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ABSTRACT 

ARE THE WORLD'S OCEANS OPTICALLY DIFFERENT? 

by 

Mimi Szeto 
University of New Hampshire, December, 2009 

With satellite technology, the dynamics of oceanic photosynthesis can be ana

lyzed on a global scale using remotely sensed estimates of chlorophyll concentration. 

Such work is dependent on the performance of empirical ocean color algorithms that 

produce the chlorophyll estimates. In hopes to understand the sources of algorithm 

uncertainty, the NASA bio-Optical Marine Algorithm Data set (NOMAD) was an

alyzed. The OC4v.4 algorithm estimates were compared to NOMAD's in situ mea

surements, and a bias was apparent when the data were sorted by ocean (Atlantic, 

Pacific, and Southern). Several instrumental artifacts were found to be insignificant 

to the oceanic algorithm bias. Using a subset of NOMAD that contained absorption 

measurements with each observation, the oceanic bias was independently verified, 

and explained through differences in the concentration of non-algal organic matter 

and the phytoplankton community structure. Ultimately, the world's oceans were 

found to be.optically different as a result of differences in biogeochemical processes. 

xn 



CHAPTER 1 

INTRODUCTION 

As primary producers of biomass in the ocean, phytoplankton serve an important 

role in the biosphere. Through photosynthesis, they transform the sun's energy into 

chemical energy that can be consumed in marine ecosystems. In this manner, they 

maintain the livelihood of heterotrophic marine organisms and influence the chem

istry of the surface waters, thereby impacting the biogeochemical processes in the 

oceans. With the aim of understanding the ocean's contribution to the global carbon 

cycle and the dynamics of marine ecosystems, oceanographers have developed global 

models for primary productivity (the rate at which phytoplankton perform photo

synthesis), all of which currently require a quantity for the autotrophic biomass 

standing stock in the ocean. Using satellite sensors and ocean color algorithms, 

oceanographers measure the reflected light from the ocean surface and translate it 

to estimate the biomass standing stock. Consequently,, consistent satellite measure

ments of ocean color across the planet have enabled our ability to quantitatively 

estimate primary production through these models. 

Such satellite technology is founded on the principles of light propagation through 

the surface layer of the ocean and the inherent manner in which the materials in the 

ocean absorb or scatter the incidental light. Absorption converts light into other 

forms of energy such as heat or chemical energy, and scattering changes the direction 

of light. The unique optical behavior of different constituents in the water depends 

on the particular material's composition and abundance. 

From the influx of visible light propagating through seawater, most of it is either 

absorbed or scattered downward by phytoplankton, detritus, or dissolved organic 

matter, and only a small portion returns to the surface (scattering upward). The 
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light reflected through the surface can then be measured both at sea with radiome

ters and from space with a satellite sensor. 

Through decades of research, oceanographers have developed the mathematical 

groundwork at sea for relating the light reflected at the surface to the absorption 

and scattering of light by the ocean water and all its components. With the goal 

of estimating primary productivity, efforts have been made to empirically relate the 

amount of reflected light to near-surface chlorophyll-a concentration (Chi). The 

chlorophyll-a pigment, ubiquitous in all species of phytoplankton, reflects green 

light in a predictable manner, and so it serves as the indicator for phytoplankton 

biomass in primary production models. Coincident observations of the amount of 

reflected light and Chi from the world's oceans then form the basis for global em

pirical ocean color algorithms such as the OC4v.4 and the OC3M, used for the 

SeaWiFS and MODIS Aqua sensors, respectively (O'Reilly et al., 2002). Addi

tionally, satellite-derived estimates for the absorption and scattering properties are 

currently approached via semi-analytical algorithms, established from theoretical 

assumptions of the relationship between the reflected light and the scattering and 

absorption properties (e.g., Garver and Siegel (1997)). 

Satellite technology has transformed our understanding of the ocean's surface 

processes, but much work has yet to be done to improve the accuracy of the satellite-

derived bio-optical properties. An assessment of the accuracy of empirical algo

rithms contributes to an assessment of the accuracy of higher order productivity 

algorithms as well as for time-series evaluations based on satellite data from the 

past three decades (Moore et al., 2009). Empirical global algorithms currently offer 

the best performance for global analyses, but they are criticized for having minimal 

theoretical foundation (O'Reilly et al., 2002). Semi-analytical algorithms rely on a 

theoretical framework, but perform no better and sometimes worse than empirical 

algorithms (O'Reilly et al., 2002). 

Current empirical algorithms were developed to perform only in open-ocean 

waters where it is probable that the biomass co-varies with the non-living matter. 

Moore et al. (2009) have recently validated the algorithm performance, claiming that 

the bio-optics community's desired 35% accuracy (Mcclain et al., 2006; Bailey and 
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Werdell, 2006; Hooker et al., 1992) has been met for much of the world's open-ocean 

waters containing low levels of biomass. Inaccuracies remain in coastal waters and 

high-latitude regions where the assumption that biomass co-varies with non-living 

matter does not hold, where seasonal variability affects the surface ocean's optical 

behavior, and where the 35% accuracy threshold is not met. 

This study entails the evaluation of NOMAD (NASA bio-Optical Marine Al

gorithm Data set), a global bio-optics in situ dataset, with the goal of improving 

our understanding of the global empirical algorithm uncertainty. In particular, this 

work aims to explain the mismatch between in situ and satellite-based measure

ments using corresponding measurements of absorption now available in the second 

version of NOMAD. Based on the community's literature and an analysis of the 

NOMAD dataset (Szeto et al., 2006), I hypothesize that an ocean bias exists in the 

empirical algorithms, and that it can be explained by systematic variation in the 

abundance of non-algal dissolved and particulate matter, and the phytoplankton 

community structure as described by the dominant cell size and pigment packaging. 

This hypothesis is consistent with the past literature on regional-scale studies, but 

it has never before been tested on a global scale. 
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CHAPTER 2 

BACKGROUND 

2.1 A brief history of U.S. ocean color satellites 

The first global ocean color data (in 1978) from the Coastal Zone Color Scanner 

(CZCS), on the NASA NIMBUS-7 satellite, provided bio-optical oceanographers 

with an unimaginable wealth of observations (Gordon et al., 1983; Hovis et al., 

1980). Subtle but detectable variations in ocean color changed the simple notions 

oceanographers had about meso-scale eddies in the open ocean, thermal and shelf-

edge fronts, and large-scale patchiness in algal blooms (Hovis et al., 1980). With a 

correction for the atmospheric influence, the first satellite measurements translated 

to estimates of Chi were within 0.5 log Chi of corresponding in situ measurements 

(Gordon et al., 1983). CZCS observations continued until sensor degradation inter

fered in 1986 (Evans and Gordon, 1994). 

In 1997, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) (Figure 2-1) was 

launched oh the Orb View-2 satellite, allowing ocean color observations to resume 

(Hooker et al., 1992). NASA also launched the Moderate Resolution Imaging Spec-

troradiometer (MODIS) sensors in 1999 on the Terra satellite and in 2002 on the 

Aqua satellite (Lee and Carder, 2002), Both sensors have 1 km2 resolution (for Sea

WiFS it is actually 1.1 km2 at the nadir-viewing angle) and measure reflectance at 

specific bands centered at the wavelengths shown in Table 2.1. These wavelengths 

were chosen to specifically capture certain absorption and scattering properties of 

the organic matter in the surface ocean and the atmosphere above it. Previous 

research had shown that algorithm performance is not improved by including other 

wavelengths in the detection scheme (Sathyendranath et al., 1989; Lee and Carder, 

2002). 
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The development of satellite-derived Chi has led to global estimates of primary 

production ranging from 36.5 to 48.5 Gt C yr _ 1 , depending on different assumptions 

and models (Palmer and Totterdell, 2001). Figure 2-1 shows a climatological mean 

Chi from SeaWiFS (1997-2008). Besides primary productivity (Behrenfeld and 

Falkowski, 1997a), ocean color has been used to estimate other properties including 

the global euphotic depth, the diffuse attenuation coefficient for downwelling irra-

diance (Loisel and Stramski, 2000), and the abundance and character of non-algal 

matter in the oceans (Garver and Siegel, 1997). 

2.2 The foundation of ocean color algorithms 

It is instructive to explain the fundamentals of radiative transfer theory in order 

to discuss ocean color algorithms in detail. Along with the references specifically 

cited, the explanation is adapted from Kirk (1994b). 

Radiation from the sun consists of electromagnetic (EM) packets of radiant en

ergy, called photons or quanta. These photons exhibit the properties of waves, and 

so they vary by wavelength (A), which describes the distance per cycle. The amount 

of energy within each packet varies inversely with the wavelength. In the EM spec

trum, wavelengths range from 1 0 - 3 to 1012 nm per cycle, and from high to low 

energy yield per photon, respectively. Photons traveling between 400 and 700 nm 

per cycle are visible as colors following the order of a rainbow, from violet to red, 

respectively. 

Photons reaching the Earth 's atmosphere and ocean surface interact with con

stituents in the respective media. These constituents either absorb or scatter the 

radiant energy. In absorption, the light energy changes to another form of energy 

such as heat or chemical energy. In scattering, the photons change in direction. Dif

ferent wavelengths of light, and hence different colors, absorb at different intensities 

and scatter at different intensities into different directions. The unique composition 

and abundance of the medium's constituents govern these properties. Consequently, 

the light field in the particular medium indirectly reveals the absorption and scat

tering processes, and thereafter, the potential characterization of the constituents. 
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2.2.1 Terms to describe light in a medium 

Models for quantifying the extant light and the absorption and scattering behav

iors of the various types of matter in the atmosphere and sea have been developed 

to investigate this phenomenon mathematically. Apparent optical properties (AOP) 

describe the extant light, while inherent optical properties (IOP) describe the ab

sorption and scattering behaviors (Preisendorfer, 1960). Note that all the following 

concepts are spectrally dependent, meaning they vary by wavelength, and so they 

are measured as spectra. 

A O P s 

The AGPs are derived from measured quantities for the radiant flux, which is the 

flux of photons. The radiant intensity is the radiant flux in a specified direction. The 

specified point is described as (z,0,<p). The terms z, 0, and tp, describe the direction 

of the path with respect to the Earth 's surface. The depth z defines the closest 

distance to the surface. The zenith angle 6 defines the direction from the vertical 

axis at depth z, and the azimuth angle <p defines the direction from a specified 

horizontal axis. See Figure 2-2. 

Consider the radiant intensity towards a certain point (z,0,(p). In constraining 

the space around the direction of flow with a solid angle (UJ) at that point, the radiant 

flux within the space is defined as the radiance (L). See Figure 2-3. This value is 

measured as W s teradian - 1 n m - 1 or quanta s _ 1 s teradian - 1 nm" 1 . In considering 

the solid angle that covers an entire hemisphere (2ir steradian), the radiance then 

essentially describes the radiant intensity traveling through the horizontal plane at 

point (z,6,ip), and is referred to as irradiance, E. This value is measured as W m - 2 

n m - 1 or quanta s - 1 m - 2 n m - 1 . 

Irradiance is often considered for the radiant intensity in the downwelling or 

upwelling directions, (denoted as E^ and E u , respectively). Taking the ratio of E u 

to Ed gives the reflectance (R), an AOP that describes the flux of light reflecting 

upward relative to the flux of light scattered downward from a point. 
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Another AOP is fQ, the diffuse attenuation coefficient for downwelling irradi-

ance. It describes the strength in light attenuation, which varies with the turbidity 

of the medium. The following equation explains its derivation from radiometric 

quantities. 

where Ed(0) is E^ at the surface and E^zx) is E^ at depth zi 

IOPs 

The IOPs are measured within a collimated beam of light with a quantifiable 

pathlength. The absorbance and scatterance indicate the intensity at which light is 

absorbed and scattered, respectively, relative to the radiant flux within the beam. 

Attenuance indicates the relative intensity at which the light is absorbed or scattered 

away from the beam. To relate these properties to the scale of L and E at a 

point in space, oceanographers consider the absorption (a), scattering (b), and beam 

attenuation (c) coefficients, which are the derivatives of absorbance, scatterance, and 

attenuance, respectively, with respect to the pathlength. The beam attenuation 

coefficient (c), is equivalent to the sum of the absorption (a) and scattering (b) 

coefficients. 

In particular, the scattering in the backwards direction, fy,, is pertinent to ocean 

remote sensing. The backscattering coefficient bf, is rigorously defined in terms 

of the volume scattering function (VSF), /?(#,A), where 0 is the scattering angle, 

and A is the wavelength (Mobley, 1994). For a collimated beam of light traveling 

through a thin layer of a medium, P(0,X) describes the scattered radiant intensity 

into the scattering angle 0 per unit irradiance of the incident light within the layer 

per unit volume of the medium (Kirk, 1994b; Mobley, 1994; Stramski et al., 2004). 

The backscattering coefficient bb is equivalent to the integration of/3(#,A) over the 

backward directions, 7r/2 < 9 < TV: 

(2.1) 
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bb(\) = 2TT [ (3(6, \) sm8 de (2.2) 

The terms 2ir and sin# represent the integration over the azimuth angle, which is 

assumed to be symmetric about the incident direction of the collimated beam. 

2.2.2 Application of the terms 

These concepts then allow for the consolidation of the interactions between pho

tons and the constituents of a medium within a linear narrow path of length r, as 

expressed in the equation of radiative transfer: 

dL(z, 9, v?)/dr = -c(z)L(z, 6, <p) + L* {z, 6, ip) (2.3) 

Here, the change in L with respect to the infinitesimal path of length dr. is defined 

as a linear combination of the reduction of light as it is scattered away from the 

path or absorbed, represented by c, and the addition of light as it is scattered into 

the path from all directions, denoted as L*(z,9,ip). The expression is also illustrated 

in Figure 2-4. 

A third term representing chlorophyll fluorescence at approximately 685 nm and 

Raman scattering by seawater molecules can be added to the right-hand side for 

accuracy (Gordon, 1989; Stramski et al., 2004). Fluorescence refers to the process 

in which the chlorophyll-a pigments re-emit incoming photons at a wavelength near 

685 nm. Raman scattering refers to scattering that changes the direction of a photon 

as well as its wavelength. Both fluorescence and Raman scattering are called inelastic 

scattering because they involve both a change in energy (equivalent to wavelength) 

and direction. 

2.2.3 Application to remote sensing 

Bio-optical oceanographers rely on Earth-observing satellites containing sensors 

that routinely measure radiance emanating from the atmosphere and the ocean. 
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The goal is to extract the water-leaving radiance (Lw), which is equivalent to Lu at 

z=0 just above the surface. Complicated evaluation processes are required to detect 

and remove other portions of the signal, including the radiance scattered from the 

atmosphere (a portion that often exceeds 90% of the signal) and the boundary sur

face between the ocean and the atmosphere. The water-leaving radiance, Lw, varies 

with viewing and solar zenith angle, and with atmospheric conditions. To correct 

or remove such variation, it is transformed to the normalized water-leaving radiance 

uLw. For nLw, the sun is considered directly overhead, and the atmosphere is con

sidered non-existent. Originally, the normalization was performed using the work of 

Gordon and Clark (1981). This publication first introduced the term norrnalized-

water-leaving radiance, defined as the following: 

where Fo is the solar incident irradiance at the top of the atmosphere (or the mean 

extraterrestrial solar irradiance), and E^(0+) refers to E^ at z=0 just above the 

surface, commonly denoted as Es. Today, this normalization is based on the work 

of Morel and Gentili (1991, 1993, 1996) and Morel et al. (2002). 

Various above- and in-water techniques are used to measure corresponding values 

of Lw at sea. Note that optical measurements often have subscripts u or d to 

represent the upward and downward direction, respectively. For above-water Lu, the 

measurement is made a small distance above the surface and includes the diffuse sky 

light reflected off the surface, which must be subtracted to derive L^. For in-water 

Lu, measurements at several depths are collected and extrapolated to just below 

the surface; the extrapolated value is denoted as LM(0-)(Werdell and Bailey, 2005). 

Then to obtain Lw, L„(0-) is multiplied by tu and f]~2, where t„ is the upward 

Fresnel transmittance of the air-sea interface (~0.975), r\ is the refractive index of 

seawater (Austin, 1974). 

Methods for measuring E^ are similar to those for measuring Lu. For in-water 

Ed, Erf(O-) is multiplied by t^ 1 to obtain E s , where t^ is the downward Fresnel 

irradiance transmittance across the air-sea in te r face^ 0.96) (Mueller et al., 2003b). 
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Lu is normalized by a corresponding in situ measurement of downwelling irradi-

ance, E^, a calculation that implicitly accounts for the influences of the solar zenith 

angle. The end product is known as the remote sensing reflectance, R r s , and is 

quantified in sr _ 1 . The ratio of nL^, at two wavelengths is approximately equal to 

the ratio of in situ Rrs at the same wavelengths. Slight differences are due to the 

wavelength dependence of Fo- Subsurface values for R ^ are denoted as r r s , and 

the translation from below- to above-water is approximately non-spectral (Austin, 

1974). 

2.3 R r s as a function of IOPs 

In relating the remote sensing reflectance, an apparent optical property, to the 

IOPs, the following relationship is commonly used (Gordon et al., 1975; Gordon and 

Morel, 1983; Morel and Prieur, 1977). 

This can be viewed as an expression of the probability that a photon entering the 

ocean is backscattered to the surface, since the fate of any such photon is either to be 

absorbed within the medium, or backscattered to the surface. Equation 2.5 states 

that the subsurface remote sensing reflectance is proportional to this "probability." 

Assuming that sea-air transmittance is non-spectral, the same statement can be 

made about above-water reflectance, R r s , and is often the basis for semi-analytic 

algorithms. 

A proportionality factor, g, is used to relate the left- and right-hand sides. The 

term g depends on the radiance distribution over all directions and the VSF in 

the backward direction (Gordon et al., 1988). Zaneveld (1995) presents a thorough 

explanation of the theory behind the dependence, work that is based on the measure

ments and models of Gordon et al. (1988), Morel (1988), and Gordon (1989). Most 

models assume that the in-water materials absorb much more than they backscatter 

(bf, <C a), and such models perform well mainly in oligotrophic regions in which 
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phytoplankton biomass co-vary with the non-algal matter (Morel and Prieur, 1977). 

Morel and Prieur (1977) label this type of water as Case 1, while Case 2 refers to 

water that contains non-algal materials that do not covary with the algal matter. 

This type is usually found in coastal waters. 

2.3.1 Partitioning the IOPs 

The terms a(A) and 6&(A) of Eqn. 2.5 can be partitioned into absorption by 

seawater, phytoplankton, non-algal particles, and colored dissolved organic matter, 

and backscattering by seawater and particles. Each component is further denned by 

a magnitude and spectral shape (Hoepffher and Sathyendranath, 1993; Roesler and 

Perry, 1995; Roesler et al., 1989). The magnitude varies with the concentration, 

and the spectral shape describes how the material absorbs or scatters for all the 

visible wavelengths, based on its composition. For instance, the spectral shape of 

backscattering depends on the size distribution, the refractive index, the structure 

and the mean shape of the particles in a water sample (Loisel et al., 2007). See 

Figure 2-5 for the examples of the IOP spectra. 

Absorpt ion 

Colored dissolved organic mat ter and non-algal particles. The category 

non-algal particles (NAP) is composed of bacteria, viruses, biological degradation 

products (including phytoplankton shells), inorganic particles (e.g., clay minerals, 

feldspars, quartz, calcite), and mixed organic-inorganic structures (Stramski et al., 

2004). Colored dissolved organic matter (CDOM) is formed from the degradation 

of living organisms from both terrestrial and aquatic origins. The biological decay 

processes primarily include direct excretion from phytoplankton, zooplankton, and 

bacteria, release during zooplankton grazing due to sloppy feeding, and viral lysis 

(Nelson and Siegel, 2002), and less likely by percolation from zooplankton fecal 

pellets (Steinberg et al., 2004). 

NAP and CDOM both absorb predominantly in the blue with an exponential 

decrease towards the red. The similar absorption behaviors of these two components 
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makes the separation of their absorption terms difficult when attempting to invert 

Eqn. 2.5, translating Rrs to the IOPs. While several different formulations have 

been developed (Twardowski et al., 2004), the absorption term has been commonly 

described as the following (Jerlov, 1976; Prieur and Sathyendranath, 1981; Bricaud 

et a l , 1981; Mobley, 1994): 

aCompW = acomp(\0) exp( -5(A - A0)) (2.6) 

The subscript comp reflects that the equation applies for CDOM, NAP, or both 

combined (denoted as CDM). The term acomp(A0) describes the magnitude of ab

sorption at a reference wavelength Ao, and the exponential term S describes the 

spectral shape, which for CDOM, varies with the chemical composition (Kitidis 

et al., 2006; Stedmon and Markager, 2001). CDOM from open-ocean waters reflects 

a biological signature acquired over a long period of time (Bricaud et al., 1981). 

CDOM from coastal areas may better reflect a strong terrestrial input (Bricaud 

et al., 1981; Nelson and Siegel, 2002). 

CDOM has been shown to serve several important roles in biogeochemical pro

cesses. It has influence on the steady-state concentrations of free radical species, 

and so it affects the photo-reactivity of surface waters (Dister and Zafiriou, 1993; 

Mopper and Zhou, 1990). It is subjected to photo-oxidation, a process that yields 

CO2 and CO from the breakdown of dissolved organic carbon (Miller and Zepp, 

1995; Riemer et al., 2000; Valentine and Zepp, 1993; Clark et al., 2002). CDOM 

chelates phytoplankton nutrients, such as ammonium and nitrite, and it is impor

tant in the photochemical cycling of Fe (Bushaw et al., 1996; Bushaw-Newton and 

Moran, 1999; Gao and Zepp, 1998; Kieber et al., 1989, 1999; Moran and Zepp,.1997). 

CDOM protects phytoplankton from damaging UV radiation at the surface (Arrigo 

and Brown, 1996), but reduces the light exposure to phytoplankton in deeper waters 

(Stedmon and Markager, 2001). 

Phytoplankton. Phytoplankton contain photosynthetic and non-photosynthetic 

pigments that inherently absorb light at specific and distinct wavelength regions. 

The chlorophyll-a pigment resides in all phytoplankton, and so historically, it has 
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been used to indicate the phytoplankton biomass. The pigment absorbs efficiently 

in the blue and red regions of visible light (maxima at approximately 443 and 664 

nm). Unlike the shape of CDM, the phytoplankton spectral shape cannot be uni

versally defined by a simple parameter because pigment composition varies among 

phytoplankton species and with respect to nutrient and light availability. Variations 

among species are referred to as photoadaptation, in which the evolution of pheno-

types have led to unique pigment-protein complexes for different species (Falkowski 

and Raven, 2007). Variations with respect to nutrient and light availability are 

referred to as photoacclimation (Falkowski and Raven, 2007). For instance, phy

toplankton cells will utilize their accessory pigments to block their chlorophyll pig

ments from excess light in high irradiance conditions, and produce more chlorophyll 

pigments to increase their chances of absorbing light in low irradiance conditions 

(Falkowski and Raven, 2007). 

The most common model to portray phytoplankton absorption is shown in the 

following equation (Mobley, 1994): 

a4>(\) = Chla*4,(\) (2.7) 

Here, Chi represents the magnitude, and a£(A), the chlorophyll-a-specific absorption * 

coefficient, describes the spectral'shape. Bricaud et al. (1995) defines ol(A) as the 

following, with the unit as m2 (mg Chi)-1. 

a%{X) = AChrB (2.8) 

A and B are spectrally-varying terms determined through a least-squares fit of mea

sured CM-normalized absorption and chlorophyll concentration. See Table 3 in 

Bricaud et al. (1995) for details. As a power-law function of Chi, this approach 

to modeling the spectral shape incorporates primarily the phenomenon of pigment 

packaging (Bricaud et al., 1995, 2004). Pigment packaging refers to the shading 

of pigments from light when confined in discrete cells as opposed to dispersed uni

formly like in an in vitro solution (Morel and Bricaud, 1981). The shading causes 

absorption per chlorophyll pigment to diminish with increasing cell size, since a 
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sample with small cells better simulates a solution with uniform dispersion than a 

sample with large cells (Morel and Bricaud, 1981). 

Seawater. Seawater, comprised of water molecules and ions, absorbs heavily in 

the red region and weakly in the blue region, due to different temperature-dependent 

intramolecular and intermolecular forces (Morel, 1974). Smith and Baker (1981) at

tempted to derive a maximum seawater absorption by subtracting, bbw, measured 

backscattering due to seawater, from measured K^, the diffuse attenuation coeffi

cient for the clearest natural freshwaters. Sogandares and Fry (1997) and Pope and 

Fry (1997) updated that work using two independent techniques: the photothermal 

method (Sogandares and Fry, 1997), in which the energy removed from the incident 

light field is converted to thermal energy and then measured, and the integrating 

cavity method (Pope and Fry, 1997), in which all energy removed from the incident 

light field is directly measured using optical fibers. Figure 2-5 displays the results 

from Pope and Fry (1997). 

Backscattering 

Particles . Similar to GDM absorption, particle backscatter occurs strongest at 

400 nm and decreases towards higher wavelengths. Morel (1974) modeled the rela

tionship as the following. 

bbp(X) = MAoXA/Ao)-'? :. (2-9) 

The exponent, r), describes the spectral shape for the backscattering of particles 

and &fcp(A0) describes the magnitude at a reference wavelength A0. The spectral 

shape flattens out for larger particles as -q approaches 0, and approximates molecular 

scattering for smaller particles as rj increases (r; = 4.322 for seawater). rj also varies 

with particle size distribution, which is characterized by an inverse relationship 

between particle size and the concentration of the given size (Stramski et al., 2004). 

Morel and Ahn (1991) and Stramski and Kiefer (1991) initially suggested that 

under non-bloom conditions, the particulate backscattering is predominantly at-
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tributed to detrital matter and not phytoplankton. However, their models uti

lized homogenous spheres, while more recent models incorporating layered spheres, 

proved that phytoplankton have the capability to backscatter as strongly as detrital 

matter in clear waters (Kitchen and Zaneveld, 1992; Zaneveld and Kitchen, 1995) 

and this statement has been validated with empirical evidence (Vaillancourt et al., 

2004). Stramski et al. (2004) provides an extensive review of the various contri

butions (colloids, bacteria, phytoplankton, biogenic detritus, minerogenic particles, 

and bubbles) to particulate scattering in the ocean. ' • -

Seawa te r . Morel (1974) has examined previous studies and established the total 

scattering coefficient for pure sea-water with salinity between 35 %o and 39 %o. 

The backscattering coefficient for seawater is defined as half the total scattering 

coefficient, and this value has been considered as known (Stramski et al., 2004; 

Twardowski et al., 2005). However, the uncertainty in scattering by seawater may 

be greater than 10% with a strong dependence on salinity (Twardowski et al., 2007). 

The current widely-used spectra is displayed in Figure 2-5. The spectral value can 

also be expressed using Eqn. 2.9 with rj as 4.322 (Morel, 1974). 

2.3.2 The transformation of seawater R^ with increasing organic 

matter 

The following explanation was introduced by Morel and Prieur (1977). See 

Figure 2-6 for the graphical description. According to the known behavior of IOPs, 

clear waters with low concentrations of organic matter such as phytoplankton cells 

would yield an r r s spectrum generally dominated in ' the lower blue wavelengths, 

since seawater absorbs strongly in the red region and backscatters strongly in the 

blue region. 

With the assumption that fy, <C a, changes in a will affect the r r s spectrum more 

strongly than changes in fy,. Consequently, at first approximation, the addition of 

organic matter to the water will change the r r s spectra according to the absorption 

behaviors of that organic matter, whether it is phytoplankton or colored detrital 

matter. Phytoplankton pigments absorb predominantly in the blue and red, and 
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colored non-algal matter absorbs strongly in the blue region. Both types of matter 

cause the dominant reflectance to shift towards greener wavelengths. As a result, 

oligotrophia clear blue waters in the open ocean differ from the eutrophic green 

waters of the coastal regions, which have larger concentrations of organic matter. 

2.4 Types of algorithms 

Morel and Gordon (1980) claim that ocean color algorithms can exist in three 

forms: empirical, semi-empirical (also known as semi-analytic), and analytic, but 

Sathyendranath et al. (1989) explain that the non-linearity within the system and 

similarities between optical signatures reduce the feasibility of the analytic type. 

Therefore, most algorithms are either empirical or semi-analytic (IOCCG, 2006). 

However, analytical simulations of the light propagation in the water have been 

established that rely on the radiative transfer equation to associate the IOPs to 

the diffuse attenuation coefficient for downwelling irradiance, K^, and irradiance 

reflectance, R (Loisel and Stramski, 2000). These two AOPs can be calculated from 

in situ measurements of E^ and E u , and estimated from remote sensing (Loisel and 

Stramski, 2000). Additionally, developments have been made to solve the radiative 

transfer of sunlight in ocean-atmospheric systems using successive-orders of scatter

ing that may be implemented in ocean color algorithms in the future (Zhai et al., 

2009). 

2.4.1 Empirical algorithms 

Empirical algorithms include the OC4v.4 for the SeaWiFS sensor (O'Reilly et al., 

2002), the OC3M for the MODIS Aqua (O'Reilly et al., 2002), and the MERIS neural 

network algorithm (Doerffer and Schiller, 2000; Schiller and Doerffer, 2005; Doerffer 

and Schiller, 2007). The OC4v.4 and the OC3M are ratio algorithms that relate 

the R r s to Chi, and they were formed from empirical analyses of corresponding 

measurements of Chi, ~LW, and E s at various locations (O'Reilly et al., 2002). These 

algorithms require the ratio of R r s at two wavelengths in order to minimize the 

sensitivity to absolute measurment errors (e.g., atmospheric correction). 
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The ratio of nL^ at two wavelengths is proportional to the ratio of Rrs, cal

culated as Lyj/Es, measured in situ at the same wavelengths. In the OC4v.4 and 

OC3M algorithms, Chi is approximated through a fourth-order polynomial func

tion of the Rrs ratio. The following equations refer to the OC4v.4 algorithm for the 

SeaWiFS sensor (O'Reilly et al., 2002; Carder et al., 1999): 

- logw(Chla) = 0.366MBR - 3.067MBR + 1.930MBR2 

+ 0.649MBR3-l.532MBR4 (2.10) 

where MBR is the Maximum Band Ratio defined by the following. 

MBR = logW(max[RrsM3,Rrs4i90,RrS510}/Rrs555) (2.11) 

The maximum of R ^ at 443, 490, and 510 serves to detect a valid signal in the 

blue region as the signal at 443 nm may be too weak in green waters. This value is 

divided by the R ^ at 555 nm, a green wavelength, which tends to be insensitive to 

the chlorophyll level. Then the base-10 logarithm of the value is input to the fourth-

order polynomial, Eqn 2.10. The OC3M algorithm used for MODIS, is similar, only 

it selects the maximum of R ^ from two blue wavelengths (443 and 490 nm), since 

MODIS lacks a band at 510 nm (Lee and Carder, 2002). 

For the neural network algorithm, an extensive dataset of IOPs and AOPs is 

used to train and validate a neural network to produce IOP estimates from measured 

AOPs (Doerffer and Schiller, 2000; Schiller and Doerffer, 2005; Doerffer and Schiller, 

2007): Although they are currently implemented for MERIS, the European ocean 

color satellite, neural network algorithms will not be discussed in this work. 

2 .4 .2 S e m i - a n a l y t i c a l g o r i t h m s 

Semi-analytic algorithms employ some inversion from AOPs to IOPs through 

Eqn. 2.5, and the empirical relationships for the decomposition of a and fy,. They 

include the GSM Semi-Analytical Bio-Optical Model (GSM) (Garver and Siegel, 
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1997; Maritorena et al., 2002), the Quasi-Analytical Algorithm (QAA) (Lee et al., 

2002), and the linear matrix inversion algorithm (Hoge and Lyon, 1996). For the 

development of the GSM and the linear matrix inversion, in situ values of r r s at 

several satellite wavelength bands and the empirical approximations for the spectral 

shapes S, rj, and al are used to approximate the magnitudes a^, acdm, and 6(,p. The 

IOPs for water are considered known. Eqn. 2.5 at several satellite wavelength bands 

forms a system of over-determined equations, and several optimization schemes can 

be attempted to estimate the IOP magnitudes. Chi can then be extracted from the 

estimated magnitude for phytoplankton absorption at 443 nm. The GSM algorithm 

uses the Levenberg-Marquardt optimization (Garver and Siegel, 1997; Maritorena 

et al., 2002), and a simulated annealing technique to tune the process (Maritorena 

et al., 2002). The algorithm by Hoge and Lyon (1996) uses the matrix inversion 

optimization. To apply these algorithms, nL^ measurements from satellites are 

normalized by Fo to retrieve R r s , and this is translated to the sub-surface vrs. 

The Quasi-Analytic Algorithm, QAA (Lee et al., 2002), employs a manipulation 

of Eqn. 2.5 and empirical approximations for total absorption at 555 nm and the 

spectral shape r\ in Order to obtain values for total absorption and particle backscat-

tering at all wavelengths. Then empirical approximations for a^>410/a^440 and the 

spectral shape, S, are used to deconvolve the total absorption into its different parts. 

2.4.3 Analytical methods for the IOP-Irradiance relationship 

The analytical methods involve the numerical simulation of the radiative transfer 

equation through various techniques including the invariant .embedding method, the 

Monte Carlo method, the discrete ordinate method, and the matrix-operator method 

(Zhai et al., 2009; Albert and Mobley, 2003; Boynton and Gordon, 2002; Chami and 

Robilliard, 2002; Loisel and Stramski, 2000; Gordon et al., 1975; Gordon, 1991; Kirk, 

1981, 1994a). This approach requires an estimate of the VSF (Stramski et al., 2004), 

can account for a non-homogenous depth profile (Loisel and Stramski, 2000), and 

does not include the decomposition of a (Loisel and Stramski, 2000). 
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2.5 Assumptions in the implementation of chlorophyll 

algorithms 

Upon using remotely sensed Chi estimates in biogeochemical and primary pro

ductivity models, as attempted by many (Eppley et al., 1985; Sathyendranath et al., 

1995; Longhurst et al., 1995; Antoine et al., 1996; Behrenfeld and Falkowski, 1997b), 

several considerations have been made. 

First, I discuss the concerns for estimating the greatest depth above which phy-

toplankton have access to light, known as the euphotic depth (zeu). Due to regional 

variability in seawater turbidity, this depth is defined in terms of the strength in 

light attenuation. Specifically, zeu is equivalent to 4.6 optical depths, where the op

tical depth is defined as the ratio of 1 over Kd . At zeu, the light level has attenuated 

to exp(-4.6) = 0.01 (or 1%) of the level at the surface. 

Although zeu is exactly defined, approximately 90% of a satellite sensor's nL„, 

signal is detected from the first optical depth (z90), known as the "e-folding" depth 

(Gordon and Mccluney, 1975). Here, the light level has attenuated to exp(-l)=36.8% 

of the level at the surface (Gordon and Mccluney, 1975). Ocean color chlorophyll 

algorithms are tuned to zgo, but primary productivity models require Chi estimates 

covering the entire euphotic layer (down to zeu). Consequently, empirical meth

ods were developed to estimate the average Chi for the entire euphotic layer from 

the satellite-derived reflectance measurements that originated mainly from the first 

optical depth (Morel, 1988; Morel and Berthon, 1989). 

As part of this extrapolation, an assumption was made to describe the chloro

phyll profile. Often in open-ocean waters, there exists a deep chlorophyll maximum, 

the depth at which Chi is the greatest, that falls below the first optical depth. Such 

issues have been problematic for obtaining accurate estimates of primary production 

(Stramska and Stramski, 2005). 

Second, the estimated chlorophyll biomass represents a net result of production 

and the loss terms: grazing and respiration. The loss terms have been difficult to 

account for empirically. Sverdrup's 1953 critical depth hypothesis (Sverdrup, 1953) 
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employs a constant rate of respiration, and some production models follow suit 

(Behrenfeld and Falkowski, 1997a), while more complex ones rely on oxygen con

sumption experiments using dark and light bottles (Williams, 1998). Additionally, 

a change in standing stock can be viewed as either an actual change in net pro

duction or a possible vertical or horizontal redistribution of chlorophyll (Menesguen 

and Gohin, 2006). 
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Table 2.1: Wavelength range for MODIS, SeaWiFS, and CZCS (nm) adapted from 

Martin (2004) 

MODIS 

405-420 

438-448 

483-493 

-

526-536 

546-556 

662-672 

673-683 

743-753 

862-877 

SeaWiFS 

402-422 

433-453 

480-500 

500-520 

-

545-565 

660-680 

-

' 745-785 

845-885 

GZCS 

-

433-453 

-

510-530 

-

540-560 

660-680 

- . 

-

700-800 
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Figure 2-1: Tools and products of ocean remote sensing". Top: The SeaWiFS 

satellite sensor, Bottom: The SeaWiFS Global 9-km climatological mean estimate 

of Chi: September 1997-January 2009 (Both courtesy of NASA's Ocean Biology 

Processing Group). 
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Figure 2-2: T h e ang les used t o de sc r ibe t h e g e o m e t r i c a l s t r u c t u r e of r a d i 

ance . The zenith angle, 9, describes the angle of a radiance path from the vector 

normal to the horizontal surface, and the azimuth angle, if, describes the angle of the 

radiance path from a specified vector normal to the vertical plane. This schematic 

was adapted from Chapter 1 of Kirk (1994b). 
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Figure 2-3: T h e g e o m e t r y for r a d i a n c e a t a p o i n t on a ho r i zon ta l sur face . 

The radiance, L(0,ip), is constrained within the solid angle, dw. dS cos# is the area 

within the solid angle normal to the radiance path's direction. dS is the projection 

of this area onto the horizontal surface. This schematic was adapted from Chapter 

1 of Kirk (1994b). 
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Figure 2-4: A schematic of the radiative transfer of light through a narrow 

beam. The change in radiance along the path is dependent on the scattering and 

absorption processes occurring within the path. This schematic was adapted from 

Chapter 1 of Kirk (1994b). 
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Figure 2-5: A n example of absorption and backscattering spectra. Top: 

Absorption spectra for the total sample, non-algal particles, CDOM, phytoplankton, 

and water. Bottom: Backscattering spectra for the total sample, particles and water. 

The water spectra are constant, the rest change with alterations in composition and 

distribution. 
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Figure 2-6: The effect of chlorophyll on water-leaving radiance. The radiance 

at 443 nm decreases and the radiance at 550 nm increases (but not as strongly) with 

increasing chlorophyll concentration. In this transition, the water's color changes 

from blue to green. 
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CHAPTER 3 

OCEANIC BIASES IN THE EMPIRICAL 

CHLOROPHYLL ALGORITHMS 

3.1 NOMAD v. 1 data 

Oceanic biases were found in the empirical chlorophyll algorithms through an 

analysis of NOMADv.l, NASA's global dataset of bio-optical in situ measurements 

(Werdell and Bailey, 2005). NOMADv.l contains simultaneous stations of in situ 

Chi, and in situ Lw and E s at 20 wavelengths used for satellite sensors, made 

by numerous research institutions and consolidated into NASA's SeaBASS archive 

(SeaWiFS Bio-optical Archive and Storage System). Stations were taken at various 

locations between 1993 and 2003. See Figure 3-1 for the location of the stations at 

which measurements were collected. The Chi in NOMADv.l ranges from 0.012 to 

72.12 mg m - 3 , and the geometric mean for Chi is 1.18 mg m - 3 . 

3 .1 .1 T r o p h i c c a t e g o r i e s 

In an at tempt to organize the global data, the wavelength used to calculate the 

Maximum Band Ratio (MBR): oligotrophic for the 443 nm, mesotrophic for 490 

ran, and eutrophic for 510 nm, was used to define three "trophic" categories. See 

Figure 3-3. Simultaneously, these categories also reflect different ranges in Chi. The 

oligotrophic category generally represents Chi between 0.01 and 0.31 mg m - 3 , the 

mesotrophic category, between 0.31 and 3.1 mg m~3 , and the eutrophic category, 

above 3.1 mg m~3 . NOMAD was sorted by trophic and ocean category for analysis; 

the number of stations in each subset is shown in Table 3.1. 
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3.1.2 Consolidation of the dataset 

Detailed descriptions of the various methods for producing Chi and Rrs mea

surements are provided in Werdell and Bailey (2005). Below are just some of the 

issues considered for compilation. 

Fluorometric chlorophyll measurements vs H P L C chlorophyll measure

ments 

The chlorophyll concentrations were predominantly made either using a High 

Pressure Liquid Chromotography (HPLC) instrument or a fluorometer (Werdell and 

Bailey, 2005). The HPLC utilizes the differences in polarity of the molecules in the 

sample to distinguish chlorophyll pigments, and the fluorometer exposes the sample 

to a light at a blue wavelength and measures the intensity of light emitted at 683 nm 

as chlorophyll fluorescence. The difference between the two is that the fluorometer 

measures fluorescence due to chlorophyll-a pigments along with fluorescence due 

to inorganic compounds and degradation products such as chlorophyllyde-a and 

pheophytin, while an HPLC yields different concentrations for the intact pigments 

' and each of the degradation products, so that the sum of these concentrations would 

be approximately equivalent to a corresponding fluorometer measurement (Mueller 

et al., 2003a). 

Fluorometer measurements are less accurate and influenced by regional and tem

poral biases, but they are cheaper than the HPLC method. Research groups are 

advised to account for such biases through a scaling factor specific to each cruise. 

The factor is determined by a comparison of fluorometric measurements with corre

sponding HPLC measurements for total Chi made for a subset of the observations 

on the cruise (Mueller et al., 2003a). 

Above- vs . below-water radiometers 

Radiometers for producing Lw and E s come in two forms: above- and below-

water. Above-water radiometers are placed on either a research ship or moored 
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station. Below-water radiometers descend from the sub-surface interface towards 

deeper depths. The upward-facing sensors generally measure E^ and the downward-

facing sensors measure Lw (Morrison, personal communication). The E,̂  sensor 

is a flat cosine detector whereas the Lu sensor contains a rim around the signal-

receiving aperture that designates the solid angle of the measurement (Mueller et al., 

2003b). Measured values are translated to the above-surface measurements Es and 

Lw according to the exponential attenuation with depth (Mueller et al., 2003b). 

Stations w i th missing components 

For NOMAD, several institutions submitted their data to SeaBASS as final 
( 

above-water Pvs measurements and some included E s . Lw was then calculated 

as the product of Rrs and E s . E s was estimated from a clear sky model if it was 

not available (Werdell and Bailey, 2005). For NOMAD v.l , roughly 40% of the 

above-water measurements were in this format. 

Measurements from a flow-through sys t em 

A small portion of the Chi and radiance values was observed underway via a 

flow-through fiuorometric system (Werdell and Bailey, 2005). These measurements 

were averaged over a 15-minute run. Exceptions to these measurement constraints 

are described in Werdell and Bailey (2005). 

3.2 Algorithm uncertainty defined 

The discrepancies between in situ and satellite-based estimates of Chi represent 

the algorithm uncertainty. Quantitatively, the term that will be used for analysis is 

the relative chlorophyll error (RCE), defined as the following. See Figure 3-2. 

RCE = a l g ° r i t h m CM (3.1) 
in situ Chi 

The RCE is essentially the algorithm's estimate of Chi expressed in relation to 
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the corresponding in situ observation from NOMAD based on the maximum R r s 

band ratio (MBR). Hereafter, I designate RCE > 1, in which the algorithm Chi 

product is greater than the in situ measurement, as an overestimation by the algo

rithm. RCE < 1, in which the algorithm Chi is less than the in situ measurement, 

is denoted as an underestimation by the algorithm. 

With the assumption that the distribution of RCE is log-normal in NOMAD 

(Campbell, 1995), statistics such as the mean and standard deviation are calculated 

on the base-10 logarithm of RCE, hereafter denoted as A. 

3.3 Oceanic biases 

An investigation of NOMAD v.l revealed that the algorithms produced Chi 

estimates that systematically deviated from the corresponding in situ values when 

the data were sorted by ocean (Figure 3-4). Such systematic algorithm uncertainty 

is denoted hereafter as the oceanic biases. See Table 3.2 in which the oceanic biases 

are indicated by the mean of the A and the median RCE ratio within each ocean 

category and within each ocean-trophic category. The median ratio is equivalent to 

the mean of the A and is calculated as the following. 

median RCE ratio = iQ^^(log error) ^ 

It is easier to interpret than the mean of the A. A median ratio x such that x > 1 

indicates an algorithm overestimation by x — 1 * 100%. A median ratio x such that 

x < 1 indicates an algorithm underestimation by x—1 * 100 %. 

The root mean squared error (RMSE), provided for the ocean categories, reflects 

a combination of the mean and standard deviation for A. 

For the eutrophic category, the algorithm overestimated Atlantic Ocean stations 

by 34% at the median, and underestimated Pacific Ocean stations by 20% at the 

median. For the mesotrophic category, the algorithm overestimated Atlantic Ocean 

stations by 25 % at the median, and underestimated Pacific Ocean stations by 22 

% at the median. For all trophic categories, the algorithm underestimated stations 
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from the Southern Ocean by about 50% at the median. Stations from the Indian 

Ocean were insufficient for analysis. 

3.4 Possible artifacts 

Four factors were considered as possible explanations for the apparent oceanic bi

ases. These include the brand of the radiometer used to measure Lw and E s , whether 

the radiometer was the above- or below-water type, whether the Chi measurements 

were made either using a fluorometer or an HPLC, and the project investigator 

for the observation. Based on an analysis of variance (ANOVA), effects from these 

features were found to be insignificant (P< 0.01). 

Effects from the combination of methods used for each station was considered 

when sorting NOMAD by project investigator, and the analysis verified the oceanic 

biases (Figure 3-5). The data shown highlight the stations from investigators who 

contributed data from more than one ocean. The stations are sorted by ocean 

and by investigator. In the eutrophic and mesotrophic categories, the algorithm 

overestimates Robert Arnone's Atlantic points but underestimates his Pacific ones, 

indicating that the ocean biases exist for the same investigator. Greg Mitchell's 

stations span all three oceans, and the algorithm systematically over- or under

estimates them according to ocean rather than investigator. In the Southern Ocean, 

Ray Smith and Greg Mitchell are the only investigators, and the algorithm under

estimates both their data, indicating that the ocean bias exists regardless of the 

investigator. 

3.5 Hypotheses about optical differences 

I speculate that the oceans may in fact be optically different. Based on past 

research on regional differences in IOPs, I hypothesize that the oceanic biases can 

be explained by influences from CDM (CDOM and NAP) and the phytoplankton 

community structure. Using NOMAD v.2, which contains coincident absorption 

measurements for a subset of stations (Werdell, white paper 2005), I was able to 
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evaluate the validity of the oceanic biases and the supposed sources for the algorithm 

uncertainty. Results are reported in Chapter 4. 

This topic of regional variation in bio-optical properties has been undertaken by 

oceanographers in the past using satellite products and models (Siegel et al., 2005a; 

Brown et al., 2008), and regional scale in situ stations (Darecki and Stramski, 2004; 

D'Ortenzio et al., 2002; Garcia et al., 2005; Gohin et al., 2002; Morel and Maritorena, 

2001; Morel et a l , 2007; Kahru and Mitchell, 1999; Mitchell and Holmhansen, 1991; 

Mitchell and Kiefer, 1988a; Dmitriev et al., 2009; Lutz et al., 2006; Pan et al., 2008; 

Ahn et al., 2008; Fenton et al., 1994; Werdell et al., 2009). This thesis reflects the 

first attempt to study the topic using in situ data on a global comprehensive scale. 

Results may allude to regional differences in biogeochemical processes, which shape 

the bio-optical properties over long time scales. 

Past work based on empirical evidence has mainly associated the regional vari

ation to differences in the the abundance of CDM (CDOM and NAP) and the 

phytoplankton community structure, and this has been indicated in AOP and IOP 

measurements. Specifically, the magnitude of pigment-specific particulate absorp

tion a* in various locales has been found to vary 10-fold as a result of variations in 

pigment packaging, species composition, and the abundance of detrital matter rela

tive to phytoplankton biomass (Mitchell and Holmhansen, 1991; Maske and Haardt, 

1987; Mitchell and Kiefer, 1988a,b; Bricaud et a l , 1988; Morrow et al., 1989; Bricaud 

and Stramski, 1990). These factors were also suggested as the cause for lower signals 

of the pigment-specific Krf(A) in polar regions compared to those from temperate 

regions (Mitchell and Kiefer, 1988b; Dierssen and Smith, 2000; Mitchell, 1992). An

other possible factor is regional variations in the pigment-specific backscattering 

coefficients', which alludes to taxonomical differences in the phytoplankton commu

nity (Morel, 1987; Dierssen and Smith, 2000). 
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Table 3.1: Number of stations within each ocean and trophic category for NOMAD 

v. 1. 

N O M A D version 1 

Chi Category 

Eutrophic 

Mesotrophic 

Oligotrophic 

Total 

Atlantic 

373 

221 

521 

1113 

Pacific 

96 

236 

265 

598 

Southern 

64 

176 

T56 

396 

Total 

534 

665 

1009 

2208 

Table 3.2: Statistics for N O M A D v . l . TOP: The mean, standard deviation, 

and RMSE for A, and the median RCE ratio categorized by ocean. BOTTOM: 

Mean of A and the median RCE ratio categorized by ocean and maximum Rrs 

band (Eutrophic, Mesotrophic, and Oligotrophic). 

Ocean 

Atlant ic 

Pacific 

Indian 

Southern 

Global 

N 

1113 

598 

101 

396 

2208 

mean of 

A 

0.06 

-0.07 

-0.08 

-0.30 

-0.05 

median 

R C E 

ra t io 

1.14 

0.85 

0.83 

0.50 

0.89 

st. dev. of 

A 

0.22 

0.21 

0.19 

0.21 

0.25 

R M S E of 

A 

0.23 

0.22 

0.21 

0.37 

0.26 

Ocean 

Atlant ic 

Pacific 

Indian 

Southern 

Global 

Eut rophic 

N ' 

373 

96 

2 

64 

534 

mean 

of A 

0.13 

-0.10 

0.48 

-0.27 

0.04 

median 

R C E 

ra t io 

1.34 

0.80 

. 3.05 

0.53 

1.10 

Mesotrophic 

N • 

221 

236 

32 

176 

665 

mean 

of A 

0.10 

-0.11 

0.01. 

-0.33 

-0.09 

median 

R C E 

ratio 

1.25 

0.78 

1.03 

0.46 

0.80 

Oligotrophic 

N 

521 

265 

67 

156 

1009 

mean 

of A 

0.00 

-0.03 

-0.15 

-0.27 

-0.06 

median 

R C E 

ra t io 

1.00 

0.93 

0.72 

0.54 

0.87 
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NOMADv.1 with OC4v.4: Log Error of Chi 

1 1 i i i i i , i n 

0.4 0.63 1 1.58 2.51 3.98 6.31 10 

Maximum R Band Ratio (MBR) 

Figure 3-2: N O M A D v . l w i th OC4.v4: Log Error of Chi , (A) . NOMADv.1 

is displayed with the OC4 v.4 algorithm, and the log error of Chi is illustrated. 

NOMADv.1 with OC4v.4: Trophic Categories 
1 0 0 , 1 , , 1 i -

1 u : »• J t 1 : J 1 ^J 

0.4 0.63 • • 1 1.58 2.51 3.98 6.31 10 

Maximum R Band Ratio (MBR) 

Figure 3-3: N O M A D v . l wi th OC4v.4: the trophic categories. For the 

eutrophic stations, the maximum wavelength used for the MBR calculation is 510 

nm. For the mesotrophic stations, it is 490 nm and for the oligotrophic stations, it 

is 443 nm. 
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Figure 3-4: N O M A D v . l wi th OC4v.4: the oceanic biases. The oceanic 

biases are illustrated in four panels. TOP LEFT: Atlantic. TOP RIGHT: Pacific. 

BOTTOM LEFT: Southern. BOTTOM RIGHT: Indian. 
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OC4v.4 

Figure 3-5: The investigator analysis in support of the oceanic biases. 

Investigators contributing data from more than one ocean are color coded. Biases 

are consistent with data from the same ocean. 
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CHAPTER 4 

OCEANIC DIFFERENCES EXPLAINED BY 

INHERENT OPTICAL PROPERTIES 

4.1 NOMAD v.2 data 

NOMAD v.2 contains a subset of stations (n=696) for the Atlantic, Pacific, and 

Southern oceans with coincident absorption measurements including values for at0t, 

&cp, o-cdomi and Onap at the 20 wavelengths used for satellite sensors (white paper, 

.Werdell 2005). These measurements were made using lab spectroscopy as described 

in Pegau et al. (2002), and they were integrated over the first-optical depth (white 

paper, Werdell 2005). Figures 4-1 - 4-3 show the locations of these stations color-

coded to represent NOMAD v.2 with and without absorption measurements. Table 

4.1 displays the number of stations in each ocean-trophic category. 

In this subset, only the meso- and oligotrophic categories contains a sufficient 

number of stations from the Southern Ocean. See Figure 4-4 and Table 4.2. Con

sequently, such categories, especially the mesotrophic, will be utilized to consider 

the effects on the oceanic biases, while all stations will be utilized to consider algo

rithm uncertainty in general. Figure 4-5 illustrates the algorithm's oceanic biases 

within the mesotrophic category, which contains the most stations from the Southern 

Ocean. 

4.2 Oceanic biases in the total absorption properties 

Further validation of the oceanic biases involved the following approximation of 

the MBR, which is based on Equation 2.5. , 

* 
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MBR =
 R™W „ atat(555)bb(X) ^ a to t(555) 

Rrs(555) atot(A)6fe(555) a tot(A) k ' ; 

Here, A represents the wavelength used to calculate the MBR: 443, 490, or 510, 

and atot is used to specify total absorption by all ocean water constituents (also 

used hereafter). The approximation reflects a way to represent the MBR in terms of 

the IOP variables available in NOMAD v. 2. It is important to recognize here that 

the IOP measurements, made from laboratory spectroscopy methods, are completely 

independent from the radiometric measurements. Since the backscattering measure

ments in NOMAD v.2 were not sufficient for analysis, the resulting approximation 

only involves the total absorption properties. 

Upon relating the total absorption ratio to Chi, several options were available 

because MBR was calculated differently for every observation, according to the 

maximum of RrSAA3, Rj-,5490, and R ^ I O . These options were atot555/at0t443, 

a to t555/a4ot490, atot555/a to t51Q, and a tot555/afo tA, for A equal to the wavelength 

used to calculate MBR. See Figure 4-6. 

Note that relating Chi to ai0j555/'a^A resulted in the worst correlation. In fact, 

it appears that the correlation between Chi and atOi555/a tot510 for the eutrophic 

category is similar to that between Chi and afot555/atO£490 for the mesotrophic, 

and both are better than the correlation between Chi and at0t555/at0t443 for the 

oligotrophic category. I speculate that this feature is due to strong variability in 

absorption by chlorophyll-a pigments at 443 nm, compared to the variability at 490 

and 510.nm.. 

Since the mesotrophic category was a focus for the oceanic biases, the selected 

approximation was ajot555/atot490,.with r2 — 85% for the correlation between Chi 

and a tot555/atot490. 

The fourth-order polynomial fit to the relationship between Chi and aiot555/atO£490 

served in place of the standard algorithm to distinguish between under- and over-

estimations. Similar oceanic biases about the polynomial fit were present (Figure 

4-7). Statistics for the polynomial fit (designated as RCE a t o t and Aatot), confirm 

these results (Figure 4-8 and Table 4.3). For the eutrophic category, the polynomial 
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fit overestimated Atlantic Ocean stations by 10% at the median, and underestimated 

Pacific Ocean stations by 40% at the median. For the mesotrophic category, the 

polynomial fit regression line overestimated Atlantic Ocean stations by 7% at the 

median, and underestimated Pacific Ocean stations by 26% at the median. For the 

mesotrophic and oligotrophic categories, the polynomial fit underestimated stations 

from the Southern Ocean by about 50% at the median. 

Accordingly, the replacement of the MBR with the total-absorption approxima

tion serves as an independent method to validate the existence of the oceanic biases 

related to true optical differences among the oceans. 

4.3 Structure of analysis 

In order to evaluate the effects of CDM and phytoplankton community structure 

on algorithm uncertainty, the parameters, acdm443 / Chi, 0^443/ Chi, and a phyto

plankton size model S/ from Ciotti et al. (2002), were determined to represent the 

different effects. Qualitative and quantitative analyses involved the relation of RCE 

to the parameters separately and combined. The qualitative analyses are visual 

(e.g. Figures 4-9) and self-explanatory. Additionally, the relation of RCEat0t to the 

parameters was qualitatively analyzed. See Sections 4.4.2 and 4.5.3. For the quan

titative analyses of the separate parameters, NOMAD was sorted by trophic and 

ocean-trophic categories, and certain statistics were computed (hereafter denoted 

as "category statistics"). The distributions for acrfm443/CW and 0^,443/C%/ were 

assumed to be log-normal, and so the category statistics included the mean and 

standard deviation of the base-10 logarithm of two parameters, and their median 

ratios. For S/, the category statistics included the mean and standard deviation. 

The category statistics for the RCE (using the log error) were then analyzed in 

relation to the corresponding statistics for the respective parameter, such that RCE 

is expressed as a function of each effect parameter (e.g. Figure 4-10). 
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4.4 Effects of colored detrital matter (CDM) 

The hypothesis that the oceanic biases can be explained by the effects of CDM 

is considered here. The presence of CDM was represented by the magnitude of 

the CDM absorption signal at 443 nm, assuming that the effects of backscattering 

due to CDM are negligible as commonly done for Case-1 waters (Morel and Prieur, 

1977). The wavelength 443 nm is that at which acc/m exhibits a substantial signal 

(since acdm is maximum at 400 nm in the visible spectrum and diminishes from there 

towards longer wavelengths), and that at which chlorophyll pigments predominantly 

absorb light. 

An evaluation of the impact from CDM on algorithm uncertainty essentially 

involves the comparison between measurements of acdm443 and their corresponding 

algorithm-estimated Chi for each station. In order to indicate algorithm uncertainty, 

it is desired to utilize the RCE parameter. Consequently, the analysis involves a 

comparison between acdm443/Cft! and RCE. Here, both acdm443 and the algorithm 

Chi are normalized by the corresponding in situ Chi. 

4.4.1 Effect of CDM with respect to chlorophyll concentration 

Figure 4-9 displays the qualitative analysis performed to investigate the effect of 

CDM on algorithm uncertainty through the parameter acdm443/CW.. Table 4.4 and 

Figure 4-10. provide the quantitative results. 

Algori thm uncertainty in general 

With respect to Chi, the effect of CDM on algorithm uncertainty is clear for 

the eutrophic and mesotrophic stations and less so for the oligotrophic stations, 

as shown in the Global panel of the Figure 4-9. As ac^m443/Chi increases, the 

algorithm uncertainty changes from under- to overestimation. 

The category statistics are presented in Table 4.4. Relating the category means 

for acdm4:A3/Chl to those for RCE in Figure 4-10 provides a confirmation of the 

qualitative analysis in the form of positive correlations for all three trophic cate-
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gories. Furthermore, the rate of increase in aC(im443/Chi with RCE is relatively the 

same for all three oceans of the oligo- and mesotrophic stations. 

Oceanic biases 

Systematic differences in acdm443/ Chi are evident in the ocean-specific panels 

of Figure 4-9, and these are further validated in the statistics. The association of 

acdm4:43/ Chi to the oceanic biases, best represented through the mesotrophic At

lantic and Southern Ocean stations, is present in Figure 4-10. The Southern Ocean 

^mesotrophic stations, which are, on average, most underestimated by the algorithm, 

have a median ac^m443j Chi value of 0.027, while the Atlantic Ocean mesotrophic 

stations, which are, on average, most overestimated by the algorithm, have a me

dian acdm443/Chl value of 0.108, which is significantly higher than its Southern 

Ocean counterpart. In the eutrophic category, the slightly underestimated Pacific 

Ocean stations have a median acdm443/Chi value of 0.028, which is significantly less 

that the median acdm443/Chi value of 0.079 for the overestimated Atlantic Ocean 

stations. For the oligotrophic category, the Southern Ocean stations, which are un

derestimated by the algorithm, have a median acdm443/Chl value of 0.057. This 

value is compared to the median acdm443/Chl value of 0.135 for the overestimated 

Atlantic Ocean stations. 

4.4.2 Influence of the backscattering spectral shape 

The analysis of the effect of CDM on RCE o t o t was performed by approximating 

the MBR with 0^555/'ajot490. See Figure 4-11, which shows the comparison of the 

analyses of CDM using MBR (left) and atot555/oiOt490 (right). For the oligotrophic 

category, systematic variation in acdm443/Chl with respect to RCEat0t (right) is 

noticeably stronger than that in acdm443/Chl with respect to RCE (left). Because 

the at0t555/atot490 approximation essentially removes the influence of the backscat

tering spectral shape from MBR, this analysis suggests that the effect of CDM on 

algorithm uncertainty is confounded by the influence of the backscattering spectral 

shape in the oligotrophic category. 
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4.4.3 Effect of C D M with respect t o phytoplankton absorption 

Originally, the effect of CDM on algorithm uncertainty was analyzed with respect 

to phytoplankton absorption through the parameter acdm443/a0443. The purpose 

was to convey a shift within the total absorption between CDM and phytoplankton 

such that Chi, is expected to be inversely related to acrfTO443/a^,443. Results, not 

shown, were different, and it was then realized that in normalizing by 0^,443, the 

analysis of the effect would not account for variation in absorption per Chi, an 

indication of pigment packaging. 

4.5 Effects of phytoplankton community structure 

The hypothesis that the oceanic biases can be explained by the effects of the 

phytoplankton community structure is considered here. Community structure can 

vary according to pigment packaging and cell size. Such features are represented in 

terms of absorption measurements by a^443/'Chi, and the Sy size model from Ciotti 

et al. (2002), respectively. 

For pigment packaging, chlorophyll pigments absorb strongly at 443 nm, and so 

the a^443 signal relative to the amount of chlorophyll in the water sample likely 

indicates the intensity at which absorption is suppressed by the packaging. While 

a<j> at 443 nm can be attributed to accessory pigments as well, such a source is 

considered secondary (Bricaud et al., 1995, 2004). With the normalization by. m 

situ Chi, the 0^,443/ Chi parameter also has the advantage of behaving similarly to 

o-cdm443/ Chi in relation to RCE. 

A size parameter, S/, was derived based on the Ciotti et al. (2002) model, which 

represents absorption spectra from mixed populations as a linear combination of 

picoplankton and microplankton absorption spectra (Figure 4-17). The parameter 

ranges from S/ — 1 for 100% picoplankton (small cells) to S/ = 0 for 100% mi

croplankton (large cells) (See Table 4 from Ciotti et al. (2002) shown in Figure 4-18). 

Details of the Ciotti et al. model and its implementation are given in Section 4.5.4. 
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4.5.1 Pigment packaging 

The qualitative analyses for a</>443/C7tZ are presented in Figure 4-12. The quan

titative analyses are presented in Table 4.5 and Figure 4-13. 

Algori thm uncertainty in general 

The visual analysis of a^AAZ/Chl in the Global panel of Figure 4-12 reveals that 

pigment packaging systematically varies with the shift in algorithm uncertainty for 

all trophic categories. The parameter a^443/CM generally increases with a change 

from under- to overestimation. 

Category statistics for a^443/CW are presented in Table 4.5. The medians of 

RCE and their corresponding means for logio 0^443/ Chi are positively correlated 

(Figure 4-13) for all trophic categories. The relationships are different for each 

trophic category, suggesting that the effect of pigment packaging is variable among 

the different trophic categories, and among the different oceans within each category. 

Oceanic biases 

The ocean-specific panels in Figure 4-12 show that systematic variation in 0^,443/Chi 

is related to the oceanic biases as well. Such analyses are confirmed with statistics 

as shown in Figure 4-13. The Southern Ocean mesotrophic stations that are under

estimated by the algorithm have a median 0^,443/ Chi value of 0.037. The Atlantic 

Ocean mesotrophic stations that are overestimated by the algorithm have a me

dian (2^,443/Chi value of 0.073, due to more absorption per Chi, and is indicative of 

less pigment packaging than theSouthern Ocean counterparts. The Southern Ocean 

oligotrophic stations, which are more underestimated than that Atlantic Ocean olig

otrophic stations, have a median 0^443/ Chi value of 0.049. The Atlantic Ocean 

oligotrophic stations, which are only slightly underestimated by the algorithm, have 

a median a^AA3/Chl value of 0.093. 
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4.5.2 Cell size 

The qualitative analyses for the cell size parameter S/ are presented in Figure 

4-14. The quantitative analyses are presented in Table 4.6 and Figure 4-15. 

Algori thm uncertainty in general 

In general, a visual analysis of the Global panel in Figure 4-14 shows that cell 

size systematically varies with a shift in algorithm uncertainty for stations from the 

mesotrophic category and those from the oligotrophic category. For such stations, 

the parameter Sj increases towards 1 with a change from under- to overestimation. 

No systematic order is evident in the eutrophic category (global panel, Figure 4-14). 

Category statistics for S/ are presented in Table 4.6. The relationship between 

the corresponding median RCE and mean S/ have positive correlations for the 

mesotrophic and oligotrophic categories (Figure 4-15). The relationships are differ

ent for the two categories, indicating that on average, the effect of cell size is variable 

between and within the two categories. The negative correlation for the Atlantic-

and Pacific-eutrophic category suggests a contradiction to expectations, in which a 

shift from under- to overestimation is associated with an increase in Sy towards 1 

(where picoplankton dominate the phytoplankton community). 

Oceanic biases 

The oceanic biases best represented through the RCE values from the mesotrophic 

Atlantic and Southern Ocean stations show a significant corresponding deviation in 

the mean values of S/, See Figures 4-14 and 4-15. The Southern Ocean mesotrophic 

mean S/ value is 0.51, suggesting that on average the community structure is com

posed of phytoplankton with moderate cell size, while the Atlantic Ocean mesotrophic 

mean S/ value is 0.77, suggesting that on average the community structure is dom

inated by picoplankton, which are small in size. The reference to size groups is 

provided in the table from Ciotti et al. (2002) shown in Figure 4-18. 

The association of cell size to oceanic biases is also present in the oligotrophic 
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stations. The Southern Ocean stations, which are more underestimated than the 

Atlantic Ocean stations, have a mean S/ value of 0.60, which is associated with a 

community structure predominantly composed of moderately sized phytoplanton. 

The slightly underestimated Atlantic Ocean stations have a mean Sf value of 0.95, 

indicating community structure predominantly composed of picoplankton. 

4.5.3 Influence of the backscattering spectral shape 

Figure 4-16 presents the global analyses for both MBR (left) and 040(555/040(490 

(right). Little improvement in the systematic variation of 0^,443/Chi and S/ comes 

from the removal of the backscattering spectral shape. Apparently, the effect of the 

backscattering spectral shape, attributed to backscattering from both CDM and 

, phytoplankton, is less significant than the effects of the phytoplankton community 

structure. 

4.5.4 Calculating the picoplankton proportion parameter 

The picoplankton proportion parameter, S/, indicates the amount of picoplank

ton within a phytoplankton community structure. Adapted from Ciotti et al. (2002), 

the parameter is calculated from the following equation. 

•''• a$n = [S$ apico(\)\ + [(I - Sf) amiCro(X)] (4.2) 

The absorption spectra apic0 and (hnicro were pre-determined from laboratory 

work to represent a community of picoplankton and one of microplankton, respec

tively. The term a^n is expressed as a linear combination of normalized absorption 

spectra for the picoplankton community (apico) and the microplankton community 

(dmicro), where spectra are normalized by the mean absorption across the 300 visible 

wavelengths. These pico- and microplankton a<pn spectra were empirically developed 

and specified in Table 3 of Ciotti et al. (2002). The two spectra are weighted with 

S/ (ranging from 0 to 1). 
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Execut ing the mode l 

To calculate S/, one thousand possible values between 0 and 1 were used to com

pute modeled a ,̂n spectra. Using least squares optimization, each NOMAD a^,n was 

matched to a particular a^,n model. See Figure 4-17. The Sy value corresponding 

to the selected model then indicated the fraction of picoplankton-sized cells in the 

NOMAD sample. Figure 4-18 shows Table 4, extracted from Ciotti et al. (2002). It 

shows the relation of the size parameter to the different size groups based on data 

from their research. 

Issues w i th normalization 

Ciotti et al. (2002) normalizes a^ by the mean absorption across the 300 visible 

wavelengths. NOMAD, with only 20 wavelengths of data, is not hyper-spectral. 

Consequently, each value of phytoplankton absorption was normalized by its mean 

absorption across the 20 wavelengths available in NOMAD. This approach is chosen 

out of several, which were attempted on hyper-spectral absorption data from the 

Coastal Observing Center (COOA) at UNH. Selection was based on the minimum 

difference between the resulting a^n spectrum and the corresponding spectrum using 

the normalization method of Ciotti et ah (2002). 

Using Sf as a indicator for cell size . 

Changes in spectral shape of phytoplankton absorption can be attributed to 

either cell size,or photoacclimation. Because NOMAD absorption measurements 

are integrated over the first optical depth, they incorporate a broad reference of 

time that better reveals changes in cell size than photoacclimation (Bricaud et al., 

2004). 

47 



V 

4.6 Relative importance of CDM and community struc

ture 

An evaluation of the relative importance of CDM and phytoplankton community 

structure is presented here. Only the parameters acdm443/CW and 0^,443/ Chi are 

used. The parameter S/ was left out because it is not scale invariant, meaning it 

does not have and cannot be simply transformed to have a normal distribution for 

linear regression analysis. Consequently, community structure is represented only 

through pigment packaging here. 

4.6.1 Qualitative analysis 

Figure 4-19 provides a qualitative analysis through the relationship between 

adm4A3/Chl and a^WijChl for NOMAD when sorted by trophic categories with 

RCE color-coded on the top and the oceans color-coded on the bottom. The results 

are described in the following sections in terms of the abundance of stations below 

or above the one-to-one line, and a visual assessment of the trends in RCE relative 

to variation in acdm443/CW and 0^,443/ Chi. 

Abundance of stat ions below or above the one-to-one line 

CDM absorption is greater than phytoplankton absorption for stations above the 

one-to-one line, whereas phytoplankton absorption is greater than CDM absorption 

for stations below the one-to-one line. From the top panels of Figure 4-19, it is 

evident that the majority (77.2 %) of stations are above the line. In the eutrophic 

category, 85.3% of the stations are above the line. In the mesotrophic category, 

67.2% of the stations are above the line, and in the oligotrophic category, 71.8 

% of the stations are above the line. Furthermore, CDM absorption has a greater 

range of variability than phytoplankton absorption within each category, and similar 

ranges in the eutrophic and mesotrophic categories. Interestingly, the range of CDM 

absorption in the oligotrophic category was shifted upward, indicating that there 

was more CDM absorption relative to Chi there than elsewhere. 
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Results from the bottom panels of Figure 4-19 are presented in Table 5.1. 

Trends in R C E relative to variation in acdm443/Chl and a,p443/Chl 

A trend in RCE relative to (vertical) variation in acdm443/ Chi indicates the effect 

of CDM on algorithm uncertainty. A trend in RCE relative to (horizontal) variation 

in a^443/CW indicates the effect of pigment packaging on algorithm uncertainty. 

Considering the top panels of Figure 4-19, it is evident that nearly all stations in 

which Chi is overestimated (RCE > 1) are above the one-to-one line. However, 

trends in RCE with respect to variation in acrfm443/CW and 0^,443/ Chi are diffi

cult to differentiate because these two parameters are correlated to each other (See 

Table 4.7). To determine which parameter has the greatest effect requires a more 

quantitative analysis. 

4.6.2 Quantitative analysis 

Step-wise ordinary least-squares regression analyses were performed for all the 

stations, and for the stations when sorted by trophic and ocean-trophic categories. 

Matlab routine "stepwisefit" was used (2007a, The MathWorks, Natick, MA). 

M e t h o d s 

The log error (A) was predicted as a linear combination of the base-10 logarithms 

of acdm443/ Chi and a^443/ Chi The regression format is defined mathematically as 

the following: 

Z - - h + b 2 l o 9 m ( ^ ) + h l m o ^ ) ,4 .3 , 

which is equivalent to a power relationship: 

Chi RCE = 10bl ( ^ ^ \ { CM
 ( 4 ' 4 ) 
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where t>i, b2, and b3 stand for resulting coefficients from each analysis. The cor

relation coefficients between all combinations of the three parameters A, logio 

0^443/Chi, and logio acdm443/C7iZ were computed (Table 4.7). 

In the step-wise regression, the parameter with the higher correlation with A is 

used to predict A in the first step. This parameter explains more of the variance of 

A than the other. Then, the second parameter is added if it significantly reduces 

the residuals. The significance is based on a comparison of the variance (F-test) 

with or without the potential parameter (P < 0.05). 

Resul ts of regression analyses 

Table 4.8 presents the coefficients, standard deviations, the number of stations 

in the subset, and r2 (the portion of variance in A explained by the regression) for 

each analysis. The parameter used in the initial model is labeled with an asterisk 

next to the respective coefficient. 

The coefficients indicate the relative magnitudes of acdm443/C7iZ and 0^,443/ CW, 

but are not necessarily an indication of the relative importance of the effects. Rather, 

the sequence of parameters used in the model indicates the relative importance. The 

parameter used to fit the initial model of every step-wise regression is the parameter 

with the stronger influence on algorithm uncertainty. 

Overall, the results indicate that CDM is generally the stronger influence on 

algorithm uncertainty. This is the case for the eutrophic and mesotrophic categories 

but not the oligotrophic category. See Table 5.1 for the results of the analyses for 

the ocean-trophic categories. 

The amount of variance explained by the regressions (r2) was relatively low in 

all cases. It ranges from 22 % to 28 %. However, the regression analysis was not 

performed with the intention of reducing the algorithm uncertainty, since it is not 

feasible to estimate the IOPs needed with sufficient accuracy to make them useful. 

The step-wise regression was intended to reveal how much effect the IOP parameters 

had on the algorithm uncertainty. 
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Table 4.1: NOMAD v.2: number of stations within each ocean and trophic category 

N O M A D version 2 

Chi Category 

Eutrophic 

Mesotrophic 

Oligotrophic 

Total 

Atlantic 

626 

317 

306 

1249 

Pacific 

94 

242 

259 

595 

Southern 

64 

178 

158 

400 

Total 

784 • 

737 

723 

2244 

N O M A D version 2 subset with absorption measurements 

Chi Category 

Eutrophic 

Mesotrophic 

Oligotrophic 

Total 

Atlantic 

296 

81 

101 

478 

Pacific 

38 

75 

66 

179 

Southern 

0 

18 

21 

39 

Total 

334 

174 

188 

696 

Table 4.2: Statistics for NOMAD v.2. TOP: The mean, standard deviation, and 

RMSE for A and the median RCE ratio categorized by ocean. BOTTOM: Mean of 

A and the median RCE ratio for ocean-trophic categories. 

Ocean 

Atlantic 

Pacific 

Southern 

Global 

N 

478 . 

179 

39 

696 

mean of 

A 

0.10 • 

-0.07 

-0.32 

0.03 

median 

RCE 

ratio 

1.26 

0.85 

0.48 

1.07 

st. dev. of 

A 

0.25 

0.16 

0.13 

0.25 

RMSE of 

A 

0.27 

0.17 

0.35 

0.26 

Ocean 

Atlantic 

Pacific 

Southern 

Global 

Eutrophic 

N 

296 

38 

1 

334 

mean 

of A 

0.12 

-0.03 

0,11 

median 

RCE 

ratio 

1.45 

0.89 

1.31 

Mesotrophic 

N 

81 

75 

18 

174 

mean 

of A 

0.16 

-0.09 

-0.34 

0.00 

median 

RCE 

ratio 

1.39 

0.80 

0.46 

0.98 

Oligotrophic 

N 

101 

66 

21 

188 

mean 

of A 

-0.01 

-0.07 

-0.31 

-0.06 

median 

RCE 

ratio 

0.97 

0.87 

0.47 

0.92 
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Table 4.3: Statist ics for the Total Absorpt ion Rat io analysis. TOP: The 

mean, standard deviation, and RMSE for Aatot and the median RCEat0t ratio 

categorized by ocean. BOTTOM: The mean of Aatot and median RCE a t o t ratio for 

the ocean-trophic categories. 

O c e a n 

A t l a n t i c 

Paci f ic 

S o u t h e r n 

Globa l 

N 

478 

179 

39 

696 

m e a n 

of A o t o t 

0.05 

-0.07 

-0.25 

-0.00 

m e d i a n 

RCEa to t 

r a t i o 

1.12 

0.85 

0.56 

1.00 

s t . dev . 

of Aatot 

0.24 

0.28 

0.17 

0.26 

R M S E 

of Aatot 

0.25 

0.29 

0.30 

0.26 

Ocean 

At l an t i c 

Pacific 

S o u t h e r n 

Global 

E u t r o p h i c 

N 

296 

38 

1 

334 

m e a n 

of A a t o t 

0.02 

-0.22 

0.00 

m e d i a n 

R.CEatot 

r a t io 

1.10 

0.60 

1.06 

Meso t roph ic 

N 

81 

75 

18 

174 

m e a n 

of A o t o t 

0.09 

-0.13 

-0.34 

-0.05 

m e d i a n 

RCE a t 0 t 

r a t io 

1.07 

0.74 

0.41 

0.91 

Ol igot rophic 

N 

101 

66 

21 

188 

m e a n 

of AatDt 

0.09 

0.07 

-0.17 

0.05 

m e d i a n 

RCE a to t 

r a t io 

1.12 

1.04 

0.59 

1.04 
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Table 4.4: The effects of C D M on the oceanic biases: Stat ist ics for 

aCcZm443/Chl. The mean and standard deviation for logio acdm443/CW the median 

of acdm443/CW are presented for the ocean-trophic categories. 

Eut rophic 

Ocean 

Atlant ic 

Pacific 

Southern 

Global 

N 

296 

38 

1 

334 

Mean , 

loem a^™443 
i o g i o Chl 

-1.1 

-1.59 

-1.15 

St. Dev. , 

logio ^ P 

0.26 

0.28 

0.31 

Median , 
a,rfr„ 443 

Chl 

0.079 

0.028 

0.073 

Mesotrophic 

Ocean 

Atlant ic 

Pacific 

Southern 

Global 

N 

81 

75 

18 

174 

Mean, 

lOglO Chl 

-0.93 

-1.19 

-1.60 

-1.11 

St. Dev. , 

l o g , . < r̂f.m,443 
»«S10 chl 

0.27 

0.33 

0.28 

0.36 

Median, 
a ^ m 4 4 3 

Chl 

0.108 

0.061 

0.027 

0.078 

Oligotrophic 

Ocean 

Atlant ic 

Pacific 

Southern 

Global 

N 

101 

66 

21 

188 

Mean, 

i°gio Chl 

-0.85 

-0.91 

-1.21 

-0.91 . 

St. Dev., 

0.31 

0.39 

0.29 

0.36 

Median, 
o„,,m443 

Chl 

0.135 

0.118 

0.057 

0.118 

53 



Table 4.5: The effect of pigment packaging on the oceanic biases: Stat ist ics 

for a^,443/Chl. The mean and standard deviation for logio 0^443/ Chi the median 

of a</,443/CW are presented for the ocean-trophic categories. 

Eu t roph ic 

Ocean 

Atlant ic 

Pacific 

Southern 

Global 

N 

296 

38 

1 

334 

Mean , 
. a.6 443 
l o S l O CM 

-1.38 

-1.43 

-1.39 

St. Dev., 
, a,* 443 
l o § l ° CM 

0.19 

0.20 

0.19 

Median, 
a ^ 4 4 3 

CM 

0.042 

0.037 

0.042 

Mesot rophic 

Ocean 

Atlant ic 

Pacific 

Southern 

Global 

N 

81 

75 

18 

174 

Mean , 
. arf,443 
l o S l O CM 

-1.12 

-1.38 

-1.41 

-1.26 

St. Dev., 
. CM, 443 
l Q S l O CM 

0.15 

0.20 

0.13 

0.22 

Median, 
CM. 443 

CM 

0.073 

0.044 

0.037 

0.058 

Oligotrophic 

Ocean 

Atlant ic 

Pacific 

Southern 

Global 

N 

101 

66 

21 

188 

Mean , 
, aw,443 
l o S " > CM 

-1.04 

-1.15 

-1.31 

-1.11 

St. Dev., 
. a,* 443 
l o S l 0 CM 

0.12 

0.13 

0.13 

0.15 

Median, 
CM. 443 

CM 

0.093 

0.076 

0.049 

0.082 
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Table 4.6: The effects of cell size on the oceanic biases: Stat ist ics for 

Sf. The mean and standard deviation of S/ are presented for the ocean-trophic 

categories. 

E u t r o p h i c 

O c e a n 

A t l a n t i c 

Pac i f i c 

S o u t h e r n 

G l o b a l 

N 

296 

38 

1 

334 

m e a n , S / 

0.37 

0.47 

0.39 

S t . D e v . , Sf 

0.19 

0.20 

0.19 

M e s o t r o p h i c 

O c e a n 

A t l a n t i c 

Pac i f i c 

S o u t h e r n 

G l o b a l 

N 

81 

75 

18 

174 

M e a n , S / 

0.77 

0.50 

0.51 

0.62 

S t . D e v . , S / 

0.15 

0.18 

0.12 

0.21 

O l i g o t r o p h i c 

O c e a n 

A t l a n t i c 

Pac i f i c 

S o u t h e r n 

G l o b a l 

N 

101 

66 

21 

188 

M e a n , S / 

0.95 

0.78 

0.60 

0.85 

S t . D e v . , Sf . 

0.12 

0.17 

0.08 

0.18 

Table 4.7: The relative importance of C D M and community structure: 

correlation of parameters . The correlation coefficients for comparisons of all 

combinations of the three parameters logio 0^443/ CM, logio aca-m443/ Chi, and A 

are presented. 

A 

, as 443 
l o g io CM 

l n g . Of rim 443 
l o S l 0 Chi 

A 

1 

, aw, 443 
l oSio cu 

0.375 

1 

l O E r i f . "rrfm443 1 O g l 0 Chi 

0.524 

0.600 

1 
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Table 4.8: The relative importance of C D M and communi ty structure: re

gression statist ics . The results for the (step-wise) multi-linear regression analyses 

are displayed here. They include coefficients, standard deviations (SD), the number 

of stations, and r2 , which is the fraction of the variance of A that is explained by 

the regression. The term that is more influential to changes in A is labeled with an 

asterisk. When no coefficient is given, the term was considered to be insignificant 

in the regression. TOP: All stations. MIDDLE: NOMAD sorted by the trophic 

categories. BOTTOM: NOMAD sorted by ocean and trophic categories. 

All Stations 

Coeffs 

SD 

n 

r2 

bi 

0.527 

b2 

0.107 

0.045 

b3 

0.332* 

0.029 

696 

0.28 

Trophic Categories 

Coeffs 

SD 

n 

r2 

Eutrophic 

h 

1.298 

b2 

0.553 

0.065 

b3 

0.371* 

0.041 

334 

0.25 

Mesotrophic 

6i 

0.890 

b2 

0.326 

0.061 

&3 

0.433* 

0.036 

174 

0.27 

Oligotrophic 

bi 

0.622 

b2 

0.494* 

0.062 

b3 

0.152 

0.026 

188 

0.22 

Ocean 

Atlantic 

Pacific 

Southern 

Stats 

Coeffs 

SD 

n 

r 2 

Coeffs 

SD 

n 

r 2 

Coeffs 

SD 

n 

r 2 

Eutrophic 

6i 

1.394 

b2 

0.577 

0.075 

b3 

0.433* 

0.055 

296 

0.26 ' 

0.450 
-
-

0.307 

0.102 

38 

0.27 

-
-
-

-
-

0 

-

Mesotrophic 

bl 

0.667 

b2 

-

-

b3 

0.550 

0.057 

81 

0.27 

0.616 
0.248 

0.083 

0.307* 

0.050 

75 

0.27 

0.334 
0.215 

0.092 

0.235* 

0.044 

18 

0.27 

Oligotrophic 

h 

0.502 

b2 

0.390* 

0.088 

h 
0.127 

0.033 

101 

0.22 

0.108 
-
-

0.193 

0.036 

66 

0.26 

0.767 
0.508 

0.140 

0.335* 

0.063 

22 

0.25 
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Eutrophic 

1BD -160 -140 

Mesotrophic 

Oligotrophy 

180 -160 

Longitude 

Figure 4-2: Map of Pacific stat ions from N O M A D v . 2 sorted by trophic 

category. Light Grey = all stations (n=595). Dark grey = stations with absorption 

spectra (n — 179). 
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MBR 

Figure 4-4: N O M A D v.2 subset ( n = 6 9 6 ) wi th OC4v.4 , separated by ocean. 

The grey points represent all the data, and the dark points represent the data from 

the specified ocean. The thick black line represents the OC4v.4 algorithm. 
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Figure .4-5: His tograms for the % Frequency of the Relat ive Chlorophyll 

Error (RCE): Global vs Mesotrophic TOP LEFT: Global Atlantic. MID

DLE LEFT: Global Pacific. BOTTOM LEFT: Global Southern. T O P RIGHT: 

Mesotrophic Atlantic. MIDDLE RIGHT: Mesotrophic Pacific. BOTTOM RIGHT: 

Mesotrophic Southern. The Black line represents zero algorithm uncertainty. 
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Figure 4-7: NOMAD v.2 subset (n=696) with RCEQtot fit, separated by 

ocean. The grey points represent all the data, and the dark points represent the 

data from the specified ocean. The thick black line represents the RCEato4 fourth-

order polynomial fit to the. data. 
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Figure 4-10: The Category Statistics: R C E vs . a cdm443/ Chi. The relation

ship between the median RCE ratio and the median acdm443/CW is presented for 

all ocean-trophic categories. The oceans are indicated by the letters, 'A', 'P ' , and 

'S' and the trophic category by the colors. Each category's statistics are represented 

by a vertical and horizontal line. The lines represent the standard deviation about 

the median, which is located at the intersection. Note the vertical increase in RCE; 

RCE > 1 indicates overestimations and RCE <1 indicates underestimations. 
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Figure 4-13: The Category Statistics: R C E vs . 0^443/CTiZ. The relationship 

between the median RCE ratio and the median 0^443/ Chi is presented for all ocean-

trophic categories. The oceans are indicated by the letters, 'A', 'P ' , and 'S' and 

the trophic category by the colors. Each category's statistics are represented by a 

vertical and horizontal line. The lines represent the standard deviation about the 

median, which is located at the intersection. Note the vertical increase in RCE; 

RCE > 1 indicates overestimations and RCE<1 indicates underestimations. 
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Figure 4-15: The Category Statist ics: R C E vs . S / . The relationship between 

the median RCE ratio and the mean S/ is presented for all ocean-trophic cate

gories. The oceans are indicated by the letters, 'A', ' P ' , and 'S' and the trophic 

category by the colors. Each category's statistics are represented by a vertical and 

horizontal line. The lines represent the standard deviation about the mean, which 

is located at the intersection. Note the vertical increase in RCE; RCE > 1 indicates 

overestimations and RCE<1 indicates underestimations. 
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NOMAD normalized a spectra with Size Model Limits 
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Figure 4-17: Normal ized a^ spectra from N O M A D . NOMAD's a ,̂n spectra 

(grey lines) and the â >n spectra associated with picoplankton (larger peak near 450) 

and microplankton based on Eqn. 3 from Ciotti et al. (2002) (black lines). 
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Figure 4-18: Tab le 4 from C i o t t i e t al . (2002) : t h e cell size p a r a m e t e r . 

This table shows the categorization of the S/ parameter into the different sizes of 

phytoplankton: pico-, ultra-, nano-, and micro. 
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CHAPTER 5 

DISCUSSION AND CONCLUSIONS 

5.1 Validation and explanation of the algorithm uncer

tainty through inherent optical properties 

Upon utilizing the absorption measurements of NOMAD, the analyses of this 

work provide evidence that confirms the existence of the oceanic biases and the 

hypotheses that such biases depend on the relative presence of CDM and the phy-

toplankton community structure. The validation of the oceanic biases was accom

plished using the total absorption approximation of MBR. By exhibiting similar 

oceanic biases with the approximation, a measurement produced independently from 

MBR, it is evident that the oceans are in fact, optically different. Possible artifacts 

were analyzed, and no algorithm biases were found for such factors. 

This work corroborates the predicted effects of CDM and phytoplankton com

munity structure on the algorithm uncertainty, as hypothesized from past litera

ture. When evaluating the effects separately, the parameters acdm443/ Chi, S/, and 

a^,443/CW, clearly exhibited systematic variation with algorithm uncertainty, which 

was denoted by RCE. Increases in acdm443/ Chi followed a general shift from under-

to overestimation for the eutrophic and mesotrophic stations. Likewise, increases 

in (2^443/CTil followed a general shift from under- to overestimation for all the sta

tions excluding a few oligotrophic ones (where MBR ~ 6.31), and an increase in S/ 

followed a shift from under- to overstimation for mainly the mesotrophic stations. 

Evidently, such parameters indicated the effects of the two features on the oceanic 

biases themselves. 

From these analyses, global predictions of the parameters acdm443/ Chi, S/, and 
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a^AAZ/Chl can be made, thereby introducing new satellite-derived products. Ad

ditionally, quantitatively comparing the global estimates of these respective pa

rameters to corresponding observed measurements from NOMAD could be used to 

account for the oceanic biases of the empirical ocean color algorithms. 

In actuality, the general effect of the three factors are not novel to the ocean 

optics community, as they are consistent with theoretical expectations. MBR rep

resents the shape of the R r s spectra, which is inversely related to total absorption, 

the sum of a^, acdm, and a,/,. Waters can have similar MBR values, but different 

compositions of total absorption, which can be associated to different levels of Chi. 

The different distributions of total absorption can stem from,different levels of CDM 

abundance as seen in the CDM effect analysis, and different cell sizes and levels of 

pigment packaging as seen in the phytoplankton community structure analysis. Ul

timately, the world's oceans have different inherent optical properties corresponding 

to similar apparent optical properties. 

Furthermore, the separate analyses using the total absorption approximation 

suggest that the spectral shape of backscattering, an indication of particle size and 

composition, confounds the effects of CDM on the algorithm uncertainty for olig-

otrophic waters. This conclusion is also consistent with theoretical expectations. In 

oligotrophic waters with low levels of Chi, changes in the backscattering spectral 

shape could exhibit a similar strength to changes in total absorption spectral shape 

due to the presence of CDM. In such a case, the assumption that the backscattering 

spectral shape is considered negligible in Eqn. 2.5 may not hold. 

Removing the backscattering spectral shape did not significantly improve the 

systematic variation of 00443/Chi with Chi in oligotrophic waters, and this can be 

attributed to two reasons. Either the change in backscattering spectral shape is not 

as strong as the change in total absorption spectral shape due to phytoplankton, 

or the backscattering spectral shape in oligotrophic waters is due predominantly to 

CDM (i.e., NAP) rather than to phytoplankton. Actually, a significant negative 

correlation has been found for the backscattering spectral shape and Chi in the 

open ocean (Huot et al., 2008). Still, it is difficult to know the relative plausibility 

of each one. 
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5.2 The relative significance of CDM and phytoplank-

ton community structure on algorithm uncertainty 

Having gone through the fundamental mechanisms that drive the algorithm un

certainty, it is then compelling to consider the relative significance of these mecha

nisms. This assessment was performed both qualitatively and quantitatively. The 

results are summarized in Table 5.1. 

The qualitative analysis (Figure 4-19) shows that CDM is generally the stronger 

component in total absorption. In fact, this is the case for all the overestimated sta

tions, and about half of the underestimated stations. Such statements speak for the 

relative magnitudes of the two parameters, but do not suggest the relative impor

tance of their effects on algorithm uncertainty. Trends in RCE relative to variations 

in acc[m443/Chi and a<^443/Chi were hypothesized, and quantitative results were 

obtained through the regression analyses. 

The regression models explained about 22 to 28 % of the algorithm uncer

tainty, as indicated by the values for r 2 of each regression. Results revealed that 

CDM in fact, had the stronger influence on algorithm uncertainty than pigment 

packaging for all categories except for the Oligotrophic category and the Atlantic-

Oligotrophic category, which makes up most of the Oligotrophic category. In the 

Atlantic-Mesotrophic, and the Pacific-Eutrophic and -Oligotrophic categories, the 

pigment packaging parameter did not effectively reduce the residuals, and thus did 

not appear in the final model. In the Eutrophic, the Atlantic-Eutrophic (represent

ing 88 % of the Eutrophic stations), and the Southern-Oligotrophic categories, the 

parameter with the stronger influence corresponded to the smaller coefficient (b\ 

aside), proving that the relative magnitudes of the coefficients are not a sufficient 

indicator of the relative importance of the two effects. 

The regression results on the relative importance are consistent with qualitative 

results, and this is best observed by a comparison of the variation in acdm443/Chl 

and 0,0443/Chi relative to RCE in Figures 4-9 and 4-12. For instance, in the 

Atlantic-Eutrophic category, CDM has the stronger influence, and in the figures, 

the variation of acdm443/Chl is more systematic than that of a<f>443/Chl (relative 
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t o R C E ) . 

Perhaps, the greater effect of CDM on oceanic biases can be explained by the fact 

that pigment packaging is influenced more by biological influences than the presence 

of CDM, and biological influences in general (though may be arguable) can be more 

complex than chemical or physical influences. Pigment packaging may possibly 

vary by region depending on the type of nutrients available, grazing activity, and 

community structure. In fact, the ambiguity of pigment packaging levels for different 

species within the same size range is evident in the overlapping size classifications 

for the S/ parameter from Ciotti et al. (2002). See Figure 4-18. Phytoplankton may 

also have distinct survival features that allow them some control of the community 

structure. For instance, certain large-sized phytoplankton have flagella with which 

to move vertically to avoid certain dangers or to find nutrients. On the other hand, 

the constituents of CDM would change mainly due to mixing and chemical reactions 

in the waters. 

The result that pigment packaging has a stronger influence than CDM on algo

rithm uncertainty in the oligotrophic category can be explained by the results that 

suggest the confounding of the CDM effect by the backscattering spectral shape. 

Such a suggestion is supported by the theoretical understanding of bio-optics. In 

the Southern oligotrophic category, CDM actually has a stronger influence than 

pigment packaging, based on the regression results. This is possibly attributed to 

the limited number of stations (n=22), and also the chance that the stations in 

this category were composed of similar phytoplankton communities, such that the 

pigment packaging reflected a limited number of phytoplankton species. 

In relating the oceans' inherent optical properties to differences in CDM con

centration and phytoplankton community structure, this work suggests that differ

ences in the oceans' optical properties are due to differences in the biogeochemical 

processes, which are ultimately attributed to differences in the oceans' deep-water 

chemistry. Reflected in profiles of nutrient concentrations among the oceans, deep-

water chemistry is determined by the thermohaline circulation (Segar, 2007). North-

Atlantic-Deep-Water formation at the poles establishes an eastward path for deep 

water from the Atlantic Ocean to the Pacific Ocean, and deep-water is upwelled 
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along the way in certain locations (Segar, 2007). Based on the work of this thesis, 

one would suggest that the optical properties of surface waters would reflect the 

chemical nature of the waters from which they were upwelled. 

The conclusions of this thesis are ultimately contingent on the capability of 

the NOMAD subset (n=696) in representing the world's oceans. While the oceanic 

biases were observed in both the entire dataset and its subset, there are two concerns. 

One is the geographic distribution of the subset. The other is the existence of 

ambiguities in the RCE-IOP relationship such that different IOP combinations can 

give rise to the same biases. 

5.3 Considering the geographic distribution of NOMAD 

data 

In considering the overall representation of locations covered in NOMAD, un

observed bio-optical relationships indeed appear likely. A majority of NOMAD's 

stations with absorption measurements stem from regions less than 100 miles off 

the coast. The Pacific Ocean stations are mainly from the Southern California 

coast, the East China Sea, the Sea of Japan, and the coast of Northern Alaska. 

In the Southern Ocean, the stations are all from the Drake Passage and Bransfield 

Strait off the tip of the Western Antarctic Peninsula. In the Atlantic Ocean, 70% 

of the mesotrophic samples are from the Western Florida Shelf. Consequently, it is 

likely that regions and. subsets with a lack of stations, such as the Southern-Ocean 

mesotrophic category, do not yield representative results. 

The question of the extent of regional coverage from NOMAD was addressed 

by Moore et al. (2009), and their results support the caveat. Moore and colleagues 

classify reflectance spectra into eight categories using a clustering technique on the 

NOMAD dataset. They present the frequency at which the reflectance classes have 

been observed by satellite (Moore et al., 2009). Figure 5-1 shows the eight classes. 

Class 4 is considered to be the only mesotrophic category based on my definition 

(See Section 3.1.1). In assessing the frequency of this class from global satellite 

observations, the work of Moore et al. (2009) suggests that mesotrophic waters are 
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prevalent in several areas not covered; in NOMAD including the Malvinas current 

off the southeast coast of South America, the Benguela current off the southwest 

coast of Africa, and the northern section of the entire North Atlantic Ocean in which 

the spring bloom occurs annually (Figure 5-2). Based solely on the limited spatial 

coverage, it appears risky to extrapolate the relationships observed in NOMAD to 

other locations. 

5.4 Ambiguities in RCE-IOP relationships 

Based on the explanation of the algorithm uncertainty through IOPs, it is rea

sonable to believe that similar levels of RCE are associated to different combinations 

of the level of pigment packaging and the abundance of CDM. The mesotrophic Pa

cific Ocean outliers, seen in Figure 4-19, serve as examples. These outliers exhibit 

a strong pigment packaging effect and a moderate CDM effect, while stations with 

corresponding RCE values exhibit a lower pigment packaging and lower levels of the 

CDM effect. Such outliers cast doubt on the generality of the relationships already 

observed in NOMAD. 

An assessment of the ambiguities was made based on an evaluation of the litera

ture (Fiorani et al., 2006; Clementson et al., 2001; Dierssen and Smith, 2000; Arrigo 

et al., 1998; Mitchell and Holmhansen, 1991; Barbini et al., 2003; Garcia et al., 2005; 

Nelson et al., 2007; Tarran et al., 2006; Siegel et al., 2005b,a; Bricaud et al., 1981). 

Unfortunately, there are rarely reported simultaneous measurements of o ,̂, aC(im, (or 

acdam), Chi, reflectance, and phytoplankton species. 

Here, the discussion of these ambiguities will be focused on the ocean-trophic 

categories that best portrayed the oceanic biases: the mesotrophic Southern and At

lantic Oceans. The possible ambiguities for the Southern Ocean and Atlantic Ocean 

are considered separately. It is assumed that the mesotrophic CDM is predomi

nantly autochthonous CDOM in the Southern Ocean, and both autochthonous and 

terrigenous CDOM in the Atlantic Ocean. The variability within anap443/acc;om443 

(Figure 5-3) and the spectral shape of acdom, S, (Figure 5-4) show that the current 

data convey such characteristics. 
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I hypothesize that the conditions not present in NOMAD for the mesotrophic 

Southern Ocean are likely to exhibit weaker pigment packaging levels and stronger 

CDM influence compared to the conditions reported in NOMAD. For the mesotrophic 

Atlantic Ocean, I speculate that the conditions not present in NOMAD are likely to 

exhibit stronger pigment packaging levels and weaker CDM influence compared to 

the conditions reported in NOMAD. The following sections present the explanations 

for my hypotheses. 

5.4.1 Southern Ocean 

The mesotrophic NOMAD stations of the Southern Ocean were underestimated 

by the algorithm, and they corresponded to low levels of acdm443/ Chi and relatively 

low levels of a^443/CW. Other combinations of these properties that can lead to lev

els of underestimation (low RCE) include higher levels of a c^m443/ Chi associated to 

lower a</,443/CM (larger cell size), or lower levels of,acc;m443/C7iZ associated to higher 

levels of a^AAS/Chl (smaller cell size). Since the values for aC(2m443/CW reported 

for such regions represent the lowest levels observed from the entire mesotrophic 

category, it is more likely that unreported scenarios will have higher values for 

acc;m443/CM and lower values for 0^443/ Chi. 

Evidence from the literature search generally supported the levels of influence 

from CDOM, pigment packaging, and cell size reported in NOMAD. One work (Fio-

rani et al., 2006) reports the existence of GDOM levels higher than those observed 

in NOMAD supposedly in the mesotrophic Southern Ocean, but differences can 

actually be attributed to the oceanic bias of the algorithm. Therefore, this work 

ultimately supports the Southern Ocean conditions reported in NOMAD. While no 

evidence of the unreported scenario (higher acdm443/ Chi with lower a^443/CW) was 

found in the literature, possible conditions to create this scenario were considered. 
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Support for results from N O M A D on communi ty structure and C D M 

fraction 

Phytoplankton that adapt well to low light levels, like those found in the South

ern Ocean (Mitchell, 1992), will produce more chlorophyll pigments per cell and 

hence, enhance pigment packaging and reduce absorption per Chi (Mitchell and 

Kiefer, 1988b; Mitchell and Holmhansen, 1991). Such inferences support the NO

MAD results of Southern Ocean stations having relatively strong pigment packag

ing. While no exact cases were found in the literature, the review did suggest that 

a strong presence of CDM is unlikely in this high latitude region, thus, supporting 

the conditions for the Southern Ocean reported in NOMAD. 

Fiorani et al. (2006): an example of an effect of the algorithm oceanic 

bias 

Fiorani et al. (2006) presented ratios of aC(fom440/C7i/ for the Ross Sea that 

are higher than those in NOMAD for Chi associated to the mesotrophic category 

(Chi ranging from 0.316 to 3.16 mg m - 3 ) . This work involved the estimate of 

acdom440/ Chi using a unique LIDAR calibration of the SeaWiFS algorithm. For 

mesotrophic conditions, average estimates of acdom440/Chi derived from several 8-

day composites of SeaWiFS reflectance images between 2001 and 2003 consistently 

fall within the range 0.05 and 0.06 m _ 1 / m g m - 3 . In comparison, the corresponding 

acdom440/ Chi Values for the few Southern Ocean stations in NOMAD are approx

imately 0.03 m _ 1 / m g m~3. This difference of 0.02 units can be attributed to the 

Southern Ocean bias of the SeaWiFS algorithm from which the Chi was calculated. 

If the estimates of Chi were higher as they are for the NOMAD observations, then 

the values for aCdor„440/CM would be consistent with those found in NOMAD. 

Speculat ion on the condit ions that could yield stronger C D M and weaker 

pigment packaging levels in the mesotrophic Southern Ocean 

One possible way to reach conditions of stronger CDM and weaker pigment 

packaging levels is through selective grazing by different sizes of zooplankton. This 
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is based on the finding that large phytoplankton are generally grazed by large 

zooplankton and small phytoplankton by small microzooplankton (Froneman and 

Perissinoto, 1996). In the case where large phytoplankton are grazed by large zoo-

plankton, heavy excretion from heterotrophic organisms could establish a strong 

presence of CDM while large-sized phytoplankton are removed by selective grazing. 

In the case where small phytoplankton are grazed by small microzooplankton, the 

conditions to develop small-sized phytoplankton communities would not likely be 

optimal to develop large-sized phytoplankton, and so these conditions would yield 

weak pigment packaging (small cell size), and grazing may establish a substantial 

presence of CDM. While such grazing would likely be less intense than that from 

large zooplankton, the degradation products have been found to stay suspended 

for a longer period of time than those of larger-sized organisms (Froneman and 

Perissinoto, 1996), thereby allowing for more time to create the desired conditions. 

These two scenarios seem likely to occur at the decay of phytoplankton blooms. 

While seemingly plausible, they have not been reported in the current literature 

to my knowledge. Only low production of CDOM has been reported for Southern 

Ocean waters. Accordingly, I discuss in the order listed, CDOM produced by grazing 

activity, bacteria and viruses, and terrestrial inputs (Nelson and Siegel, 2002). 

On the sources of C D O M product ion Research on correlations between graz

ing activity and phytoplankton community structure show mixed results for these 

high latitude waters. Overall, the literature does suggest that heavy grazing activ

ity (and consequently, a strong presence of CDM) would not occur in small-sized 

phytoplankton communities (Tagliabue and Arrigo, 2003; Shields and Smith, 2009; 

Tang et al., 2008; Froneman and Perissinoto, 1996). In the Subtropical Convergence 

and a warm-core eddy in the Atlantic sector of the Southern Ocean, large phyto

plankton were grazed by large zooplankton and small phytoplankton by small micro

zooplankton (Froneman and Perissinoto, 1996), suggesting tha t microzooplankton 

are less capable than larger zooplankton of heavy grazing. Tagliabue and Arrigo 

(2003) and Tang et al. (2008) found that some nanoflagellates, such as Phaeocystis 

Antarctica, which are widely distributed in the Southern Ocean and the dominant 
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prymnesiophyte in the Ross Sea (Shields and Smith, 2009), can form colonies to 

deter grazing from microzooplankton. However, Shields and Smith (2009) reported 

findings of colonial cells inside the food vacuoles of ciliates, a microzooplankton. 

A large concentration of CDOM produced from bacteria and viral lysing also 

appears unlikely from relatively low Chi, and this is supported in the literature. 

Nearly all Southern Ocean marine ecosystems have been found to contain low bac

terial biomass (Cota et al., 1990; Zdanowski and Donachie, 1993). For the western 

Antarctic Peninsula region, it was found that bacterial biomass in the Antarctic 

Peninsula region only represented < 1-2 % of the phytoplankton biomass (Karl and 

Tien, 1991), and that phytoplankton performed the bulk of heterotrophic respiration 

although the abundance of bacteria was found to vary independently of chlorophyll 

biomass (Karl and Tien, 1991). Additionally, a model has shown that bacterial 

growth efficiency increases with chlorophyll biomass (Polimene et al., 2006). Hence 

low Chi would not yield high bacterial growth efficiency as needed to produce the 

strong CDOM signal. 

Ultimately, terrestrial input from sea ice melting in the Southern Ocean ap

pears most plausible as a source of strong CDOM concentrations in a small-sized 

phytoplankton community. Such a case has actually been observed during the XV 

(1999/2000) campaign of the Italian Research Programme for Antarctica, in which 

relatively high CDOM concentrations corresponded to ice-melting in the Terranova 

Bay, a region known to host P. Antarctica (Barbini et al., 2003). Unfortunately, 

apparent optical properties were not measured. Additionally, it has been suggested 

that river discharge and water from sea ice were the source of abundant dissolved 

carbon in the Artie Ocean waters of the Holocene (Belanger et al., 2007; Macdonald 

et al., 2006; Mcclelland et al., 2006), and this could possibly occur in the Southern 

Ocean. Still, the CDOM signatures of the Atlantic Ocean, known to be strong due 

to frequent river discharge of anthropogenic chemicals, would rarely occur in the 

barren ice-covered terrain of Antarctica, and empirical evidence has been found, in 

which only 10% of the organic matter was dissolved in the Ross Sea (Carlson et al., 

2000). 

Evidently, more work must be done to quantify and compare the rate of CDOM 
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production from these sources in order to assess their relative contribution to pro

ducing the contradicting scenario. Ideally, a deeper understanding of particulate 

backscattering (Stramski et al., 2004) and generally more stations of the optical 

properties would best resolve the remaining issues in this work. 

5.4.2 Atlantic Ocean 

The mesotrophic NOMAD stations of the Atlantic Ocean were overestimated by 

the algorithm, and they corresponded to high levels of acdm443/ Chi and high levels 

of a^443/ Ghl. Other combinations of these properties that can lead to similar levels 

of overestimation (high RCE) in the mesotrophic Atlantic include lower levels of 

a-cdm^3/Chl associated to higher levels of a^443/CW, or higher levels of acdm443/CM 

associated to lower levels of 0^,443/ Chi. Since the values for 0^,443/Chi reported 

for such regions represent the highest levels observed from the entire mesotrophic 

category, it is more likely that unreported scenarios will have a higher influence from 

CDM associated to a stronger influence from pigment packaging (lower 0^443/Chi). 

First, the assessment of work by Moore et al. (2009) explained previously indi

cates the areas in which possible unreported scenarios can occur (Figure 5-2). Such 

regions include the Malvinas current off the southeast coast of South America, the 

Benguela current off the southwest coast of Africa, and the northern section of the 

entire North Atlantic Ocean in which the spring bloom occurs annually (Figure 5-2). 

NOMAD data from the mesotrophic Atlantic category are consistent with the 

empirical evidence that CDOM decreases with distance from shore (Kowalczuk et al., 

2009; Mannino et al., 2008; Pan et al., 2008; Del Vecchio and Subramaniam, 2004; 

Branco and Kremer, 2005; Vodacek et al., 1997). Terrestrial input of CDOM has 

been found to dominate the absorption signal only in estuaries and river mouths, 

inferring that such areas are eutrophic. The signal diminishes abruptly off-shore 

due to photo-oxidation, and so CDOM abundance is distinctively lower in off-shore 

mesotrophic waters, and even lower in open-ocean oligotrophic waters as the CDOM 

has more time to diminish. 

Exceptions to this rule include the Amazon and Orinoco River outflows, which 
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significantly affect the absorption signals from the North Equatorial Countercur-

rent (Siegel et al., 2002). Actually, such off-shore regions affected by the strong 

outflows may actually host a contradicting scenario upon bleaching of the surface 

CDOM (Vodacek et al., 1997). Costa et al. (2009) supports the possible occurrence 

of the scenario, with empirical evidence showing that strong river flows support 

nanoplankton blooms. 

CDOM in most off-shore waters is then predominantly the result of biological 

activity over a long period of time (Bricaud et al., 1981), and so variability in 

CDOM levels would occur gradually. Such conditions have been observed in the 

Mauritanian upwelling, in which CDOM levels were low and consistent while Chi 

varied over two orders of magnitude (Bricaud et al., 1981). Although it was not 

stated in this work whether the waters were mesotrophic or if their phytoplankton 

distributions were dominated by nanoplankton (Bricaud et al., 1981), the analysis of 

work of Moore et al. (2009) does suggest that the Canary Current, which coincides 

with this region, can be mesotrophic. Simultaneously, AMT cruises reveal that such 

waters were dominated by nanoplankton in 1996 and 1997 from April through May 

and from September through October (Gibb et al., 2000). Thus, such conditions 

yield an unreported scenario pertaining to both CDM and community structure. 

Several mesotrophic stations in NOMADv.2 (n=2365) in the North Atlantic 

subpolar gyre may have different scenarios, and studies in the literature suggest this 

may be true (Gibb et al., 2000; Nelson et al., 2007; Siegel et al., 2005b). In particular, 

such works speculate that the region may encounter moderate CDM levels with 

nanoplankton-dominated communities. This region is poorly covered in NOMAD 

v.2 (n=696), and the nanoplankton-dominated communities would contradict the 

predominance of picoplankton reported for Atlantic mesotrophic waters. Gibb et al. 

(2000) presented a summary of pigment distributions from AMT cruises 2-5 with 

conclusions that the North Atlantic temperate waters, including the North Atlantic 

subpolar gyre, were found to host nanoplankton blooms, especially after the decline 

of the spring bloom. Bricaud et al. (2004), Bresnan et al. (2009), and Tarran et al. 

(2006) provide similar results. 

The presence of CDM has been speculated to be fairly substantial for this area 
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in a satellite-based evaluation of global distributions of CDOM based on GSM prod

ucts, (Siegel et al., 2005b), and the hypothesis was confirmed by in situ measure

ments in Nelson et al. (2007). The increased CDOM levels are most likely attributed 

to the weaker intensity of solar radiation, which enables deeper mixing, reduces 

photo-oxidation, and enhances biological activity (Nelson et al., 2007). Addition

ally, Cleveland (1995) claims that her findings from the North Atlantic subpolar 

gyres were comparable to the results for the Southern Ocean from Mitchell and 

Holmhansen (1991), a representation of the scenario that contradicts the observed 

trends in the Atlantic Ocean. 

Some caution was taken when citing the literature for properties of stations 

with missing absorption data in NOMADv.2 (n=2365). In particular, reported 

absorption measurements, CDOM concentrations, and Chi may be sampled and 

measured differently, and particularly, not integrated over the first optical depth. For 

example, Cleveland (1995) claims that photoacclimation could yield similar MBR 

associated to different pigment compositions but similar cell size, particularly in the 

North Atlantic subpolar gyres. However, the NOMAD absorption measurements 

reflect changes in cell size more than changes due to photoadaptation because they 

are integrated over the first optical depth (Bricaud et al., 2004). 

5.5 Final words 

In understanding the sources of algorithm uncertainty through oceanic differ

ences in the inherent optical properties, the significance of environmental factors 

becomes apparent. Regions that have consistently experienced certain physical con

ditions will be affected by those conditions over time, and this is true not only for 

the ocean's optical properties. 

The evidence of such a phenomenon has been observed in NOMAD, suggesting 

that differences in the biogeochemical processes, which shape the inherent optical 

properties, fundamentally drive the regional differences in algorithm uncertainty. 

Additionally, it has been found that the effects of CDM on algorithm uncertainty 

are more clear than those of pigment packaging, possibly due to the complexity of 
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the biological factors that govern the pigment packaging, compared to the chemical 

and physical factors that govern the presense of CDM. 

The investigation has also alluded to the scarcity of data in NOMAD. In order 

to observe the biogeochemical systems on regional scales, it would be ideal to collect 

observations of the entire range of phenomena that exist within a local region. In 

fact, the existing NOMAD stations with IOPs likely represent a low percent of the 

population of possibilities that could arise for each region covered, especially in the 

eutrophic and mesotrophic categories. 

The conclusions of this thesis suggest that the regional approach to the develop

ment of ocean color algorithms is, in fact, a fruitful approach to reduce uncertainty 

in the global products. With the advancement of new technology such as ARGO 

floats, the goal to understand bio-optics on smaller scales appears more tenable. 

Recommendations are made based on the work from each trophic category. The 

transient nature of water masses close to the coast strongly motivates the develop

ment of local-scale algorithms that ideally account ,for the characteristics unique to 

a specific region, especially for eutrophic waters. Results from the mesotrophic cat

egory motivate further efforts in producing bio-optical measurements from off-shore 

mesotrophic waters, especially in the regions mentioned, as well as mesotrophic wa

ters from the Southern Ocean during the development and decay of the summer 

bloom. Results from the oligotrophic category suggest the need for further develop

ments in measuring backscattering, and more studies on the nature of CDM in such 

waters. 

Ultimately, this work highlights the significance in the coupling among the IOP-

and AOP-based features, and the importance of consolidating regional datasets for 

facilitating global in situ analyses. . 
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Table 5.1: Results for the analyses of the relative influence of acdm443/CM 

and a,p443/ Chi on algorithm uncertainty. 

Atlantic 
Ocean 

Pacific 
Ocean 

Southern 
Ocean 

Eutrophic Category (n=296) 
OC4v.4 overestimates Chi (RCE > 1) by 45 % at the median. CDM absorption is 

greater than phytoplankton absorption for 93 % of the stations. Based on the regression, 

the effect of CDM (ac£jm443/ Chi) on RCE is greater than that of pigment packaging 

(a^443/CW). 26 % of the variance in A was explained by the regression. 
Mesotrophic Category ( n = 8 1 ) 
OC4v.4 overestimates Chi (RCE > 1) by 39 % at the median. CDM absorption is greater 

than phytoplankton absorption for 73 % of the stations. Based on the regression, only the 

effect of CDM (ac[ im443/CM) was used in the regression. The effect of pigment packaging 

(a^4431Chi) was determined to be insignificant. 27 % of the variance in A was explained 

by the regression. 
Oligotrophic Category ( n = 1 4 ) 
OC4v.4 underestimates Chi (RCE < 1) by 3 % at the median. CDM absorption is 

greater than phytoplankton absorption for 72 % of the stations. Based on the regres

sion, the effect of pigment packaging (a^443/Chl) on RCE is greater than that of CDM 

{o-cdm443/Chi). 22 % of the variance in A was explained by the regression. 
Eutrophic Category ( n = 3 8 ) 
OC4v.4 underestimates Chi (RCE < 1) by 11 % at the median. Phytoplankton absorp

tion is greater than CDM absorption for 74 % of the stations. Based on the regression, 

only the effect of CDM (aCIjm443/C?iO was used in the regression. The effect of pigment 

packaging (a,/,443/CW) was determined to be insignificant. 27 % of the variance in A 

was explained by the regression. 
Mesotrophic Category ( n = 7 5 ) 
OC4v.4 underestimates Chi (RCE < 1) by 20 % at the median. CDM absorption is 

greater than phytoplankton absorption for 72 % of the stations. Based on the regression, 

the effect of CDM (ac(im443/CW) on RCE is greater than that of pigment packaging 

(a</,443/CM). 27 % of the variance in A was explained by the regression. 
Oligotrophic Category ( n = 6 6 ) 
OC4v.4 underestimates Chi by (RCE< 1) 13 % at the median. CDM absorption is 

greater than phytoplankton absorption for 76 % of the stations. Based on the regression, 

only the effect of CDM (acorm443/CM) was used in the regression. The effect of pigment 

packaging (a</>443/C7i/) was determined to be insignificant. 26 % of the variance in A 

was explained by the regression. 
Mesotrophic Category ( n = 1 8 ) 
OC4v.4 underestimates Chi (RCE < 1) by 54 % at the median. Phytoplankton absorp

tion is greater than CDM absorption for 78 % of the stations. Based on the regression, 

the effect of CDM (aC(jm443/CW) on RCE is greater than that of pigment packaging 

(a^443/Chi). 27 % of the variance in A was explained by the regression. 
Oligotrophic Category (n=21) 
OC4v.4 underestimates Chi (RCE < 1) by 53 % at the median. CDM absorption is 

greater than phytoplankton absorption for 57 % of the stations. Based on the regression, 

the effect of CDM (ac,jm443/CW) on RCE is greater than that of pigment packaging 

(a$443/Chl). 25 % of the variance in A was explained by the regression. 
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Figure 5-1: R r s (0 - ) spectra for the eight classes from Moore et al. (2009) 

1^490 is greater than R r s443 and R r s510 for only class 4. This work is from Moore 

et al. (2009). 
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Figure 5-3: The relative effect of NAP and CDOM on algorithm uncer

tainty: anap443/aC£fom443. The values for a„ap443/accfom443 are color-coded ac

cording to the scale shown. The ratio ariap443/aC(fom443 is analyzed with respect to 

the Chl-MBR relationship for the NOMAD subset (n=696). 
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respect to the Chl-MBR relationship for the NOMAD subset (n=696). 
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