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ABSTRACT 

ENZYMATIC REACTIONS IN MICRO-DEVICES 

by 

Michael O'Connor 
University of New Hampshire, December, 2009 

Enzyme reactions conducted in microdevices for diagnostic applications minimize 

the enzyme usage. In this research, polydimethylsiloxane microdevices were fabri

cated and used to study the well studied hydrogen peroxide decomposition reaction 

using bovine liver catalase. Soft lithography techniques were developed to fabricate 

custom-made microdevices in-house. High resolution photomasks and oxygen plasma 

treatment followed by baking for 2 — 3 hours yielded microdevices with vertical walls 

that did not leak easily. Flow experiments were conducted with free enzyme, enzyme 

immobilized on microdevice walls, and carrier-free enzyme aggregates. For free en

zyme and carrier-free enzyme aggregate reactions, the average reaction rate showed 

a maxima at ~ 80 mmol/L as predicted from macroscale batch experiments. The 

trend for average reaction rate was consistent with the model series reactor scheme 

developed. Covalent binding of enzyme to the microdevice wall was not achieved as 

the enzyme was found to continuously leach from the microdevice walls. 
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C H A P T E R 1 

INTRODUCTION 

1.1 Motivation 

Enzymes have found use in industrial applications due to their specificity and ability 

to catalyze reactions at less extreme temperatures and pressures than many tradi

tional inorganic catalysts. This is beneficial since milder conditions can lower op

erating costs and increase safety. Detergents represent one of the largest industrial 

uses of enzymes where proteases and amylases are used to remove protein and starch 

stains. They have also been used extensively in the food and beverage industries for 

the removal of lactose from dairy products, the maturation of beer, and the strength

ening and whitening of bread dough [18]. Other uses include wastewater treatment 

[7], production of semi-synthetic penicillins[30], and processing of leather as well as 

many others [15]. Enzymes are chains of amino acids that have several levels of 

structure. These levels of structure describe the sequence of amino acids (primary 

structure), common three dimensional shapes that certain sequences form (secondary 

structure), the specific orientation in space that the amino acid chain takes when 

fully formed (tertiary structure), and the overall physical orientation of all subunits 
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(quaternary structure, for those enzymes with multiple subunits). Enzyme function 

is frequently dependent on maintaining the native conformation. Enzymes are a 

class of proteins that catalyze chemical reactions with a high degree of specificity. 

They act on very specific substrates and produce very specific, often enantiomerically 

pure, products. Traditional methods using inorganic catalysts are not as selective in 

the products they produce which often leads to racemic mixtures. This specificity 

can reduce the complexity and cost of production for many chemicals as compared 

to traditional methods, particularly those requiring high enantiomeric purity. By 

producing a pure product, undesired by-product streams are eliminated, resulting in 

less waste and reducing environmental impact. Examples of this include the pro

duction of L-Aspartic acid from fumaric acid, resolution of enantiopure alcohols from 

racemic mixtures, and production of R-Mandelic acid from racemic mandelonitrile 

[30]. However, enzymes are often very expensive and many are easily damaged by 

heat or pH changes. Small quantities of enzyme are often very expensive and sep

arating free enzyme from a solution is generally very difficult. One simple way to 

keep costs down is to use smaller quantities of enzyme in testing applications, such 

as the common bioassay ELISA. Exposure to high heat or extreme pH can render an 

enzyme inactive by denaturing, or unfolding, its delicate three dimensional structure 

[46]. Immobilization of enzymes can add to their stability over wider temperature 

and pH ranges and also allow for their recovery and reuse [33]. 

Microfluidic reactors are devices that contain flow channels or chambers rang

ing from several hundred microns to single micron dimensions [48]. Traditional 

macroscale reactions, even when scaled down greatly, require a large amount of re-

actant compared to microfluidic reactors. Their ability to use smaller sample sizes 
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can decrease the total diagnostic time and reduce overall chemical waste streams in 

addition to an overall reduction in cost. Photolithography is the most successfully 

implemented microfabrication technology, finding extensive use in the semiconduc

tor industry. It generally requires a clean room and significant capital investment 

for the required equipment. Fabrication has also been completed using techniques 

such as micromachining of silicon and glass. The production cost of these micro-

machined surfaces is very high and significant capital investment and expertise are 

required. Wet etching with caustic chemicals has also been used for the creation 

of microstructures. These micromachined surfaces are combined with techniques 

such as hot embossing to create microchannels in plastic surfaces. Hot embossing 

relies on high temperature and pressure to leave the imprint of a desired pattern in 

the plastic surface. Further developments in microdevice fabrication, particularly 

by the Whitesides research group, have led to a set of techniques referred to as soft 

lithography [48, 50]. In this technique a master mold is produced using a substrate, 

often silicon, and a photoresist, which is a chemical that polymerizes upon exposure 

to UV light. Removal of the unexposed photoresist provides a patterned master 

mold. Soft lithography then uses an elastomer like polydimethylsiloxane (PDMS) to 

make microdevices rapidly and without a large capital investment compared to other 

miniaturization technologies. PDMS is a preferred material for soft lithography be

cause it is non-toxic, cures at low temperatures, can reproduce micron-sized features 

very reliably, and can be sealed reversibly or irreversibly. 

Microfluidic devices provide the opportunity to accomplish miniaturization for 

enzyme reaction applications to minimize enzyme use, specifically for diagnostic ap

plications. The use of enzymes within microdevices complements the strengths of 
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these two fields. Considering these potential benefits, the effect that a microscale 

environment may have on enzyme kinetics is of great interest. Microfluidic devices 

have been used to conduct screening for protein crystallization [14, 52], microscale 

enzyme linked immunosorbent assay (ELISA) [20], and cell sorting [11]. Each of 

these examples provide a significant reduction in the volume of reagent used and 

thus represent a potential reduction in assay cost. Hansen et. al. [14] formed devices 

with dead-end channels to rapidly screen protein crystallization conditions. They ob

served faster crystallization times in the microdevice than with traditional macroscale 

experiments. Crystals grew large enough in their microdevice for X-ray diffraction 

studies. Zheng et. al. [52] formed protein crystals in microchannels by creating 

an array of droplets with varying concentrations of protein and precipitant. This 

method decreased each trial volume by approximately one order of magnitude. These 

droplets were smoothly transferred intact to a connected glass capillary and diffrac

tion studies performed on crystals formed in these drops. Both methods demonstrate 

a significant cost and time savings in screening for crystallization conditions. ELISA 

is a detection assay to determine the presence of antibodies or antigens in a sample. 

Normally performed in microtiter plates, it has been performed in microchannels [9], 

and demonstrated comparable detection sensitivity. That study also demonstrated 

a common problem of non-specific protein adsorption on PDMS. This challenge was 

overcome by a combination of surface modification and blocking solutions. The use 

of microdevices for cell sorting has shown it as viable, though slower than traditional 

methods. It does offer the prospect of a disposable device which eliminates the need 

for cleaning and sterilization, and the risk of contamination from previous runs [11]. 
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1.2 Objectives 

The objective of this work is to develop soft lithography techniques to fabricate 

custom-made microfluidic devices to conduct enzymatic reactions at the microscale. 

Furthermore, different strategies to conduct enzyme reactions in microdevices are in

vestigated. Flow reactions using free enzyme and substrate are the simplest starting 

point for integration of microfiuidics and enzyme kinetics. Since enzymes, as cata

lysts, are not consumed by the reactions they affect, the opportunity to reuse them 

is very appealing due to their high cost. Immobilization is one approach that allows 

reuse and can be accomplished in several ways.- Binding the enzyme to the channel 

wall eliminates the need for a separation process after completion of the reaction. 

It often reduces activity compared with the free enzyme and can be challenging to 

accomplish. Eliminating the carrier by binding the enzyme to itself maintains high 

activity levels but does require a separation process after the reaction is complete. 

The objectives of this study are: 

• Microdevice Fabrication using Soft Lithography: Develop soft lithogra

phy techniques to fabricate custom-made microdevices. These devices provide 

a platform for kinetics studies on the microscale and do not require the special

ized conditions or equipment necessary for other photolithography techniques. 

These studies are a first step in understanding the challenges of fabricating 

miniaturized multi-step chemical processing devices, commonly referred to as 

lab-on-a-chip devices, which are intended for use as fast and portable chemical 

analysis and processing devices. 

• Enzymatic Reactions in Microdevices: Conduct enzymatic reactions in 
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microdevices using a well understood hydrogen peroxide decomposition reaction 

using the enzyme catalase. Different strategies exist for conducting enzymatic 

reactions in microdevices. Flow reactions were the simplest to implement but 

did not allow for separation of the enzyme for reuse. Immobilization of enzyme 

on the channel wall as well as fabrication of enzyme aggregates by cross-linking 

allow for easy separation of enzyme. 

The kinetics and physics of flow on the microscale differs from the macroscale 

as different forces become dominant. The ratio of surface area to volume increases 

greatly on the microscale, often by several orders of magnitude [50]. The Reynolds 

number describes the type of flow present in a pipe or channel and is given as 

Re=P-^ (1.1) 

where p is the density of the fluid, v is the velocity of the fluid, Dh is the hydraulic 

diameter and \x is the viscosity of the fluid. When Re < 2300, the expected flow 

type is laminar for flow in a circular pipe. Above that value, turbulent flow can be 

expected. In microfluidic devices, flow is almost exclusively laminar, which limits 

mixing primarily to diffusion. This can become the rate limiting step due to the 

speed of many enzyme reactions. Several methods have been developed that rely on 

channel geometry such as serpentine channels [36] and surface conditions to induce 

chaotic advection or fluid folding to hasten mixing [38, 52]. These features increase 

mixing of separate fluid streams within microdevices. 

Immobilization is an important procedure for enzyme recovery in biochemical 

reactions. There are a variety of enzyme immobilization methods available but each 
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method has certain drawbacks. Physical adsorption is one of the simplest methods 

but has problems with stability over time. Entrapment is another method which 

has been implemented. This can require additional skill in fabrication and may 

denature the enzyme during formation. Some entrapment methods also require 

specific chemistries which are not available for all enzymes [26]. Binding an enzyme 

to a carrier allows for reuse but the overall enzyme to carrier mass ratio can become 

very small. Immobilization by carrier-free methods eliminates this problem but 

creates the need for an additional separation process if the enzyme is to be reused. 

Fabrication methods, particularly some surface treatments for sealing microchannels, 

can denature enzymes and thus, certain immobilization procedures must be completed 

after this step. 

7 



CHAPTER 2 

BACKGROUND 

2.1 Microdevice Fabrication 

The most developed method for microfabrication is photolithography. It has been 

used extensively in the fabrication of microprocessors. This technology uses a pro

jected image to create a pattern on a photoresist layer on the surface of a silicon 

wafer. Photolithography requires the use of a clean room and specialized equipment 

for producing, scaling, and projecting the reticle image on the photoresist. This 

represents a significant capital investment for a lab to implement this method of 

microstructure fabrication [50]. Other methods include micromachining of silicon 

and glass surfaces. These techniques also require significant capital investment and 

additional expertise. Alternatives have been developed that reduce the need for ex

pensive equipment and technical skill. Soft lithography is a set of techniques that 

have been largely developed and refined by the Whitesides research group [29, 48, 50]. 

It provides alternative methods of microfabrication that avoid some of the drawbacks 

of photolithographic techniques. Specifically, it eliminates the need for high-energy 

radiation and significant capital investment in equipment, provides the opportunity to 
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use a wider variety of materials, and allows for many surface chemistry modifications. 

It can also rapidly produce prototypes on the micrometer scale [50]. Collectively, 

soft lithography refers to the following techniques: microcontact printing (/^CP), mi-

crotransfer molding (/iTM), micromolding in capillaries (MIMIC), solvent-assisted 

micromolding (SAMIM), and replica molding (REM). 

Soft lithography techniques involve the creation of a master mold using pho

tolithography combined with printed photomasks designed using computer aided 

drafting (CAD) software. A polished silicon wafer is coated with a photoresist. 

The thickness and uniformity of this layer are controlled by the combination of pho

toresist viscosity and spin coating parameters such as rotational speed and time. This 

photoresist is polymerized in the presence of UV light. The resolution of the master 

mold is dependent upon the resolution of the photomask and the angle of exposure to 

the UV light source. By designing a two-dimensional photomask and controlling the 

thickness of the photoresist by spin-coating, a three dimensional raised pattern can 

be created after developing the photoresist. Development removes unpolymerized 

photoresist leaving the desired pattern. This procedure requires minimal equipment: 

a UV light source, oven, and spin coater. This master mold is the starting point for 

each of the techniques listed above. 

Microcontact printing Microcontact printing (/iCP) is a straight-forward concept 

analogous to using a rubber stamp with ink to replicate a pattern. Polydimethyl-

siloxane (PDMS), a silicone elastomer, has frequently been used in soft lithography 

techniques due to its physical and chemical properties. It is transparent, elastic, 

homogeneous, and its surface can easily be modified by oxidation [50]. This viscous 
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liquid can be poured over the photoresist/silicon mold and cured slowly at room tem

perature or more quickly by heating. Upon fully curing, the PDMS layer can be 

peeled off the master, leaving an imprint of the raised master mqld pattern in its sur

face. The master mold is cast using PDMS or a different flexible silicone rubber. A 

self-assembled monolayer can be formed on the patterned polymer surface and these 

molecules can then be transferred to a desired substrate in a very specific pattern. 

Microtransfer molding Microtransfer molding (/iTM) uses the same method of 

creating a master mold and casting a polymer slab. After removing this slab from 

the master, the spaces are filled with a liquid precursor and placed on a substrate and 

the prepolymer is cured. Removal of the polymer slab leaves a patterned surface. 

MIMIC & SAMIM MIMIC is similar to fiTM but the polymer slab is placed 

on the substrate and prepolymer is drawn into microchannels by capillary action. 

SAMIM begins the same way as //TM, casting a polymer layer from the master mold. 

A second polymer, which will form the final structure, is chosen. The cast layer is 

removed from the master mold and a solvent is applied. This cast layer is placed in 

conformal contact with the second polymer. The solvent swells this layer, forming 

it to the spaces in the cast polymer layer. The solvent evaporates, leaving the final 

structure intact. 

Replica molding Replica molding (REM) also begins with casting a polymer us

ing the master mold. By exposing this layer and a flat layer (PDMS, glass slide, 

etc.) to plasma, the two layers can be irreversibly bound together, forming a sealed 

microchannel network. The plasma exposure replaces the methyl (-CH3) groups 
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normally found on the surface with hydroxyl (-OH) groups. This alters the surface 

properties, making the PDMS temporarily hydrophilic. This chemistry will revert 

back to its native state over time, returning the surface to a hydrophobic state [35]. 

Reversible seals are possible using a material such as PDMS, which can form a con-

formal seal to another flat layer. These seals are significantly weaker than the plasma 

bonding method and thus are suitable only for certain applications. PDMS has been 

used to create a wide array of devices that scale down traditional macroscale assays. 

This technology has provided the foundation for a vast array of applications. 

2.2 Hydrogen Peroxide Decomposition Reaction 

The breakdown of hydrogen peroxide is important in many organisms. Aerobic pro

cesses in many cells produce hydrogen peroxide which is toxic to the cell itself. These 

cells survive due to the presence of enzymes such as catalase and peroxidase which 

quickly remove.hydrogen peroxide, leaving the harmless products of water and oxygen 

gas [12]. Hydrogen peroxide is a naturally existing chemical that breaks down slowly 

over time in the following reaction: 

H202 — H20 + ^02 (2.1) 

Without the presence of a catalyst, the activation energy for this reaction is approx

imately 71 kJ/mol. Catalysts, which function by reducing the activation energy 

necessary for the reaction to occur, can greatly increase the rate of reaction. A 

comparison of catalase and traditional catalysts demonstrates this effect [47]. This 
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reaction can be catalyzed by inorganic catalysts such as hydrogen bromide (HBr) or 

iron salts (Fe+2 , Fe+ 3) , and by enzymes such as catalase or peroxidase. The break

down of hydrogen peroxide takes place at a rate of approximately 10~8 M/s in the 

absence of a catalyst. In the presence of hydrogen bromide, this rate increases to 

approximately 10~4 M/s. Iron salts increase the rate even further to 10~3 M/s. The 

catalyst Fe(OH)2TETA+ is significantly faster than both of these at 103 M/s. None 

are as active in the decomposition reaction as catalase. Catalase is much faster than 

any of these at a rate of approximately 107 M/s. With this catalyst, the activation 

energy is reduced to approximately 8 kJ/mol. 

2.3 Bovine Liver Catalase 

Enzymes are a class of molecules, frequently proteins, that catalyze chemical reac

tions. Their behavior is influenced by temperature, pH, and in many cases, the 

presence of inhibitors or cofactors. Structurally, they are extremely complex. Amino 

acids are the building blocks of enzymes. Enzyme functionality is highly dependent 

on an intricate folded three dimensional structure which can easily be destroyed by 

extreme temperatures and pH changes. They have increasingly found applications 

in a wide array of industries. Enzymes are made up of polypeptide structures. Each 

polypeptide is a sequence of amino acids. There are 20 common amino acids, which 

are the building blocks of proteins. These amino acids can be polar or non-polar 

and can have a net positive, neutral, or negative charge. The order in which these 

amino acids are arranged is referred to as the primary structure. Certain amino 

acid sequences form common three dimensional structures, such as the a-helix or 
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/3-strand, which comprise the secondary structure. The three dimensional arrange

ment that these secondary structures take is referred to as the tertiary structure. In 

larger proteins, this tertiary structure may have several distinct subunits, called do

mains. Proteins are folded into a specific three dimensional structure containing all 

of its subunits. This final level of spatial orientation between the subunits is referred 

to as the quaternary structure. The structures discussed are primarily stabilized 

by hydrophobic interactions and hydrogen bonding between individual amino acids 

[43, 46]. 

Catalase is an enzyme present in many cells including mammalian, fungal, and 

bacterial cells. Its wide presence across many cell types and in many organisms was 

described in 1900 [22] and it was first crystallized in 1937 [40]. Its three dimensional 

structure was later described [27] and refined [10]. Common preparations of catalase 

are extracted from bovine liver or Aspergillus niger. Catalase from bovine liver 

is a multimeric enzyme with four subunits and can be modeled at low substrate 

concentrations using the Michaelis-Menten equation [5, 41] given by, 

_ Vmax[S\ , . 
v°-KM + [sy (2-2) 

Here, [S] is the substrate concentration, v0 is the initial rate of reaction, vmax is the 

maximum rate of reaction, and KM is the Michaelis constant for the enzyme. KM 

and vmax can be determined using the Lineweaver-Burke plot [21] where a linear re

gression is performed on experimental data for l/v0 versus 1/[S] and vmax and KM 

are determined from the slope and intercept values. When substrate concentrations 

are high, such that KM/[S] <C 1, the equation reduces to v = vmax. When substrate 
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concentrations are low, such that KM/[S] 3> 1, the equation reduces to v = ^^[S]. 

Thus, Michaelis-Menten kinetics predicts a constant maximum reaction rate at high 

substrate concentrations and a linear relationship at low substrate concentrations. At 

high substrate concentrations, bovine liver catalase displays substrate inhibition [19]. 

The optimum pH for catalase was determined to be approximately 7 [6]. Switala and 

Loewen [41] have studied catalases from several sources. The experimental KM value 

they report for bovine liver catalase is 93 mM. Catalase, the enzyme used in this 

thesis, has successfully been covalently bound to many substrates such as chitosan[2], 

magnesium silicate[44], eggshells [3], dextran [25], and glass [45]. These immobiliza

tion procedures primarily cover work on the macroscale. Catalase immobilized on 

chitosan, a natural polymer, was observed to have a maximum rate coefficient, vmax, 

about half that observed for the free enzyme. The Michaelis constant, KM, was 

approximately the same for both. The immobilized enzyme, stored wet, had better 

storage properties than the free enzyme, with approximately 50% activity remaining 

compared with 25% activity remaining after 28 days [2]. Catalase immobilized to 

magnesium silicate was accomplished using glutaraldehyde to bind the enzyme to 

the substrate and using an additional spacer molecule (3-APTES) between the sub

strate and glutaraldehyde. The observed increase in the KM values was attributed 

to possible diffusion limitations between the bulk fluid and a thin film environment 

surrounding the immobilized enzyme. The vmax values for immobilized enzyme de

creased by 2 — 3 orders of magnitude compared to the free enzyme. Approximately 

90% of the initial enzyme activity remained after 20 days for the method without 

the spacer molecule while approximately 30% remained for the method with the 3-

APTES spacer after the same period [44]. Eggshells were used to immobilize catalase 
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by linking with glutaraldehyde. Improvements were observed in the storage stability 

with 96% activity remaining after 36 days at 5°C [3]. 

2.4 Macroscale Enzyme Reactors 

Enzyme catalyzed reactions are necessary for many cellular processes and most com

monly occur with the free enzyme in solution. This is the simplest method of 

employing an enzyme in a laboratory setting as well. Batch reactions using enzymes 

are simple to conduct and reaction conditions can be controlled with relative ease. 

Flow reactions can also be conducted using free enzyme. Mixing can be accomplished 

through turbulent flow or by diffusion during laminar flow. Free enzyme reactions 

have a significant drawback. Once the enzyme has dissolved in solution it cannot 

be readily reused. This can have a significant impact on the overall cost of the 

process. In order to avoid this, enzymes can be immobilized using several different 

methods. Immobilization of enzymes can improve their stability of larger tempera

ture and pH ranges. Since enzymes catalyze reactions, and thus are not consumed, 

their high cost makes reuse desirable. Immobilization can allow for the reuse or 

recycling of enzymes. It is not without drawbacks though. Many immobilization 

methods achieve this stability and reuse at the expense of some activity as compared 

with free enzyme. Several different methods of enzyme immobilization exist and 

each is best suited to particular applications. These methods can be broken down 

into four groups: binding by adsorption, by covalent bond, by incorporation, and as 

aggregates. 
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Adsorption Immobilization by adsorption relies on weak forces, such as hydropho

bic interaction and van der Waals forces, to bind the enzyme to a substrate surface. 

This method of binding has been successful in immobilizing enzymes on substrates 

but is too weak to be suitable for most industrial scale use [33]. It has been ap

plied successfully in the Tanabe process using ionic adsorption to bind aminoacylase 

to modified cellulose. Lipase (CaLB) has been immobilized on porous acrylic and 

commercialized. One major drawback of adsorption as an immobilization method is 

the possible leaching of the enzyme, in which the adsorbed enzyme detaches from the 

substrate and enters the bulk solution as free enzyme [33]. 

Covalent Covalent bonds rely on the strong forces of a shared electron to bind 

molecules together rather than the weaker forces resulting from ionic and physical 

bonding methods. A primary benefit of covalent immobilization is the strength of the 

bond created. Leaching of the enzyme from the immobilized surface is generally not 

a concern when covalent binding is used. Various chemistries exist to form the bond. 

Covalent bonding has been used successfully to bind enzymes and other proteins to 

a variety of surfaces including glass, polymers, and metals. Silica and glass have 

been silanized using 3-aminopropyltriethoxysilane (3-APTES) and functionalized by 

attachment of glutaraldehyde or branched polyethyleneimine as a means of providing 

a covalent binding site for the enzyme [4]. Though covalent binding is the strongest 

method to attach an enzyme to a carrier, procedures for doing so often involve multiple 

steps and can be challenging to successfully complete. The choice of substrate limits 

which techniques are available based on functional groups at the surface. Silicone 

rubber has been modified to allow covalent attachment of thermophilic /3-glycosidase 
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by silanization and glutaraldehyde treatment [42]. This resulted in slow reaction 

due to low surface loading of enzyme. The overall conversion of substrate reached 

a maximum of approximately 60%, though this may have been impacted by product 

inhibition. This same basic method was used with silicon and the enzyme trypsin 

[8]. Reproducibility was found to be poor in this system. 

Monolithic Enzymes have been incorporated into the bulk phase material of some 

devices to create monoliths with the desired enzyme functionality. Sol-gel chemistries 

have been used extensively for monolithic immobilization of enzymes. The method 

of drying used has a large effect on the morphology of the final product [33]. A 

monolith structure was created and the enzyme trypsin was successfully covalently 

bound within the material. This was found to be a stable environment which allowed 

for a high throughput exceeding normal values for packed bed reactors [51]. This 

device also improved stability over a wider pH range, with a 10% increase in activity 

observed at pH 6.0 and a 62% increase at pH 10.0. The optimum pH for this enzyme 

is 8.0. Flowrates for this monolith correspond to approximately 400 mL/min in a 

standard 25 mm packed bed column. This is a throughput approximately 8 times 

higher than the recommended maximum from one manufacturer for a standard packed 

bed column. 

Aggregate Two primary methods of enzyme aggregation are currently used for 

immobilization. Cross-linked enzyme crystals require crystallization using highly 

pure enzyme. The crystallization procedure can be difficult and expensive compared 

to the use of cross-linked enzyme aggregates. The creation of enzyme aggregate 

particles relies on precipitation of the enzyme from a solvent and subsequent binding 
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by glutaraldehyde. These particles stabilize the enzyme while maintaining high levels 

of activity compared to the free enzyme. In some cases, a higher activity has been 

observed in the aggregate particles than the free enzyme. Aggregates of lipase, 

phytase, galactose oxidase, glucose oxidase, and others have been produced using 

high-throughput methods [31, 34]. These aggregates retained a high level of activity 

and could be scaled up several orders of magnitude using similar reaction conditions. 

Choice of precipitant is an important factor in retaining the activity of the aggregate 

particle [31]. 

2.5 Microscale Enzyme Reactors 

Flow reactors 

Flow reactors can be operated using a continuous flow or a stopped-flow model. In 

stopped flow, the reactor is filled with a fluid and the flow is halted to achieve a 

specified residence time. At the end of the specified reaction time, flow is resumed 

and the reaction mixture is forced out of the reaction chamber. Continuous mode 

reactors rely on steady flow conditions to provide a desired residence time. Flow can 

be driven by electrophoresis, which relies on an imposed electrical field to influence 

ions in solution, or by a pressure drop. This pressure drop can take the form of 

a decreased pressure at the outlet to draw fluid through the reactor or an increase 

in pressure on the inlet side, forcing the fluid through the reactor. Syringe pumps 

are commonly used to drive flow in microreactors. Continuous flow microchannel 

reactors have been observed to increase the rate of enzymatic reactions compared 

with standard batch reactions [16]. 
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Immobilized reactors 

Microscale immobilized enzyme reactions can be conducted in microcapillary tubes 

made of glass or in microdevices made from a variety of polymers. PDMS is a poly

mer that has commonly been used to create homogeneous fluid flow channels with 

rectangular cross-sections. Channels with circular cross-sections have been fabricated 

using polymers cast around high gauge wire, which is then removed, leaving a channel 

for fluid to flow through. Hybrid devices, containing microchannels formed in PDMS 

and a rigid fourth wall have commonly been made by sealing a glass slide or coverslip 

to the polymer surface. Immobilization methods vary depending on substrate and 

include silanization of etched glass surfaces, binding biotin-enzyme compounds to 

streptavidin coated substrates [17], and entrapment within a hydrogel on a substrate 

surface. Nomura et. al. [28] have used magnetic microbeads to create flow reactors 

within PTFE tubes. Permanent magnets fixed in place outside the PTFE tubes 

held a magnetic particle bed in place within the tubing. Immobilization of glucose 

oxidase was accomplished using silanization and linking by glutaraldehyde on mag

netic and non-magnetic silica gel beads. Measurements were taken electrochemically, 

though the system could also be adapted for optical measurements. Immobilization 

of the enzyme on the microbeads, and immobilization of the microbeads by magnets 

allows for minimal deadtimes between reaction bed and measurement. Storage of 

the enzyme-immobilized magnetic microbeads over a period of 8 months showed high 

stability. PikC hydroxylase has been immobilized on agarose beads containing Ni-

NTA by incubation of the beads in an aqueous PikC solution [37]. These beads were 

used in a batch comparison to free enzyme in solution. The kinetic parameters were 
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observed to decrease, with vmax/KM showing a hx decrease, but the half-life of the 

enzyme under reaction conditions increased from approximately 3 — 9 hours. 

2.6 Kinetic Studies in Enzyme Microreactors 

Kinetic studies of enzyme reactions conducted in microchannels vary in their proce

dures and analysis of experimental data. Observed rates can be affected by mass 

transfer resistance leading to a variety of reported efficiencies in various studies. The 

large surface to volume ratio that exists in microchannels increases the importance of 

adsorption and desorption effects. Enzymes, as discussed earlier, rely on a specific 

three dimensional structure to remain active. Explanations for reduction in activity 

of immobilized enzymes include steric hindrance and conformational changes from 

the immobilization procedure. 

Han et. al. [13] fabricated a microffuidic PDMS device to measure the kinetics 

of droplet-based enzyme reactions. These systems consisted of a bulk carrier fluid, 

silicone oil, and an aqueous drop containing the substrate and enzyme in solution. 

Measurements were based on amperometric measurements from integrated electrodes. 

Bovine liver catalase was used to decompose hydrogen peroxide. The analysis was 

carried out using Michaelis-Menten kinetics as a model. Variations in substrate 

concentration were accomplished by control of the aqueous solution flowrates. The 

reaction time was controlled using pneumatic valves to define a shorter or longer flow 

path through the channels of the device. The value obtained by Lineweaver-Burk 

plot for KM was 62 mM which is consistent with published literature [41]. 

Kerby et. al. [17] conducted experiments using alkaline phosphatase bound to 
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biotin. A packed bed of streptavidin coated microspheres was created in a borosili-

cate glass chip. The biotin bound enzyme was immobilized by flowing through the 

packed bed in excess. Measurements were conducted by appearance of a fluorescent 

product molecule and concentrations were obtained using a standard curve created 

using the fluorescent product molecule in the device. Initial rate experiments were 

first conducted with the enzyme in solution. The turnover rate determined for the 

free enzyme was 484.8s-1. Flow experiments with the immobilized enzyme using 

four separate flowrates for initial rate experiments gave a KM value of 51.75 ± 5.22 

/iM and a kcat of 17.67 s_ 1 . The turnover rate was determined from the experi

mental vmax value by estimating an enzyme density on the bead surface. Using the 

parameter they propose for determining the importance of mass transfer limitations, 

the consistent KM value is attributed to the minimal importance of mass transfer 

resistance. This is due to the slow reaction rate. The increase in KM as compared 

to the free enzyme value is attributed to steric hindrance or deactivation as a result 

of the immobilization process. The reduction in kcat is attributed inaccessibility of 

some enzyme to the substrate [17]. 

Seong et. al. [32] fabricated a continuous flow packed-bed microscale reactor 

to study immobilized horseradish peroxidase. The enzyme was immobilized on 15 

/im streptavidin coated spheres via conjugation with biotin. The microdevice was 

fabricated using photolithography for the creation of a master mold and casting with 

PDMS. This layer and a glass slide were exposed to oxygen plasma and irreversibly 

sealed. The reaction was measured based on appearance of a fluorescent product. 

Their results show observed KM values that vary with flowrate. This variation ranges 

from a KM of 2.32 /iM for a flowrate of 0.2 /iL/min to a KM of 13.0 for a flowrate of 
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1.5 /iL/min. Calculation of the intrinsic KM value was based on data extrapolated 

for a zero flow condition and was similar to the solution phase value. The zero 

flow condition was proposed as the value least affected by mass transfer resistance. 

This method of determining a value for KM was based on the idea of mass transfer 

hindering the measure of intrinsic reaction rate. Kerby et. al. argue that increases 

in flowrate decrease mass transfer resistance by thinning the boundary layer near 

surfaces and thus, the zero flow condition would not be appropriate for minimizing 

the effect of mass transfer resistance. Additionally, comparison of the reaction rate 

to diffusion rate using the published details shows it is very likely that mass transfer 

limitations did not affect the system and do not explain the variation of KM with 

flow rate. 

Mao et. al. [24] studied immobilized alkaline phosphatase in a microreactor. 

This enzyme was immobilized on the channel walls of the borosilicate tubing and 

PDMS/glass hybrid devices using phosphotidylcholine, biotin, and streptavidin. The 

streptavidin formed a conjugate with the enzyme that bound to the biotin surface 

molecules. Initial rate experiments were carried out using a 300 second reaction 

time. Data collected were based on fluorescence measurements. The reaction rate 

constant, kcat, was observed to be 60.6 ± 9.4 s_ 1 . This is a six-fold decrease as 

compared to the bulk reaction kcat of 365 ± 69 s_1 . The proposed reasons for 

this difference in turnover rate were steric hindrance, immobilization chemistry, and 

enzyme conformation. It is likely that mass transfer resistance played a role in 

the observed decrease. An analysis using the parameter proposed by Kerby et. al. 

demonstrates this quantitatively. 
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Logan et. al. [23] created polymer monoliths in capillary channels. These mono

liths were treated with PEG and vinyl azlactone to covalently bind horseradish per

oxidase and glucose oxidase for kinetic studies. The reaction was measured by for

mation of a fluorescent product. Non-specific protein adsorption was successfully 

controlled through the inclusion of PEG and Tween-20 concentrations of 0.01 v/v%. 

Analysis of kinetic parameters was done using a plug-flow model. The KM value 

observed for the immobilized enzyme was 1.9 /LtM which is similar to published val

ues for horseradish peroxidase. Mass transfer effects were noted as important in 

low flowrate experiments but decreased in higher flowrate experiments. The same 

method of immobilization was used to create sequential reactions involving invertase, 

glucose oxidase, and horseradish peroxidase in the same device. The direction of 

flow and order of enzyme immobilization was studied. The reaction was shown to 

yield significant amounts of product only when the enzymes were placed in the correct 

order for the sequential reaction. 
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CHAPTER 3 

EXPERIMENTAL 

3.1 Materials 

Hydrogen peroxide (30 wt%, Fisher Scientific), bovine liver catalase (C1345, Sigma 

Aldrich), 3-aminopropyltriethoxysilane (3-APTES, 99%, Acros Organics), glutaralde-

hyde (25 v/v%, Fisher Scientific), monobasic sodium phosphate (monohydrate, Fisher 

Scientific), dibasic sodium phosphate (heptahydrate, Fisher Scientific), cyclopen-

tanone (99%, Sigma Aldrich), SU-8 2035 photoresist (Microchem Corp.), SU-8 De

veloper (Microchem Corp.), and polydimethylsiloxane (Sylgard 184 Elastomer, Dow 

Chemical) were used in this work. Polished silicon wafers were obtained from Montco 

Silicon. 

3.2 Microdevice Fabrication 

3.2.1 Silicon Master Mold 

The schematic for the stamp fabrication process is shown in Figure 3-1. Polished 

3.25 " silicon wafers were rinsed with acetone, isopropyl alcohol, and ethanol. After 
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drying, they were immersed in a sodium hydroxide bath. This decreased the contact 

angle at the silicon surface and allowed the photoresist to spread more evenly during 

the spin coating step. Wafers were thoroughly rinsed with deionized water and dried 

with pressurized air. Spin-coating (Chemat Technology, KW-4B) with SU-8 2035 

photoresist was completed to form a uniform photoresist layer. Each wafer was 

then soft baked to evaporate the solvent and densify the photoresist film. This step 

was carried out minimizing ambient light to prevent any premature cross-linking. 

The desired photomask (CAD/Art Services) was fixed to the surface of each wafer 

using adhesive tape. A thick glass slide was placed over the photomask to ensure 

even surface contact between the mask and wafer. This assembly was exposed to 

ultraviolet light from a UV floodlamp (Uvitron Intern-Ray 400). After UV exposure, 

a post-bake step was completed and each wafer was placed in a bath of SU-8 developer 

solution and gently agitated by hand to speed the removal of unexposed resist. For 

thicker layers, the wafer was selectively rinsed in certain areas (based on the design) 

with cyclopentanone prior to development. This was the same solvent that was baked 

off after spin coating and was used to decrease the viscosity of the unpolymerized 

photoresist. Wafers were rinsed with isopropyl alcohol and baked for several hours to 

strengthen the bond between the photoresist and the silicon surface. The Microchem 

data sheet for NANO™ SU-8 2000 products (Appendix A) was used to guide the 

parameter choices such as spin coating speed for the desired film thickness, baking 

temperatures, exposure times and so on. The optimum experimental conditions were 

established by conducting experiments. 
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Figure 3-1: Schematic of the master mold fabrication process. 

3.2.2 Inlet and Outlet ports 

In order to access the channels for fluid flow, many procedures were used before a 

successful procedure was set. Cutting inlet and outlet ports was not successful in 

providing a sealed interface. Initially, PTFE tubing was used to directly interface 

with the device. This tubing was placed vertically on the silicon stamp such that it 

touched inlet and outlet locations on the photoresist. PDMS was poured and cured 

to create pre-formed ports. This method was modified to include pouring uncured 

PDMS into a cylindrical mold after inserting tubing in the pre-formed ports. A 

different modification using cyanoacrylate glue after initial pre-forming was attempted 

and was somewhat successful. This bond was inflexible, however, and did not remain 
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reliably sealed. The final procedure involved four steps. First, blunt tip needles (22 

gauge, 1/2", Small Parts, Inc.) were placed vertically on inlet and outlet points on the 

master mold and secured in place using adhesive tape. Second, uncured PDMS was 

poured over the mold to cast a PDMS layer containing channel impressions with pre

formed inlet and outlet ports. Third, stainless steel hypodermic tubing (21 gauge, 

Small Parts, Inc.) was cut to short lengths and the ends were filed smooth and slightly 

rounded. This was accomplished by hand using an Arkansas stone to grind away 

any pinched or sharp edges. Finally, the needles were removed and the hypodermic 

tubing was carefully pushed into the pre-formed ports. The slight compression of the 

PDMS, caused by using hypodermic tubing of slightly larger diameter than the pre

formed holes, created a strong seal to interface the microscale device with macroscale 

tubing and equipment. 

3.2.3 Casting and Sealing 

The completed stamp with the inlet and outlet ports and a clean blank wafer were 

placed into standard size polystyrene petri dishes. The material used for the mi-

crodevices was pofydimethylsiloxane (Sylgard 184, Dow Corning). It is relatively 

inexpensive, optically transparent, easy to work with, and forms irreversible bonds 

when exposed to oxygen plasma. Polydimethylsiloxane (PDMS) was created by 

mixing the prepolymer and curing agent in a 9 : 1 volume ratio and stirring. The 

stirring introduced many air bubbles into the viscous uncured mixture. These were 

removed by degassing in a vacuum chamber in order to create a homogeneous solid 

with smooth surfaces. The uncured degassed PDMS was then poured into the petri 

dishes containing the stamp and blank wafer. The dishes were placed into a 65°C 
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oven for 45 minutes to complete the curing phase. After curing completely, the petri 

dishes were removed, cooled, and the PDMS was carefully cut using a sharp precision 

knife. The cut PDMS was slowly peeled off and cleaned using pressurized air. 

Blunt Tip Needle 

|...; • : , | 
Master Mold 

Mix Polymer 

Degas 

Cast Mold » ^ . ^ r 
PDMS1 : 

Curing (Baking) 

Removal 

POMS 1 :;j 

X~A \ i pa 

1- , 1 
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Plasma 
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Hypodermic 
Tubingf" 

Sealed Device 

Figure 3-2: Casting and sealing procedure for microchannels. 

Sealing provided many challenges to successful device fabrication and required 

significant time and effort to master. Incomplete seals caused many devices to fail 

with the reaction liquid leaking between the two layers. Ultimately a solution to this 

problem was reached and is presented here. The two layers were rinsed with acetone 

and placed on a glass slide with minimal surface contact. This was accomplished 
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by propping each layer up with a small scrap piece of PDMS and reduces the risk of 

sealing a layer to the glass slide itself. The slide was placed into a Plasma Cleaner 

(Harrick Plasma PDC-32G) and the chamber was placed under vacuum. It was 

flushed with pure oxygen and an RF generator was engaged to create the plasma. 

After 90 seconds of exposure the PDMS layers were removed and immediately placed 

in contact with each other. They were then placed in a 95°C oven under weighted 

glass slides for several hours to ensure a good seal. This baking step was crucial to 

having reliable seals. A success rate of approximately 33% was observed with less 

than one hour of baking. This increased to approximately 75% for 2 — 3 hours of 

baking time. 

3.2.4 Interfacing 

Interfacing the microscale device with macroscale equipment was accomplished by the 

following procedure as illustrated in Figure 3-3. For devices with flow channels, the 

inlet and outlet ports were formed by casting directly in the PDMS layer at curing 

time as described in Section 3.2.2. After peeling the PDMS layer off of the stamp, the 

needles were carefully pushed through the PDMS layer to ensure a smooth opening 

and then removed. Sealing took place as described in Section 3.2.3. Syringe pumps 

were used to drive fluid flow. 

To connect the syringe pumps, the syringe was fitted with a 21 gauge blunt tip 

needle and a section of 22 gauge PTFE tubing of the desired length. Small sections of 

21 gauge stainless steel hypodermic tubing were cut and prepared with an Arkansas 

stone. This involved grinding down any metal blocking the opening after cutting 

29 



22 gauge 
PTFE Tubing 

22 gauge pre-formed 
inlet/outlet port > 

\ I 21 gauge 
22 gauge pre-formed ^ H Stainless Steel 
inlet/outlet port \ ^ H t Hypodermic Tubing 

22 gauge 
PTFE Tubing 

21 gauge 
22 gauge pre-formed I } Stainless steel 
inleb'outletport v 1^^ - i . Hypodermic Tubing 

PDMS (Channel Layer) 

PDMS {Blank Layer)' 

PDMS (Channel Layer) 

PDMS (Blank Layer) 

PDMS (Channel Layer); : Layer) ̂ ^ B ;. 

PDMS (Biank Layer) -: 

(a) (b) (c) 

Figure 3-3: Procedure for interfacing the microchannels with macroscale equipment. 

and slightly rounding the 90° corner on each cylinder edge. The edges of the needle 

attached to the syringe were also rounded off by the same method. The hypodermic 

tubing and needle were cleared of any debris using a 26 gauge needle. The hypodermic 

tubing was inserted into the PTFE tubing and into the desired pre-formed inlet 

and outlet ports on the microdevice. Rounding the edges slightly prevented the 

PDMS from being cut when inserting the stainless steel tubing. The tubing was 

slightly larger than the pre-formed inlet and outlet ports and the compression from 

the elastomeric nature of PDMS formed a conformal seal on the smooth stainless steel 

surface. This prevented leaks at the interface for the channels used in this work. 

3.2.5 Reactor Designs 

The microchannel reactors used in this work are shown in Figure 3-4. The different 

reactor designs provided varying volumes of reactor and geometries with different 

mixing properties. The three patterns also had different inlet configurations. For 

pattern A, the substrate and enzyme solutions entered the reactor at a T-junction 

with side entry. The pattern B had the substrate and enzyme solutions entering at a 
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Figure 3-4: Channel designs used in the enzymatic reaction experiments. 

Y-junction. In pattern C, the substrate and enzyme solutions entered at a T-junction 

with a head-on entry. The final dimensions of the fabricated channels for each design 

are listed in Table 3.1. 

Table 3.1: Average device dimensions for designs listed in Figure 3-4. Error indicates 
largest variation between average and measured values. 

Pattern Width (/um) Height (/um) Length (/um) Volume (/iL) 

14.2 
0.7 
4.1 

A 
B 
C 

304 ± 25 
126 ± 1 1 
164 ± 23 

140 ± 22 
46 ± 4 

145 ± 1 1 

322,923 
123,252 
172,523 

3.3 Enzymatic Reactions in Microdevices 

These devices were supported by a clamp attached to a stand and arranged such 

that fluid flow was parallel to the benchtop. Syringes were connected to the PTFE 
) 

tubing and pressure driven fluid flow was controlled using syringe pumps. This 

setup was used for all non-particulate experiments. For experiments with carrier-

free enzyme aggregates, a glass gastight syringe was loaded with a small stainless 
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steel ball bearing, which was slightly smaller in diameter than the inside diameter 

of the syringe. A filtered solution (< 30//m) containing aggregate particles was 

loaded into a glass gastight syringe containing the ball bearing and remaining air was 

cleared. The experimental apparatus used in the previous experiments was placed 

on a large flat board, which was then placed on a linear-oscillating shaking plate 

incubator. This equipment included two syringe pumps and a stand with clamps 

holding the microchannel device and collection platform. A second stand was set up 

near this equipment and used to hold a magnet stationary just above the body of the 

enzyme-containing syringe. This magnet held the ball bearing stationary relative 

to the benchtop. When the incubator was turned on, the syringe body followed 

the slow oscillatory pattern of movement and the entire experiment moved in unison. 

This motion of the syringe around the ball bearing provided steady mixing of the 

particulate solution and addressed the issue of particle settling which would have 

affected the enzyme concentration as additional particles settled over the course of 

the experiment. The experimental setup is shown in Figure 3-5. 

The fluid exited the device and was collected in dropwise fashion. Static electricity 

buildup was observed repeatedly as the drops detached from the device outlet tubing 

and traveled diagonally downward and toward the wall of the glass collection vial. 

These drops were small enough that they did not slide down the wall until multiple 

drops had built up. By attaching to the wall, these drops took much longer to 

contact the quenching fluid, changing the effective residence time for the reaction. 

The experimental apparatus was subsequently grounded and static electricity buildup 

was dissipated each time a collection vial was set in place. This corrected the observed 

problem of drops flying to the sidewalls rather than falling directly into the fluid. 

32 



Mkxofluidic Device 

Figure 3-5: Schematic of the experimental apparatus for the carrier-free enzyme ag
gregate reactions. 

3.3.1 Free Catalase Reaction 

Initial experiments were conducted with free catalase in solution. Solutions con

taining catalase and hydrogen peroxide were flowed into the device and brought into 

contact at a channel intersection. The reaction mixture flowed through the device 

and reached an outlet well. Initial devices used fluid inlet and outlet wells as a design 

feature. For these experiments, an acidic fluid stream (pH ~ 2.9) was introduced 

into the outlet well to decrease the pH of the reaction mixture, deactivating the en

zyme and quenching the reaction as it left the microchannel. Large variations were 

observed in the experimental data and the inlet and outlet wells were eliminated from 

the design. In order to quench the reaction, the reaction mixture exited the device 

and fell, in a dropwise fashion, into a collection vial containing a known volume of 

acidic quenching solution. This eliminated the large variations and allowed for the 

collection of reaction data. 

Experiments were conducted using Pattern A. Two enzyme concentrations were 
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studied: ~ 12 U/mL and ~ 6 U/mL. The solution flow rates, concentrations, and 

the residence times for the experiments conducted are shown in Table 3.2. Initial 

substrate concentrations ranged from 0 to 100 mM. 

Table 3.2: The experimental conditions used to conduct the free catalase reactions. 

Enzyme Substrate Enzyme Solu- Residence 
Case Design Solution Solution tion Concen- Time (Drip 

Flowrate Flowrate tration Rate) 

Al A 4 //L/min 4 /iL/min ~ 6 U/mL 120 s 
A2 A 4 ^L/min 4 /iL/min ~ 12 U/mL 120 s 

3.3.2 Enzyme Immobilization on Microdevice Wall 

Microdevices were created and treated using several different reaction conditions. 

PDMS naturally presents a hydrophobic surface terminating in methyl groups. Dur

ing plasma treatment, these groups are replaced by hydroxyl groups. Silanization 

followed by glut araldehyde treatment has been shown to covalently bind enzymes 

to glass which has terminating hydroxyl groups at its surface. Several experiments 

were conducted using plasma treatment as the method of surface oxidation. Plasma 

treatment as a surface oxidation step limited the baking time available to strengthen 

the seal after exposure. Forty-five to sixty minutes was allowed for baking in these 

cases and the successful rate of sealing was approximately 33%. For successful 

devices, treatment then consisted of flowing a solution of 2.5 v/v% or 10 v/v %"3-

aminopropyltriethoxysilane (3-APTES) in acetone, ethanol, or DI water through the 

microchannels followed by a rinsing step using the same solvent. Acetone based 

3-APTES treatment presented the challenge of controlling evaporation within the 
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device. PDMS is permeable to gases and the acetone evaporated in nearly all cases 

before reaching the device outlet. The evaporation of the acetone solvent caused 

blockage of the channel due to the viscosity of the remaining solution in most cases. 

The use of acetone as a solvent for this step was determined to be an impractical 

method of treatment. 

Ethanol was substituted for acetone which solved the problem of evaporation 

and was attempted at concentrations of 2.5 v/v % or 5 v/v % for 2 hours and 1 

hour, respectively. This did allow the silanization step to complete without clogging 

the microchannels. The 3-APTES treatment was followed by glutaraldehyde at 

concentrations of 1 v/v % or 2 v/v % for 2 hours. Enzyme solution in concentrations 

of 10, 000 U/mL or 50, 000 U/mL was flowed through the device for several different 

time steps as small as 2 hours and as long as overnight. 

The use of DI water as a solvent for the 3-APTES was attempted at concentrations 

of 5 v/v % and 10 v/v %. Glutaraldehyde treatment at a concentration of 5 v/v % 

followed. This method showed enzyme leaching. 

A second method of oxidation [39] was used in an attempt to reduce the failure 

rate of devices and provide a more consistently oxidized surface. The sealing took 

place as normal and the post-plasma baking was used for several hours. The devices 

did show a much lower failure rate of less than 25%. After sealing, a solution of DI 

water, hydrochloric acid, and 30 wt% hydrogen peroxide ( 5 : 2 : 2 volume ratio) was 

flowed through the device and rinsed with DI water. Silanization with neat 3-APTES 

and glutaraldehyde treatment followed. 

Patterns A and B were fabricated and catalase was immobilized on the channel 
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walls using the procedure described in Section 3.3.2. The 3-APTES, glutaraldehyde, 

and enzyme treatments were varied by changing the concentration, C, the flowrate, F, 

and the time for reaction, T, for 3-APTES, glutaraldehyde, and enzyme treatments. 

The different devices and treatment conditions are shown in Table 3.4. After the 

immobilization process was completed, substrate solutions were flowed through the 

device at 5 /iL/min for 40 minutes for Pattern A and 10 /iL/min for 20 minutes for 

Pattern B (see 3.3 for details). Combined with the 100 /zL of quenching solution in 

the collection vial, a total of 200 /iL was collected. This was the minimum sample 

size based on the available measuring equipment. Each change of substrate solution 

was preceded by a 20 minute deionized water rinse at the same flowrate. 

Table 3.3: Experimental conditions used for experiments with immobilization of en
zyme to the microdevice wall. 

„ „ ,, Substrate Solution _ . . ,_. 
Case Pattern „ , Residence lime 

b lowrate 

A3 
A4 
Bl 
B2 
B3 

A 
A 
B 
B 
B 

5 /iL/min 
5 /iL/min 
10 /iL/min 
10 /iL/min 
10 /iL/min 

2.8 min 
2.8 min 
0.07 min 
0.07 min 
0.07 min 

3.3.3 Carrier-free Enzyme Aggregate Reaction 

Cross-linked enzyme aggregates of catalase were created using the following proce

dure. Di(2-methoxyethyl) ether (diglyme), was chilled in an ice bath and a 125, 000 

U/mL catalase solution was added to achieve a 9:1 volume ratio of diglyme to en

zyme solution. The enzyme was allowed to precipitate for 10 minutes and the reaction 

chamber (a glass vial) was removed from the ice bath. A magnetic stir bar was used 
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Table 3.4: Device and treatment conditions used for experiments with immobilization 
of enzyme to the microdevice wall. Concentration (C) is in v/v% for 3-APTES and 
Glutaraldehyde and in U/mL for the enzyme treatment. Flowrate (F) has units of 
//L/min and time (T) has units of hours. 

Case 

A3 
A4 
Bl 
B2 
B3 

Surface 
Treatment 

Plasma 
Plasma 
Plasma 
Liquid 
Plasma 

3-APTES Treatment 

C F T 

2.5 5 2 
2.5 5 2 
50 4 2.5 
10 4 2.5 
10 4 2.5 

Solvent 

DlH20 
EtOH 

DlH20 
DlH20 
DlH20 

Glutaraldehyde 
Treatment 

C 

2 
2 
1 
1 
1 

F 

5 
5 
4 
4 
4 

T 

2 
3 
2 
2 
2 

Enzyme 
Treatment 

C F 

100 3 
100 3 

10,000 4 
10,000 4 
10,000 4 

T 

8 
4.5 
2 
2 
2 

to mix the solution throughout the reaction process. Glutaraldehyde (25%) was 

added to achieve a final concentration of approximately 10 mM. The crosslinking 

reaction was allowed to proceed for 2 hours at room temperature. After 2 hours, the 

total reaction volume was doubled by adding 0.1 M pH 10.0 sodium carbonate buffer. 

1 mg/mL of sodium borohydride was added and the reaction mixture was stirred for 

an additional 30 minutes. At this point, a trace amount of Triton X-100 surfactant 

solution was added. This allowed the pelleted aggregate particles to be resuspended 

without difficulty after centrifugation. The solution was placed in microcentrifuge 

tubes and spun at 8, 000 RPM for 10 minutes to create a soft pellet. The super

natant was pipetted off and the pellet was rinsed 3 times with 100 mM pH 7.0 sodium 

phosphate buffer. 50 mM pH 7.0 sodium phosphate buffer was used to resuspend the 

aggregates and filtration was carried out using 30 micron nylon mesh (Small Parts, 

Inc). Based on the measured channel size, the filtrate was saved and used as the 

enzyme solution for the results shown. The same batch of enzyme aggregate product 

was used for all tests. Aggregates were just visible to the naked eye and were quite 
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visible under a microscope. 

The effect of acetone or diglyme as a precipitant on the reaction rate was first 

studied in a batch reactor. A spectrophotometer at 240 nm was zeroed using a 

solution containing 50 /iL of quenching acid, 50 /iL of aggregate particle solution, and 

200 /iL of deionized water. Acetone batch experiments were completed by first adding 

50 \AJ of aggregate particle solution to a glass vial. Next, a timer was started just as 

200 /iL of substrate solution was quickly added to the vial and mixed. After three 

minutes, the reaction was halted by adding 50 /iL of quenching acid. Absorbance 

measurements of this reaction mixture gave final value readings. Initial value readings 

were taken by measuring the absorbance of a mixture containing 50 /iL of aggregate 

particle solution, 50 /iL of quenching acid, and 200 /iL of the appropriate substrate 

solution. It is important to note that these three solutions were added together in 

that order, ensuring that the substrate could not be consumed by the enzyme prior 

to taking an absorbance reading. This procedure was modified for the diglyme batch 

experiments due to the high activity of these aggregates. In the case of diglyme 

aggregates, 10 /iL of aggregate solution, 390 /iL of substrate solution, and 200 /iL of 

quenching acid were used. The same procedure was completed using a reaction time 

of 1 minute. 

As mixing was a major concern in flow experiments with enzyme aggregates, 

Pattern C with a head-on intersection was used. Flow reactions were carried out 

with diglyme-precipitated aggregates due to the far greater activity observed in batch 

reactions. Prior to flowing aggregates, an oxidizing solution containing a 4 : 1 : 1 

ratio of deionized water, hydrochloric acid, and hydrogen peroxide was flowed through 
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the device. The device was then thoroughly rinsed with a pH 7.0, 50 mM sodium 

phosphate buffer. This oxidation step prevented aggregates from adhering to the 

channel surface. The enzyme solution and a substrate solution flowed into the device 

from separate channels. These came into contact at a head-on intersection and flowed 

through the length of the device. At the device outlet, the reaction mixture formed 

droplets that fell at a steady rate. Each drop fell into an acidic quenching solution 

as described before and analysis was carried out in the same way. A range of initial 

substrate concentrations was used to produce an initial rate plot. 

Table 3.5: Experimental conditions used for carrier-free enzyme aggregate reactions. 

„ ^ . „ . . Aggregate Solution Substrate Solution Residence 
Case Design Precipitant „. „, m . 

llowrate rlowrate lime 

CI C diglyme 0.25 yuL/min 9.75 /iL/min 120 s 
C2 C diglyme 1 ^L/min 9 /xL/min 120 s 

3.4 Analysis Techniques 

3.4.1 Measurement of Channel Dimensions 

The dimensions of the channel were measured optically using microscopy and a known 

standard image. Several cross sections of each PDMS device were taken by cutting 

with a small precision work knife. These cross sections were placed on a glass micro

scope slide and imaged using a CCD camera. A USAF Resolution Test grid image 

taken at the same magnification was used to calibrate the device images. The height 
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and width of the channel was measured and the average of several measurements for 

each dimension was calculated. The length was estimated using the known design 

length from the original photomask. This volume was used with the set flowrate 

to determine residence time within the device for non-quenched experiments. This 

method was used to determine the residence time and thus, reaction time, for early 

experiments where in-device reaction quenching was attempted. 

3.4.2 Sample Collection 

A small glass vial was placed beneath the device outlet tubing to collect fluid for 

sampling. When free enzyme or enzyme aggregate particles were used the reaction 

would continue in the collection vial after leaving the device. This is undesirable for 

studying the reaction in the device itself. In these cases, the reaction vial was filled 

with a known volume of an acidic solution. This decrease in pH deactivated the 

enzyme, quenching the reaction. The steady drip rate allowed consistency between 

each drop, providing a steady residence time for each drop, and allowing for calcula

tion of reaction rate based on the residence time measured from the drip rate. The 

drip rate was obtained by measuring the time per drop from formation to breakup 

for several drops. This data was averaged to give an approximate residence time and 

is shown below in Table 3.6. 

3.4.3 Measurement 

Samples were pipetted into a quartz cuvette and placed in a UV-Vis spectrophotome

ter (Spectronic Genesys 2) zeroed to DI water. The substrate, hydrogen peroxide, 
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Table 3.6: Dripping rate for the drops exiting the microdevice for carrier-free enzyme 
aggregate experiments. 

Drop Time (s) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

?rage 

0 
74 
73 
74 
75 
78 
74 
76 
75 
75 

75 

has an absorbance peak at 240 nm. Absorbance measurements were taken at 240 

nm and converted to concentrations using a standard curve. This curve, shown in 

Figure 3-6, was created using dilutions of the hydrogen peroxide when it was first 

received at a certified initial concentration. 
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Figure 3-6: Standard calibration curve for hydrogen peroxide at a wavelength of 240 
nm. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Micro device Fabrication 

Microdevices were fabricated by first creating a master mold of patterned photoresist 

on a polished silicon wafer and then using replica molding (REM) to create poly-

dimethylsiloxane (PDMS) castings of the master mold. These PDMS castings were 

removed from the master mold and irreversibly sealed with a flat layer of PDMS to 

create devices containing microchannels for fluid flow. Using the Microchem data 

sheet for NANO™ SU-8 2000 products (Appendix A) clS db guide, experiments were 

conducted to establish the optimal conditions for microdevice fabrication using soft 

lithography. The channel height corresponded to the thickness of the photoresist 

layer on the master mold. This thickness was controlled by the speed and duration 

of the spin coating step. Devices were fabricated with channel heights ranging from 

approximately 45 to 140 \xra. Channel width was dependent on a combination of 

several fabrication steps. The design width of the channel on the photomask and 

the duration and temperature of the post-exposure baking step appeared to directly 

impact the channel width. Overbaking caused incomplete development such that 
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Table 4.1: Effect of changing certain process parameters on the silicon master mold 
fabricated. 

Parameter 
Low resolution photomask 
Shorter time for developing 

Longer time for developing 
No agitation of developer fluid 
Shorter UV exposure time 
Longer UV exposure time 
No rotation of wafer during exposure 

Effect 
Channel walls are not sharp 
White film formation 
Channel size larger 
Entire photoresist layer detaches 
White film formation 
Channels are not sharp 
Wider channels 
Wider channels 

unexposed resist did not completely dissolve. This left undesirable residue on the 

master mold and resulted in misshapen walls. Increasing the length of the devel

opment step in these cases caused detachment of the cross-linked pattern from the 

silicon surface and thus prevented successful use of the resulting mold. Underbaking 

yielded finer design features, but frequently caused detachment of the cross-linked 

pattern at very short development times, again preventing the successful use of the 

resulting mold. The qualitative effect of changing certain fabrication process param

eters on the master mold based on experimental observations are listed in Table 4.1. 

Quantitative effect of photomask resolution and rotation under a UV lamp are de

scribed in Sections 4.1.1 and 4.1.2. Based on these qualitative and quantitative data, 

the optimal procedure for master mold fabrication was established and is described 

in Section 4.1.3. 

4.1.1 Effect of Photomask Resolution 

The resolution of the photomask played a significant role in the quality of the channels 

created. Photomasks were ordered with a resolution equivalent to 5, 000 dpi and 
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20, 000 dpi. Differences between PDMS layers cast from master molds produced 

using low and high resolution photmasks are shown in Figure 4-1. These images 

were taken using a scanning electron microscope (Amray 3300 FE). Images (a), (b), 

and (c) correnspond to a 5, 000 dpi photomask and images (d), (e), and (f) correspond 

to a 20, 000 dpi photomask. A clear difference in the smoothness and angle of the 

sidewalls is apparent. Images corresponding to the higher resolution photomask show 

a more uniform PDMS channel wall and sidewalls which are much closer to vertical. 

20, 000 dpi photomasks was determined to yield more desirable results than 5, 000 dpi 

photomasks. Cross-sectional images of three sealed microchannel sections created 

from a master mold fabricated using a 20, 000 dpi photomask are shown in Figure 4-2. 

Some variation does exist in the angle of sidewalls and imperfections in the generally 

rectangular shape are observed. The sealed channels have relatively uniform and 

vertical sidewalls and are representative of the results obtained from molds made 

using 20,000 dpi photomasks. 

4.1.2 Effect of Rotation Under UV Lamp 

Two master molds were fabricated using the same photomask of 100/im dimension 

and the same fabrication procedure with one major difference. In the fabrication of 

the first master mold, the coated silicon wafer was exposed to the UV lamp for 60 

seconds in four 15 second intervals without rotating the wafer. In the fabrication of 

the second master mold, the coated silicon wafer was exposed to the UV lamp for 60 

seconds in four 15 second intervals with 90° rotation of the wafer after each interval. 

PDMS microchannels were fabricated using these master molds and then sliced at 

different locations to measure the width of the microchannel. The variation of the 
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(a) (d) 

(b) 

mm 

(e) 

H 

(c) (f) 

Figure 4-1: SEM images of PDMS layers cast from a stamp that was made using a (a)-
(c) 5,000 dpi resolution photomask, and a (d)-(f) 20,000 dpi resolution photomask. 
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(a) 

(b) 

(c) 

Figure 4-2: Cross-sectional images from three locations on a PDMS microdevice cast 
from a mold made using a 20, 000 dpi photomask. 
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width of the microchannel along the microchannel for the two microchannels is shown 

in Figure 4-3. The microchannels in general have a higher width as compared to the 

design width of 100/im. In the absence of rotation between the exposure intervals, 

the fabricated width was larger than in the presence of rotation between the exposure 

intervals. The wider fabricated widths of the channel as compared to the design 

widths and in the absence of rotation may be because the UV light source was not 

very collimated or the contact between the photoresist layer and the photomask was 

not very good. 

4.1.3 Master Mold Fabrication Procedure 

Based on the experiments, the fabrication procedure that was used in creating the 

channels for this thesis is as follows: 

1. The silicon wafer was washed with acetone, isopropyl alcohol, and ethanol to 

insure cleanliness. 

2. The wafer was dried by baking at 65°C for about 5 minutes. 

3. The wafer was placed in a Petri dish containing 40% NaOH solution for approx

imately 10 minutes. 

4. The wafer was rinsed with DI water and then baked again at 65°C until com

pletely dry. 

5. The wafer was then placed on the spin coater and held in place using a 2" 

vacuum chuck. A puddle of approximately 3 mL of SU-8 2035 negative photo 

resist was poured on the wafer by running the resist down a slope to reduce 
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Figure 4-3: Dimensions in \im along the length of the microfluidic channel fabricated 
(a) with and (b) without rotation under the UV lamp. 
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the amount of bubbles in the resist. The amount of photoresist used was not 

particularly important as the spinning created an even coating. 

6. The channel depth was altered by changing the speed used in the spin coater. 

For example, for a desired channel depth of 50 /J,m the spin coater was run at 

a slow speed of 500 RPM for 7 seconds and a fast speed of 2000 RPM for 30 

seconds. 

7. The coated wafer was removed from the spin coater and baked at 95°C for 45 

minutes. After being removed from the oven the photoresist layer was dry. 

8. A photomask of the channel design was placed over the wafer and then a large 

glass slide was placed on top to ensure good contact. 

9. The wafer was placed 3" below the UV light source maintained at 100% intensity 

for a total of 60 seconds. Exposure was accomplished in 15 second intervals 

with a 90° rotation after each interval to ensure more even light exposure. 

10. A post UV bake was then done for 3 minutes at 95°C. 

11. After the post bake the wafer was placed in a Petri dish of SU-8 developer. The 

developer worked best when there was agitation, so constant swirling (by hand) 

was done for 10 minutes. After the agitation was done the wafer was put in a 

second bath of developer and left for 10 minutes. For thicker layers, the wafer 

was selectively rinsed in certain areas (based on the design) with cyclopentanone 

prior to development. 

12. The wafer was rinsed with isopropyl alcohol and baked for several hours at 65°C 

to strengthen the bond between the photoresist and the silicon surface. 
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Table 4.2: Dimensions in ixm of the microfluidic channels fabricated from three master 
molds fabricated from the same photomask of 100/Um width. 

Mask No. 

Mask 1 

Mask 2 

Mask 3 

Width 

147 pm 

161 pm 

144 pm 

165 pm 

162 pm 

163 pm 

157 pm 

180 pm 

146 pm 

Average Width 

151 pm 

163 pm 

161 pm 

Height 

52 pm 

56 pm 

52 pm 

52 pm 

51 pm 

61 pm 

54 pm 

54 pm 

56 pm 

Average Height 

53 pm 

55 pm 

55 pm 

Three master molds were fabricated using the same 20, 000 dpi photomask with 

a design channel width of 100/xm to determine the variability in fabricating the mi-

crodevice channels. Three measurements of the channel height and width of the 

resulting device were made and are presented in Table 4.2. The difference between 

the designed and the fabricated dimensions depended on the pattern shape. A com

parison of the photomask design features and resulting device dimensions for the three 

patterns used in this research is shown in Table 4.3. The most repeatable results 

obtained show a resulting channel width 1.5 — 3 times the size of the design feature 

on the photomask. 

Table 4.3: Comparison of design and fabricated width for patterns used in this re
search. Average values are shown for fabricated width. Error indicates largest 
variation between average and measured values. 

Pattern Design Width Fabricated Width 

A 100 /xm 304±25 ^m 
B 50 fim 126±11 /im 
C 100 ^m 164±23 //m 
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4.2 Enzymatic Reactions in Microdevices 

Mixing within the microdevice is very important for the successful use of microdevices 

for enzymatic reactions. Some of the early enzymatic flow experiments in devices 

made from Pattern A showed an almost zero average rate of reaction. Since this 

pattern consisted of a T-junction with the enzyme solution entering as a side stream, 

it is possible that the flow was striated after the T-junction as shown in Figure 4-

4(a). This resulted in the reaction taking place only at the interface between the 

slugs of the two solutions instead of the entire volume of the reactor and may explain 

the negligible rates of reaction. Better results were obtained at higher flow rates 

and higher enzyme concentrations. However, the existence of striated flow in the 

microchannel at higher velocities could not be ruled out. To alleviate some of these 

concerns, Pattern C was designed using a T-junction with a head-on entry. The 

expected flow pattern in this case is shown in Figure 4-4(b). To improve the mixing 

between the two solutions, a serpentine channel was introduced after the two solutions 

mixed as seen in Figure 3-4(c). 

The free enzyme and the carrier-free enzyme aggregate reactions in this research 

could be visualized as a model reactor series scheme of a tubular flow reactor followed 

by a fed batch reactor as shown in Figure 4-5. The reaction mixture enters the 

tubular flow reactor at a flow rate Q with substrate concentration [S]0 and the average 

exit substrate concentration is [S]i. The reaction mixture then flows into a fed batch 

reactor and is emptied at time TFB- At this time, the average substrate concentration 

of the reaction mixture is [S]f. Within the microchannel, mixing is only due to 

diffusion and gradients will exist along the channel cross-section. For simplicity, it is 
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Figure 4-4: Flow patterns with (a) slug flow and (b) parallel flow possible in the 
microdevices. 

assumed that the microchannel behaves as a plug flow reactor with a residence time 

TPFR- As the drop forms at the end of the microchannel, mixing is not controlled 

and gradients in substrate concentration may exist within the drop. Again for ease 

of analysis, the fluid in the drop is assumed to be well mixed. It is also assumed that 

when the drop falls, there is no fluid left in the fed batch reactor. Experimentally, 

TPFR and Tps are known from the channel design and set flow rate, Q, and the initial 

and final substrate concentrations, [S]0 and [S]f are measured. The reaction with 

enzyme immobilization on the microdevice wall can be analyzed as just a plug flow 

reactor. 

Assuming that Michaelis-Menten reaction kinetics describes the decomposition of 
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tpFR 

Figure 4-5: Model reactor series scheme to analyze the microdevices in this research. 

hydrogen peroxide, the general mole balance can be written as 

d[S] PFR Vmax \y\ PFR 

dr KM + [S]PFR 

(4.1) 

Here [S]pFR is the substrate concentration at residence time r in the plug flow reactor. 

Integrating between the limits [S]PFR(T = 0) = [S}0 and [S]PFR(T) = [S]PFR gives 

an implicit equation for calculating [S] at any residence time r as 

KM In 
[S]o 

[S] PFR 
+ [S]0 - [S]PFR = vmaxT. (4.2) 

The substrate concentration at the exit of the plug flow reactor is calculated using 

[S]PFR(T = TPFR) = [S]i. In the limit where [S]0 — [S]pFR « [S]0, Equation 4.2 

reduces to a linear relationship between substrate concentration and time, 

[S]p — [S]pFR 

[S]o KM + [S]o 
T (4.3) 

The reaction mixture then enters the fed batch reactor at time t = 0 where the 
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general mole balance for the substrate can be written as 

^ - « * - £ * <"> 
The volume of the fed batch reactor at any time t is given by V(t) = Qt assuming 

V(t = 0) = 0. Assuming Q to be constant and using the product rule, the substrate 

concentration in the reactor at any time, [S] is given as 

d[S] _ [5li - [S] vmax[S] ( , 
dt t KM + [S]' { ' } 

This equation can be integrated numerically from [S](t = 0) = [S]i to [S](t = rFB) = 

[S]f to determine the substrate concentration measured at the end of the microdevice. 

It should be noted that vmax is dependent on the amount of enzyme present in the 

reactor. In a fed batch reactor, vmax is not really a constant as the amount of enzyme 

increases continuously. In the present analysis, vmax is assumed to be a constant in 

the fed batch reactor. 

The evolution of the substrate concentration as a function of residence time using 

Equations 4.1 and 4.5 is shown in Figure 4-6. For this data [S}0 = 30 mmol/L, 

Vmax = 6 mmol/L-min, KM = 35 mmol/L, TPFR = 2 min, and TFB = 1-25 min. A 

nearly linear reduction in the substrate concentration with residence time is observed 

for both the plug flow reactor and the fed batch reactor. In the experiments, we 

set TppRi TFB and measure [S]o and [S]f. The results presented in the following 

sections will be recast as an average reaction rate, [S]Q — [S]f/rTOT versus [S]o where 

TTOT = TppR + TpB- The effect of vmax and KM on the average reaction rate is shown 
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in Figures 4-7 and 4-8. The average reaction rate increases almost linearly with 

initial substrate concentration at low substrate concentrations. As vmax is increased, 

the average reaction rate increases as expected. A larger KM value corresponds to 

mass transfer limitations and hence a reduced reaction rate as seen in Figure 4-8. 

Finally, for reactions with enzyme immobilization on the microdevice wall, Figure 

4-9 shows the expected average reaction rate as a function of the initial substrate 

concentration for vmax = 6 mmol/L-min, KM = 35 mmol/L, and TPFR = 2 min. For 

comparison, the results for the series reactor scheme for TFB = 1-25 min is also plotted 

on the same figure. The general trend of the average reaction rate versus the initial 

substrate concentration is the same as seen for the free enzyme and the carrier-free 

enzyme aggregate reactions. As expected, the average reaction rate is higher in the 

absence of a fed batch reactor. 

4.2.1 Free Catalase Reaction 

Initial experiments focused on demonstrating measurable reaction rates within a mi

crodevice using free catalase and substrate solutions. This reaction began at the 

intersection of two channels and ended by quenching in acidic solution. The free 

catalase reactions were conducted in devices with Pattern A and a residence time of 

120 seconds within the microchannel (i.e. TPFR = 2 min) and a residence time in the 

drop of 75 seconds (i.e. TFB = 1-25 min) before the reaction mixture was quenched. 

The average reaction rate, [S]Q — [S]f/rToT, versus the initial substrate concentration 

[S]0 for the free enzyme reaction cases is shown in Figure 4-10. As initial sub

strate concentration increases, the average reaction rate increases almost linearly and 

reaches a maximum. After this maximum, substrate inhibition is observed and the 
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Figure 4-6: Evolution of substrate concentration with residence time for the model 
problem with [S]o = 30 mmol/L, vmax = 6 mmol/L-min, KM = 35 mmol/L, TPFR = 2 
min, and TFB = 1.25 min. 
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Figure 4-9: Average reaction rate as a function of initial substrate concentration in 
the absence and presence of a fed batch reactor with vmax = 6 mmol/L-min, KM = 35 
mmol/L, TPFR = 2 min, and TFB = 1-25 min. 
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average reaction rate decreases with further increase in the initial substrate concen

tration. In the macroscale experiments, this maximum is observed at ~ 80 mmol/L 

of initial substrate concentration which is consistent with the experimental data here. 

While the data does show a lot of scatter, the trend is consistent with the analysis 

results of Figure 4-7. However, without being able to measure the concentration at 

the end of the microchannel, it is not possible to calculate an exact vmax and KM 

value. 
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Figure 4-10: Initial reaction rate results for the decomposition of hydrogen peroxide 
by a solution of 6 U/mL and 12 U/mL of bovine liver catalase in a PDMS microdevice. 
Design features and reaction conditions correspond to experimental conditions Al and 
A2 in Table 3.2. 
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4.2.2 Enzyme Immobilization on Microdevice Wall 

For carrier-bound immobilization on microdevice wall, Patterns A and B were used 

with various treatment conditions. The average reaction rate as a function of the 

initial substrate concentration is shown in Figures 4-11 and 4-12. Results from the 

plasma oxidation method are shown in Figure 4-11 and results from the liquid phase 

oxidation method are shown in Figure 4-12. Furthermore, in Figure 4-12, the two 

data sets labeled Bl were collected starting with the lower initial substrate concen

trations. In the data set labeled B2, data was collected starting with the higher 

initial substrate concentrations. For all variations on the silanization and binding 

procedure, the data shows a maximum in the reaction rate followed by a decrease in 

reaction rate as initial substrate concentration increases. However, this maximum 

does not occur consistently at the experimentally observed initial substrate concentra

tion of 80 mmol/L. The observed data suggests that the enzyme did not irreversibly 

bind to the channel wall and was continuously leaching from the channel wall. The 

reaction rates observed followed the same general trend where initial data showed 

a high reaction rate that steadily dropped off at subsequent data points. This is 

consistent with detachment of the enzyme from the channel wall. As additional data 

points are collected, the total amount of enzyme in the system decreases, resulting in 

a consistent decrease in reaction rate despite the increased substrate concentration. 

Since the extent of leaching depended on the amount of time the channel was in ser

vice before the next measurement, the drop in the average reaction rate occurred at 

different initial substrate concentrations for the different runs. This is clearly seen in 

Figure 4-12 where the data showed a reduction in the average reaction rate depend-
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ing on the order in which the data was collected immaterial of the initial substrate 

concentration. 
2.0 

1.5 

1.0 

3 0.5 

0.0 

• A3 (Dl water, PDMS) 
• A4 (EtOH, PDMS/glass) 

10 15 

Initial substrate concentration, mmol/L 

20 25 

Figure 4-11: Average reaction rate versus initial substrate concentration for experi
ments with enzyme immobilization on microdevice walls for the conditions specified 
in Table 3.4. 

Leaching was also confirmed by calculations examining the activity of the enzyme. 

At a starting concentration of 10 mmol/L, pH 7.0, and temperature of 20 °C, one 

unit of catalase decomposes one micromole of hydrogen peroxide over the course of 

one minute. Based on data collected for starting concentrations of approximately 

10 mmol/L hydrogen peroxide, the change in absorbance over the actual residence 

time within the reactor results in a reaction rate that is impossibly large. This 

rate is significantly higher than what would physically be possible in an immobilized 

system. The observed rate exceeds the theoretical maximum rate possible based 

on the total mass of enzyme flowed through the device during treatment. Even if 
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Figure 4-12: Average reaction rate versus initial substrate concentration for exper
iments with enzyme immobilization on microdevice walls for using the conditions 
specified in Table 3.4. Data points in both Bl series were taken starting at low ini
tial substrate concentrations and progressing higher. In the B2 series, data collection 
started with a high initial substrate concentration and progressed to lower amounts. 

the total mass of enzyme present in the device had bound to the channel walls and 

retained its native activity the reaction rate could not reach the measured value. 

These calculations are presented in Table 4.5. Channel dimensions from Table 3.1 

were used in these calculations. If the enzyme had leached from the channel walls, 

Table 4.4: Parameters for calculation of total enzyme exposed to channel walls during 
treatment. Protein concentration provided by manufacturer. 

Concentration Flowrate Treatment Time Protein Concentration Total Enzyme 
U/mL uL/min min U/mg protein mg protein 

10,000 120 4540 0.661 

the reaction would continue beyond the boundaries of the device including within the 

64 



sample collection vial. This effectively increases the residence time for the reaction 

beyond the calculated amount which explains the increased rate observed. Thus, it is 

concluded that enzyme leaching was taking place and the treatment methods were not 

successful in their goal of irreversibly binding the enzyme to the channel walls. Based 

Table 4.5: Parameters used for calculation of observed activity and total enzyme 
present. 

Initial Substrate 
Concentration 

9 mM 

AConcentration 
Atime 

98136 U 

Protein Concentration 

4540 U/mg protein 

Total Enzyme 

21.6 mg protein 

on the consistent results obtained for covalent bonding of catalase to PDMS using 

silanization followed by glutaraldehyde in cases of plasma and liquid phase oxidation, 

it was determined that these methods were not viable for irreversible binding. 

4.2.3 Carrier-free Enzyme Aggregate Reaction 

After confirming the results for covalent bonding methods, a new approach was taken. 

Immobilization of the enzyme as cross-linked enzyme aggregate particles was at

tempted and successfully achieved. An image of two aggregate particles prior to 

filtration is shown in Figure 4-13. It was determined that the choice of precipitant 

was imperative to retaining enzyme activity. Initial attempts at creating cross-linked 

catalase aggregate particles using acetone as a precipitant produced aggregates with 

nearly zero activity. Substitution of diglyme for acetone, as used by Guisan, Pessela 

et. al. [49], produced particles that retained a significantly higher level of activity. 

Batch reactions on these particles confirmed this retention of activity. An initial rate 

plot of the two batch reactions is shown in Figure 4-14. The diglyme data shown is 

65 



Figure 4-13: Image of two cross-linked catalase aggregate particles at 40x magnifica
tion. This image was taken prior to filtration. 

the average of three trials. Error bars on these data indicate the high and low values 

and the data points represent the average value of the three sets. Acetone data are 

for one trial. The same preparation methods and filtration steps were used for each 

set of aggregates. 

Michaelis-Menten kinetics are observed for the aggregates precipitated using diglyme. 

A Lineweaver-Burk plot of the diglyme batch data is shown in Figure 4-15. The slope 

and intercept of the linear regression yielded a KM of 199 mmol/L and a vmax value 

of 630 mmol/L-min. An estimate of the total enzyme present was not made. Zheng 

et. al. [52] report a KM value of 62 mmol/L for bovine liver catalase in solution 

which was used in microchannels. In their work, aqueous droplets were used as mi-

croreactors carried through the device by a bulk silicone oil. An increase in KM as 

compared to the free enzyme KM value is expected due to immobilization. 

Initial experiments using these particles in microchannels showed aggregation of 

the particles near the channel entrance and some adhesion to the channel walls. Two 
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Figure 4-14: Initial reaction rate as a function of the initial substrate concentration 
for two batches with enzyme aggregates using diglyme and acetone as precipitants in 
the formation of the cross-linked enzyme aggregates. 

steps were taken to alleviate this problem. Channels were treated with the same 

oxidizing solution used in covalent bonding experiments to make the walls temporarily 

less hydrophobic and more hydrophilic. A drop of Triton X-100 sufractant was added 

to the particle solution upon resuspension during their preparation. This appeared 

to solve the problem of aggregation and unpredictable flow of the enzyme particles 

through the device. Data were then collected for reactions involving a range of 

initial substrate concentrations. Results for aggregates made with diglyme and used 

in microchannel flow experiments are shown in Figure 4-16. Two volumetric flowrate 

ratios were used to test for activity in the microchannels. Initially, a ratio of 1:39 

(enzyme to substrate) was used which resulted in very low activity. The data did not 

show the expected trend of increasing reaction rate with increasing initial substrate 
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Figure 4-15: Lineweaver-Burk plot of batch reactions using diglyme precipitated ag
gregates. 

concentration until a maximum was reached and the reaction rate would then drop 

likely due to substrate inhibition. The syringe pumps used in this research function 

by turning a threaded rod in discrete motions. To maintain a desired flowrate the 

frequency of these motions is determined based on the syringe diameter. Based on 

the syringes used, it was possible that not enough enzyme was present and distributed 

in the solution to show measurable activity. The ratio of enzyme solution to substrate 

solution was increased to 1:9 to provide more aggregate particles for reaction. This 

created a distinct difference in the results. The average reaction rate now showed a 

maximum at an initial substrate concentration of ~ 80 mmol/L which is consistent 

with the free enzyme reactions and the macroscopic batch reactions. As in the case 

of free enzyme reactions, a value for vmax and KM could not be calculated. 
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Figure 4-16: Average reaction rate as a function of initial substrate concentration for 
carrier-free enzyme aggregate reaction conditions shown in Table 3.5. 
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C H A P T E R 5 

SUMMARY AND F U T U R E W O R K 

The fabrication of microdevices and their use as microscale multistep reactors pro

vides many challenges. In this research, soft lithography techniques were developed 

to fabricate microchannels in PDMS layers. These layers were sealed using plasma 

treatment and interfaced with macroscale equipment to flow fluids through the mi

crodevices. This provided a platform to explore the challenges of implementing assays 

on the microscale. 

Fabrication provided challenges in nearly every step. High resolution photomasks 

were important in creating microchannels with smoother, more vertical sidewalls. 

20, 000 dpi photomasks were shown to yield better results than 5, 000 dpi photomasks. 

UV exposure time, post-exposure baking time, and post-exposure baking temperature 

all contributed significantly to the quality of the resulting master mold. Rotation 

of the silicon wafer during the UV exposure step was important in controlling the 

width of the fabricated microchannels. The UV lamp probably did not generate 

a very collimated beam resulting in fabricated channel dimensions ~ 1.5 — 3 times 

larger than the design dimensions. Layer sealing and device interfacing were both 
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important challenges to overcome. Oxygen plasma treatment followed by baking 

under a weighted uniform surface for 2 — 3 hours was determined to be the most 

successful method of sealing PDMS layers. The most consistent results for interfacing 

with macroscale devices were observed when PDMS layers were cast with stainless 

steel tubing to pre-form inlet and outlet ports. These pre-formed ports were sized 

to be slightly smaller in diameter than the final tubing used for interfacing. The 

flexibility of the PDMS allowed the use of slightly larger tubing in a smaller diameter 

port and this slight compression also created a strong conformal seal which prevented 

leaks. 

Flow experiments were conducted in the microdevices to study the decomposition 

of hydrogen peroxide by bovine liver catalase at low substrate concentrations. The 

reaction was first conducted by mixing a free catalase solution and substrate solution 

at a junction within the device at two concentrations of enzyme solution. The 

average reaction rate increased with the initial substrate concentration, reached a 

maximum and then dropped at higher initial substrate concentrations. The initial 

substrate concentration at which the maximum average reaction rate occurred was 

~ 80 mmol/L which is consistent with macroscale batch reactions. The average 

reaction rate data at low initial substrate concentrations showed similar trends to a 

model scheme of a plug flow reactor followed by a fed batch reactor. However, due 

to the limitations of the experimental set up, the kinetic parameters could not be 

calculated. 

Enzyme immobilization efforts focused on covalent binding of the enzyme to the 

microdevice wall. The method used in this research consisted of surface treatment 
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to reduce PDMS hydrophobicity followed by a silanization step. This prepared 

the surface for treatment with glutaraldehyde followed by exposure to the enzyme. 

Plasma and liquid phase oxidation of the PDMS variations were examined as well 

as variation of solvent, concentration, and treatment time for the silanizing agent, 

glutaraldehyde, and enzyme exposure steps. The average reaction rate data obtained 

from this study showed no specific dependence on the initial substrate calculations. 

Based on experiments and analysis of enzyme loading, we concluded that for all 

variations used, enzyme leached from the channel walls. 

Finally, carrier-free immobilization of catalase was accomplished by forming en

zyme aggregate particles using enzyme precipitation followed by binding with glu-

taraldehyde. These particles were filtered to isolate the < 30/im fraction for use 

in microdevices. Activity was tested by batch reaction in a glass vial prior to use 

in microchannel flow experiments for two choices of precipitant. It was observed 

that enzyme aggregates fabricated with diglyme as a precipitant showed far greater 

activity than enzyme aggregates fabricated with acetone as precipitant. Flow ex

periments with carrier-free enzyme aggregate particles showed average reaction rate 

dependence on initial substrate concentration similar to free enzyme reactions and 

the series reactor model developed. 

The results of this research provide several areas of improvement and suggestions 

for future study. 

• A better control of fabricated width of the microchannel as compared to the 

design width is needed. To this end, a UV lamp source with a collimated beam 

should be used. 
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• Mixing within micro channels must be improved to reduce any stratification of 

flow with multiple fluid streams. 

• Improvements in the quenching schemes would allow for a finer control over 

reaction times and allow for accurate measurements of kinetic parameters for 

the microscale enzymatic reactions. 

• Studies using alternate techniques for carrier-bound enzyme immobilization may 

be useful in working toward the goal of a multistep microchannel reactor. Re

duction or elimination of enzyme leaching is important in creating a functional 

microscale flow reactor that can be studied and characterized. 

• Careful control of channel height and width in combination with selective fil

tration could be used to create a flow system in which the aggregate particle is 

slightly smaller than the channel size. Separation of aggregate particles from 

the reaction solution provides the opportunity for reuse. Methods for particle 

recovery from microdevices can be explored for use in these systems. 
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A normal process is: spin coat, soft bake, expose, post ex
pose bake (PEB) followed by develop. A controlled hard 
bake is recommended to further cross-link the imaged SU-8 
2000 structures when they will remain as part of the device. 
The entire process should be optimized for the specific ap
plication. A baseline process is given here to be used as a 
starting point. 

Substrate Pretreat 
To obtain maximum process reliability, substrates should be 
clean and dry prior to applying the SU-8 2000 resist. Start 
with a solvent cleaning, or a rinse with dilute acid, followed 
by a DI water rinse. Where applicable, substrates should be 
subjected to a piranha etch / clean (H-SO. & EUCu). To 
dehydrate the surface, bake at 200CC for 5 minutes on a con
tact hot plate or 30 minutes in a convection o\en. Adhesion 
promoters are typically not required. For applications that 
require electroplating and subsequent removal of SU-8 2000 
apply MicroChem 's OmniCoat prior to processing. 

SU-8 2QQ0 Spin Speed Curves 

750 1000 125 0 1500 1750 2000 2 25 0 2500 2750 3000 3250 

Spin Speed (ipm) 

Figure 1. Spin speedvs. thickness curvesforselected SU-
8 2000 resists. 

Coat 
SU-8 2000 resists are designed to produce low defect coat
ings over a very broad range of film thickness. The film 
thickness versus spin speed data displayed in Table 1 and 
Figure 1 provide the information required to select the ap
propriate SU-8 2000 resist and spin conditions, to achieve 
the desired film thickness. 

The recommended coating conditions are: 
(1) STATIC Dispense: Approximately 1ml of SU-8 2000 
per inch of substrate diameter. 
(2) Spread Cycle: Ramp to 500 rpm at 100 rpm/second 
acceleration. Hold at this speed for 5-10 seconds to allow the 
resist to cover the entire surface. 
(3) Spin Cycle: Ramp to final spin speed at an acceleration 
of 300 rpm/second and hold for a total of 30 seconds. 

Product N a m e 

SU-8 2035 

SU-8 2050 

SU-8 2075 

SU-8 2100 

Viscosity 
(cSt) 

7000 

14000 

22000 

45000 

Thickness 

(urns) 

35 

55 

110 

50 

75 

165 

75 

110 

225 

100 

140 

260 

Spin Speed 
(rpm) 

3000 

2000 

1000 

3000 

2000 

1000 

3000 

2000 

1000 

3000 

2000 

1000 

Soft Bake 
After the resist has been applied to the substrate, it must be 
soft baked to evaporate the solvent and densify the film. 
SU-8 2000 is normally baked on a level hot plate, although 
convection ovens may be used. The following bake times 
are based on contact hot plate processes. Bake times should 
be optimized for proximity and convection oven bake pro
cesses since solvent evaporation rate is influenced by the 
rate of heat transfer and ventilation. 

For best results, ramping or stepping the soft bake tempera
ture is recommended. Lower initial bake temperatures al
low the solvent to evaporate out of the film at a more con
trolled rate, which results in better coating fidelity, reduced 
edge bead and better resist -to-substrate adhesion. Refer to 
Table 2. for TWO STEP contact hot plate process recommen
dations. 

Product N a m e 

SU-8 2035 

SU-8 2050 

SU-8 2075 

SU-8 2100 

Thickness 
(urns) 

35 
55 

110 
50 
75 

165 
75 

110 
225 
100 
140 
260 

Pre-bake 
®.65°C 

2 
3 

5 
3 
3 
5 
3 
5 
5 

5 
5 
7 

Softbake 
(®95 0 C 

5 
6 

20 
6 
9 

30 
9 

20 
45 
20 
35 
60 

Table 1. Thickness vs. spin speed data for selected SU-8 
2000 resists. 
* * Approximate Table 2. Recommended soft bake parameters 
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Expose 
SU-8 is optimized fornearUV(350-40QnirO exposure, i-line 
exposure tools are recommended. SU-8 is virtually transpar
ent and insensitive above 400nm but has high actinic ab
sorption below 350nm. This can be seen in Figure 2. Exces
sive dose below 350nm may, therefore, result in over expo
sure of the top portion of the resist film, resulting in exagger
ated negative sidewall profiles or T-topping. The optimal ex
posure dose will depend on film thickness (thicker films re
quire higher dosage) and process parameters. The exposure 
dose recommendations in Table 3. are based on source inten
sity measurements taken with an i-line (365nm) radiometer 
and probe. 

Expose tip: When using a broad spectral output source, for 
best imaging results, i.e. straightest sidewalls, filter out ex
cessive energy below 350nm. 

Catastrophic adhesion failure, severely negative sidewalls 
and excessive cracking often indicate an under cross-linking 
condition To correct the problem, increase the exposure dose 
and/or increase the post exposure bake (PEB) time. 

300 320 340 360 380 400 420 

Wavelength (nm) 
Figure 2. SU-8 absorbance vs. film thickness 

SU-8 2000 Exposure vs Film Thickness 
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Table 3. Recommended expose dose processes 

Post Expose Bake 
Following exposure, a post expose bake (PEB) must be per
formed to selectively cross-link the exposed portions of the 
film. This bake can be perform ed either on a hot plate or in a 
convection oven. Optimum cross-link density is obtained 
through careful adjustments of the exposure and PEB pro
cess conditions. The bake recommendations below are based 
on results obtained with a contact hot plate. 

PEB tip: SU-8 is readily cross-linked and can result in a highly 
stressed film. To minimize stress, wafer bowing and resist 
cracking, a slow ramp or TWO STEP contact hot plate pro
cess, as shown in Table 4., is recommended. Rapid cooling 
after PEB should be avoided. 

Product Name 

SU-8 2035 

SU-8 2050 

SU-8 2075 

SU-8 2100 

Thickness 
(urns) 

35 
55 

110 
50 
75 

165 
75 

110 
225 
100 
140 
260 

PEB1 
<».65°C 

PEB 2 
®95°C 

3 
5 
10 
5 
7 

12 
7 

10 
15 
10 
15 
15 

Table 4. Recommended post expose bake parameters 
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Develop 
SU-8 2000 resists have been optimized for use with 
MicroChenfs SU-S Developer. Immersion, spray or spray-
puddle processes can be used. Other solvent based develop
ers such as ethyl lactate and diacetone alcohol may also be 
used. Strong agitation is recommended for high aspect ra
tio and/or thick film structures. Recomm ended develop times 
are given in Table 5. for immersion processes. These pro
posed develop times are approximate, since actual dissolu
tion rates can vary widely as a function of agitation rate, 
temperature and resist processing parameters. 

Product Name 

SIM 2035 

SU-8 2050 

SUS2075 

SUS2100 

Thickness 
(urns} 

35 
55 
110 
50 
75 
165 
75 
110 
225 
100 
140 
260 

Development 
(minutes) 

5 
6 
10 
6 
7 
12 
7 
10 
12 
10 
15 
20 

Table 5. Recommended develop processes 

Rinse and Dry 
Following development, the substrate should be rinsed briefly 
with isopropyl alcohol (TPA), then dried with a gentle stream 
of air or nitrogen. 

Rinse tip: If a white film is produced during rinse, this is 
an indication that the substrate has been under developed. 
Simply immerse or spray the substrate with SU-S developer 
to remove the film and complete the development process. 
Repeat the rinse step. 

Hard Bake (cure) 
SU-8 2000 has good mechanical properties, therefore hard 
bakes are normally not required. For applications where the 
imaged resist is to be left as part of the final device, the 
resist may be ramp/step hard baked between 150-200°C on 
a hot plate or in a convection oven to further cross link the 
material. Bake times vary based on type of bake process and 
film thickness. 

Removal 
SU-8 2000, after expose and PEB, is a highly cross-linked 
epoxy, which makes it extremely difficult to remove with 

conventional solvent based resist strippers. MicroChem's 
Remover PG will swell and lift off minimally cross-linked 
SU-8 2000. However, if OmniCoat has been applied immer
sion in Remover PG should effect a clean and thorough Lift
off of the SU-8 2000 Material. It will notremove fully cured or 
hard baked SU-8 2000 without the use of OmniCoat. Alter
nate removal processes include immersion in oxidizing acid 
solutions such as piranha etch /clean, plasm a ash, RIE, laser 
ablation and pyrolosis. 

To remove minimally cross-linked SU-8 2000, or if using 
Omnicoat, with Remover PG, heat the bath to 50-80°C and 
immerse the substrates for 30-90 minutes. Actual strip time 
will depend on resist thickness and cross-link density 
For m ore inform ation on MicroChem Omnicoat and Rem over 
PG please see the relevant product data sheets. 

Storage 
Store SU-8 2000 resists upright in tightly closed containers in 
a cool, dry environment away from direct sunlight at a tem
perature of 40-70°F(4-21°C). Store away from light, acids, 
heat and sources of ignition. Shelf life is twelve months from 
date of manufacture. 

Disposal 
SU-8 2000 resists may be included with other waste con
taining similar organic solvents to be discarded for destruc
tion or reclaim in accordance with local state and federal 
regulations. It is the responsibility of the customer to ensure 
the disposal of SU-8 2000 resists and residues made in ob
servance all federal, state, and local environmental regula
tions. 

Environmental, Health and Safety 
Consult product Material Safety Data Sheet before working 
with SU-8 2000 resists. Handle with care. Wear chemical 
goggles, chemical gloves and suitable protective clothing 
when handling SU-8 2000 resists. Do not get into eyes, or 
onto skm or clothing. Use with adequate ventilation to avoid 
breathing vapors or mist. In case of contact with skin, wash 
affected area with soap and water. In case of contact with 
eyes, rinse immediately with water and flush for 15 m inutes 
lifting eyelids frequently. Get emergency medical assistance. 

The information is based on our experience and is, we be
lieve to be reliable, but may not be complete. We make no 
guarantee or warranty, expressed or implied, regarding the 
information, use, handling, storage, or possession of these 
products, or the application of any process described herein 
or the results desired, since the conditions of use and han
dling of these products are beyond our control. 

Ml/«i;Nl»CHEMl 
1254 Chestnut Street 
Newton, MA 02464 

tel: (617)965-5511 fax:(617)965-5818 
email: mcc@microchem.com www.microchem.com 
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