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ABSTRACT

ARE THE WORLD’S OCEANS OPTICALLY DIFFERENT?
by

Mimi Szeto
University of New Hampshire, December, 2009

With Vsatellite technology, the dynamics of oceanic photosynthesis can be aﬁa—
lyzed on a global scale using remotely sensed estimates of chlorophyll concentration.
Such work is dependent on the performance of empirical ocean color algorithms that
produce the chlorophyll estimates. In hopes to understand the sources of algorithm
uncertainty, the NASA bio-Optical Marine Algorithm Data set (NOMAD) was an-
alyzed. The OC4V.4;alg0rithm estimates were compared to NOMAD’s in situ mea-
surements, and a bias was apparent when the data were sorted by océan (Atlantic,I

| Pacific, and Southern). Several instrumental artifacts were found to be insignificant
to the oceanic algorithm bias. Using a subset of NOMAD that contained absorption
meas»ﬂrernents with each observation, the oceanic bias was independently verified,
’ and explained through differences in the ,concentration' of non-algal vorgahirc matter
‘and the phytgplénktoh commﬁnity structure; Ultimétely, the world’s oceans were

-~ found to ‘be.optically different as a result of differences in biogeochemical processes. .

xii -



CHAPTER 1

INTRODUCTION

As primary prodﬁcers of biomass in the ocean, phytoplankton serve an irﬁportant
role in the biosphere. Through photosynthesis, they transform the sun’s energy into
chemical energy that can be consumed in marine ecosystems. In this manner, they
maintain the livelihood of heterotrophic marine organisms and influence the chem-
istry of the surface waters, thereby impacting the biogeochemical processes in the
oéeans. With the aim of understanding the ocean’s contribution to the global carbon
cyele and the dynamics of marine ecosysterhs, oceanographers have developed global
mbdels for primary productivity (the rate at which phytoplankton perform photo-
synthesis), all of which currently require a quantity for the autotrophic biomass
standing stock in the ocean. Using satellite sensors and ocean color algorithms,
oceanographers measure the reflected light from the ocean surface and translate it
to estimate the biomass standing stock. Consequently, consistent satellite measure-
‘ments of ocean color across the planet have enabled our ability to- quantitatively

estimate primary production through these models.

Such satellife technology is founded on the priﬁCiples of light propagation through
the surface layer of thé ocean and the inherent manner in which the materials in the
ocean absorb or scatter the incidental light. Absorption converts light into other
forms of energy such as heat or chemical energy, and écattering ch'anges the direction
of light. The unique optical behavior of different constituents in the water .depends

on the particular material’s composition and abundance.

From the influx of visible light propagating through seawater, most of it is either
absorbed or scattered downward by phytoplankton, detritus, or dissolved organic

matter, and only a small portion returns to the surface (scattering upward). The



light reflected through the surface can then be measured both at sea with radiome-

ters and from space with a satellite sensor.

Through decades of research,-oceanogréphers have developed the mathematical
groundwork at sea for relating the light reflected at the surface to the absorption
and scattering of light by the ocean water and all its components. With the goal
of estimating primary productivity, efforts have been made to empirically relate the
amount of reflected light to near-surface chlorophyll-a concentration (Chl). The
chlorophyll-a pigment, ubiquitous in all species of phytoplankton, reflects green
light in a predictable manner, and so it serves as the indicator for phytoplankton
biomass in primary production models. Coincident observations of the amount of
reflected light and Chl from the world’s oceans then form the basis for global em-
pirical ocean color algorithms such as the OC4v.4 and the OC3M, used for the
SeaWiFS and MODIS Aqua sensors, respectively (O’Reilly et al., 2002). Addi-
tionally, satellite-derived estimates for the absorption and scattering properties are
currently approached via semi-analytical algorithms, established from theoretical
assumptions of the relationship between the reflected light and the scattefing and

absorption properties (e.g., Garver and Siegel (1997)).

Satellite technology has transformed our understanding of the ocean’s surface
procesées, but much work has yet to be done to improve the accuracy .of the satellite-
derived bio—opticai propertieé. An assessment of the accuracy of empirical algo-
o ritlﬁns contribu.vtes to an assessment of t.h'e z{céuracy of higher order productivity
algorithms_ as well' as for time-séries evaluations based on satellite data from the
pést fhree de(.:ades‘ (Moore et al., 2009). Empir'ical global aigorithms currently offer
the best pérformance for global an-alyses, but.they are criticized for having minimal
theoretical foundation (O’Reﬂly et él., 2002)." Semi-analytical algorithms rely on a
theoretiéal framework, but perform no better and sometimes worse than empirical ‘

algorithms (O’Reilly et al., 2002).

Current empirical algorithms were developed to perform only in open-ocean
waters where it is probable that the biomass co-varies with the non-living matter.
Moore et al. (2009) have recently validated the algorithm performance, claiming that

the bio-optics community’s desired 35% accuracy (Mcclain et al., 2006; Bailey and



Werdell, 2006; Hooker et al., 1992) has been met for much of the world’s open-ocean
waters containing low levels of biomass. Inaccuracies remain in coastal waters and
high-latitude regions where the assumption that biomass co-varies with non-living
matter does not hold, where seasonal variability affects the surface ocean’s optical

behavior, and where the 35% accuracy threshold is not met.

This study entails the evaluatioﬁ of NOMAD (NASA bio-Optical Marine Al-
gorithm Data set), a global bio-optics n situ élataset, with the goal of improving
our understanding of the global empirical algorithm uncertainty. In particular, this
work aims to explain the mismatch between in situ and satellite-based measure- -
ments using corresponding measurements bf absorption now available in the second
version of NOMAD. Based on the community’s literature and an analysis of the
NOMAD dataset (Szeto et al., 2006), I hypothesize that an ocean bias exists in the
empirical algorithms, and that it can be explained by systematic variation in the
abundance of non-algal dissolved and particuléte matter, and the phytoplankton
community structure as described by the dominant cell size and pigment packaging.
This hypothesis is consistent with the past literature on regional-scale sfudieé, but

it has never before been tested on a global scale.



CHAPTER 2

- BACKGROUND

2.1 A brief history of U.S. ocean color satellites

The first global ocean color data (in 1978) from the Coastal Zone Color Scanner
(CZCS), on the NASA NIMBUS-7 satellite, provided bi(_)-optical oceanographers
with an unimaginable wealth of observations (Gordon et al., 1983; Hovis et al.,
1980). Subtle but detectable variations in ocean color changed the simple notions
oceanographers had about ﬁieso-scale eddies in the open ocean, thermal and shelf-
edge fronts, and large-scale patchiness in algal blooms (Hovis et al., 1980). With a
correction for the atmospheric influence, the first satellite measurements translated
to estimates of Chl were within 0.5 log Chl of corresponding in situ measurements
(Gordon et al., 1983). CZCS observations continued until sensor degradation inter-

fered in 1986 (Evans and Gordon, 1994).

In 1997, the Sea-viewing WidévField—.of—-view‘ Sensor (SeaWiFS) (Figure 2-1) was’
launched on the OrbView-2 satellité, dliowing ocean color observations: to resufﬁe
(Hooker et al., 1992). NASA also launched the Moderate Resolution Imaging Spec-
troradiometer (MODIS) sensors in 1999 on the Terra satellite and in 2002 on the
Aqua satellite (Lee and Carder, 2002). Both sensors have 1 km? resolution (for Sea-
WiFS it is actually 1.1 km? at the nadir-viewing angle) and measure reflectance at
specific bands centered at the Wavelengths shown in Table 21 These wavelengths
were chosen to specifically capture certain absorption and scattering properties of
the organic matter in the surface ocean and the -atmosphere above it. Previous
research had shown that algorithm performance is not improved by including other
wavelengths in the detection scheme (Sathyendranath et al., 1989; Lee and Carder,
2002).



The development of satellite-derived Chl has led to global estimates of primary
production ranging from 36.5 to 48.5 Gt C yr™1, depending on different assumptions
and models (Palmer and Totterdell, 2001). Figure 2-1 shows a climatological mean
Chl from SeaWiFS (1997-2008). Besides primary productivity (Behrenfeld and
Falkowski, 1997a), ocean color has been used to estimate other properties including
the global euphotic depth, the diffuse attenuation coefficient for downwelling irra-
diance (Loisel and Stramski, 2000), and the abundance and character of non-algal

matter in the oceans (Garver and Siegel, 1997).

2.2 The foundation of ocean color algorithms

It is instructive to explain the fundamentals of radiative transfer theory in order
to discuss ocean color algorithms in detail. Along with the references specifically

cited, the explanation is adapted from Kirk (1994b).

Radiation from the sun cohsists of electromagnetic (EM) packets of radiant en-
ergy, called photons or quanta. These photons exhibit the properties of waves, and
so they vary by wavelength (A), which describes the distance pér cycle. The amount
of energy within each packet varies inversely with the ﬁvévelength. In the EM spec-
trum, wavelengths range from 1073 to 10'2 nm per cycle, and from high to low
energy yield per photon, respectively. Photons traveling between 400 and 700 nm
pef cycle are visible as colors following the order of a rainbo‘v‘vi frbm fz-ioletrto red,/
respectively. | | ) o

Photons reaching the Earth’s atmosphere and ocean surface interact with cdﬁ-
stituents in the respective media. These constituents either absorb or scatter the
radiant energy. In absorption, the light energy changes to another form of energy
such as heat 6r chemical energy. In scattering, the photons change in direction. Dif-
ferent wavelengths of light, and hence diﬂ:'erenf colors, -absorb at different intensities
and scatter at different intensities into different directions. The unique composition
and abundance of the medium’s constituents govern these properties. Consequently,
the light field in the particular medium indirectly reveals the absorption and scat-

tering processes, and thereafter, the potential characterization of the constituents.



2.2.1 Terms to describe light in a medium

Models for quantifying the extant light and the absorption and scattering behav-
iors of the various types of matter in the atmosphere and sea have been developed
to investigate this phenomenon matherﬁatically. Apparent optical properties (AOP)
describe the extant light, while inherent optical properties (IOP) describe the ab-
sorption and scattering behaviors (Preisendorfer, 1960). Note that all the following
concepts are spectrally dependent, meaning they vary by wavelength, and so they

are measured as spectra.

AOPs

The AOPS are derived from measured quantities for the radiant flux, which is the
flux of photons. The radiant intensity is the radiant flux in a specified direction. The
specified point is described as (z,8,0). The terms z, 6, and ¢, describe the direction
of the path with respect to the Earth’s surface. The depth z defines the closest
distance to the surface. The zenith angle € defines the direction from the vertical
a;cis at depth z, and the azimuth angle ¢ defines the direction from a specified

horizontal axis. See Figure 2-2.

Consider the radiant intensity towards a certain point (z,0,¢). In constraining
the space around the direction of flow with a solid angle (w) at that point, the radiant
flux within the space is defined as the radiance (L). See Figure 2-3. This value is ,

1 1 1

measured as W steradian™! nm™! or quanta s™! steradian™! nm™!. In considering .

the solid angle that covers an entire hemisphere (27 steradian), the radiance then
essentialiy describes the radiant intensity traveling through the horizontal plane at

point (z,0,¢), and is referred to as irradiance, E. This value is measured as W m™2

1 1 -2 -1

nm’ - or quantas - m “ nm

Irradiance is often considered for the radiart intensity in the downwelling or
upwelling directions, (denoted as E; and E,;, respectively). Taking the ratio of E,,
to E; gives the reflectance (R), an AOP that describes the flux of light reflecting

upward relative to the flux of light scattered downward from a point.



Another AOP is K, the diffuse attenuation coefficient for downwelling irradi-
ance. It describes the strength in light attenuation, which varies with the turbidity
of the medium. The following equation explains its derivation from radiometric

quantities.

1n240)

“Ea(z) _ Ky ' (2.1)
21

where E4(0) is E4 at the surface and E4(z;) is E4 at depth z;.

IOPs

The IOPs are measured within a collimated beam of light with a quantifiable
pathlength. The absorbance and scatterance indicate the intensity at which light is
_absorbed and scattered, respectively, relative to the radiant flux within the beam.
Attenuance indicates the relative intensity at which the light is absorbed or scattered
away from the beam. To relate these properties to the scale of L and E at a
point in space, oceanographers consider the absorption (a), scattering (b), and beam
attenuation (c) coefficients, which are fhé derivatives of absorbance, scatterance, aqd
attenuance, respeétively, with respect to the pathlength. Thé beam attenuation

coefficient (c), is equivalent to the sum of the absorption (@) and scattering (b)

coefficients. .

In particular, the scattering in the béckwards direction, by, is pertinent to ocean
remote sensing. The ba,(':kscatt‘eri'ng coefficient b, is rigorously defined in' terms
of the volume scattering function (VSF), 5(6,A), where 9 is the scattering angle,
ahd A is the wavelength (Mobley, >1994). For a collimated beam of light traveling
through a thin layer of a medium, #(6,A) describes the scattered radiant intensity
into fhe scattering angle f per unit irradiance of the incident light within the layer
per unit volume of the medium (Kirk, 1994b; Mobley, 1994; Stramski et al., 2004).
The backscattering coefficient b, is equivalent to the integration of 3(6,A) over the

backward directions, 7/2 < 8 < 7:



by(A) = 2 /: B(6,A)sin 6 do (2.2)

The terms 27 and sin@ represent the integration over the azimuth angle, which is

assumed to be symmetric about the incident direction of the collimated beam.

2.2.2° Application of the terms

These concepts then allow for the consolidation of the interactions between pho-
tons and- the constituents of a medium within a linear narrow path of length r, as

expressed in the equation of radiative transfer:

dL(z, 6, ) /dr = —c(2)L(z,8, ) + L* (2,6, ) (23

Here, the change in L with respect to the inﬁnitesimal path of iength dr, is defined
as a linear combination of the reduction of light as it is scattered away from the
path or absorbed, represented by ¢, and the addition of light as it is scattered into
the path from all directions, denoted as L*(z,0,¢). The expression is also illustrated

in Figure 2-4.

A third term representing chlorophyll fluorescence at approximately 685 nm and
>Raman‘scattervingi by seawater molecules canvvbé added to the right-hand side for
accuracy (Gordoﬁ, 1989; Stramski et val.,b 2004_). Fludresbénce refers to ’the process
in which the chlorof)hyll—a pigmeﬁts re-emit incoming photon‘s at a wavelengfh near
685 nm. Ramaﬁ scattering refers to scattering that chémges the direction of a photoﬁ
as well as ifs wavelength. Both fluorescence and Raman scattering are called inelastic
scattering because théy involve both a change in energy (equivaient to wavelength)

and direction.

2.2.3 Application to remote sensing

Bio-optical oceanographers rely on Earth-observing satellites containing sensors

that routinely measure radiance emanating from the atmosphere and the ocean.



The goal is to extract the water-leaving radiance (L), which is equivalent to L, at
z=0 just above the surface. Complicated evaluation processes are required to detect
and remove other portions of the signal, including the radiance scattered from the
atmosphere (a portion that often exceeds 90% of the signal) and the boundary sur-

face between the ocean and the atmosphere. The water-leaving radiance, L,,, varies |
with viewing and solar zenith angle, and with atmospheric conditions. To correct
or remove such variation, it is transformed to the normalized water-leaving radiance
nL,,. For nL,, the sun is considered directly overhead, and the atmosphere is con-
sidered hon—existent. Originally, the normalization was performed using the work of
Gordon and Clark (1981). This publication first introduced the term normalized-

water-leaving radiance, defined as the following:

Ly
Eq(04)

nLy, = Fo . (2.4)

where Fy is the solar incident irradiance at the top of the atmosphere (or the mean
* extraterrestrial solar irradiance), and E4(04) refers to E; at z=0 just above the
surface, commonly denoted as Es,. Today, this normalization is based on the work

of Morel and Gentili (1991, 1993, 1996) and Morel et al. (2002).

Various above- and in-water techniques are used to measure corresponding values
~of L,, at sea. Note that optical measurements often have subscripts u or d to
represent thé upward and downward direction, respectively. For above-water L,,, the
' measuv‘rement is made a small distance above the surfééé and includes the diffuse sky -
light reflected off the surface,: which m‘ust' b»e sﬁbtracted to derive L. For in-water
L., measurements at several depths are -collected and extrapolated to just below
the surface; the extfapolatéd value is denoted as L, (0-)(Werdell and Bailey, 2005).
Then to obtain Ly, ‘L;(O_) is multiplied by t, and 772, where t, is the upward
Fresnel transmittance of the air-sea interface (~0.975), 7 is the refractive index of

seawater (Austin, 1974).

Methods for measuring E4 are similar to those for measuring L,. For in-water
E4, E4(0-) is multiplied by t;l to obtain E;, where tg is the downward Fresnel

irradiance transmittance across the air-sea interface(~ 0.96) (Mueller et al., 2003b).



L, is normalized by a corresponding in situ measurement of downwelling irradi-
ance, Eg4, a calculation that implicitly accounts for the influences of the solar zenith
angle. The end product is known as the remote sensing reflectance, R,s, and is
quantified in sr™!. The ratio of nL,, at two wavelengths is approximately equal to
the ratio of in situ R,s at the same wavelengths. Slight differences are due to the
waveléngth dependence of Fy. Subsurface values for R,; are denoted as r,s, and
the translation from below- to above-water is approximately non-spectral (Austin,

1974).

2.3 R,; as a function of IOPs

In relating the remote sensing reflectance, an apparent optical property, to the
IOPs, the following relationship is commonly used (Gordon et al., 1975; Gordon and
Morel, 1983; Morel and Prieur, 1977). |

bp(A)

rrs(A) ~ a0 + b0V (2.5)

This can be viewed as an expression of the probability that a photon entering the
_ ocean is backscattered to the surface, since the fate of any such photon‘ is either to be
absorbed within vt_he_medi'um, or bac_kscatte’réd to the sur'f_ace. Equation 2.5 states
“that thé subsurface remote sensingfr’éﬂec”taﬁcé&sVproportionalv to this “probability.”
Assuming thét sea-air transmittanée is non—spéctral_, the same statement cén be
made about above-water reflectance, R;s, and is often the Basis for semi-analytic

algorithms.

A proportionality factor, g, is used to relate the left- and right-hénd sides. The
term g depends on the radiance distribufion over all directions and the VSF in
the backward direction (Gordon et al., 1988). Zaneveld (1995) presents a thorough
explanation of the theory behind the dependence, work that is based on the measure-
ments and models of Gordon et al. (1988), Morel (1988), and Gordon (1989). Most
models assume that the in-water materials absorb much more than they backscatter

(by < a), and such models perform well mainly in oligotrophic regions in which
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phytoplankton biomass co-vary with the non-algal matter (Morel and Prieur, 1977).
Morel and Prieur (1977) label this type of water as Case 1, while Case 2 refers to
water that contains non-algal materials that do not covary with the algal matter.

This type is usually found in coastal waters.

2.3.1 Partitioning the I0Ps

The terms a(A) and by(A) of Eqn. 2.5 can be partitioned into absorption by
seawater, phytoplahkton, non-algal particles, and colored dissolved organic matter,
and backscattering by seawater and particles. Each component is further defined by
a magnitude and spectral shape (Hoepfiner and Sathyendranath, 1993; Roesler and
Perry, 1995; Roesler et al., 1989). The magnitude varies with the concentration,
and the spectral shape describes how the material absorbs or scatters for all the
visible wavelengths, based on its composition. For instance, the spe(;tral shape of
backscattering depends on the size distribution, the refractive index, the structure
and the mean shape of the particles in a water sample (Loisel et al., 2007). See

Figure 2-5 for the examples of the IOP spectra.

Absorption

‘C010red dissblved organic matfer and hph-algal p’artiéles. The category -
ho‘n-alg’al particles (NAP) is cqinposed of bacteria, viruses, biological degradation

' pfoducts-(including phytoplankton shells), inorganic particles (e.g., clay minerals,

feldspars, quartz, calcite), and mixed organic-inorganic structures (Stramski et al., -
2004). Colored dissolved organic matter (CDOM) is formed from the degradation
of living organisms from both terrestrial and aquatic origins. The biological decay
processes primarily include direct excretion from phytoplankton, zooplankton, and
bacteria, release during zooplankton grazing due to sloppy feeding, and viral lysis
(Nelson and Siegel, 2002), and less likely by percolation from zooplankton fecal
pellets (Steinberg et al., 2004).

NAP and CDOM both absorb predominantly in the blue with an exponential

decrease towards the red. The similar absorption behaviors of these two components
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makes the separation of their absorption terms difficult when aftempting to invert
Eqn. 2.5, translating Rrs to the IOPs. While several different formulations have
been developed (Twardowski et al., 2004), the absorption term has been commonly
described as the following (Jerlov, 1976; Prieur and Sathyendranath, 1981; Bricaud
et al., 1981; Mobley, 1994):

acomp(/\) = acorr;p(/\O) eXp(“‘S(/\ - /\0)) (2'6)

~ The subscript comp reflects that the equation applies for CDOM, NAP, or both
" combined (denoted as CDM). The term acomp(Ag) describes the Iﬁé,gnitude of ab-
. sorption at a reference wavelength )\g, and the exponential term S describes the
spectrai shape, which for CDOM, varies with the chemical composition (Kitidis
et al., 2006; Stedmon and Markager, 2001). CDOM from open-ocean waters reflects
a biologicél signature acquired over a long period of time (Bricaud et al., 1981).

CDOM from coastal areas may better reflect a strong terrestrial input (Bricaud

et al., 1981; Nelson and Siegel, 2002).

CDOM has been shown to serve several important roles in biogeochemical pro-
cesses. It has influence on the steady-state concentrations of free radical species,
and so it affects the photo-reactivity of surface waters (Dister and Zafiriou, 1993;
Mopper and Zhou, 1990). It is subjected to photo-oxidation, a process that yields
CO2 and CO from the breakdown of dissolved organic carbon (Miller and Zepp,
‘ 1995;- Riemer et al., 2000; Valentine aﬂd Zepp, 1993;‘ Clark et al., 2002). CDVOM ,
chelates phytoplahkton nutrients, such as amnioﬁium and nitrite, and it is impor-
‘tant_.in the photoch‘emi:ca,l cycling of Fe (Bushaw et al., 199‘6; Bushaw-Newton and
Mofan,:'1999; Gao and Zépp, 1998; Kieber et al., 1989, 1999; Mofan and Zepp, 1997). "
CDOM protects phytoplankton from damaging UV radiation at the surface (Arrigo
and Brown, 1996), but reduces the light exposure to phytoplankton in deeper waters
(Stedmon and Markager, 2001).

Phytoplankton. Phytoplankton contain photosynthetic and non-photosynthetic
pigments that inherently absorb light at specific and distinct wavelength regions.

The chlorophyll-a pigment resides in all phytoplankton, and so historically, it has
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been used to indicate the phytoplankton biomass. The pigment absorbs efficiently
in the blue and red regions of visible light (maxima at approximately 443 and 664
nm). Unlike the shape of CDM, the phytoplankton spectral shape cannot be uni-
versally defined by a simple parameter because pigment composition varies among
phytoplankton species and with respect to nutrient and light avai‘lability. Variations

among species are referred to as photoadaptation, in which the evolution of pheno-

types have led to unique pigment-protein complexes for different species (Falkowski

and Raven, 2007). Variations with respect to nutrient and light availability are
referrevd to as photoacclimation (Falkowski and Raven, 2007). For instance, phy-
toplankton cells will utilize their accessory pigments to block their chlorophyll pig-
ments from excess light in high irradiance conditions, and produce more chlorophyll
pigments to increase their chances of absorbing light in low irradiance conditions

(Falkowski and Raven, 2007).

The most common model to portray phytoplankton absorption is shown in the

following equation (Mobley, 1994):

ag(A) = Chlag(A) (2.7)

Here, Chl represents the magnitude, and a:;)(/\), the chlorophyll-a-specific absorption
coefficient, describes the spectral shape. Bricaud et al. (1995) defines ag(A) as the

. following, with the unit as m? (mg Chl)™!.

a3(\) = AChI™B R (2.8)
A and B are spectrally-varying terms determined through a least-squares fit of ﬁiea—
sured Chl-normalized absorptvion and éhlorophyll concentration. See Table 3 in
Bricaud et al. (1995) for details. As a power-law function of Chl, this approach
to modeling the spectral shape incorporates primarily the phenomenon of pigment
packaging (Bricaud et al., 1995, 2004). Pigment packaging refers to the shading
of pigments from light when confined in discrete cells as opposed to dispersed uni-

formly like in an in vitro solution (Morel and Bricaud, 1981). The shadirig causes

absorption per chlorophyll pigment to diminish with increasing cell size, since a
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sample with small cells better simulates a solution with uniform dispersion than a

sample with large cells (Morel and Bricaud, 1981).

- Seawater. Seawater, comprised of water molecules and ions, absorbs heavily in
the red regioh and weakly in the blue region, due to different temperature-dependent
intramolecular and intermolecular forces (Morel, 1974). Smith and Baker (1981) at-
tempted to derive a maximum seawater absorption by subtracting, by,,, measured
backscattering due to seawater, from measured K,,, the diffuse attenuation coeffi-
cient for the clearest natural freshwaters. Sogandares and Fry (1997) and Pdpe and
Fry (1997) updatéd that work using two independent techniques: the photothermal
method (Sogandares and ny, 1997), in which the energy removed from the incident
light field is converted to thermal energy and thén measured, and the integrating
cavity method (Pope and Fry, 1997), in which all energy removed from the incident
light field is directly measured using optical fibers. Figure 2-5 displays the results

from Pope and Fry (1997).

Backscattering

Particles. Similar to CDM absorption, particle backscatter occurs strongest at
400 nm and decreases towards higher wavelengths. Morel (1974) modeled the rela-

tionship as the followingz. :

b)) = b Qo)A )T 29

- The éxpdnent, h, describes the éﬁectral shape for the b’aékscattering of particles
and ‘b'bp(/\o) describés the magnitude at a reference wavelengfh Ag. The spectral
shape flattens out for larger particles as n approaches 0, and approximates molecular
scattering for smaller particles as 7 increases (n = 4.322 for seawater). 7 also varies
with particle size distribution, which is characterized by an inverse relationship

between particle size and the concentration of the given size (Stramski et al., 2004).

Morel and Ahn (1991) and Stramski and Kiefer (1991) initially suggested that

under non-bloom conditions, the particulate backscattering is predominantly at-
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tributed to detrital matter and not phytoplankton. However, their models uti-
li;ed homogenous spheres, while more recent models incorporating layered spheres,
proved that phytoplankton have the capability to backscatter as strongly as detrital
matter in clear waters (Kitchen and Zaneveld, 1992; Zaneveld and Kitchen, 1995)
and this statement has been validated with empirical evidence (Vaillancourt et al.,
2004)! Stramski et al. (2004) provides an extensive review of the various contri-
butions (colloids, bacteria, phytoplankton, biogenic detritus, minerogenic particles,

and bubbles) to particulate scattering in the ocean.

Seawater: Morel (1974) has examined previous studies and established the total
scattering coefficient for pure sea-water with salinity between 35 %o and 39 %.
The backscattering coefficient for seawater is defined as half the total scattering
coefficient, and this value has been considered as known (Stramski et al., 2004;
Twardowski et al., 2005). However, the uncertainty in écattering by seawater may
be greater than 10% with a strong dependence on salinity (Twardowski et al., 2007).
The current widely-used spectra is displayed in Figure 2-5. The spectral value can

also be expressed using Eqn. 2.9 with 7 as 4.322 (Morel, 1974).

2.3.2 The transformation of seawater R,, with increasing organic

matter

The following explanation was introduced by Morel and Prieur (1?;77). See
" Figure 2-6 for the graphical description. According to the known behaVior of IOPs,
ciear waters .with‘ low conecentrations of organic matter such as phytoplankton cells
would yield an rpg spectrﬁm generally dominated in the lowef blue ‘wavelengths,
since séawater absorbs strongly in the red region and backscatters strongly in the

blue region.

With the assumption that b, < a, changes in a will affect the r,.; spectrum more
strongly than changes in b,. Consequently, at first approximation, the addition bf
organic matter to the water will change fhe rrs spectra according to the absorption
behaviors of that organic matter, whether it is phytoplankton or colored detrital

matter. Phytoplankton pigments absorb predominantly in the blue and red, and
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colored non-algal matter absorbs strongly in the blue region. Both types of matter
cause the dominant reflectance to shift towards greener wavelengths. As a result,
oligotrophic clear blue waters in the open ocean differ from the eutrophic green

waters of the coastal regions, which have larger concentrations of organic matter.

2.4 Types of algorithms

Morel and Gordon (1980) claim that ocean color algorithms can exist in three
forms: empirical, semi-empirical (also known as semi-analytic), and analytic, but
Sathyendranath et al. (1989) explain that the non-linearity within the system and
similarities between optical signatures reduce the feasibility of the analytic type.
Thérefore, most algorithms are either empirical or semi-analytic (IOCCG, 2006).
However, analytical simulations of the light pfopagation iﬁ the water have been
established that rely on the radiative transfer equation to associate the 10Ps to
the diffuse attenuation coefficient for downwelling irradiance, Kd, and irradiance
reflectance, R (Loisel and Stramski, 2000). These two AOPs can be calculated from
in sity measurements of E; and E,, and estimated from remote sensing (Loisel and
Stramski, 2000). Additionally, developments have been made to solve the radiative
 transfer of sunlight in ocean-atmospheric systems using successive-orders of scatter-
ing that may be implementéd in ocean color algorithms in the future (Zhai et al.,

2009).

2.4.1 Empirical algorithms

- Empiﬁcal algorithms inclu_de the OC4§/‘;4 for the Se_a,WiFS sensor (O’Réilly et a,l.,.
2002), the OC3M for the MODIS Aqua (O’Reilly et al., 2002), and the MERIS neural
network algorithm (Doerffer and Schiller, 2000; Schiller and Doerfler, 2005; Doérffer
and Schiller, 2007). The OC4v.4 and the OC3M are ratio algorithms that relate
the Rys to Chl, and they were formed from empirical analyses of corresponding
measurements of Chl, L,,, and E; at various locations (O’Reilly et al., 2002). These
algérithms require the ratio of R,s at two wavelengths in order to minimize the

‘sensitivity to absolute measurment errors (e.g., atmospheric correction).
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The ratio of nlL,, at two wavelengths is proportional to the ratio of R,;, cal-
culated as L., /E,, measured in situ at the same wavelengths. In the OC4v.4 and
OC3M algorithms, Chl is approximated through a fourth-order polynomial func-
tion of the R,; ratio. The following equations refer to the OC4v.4 algorithm for the
SeaWiFS sensor (O’Reilly et al., 2002; Carder et al., 1999):

logg(Chla) = 0.366MBR — 3.067TMBR + 1.930M BR?

+0.649M BR® — 1.532M BR* (2.10)

where MBR . is the Maximum Band Ratio defined by the following.

MBR = log 10(maz [R,s443, R,5490, Rys510] / Rys555) (2.11)

The maximum of R,; at 443, 490, and 510 serves to detect a valid signal in the
blue region as the signal at 443 nm may be too weak in green waters. This value is
divided by the R,s at 555 nm, a green wavelength, which tends to be insensitive to
the chlorophyll level. Then the base-10 logarithm of the value is input to the fourth-
order polynomial, Eqn 2.10. The OC3M algorithm used for MODIS,; is similar, only -
it selects the maximum of R,s from two blue wavelengths ‘(443 and 490 nm), since

MODIS lacks a band at 510 nm (Lee and Carder, 2002).

- For the neural network glgorithm, an exfensivé dataset of IOPs and AOPs is
used to train z_a,ﬁd validate a neﬁral network to pfoduce 10P estimates from measured
AOPs (Doerffer and Schiller, 2000; Schiller and Doerffer, 2005; Doerffer and Schiller,

'2’007); Although’ fhey are cun;ently implemented for MERIS, the European ocean

color satellite, neural network algorithms will not be discussed in this work.

2.4.2 Semi-analytic algorithms

Semi-analytic algorithms employ some inversion from AOPs to IOPs through
Eqn. 2.5, and the empirical relationships for the decomposition of a and b,. They

include the GSM Semi-Analytical Bio-Optical Model (GSM) (Garver and Siegel,

17



1997; Maritorena et al., 2002), the Quasi-Analytical Algorithm (QAA) (Lee et al.,
2002), and the linear matrix inversion algorithm (Hoge and Lyon, 1996). For the
development of the GSM and the linear matrix inversion, in situ values of r,., at
several satellite wavelength bands and the empirical approximations for the spectral
shapes S, 1, and a(’; are used to approximate the magnitudes ag, Gcgm, and byy. The
IOPs for water are considered known. Eqn. 2.5 at several satellite wavelenéth bands
forms a system of over-determined equations, and several optimization schemes can
be attempted to estimate the IOP magnitudes. Chl can then be extracted from the
estimated magnitude for phytoplankton absorption at 443 nm. The GSM algorithm
uses the Levenberg-Marquardt optimization (Garver and Siegel, 1997; Maritorena
et al., 2002), and a simulated annealing technique to tune the process (Maritorena
et al., 2002). The algorithm by Hoge and Lyon (1996) uses the matrix inversion
optimization. To apply these algorithms, nlL,, measurements ‘from satellites are

normalized by Fy to retrieve Ry, and this is translated to the sub-surface r,.

The Quasi-Analytic Algorithm, QAA (Lee et al., 2002), employs a manipulation
-of th. 2.5 and empirical approximations for total absorption at 555 nm and the
spectral shape> 71 in order to obtain values for total absorption and particle backscat-
tering at all wavelengths. Then empirical approximations for a3410/as440 and the

spectral shape, S, are used to deconvolve the total absorption into its different parts.

2.4.3 Analytical methods for the IOP-Irradiance relationship

" The analytical methodé involve the numerical sirﬁulation of the radiative transfer

‘ eqﬁatioﬁ through various techniqués including the invariant embedding metho.d,v.t‘he
Ménte Carlo method, thé discrete ordinafe-method, and the matrix-operator ﬁlethod
(Zhai et al.v, 2009; Albert and Mobley, 2003;.Boynton and Gordon, 2002; Chami and
Robilliard, 2002; Loisel and Strémski, 2000; Gordon et al.; 1975; Gordoh, 199'1; Kirk,
1981, 1994a). This approéch requires an estimate of the VSF (Stramski et al., 2004),
can account for a non-homogenous depth profile (Loisel and Stramski, 2000), and

does not include the decomposition of a (Loisel and Stramski, 2000).
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2.5 Assumptions in the implementation of éhlorophyll

algorithms

Upon using remotely sensed Chl estimates in biogeochemical and primary pro-
ductivity models, as attempted by many (Eppley et al., 1985; Sathyendranath et al.,
1995; Longhurst et al., 1995; Antoine et al., 1996; Behrenfeld and Falkowski, 1997b),

several considerations have been made.

First, I discuss the concerns for estimating the greatest depth above which phy-
toplankton have access to light, known as tile euphotic depth (z¢,). Due to regional
variability in seawater turbidity, this depth is defined in terms bf the strength in
light attenuation. Specifically, z., is equivalent to 4.6 optical depths, where the op-
tical depth is defined as the ratio of 1 over K. At z.,, the light level has attenuated

to exp(-4.6) = 0.01 (or 1%) of the level at the surface.

Although z., is exactly defined, approximately 90% of a satellite sensor’s nL,,
signal is detected from the first optical depth (zgp), known as the “e-folding” depth
(Gordon and Mccluney, 1975). Here, the light level has attenuated to exp(-1)=36.8%
of the level at the surface (Gordon and Mccluney, 1975). Ocean color chlorophyll
algorithms are tuned to zgg, but primary prodﬁctivity models require Chl estimates
covering the entire euphotic layer (down to z.,). Consequently, empirical meth-
ods were devéloped to estimate the average Chl for the entiré eﬁphotic layer from
" the satéllite-dérived reflectance meaéuréments that -ovriginated mainly from the first

optiéal dépth (Morel, 1988; Morel and Berthon, 1989).

' ‘As part of this extrapolation, an assumption was-made to describe t‘he chloro-
~ phyll prbﬁle. Often in open—oceaﬁ Awaters, there exists a deep chlorophyll maxi'rnurn,v
| the depth at which Chl lb the greatest, that falls below the ﬁr§t optical depth. Such

issues have been problematic for obtaining accurate estimates of primary production

(Stramska and Stramski, 2005).

Second, the estimated chlorophyll biomass represents a net result of production

and the loss terms: grazing and respiration. The loss terms have been difficult to

account for empirically. Sverdrup’s 1953 critical depth hypothesis (Sverdrup, 1953)
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employs a constant rate of respiration, and some production models follow suit
(Behrenfeld and Falkowski, 1997a), while more complex ones rely on oxygen con-
sumption experiments using dark and light bottles (Williams, 1998). Additionally,
a change in standing stock can be viewed as either an actual change in net pro-
duction or a possible vertical or horizontal redistribution of chlorophyll (Menesguen

and Gohin, 2006).
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Table 2.1: Wavelength range for MODIS, SeaWiFS, and CZCS (nm) adapted from
Martin (2004)

MODIS | SeaWiFS | CZCS

405-420 | 402-422 -
438-448 | 433-453 | 433-453 |
483-493 | 480-500 -

- 500-520 | 510-530

526-536 - -

546-556 | 545-565 | 540-560

662-672 | 660-680 | 660-680

673-683 - =

743-T53 | ' 745-785 | - -

862-877 | 845-885 | T00-800
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Figure 2-1: Tools and products of oceah remote sensing. po: The SeaWiFS
satellite sensor, Bottom: The SeaWiFS Global 9-km climatological mean estimate
of Chi: September 1997-January 2009 (Both courtesy of NASA’s Ocean Biology

Processing Group).
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Figure 2-2: The angles used to describe the geometrical structure of radi-
ance. The zenith angle, 8, describes the angle of a radiance path from the vector
normal to the horizontal surface, and the azimuth angle, ¢, describes the angle of the
radiance path from a specified vector normal to the vertical plane. This schematic

was adapted from Chapter 1 of Kirk (1994b).

tdg L@d) = dob
7 dScos 8 dw

Figure 2-3: The geometry for radiance at a point on a horizohtal surface.
The radiance, L(6,¢), is constrained within the solid angle, dw. dS cos@ is the area
within the solid angle normal to the radiance path’s direction. dS is the projection
of this area onto the horizontal surface. This schematic was adapted from Chapter

1 of Kirk (1994b).
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—» Light scattered into path
-~ % Light scattered from path
Light absorbed inside path

Figure 2-4: A schematic of the radiative transfer of light through a narrow
beam. The change in radiance along the path is dependent on the scattering and
Vabsorp‘}cion processes occurring within the path. This schematic was adapted from

Chapter 1 of Kirk (1994b).
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Figure 2-5: An example of absorption and backscattering spectra; Top:

Absorption spectra for the total sample, non-algal particles, CDOM, phytoplankton,

and water. Bottom: Backscattering spectra for the total sample, particles and water.

The water spectra are constant, the rest change with alterations in composition and

distribution.
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Figure 2-6: The effect of chlorophyll on water-leaving radiance. The radiance
at 443 nm decreases and the radiance at 550 nm increases (but not as strongly) with
increasing chlorophyll concentration. In this transition, the water’s color changes

from blue to green.
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CHAPTER 3

OCEANIC BIASES IN THE EMPIRICAL
CHLOROPHYLL ALGORITHMS

3.1 NOMAD v.1 data

Oceanic biases were found in the empirical chlorophyll algorithms through an
analysis of NOMAD»V!I, NASA’s globalvdataéet of bio-optical in situ measurements
(Werdell and Bailey, 2005). NOMADv.1 contains simultaneous stations of in situ
Chl, and in situ L., and E; at 20 wavelengths used for satellite sensors, made
by numerous research institutions and consolidated into NASA’s SeaBASS archive
(SeaWiF§S Bio-optical Archive and Storage System). Stations were taken at various
locations between 1993 and. 2003. See Figure 3-1 for the location of the stations at
- which measurements were collected. The Chl in NOMADv.1 rénges from 0.012 to

72.12 mg m™3, and the geometric mean for Chl is 1.18 mg m™3.

311 Trophic cbatégories

In an attempt to organ'iie the global data, the wavelength used to calculate the
Maximum Band Ratio (MBR): oligotrophic for thé 443 nm, mésotrOphic for 490
nrh, and’ eutrophic for 510 nm, was used to define three “trophic” categories. See .
Figure 3-3. Simultaneously, these categories also reflect different ranges in Chl. The
oligotrophic category generally represents Chl between 0.01 and 0.31 mg m™3, the
mesotrophic category, betwéen 0.31 and 3.1 mg m™3, and the eutrophic category,
above 3.1 mg m™3. NOMAD was sorted by trophic and ocean category for analysis;

the number of stations in each subset is shown in Table 3.1.
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3.1.2 Consolidation of the dataset

Detailed descriptions of the various methods for producing Chl and R,s mea-
surements are provided in Werdell and Bailey (2005). Below are just some of the

issues considered for compilation.

Fluorometric chlorophyll measurements vs HPLC chlorophyll measure-

ments

The chlorophyll concentrations were predorﬁinantly made either using a High
Pressure Liquid Chromotography (HPLC) instrument or a fluorometer (Werdell and
Bailey, 2005). The HPLC utilizes the differences in polarity of the molecules in the
sample to distinguish chlorophyll pigmenfs, and the fluorometer exposes the sample
to a light at a blue wavelength and measures the intensity of light emitted at 683 nm
as chlorophyll fluorescence. The difference between the two is that the fluorometer
measures fluorescence due to chlorophyll-a pigments along with fluorescence due
to inorganic compounds and degradation products such as chlorophyllyde-a and
pheophytin, while an HPLC yields different concentrations for the intact pigments

"and each of the degradation products, so that the sum of fhese concentrations would
be approximately equivalent to a corresponding fluorometer measurement (Mueller

et al., 20033).

Fluorometer rheasurementé are less accurate and influenced by regional and tem-
-poral biases, but they are cheaper thaﬁ the HPLC method. Reseérch groups are
advised to account for such biases through a scaling factor specific to each cruise.
The factor is détermined by a comparison of fluorometric measurements with cdrre-
sponding HPLC measurements for total Chl made for a subset of the oBServations

on the cruise(Mueller et al., 2003a).

Above- vs. below-water radiometers

Radiometers for producing L,, and E; come in two forms: above- and below-

water. Above-water radiometers are placed on either a research ship or moored
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station. Below-water radiometers descend from the sub-surface interface towards
deeper depths. The upward-facing sensors generally measure E; and the downward-
facing’sensors measure L, (Morrison, personal communication). The E; sensor
is a flat cosine detector whereas the L, sensor contains a rim around the signal-
receiving aperture that designates the solid angle of the measurement (Mueller et al.,
2003b). Measured values are translated to the above-surface measurements E; and

L, according to the exponential attenuation with depth (Mueller et al., 2003b).

Stations with missing components

For NOMAD, several institutions submitted their data to SeaBASS as final
above—watef R,s measurements and some included (Es. ‘Lw was then calculated
as the product of R,s and E;. E; was estimated from a clear sky model if it was
not available (Werdeil and Bailey, 2005). For NOMAD v.1, roughly 40% of the

above-water measurements were in this format.

Measurements from a flow-through system

A small portion of the Chl and radiance values was observed underway via a
flow-through fluorometric system (Werdell and Bailey, 2005). These measurements
were averaged over a 15-minute run. Exceptions to thése measurement constraints

are described in Werdell and Bailey (2005).

3.2 .vAlgorithm uncertainfy defined

The discrepancies between in situ and satellite-based estimates of Chl represent
the algorithm uncertainty. Quantitatively, the term that will be used for analysis is

the relative chlorophyll error (RCE)7 defined as the following. See Figure 3-2.

algorithm Chl

E =
RC m situ Chl

(3.1)

The RCE is essentially the algorithm’s estimate of Chl expressed in relation to
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the corresponding in situ observation from NOMAD based on the maximum R,

band ratio (MBR). Hereafter, I designate RCE > 1, in which the algorithm Chl
product is greater than the in situ measurement, as an overestimation by the algo-
rithm. RCE < 1, in which tile algorithm Chl is less than the in situ measurement,

is denoted as an underestimation by the algorithm.

With the assumption that the distribution of RCE is log-normal in NOMAD
(Campbell, 1995), statistics such as the mean and standard deviation are calculated

on the base-10 logarithm of RCE,‘ hereafter denoted as A.

3.3 Oceanic biases

An investigation of NOMAD v.1 revealed that the algorithms produced Chl
estimates that systematically deviated frdm the corresponding in situ values wHen
the data were sorted by ocean (Figure 3-4). Such systematic algorithm uncertainty
is denoted hereafter as‘ the oceanic biases. See Table 3.2 in which the oceanic biases
are indicated by the mean of the A and the median RCE ratio within each ocean
category and within each ocean-trophic category. The median ratio is equivalent to

the mean of the A and is calculated as the following.

median RCE ratio = 10meen(logerror) o (3.2)

It is easier to interpret than the mean of the A. A median ratio z such that z > 1
indicates an algorithm overestimation by z—1 % 100%. A median ratio z such that
z < 1 indicates an algorithm underestimation by z—1 %100 %.

The root mean squa_fed error (RMSE), provided for the ocean c-ategbfiés, réﬂec‘_t_s

a combination of the mean and standard deviation for A.

For the eutrophic category, the algorithm overestimated Atlantic Ocean stations

by 34% at the median, and underestimated Pacific Ocean stations by 20% at the

median. For the mesotrophic category, the algorithm overestimated Atlantic Ocean

stations by 25 % at the median, and underestimated Pacific Ocean stations by 22

% at the median. For all trophic categories, the algorithm underestimated stations
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from the Southern Ocean by about 50% at the median. Stations from the Indian

Ocean were insufficient for analysis.

3.4 Possible artifacts

Four factors were considered as possible explanations for the apparent oceanic bi-
ases. These include the brand of the radiometer used to measure L,, and E;, whether
the radiometer was the above- or below-water type, whether the Chl measurements
were made either using a fluorometer or an HPLC, and the project investigator
for the observation. Based on an analysis of variance (ANOVA), effects from these

features were found to be insignificant (P< 0.01).

Effects from the combination of methods used for each station was considered
when Sorting NOMAD by project investigator, and the analysis verified the oceanic
biases (Figure 3-5). The data shown highlight the stations from investigators who
contributed data from more than one ocean. The stations are sorted by ocean
and by investigator. In the eutrophic and mesotrophic categories, the algorithm
overestimétes quert Arnone’s Atlantic points but underestimates his Pacific ones,
indicating that the ocean biases exist for the same investigator. Greg Mitchell’s
stations span all three oceans, and the algorithm systematically over- or under-
estimates them according to ocean rather than investigator. In the Southern Ocean,
Ray Smith and Greg Mitchell are the only investigators, and the algorithm under-
estimafés both their data, ihdicating that the ocean bias exists‘ regardless of the

investigator.

3.5 Hypothesés,_ébdut optical‘diﬁ'erencéé -

I speculate that the oceans may in fact be optically different. Based on past
research on regional differences in IOPs, I hypothesize that thé -oceanic biases can
be explained by influences from CDM (CDOM and NAP) and the phytoplankton
community structure. Using NOMAD v.2, which contains coincident absorption

measurements for a subset of stations (Werdell, white paper 2005), I was able to
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evaluate the validity of the oceanic biases and the supposed sources for the algorithm

uncertainty. Results are reported in Chapter 4.

This topic of regional variation in bio-optical properties has been undertaken by
oceanographers in the past using satellite products and models (Siegel et al., 2005a;
Brown et al., 2008), and regional scale in situ stations (Darecki and Stramski, 2004;
D’Ortenzio et al., 2002; Garcia et al., 2005; Gohin et al., 2002; Morel and Maritorena,
2001; Morel et al., 2007; Kahru and Mitchell, 1999; Mitchell and Holmhansen, 1991,
Mitchell and Kiefer, 1988a; Dmitriev et al., 2009; Lutz et al., 2006; Pan et al., 2008;
Ahn et al., 2008; Fenton et al., 1994; Werdell et al., 2009). This thesis reflects the
first atterﬁpt to study the topic using in situ data on a globai comprehensive scale.
Results may allude to regional differences in biogeochemical processes, which shape

the bio-optical properties over long time scales.

Past work based on empirical evidence has mainly associated the regional vari-
ation to differences in the the abundance of CDM (CDOM and NAP) and the
phytoplankton community structure, and this has been indicated in AOP and IOP
measurements. Specifically, the magnitude of pigment-specific particulate absorp-
tion a; in various locales has been found to vary 10-fold as a result of variations in
pigment packaging, species composition, and the abundance of detrital matter rela-
tive to phytoplankton biomass (Mitchell and Holmhansen, 1991; Maske and Haardt,
1987; Mitchell and Kiefer, 1988a,b; Bricaud et al., 1988; Morrow et al., 1989; Bricaud
-and Stramski, 1990). These factors were ‘also suggésted as the cause for lower signals
of the pigment-specific K4(A) in polar regions éompared to those from temperate
regions (Mitchell and Kiefer, 1988b; Dierssen and Smith, 2000; Mitchell, 1992). An-
other'.possible factor is regional variations in the pigment-specific ba_ckscatteriﬁg
coeffiéients',/wllich alludés to taxonomical differences inithe phytoplank‘pon corﬁmu—

nity (Morel, 1987‘; Dierssen and Smith, 2000).
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Table 3.1: Number of stations within each ocean and trophic category for NOMAD

v. 1.

NOMAD version 1

Chl Category | Atlantic | Pacific | Southern | Total
Eutrophic 373 96 64 534
Mesotrophic 221 236 176 665
Oligotrophic 521 265 156 1009
Total 1113 598 396 2208

Table 3.2: Statistics for NOMAD v.1. TOP: The mean, standard deviation,
and RMSE for A, and the median RCE ratio categorized by ocean. BOTTOM: ‘

Mean of A and the median RCE ratio categorized by ocean and maximum R,

band (Eutrophic, Mesotrophic, and Oligotrophic).

Ocean N mean of | median | st. dev. of | RMSE of
A RCE A A
ratio
Atlantic 1113 | 0.06 1.14 0.22 0.23
Pacific 598 -0.07 0.85 0.21 0.22
Indian 101 | -0.08 1083 0.19 0.21
Southern | 396 -0.30 0.50 0.21 0.37
Global 2208 | -0.05 1 0.89 0.25- 0.26
Eutrophic Mesotrophic Oligotrophic
Ocean N | mean | median | N mean | median | N mean | median
ofA |RCE | |ofA | RCE of A | RCE
‘ ratio ‘ ratio ratio
Atlantic 373 | 0.13 1.34 221 | 0.10 1.25 521 | 0.00 1.00
Pacific 96 -0.10 0.80 236 | -0.11 0.78 265 | -0.03 0.93
Indian 2 0.48 | 3.05 32 0.01. 1.03 67 -0.15 0.72
Southern | 64 -0.27 0.53 176 | -0.33 0.46 156 | -0.27 0.54
Global 534 | 0.04 1.10 665 | -0.09 0.80 1009 | -0.06 0.87
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NOMADv.1 with OC4v 4: Log Error of Chl

> NOMADy.1
S ¢ QCiv4 N

Log Error of Chi

Chl

04 053 1 T 281 395 631 10
Maximum Rrs Band Ratio (MBR)

Figure 3-2: NOMAD v.1 with OC4.v4: Log Error of Chl , (A). NOMADv.1
is displayed with the OC4 v.4 algorithm, and the log error of Chl is illustrated.

NOMADv.1 with OC4v 4: Trophic Categories
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Figure 3-3: NOMAD v.1 with OC4v.4: the trophic categories. For the
eutrophic stations, the maximum wavelength used for the MBR calculation is 510
nm. For the mesotrophic stations, it is 490 nm and for the oligotrophic stations, it

is 443 nm.
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Figure 3-4: NOMAD v.1 with OC4v.4: the oceanic biases. The oceanic
biases are illustrated in four pan_els. TOP LEFT: Atlantic. TOP RIGHT: Pacific.

BOTTOM LEFT: Southern. BOTTOM RIGHT: Indian.
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Figure 3-5: The investigator analysis in support of the oceanic biases.
-Invéstigatdrs contributing data from more than one ocean are color coded. Biases

are consistent with data from the same ocean.
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CHAPTER 4

OCEANIC DIFFERENCES EXPLAINED BY
INHERENT OPTICAL PROPERTIES

4.1 NOMAD v.2 data

NOMAD v.2 contains a subset of stations (n=696) for the Atlantic, Pacific, and
Southern oceans with coincident absorption measurements including values for asqt,
G, Gcdom, aNd angp -at the 20 wavelengths used for satellite sensors (white paper,
‘Werdell 2005). These measurements were made using lab spectroscopy as described
in Pegau et al. (2002), and they were integrated over the first-optical depth (white
paper, Werdell 2005). Figures 4-1 - 4-3 show the locations of these stations color-
coded to represent NOMAD v.2 with and without absorption measurements. Table

4.1 displays the number of stations in each ocean-trophic category.

In this subset, only the meso- and oligotrophic cafegories contains a sufficient
number of stations from the Southern Ocean. See Figure 4-4 and Table 4.2. Con-
sequently, such categories, especially the mesotrophic, will be utilized to consider
the effects on the oceanic biases, while all stations will be ﬁtilized to consider algo-
rithm ﬁncertainty in general. Figure 4-5 illustrates the algorithm’s oceanic biéses
within thé mesotrophic category, which contains thé most stations ﬁom the Southerﬁ

~ Ocean.

4.2 Oceanic biases in the total absorption properties

Further validation of the oceanic biases involved the following approximation of

the MBR, which is based on Equation 2.5.
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Rrs(A)  a10t(555)b(0)  asor(555)

MBR =
Rrs(555) Qtot ()‘)bb(555) a'tot()‘)

(4.1)

Here, A represents the xlvavelength used to calculate the MBR: 443, 490, or 510,
and ator 1s used to specify total absorption by all ocean water constituents (also
used hereafter). The approximation reflects a way to represent the MBR in terms of
the IOP variables available in NOMAD v.2. It is important to recognize here that
the IOP measurements, made from laboratory spectroscopy methods, are completely
independent from the radiometric measurements. Since the backscattering measure-
ments in NOMAD v.2 were not sufficient for analyéis, the resulting approximation

~ only involves the total absorption properties.

Upon relating the total absorption ratio to Chl, several options were available
because MBR was calculated différently for every observation, according to the
maximum of R.;443, R,s490, and R,;510. These options were atot555/a;fot443,
2401555/ 2101490, a10t555/a10t510, and a;5:555/a0¢A, for A equal to the wavelength
used to calculate MBR. See Figure 4-6.

Note that relating Chl to a:555/atotA resulted in the worst correlation. In fact,
it appears that the correlation between Chl and a¢ot555/atot510 for the eutrophic
category is similar to that between Chl and at0t555/‘at0t490 for the mesotrophic,
- and béth are better than the correlation between Chl and &;,:555/a4,1443 for the
oligotrophic category. I speculate that this feature is due to strong variability in
absorption by chlorophyll-a pigments at 443 nm, compared to the variability at 490
and 510 nm, | '

Since the mesotrophic category was a focus for the oceanic biases, the selected
approximation was a;,+555/a4,;490, with r? = 85% for the correlation between Chl

and a40¢555/a45¢490.

The fourth-order polynomial fit to the relationship be‘pween Chl and a;,:555 /20490
served in place of the standard algorithm to distinguish between under- and over-
estimations. Similar oceanic biases about the polynomial fit were present (Figure
4-7). Statistics for the polynomial fit (designated as RCE,;,; and Ag,;), confirm

these results (Figure 4-8 and Table 4.3). For the eutrophic category, the polynomial
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fit overestimated Atlantic Ocean stations by 10% at the median, and undereétimated
Pacific Ocean stations by 40% at the median. For the mesotrophic category, the
polynomial fit regression line overestimated Atlantic Ocean stations by 7% at the
median, and underestimated Pacific Ocean stations by 26% at the median. For the
mesotrophic and oligotrophic categories, the polynomial fit underestimated stations

from the Southern Ocean by about 50% at the median.

Accordingly, the replacement of the MBR with the total-absorption approxima-
tion serves as an independent method to validate the existence of the oceanic biases

related to true optical differences among the oceans.

4.3 Structure of analysis

_ In order to evaluate the effects of CDM and phytoplankton community structure
~on algorithm uncertainty, the parameters, a.4m443/Chl, a3443/Chl, and a phyto-.
plankton size model Sy from Ciotti et al. (2002), were determined to represent the
different effects. Qualitative and quantitative analyses involved the relation of RCE
to the parameters separately and combined. The qualitative analyses are visual
(e.g. Figures 4-9) and self-explanatory. Additionally, the relation of RCEg: to the
parameters was qualitatively analyzed. See Sections 4.4.2 and 4.5.3. For the quan-
titative analyses of the separate parameters, NOMAD was sorted by trophic ~and
ocean-trophic c&tegories, and certain statistics were computed (hereafter denoted
as “category statistics”). The distributions for aegm443/Chl and ap443 /C’h'llwere
assumed to be log-normal, and sov the éateéory statistics included the mean and
standard deviation of the Base—lO logarithm of two parameters, and théir median v
ratios. For Sy, the category statistics included the mean and standard devia‘pion.
The ca’t‘egory statistics for the RCE (using the log error‘) werée then analyzed in
relation to the corresponding statistics for the respective parameter, such that RCE

is expressed as a function of each effect parameter (e.g. Figure 4-10).
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4.4 Effects of colored detrital matter (CDM)

The hypothesis that the oceanic biases can be explained by the effects of CDM
is considered here. The presence of CDM was represented by the magnitude of
the CDM absorption signal at 443 nm, assuming that the effects of backscattering
due to CDM are negligible as commonly done for Case-1 waters (Morel and Prieur,
1977). The wavelength 443 nm is that at which a.4, exhibits a substantial signal
(since g is maximum at 400 nm in the visible spectrum and diminishes from there
towards longer wavelengths), and that at which chlorophyll pigments predominantly

absorb light.

An evaluation of the impact from CDM on algorithm uncertainty essentially
involves the comparison between measurements of aédm443 and their corresponding
algorithm-estimated Chl for each station. In order to indicate algorithrﬁ uncertainty,
it is desired to utilize the RCE parameter. Consequently, the analysis involves a
comparison between a.4,443/Chi and RCE. Here, both a.4,443 and the algorithm

Chl are normalized by the corresponding in situ Chl.

4.4.1 Effect of CDM with respect to chlorophyll concentration

' Figure 4-9 displays the qualitative analysis performed to investigate the effect of
CDM on algorithm uncertainty ﬁhrough the parameter Qcdmd43/ Chl. Table 4.4 and

Figur‘e 4-10 provide‘ the q’uanti_taﬁve results.

Algorithm uncertainty in general

With respeét to Chl, the effect of CDM on algorithm uncertainty is clear for
the eutrophic and mesotrophic stations and less so for the oligotrophic stations,
as shown in the Global paﬁel of the Figure 4-9. As ac4m443/Chl increases, the

. algorithm uncertainty changes from under- to overestimation.

The category statistics are presented in Table 4.4. Relating the category means
for acqgm443/Chl to those for RCE in Figure 4-10 provides a confirmation of the

qualitative analysis in the form of positive correlations for all three trophic cate-
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gories. Furthermore, the rate of increase in ac4m443 /Chl with RCE is relatively the

same for all three oceans of the oligo- and mesotrophic stations.

Oceanic biases

Systematic differences in a.4,,443/Chl are evident in the ocean-specific panels
of Figure 4-9, and these are further validated in the statistics. The association of ‘
Gedm443/ Chl to the oceanic biases, best represented through the mesotrophic At-
lantic and Southern Ocean stations, is present in Figure 4-10. The Southern Ocean
.mesotrophic stations, which are, on average, most underestimated by the algorithm,
have a median a.4,443/Chl value of 0.027, while the Atlantic Ocean mesotrophic
stations, which are, on average, most overestimated by the algorithm, have a me-
dian a.gm443/Chl value of 0.108, which is significantly higher than its Southern
Ocean counterpart. In the eutrophic cé,tegory, the slightly underestimated Pacific
Oceah stations have a median aegm,443 / Chl value of 0.028, which is significantly less
that .the median acg,443/Chl value of 0.079 for the overestimated Atlantic Ocean
statidns. For fhe oligotrophic category, the Southern Ocean stations, which are un-
derestimated by the algorithm, have a median acgm443/ Chl value of 0.057. This
value is compared to the median a.4,443/ Chl value of 0.135 for the overestimated

‘Atlantic Ocean stations.

- 4.4.2  Influence of the backsca‘tteringlspectral shape

The analysis of the effect of CDM on RCE;,: Was‘perfbrmed by approximating
the MBR with a;,:555/ az0t490. See Figure 4—11; which shows the compariéon of the
analyses of CDM ﬁsing MBR (left) and a;0:555/ az0¢490 (right). For the oligotrophic
category;_ systematic variation in acdm443/ Chl with respect to RCEgqs (right) is
noticeably stronger than that in a.4,,443/Chl with respect to RCE (left). Because
the a40¢555/ a;:490 approximation essentially removes the influence of the backscat-
tering spectral shape from MBR, this analysis suggests thét the effect of CDM on
algorithm uncertainty is confounded by the influence of the backscattering spectral

shape in the oligotrophic category.
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4.4.3 Effect of CDM with respect to phytoplankton absorption

_ Originally, the effect of CDM on algorithm uncertainty was analyzed with respect
to phytoplankton absorption through the parameter a.4m,443/a¢443. The purpose
was to convey a shift within the total absorption between CDM and phytoplankton
such that Chl, is expected to be inversely related to ac4m443/a$443. Results, not
shown, were different, and it was then realized that in normalizing by a3443, the
analyéis of the effect would not account for variation in absorption per Chl, an

indication of pigment packaging.

4.5 Effects of phytoplankton community structure

The hypothesis that the oceanic biases can be explained by the effects of the
- phytoplankton community structure is considered here. Community structure can
vary according to pigment packaging and cell size. Such features are represented in
terms of absorption measurements by ay443/Chl, and the S; size model from Ciotti

et al. (2002), respectively.

For pigment packaging, chlorophyll pigments absorb strongly at 443 nm, and so
the ap443 signal relative to the amount of chlorophyll in the water sample likely
indicates the intensity at which absorption is suppressed by the packaging. While
ag at 443 nm can be attributec_i to accessory pigments as well, such a source is
considered secondary (Bricaud et al., 1995, 2004). With the normalization by_z’ﬁ ~
situ C’hl, the a¢443/ Chl parameter also has the advantage of behaving sir'nilarly.to
Acam443/ Chl in relation to RCE. | ' ' ‘

A size parameter, Sy, was derived based on the Ciotti et al. (2002) model, which
represents absorption spectra from mixed p’opulations'as a linéar combination of
picoplankton and microplankton absorption spectra (Figure 4-17). The parameter
ranges from Sy = 1 for 100% picoplankton (small cells) to Sy = 0 for 100% mi-
croplankton (large cells) (See Table 4 from Ciotti et al. (2002) shown in Figure 4-18).

Details of the Ciotti et al. model and its implementation are given in Section 4.5.4.
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4.5.1 Pigment packaging

The qualitative analyses for a;443/Chl are presented in Figufe 4-12. The quan-

titative analyses are presented in Table 4.5 and Figure 4-13.

Algorithm uncertainty in general

The visual analysis of a3443/Chl in the Global panel of Figure 4-12 reveals that
pigment packaging systematically varies with the shift in algorithm uncertainty for
all trophic categories. The parameter ag443/ Chl generally increases with a change

from under- to overestimation.

Category statistics for a3443/Chl are presented in Table 4.5. The medians of
RCE and their corresponding means for logip ag443/Chl- are positively correlated
(Figure 4-13) for all trophic categories. The relationships are different for each
trophic category, suggesting that the effect of pigment packaging is variable among

the different trophic categories, and among the different oceans within each category.

Oceanic biases

The ocean-specific panels in Figure 4-12 show that systematic variation in a443/ Chl
is related to the oceanic biases as well. Such analyses are confirmed with statistics
as shown in Figure 4-13. The Southern Ocean fnesotrpphic stations that are under-
eétimated by the algorithm have a median ap443/ Chl value of 0.037. The‘ Atlantic
Ocean ﬁlesotrophi.c'stations that are overestimated by the algorithm have a me-
dian ag443/Chl value of 0.073, due to more abscl)rpition per Chl and is indiéative of
Tess pigment packaging than the Southern Ocean counterparts. Thé Southern Ocean
oligotrophic stations, which are more underestimated than that Atlantic Ocean olig-
otrophic stations, have a median a3443/Chl value of 0.049. The Atlantic Ocean
oligotrophic stations, which are only slightly underestimated by the algorithm, have
a median a¢443/Chl value of 0.093. -
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4.5.2 Cell size

The qualitative analyses for the cell size parameter S; are presented in Figure

4-14. The quantitative analyses are presented in Table 4.6 and Figure 4-15.

Algorithm uncertainty in general

In general, a visual analysis of the Global panel in Figure 4-14 shows that cell
size systematically varies with a shift in algorithm uncertainty for stations from the
mesotrophic category and those from the oligotrophic category. For such stations,
the parameter Sy increases towards 1 with a change from under- to overestimation.

No systematic order is evident in the éutrophic category (global panel, Figure 4-14).

Category statistics for Sy are presented in Table 4.6. The relationship between
the corresponding median RCE and mean Sy have positivé correlations for the
mesotrophic and oligotrophic categories (Figure '4-15). The relationships are differ-
ent for the two categories, indicating that on average, the effect of cell size is variable
between and within the two categories. The negative correlation for the Atlantic-
and Pacific-eutrophic category suggests a contradiction to expectations, in which a
shift from under- to overestimation is associated with an increase in Sy towards 1

(where picdplankton dominate the phytoplankton community).

Oceanic biases .

The oceanic biases best répresented through the RCE values from the mesotrophic
Atlantic and Southern Ocean stations éhow a significant corresponding deviation in
the mean values of Sy. See Figures 4-14 and 4-15. The Southefn.Océan mesotrophic
mean Sy value is 0.51, suggesting that on average the community structure is corﬁ-
posed of phytoplankfon with moderate cell size, >While the Atlantic Ocean mesotrophic
mean Sy value is 0.77, suggesting that on average the community structure is dom-
inated by picoplankton, which are small in size. The reference to size groups is

provided in the table from Ciotti et al. (2002) shown in Figure 4-18.

The association of cell size to oceanic biases is also present in the oligotrophic
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stations. The Southern Ocean stations, which are more underestimated than the
Atlantic Ocean stations, have a mean Sy value of 0.60, which is associated with a
community structure predominantly composed of moderately sized phytoplanton.
The slightly underestimated Atlantic Ocean stations have a mean Sy value of 0.95,

indicating community structure predominantly composed of picoplankton.

4.5.3 Influence of the backscattering spectral shape

Figure 4-16 presents the global analyses for both MBR (left) and a,wt555 / at490
(right). Little improvement in the systematic vériation of ay443/Chl and Sy comes
from the removal of the backscattering spectral shape. Apparently, the effect of the
backscattefing spectral shape, attributed to backscattering from both CDM and

. phytoplankton, is less significant than the effects of the phytoplankton community

structure.

4.5.4 Calculating the picoplankton propoftion» parameter

The picoplankton proportion parameter, Sy, indicates the amount of picoplank-
ton within a phytoplankton community structure. Adapted from Ciotti et al. (2002),

the parameter is calculated from the following equation.

=15 e+ (- S iV (42)

The absorption speé‘cra apico and - Gmicro Were pre-determined from labdratory
work to represent a community of picoplank‘coﬁ vand one of microplankton, respec-
tively. The term agn is expressed as a linear combination of normalized absorption
spectra for the picoplankton community (ap,) and the microplankton community
(@micro), Where spectra are normalized by the mean absorption across the 300 visible
wavelengths. These pico- and microplankton agn spectra were empirically developed
and specified in Table 3 of Ciotti et al. (2002). The two spectra are weighted with

Sy (ranging from 0 to 1).
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Executing the model

To calculate S¢, one thousand possible values between 0 and 1 were used to com-
pute modeled a4, spectra. Using least squares optimization, each N OMAD ay,, was
matched to a particular ay, model. See Figure 4-17. The Sy value corresponding
to the selected model then indicated the fraction of picoplankton-sized cells in the
NOMAD sample. Figure 4-18 shows Table 4, extracted from Ciotti et al. (2002). It |
shows the relation of the size parameter to the different size groups based on data

from their research.

Issues with normalization

Ciotti et al. (2002) normalizes a4y by the mean absorption across fhe 300 visible
wavélengths. NOMAD, with only 20 wavelengths of data, is not hyper-spectral.
Consequently, each value of phytoplankton absorption was norinalized by its mean
absorption across the 20 wavelengths available in NOMAD. This approach is chosen
out of several, which were attempted on hyper-spectral absorption data from the ‘
Coastal Observing Center (COOA) at UNH. Selection was based on the minimum
difference between the resulting a4, spectrum and the corresponding spectrum using

the normalization method of Ciotti et al. (2002).

Using S; as a indicator for cell size

Changes in spectral shape of phytoplankton absorption éan be éttribﬁted to
either cell_size,or photoaccl‘imation. Because NOMAD absorption measurements
are integrated over the first optical depth, they incorporate a broad reference of
time that‘ better reveals changes in cell size than phdtoacclimation (Bricaud et al.,

2004).
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4.6 Relative importance of CDM and community struc-

ture

An evaluation of the relative importance of CDM and phytoplankton community
structure is presented here. Only the parameters a.4m443/Chl and a¢443/Chl are
used. The parameter Sy was left out because it is not scale invariant, meaning it
does not have and cannot be simply transformed to have a normal distribution for
linear regression analysis. Consequently, community structure is represented only

through pigment packaging here.

4.6.1 Qualitative analysis

Figure 4-19 provideé a qualitative analysis through the relationship between
Gedm 443/ Chl and ap443/Chl for NOMAD when sorted by trophic categories with
RCE color-coded on the top and the cceans color-coded on the bottom. The results
are described in the following sections in terms of the abundance of stations below
or above the one-to-one line, and a visual assessment of the trends in RCE relative

to variation in a.4m443/Chl and ap443/Chl.

Abundance of stations below or above the one-to-one line

CDM abéorption is greater than phytoplani{ton absorpti_oh for stations above the
one-to-one line, whereas phytoplankton absorption is greater than CDM absorption
for stations below the one-to-one line. From the top panels of Figure 4-19, it is
~ evident that the majority (77.2 %) of stations are above the line. In the eutrophic
category, 85.3% éf the stations are above the line. In the mesotrophic category,
67.2% of the stafions are above the line, and in the oligotrophic category, 71.8
% of the stations are above the line. Furthermore, CDM absorption has a greéter
range of variability than phytoplénkton absorption within each category, and similar
ranges in the eutrophic and mesotrophic cafegories. Interestingly, the range of CDM
absorption in the oligotrophic category was shifted upward, indicating that there

was more CDM absorption relative to Chl there than elsewhere.
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Results from the bottom panels of Figure 4-19 are presented in Table 5.1.

Trends in RCE relative to variation in a.4,443/Chl and a;443/ Chl

A trend in RCE relative to (vertical) variation in a.4,,443/ Chl indicates the effect
of CDM on algorithm uncertainty. A trend in RCE relative to (horizontal) variation
in ay443/Chl indicates the effect of pigment packaging on algorithm uncertainty.
Considering the top panels of Figure‘4-19, it is evident that nearly all stations in
which Chl is overestimated (RCE > 1) are above the one-to-one line. However,
trends in RCE with respect to variation in a.4,443/Chl and ay443/Chl are diffi-
cult to differentiate because these two parameters are correlated to each other (See
Table 4.7). To deter-mine which parameter has the greatest effect requires a more

quantitative analysis.

4.6.2 Quantitative analysis

Step-wise ordinary least-squares regression analyses were performed for all the
stations, and for the stations when sorted by trophic and ocean-trophic categories.

Matlab routine “stepwisefit” was used (2007a, The MathWorks, Natick, MA).

- Methods

The log error (A) was predicted as a linear combination of the base-10 logarithms
of chm443 /Chl and ag443 / Chl. The regress1on format is deﬁned ma,thema,tlcally as

the following:

as4d3\ GogmAd3 |
A = b1 + bs logig (%717) + b3 ngIo (—é’—};l—) (4.3)

which is equivalent to a power relationship:

443\ %2 [ ao4m443\ %
E =100 (% cdm 4.4
RCE 0 (C’hl) ( Chl > (44)
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where by, by, and bs stand for resulting coefficients from each analysis. The cor-
relation coefficients between all combinations of the three parameters A, logig

a$443/ Chl, and logio @cgm443/ Chl were computed (Table 4.7).

In the step-wise regression, the parameter with the higher correlation with A is
used to predict A in the first step. This parameter explains more of the variance of
A than the other. Then, the second parameter is added if it significantly reduces
the residuals. The significance is based on a comparison of the variance (F-test)

with or without the potential parameter (P < 0.05).

Results of regression analyses

Table 4.8 presents the coeflicients, standard deviations, the number of stations
“in the subset, and r? (the portion of variance in A explained by the regression) for
each analysis. The parameter used in the initial model is labeled with an asterisk

next to the respective coefficient.

The coefficients indicate fhe relative magnitudes of a.4,443/ Chl and ay443/ Chl,
but are not necessarily an indication of the 1‘elati§7e importance of the effects. Rather,
the sequence of parameters used in the model indicates the relative importance. The
parameter used to fit the initial model of every step-wise regression is the parameter

with the stronger influence on algorithm uncertainty.

Overall, the results indicate that CDM is generally the stronger influence on
algorithm uncertainty. This is the case for the eutrophic and mesotrophic categories
but not the oligotrophic category. See Table 5.1 for the results of the analyses for

the ocean-trophic categories.

The amount of variance explained by the regréssions (r?) was Ttelatively low in
all cases. It ranges from 22 % to 28 %. However, the regfession analysis was not
performed with the intention of reducing the algorithm uncertainty, since it is not
feasible to estimate the IOPs needed with sufficient accuracy to make them useful.
The step-wise regression was intended to reveal how much effect the IOP parameters

had on the algorithm uncertainty.
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Table 4.1: NOMAD v.2: number of stations within each ocean and trophic category

NOMAD version 2

Chl Category | Atlantic | Pacific | Southern Total

Eutrophic 626 94 64 784
Mesotrophic 317 242 178 737
Oligotrophic 306 259 158 723

Total 1249 595 400 2244

NOMAD version 2 subset with absorption measurements

Chl Category | Atlantic | Pacific | Southern Total

Eutrophic 296 38 0 334
Mesotrophic 81 75 . 18 174
Oligotrophic 101 66 21 188

Total 478 179 39 696

Table 4.2: Statistics for NOMAD v.2. TOP: The mean, standard deviation, and
RMSE for A and the median RCE ratio categorized by ocean. BOTTOM: Mean of

A and the median RCE ratio for ocean-trophic categories.

Ocean N mean of | median | st. dev. of RMSE of
A | RCE A ’ A
ratio
Atlantic 478 . | 0.10 - 1.26 0.25 0.27
Pacific | 179 | -0.07 | 085 | 016 0.17
Southern 39 -0.32 0.48 0.13 0.35
Global 696 | 0.03 1.07 0.25 026
Eutrophic Mesotrophic Oligotrophic
Ocean N mean | median | N mean | median | N | mean | median"
of A RCE of A RCE of A RCE
ratio v ratio ratio
Atlantic 296 | 0.12 1.45 81 0.16 1.39 101 | -0.01 0.97
Pacific 38 -0.03 0.89 75 -0.09 0.80 66 -0.07 0.87
Southern | 1 18 -0.34 0.46 21 -0.31 0.47
Global 334 | 0.11 1.31 174 | 0.00 | 0.98 188 | -0.06 0.92
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Table 4.3: Statistics for the Total Absorption Ratio analysis. TOP: The
mean, standard deviation, and RMSE for A, and the median RCEg,: ratio
categorized by ocean. BOTTOM: The mean of Ag;,; and median RCEg;,; ratio for

the ocean-trophic categories.

Ocean N mean median | st. dev. | RMSE
of Agior | RCEatot | Of Agror | Of Aasor
ratio
Atlantic 478 0.05 1.12 0.24 0.25
Pacific 179 -0.07 0.85 0.28 0.29
Southern | 39 -0.25 0.56 0.17 0.30
Global | 696 | -0.00 1.00 0.26 - 0.26
Eutrophic Mesotrophic . Oligotrophic
Ocean N mean median | N mean median | N mean v median
' of Agior | RCEator of Agior | RCEqtor of Agsor | RCEqtor
P “ratio : o ratio | | ‘ratio
Atlantic | 296 | 0.02 1.10 81 0.09 1.07 101 0.09 1.12
Pacific 38 -0.22 0.60 75 -0.13 0.74 66 0.07 1.04
| southern| 1 | : 18 | -0.34 0.41 21 | -017 0.59
Global 334 | 0.00 1.06 174 | -0.05 0.91 188 | 0.05 1.04
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Table 4.4: The effects of CDM on the oceanic biases: Statistics for

a.4m443/Chl. The mean and standard deviation for logig acgm443/Chl the median

of a,4m443/Chl are presented for the océan—trophic categories.

Eutrophic
Ocean N Mean, St. Dev., Median,
logio 2 | logio Seipt® | st
Atlantic | 296 -1.1 0.26 0.079
Pacific 38 -1.59 0.28 0.028
Southern 1
Global 334 -1.15 0.31 0.073
Mesotrophic
" Ocean N Mean, St. Dev., Median,
logio S | logio Seipt | suges
Atlantic 81 -0.93 0.27 0.108
Pacific 75 -1.19 0.33 0.061
Southern | 18 -1.60 0.28 0.027
Global | 174 111 0.36 0.078
Oligotrophic
Ocean N Mean, St. Dev., . | Median,
| logio 2etmi®? | logy 2edmidd | fedmdd
Atlantic | 101 -0.85 0.31 0.135
Pacific 66 -0.91 0.39 0.118
Southern | 21 -1.21 0.29 0.057
Global | 188 0.91 0.36 0.118
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Table 4.5: The effect of pigment packaging on the oceanic biases: Statistics
for a;443/Chl. The mean and standard deviation for logig a3443/Chl the median

of ayg443/Chl are presented for the ocean-trophic categories.

Eutrophic
Ocean N Mean, St Dev., | Median,
logio *57° | logio %657 | 257
Atlantic | 296 -1.38 0.19 0.042
Pacific 38 -1.43 0.20 0.037
Southern 1
Global 334 -1.39 0.19 0.042
Mesotrophic
Ocean N Mean, St. Dev., | Median,
logio “57 | loguo 55 | 5
Atlantic | 81 |  -1.12 0.15 0.073
Pacific 75 -1.38 . 0.20 0.044
Southern | 18 -1.41 0.13 0.037
Global | 174 -1.26 022 0.058
: Oligotrophic
Ocean N Mean, St. De»v.v, Median,
' 7 1og10 %ﬁ logio %—qi . 5%?
Atlantic | 101 -1.04 0.12 - 0.093
Pacific 66 -1.15 0.13 0.076 - )
Southern | 21 -1.31 ) 0.13 0.049
Global |188| -111 0.15 | 0.082
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Table 4.6: The effects of cell size on the oceanic biases: Stafistics for

S;. The mean and standard deviation of S; are presented for the ocean-trophic

categories.

Eutrophic

Ocean N | mean, S; | St. Dev., S

Atlantic | 296 0.37 0.19

Pacific 38 0.47 0.20

Southern 1

Global 334 0.39 0.19

Mesotrophic

Ocean N | Mean, Sy | St. Dev., S;

Atlantic 81 0.77 0.15

Pacific | 75 0.50 0.18

Southern | 18 0.51 0.12

Global 174 0.62 0.21
Oligotrophic

Ocean N | Mean, Sy | St. Dev., S

Atlantic | 101 0.95 0.12
Pacific 66 0.78 0.17

Southern | 21 0.60 0.08 .
Global 188 0.85 0.18

Table 4.7: The relative importance of CDM and community structﬁré:
" correlation of parameters. The correlation coefficients for comparisons of all
combinations of the three parameters logio a¢443/Chl, logio acdm443/Chl, and A

are presented.

443
A | logi & | logo i C;#s
A 1 0.375 0.524
logyp 222 1 0.600
10810 & 0}343 1
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Table 4.8: The relative importance of CDM and community structure: re-
gression statistics. The results for the (step-wise) multi-linear regression analyses
are displayed here. They include coefficients, standard deviations (SD), the number
of stations, and 72, which is the fraction of the variance of A that is explained by
the regreséion. The term that is more influential to changes in A is labeled with an
asterisk. When no coefficient is given, the term was considered to be insignificant
in the regression. TOP: All stations. MIDDLE: NOMAD sorted by the trophic
categories. BOTTOM: NOMAD sorted by ocean and trophic categories.

All Stations
b1 bo b3
Coefls 0.107 | 0.332*
- 0.527
SD 0.045 | 0.029
I ' 696
2 0.28
Trophic Categories
Eutrophic Mesotrophic Oligotrophic
by bo b3 by bo b3 by b b3
Coeffs 0.553 | 0.371* 0.326 | 0.433* 0.494* | 0.152
1.298 0.890 0.622
SD 0.065 | 0.041 0.061 | 0.036 0.062 | 0.026
n 334 174 188
72 0.25 0.27 0.22
Eutrophié ‘Mesotrophic Oligotrophic
‘Ocean | Stats | b by bs by by | b3 b by | b3
) “Coeffs 0.577 | 0.433* - 0.550 0.390* 0.127
1.394 0.667 0.502
. SD 0.075 0.055 : - 0.057 0.088 0.033-
Atlantic - -
n 296 . 81 101
72 0.26 0.27 0.22
Coeffs — 0.307 . ’ 0.248 | 0.307* — 0.193
0.450 - 0.616 0.108
Pacific SD - 0.102 0.083 | 0.050 - 0.036
n 38 . 75 66
r2 0.27 0.27 0.26
Coeffs — — 0.215 | 0.235* 0.508 0.335*
- 0.334 0.767
SD - - 0.092 0.044 0.140 0.063
Southern
n 0 18 22
r? - 0.27 0.25

56



yreq (6vgI=u)

oy

14

0z-
T

ay-
T

09

8-

ool-

'

apnjibuo

001-

0z- O 09
T T T

-

siydosjosaly

(8LY H,cv e1goads qu&.OmQ@ Uim suone)s = As13

suoryess [re = Aa10) W3S ‘Aro0Zeges oydoay Aq pajIos ZTAQVINON woay msoﬁm“m oﬁnmzéﬂ Jo deyq :1- ean3iyg

°

oy 0e 0 0z- 0Oy .09 08 001

epnyeT

57



Latitude

20 \ L Ry = . ¢ M | 1 t
-160 -140 -120 - -1o0

Longitude

Figure 4-2: Map of Pacific stations from NOMADv.2 sorted by trophic

category. Light Grey = all stations (n=595). Dark grey = stations with absorption

spectra (n = 179).
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Figure 4-4: NOMAD v.2 subset (n=696) with OC4v .4, separated by ocean.

The grey points represent all the data, and the dark points represent the data from

the specified ocean. The thick black line represents the OC4v.4 algorithm.
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Figure 4-5: Histograms for the % Frequency of the Relative Chlorophyll
Error (RCE): Global vs Mesotrophic TOP LEFT: Global Atiantic. MID-
DLE LEFT: Giobal Pacific. BOTTOM LEFT: Global Southern. TOP RIGHT:
Meso‘crophic Atléntic. MIDDLE RIGHT: Mesotrophic Pacific. BOTTOM RIGHT:

Mesotrophic Southern. The Black line represents zero algorithm uncertainty.
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Figure 4-7: NOMAD v.2 subset (n=696) with RCE,,; fit, separated by
ocean. The grey points représent all the data, and the dark points represent the
data from the specified ocean. The thick black line represents the RCEatot fourth-

order polynomial fit to the data.
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Figure 4-8: Histograms for the % Frequency of RCEg,: Global vs
Mesotrophic TOP LEFT: Global Atlantic. MIDDLE LEFT: Global Pacific. BOT-

TOM LEFT: Global Southern. TOP RIGHT: Mesotrophic Atlantic. MIDDLE
RIGHT: Mes’otrobhic Pacific. BOTTOM RIGHT: Mesotrophic . Southern. The

Black line represents zero uncertainty.
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Figure 4-10: The Category Statistics: RCE 'vs. a.4,443/Chl. The relation-
ship between the median RCE ratio and the median Geam443/ Chl is preéented fo;
all ocean-trophic categories. The oceans are indicated by the letters, ‘A’, ‘P’ and
‘S’ and the trophic category by the colors. Each category’s statistics are represented
by a vertical and horizontal line. The lines represent the standard 'deviatioﬁ about
the median, which is located at the intersection. Note the vertical increase in RCE;

RCE > 1 indicates overestimations and RCE <«1 indicates underestimations.
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RCE vs. a¢443!Chl
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~ Figure 4-13: The Category Statistics: RCE vs. a¢4443/ Chl. The relationship
between the median RCE raf,io and the median ay443/Chl is presented for all ocean-
trophic categories. The oceans are‘indicated_ by the letters, “A_’, ‘P, and ‘S’ and
the trophic category by the colors. Each category’s statistics are represented by a
vertical and horizontal liﬁe. The lines represent the standard deviation about the
_ 1ﬁedian, which is located at the intersection. Note the vertical increase in RCE; '

RCE > 1 indicates overestimations and RCE<1 indicates underestimations.
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Figure 4-15: The Category Statistics: RCE vs. S 7- The relationship between
the median RCE ratio and the mean S s is presented for all ocean-trophic cate-
~ gories. The oceans are indicated by the lettérs, ‘A, P and ‘S’ and the trophic
categbry by the colors. Each category’s statistics are represented by a vertical and
horizontal line. The lines represent the standard deviation about the mean, which
is located at the intersection. Note the vertical increase in RCE; RCE > 1 indicates

overestimations and RCE<1 indicates underestimations.
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NOMAD normalized a s spectra with Size Model Limits
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Figure 4-17: Normalized ay spectra from NOMAD. NOMAD’s a¢, spectra
(grey lines) and the agn spectra associated with picoplankton (larger peak near 450)

and microplankton based on Eqn. 3 from Ciotti et al. (2002) (black linves),
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Figure 4-18: Table 4 from Ciotti et al. (2002): the cell size parameter.
This table shows the categorization of the Sy parameter into the different sizes of

phytoplankton: pico-, ultra-, nano-, and micro.
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CHAPTER 5

DISCUSSION AND CONCLUSIONS

5.1 Validation and explanation of the algorithm uncer-

tainty through inherent optical properties

Upon utilizing the absorption measurements of NOMAD, the aﬁalyses of this
work provide evidence that confirms the existence of the oceanic biases and the
hypotheses that such biases depend on the relative presence of CDM and the phy-
toplankton community structure. The validation of the oceanic biases was accom-
plished using the total absorption approximation of MBR. By exhibiting similar
oceanic biases with the approximation, a measurement produced independently from
- MBR,.it is evident that the oceans are in fact, optically different. Possible artifacts '

were analyzed, and no algorithm biases were found for such factors.

This work corroborates ‘phe predicted effects of CDM and phytoplankton com-
munity structure on the algorithm uncertainty, as hypothesized from past litera-
ture. When evaluating the effects separately, the parameters a.4,,443/Chl, Sy, and
ap443/ Chl, clearly exhibited systematic variation with algorithm uncertainty, which
was denoted by RCE. Increases in a.g4,443/Chl féllbwéd a general shift from under-
to overestimation for the eutrophic and mésotrophic stations.  Likewise, increases
in ag443/Chl followed a general shift from under- to overestimation for all the sta-
tions excluding a few oligotrophic ones (where MBR ~ 6.31), and an increase in S fi
followed a shift from under- to overstimation for mainly the mesotrophic stations.
Evidently, such parameters indicated the effects of the two features on the oceanic

biases themselves.

From these analyses, global predictions of the parameters a.4m,443/Chl, S¢, and
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ap443/Chi can be made, thereby introducing new satellite-derived products. Ad-
ditionally, quantitatively comparing the global estimates of these respective pa-
rameters to corresponding observed measurements from NOMAD could be used to

account for the oceanic biases of the empirical ocean color algorithms.

In actuality, the general effect of the three factors are not novel to the ocean
optics community, as they are consistent with theoretical expectations. MBR rep-
resents the shape of the R,s spectra, which is inversely relaj:ed to total absorption,
the sum of ay, Gegm, and ag. Waters can have similar MBR values, but different
compositions of total absorption, which can be associated to different levels of Chl
The different distributions of total absorption can stem from different levels of CDM
abundance as seen in the CDM effect analysis, and different cell sizes and levels of
pigment packaging as seen in the phytoplankton community structure analysis: Ul-
timately, the world’s oceans have different inherent optical properties corresponding

to similar apparent optical properties.

Furthermore, the separate analyses using the total absorption .'approximation
suggest that the spectral shape of backscattering, an indication of particle size and
composition, confounds the effects of CDM on the algorithm uncertainty for olig-
otrophic waters. This conclusion is also consistent with theoretical expectations. In
oligotrophic waters with low levels of Chl changes in the backscattering spectral
shape could exhibit a similar strength to changes in total absorption spectral shape
due to the presence of CDM. In such a case, the assumption that the backscattering

spectral shape is considered negligible in Eqn. 2.5 may not hold.

Removing the backscattering spectral shape did nbt sigﬁiﬁcaﬁtly improve the
systematic variation of ag443/Chl with Chl in oligotrophic waters, and this can be
attributed to two reasons. Either the change in backscéttering spectral shape is not
as strong as the change in total absorption spectral shape due to 'phytbplankton,
or the backscattering spectral shape in oligotrophic waters is due predominantly to
CDM (i.e., NAP) rather than to phytoplankton. Actually, a significant negative
correlation has been found for fhe backscattering spectral shape and Chl in the
open ocean (Huot et al., 2008). Still, it is difficult to know the relative plausibility

of each one.
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5.2 The relative significance of CDM and phytoplank-

ton community structure on algorithm uncertainty

Having gone through the fundamental mechanisms that drive the algorithm un-
certainty, it is then compelling to consider the relative significance of these mecha-
nisms. This assessment was performed both qualitatively and quantitatively. The

results are summarized in Table 5.1.

The qualitative analysis (Figure 4-19) shows that CDM is generally the stronger
component in total absorption. In fact, this is the case for all the overestimated sta-
tions, and-about half of the underestimated stations. Such statements speak for the
relative magnitudes of the two parameters, but do‘ not suggest the relative impor-
tance of their effects on algorithm uncertainty. Trends in'RCE relative to variations
in a.4m443/Chl and a4443/Chl were hypothesized, and quantitative results were

obtained through the regression analyses.

The regression models explained about 22 to 28 % of the algorithm uncer-
tainty, as indicated by the values for 72 of each regression. Results revealed that
CDM in fact, had the stronger influence on algorithm uncertainty than pigment
packaging for all categories except for the Oligotrophic category and the Atlantic-
Oligotrophic category, which makes up most of the Oligotrophic category. In the
* Atlantic-Mesotrophic, and the Pacific-Eutrophic and -Oligotrophic categories, the
‘ pigment packaging pararheter did not effectively reduce fhe residuals, and thus did
not appear in the final model. In fhe Eutrophic, the Atlantic-Eutrophic (represent-
ing 88 % of the Eutrophic stations), and the Southern-Oligotrophic ca‘tegbries, the
parameter with the stronger influence corresponded to the smaller co'e'ﬂi‘cient (b1
aside), proving thﬁt the relative magnitudes of the coefficients are not a sufficient

indicator of the relative importance of the two effects.

The fegression results on the relative impoftance are consistent with gualitative
fesults, and this is best observed by a coinparison of the variation in a.4,,443/Chl
and ag443/Chl relative to RCE in Figures 4-9 and 4-12. For instance, in the
Atlantic-Eutrophic category, CDM has the stronger influence, and in the figures,

the variation of a.4,,443/Chl is more systematic than that of ag443/Chl (relative
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to RCE).

Perhaps, the greater effect of CDM on oceanic biases can be explained by the fact
that pigment packaging is influenced more by biological influences than the presence
of CDM, and biological influences in general (though may be arguable) can be more
complex than chemical or physical influences. Pigment packaging may possibly
vary by region depending on the type of nutrients available, grazing activity, and
community structure. In fact, the ambiguity of pigment packaging levels for different
species within the same size range is evident in the overlapping size classifications
for the Sy parameter from Ciotti et al. (2002). See Figure 4-18. Phytoplanktbn may
also have distinct survival features that allow them some control of thé community
structure. For instance, certain large-sized phytoplankton have flagella with which
to move vertically to avoid certain dangers or to find nutrients. On the other hand,
the constituents of CDM would change mainly due to mixing and chemical reactions

in the waters.

The result that pigment packaging has a stronger influence than CDM on algo-
rithm uncertainty in the oligotro'phic category can be explained by the results that
suggest the confounding of the CDM effect by the backscattering spectral shape.
Such a suggestion is supﬁorted by the theoretical understanding of bio-optics. In -
the Southern oligotrophic category, CDM actually has a stronger influence than
pigment packaging, based on the regression results. This is possibly attributed to
the limited number of stations (n=22), and also the chance that the stations in
thié category‘were composed of similar phytoplankton communities, such that the

~ pigment packaging reflected a limited number of phytoplankton species.

In relating the oceans’ inherent optical properties to differences in CDM con-
centration and phytoplankton community structure, this work suggests that differ-
ences in the oceans’ opfical properties are due to differences in the biogeochemical
processes, which are ultimately attributed to differences in the oceans’ deep-water
chemistry. Reflected in profiles of nutrient concentrations amohg the oceans, deep-
water chemistry is determined by the thermohaline circulation (Segar, 2007). North-
Atlantic-Deep-Water formation at the poles establishes an eastward path for deep

water from the Atlantic Ocean to the Pacific Ocean, and deep-water is upwelled
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along the way in certain locations (Segar, 2007). Based on the work of this thesis,
one would suggest that the optical properties of surface waters would reflect the

chemical nature of the waters from which they were upwelled.

The conclusions of this thesis are _ultimately contingent on the capability of
the NOMAD subset (n=696) in representing the world’s oceans. While the oceanic
biases were observed in both the entire dataset and its subset, there are two concerns.
One is the geographic distribution of the subset. The other is the existence of
ambiguities in the RCE-IOP relationship such that different IOP combinations can

give rise to the same biases.

5.3 Considering the geographic distribution of NOMAD
data

In considering the overall representation of locations covered in NOMAD, un-
observed bio-optical relationships indeed appear likely. A majority of NOMAD’s
stations with absorption measurements stem from regions less than 100 miles off
the coast. The Pacific Ocean stations are mainly from the Southern California
coast, the East China Sea, the Sea of Japan, and the coast of Northern Alaska.
In the Soufhern' Ocean, the stations are all from the Drake Passage and Bransfield
Strait off the tip of the Western Antarctic Peninsula.” In the Atlantic Ocean, 7 0%
of the m’esotrophic‘samplés are from the Western Florida Shelf. Consequently, it is
likely that regions and.subsets with a lack of stations, ,s‘uch as the Southern-Ocean

mesotrophic category, do not yield representative results.

The question of the extent of regional coverage from NOMAD was addressed
by Moore et al. (2069), and their results support the caveat. Moore and colleagues
classify reflectance spectra into eight categories using a clustering techniqﬁe on fhe

- NOMAD dataset. They ‘present the frequency at which the reflectance clrasses have
been observed by satellite (Moore et al., 2009). Figure 5-1 shows the eight classes.
Class 4 is considered to be the only mesotrophic category based on my definition
(See Section 3.1.1). In assessing the frequency of this class from global satellite

observations, the work of Moore et al. (2009) suggests that mesotrophic waters are
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prevalent in several areas not covered;in NOMAD including the Malvinas current
off the southeast coast of South America, the Benguela current off the southwest
coast of Africa, and the northern section of the entire North Atlantic Ocean in which
the spring bloom occurs annually (Figure 5-2). Based solely on the limited spatial
coverage, it appears risky to extrapolate the relationships observed in NOMAD to

other locations.

5.4 Ambiguities in RCE-IOP relationships

Based on the explanation of the algorithm uncertainty through IOPs, it is rea-
sonable to believe that similar levels of RCE are associated to different combinations
of the level of pigment packaging and the abundance of CDM. The mesotrophic Pa-
cific Ocean outliers, seen in Figure 4-19, serve as examples. These outliers exhibit
a strong pigment packaging effect and a moderate CDM effect, while stations with

. corresponding RCE values exhibit a lower pigment packaging and lower levels of the
CDM effect. Such outliers cast doubt on the generality of the relationships already
observed in NOMAD.

An assessment of the ambiguities was made based on an evaluation of the litera-
ture (Fiorani et al., 2006; Clementson et al., éOOl; Dierssen and Smith, 2000; Arrigo
et al., 1998; Mitchell and Holmhansen, 1991; Barbini et al., 2003; Garcia et al., 2005;
Nelson et él., 2007; Tarran et al., 2006; Siegel et al., 2005b,a; Bricaud et al., 1981).
Unfortunately, there are rarely reported simultaneoué measurements of g, Gedm, (Or

cdom ), Chl, reflectance, and phytoplankton species.

Here, the discussion of thésé ambiguities will be focused on the ocean-trbphic '
cate.gories that best portrayed the oceanic biases: the mesotrophic Southern and At-
lantic Ocea,ns. The possible ambiguities for the Southern Ocean and Atlantic Ocean
are considered separately. It is assumed that the mesotrophic CDM is predomi-
nantly autochthonous CDOM in the Southern Ocean, and both autochthonous and
terrigenous CDOM in the Atlantic Ocean. The variability within a,q,443/ acdom443
(Figure 5-3) and the spectral shape of acdom, S, (Figure 5-4) show that the current

data convey such characteristics.
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I hypothesize that the conditions not present in NOMAD for the mesotrophicv
Southern Ocean are likely to exhibit weaker pigment packaging levels and stronger
CDM influence compared to the conditions reported in NOMAD. For the mesotrophic
Atlantic Ocean, I speculate that the conditions not present in NOMAD are likely to
exhibit stronger pigment packaging levels and weaker CDM influence compared to
the conditions reported in NOMAD. The following sections present the explanations

for my hypotheses.

5.4.1 Southern Ocean

The mesotrophic NOMAD stations of the Southern Ocean were underestimated
by the algorithm, and they corresponded to low levels of a.4,443/ Chl and relatively
low levels of a¢443/Chl. Other combinations of these properties that can lead to lev-
els of underestimation (low RCE) include higher levels of a.4,443/ Chl associated to
lower ag443/ Chl (larger cell size), or lower lévels of a.4m443/ Chl associated to higher
levels of ag443/Chl (smaller cell size). Since the values for acg,443/Chl reported
for such regions represent the lowest levels observed from the entire mesotrophic
category, it is more likely that unreported scenarios will have higher values for

Qedm443/ Chl and lower values for ag443/Chl.

Evidence from the litervature search generally supported the levels of influence
from CDOM, pigment packaging, and cell size reported in NOMAD. One work (Fio-
rani et al., 2006) reports the existence of CDOM levels higher than those observed
in NOMAD supposedly in the mesotrophic Southern Ocean, but differences can
actually be attributed to the oceanic bias of the algorithm. Therefore, this work

“ultimately supports the Southern Ocean conditions reported in NOMAD. While no
evidence of the unreported scenario (higher aegm443/ Chl with lower ap443/ Chl) was

found in the literature, possible conditions to create this scenario were considered.
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Support for results from NOMAD on community structure and CDM

fraction

Phytoplankton that adapt well to low light levels, like those found in the South-
ern Ocean (Mitchell, 1992), will produce more chlorophyll pigments per cell and
hence, enhance pigment packaging and reduce absorption per Chl (Mitchell and
- Kiefer, 1988b; Mitchell and Holmhansen, 1991). Such inferences support the NO-
MAD results of Southern Ocean stations having relatively strong pigment packag-
ing. While no exact cases were found in the literature, the review did 'suggést that
a strong presence of CDM is uﬂlikely in this high latitude region, thus, supporting
the conditions for the Southern Ocean reported in NOMAD.

Fiorani et al. (2006): an example of an effect of the algorithm oceanic

bias

Fiorani et al. (2006) presented ratios of a.qx,n440/Chl for the Ross Sea that
are higher than those in NOMAD for Chl associated to the mesotrophic category
v (Chl ranging from 0.316 to 3.16 mg m™3). This work involved the estimate of
Gedom 440 / Chl using a unique LIDAR calibration of the SeaWiFS algorithm. For
mesotrophic conditions, average estimates of a.4,m440/Chl derived from several 8-
day composites of SeaWiFS reflectance images between 2001 and 2003 consistently
fall within the range 0.05 and 0.06 m~!/mg m 3. In comparison, the corresponding
edom440/ Chl values for the few Southern Ocean stations in NOMAD are approx-
~ imately 0.03 m™!/mg m™3. This difference of 0.02 units can be attributed to the
Southern Ocean bias of the SeaWiFS algorithm from which the Chl was calculated.
If the estimates of Chl were higher as they are for the NOMAD observations, then
the values for acgom440/Chl would be consistent with those found in NOMAD.

Speculation on the conditions that could yield stronger CDM and weaker

pigment packaging levels in the mesotrophic Southern Ocean

One possible way to reach conditions of stronger CDM and weaker pigment

packaging levels is through selective grazing by different sizes of zooplankton. This
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is based on the finding that large phytoplankton are generally grazed by large
zooplankton and small phytoplankton by small microzooplankton (Froneman and
Perissinoto, 1996). In the case where large phytoplankton are grazed by large zoo-
blankton, heavy excretion from heterotrophic organisms could establish a strong
presence of CDM while large-sized phytoplankton are removed by selective grazing.
In the case where small phytoplankton are grazed by small microzooplankton, the
conditions to develop small-sized phytoplankton communities would not likely be
optimal to develop large-sized phytoplankton, and so fhese conditions would yield
weak pigment packaging (small cell size), and grazing may establish a substantial
presence of CDM. While such grazing would likely be less intense than that from
large zooplankton, the degradation products have been found to stay suspended
for a longer period of time than those of larger-sized organisms (Froneman and

Perissinoto, 1996), thereby allowing for more time to create the desired conditions.

These two scenarios seem likely to occur at the decay of phytoplankton blooms.
While seemingly plausible, they have not been reported in the current literature
to my knowledge. Only low production of CDOM has been reported for Southern
Ocean waters. Accordingly, I discuss in the order listed, CDOM produced by grazing

activity, bacteria and viruses, and terrestrial inputs (Nelson and Siegel, 2002).

On the sources of CDOM production Research on correlations between graz-
ing activity and phytoplankton community structure show mixed results for these
high latitude waters. Overall, the literature does suggest that heavy grazing activ-
ity (and consequently, a strong presence of CDM) would not occur in small-sized -
phytoplankton communities (Tagliabue and Arrigo, 2003; Shields and Smith, 2009;
Tang et al., 2008; Froneman and Perissinoto, 1996). In the Subtropical Convergence
and a warm-core eddy in the Atlantic sector of_ the Southern Ocean, large phyto-
piankton wére grazed by large zooplankton and small phytoplankton by small micro-
‘zooplankton (Froneman and Perissinoto, 1996), suggesting that microzooplankton
are less capable than larger zooplankton of heavy grazing. Tagliabue and Arrigo
(2003) and Tang et al. (2008) found that some nanoflagellates, such as Phaeocystis

Antarctica, which are widely distributed in the Southern Ocean and the dominant
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prymnesiophyte in the Ross Sea (Shields and Smith, 2009), can form colonies to
deter grazing from microzooplankton. However, Shields and Smith (2009) reported

findings of colonial cells inside the food vacuoles of ciliates, a microzooplankton.

A large éoncentration of CDOM produced from bacteria and viral lysing also
appears unlikely from relatively low Chl, and this is supported in the literature.
Nearly all Southern Ocean marine ecosystems have been found to contain low bac-
terial biomass (Cota et al., 1990; Zdanowski and Donachie, 1993). For the western
Antarctic Peninsula region, it was found that bacterial biomass in the Antarctic
Peninsula region only represented < 1-2 % of the phytoplankton biomass (Karl and
Tien, 1991), and that phytoplankton performed the bulk of heterotrophic respiration
although the abundance of bacteria was found to vary independently of chlorophyll
biomass (Karl and Tien, 1991). Additionally, a model has shown that bacterial
growth efficiency increases with chlorophyll biomass (Polimene et al., 2006). Hence
low Chl would not yield high bacterial growth efficiency as needed to produce the
strong CDOM signal.

Ultimately, terrestrial input from sea ice melting in the Southern Ocean ap-
pears most plausible as a source of strong CDOM concentrations in a small-sized
phytoplankton community. Such a case has actually been observed during the XV
(1999/2000) campaign of the Italian Research Programme for Antarctica, in which
relatively high CDOM coricentrations corresponded to-ice-melting in the Terranova
Bay, a region known to host P. Antarctica (Barbini et al., 2003). Unfortunately,
apparent optical properties were not measured. Additionally, it has been suggested
that river diséharge and water from sea ice were the source of abundant dissolved
carbon in the Artic Ocean waters of the Holocene (Belanger et al., 2007; Macdonald
et al., 2006; Mcclelland et al., 2006), and this could possibly occur in the Southern
Ocean. Still, the CDOM signatures of the Atlantic Ocean, known to be strong due
to frequent rivér discharge of anthropogenic chemicals, would rarely occur in the
barren ice-covered terrain of Antarctica, and empirical evidence has been found, in
which only 10% of the orgé,nic matter was dissolved in the Ross Sea (Carlson et al.,

2000).

Evidently, more work must be done to quantify and compare the rate of CDOM
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production from these sources in order to assess their relative contribution to pro-
ducing the contradicting scenario. Ideally, a deeper understanding of particulate
backscattering (Stramski et al., 2004) and generally more stations of the optical

properties would best resolve the remaining issues in this work.

5.4.2 Atlantic Ocean

The mesotrophic NOMAD stations of the Atlantic Ocean were overestimated by
the algorithm, and they corresponded to high levels of a.4,,443/Chl and high levels
of a¢44?; / Chl. Other combinations of these properties that can lead to similar levels
of overestimation (high RCE) in the mesotrophic Atlantic include lower levels of
acdm443/ Chl associated to higher levels of ag443/ Chl, or higher levels of a.4,,443/ Chl
associated to lower levels of ag443/Chl. Since the values for a3443/Chl reported
for such regions represent the highest levels observed from the entire mesotrophic
category, it is more likely that unreported scenarios will have a higher influence from

CDM associated to a stronger influence from pigment packaging (lower a3443/Chl).

First, the assessment of work by Moore et al. (2009) explained previously indi-
cates the areas in which possible unreported scenarios can occur (Figure 5-2). Such
regions include the Malvinas current off the southeast coast of South America, the
Benguela current off the southwest coast of Africa, and the northern section of the

entire North Atlantic Ocean in which the spring bloom occurs annually (Figure 5-2).

NOMAD data.from the mesotrophic Atlantic category are consistent with the
empirical evidence that CDOM decreases with distance from shore (Kowalczuk et al.,
2009; Mannino et al., 2008; Pan et al., 2008; Del Vecchio and Subramaniam, 2004;
Branco énd Kremer, 2005; Vodacek et al., 1997). Terrestrial input of CDOM has
been found to dominate the absorptioh signal only in estuaries and river mouths,
inferring that such areas are eutrophic. The signal diminishes abruptly off-shore
due to photo-oxidation, and so CDOM abundance is distinctively lower in off-shore
mesotrophic waters, and éven lower in open-ocean oligotrophic waters as the CDOM

has more time to diminish.

Exceptions to this rule include the Amazon and Orinoco River outflows, which
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significantly affect the absorption signals from the North Equatorial Countercur-
rent (Siegel et al., 2002). Actually, such off-shore regions affected by the strong
outflows may actually host a contradicting scenario upon bleaching of the surface
CDOM (Vodacek et al., 1997). Costa et al. (2009) supports the possible occurrence
of the scenario, with empirical evidence showing that strong river flows support

nanoplankton blooms.

CDOM in most off-shore waters is then predominantly the result of biclogical
activity over a long period of time (Bricaud et al., 1981), and so variability in
CDOM levels would occur gradually. Such conditions have been observed in the
Mauritanian upwelling, in which CDOM levels were low and consistent while Chl
varied over two orders of magnitude (Bricaud et al., 1981). Although it was not
stated in this work whether the waters were mesotrophic or if their phytoplankton
distributions were dominated by nanoplankton (Bricaud et al., 1981), the analysis of
work of Moore et al. (2009) does suggest that the Canary Current, which coincides
with this region, can be mesotrophic. Simultaneously, AMT cruises reveal that such
waters were dominated by nanoplankton in 1996 and 1997 from April through May
and from September through October (Gibb et al., 2000). Thus, such conditions

yield an unreported scenario pertaining to both CDM and community structure.

Several mesotrophic stations in NOMADv.2 (n=2365) in the North Atlantic
subpolar gyre may have different scenarios, and studies in the literature suggest this
may be true (Gibb et al., 2000; Nelson et al., 2007; Siegel et al., 2005b). In particular,
such works speculate that the region may encounter moderate CDM levels with
nanoplankton-dominated communities. This region is poorly covered in NOMAD
v.2 (n=696), and the nanoplankton-dominated communities would contradict the
predominance of picoplankton reported for Atlantic mesotrophic waters. Gibb et al.
'(2000) presented a summary of pigment distributions from AMT cfuises 2-5 with
conclusions that the North Atlantic temperate waters, including the North Atlantic
subpolar gyre, were found to host nanoplankton blooms, especially after the decline
of the spring bloom. Bricaud et al. (2004), Bresnan et al. (2009), and Tarran et al.

(2006) provide similar results.

v

The presence of CDM has been speculated to be fairly substantial for this area
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in a satellite-based evaluation of global distributions of CDOM based on GSM prod-
ucts, (Siegel et al., 2005b), and the hypothesis was confirmed by in situ measure-
ments in Nelson et al. (2007). The increased CDOM levels are most likely attributed
to the weaker intensity of solar radiation, which enables deeper mixing, reduces
photo-oxidation, and enhances biological activity (Nelson et al., 2007). Addition-
ally, Cleveland (1995) claims that her findings from the North Atlantic subpolar
‘gyres were comparable to the results for the Southern Ocean from Mitchell and
Holmhansen (1991), a representation of the scenario that contradicts the observed

trends in the Atlantic Ocean.

Some caution was taken when citing the literature fof properties of stations-
with missing absorption data in NOMADv.2 (n=2365). In particular, reported
absorption measurements, CDOM concentrations, and Chl may be sampled and
measured differeritly, and particulaﬂy, not integrated over the first optical depth. For
example, Cleveland (1995) claims that photoacclimation cduld yield similar MBR
associéted to different pigment compositions but similar cell size, particularly in the
North Atlantic subpolar gyres. However, the NOMAD absorption measurements
reflect changes in cell size more than changes due to photoadaptation because they

are integrated over the first optical depth (Bricaud et al., 2004).

5.5 Final words

In understanding the sources of algorithm’ uncertainty through oceanic differ-
ences in the inherent optical properties, the significance of environmental factors
becomes apparent. Regions that have consistently experienced certain physical Con—
ditions will be affected by those conditions over time, and this is true not only for

the ocean’s optical properties.

The evidence of such a phenomenon has been observed in NOMAD, suggesting
that differences in the biogeochemical processes, which shape the inherent optical
properties, fundamentally drive the regional differences in algorithm uncertainty.
Additionally, it has been found that the effects of CDM on algorithm uncertainty

are more clear than those of pigment packaging, possibly due to the complexity of
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the biological factors that govern the pigment packaging, compared to the chemical

and physical factors that govern the presense of CDM.

The investigation has also alluded to the scarcity of data in NOMAD. In order
to observe the biogeochemical systems on regional scales, it would be ideal to collect
observations of the entire range of phenomena that exist within a local region. In
fact, the existing NOMAD stations with IOPs likely represent a low percent of the
population of possibilities that could arise for each region coveréd, especially in the

eutrophic and mesotrophic categories.

The conclusions of this thesis suggest that the regional approach to the develop-
ment of ocean color algorithms is, in fact, a fruitful approach to reduce uncertainty
in the global products. With the advancement of new technology such as ARGO

floats, the goal to understand bio-optics on smaller scales appears more tenable.

Recommendations are made based on the work from each trophic category. The
transient nature of water masses close to the coast strongly motivates the develop-
ment of local-scale algorithms that ideally account for the characteristics unique to
a specific region, especially for eutrophic waters. Results from the mesotrophic cat-
egory motivate furthgr efforts in producing bio-optical measurements from off-shore
~ mesotrophic waters, especially in the regions mentioned, as well as mesotrophic wa-
ters from the Southern Ocean during. the development and decay of the summer
bloom. Results from the oligotrophic category suggest the need for further develop—
ments in measuring backscattering, and more studies on the nature of CDM in such

waters.

Ultimately, this work highlights the significance in the coupling among the IOP-
and AOP-based features, and the importance of consolidating regional datasets for

facilitating global in situ analyses.
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Table 5.1: Results for the analyses of the relative influence of a.,,443/ Chl

and a;443/Chl on algorithm uncertainty.

Eutrophic Category (n=296)

Atlantic - _
OC4v.4 overestimates Chl (RCE > 1) by 45 % at the median. CDM absorption is

Ocean

greater than phytoplankton absorption for 93 % of the stations. Based on the regression,
the effect of CDM (aqm443/Chl) on RCE is greater than that of pigment packaging

(ap443/ Chl). 26 % of the variance in A was explained by the regression.
Mesotrophic Category (n==81)
OC4v .4 overestimates Chl (RCE > 1) by 39 % at the median. CDM absorption is greater

than phytoplankton absorption for 73 % of the stations. Based on the regression, only the
effect of CDM (a,4,,443/ Chl) was used in the regression. The effect of pigment packaging
(ay443/ Chl) was determined to be insignificant. 27 % of the variance in A was explained

by the regression.
Oligotrophic Category (n=14)
OC4v.4 underestimates Chl (RCE < 1) by 3 % at the median. CDM absorption is

greater than phytoplankton absorption for 72 % of the stations. Based on the regres-
sion, the effect of pigment packaging (a443/Chl) on RCE is greater than that of CDM

(Gcdm 443/ Chl). 22 % of the variance in A was explained by the regression.
Pacific Eutrophic Category (n=38)
0OC4v .4 underestimates Chl (RCE < 1) by 11 % at the median. Phytoplankton absorp-

Ocean
tion is greater than CDM absorption for 74 % of the stations. Based on the regression,

only the effect of CDM (a,4,,,443/ Chl) was used in the regression. The effect of pigment
packaging (ap443/Chl) was determined to be insignificant. 27 % of the variance in A

was explained by the regression.
Mesotrophic Category (n=75)
OC4v.4 underestimates Chi (RCE. < 1) by 20 % at the median. CDM absorption is

greater than phytoplankton absorption for 72 % of the stations. Based on the regression,
the effect of CDM (ac4:m443/Chl) on RCE is greater than that of pigment packaging

(a$443/ Chl). 27 % of the variance in A was explained by the regression.
Oligotrophic Category (n=66)
OC4v.4 underestimates Chl by (RCE< 1) 13 % at the median. CDM absorption is

greater than phytoplankton absorption for 76 % of the stations. Based on the regression,
only the effect of CDM (.4, 443/ Chl) was used in the regression. The effect of pigment
packaging (ap443/ Chl) was determined to be insignificant. 26 % of the variance in A

was explained by the regression.
Mesotrophic Category (n=18)
OC4v.4 underestimates Chl (RCE < 1) by 54 % at the median. Phytoplankton absorp-

Southern
Ocean . _
tion is greater than CDM absorption for 78 % of the stations. Based on the regression,

the effect of CDM (apqm443/ Chl) on RCE is greater than that of pigment packaging

(ap443/ Chl). 27 % of the variance in A was explained by the regression.
Oligotrophic Category (n=21)
OC4v.4 underestimates Chi (RCE < 1) by 53 % at the median. CDM absorption is

greater than phytoplankton absorption for 57 % of the stations. Based on the regression,
the effect of CDM (a.4n443/Chl) on RCE is greater than that of pigment packaging

(a¢443/ Chl). 25 % of the variance in A was explained by the regression.
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Figure 5-1: R,;(0-) spectra for the eight classes from Moore et al. (2009)
R;s490 is greater than R,s443 and R,s510 for only class 4. This work is from Moore
et al. (2009).
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Figure 5-3: The relative effect of NAP and CDOM on algorithm uncer-
tainty: @nq;443/a.40m443. The values for a,,,443/ac40m443 are color-coded ac-
éording to the scale shown. The ratio‘anap443 /acdom443 is analyzed with respect to

the Chl-MBR relationship for the NOMAD subset (n=696).
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Figure 5-4: The relative effect of the spectral shape of a.4,, on algorithm
uncertainty: S from Equation 2.6. The values for the spectral shape of a.gom,
S, are color-coded according to the scale shown. The S parameter is analyzed with

respeét to the Chl-MBR relationship for the NOMAD subset (n=696).
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