells 

from both stages of CL are equally susceptible to FasL-mediated cell death despite 

differences in the cell surface expression of Fas. 

The observation that Fas expression is elevated on luteal cells of early stage CL 

without enhancing their susceptibility to FasL-induced death indicates mechanisms 

within the cell guard against FasL-induced apoptosis. In other types of cells, a soluble, 

secreted isoform of Fas has been identified that sequesters FasL prior to binding at the 

cell surface, thus preventing cell death (141-143). This isoform of Fas lacks the 

transmembrane domain of wild type Fas, causing it to be secreted rather than expressed 

on the surface of cells (141). Soluble Fas is biologically active, retaining its ability to 

bind FasL, which interferes with the induction of apoptotic signaling by interacting with 

FasL before it is able to reach active Fas receptors on the surface of cells (141-143). 

More recently, Komatsu et al. demonstrated the expression of soluble Fas mRNA in 

cultured murine luteal cells, which decreases following treatment with the apoptotic 

cytokines, TNFa and IFNy (144). Thus, it is possible a soluble form of Fas exists within 
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bovine luteal cells to provide protection, but this mechanism does not account for the 

overall high expression of Fas observed on the surface of luteal cells of early stage CL in 

the current study. 

The phenomenon of membrane-bound splice variants of cytokine receptors might 

account for our observations of elevated Fas surface expression. The cytokine TRAIL 

(TNF-related apoptosis-inducing ligand) is structurally similar to FasL, and its receptors, 

DR4 and DR5, belong to the TNF receptor superfamily. After the initial discovery of a 

soluble, protective isoform of Fas, membrane-bound decoy receptors were also 

discovered for the cytokine TRAIL. These receptors, DcRl and DcR2, have a 

cytoplasmic domain structurally similar to DR4 and DR5, respectively, but lack the 

intracellular death domain necessary for transmitting an apoptotic signal (145-147). The 

TRAIL decoy receptors are expressed in several tissues, but within the ovary, only DcR2 

is observed (145-147). The existence of decoy receptors to cytokines structurally similar 

to FasL makes plausible the idea that decoy receptors for FasL also exist. Recently, 

Jenkins et al. (2000) discovered a membrane-bound Fas decoy receptor in thymocytes. 

Similar to DcRl and DcR2, the Fas decoy receptor contains an extracellular and 

cytoplasmic domain similar to wild type Fas, but lacks the intracellular death domain. 

Unlike soluble Fas, the decoy receptor is expressed on the plasma membrane and retains 

its ability to bind FasL, but does not induce cell death (148). These observations tempt us 

to consider that a decoy receptor of Fas might exist on bovine luteal cells, explaining the 

unexpected, high expression of Fas on surface of cells during early CL development. 

However, further characterization of the Fas receptor on bovine luteal cells would need to 
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be conducted to determine whether or not a Fas decoy receptor does in fact exist within 

the bovine ovary. 

A second alternative explanation for the high, unanticipated expression of Fas in 

early stage CL compared to late stage CL might relate to systemic progesterone 

concentrations. Recall that plasma progesterone concentrations for cows providing the 

late stage CL were higher than those providing early stage CL. High systemic 

concentrations of progesterone might directly impair Fas surface expression and/or 

actions in bovine luteal cells. In the rat, for instance, high progesterone concentrations 

down-regulate Fas mRNA expression (149). In cultured bovine luteal cells, the 

progesterone antagonist onapristone increases Fas mRNA expression (17), suggesting 

that indeed progesterone directly impairs Fas expression on luteal cells. Further 

experimentation will be required, however, to critically examine this idea. 

Acrylamide was utilized in the present study to disrupt cytokeratin intermediate 

filaments. Acrylamide selectively disrupts intermediate filaments without otherwise 

adversely affecting the cells (150-155). For instance, in fibroblasts (150) and epithelial 

cells (151), exposure to acrylamide causes the filaments to form juxtanuclear aggregates, 

yet microtubules are unaffected. Others have shown the filaments do not become fully 

disassembled (152), but rather undergo acute dephosphorylation. Dephosphorylation 

provokes a 50% loss of phosphate from the keratin protein which corresponds with the 

morphological changes in intermediate filament expression (156). However, the 

dephosphorylation event is transient, and the striking changes in intermediate filament 

organization are reversible. Filaments re-establish their 'net-like' organization within 12 

hours after acrylamide removal (151), and complete rephosphorylation occurs within 18 
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hours (156). Although acrylamide generally targets intermediate filaments, some 

investigations have discovered some other non-specific effects. Arocena (2006), for 

example, showed that acrylamide disrupts intermediate filaments, microfilaments, and 

microtubules in bovine lens epithelial cells. Shiver et al. (1992) determined acrylamide 

promotes steroidogenesis in murine adrenal cells (158). In the Shiver (1992) study, 

adrenal cells underwent a change in morphology, becoming rounded. This change in 

morphology corresponded with the acrylamide-induced increase in steroid production 

(158), leading the authors to conclude that acrylamide influences steroid production by 

enhancing the movement of cholesterol ester-rich lipid droplets and/or the delivery of 

cholesterol to the mitochondria (158). There is a close association between intermediate 

filaments and lipid droplets (117), and disruption of the filaments is thought to liberate 

the droplets and allow them to move more freely within the cell (158). Additionally, the 

change in cell shape and the disruption of intermediate filament-mitochondrial 

interactions may facilitate the movement of the mitochondria, in essence enhancing the 

delivery of the lipid droplets to the mitochondria (158). In the present study, acrylamide 

targeted CK-18 intermediate filaments without affecting the integrity of other 

cytoskeletal filaments (e.g. microtubules). Additionally, acrylamide did not alter cellular 

morphology or steroidogenic production by the bovine luteal cells (Fig. 12). From this 

we conclude that acrylamide disrupts CK-18 filaments in bovine luteal cells without 

affecting normal cellular processes. 

The concept that CK-18 filaments regulate Fas trafficking was first proposed in a 

study in which murine hepatocytes were evaluated (85). Using a knock-out mouse 

model, the authors discovered CK-18 filaments mediate Fas mobilization from the Golgi 
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apparatus to the plasma membrane (85). Mouse genetic knockouts have proven useful as 

tools for permanently and completely eliminating a protein of interest. In the current 

study, the chemical acrylamide was used in an attempt to mimic the effects of 

intermediate filament loss seen in genetic knockout studies. An important difference 

between previous knock-out studies (85,159) and the current study is that acrylamide 

provides only transient disruption of the filaments (151,156). These transient actions of 

acrylamide might account for the lack of detectable change in Fas expression on the 

surface of cells from early and late stage CL. A suggestion would be to identify a 

cytokeratin-disrupting agent that has specific, long-term effects and then re-assess the 

surface expression of Fas on bovine luteal cells in this context. 

The susceptibility of bovine luteal cells to FasL-induced apoptosis after CK-18 

disruption was assessed in the current study by exposing the cells to a cytokine cocktail 

containing FasL. The rationale for the use of a cytokine cocktail is based upon the 

knowledge that in bovine CL, T lymphocytes and macrophages increase before the onset 

of luteolysis (47-49). Hence, as these immune cells invade the CL, it is presumed they 

release a cocktail of cytokines (i.e., TNFa, IFNy, FasL), which collectively contribute to 

luteal cell apoptosis and the regression of the CL (67,69,72). In fact, most previous 

studies utilize a combination of cytokines such as TNFa , IFNy , and FasL, arguing that 

they enhance Fas mRNA (69,96,101,109,110) and protein expression (74,104,110). 

Notably, the cytotoxic effects of FasL become evident only when combined with TNFa 

and IFNy (69,89,90,95). For these reasons, a similar cytokine cocktail containing TNFa, 

IFNy, and FasL was utilized in the current series of experiments to induce cell death in 

the luteal cell cultures. 
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Another manner in which cytokines contribute to the regression of the CL is by 

inhibiting gonadotropin-stimulated progesterone production (67,72). In mid-cycle bovine 

luteal cultures exposed to luteinizing hormone (LH), TNFa (67) and IFNy (72) prevented 

the increase in progesterone secretion that was observed in cultures treated with LH 

alone. In the current study, we observed a decrease in progesterone production by luteal 

cells of early stage CL after 48 hrs of cytokine treatment, yet no change in progesterone 

secretion was observed for luteal cells of late stage CL. The lack of change in 

progesterone secretion by late stage luteal cells was unexpected given the previous 

observations that TNFa decreases progesterone concentrations in late stage luteal tissue 

(54). In the present study, progesterone in extracts of live vs. dead cell pellets, as well as 

the secreted progesterone in the culture medium, was measured to determine the 

influence, if any, that dying cells have on progesterone production. No striking 

differences were observed in the amount of progesterone secreted into conditioned 

medium of control and death-induced cultures. However, surprisingly, extracts of dead 

cell pellets tended to contain more progesterone than their live cell counterparts, 

especially after 48hrs of acrylamide exposure. Perhaps the components of dead cell 

fractions sequester steroids? Nevertheless, the overall results of this single experiment 

indicate that in late stage luteal cells, steroidogenesis is maintained and/or metabolism 

decreased to sustain a constant amount of progresterone in the conditioned medium 

following cytokine exposure. Similar effects are not observed for luteal cells of early 

stage CL. 

The inability of CK-18 filament disruption (via acrylamide) to enhance Fas 

expression in the current experiments was disappointing. Was the lack of effect due to 
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the short-term, transient actions of acrylamide? To address this concern, we evaluated 

the hepatocellular carcinoma cell line, HepG2, as a "positive control" cell type to test our 

proof of concept. Recall hepatocytes were the cell type of choice for demonstrating CK-

18 disruption and Fas regulation in the mouse genetic knock-out studies (85). As 

anticipated, exposure of HepG2 cultures to acrylamide caused peri-nuclear aggregation of 

CK-18 filaments and enhanced the number of cells expressing Fas on the cell surface. 

These observations validated that indeed acrylamide-induced disruption of CK-18 

filaments enhances the cell surface expression of Fas. However, in HepG2 cells, we also 

observed that acrylamide disrupted microtubule organization. It is possible that both CK-

18 filaments and microtubules, particularly in hepatocytes, influence the cell surface 

expression of Fas. It is also conceivable that microtubules influence Fas expression in 

luteal cells. In at least one study, disruption of microtubules increased Fas mRNA 

expression but, surprisingly, triggered a decrease in Fas protein expression at the cell 

surface (160). Other studies show that anti-cancer drugs disrupt microtubules, which 

enhance FasL expression and the incidence of apoptosis (161). Given the current results 

and the potential relationship between microtubule disruption and FasL, it merits further 

study to examine the role of microtubules in Fas trafficking in bovine luteal cells. 

The current study evaluated the influence of CK-18 filaments on Fas trafficking 

and FasL-induced death of bovine luteal cells. At present, the results do not support the 

hypothesis that CK-18 intermediate filaments regulate the movement of Fas to the surface 

of the cell. We observed that acrylamide disrupts CK-18 filaments without enhancing 

Fas surface expression or FasL-induced cell death. Noting that the effects of acrylamide 

are transient and reversible, it is conceivable that CK-18 filaments do play a role in 

77 



apoptosis and regression of the bovine CL, but acrylamide is not the agent of choice to 

elucidate that role. Collectively, we conclude that if CK-18 filaments regulate Fas 

expression and FasL-induced death in bovine luteal cells, their effects are not as profound 

as has been observed in other, non-ovarian cell types such as hepatocytes. 
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Corpus Luteum Dissociation and Cell Culture 

Day Before Dissociation: 

AUTOCLAVE - 30 minutes, with 10 minute dry time 
• cutting board 
• 2 scissors 
• forceps (fine-tip and blunt tip) 
• hemostat 
• 25mL Erlenmeyer flask 
• 30mL beaker 
• 2- lOmL beakers 
• lA glass Petri dish, cover slide 
• spinner flask (not in envelope) 
• zippet 
• razor blade 

Day of Surgery (Day -1): 

PREPARATION 
-Make Ham's F-12 + gentamicin 

-Add 200uL gentamicin to lOOmL Ham's F-12 sterile media. 
-Place in 2 sterile specimen containers. Place on ice. 

-Swipe hood with Poviodine. 
-Set up water bath for 37°C (Temperature control on 2 to 2 %). -> too cold, 

collagenase doesn't work, too hot, it kills cells 
-Obtain surgery bucket. 
-Make BSA Media (0.5g / lOOmL med + 200 uL gent) 

BLOOD SAMPLE 
-Spin blood for 20 minutes at 3000 rpm, 4°C. Remove plasma to dram vial 
and freeze. 

FLASK PREPARATION (do this during tissue preparation or the day before luteectomy) 
-Thaw one tube of FBS in water bath. 
-Add lOmL calf serum to lOOmL Ham's F-12 with 300uL gentamicin. 

-Add 2.5mL to each flask to be used. Swirl to cover bottom. 
-Add 500uL to each chamber of an 8-chamber slide 

-Incubate at least 1 hour (up to 5 hours is okay). 
-Rinse flasks with 2.5mL Ham's F-12 w/gentamicin right before use. 
-Dump this 2.5mL out and add another 2.5mL of Ham's w/gentamicin 

TISSUE PREPARATION 
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-Determine weight of Corpus Luteum (keep in media). 
-cut off connective tissue (grey), place CL back in cup, take to scale, place 
CL on weigh boat and weigh 

-Set up sterile equipment on cutting board (in hood). 
-Weigh out collagenase for later use: 

(2000Ywt. of CL in grams) 
* Activity of collagenase = mg collagenase to use 

* collagenase activity is stated on bottle and will vary with each 
batch 
Units = U/mg (210 U/mg) 

-Place some BSA medium in a lOmL beaker. Take !4 or lA of CL tissue and 
Slice into 1mm strips. Hold onto tissue with rough edge of cover slide. Place 
slices into beaker containing BSA media. 
-Finish with rest of CL. 
-Using scissors, cut slices within the beaker into l-2mm cubes (usu. 5-10 
minutes). 
-Pour cubed pieces into spinner flask. Rinse beaker 2X with BSA media and 
place media in spinner flask. 
-Place spinner flask in water bath and spin on medium-low (2-3) for 1 minute. 
Let tissue settle and pour liquid out side (this contains excess red blood cells and 
other debris). 

DISASSOCIATION 
**make sure waterbath is at 37C before adding spinner flask containing the 
cells** 
-Add collagenase directly to the spinner flask and bring the total volume up to 
40mL with Ham's F-12 + Gent + BSA 
-Spin for 1 hour. 
-Every 10 minutes, aspriate contents of spinner flask with a wide mouth pipette 

(i.e., a broken-tip pipette). 

AFTER 1 HOUR DISASSOCIATION - RINSING AND CENTRIFUGATION 
1) Pour off supernatant of spinner flask into one 50-mL centrifuge tube (vent one 

end of the spinner flask and pull cap off the other end) - - with smaller CL, use 
15mL tube 

2) Spin at 228xg, 4°C for 10 minutes. 
3) Pour off supernatant (asap since collagenase is still present), then bring 

volume up to 50mL with Ham's F-12 w/gentamicin. Use Pasteur pipette 
(plugged and autoclaved) to break up pellet (squeeze up and down). - - with 
smaller CL, use 15mL tube and bring total volume up to 15mL 

4) Spin at 129xg, 4°C for 10 minutes. 
5) Repeat step #3. 
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6) Spin at 57xg, 4°C for 10 minutes. 
7) Repeat steps #3 and #6. (if supernatant isn't clear) 
8) Pour off supernatant from centrifuge tubes. Bring up to 5mL with Ham's F-

12 
9) w/gentamicin. 
10) Aspirate with Pasteur pipette to break up pellet. 
11) Place cells on ice. 

SECOND DISASSOCIATION 
-Add collagenase directly to spinner flask and bring up to 40mL with Ham's + 

Gent + BSA 
(smaller CL in smaller spinner flask, bring up to 20mL) 

AFTER SECOND DISASSOCIATION - RINSING AND CENTRIFUGATION 
1) Pour off supernatant on spinner flask into one 50-mL centrifuge tube (vent 

one end of the spinner flask and pull cap off the other end) 
2) Spin at 1000 rpm, 4°C for 10 minutes. 
3) Pour off supernatant, then bring volume up to 50mL with Ham's F-12 

w/gentamicin. Use Pasteur pipette (plugged and autoclaved) to break up 
pellet (squeeze up and down). 

4) Spin at 129xg, 4°C for 10 minutes. 
5) Repeat step #3. 
6) Spin at 57xg, 4°C for 10 minutes. 
7) Repeat steps #3 and #6. (if supernatant isn't clear) 
8) Pour off supernatant from centrifuge tubes. Bring both up to 5mL with Ham's 

F-12 
w/gentamicin. 

9) Apirate with Pasteur pipette to break up pellet. 
10) Combine tubes and bring total volume up to 20mL with Ham's F-12 

w/gentamicin 
11) Bring total volume up to 50mL and spin at 500rpm, 4C, 10 minutes 
12)Resuspend pellet in 20mL (lOmL for smaller CL) 

CELL COUNTING BY TRYPAN BLUE EXCLUSION METHOD 
• Dilute cells - dilution depends on what the pellet looks like. Dilution 

range is 1:5 to 1:20. 
• Usually do a 1:10 (1:5 for a small pellet). 
• Dilution of cells: 1:5 = 200uL cells + 800uL trypan blue dilution (see 

below*) 
• 1:10 = 1 OOuL cells + 900uL trypan blue dilution 
• Trypan blue dilution*: Figure out amount of trypan blue needed for 

cell dilution X 2 for 2 tubes. Make a round mL amount higher than 
necessary. Ex: if 3mL of trypan blue dilution will be sufficient, use 
2.7mL sterile PBS and 300uL trypan blue (or use working solution 
1:10). 
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-To dilute cells: Place required amount of trypan blue dilution in each 
of 2 - 12x75 assay tubes (BE CAREFUL - assay tubes are not sterile). 
Add amount of cells indicated for your 1:5 to 1:20 dilution of cells. 
-Vortex quickly, let sit 30 seconds to 1 minute. 
-Vortex quickly, then load both sides of hemocytometer: Place a drop 
of solution on each side (use one drop from each tube). Blot excess 
once drop has seeped in. 
-Microscope: Find cells at 10X, count at 40X. Use fours corners plus 
middle region of hemocytometer for counting. 

Calculate average # of cells/square. If counts from each side are very 
different, do another dilution. 
Calculate average # of cells in solution: 
1:10 dilution -> (total # of cells)*(104)*(dilution factor {10, for a 
l:10}) = #cells/mL 
Ex. 84.5 average cells/square = 8.4x10 or 84.5 million cells/mL 

Divide by 2 for a 1:5 dilution. 
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Freshly Isolated Cell Fixation Protocol 

1. Aliquot 300uL (1.5xl06 cells) of cells into screen-capped centrifuge tubes 
2. Spin at 176xg, 10 minutes, 4°C 
3. Resuspend pellet with lOOuL Ham's F12 and 400uL 2% paraformaldehyde in 

lxPBS 
(therefore each tube contains 1.5xl06 cells/tube/800uL 1% 
paraformaldehyde) 

4. Place tubes on ice for 2 hours, flicking occasionally 
a. If not permeabilizing cells, after 2 hours of fixation, place tubes in 4°C 

fridge. If permeabilizing cells, follow rest of protocol 
5. Spin all tubes at 176xg, 5min, 4°C 
6. Discard supernatant by pouring and dabbing 
7. Add 4mL lxPBS to all tubes 
8. Spin at 176xg, 5min, 4°C 
9. Add 4mL lxPBS to all tubes 
10. Spin at 176xg, 5min, 4°C 
11. Discard supernatant by pouring and dabbing 
12. Resuspend pellet in residual lxPBS and add 900uL 70% chilled ethanol 
13. Place tubes in -20°C freezer until flow cytometric analysis 
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Fixation of Chamber Slides Protocol 

1. Rinse slides 2x with lxPBS 
2. Fix cells with 2% paraformaldehde in lxPBS for 20 minutes at room temperature 
3. Rinse slides 2x with lxPBS 
4. Store slides in lxPBS at 4°C until immunocytochemistry 
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Fixation of Flasks (T25) Protocol 

1. Remove media 
2. Rinse cells lx with 3mL HBSS 
3. Add 0.5mL trypsin-EDTA to each flask 
4. Rock flasks gently; remove trypsin 
5. Repeat steps 3 and 4 
6. Let flasks stand for 10 minutes 
7. Add 4mL Ham's F12 + 10% FBS to each flask - pipette up and down to remove 

all cells 
8. Place 4mL of cell suspension into non-screen capped tubes 
9. Spin tubes at 276xg, minutes, 4°C 
10. Remove supernatant and resuspend cell pellet with 200uL Ham's F12 
11. Spin tubes at 276xg, 5 minutes, 4°C 
12. Add 200uL Ham's F12 and 400uL 2% paraformaldehyde in lxPBS to all tubes 

(therefore each tube contains 800uL 1% paraformaldehyde) 
13. Place tubes on ice for 2 hours, flicking occasionally 

a. If not permeabilizing cells, after 2 hour fixation, place tubes in 4°C fridge. 
If permeabilizing cells, follow rest of the protocol 

14. Spin tubes at 276xg, 5 minutes, 4°C 
15. Remove supernatant 
16. Resuspend cell pellet in 4mL lxPBS 
17. Spin tubes at 276xg, 5 minutes, 4°C 
18. Repeat steps 15-17 
19. Remove supernatant and resuspend cell pellet in 900uL chilled 70% ethanol. 

Place tubes in -20°C freezer until flow cytometric analysis 

Saving Conditioned Media and Floating Cells Protocol 

1. Remove conditioned media from flasks (step 1 from Fixation of Flasks Protocol) 
2. Place conditioned media in non-screen capped tubes 
3. Spin tubes at 276xg, 5min, 4oC 
4. Save lmL supernatant, place in microcentrifuge tubes and place in -20oC freezer 
5. Discard remaining supernatant 
6. Resuspend cells in 400uL Ham's F12 and 400pL 2% paraformaldehyde in lx 

PBS for 2 hours, on ice. 
7. At the end of the fixation, add fixed cells to trypsinized cells from the flasks 
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Immunocytochemistry Protocol 

1. Wash slides 2x with PBS with 0.1 % BSA 
2. Perform a blocking and permeabilization step: Incubate slides with 200fj.L of 1% 

BSA + 10% NGS + 0.3% triton x-100 in lxPBS for lhr at room temperature 
3. Wash slides 2x with PBS with 0.1 % BSA 
4. Add primary antibody 

a. CK18 non-conjugated primary: 1:800 dilution with PBS with 1.0% BSA + 
10% Normal Goat Serum (NGS) + 0.3% triton x-100 

b. Microtubule (MT) primary: 1:200 dilution with PBS with 1.0% BSA + 
10% NGS 

c. Neg CTL: PBS with 1.0% BSA + 0.3% triton x-100 
5. Incubate slides overnight at 4°C in a humidified chamber 
6. The next day, wash slides 3x with PBS with 0.1% BSA 
7. Add secondary antibody 

a. Alexa 488 secondary (for CK18): 1:200 dilution with PBS with 1.0% BSA 
+ 10% NGS + 0.3% triton x-100 

b. Texas red secondary (for MT): 1:200 dilution with PBS with 1.0% BSA + 
10% NGS + 0.3% triton x-100 

8. Incubate slides at 37°C for lhr in a humidified chamber 
9. Wash slides 2x with PBS with 0.1 % BSA 
10. Counterstain and mount with DAPI mounting medium 
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Flow Cytometry Protocol: Fas Staining 

1. Spin all tubes at 276xg, 5 min, 4°C 
2. Remove supernatant by pouring and dabbing 
3. Resuspend pellet in lmL PBS with 0.1% BSA 
4. Spin all tubes at 276xg, 5 min, 4°C 
5. Remove supernatant by pouring and dabbing 
6. Resuspend pellet in lmL PBS with 0.1% BSA 
7. Spin all tubes at 276xg, 5 min, 4°C 
8. Aspirate supernatant with Pasteur pipette 
9. Add lOOuL primary antibody or PBS with 1.0% BSA (to neg CTLs) 

a. Fas primary antibody: 20jj.g of antibody in PBS with 1.0% BSA + 10% 
NGS 

10. Incubate tubes overnight at 4°C wrapped with parafilm 
11. Add lmL PBS with 0.1 % BSA to all tubes 
12. Spin tubes at 276xg, 5 min, 4°C 
13. Remove supernatant by pouring and dabbing 
14. Add lmL PBS with 0.1% BSA to all tubes 
15. Spin tubes at 1 lOOrpm, 5 min, 4°C 
16. Aspirate supernatant with Pasteur pipette 
17. Add lOOuL secondary antibody or PBS with 1.0% BSA (to neg CTLs) 

a. Alexa 488 secondary antibody: 1:200 with PBS with 1.0% BSA + 10% 
NGS 

18. Incubate tubes for lhr at 37°C wrapped with parafilm 
19. Add lmL PBS with 0.1% BSA to all tubes 
20. Spin tubes at 276xg, 5 min, 4°C 
21. Remove supernatant by pouring and dabbing 
22. Add lmL PBS with 0.1% BSA to all tubes 
23. Spin tubes at 276xg, 5min, 4°C 
24. Remove supernatant by pouring and dabbing and resuspend in 0.5mL lxPBS 
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Flow Cytometry Protocol: Cytokeratin Staining 

1. Spin all tubes at 276xg, 5 min, 4°C 
2. Remove supernatant by pouring and dabbing 
3. Resuspend pellet in lmL PBS with 0.1% BSA 
4. Spin all tubes at 276xg, 5 min, 4°C 
5. Remove supernatant by pouring and dabbing 
6. Resuspend pellet in lmL PBS with 0.1% BSA 
7. Spin all tubes at 276xg, 5 min, 4°C 
8. Aspirate supernatant with Pasteur pipette 
9. Add 1 OOuL primary antibody or PBS with 1.0% BSA (to neg CTLs) 

a. CK FITC-conjugated primary antibody: 1:100 dilution with PBS with 
1.0% BSA 

10. Incubate tubes for lhr at 37°C with a parafilm wrap 
11. Add lmL PBS with 0.1% BSA to all tubes 
12. Spin tubes at 276xg, 5 min, 4°C 
13. Remove supernatant by pouring and dabbing 
14. Add lmL PBS with 0.1% BSA to all tubes 
15. Spin tubes at 276xg, 5 min, 4°C 
16. Remove supernatant by pouring and dabbing and resuspend in 0.5mL lxPBS 
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Cell Fraction Protocol (for progesterone measurement) 

Conditioned Media and Dead Cell Pellet 
1. Remove conditioned media from flasks and place in non-screen capped tubes 
2. Spin tubes at 276xg, 5 min, 4°C 
3. Save lmL conditioned media (supernatant), place in microcentrifuge tubes, and 

place in -20°C freezer 
4. Remove remaining supernatant and resuspend cell pellet ("dead cell pellet") in 

lOOuL lxPBS - transfer cell pellet in lxPBS to microcentrifuge tube and place in 
-20°C freezer 

Live Cell Pellet 
5. Rinse each flask with 3mL HBSS 
6. Remove HBSS 
7. Add 0.5mL trypsin-EDTA to each flask 
8. Rock gently; remove trypsin-EDTA 
9. Add 0.5mL trypsin-EDTA to each flask 
10. Rock gently; remove 
11. Let flasks stand for 10 minutes 
12. Add 4mL Ham's F12 + 10% FBS to each flask - pipette up and down to remove 

all cells 
13. Add 4mL cell suspension to non-screen capped tubes 
14. Spin tubes at 276xg, 5 min, 4°C 
15. Remove all supernatant by pouring and dabbing 
16. Add lOOuL lxPBS to cell pellet ("live cell pellet") 
17. Transfer cell pellet in lxPBS to microcentrifuge tube and place in -20°C freezer 
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DNA Extraction and DNA Assay 

TNE Buffer-pH 7.4 
Tris lOmM 
EDTA ImM 
NaCl lOOmM 

1. Measure out 50% of final volume of MilliQ water 
2. Add individual ingredients and stir to completely dissolve ingredients 
3. Bring up to 90-95% of final volume with MilliQ water 
4. pH to 7.4 (use HC1) 
5. Bring up to final volume; store at 4°C 

DNA Extraction 

1. Turn water bath on and heat up to 95°C 
2. Determine volume of samples 
3. Add appropriate volume of TNF buffer to bring total volume of samples to 0.6mL 
4. Add 0.2mL 40% TCA to all tubes, for a final concentration of 10% TCA 
5. Place tubes on ice for 10 minutes 
6. Spin tubes at 1428xg, 10 minutes 
7. Discard supernatant with Pasteur pipette 
8. Add 0.6mL 10% TCA to all tubes 
9. Place tubes in 95°C water bath for 30 minutes 
10. Place tubes on bench top, then cool on ice for at least 5 minutes 
11. Spin all tubes at 1428xg, 10 minutes 
12. Save supernatant by transferring to 1.5mL eppendorf tube 
13. Store sample at 4°C or assay for DNA right away 

DNA Assay 

1. Turn water bath on and heat up to 95°C 
2. Make the following standards by diluting the stock standard (500(j.g/mL) with 

TNE buffer 
a. 500ug/mL (stock) 
b. 250(ig/mL 
c. 125|j.g/mL 
d. 62.5ug/mL 
e. 31.25|ig/mL 
f. 15.625ng/mL 
g. 7.8125(ag/mL 

3. Transfer lmL of standard to appropriate cuvettes (do in duplicate) 
4. Bring volume of sample to be analyzed up to lmL with TNE buffer and transfer 

to the appropriate cuvette 
5. When the water bath is up to temperature, add 2mL diphenylamine reagent to all 

cuvettes (be sure to use a glass pipette) 
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6. Mix well by covering tubes with parafilm and inverting twice 
7. Place tubes in rack in water bath; place glass plate over tubes to prevent 

evaporation 
8. Let sit in water bath for 10 minutes, or until visible color change in standards is 

noted 
9. Place tubes on bench top for 5 minutes or until completely cool 
10. Transfer to cuvettes and read at 600nm 
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