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ABSTRACT 

BIOLOGICALLY INSPIRED FEATURE EXTRACTION FOR 
ROTATION AND SCALE TOLERANT PATTERN ANALYSIS 

By 

Dragan Vidacic 
University of New Hampshire, September, 2009 

Biologically motivated information processing has been an important area of 

scientific research for decades. The central topic addressed in this dissertation is 

utilization of lateral inhibition and more generally, linear networks with recurrent 

connectivity along with complex-log conformal mapping in machine based 

implementations of information encoding, feature extraction and pattern recognition. The 

reasoning behind and method for spatially uniform implementation of 

inhibitory/excitatory network model in the framework of non-uniform log-polar 

transform is presented. For the space invariant connectivity model characterized by 

Topelitz-Block-Toeplitz matrix, the overall network response is obtained without matrix 

inverse operations providing the connection matrix generating function is bound by unity. 

It was shown that for the network with the inter-neuron connection function expandable 

in a Fourier series in polar angle, the overall network response is steerable. The 

decorrelating/whitening characteristics of networks with lateral inhibition are used in 

order to develop space invariant pre-whitening kernels specialized for specific category 

of input signals. These filters have extremely small memory footprint and are 

successfully utilized in order to improve performance of adaptive neural whitening 

x 



algorithms. Finally, the method for feature extraction based on localized Independent 

Component Analysis (ICA) transform in log-polar domain and aided by previously 

developed pre-whitening filters is implemented. Since output codes produced by ICA are 

very sparse, a small number of non-zero coefficients was sufficient to encode input data 

and obtain reliable pattern recognition performance. 
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CHAPTER I 

INTRODUCTION 

Throughout history, humans have always been inspired by nature when trying to 

solve practical problems. Biologically motivated models in engineering and the 

evolution of technology have lead to more and more difficult challenges to be considered 

resulting in development of fields such as artificial intelligence, artificial muscles, 

artificial vision and many others [1]. One of the most intriguing senses that many 

biological entities possess is vision. The way in which humans acquire, process and, 

finally, interpret visual information has been a topic of scientific study for years. As our 

knowledge about the physiology of biological vision evolved, efforts to create or mimic 

adequate models of the visual information processing pathway followed. The 

effectiveness, speed and accuracy of certain aspects of information processing system in 

humans are still superior in many ways over machine implementations. Questions arise 

whether, and how, we can further reduce the gap between the biology and man made 

machines so that our "smart computers" can sense, process and perform as well as a 

human. 

1.1 Statement of the Problem 

The central issue addressed by the research presented herein is the efficient 

exploitation of specific biological functionality which is observed in many mammalian 

sensory subsystems. The exploitation of such functionality is directed toward solving 
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complex engineering problems related to signal processing and pattern classification. An 

important aspect of the work addressed in this dissertation is development of adequate 

information processing models that can find direct implementation in the domain of 

machine vision. In the quest for such knowledge, the inevitable question arises: how can 

one create a computationally efficient, biologically inspired, image processing framework 

suitable for pattern recognition that can be utilized on an inexpensive PC platform. Two 

requirements are common for machine vision applications. The first one is maintaining a 

large field of view while preserving the detailed information from the scene at the point 

of interest. The second one is providing the capability of the system to process the data at 

a very fast rate. These requirements directly correlate with the way humans (and many 

other organisms) process the visual information. The non-uniform distribution of visual 

sensors in the retina corresponds to the spatially variant sampling strategy of the Human 

Visual System (HVS). The response of a given retinal ganglion cell depends on the light 

intensity falling on the photoreceptors within the small, more or less, circular area of the 

retina called the ganglion cell receptive field [2]. The retinal receptors are densely 

packed at the fovea and their density decreases as the radial distance from the fovea 

increases. This directly allows for data reduction and wide field of view while preserving 

the detailed information at the gaze point. The diameter of the receptive field size of the 

retinal ganglion cells as reported by [2], [3] and [4] increases linearly with eccentricity. 

The distribution of ganglion cells has been reported to be similar to the cone distribution 

[2], [5], [6] and [7]. At the fovea there are at least three ganglion cells per cone [7], while 

at the periphery there is one ganglion cell per two cones. Obvious data reduction 

performed at the retinal sensory level through non-uniform sampling is only one aspect of 

2 



information processing occurring in frontal stages of the HVS. Early discoveries have 

shown that the inverse of cortical magnification factor1 is linearly dependent on 

eccentricity [9] and [10]. This lead to the introduction of a conformal logarithmic 

mapping (or sometimes call merely a complex-log, or log-polar mapping) as the model 

that agrees well with the rearrangement of retinal signals in the visual cortex (this signal 

rearrangement or mapping is usually referred as retino-cortical projection) [11], [12], [13] 

and [14]. Additionally, the lateral inhibition mechanism is known to occur in the early 

stages of visual information processing in biological systems. This is especially seen in 

the retina, lateral geniculate nucleus (LGN) and certain areas of the visual cortex [15] -

[19]. According to [20] in the mid-1960' s the linear retinal receptive field model was 

introduced and antagonistic center-surround profile of retinal receptive fields was 

modeled as a Difference of Gaussian (DOG) function. The DOG model also describes 

the characteristics of LGN receptive fields since they show a great level of similarity to 

retinal ganglion cell receptive fields [21], [22]. This dissertation describes the effort 

aimed towards integrating the biological concepts of spatially non-uniform image 

processing and data reduction models with signal processing principles inherent to 

various stages of biological vision. These techniques are eventually embedded in a 

computationally efficient signal processing and pattern recognition framework. 

In the frontal processing stage of the proposed model, the effort has concentrated 

on developing computationally effective strategies that incorporate networks with lateral 

feedback connectivity in conjunction with a log-polar mapping. The importance of 

lateral inhibitory connectivity in the context of the visual processes is very often 

1 The cortical magnification factor is defined as the linear extent of the striate cortex to which each degree 
of the retinal field projects. 
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perceived as edge enhancement (or even interpreted as Mach-band effect). The complete 

role of inhibitory mechanisms can be revealed only after relating the statistical properties 

of the visual information at the input and output of the processing framework. More 

importantly, shaping the chosen signal processing tools (i.e. filters effectively performing 

the lateral-inhibitory/excitatory process on the particular signal) for foveated and/or a 

warped environment leads towards attractive models that correlate very closely with 

biological principles of information extraction and their artificial implementation in the 

field of machine vision. From the biological perspective, it can be said that the signal 

processed by mechanisms inherent to the retino-cortical pathway might be a suitable (and 

very probably close to optimal) input for higher cognitive modules of the pattern 

recognition system. However, the implementation of additional information processing 

stages, similar to those occurring in the visual cortex, is likely to provide a more 

beneficial data structure for feature extraction before actual pattern classification is 

performed. For example, Gabor type functions were proposed as a suitable model for 

cortical simple cell responses as shown in [23] - [26]. Techniques presented in this 

dissertation try to incorporate cortical information processing including, but not limited 

to, approximate modeling of the response of such Gabor-like cortical cells within the 

context of logarithmic conformal mapping. The ultimate goal of the system development 

is its practical implementation. The significant body of the work presented in this 

dissertation addresses theoretical concepts and provides experimental results obtained by 

utilizing biologically motivated techniques of signal processing as de-facto 

pre-processing tools in pattern classification tasks. It also attempts to provide detailed 

insight into the significance and usefulness of these computational tools as well as 
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revealing their role from a much broader perspective. In other words it treats them as an 

integral part of the inherently biologically motivated data processing chain capable of 

deduction processes. 

It is reasonable to assume that the evolution of mammalian brain would have resulted in 

highly efficient usage of natural resources. This would inevitably imply that the human 

visual system has developed principles of information encoding representing the most 

effective and most useful mechanisms for representation of natural images. In the well 

known work of Barlow [27] it is argued that the role of sensory coding is the 

development of input stream representations that generate factorial code and reduce 

redundancy. The importance of redundancy reduction is very clearly stated by Olshausen 

and Field [28], [29] who point out that the information structure present in the world is 

actually embedded within complex statistical dependencies among photoreceptor 

activities. According to these researchers, the goal of a biological visual sensory system 

is to extract intrinsic information from the input signal, or by reducing input redundancy, 

reveal collections of independent events that actually compose the image. Bell and 

Sejnowski [30] point out that the problem equivalent to Barlow's problem of redundancy 

reduction is Independent Component Analysis (ICA). ICA is the signal transformation 

technique aiming to find the data components that are as statistically independent from 

each other as possible and is becoming very popular for deployment in pattern 

recognition systems. Furthermore, same researchers showed that natural images contain 

statistical regularities suitable for sparse encoding which is tightly related to ICA [31]. 

One of the questions that remains unanswered is whether principles of 

redundancy reduction (for example through ICA or sparse coding) can be embedded into 
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a wider image processing and pattern recognition framework with the front end module 

performing a retino-cortical type of signal transformation through log-polar mapping and 

which also incorporates lateral inhibition/excitation directly in the network. At the same 

time it is necessary to obtain efficient and meaningful (potentially adapted for specific 

sensor topology) implementation of lateral inhibitory/excitatory mechanisms in log-polar 

environment. These problems are addressed in detail in the text that follows. The block 

diagram shown in Figure 1.1 depicts the strategy of information processing studied 

herein. The block named Retino-Cortical Filter plays the central role in information 

preprocessing by this system. It represents the stage of signal processing based on a 

network with recurrent connectivity adapted for the log-polar environment. 

Original Image 3 
Non-Uniform 

Sampling / Log-
Polar Mapping 3 Retino-Cortical 

Filter . 
Cortical Processing 
(Simple Cells + ?) 3 Feature Extraction & 

Pattern Recognition 

Figure 1.1 Biologically inspired computer vision system for pattern analysis; the lateral 
inhibition/excitation adapted for log-polar environment is implemented through Retino-Cortical Filter. 

It must be noted that this research is not aimed towards development of some sort of new 

pattern classification engine. As it will be presented later in this text, the recognition 

itself is performed by utilizing well known classification tools. As is the case with any 

engineering field, the significant effort in this work is made to discover potential usability 

of the proposed models through solving practical problems such as object recognition. 
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1.2 Importance of the Problem 

Efficient image processing algorithms have always been of great importance for 

computer vision and pattern recognition applications due to the requirement of real time 

performance. Reduction of the computational costs while sacrificing very little in signal 

detail is an acceptable strategy of data processing if reliable decisions can be made for 

future system actions. Utilization of characteristics of biological systems for solving 

practical problems inevitably leads towards reducing the gap between manmade 

machines and live systems. When it comes to image processing and pattern recognition, 

the aspects of foveation and warping still deserve great attention from academic and 

industrial viewpoints. This is especially true for the implementation of efficient data 

processing strategies in such framework(s), as well as recognizing the practical 

limitations of those techniques which have far reaching consequences in the domain of 

machine vision and artificial intelligence. 

1.3 Specific Project Objectives 

The specific project objectives can be now listed: 

1) The first objective is to obtain the response of the receptor network with 

pre-determined (not necessarily purely inhibitory, but potentially a combined 

inhibitory/excitatory inter-neuron coupling model) and correlate it with conventional 

center-surround (DOG-like) response of the retinal receptive field. It is also desired to 

describe the response of the neural recurrent grid with a closed form or simple numerical 

solution. 
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2) The obtained response of the network with recurrent inhibitory/excitatory 

connectivity should be incorporated into the model of a retino-cortical filter that 

essentially performs non-uniform input data processing. The aim is to avoid all spatially 

non-uniform operations in the linear input space with the exception of the log-polar 

mapping itself. Instead, adequate spatially uniform signal processing in the cortical 

domain will be investigated. The desired processing technique should be consistent with, 

and adapted for the topology of log-polar warping. The main problem is to find out how 

this filter adaptation can be achieved? 

3) One of the objectives is to find and evaluate alternative, network-based models 

of non-uniform neural coupling, consistent with log-polar mapping. The spatially 

varying strength of inhibition between receptor fields and the implementation of a 

microscopic neuron network solution on such a model will be investigated. 

4) The front end processing realized through the implementation of biological 

filters in the warped domain will be succeeded by the cognitive system module 

responsible for pattern classification. The specific role of the frontal filters based on 

networks with recurrent lateral connections within the broader context of a signal 

processing and pattern recognition framework will be addressed. The feature 

selection/extraction will be performed based on the specific pattern recognition model. 

The actual pattern classification technique will be based on already available and well 

known classifiers, i.e. the detailed study of various classification engines potentially 

deployable in this framework is out of scope of this dissertation. 
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1.4 Background 

Log-polar mapping (complex log mapping) is the well known conformal 

coordinate transformation where the coordinates from the transformation domain 

determined by the complex number z = x + iy are mapped into the complex number 

l = u + iv by applying the following mapping rule: 

w = l n - , (1.1) 

a 

v = e, (1.2) 

where 

r = Jx2 + y2 (1.3) 

0 = arg(x + iy). (1.4) 

The pair (x, y) represents the coordinates in the input domain (input image) while the 

pair (w,v) represents coordinates from the mapped region. This region is often referred 

to as the log-polar or cortical domain. Constant a represents the minimal radius that is 

mapped (the logarithmic function is singular at r=0). In some instances, the points with 

radii smaller than a are mapped through a linear transformation function. The log-polar 

coordinate mapping is shown in Figure 1.2. 
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y I v=e • 

u+iv 

— i *-

: u=ln(r/a) 

Figure 1.2 Log-polar mapping 

In the case of machine vision, the mapping is discrete. The Polar Exponential Grid 

(PEG) is placed over the input image for non-uniform sampling. Log-polar samples are 

obtained by applying a specific sampling method (area sampling for example) and the 

resulting image is formed by rearranging pixels in the new uniform (w,v) space. The 

PEG radii exponentially increase with the radial index. The discrete version of complex 

log mapping is shown in Figure 1.3. 

x+iy 
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u = ln(r/a) 

Figure 1.3 Log-polar mapping (discrete implementation) 

The usefulness of log-polar mapping comes from the rotation and size/scale invariance 

achieved in the resulting domain [32] making the transform suitable for pattern 

recognition. Scaling or rotating the input image causes the output to shift along u and v 

axis respectively. The resulting data sets are significantly reduced enabling faster and 

computationally efficient processing. 

Concepts of non-uniform retina-like image sampling and log-polar mapping have 

been widely applied in the area of machine vision and image processing. An extensive 

review of biologically motivated data reduction models related to log-polar mapping can 

be found in [2]. Further more, hardware implementations of foveated vision chips 

including log-polar sensors are reported in [33] and [34]. There are numerous examples 

of complex-log mapping and foveation-based techniques in image processing and pattern 

recognition research. Some of this research concentrates on detection of specific shapes 

such as straight lines and circles [35]. Others have been used to solve problems such as 

image registration [36] and efficient implementation of edge detection or Hough 

11 
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transform in a foveated environment [37] and [38]. A comparative analysis of two 

different feature extraction operators in log-polar context (one model is based on neural 

network learning capability and the other relies on the mathematical model of object 

features) presents superiority of neural network-based feature extraction [39]. The 

non-uniform retinotopic image sampling and complex-log mapping applied for face 

recognition are demonstrated by [40] and [41]. The applications of tracking, visual 

attention, license plate reading and video-telephone communications utilizing sensors 

with logarithmically structured space-variant pixel geometry are shown in [42]. 

Examples of spacecraft tracking and docking aided by the log-polar warping are 

presented in [43] and [44]. Log-polar based sensing is also used as the foveation method 

in applications of distributed surveillance [45]. 

Non-uniform processing of visual information in the frontal pathway of the HVS 

is accompanied by lateral inhibition between neuron receptors at different stages of 

information flow [15] - [19]. The feed-backward form of the lateral subtractive inhibition 

(LSI), happening at the neural level, can be mathematically modeled by the following 

2-D equation for the grid with NxN receptors: 

N 

f,=^-fbmfkl. (1.5) 

where, etj represents the input over the receptor field at location i, j , ftj, and fa 

correspond to output of receptors at location i,j and k,l respectively. The term bijkl is 

the coupling coefficient describing the inhibition between receptors at locations i, j and 

k,l (if self-inhibition or self-excitation is prohibited: bijkl = 0 for i = j and k = I). For 
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systems without adaptive capability, the weighting factor is usually dictated by the 

distance between receptor fields. 

The above equations can be written in the matrix form: 

F = E-BF (1.6) 

where F and E are the sensory output and the input respectively presented in matrix form, 

while B is the coupling coefficient matrix (usually named the network connection 

matrix). The F and E matrices are actually vector columns and they are given as 

(example for 3x3 receptor grid): 

where: 

F=[[F!] [F2] [F3]]\ 

E=[[£,] [E2] [£3]]T, 

[Fi\=\fiifafi3], and [£,]=[e,7 ei2 ei3], *'=1,2,3. 

The coupling coefficient matrix B is given as: 

B=[[flaJ], i=l,2,3; *=U,3. 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

The matrix B is 9 by 9 matrix (in this example of 3 by 3 receptor grid), where each sub 

matrix Bik represents the interaction between receptors in the i-th and k-th row. For 

example, the interaction between receptors in the 1st and 2nd row would be described by: 

B 12 

^1121 ^1122 ^1123 

^1221 ^1222 ^1223 

h 1321 ^1322 ^1323. 

(l.H) 

with biJkl representing the interaction between receptors btJ and bkl 

The final solution to the equation 1.6 is: 
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F = S~lE (1.12) 

where: 

S=I + B. (1.13) 

Matrix / is the identity matrix and it is presumed that S~] exists. If the coupling 

coefficients depend only on distance between receptors, and the distribution of receptors 

is uniform in the form of a square grid, the sub-matrices [fly] will be Toeplitz matrices 

and the matrix B will be symmetric. Detailed simulations describing the effect of 

networks with lateral inhibition and addressing fifteen different receptor coupling models 

can be found in [46]. 

One of the early biologically inspired models of networks with recurrent 

connectivity that fitted the experimental data was indeed the negative feedback model 

[47] and [48]. The microscopic neuron network solution form of a 2-D grid array with 

subtractive inhibition described by equations 1.6 - 1.13 was presented ear her in [49]. The 

same paper reveals the connection between network response characterized with LSI and 

processing of visual information through several spatially tuned band-pass filters. In this 

approach, the LSI was represented as the process of passing the input image through the 

set of different DOG filter kernels. Similar results are shown in [50]. Almost identical 

model of the network solution for the grid with recurrent DOG type connectivity (the 

model accounting for the inhibition and the excitation) can be found in [51] where the 

authors characterize the impulse response of the grid as a circular Gabor filter. The 

uniform implementation of lateral inhibition in a log-polar and pre-mapped linear 

domains with different computational models of LSI has also been investigated in [52]. 
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Foveation and warping introduce various difficulties to image processing. When 

considering implementations of a pure lateral inhibitory networks in the context of 

log-polar mapping like the ones seen in [48] and [52], it is still necessary to answer if the 

application of uniform, space invariant model of lateral connectivity is consistent with 

inherently spatially non-uniform coordinate mapping. A significant step towards 

answering such a question was made by [21] where an example of non-uniform image 

processing by center-surround DOG kernels in a linear input space that is potentially 

followed by the log-polar mapping was presented as a model of early stages of biological 

vision. As presented later in this dissertation, the research described herein utilizes 

extremely important results of Tabernero et. al. given in [53], who reveal the foveation 

method based on characterization of non-uniform foveation filters from input linear space 

as uniform low-pass kernels in the log-polar domain. More precisely, these results 

demonstrated how the foveation process can be achieved by uniform low-pass filtering in 

the log-polar domain if the log-polar transform preserves the energy of the original 

image. This concept is used as a basis for justification of spatially uniform image 

operations in the cortical space as implemented herein. 

Most of the work presented in this dissertation addresses (and is limited to) 

methods of space invariant signal processing in log-polar domain based on operations 

performed either by direct spatial domain computations or by finding the system response 

in frequency domain. However, it is worth noting that besides uniform image processing 

methods, very common techniques associated with space-variant vision (log-polar 

architecture considered) are operations performed on retinal image (the result of inverse 

log-polar mapping is sometimes called retinal image), those utilizing Fourier-Mellin 
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transform (successive applications of Fourier transform, log-polar mapping and Fourier 

transform) and image processing based on connectivity graphs [54]. The exponential 

chirp transform described in [54] introduces shift invariance like that of standard Fourier 

transform achieved in log-polar space by applying the exponential chirp kernel. 

However, computing the transform requires additional processing time. The operations 

based on connectivity graph representing neighbor relations in an arbitrary architecture 

[55] demand the generation of separate structure (graph) for image manipulation. Similar 

concept where the pre-computed look-up tables are used on the top of the connectivity 

graph for space-variant processing is addressed in [38]. Contrary to such computation 

models, the signal processing approach adapted in this research tries to extract significant 

signal information from the log-polar image based on solely spatially uniform operators 

and without generating any additional, potentially demanding data structures. 

Previously mentioned findings and techniques related to image processing based 

on retino-cortical transformation (log-polar mapping and lateral inhibition in particular) 

can not be fully appreciated unless they are placed in the broader information processing 

framework. One of the most fascinating findings of different theoretical as well as 

experimental studies is that neural activity in the primate cortex is based on sparse signal 

coding [56], [57] (sparse codes are characterized by output units firing very rarely - a 

very small number of neurons is active at the same time). By imposing the objectives of 

information preservation and sparseness while learning the neural code, Olshausen and 

Field showed that such algorithm develops a set of localized, oriented, bandpass receptive 

fields similar to the receptive fields of simple cells from the primary visual cortex [28], 
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[31]. The resulting sparse code yields a higher level of statistical independence between 

it's outputs [28]. 

The idea that the sensory processing in the brain is characterized by the principle 

of redundancy reduction which implies that input patterns are composed of features that 

are statistically independent events [27], [58] directly correlates with the relatively novel 

signal processing technique called Independent Component Analysis (ICA). On the other 

hand, the direct correlation between redundancy reduction (i.e. statistical independence of 

transformed signal components) and sparse signal coding was demonstrated by different 

researchers [30], [31] and [58]. Interestingly enough, the ICA filters of Bell and 

Sejnowski emerging from the learning algorithm that maximizes information transfer 

between input and output of the non-linear neural network [30] are very similar to those 

produced by Olshausen and Field and their sparseness maximization network. The 

redundancy reduction process itself is possible because most of the real world analog 

signals have sparse structures and can be represented with few active descriptors [31], 

[59]. Although being relatively novel technique, ICA is quite well described and many 

different algorithms exist for achieving the transformation with statistically independent 

outputs. The reader is pointed to excellent reviews on, and characterization of major ICA 

techniques by Hyvarinen [58] and Hyvarinen and Oja [60]. The most interesting 

utilization of ICA from the perspective of this work is feature encoding where the signal 

components are actually features and the given ICA transform yields coefficients of each 

feature. Very appealing method for performing the actual ICA is the so-called FastICA 

or Fixed Point ICA as given in [61]. This algorithm is based on maximization of 

negentropy (measure of non-Gausianity) of transformed variable which at the same time 
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yields the minimization of mutual information between the network outputs. The 

algorithm is very fast (the convergence is cubic), there are no critical user-defined 

parameters to choose, it is computationally very simple and not too demanding on 

memory resources. Additionally, the MATLAB software package for this ICA technique 

is freely available from [62]. 

When implementing the ICA algorithms, it is very important that the input data is 

whitened [58] in order for algorithm to achieve better convergence. The whitening itself 

means that the covariance matrix (in this research the data are assumed to be zero-mean) 

is equal to the unity matrix. Another extremely important property of data whitening as 

the ICA pre-processing step is that the final transformation matrix that reveals the 

independent signal components (the transformation acting upon whitened data) actually 

becomes orthogonal. It is quite remarkable that the lateral inhibition as a process 

inherent to biologically inspired information processing can be utilized for data 

whitening. The most important and ground breaking work that reveals decorelating 

property as a first step towards data whitening in networks with lateral inhibition was 

presented by Barlow and Foldiak in [63]. In that text, the data decorrelation is achieved 

by symmetric anti-Hebbian learning in the network with recurrent connections without 

self-inhibition. The algorithm presented in [63] does not necessarily produce whitened 

outputs. However, Plumbley [64] has shown that by adding a simple self-inhibitory 

connection, the fully connected recurrent network with lateral inhibition can be utilized to 

perform data whitening. The explicit details on learning rules utilized in [63] and [64] 

will be presented in the text that follows. 
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The lateral inhibition, phenomenon inherent to mammal nervous system plays a 

very important rule in data whitening - the pre-processing step for ICA - a technique that 

again has so many flavors of biologically inspired signal encoding. To the best of the 

knowledge of the author of this text, no research has treated visual information 

processing from the unified perspective encompassing the retino-cortical transform 

characterized by the log-polar mapping in conjunction with the lateral 

inhibition/excitation (i.e. the family of filters arising from networks with recurrent 

connectivity) and ICA in a broader signal processing framework. It is reasonable to 

assume that addressing the information processing in warped cortical space through the 

development of environment specific tools based on neural models of signal whitening 

might yield an effective platform for practical implementation of ICA for feature 

encoding and pattern recognition. 

After elaborating the techniques of efficient and natural implementation of 

networks with lateral connectivity in log-polar domain, the theoretical concepts revealing 

construction of filters arising from such networks is addressed based on the analysis of 

the network connection matrix spectral properties. Also, novel result revealing the 

steering property of special subclass of such networks is presented. Finally, the method 

of learning and development of very efficient biologically inspired kernels based on 

networks with recurrent connectivity (with lateral inhibition/excitation) and 

demonstration of their practical usability for signal whitening when acting as 

pre-processors in pattern recognition systems are addressed. 
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CHAPTER II 

SOLUTIONS OF RECURRENT LINEAR NETWORKS APPLIED IN 
LOG-POLAR DOMAIN 

Before an attempt is made to implement and use biologically inspired principles 

of signal processing inherent to retino-cortical filter, it is necessary to investigate how 

LSI (and potentially lateral excitation) and complex-log mapping should be used in order 

to efficiently complement one another. Obviously, the non-uniform nature of the 

log-polar mapping raises the question of whether the implementation of inhibitory 

process (at least from the standpoint of machine, i.e a computer) should be performed 

prior to, or after the mapping itself. Also, it is not clear how the outcome of the process 

of lateral inhibition is to be obtained. In other words, what is the adequate, efficient 

computational model? One of the possible solutions is to implement equations given in 

previous chapter. This is sometimes referred to as microscopic neuron network solution 

[48]. However, it is evident that such a model requires direct matrix inversion and for 

large matrices this can be computationally very demanding and time consuming. This 

fact becomes more than obvious for large images. For example, an image of size NxN 

would require the inversion of a matrix of size N2xN2. This chapter presents how 

alternative models can be used when solving networks with lateral feed-backward 

interactions and especially how those solutions relate to log-polar coordinate mapping. It 

is also argued that spatially non-uniform type of inhibitory network with inhibition 

decreasing as the distance from the fovea increases does not produce desired signal 
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processing outputs. The reasoning behind uniform implementation of networks with 

recurrent connectivity in log-polar domain is also addressed. 

2.1 Solutions of Network with LSI via Iterative and Convolution Models 

In order to avoid the computation of large matrix inversion when seeking the 

solution of networks with lateral inhibition, it is possible to use two alternative methods 

to obtain the solution: the iterative approach based on the algorithm similar to what was 

previously seen in [52] and the convolution-based method. 

The representation of the exact solution for the networks with LSI is represented 

by equations 1.12 and 1.13. However, it is possible to regard the entire network as a 

dynamic system where the response of the network is not instantaneous. If it is assumed 

that forming the final output of the system requires a certain transitional period, then, the 

current firing rate of the particular neural receptor can be expressed in terms of its input 

and the output of neighboring inhibitory receptors at current and previous time instances: 

k=\ l=\ 
k*i l±j 

with index n representing the current time instance and p being equal to n or n - 1 , i.e. 

the most recently obtained value of particular output fkl. It is important to point out that 

equation 2.1 uses the most recently obtained values of the system output (current time 

instance) that are available in combination with output at previous time instance. This is 

different from the model used in [52] which computes the output based solely on the 

previous time instance values. If the method converges for particular network 
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connectivity model, it is not necessary to compute the large matrix S. Thus, the matrix 

inversion is avoided. In order to validate this iterative model described by equation 2.1, 

several inter-neuron coupling models for simulations were used. Here, only two of them 

are presented. Assuming that d is the distance between neurons (i,j) and (k,l), the model 

A is represented by coupling: 

^ = 0 . 2 5 ^ (2.2) 

while the model B is represented by: 

bvu=e-1JM. (2.3) 

Equations 2.2 and 2.3 represent such inhibitory coupling models where inter-neuron 

interactions are almost non existent when receptors are far apart. This introduces an 

additional advantage when implementing the iterative algorithm. The summation in 

equation 2.1 can be performed over the limited, inhibitory significant region. Figure 2.1 

depicts the agreement between the exact network and the iterative solution for model B 

coupling. The visual appearance of the resulting images is identical for all discussed 

methods for solving the recurrent network - one more method will be described in the 

text that follows. This is why only one resulting image is displayed. Similar results were 

obtained for model A inter-neuron coupling. Normalized root mean squared error 

(NRMSE) parameter for an NxN image is calculated as: 

^sE^U.ti^MzyML (2.4) 
\N ,=1 j=l y{i,j) 
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Figure 2.1 The result of the network, the iterative and the convolution-based solutions for the 2-D grid with 
lateral inhibition; original image (upper left), resulting image (upper right); Resulting signal profiles: 

network versus iterative solution (bottom left), network versus convolution model (bottom right); 
Normalized Root Mean Squared Error between resulting signals: NRMSEnetwJter = 0.0038, and 

NRMSEnetw,conv = 0.0589; Image size used is 32 x 32 

The iterative approach does not require the inversion of large matrices, but several passes 

through the computational space are necessary in order for the solution to properly 

converge. The process is interrupted once the NRMSE between successive results is less 

than a predefined threshold. Since the computational demands of this iterative model are 

still significant, the alternative, convolution-based solution for the grid with lateral 

inhibition was explored. 

The network solution presented by equation 1.12 reflects the linear system 

characteristics. In order to compute the impulse response of the grid with lateral 

inhibition, the system can be excited with the unit pulse and either the direct network or 

the iterative solution models presented earlier can be used to obtain the output. It turns 
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out that the impulse response, when a suitable inter-neuron coupling model is used, can 

be efficiently represented by kernels of fairly small size. Instead of using the 

computationally demanding methods, it is possible to obtain the response of the network 

to any input by performing a single convolution operation with already determined 

kernel. Figure 2.1 depicts the result of the convolution-based lateral inhibition where the 

model B coupling was used and kernel size was chosen as 5x5. The increase in system 

size does not influence the resulting kernel. This was confirmed when the response was 

calculated for 32x32, 40x40 and 48x48 2-D systems for both inter-neuron coupling 

models. The most significant coefficients of Model A and model B kernels are given in 

Figure 2.2. 
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Figure 2.2 The convolution kernels for model A (left) and model B (right) 

These filters represent high-frequency detectors. The output edge information is 

enhanced while preserving the relative luminance levels in the image. If the organization 

of the 2-D grid with lateral inhibition is such that all neighboring receptors are inhibitory, 

the whole network will act as the filter tuned for high-frequency detection and 

enhancement. If the inter-neuron coupling model is for example an inverted Differnece 

of Gaussian function, immediate neighbors of a particular receptor have excitatory role 

while more distant neurons act as inhibitors. It was previously claimed that the impulse 

response of this network was similar to a circular Gabor filter [51]. These filters have a 
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characteristic center-surround shape with decaying "lobes" of response at the periphery. 

It is interesting that the outcome of lateral inhibition was earlier represented as 

performing filtering by multiple band-pass DOG filters [48] and [50]. Actually, the 

circular Gabor-like kernels can be constructed as linear combination of more Gaussian 

filters (or DOG kernels). The example is shown in Figure 2.3 where four Gaussian (or 

two DOG) kernels are used. Extremely reducing the variance of Gaussian functions 

constituting the filter yields the edge detector similar to that presented in Figure 2.2. This 

directly correlates with the result described by Messner [48] and Messner and Szu [50] 

since their work interprets lateral inhibitory process with series of DOG bandpass filters 

only after approximating one of the Gaussian kernels as a unit pulse which is the extreme 

case of reducing the Gaussian function variance. 

Kernel protile 

10 15 20 25 30 35 

Figure 2.3 Linear combination of four Gaussian kernels (left); corresponding profile (right) 
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From this discussion we can see that the process of lateral inhibition can be performed 

through the convolution of the input with kernels similar in form to the filters from 

Figure 2.2. Additionally, two representations of the network impulse response as given 

previously by different authors in the form of circular Gabor-like filters or series of DOG 

filters are shown to correlate well with each other. 

2.2 Convolution in Log-Polar Domain 

As previously stated, log-polar mapping representing an approximation for the 

rearrangement of retinal signals in the visual cortex is characterized by spatial non-

uniformity. When applying specific processing tasks in such an environment it is 

important to obtain a natural and efficient way of data manipulation. As discussed in the 

previous section, the actions of networks with lateral interactions can indeed be 

represented in terms of direct convolution. If one is to be consistent with, or at least 

guided by biological principles of visual information processing, the non-uniform nature 

of log-polar transformation has to be accompanied by the processing kernels that are 

spatially variant and increase in size with distance from the fovea. This yields direct 

analogy with the structure and actions of retinal ganglion cell receptive fields. 

Conventional convolution with spatially variant filters is computationally very 

demanding. Interestingly, for the continuous domain and a special class of low-pass 

filters, it was shown that the spatially non-uniform filtering resulting in foveation can be 

achieved by uniform low-pass filtering in log-polar space if the mapping preserves the 

energy of the original signal [53]. This result is extremely important because it points out 

one more property of the warped computational space when a complex-log function is 
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used for the mapping method. The log-polar computations reflecting non-uniform 

operations in the input domain are performed not only in a smaller space, which 

preserves the details from the center of transformation, but additionally, they can 

potentially be done by using uniform filters. If circular, isotropic kernels are 

space-scaled linearly with their distance from the log-polar mapping origin (consistent 

with the structure of the PEG, the diameter of the receptive field is increased linearly with 

distance from the fovea), the mapped (warped) filters will remain spatially uniform. This 

fact can be used to uniformly process the signal in the mapped (i.e. cortical) domain and 

achieve a result similar to the one obtained by non-uniform filtering in the pre-mapped 

space followed by the log-polar warping. The 1-D analogy of space-scaled kernels and 

their mapped counterparts is shown in Figure 2.4. In this case, the log mapping is applied 

to space-variant DOG function and a uniform function is obtained in the resulting 

domain. 
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Figure 2.4 Linearly space-scaled kernels and their mapped versions - kernel size is increasing with distance 
from mapping origin 

Assuming the computation is performed in continuum, the convolution process in 

log-polar domain can be correlated to the convolution in pre-mapped space as follows. 

The inverse of the complex-log transform (assuming a = 1) is given as: 

x = eu cos(v) (2.5) 
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y = eu sin(v) (2.6) 

The convolution by kernel g(x, y) in pre-mapped space is defined as: 

t{x,y)=]]h{a,p)g{x-a,y- P)dadp (2.7) 

while the convolution in mapped space is defined as: 

t'{u,v)= \\h*(ua,v/3)g
t(u-ua,v-vli)duadvp (2.8) 

-co 0 

where (x, y)<-» (w, v) and («,/?)<-» («ff,v^) represent coordinate mapping pairs. It can 

be shown that for any coordinate pair, the convolution in the pre-mapped domain is 

identical to convolution in the log-polar space, i.e. t(x, y) = t*(u, v) if the kernel satisfies 

(see also [53] for low-pass version of filtering): 

g*[u — ua,v — Vp)= g\eu cosv - eu" cosv^e" sin v-eu" sin Vp) (2.9) 

and the 2-D signal is mapped as: 

h*(ua,Vp)=e2u°h(eUa cosvp,eu" sinvp). (2.10) 

Equation 2.10 shows that the warped image must be modified by the factor e2u" (i.e., 

transformation Jacobian) in order to force the preservation of the convolved signal 

energy. Alternatively, it is possible to consider applying the energy preservation factor to 

the kernel itself instead to the warped signal. 

Although the implementation of this basic 2-D calculus while computing integrals 

within coordinate system change reveals techniques to be used for signal processing in 

the cortical domain, an important limitation remains to be considered. For a large class 

of signals and filters one needs extremely high sampling rates even at the periphery of the 

computational space in order to be able to appropriately represent warped filters without 
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significant signal distortion. Using an actual network with lateral connectivity as shown 

in Figure 2.2 proves that the warping of such discrete filters is not even practically 

plausible. Even for filters given as linear combination of multiple Gaussian filters, the 

resulting log-polar space necessary to represent warped versions of these functions would 

often be too large to achieve effective computational results. That is why throughout this 

dissertation it is assumed that the loss of data due to coarse sampling of the PEG is an 

acceptable strategy while direct implementation of convolution as shown in equations 2.7 

- 2.10 is not practical. However, it is possible to show that implementation of space 

invariant recurrent network (possibly through convolution with center-surround type 

filters emerging as solution to such networks) in the log-polar discrete space is equivalent 

to sampling the input with space-variant fields/kernels of center-surround structure. 

Before elaborating on this concept, the next section investigates one more possibility of 

implementation of non-uniform lateral inhibition in cortical space. 

2.3 Non-Uniform Lateral Inhibition - the Exact Network Solution 

In order to achieve spatially non-uniform lateral inhibition the model where the 

inter-neuron coupling coefficients depend on distances between samples in the PEG is 

investigated. The actual processing is performed in the uniform log-polar (cortical) 

space. Receptors positioned near the fovea are close to each other and they are strongly 

influenced by their neighboring inhibitors. The inhibition between neighboring receptors 

becomes weaker as their distance from the center of the mapping is increased. Figure 2.5 

depicts how the distance for calculation of inter-neuron coupling coefficients as given by 
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equations 2.2 and 2.3 is calculated. Parameters r0 and 0 represent radial and angular 

sampling units of PEG. 

u 

Figure 2.5 Distance parameter used for calculation of coupling coefficients in space-variant inhibition 
model; 

The experiments show that the presented model of non-uniform inhibition results in edge 

enhancement localized in the region near the fovea. The peripheral information content 

is not affected at all by the inhibition. It is interesting that only the coupling model B 

gave the edge enhancement result. When using exponential coupling models (i.e. the 

model where the coefficients are given as bijmn = e~u), it is possible to modulate the 

inhibition extent by changing the parameter k. The resulting signal processed by the 

network with the non-uniform inhibition is shown in Figure 2.6 (the exact network 

solution is implemented). 
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K 
Figure 2.6 Non-uniform lateral inhibition in log-polar space; original image (left) and processed image 

(right); Model B is used 

For this model of lateral inhibition, the overall image intensity adjustment was made in 

order to normalize the DC gain to unity. It was obtained by processing the DC signal and 

calculating the per-element ratio between the original and resulting signal intensities. A 

similar process of intensity adjustment is described in [46]. The adjustment factor is not 

spatially uniform and it depends on the radial distance from the fovea. Strong artifacts 

are present in the fovea (notice left edge of the processed image in Figure 2.6) and they 

might be due to the very significant coupling combined with the absence of neighboring 

neurons. This effect is not present at the periphery since the inhibition in that region is 

practically non-existent. 

The inability of the addressed network to process and affect the peripheral image 

information does not correspond well with the notion of spatially variant receptive fields 

of the HVS present throughout the entire processing domain. Also, from the standpoint of 

machine vision peripheral information can be very significant - the system for example 
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has to focus on new events registered in the visual field and very likely they happen at the 

periphery. That is why the presented model of spatially non-uniform lateral inhibition 

was rejected from further consideration in the biologically inspired signal processing 

framework described herein. 

2.4 Characterization of the Space Invariant Network with Lateral Connectivity in 
Log-Polar Space 

The convolution operation in the log-polar domain representing the counterpart to 

the convolution in the input pre-mapped space is described by equations 2.7 - 2.10. 

However, the exact solution of networks with lateral connectivity as described by the 

microscopic neuron network solution or alternative models in the form of iterative or 

convolution-based algorithms yields filters that are practically either impossible or at the 

very least very difficult to properly warp. The mapping of these filters is questionable 

since they exhibit center-surround properties on the level of adjacent filtering 

coefficients. A natural possibility for how actions of such networks might be 

implemented in effective manner is in the application of direct convolution with a 

pre-computed network impulse response in the mapped domain. Practical 

implementations of the log-polar transformation require a sampling grid (like PEG) 

effectively containing non-uniform receptive fields that are centered at each grid node 

and appropriately amplitude normalized while performing the low-pass filtering. This 

means that the first stage of warping itself contains spatially variant filtering that can be 

executed in a fast manner through the implementation of look-up tables. The low-pass 

filtering models do not have to be limited to simple area averaging - they merely reflect 
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the type of the receptive field chosen. In other words, one can for example use a 

Gaussian function as a mask to determine the resulting value of a particular pixel in 

log-polar space. These receptive fields can overlap. The construction of sampling 

structures in the log-polar environment along with implementation of different types of 

receptive field functions is well summarized in [2]. 

In the case of log-polar mapping, if one implements the convolution in the 

mapped cortical space with a discrete kernel of center-surround type (like those from 

Figure 2.2) the resulting operation as seen in input pre-mapped space is effectively the 

implementation of non-uniform processing with receptive fields affected by the function 

chosen for sampling of the input signal (e.g. Gaussian kernel). The resulting, 

non-uniform kernels have also a center-surround property since each low-pass type PEG 

receptive field is multiplied by the adequate coefficient from the kernel representing the 

impulse response of the network with lateral connectivity. The overall responses of such 

filters can effectively be described as difference of offset Gaussian (DOOG) functions 

where each Gaussian can have different spatial properties. In order to visualize the 

resulting receptive field, the local portion of the PEG containing several receptive fields 

can be closely approximated with a uniform square grid if the radial sampling unit r0 is 

small enough (close to unity) and the angular sampling unit 6 is chosen such that the 

sampling areas from Figure 2.5 have the shape that is as close as possible to a square. In 

such a case the cumulative response of the group of nine overlapping Gaussian receptive 

fields effectively forming DOOG function with multiplying coefficients given by the nine 

most significant values in Model B kernel from Figure 2.2 is shown in Figure 2.7. 
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Figure 2.7 Resulting receptive field formed as a linear combination of nine Gaussian functions (with 
spatial offset) with each function multiplied by corresponding coefficient from Model B kernel shown in 

Figure 2. 2 (left); Resulting field profile (right); 

The profile of the filter demonstrates the center-surround characteristic. The spatial 

extent as well as the amplitude of the filter is location dependent, i.e. non-uniform. Note 

that the given model directly incorporates the nature of the convolution kernel 

representing the action of the network with lateral connectivity as well as the averaging 

receptive field inherent to log-polar mapping. This way, the antagonistic center-surround 

property of the resulting function in the form of DOOG filter is associated directly with 

the network with lateral inhibition. In contrast to the networks with strictly Gaussian 

inter-neuron coupling yielding DOG filters as described in [48] and [50], the presented 

model revels that far broader classes of networks with lateral inhibition in combination 

with low-pass filters inherent to complex-log mapping yield overall responses similar to 

those observed in frontal stages of biological vision (e.g. DOOG type receptive fields 

[65]). An important property of the inhibitory network impulse response that yields such 
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DOOG-like behavior of overall receptive field is the center-surround type characteristic 

as shown in Figure 2.2. 

Based on the discussion presented in this chapter, one can conclude that the 

implementation of spatially uniform operations reflecting the response of lateral 

inhibitory networks in the log polar environment is an adequate strategy for 

implementation of lateral inhibition in cortical space. When analyzed from the 

perspective of being in line with biologically motivated principles of signal processing, 

the model itself produces non-uniform center-surround receptive fields similar to those 

found in the frontal stages of mammalian vision systems. This concept is also in 

agreement with the notion that the "exact" uniform convolution in the log-polar domain 

is equivalent to the spatially non-uniform filtering in input space as described in [53]. 

From a practical standpoint, the action of the network with recurrent connectivity can be 

applied either through convolution, the iterative model or by direct network solution. 

Which method is to be implemented is naturally dependent on the problem to be solved. 

In the case of processing large images, convolution is more practical. However, for small 

size networks, direct network solution can be easily utilized. 
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CHAPTER III 

CONSTRUCTION OF BIOLOGICALLY INSPIRED FILTERS 
UTILIZING SPECTRAL PROPERTIES OF 

TOEPLITZ-BLOCK-TOEPLITZ MATRICES 

This chapter addresses the construction of filters arising from neural networks 

with feed-backward connections accounting for lateral inhibition and excitation. It 

provides important theoretical results revealing how to choose the inter-neuron coupling 

model so that the network solution can be obtained through Taylor matrix series 

expansion (this expansion can also be interpreted as a feed-forward filter) without 

computing a potentially large matrix inverse. A novel, steering property of specific class 

of network filters is also demonstrated. 

3.1 Remarks on Recurrent Linear Networks and Toeplizt-Block-Toeplitz Systems 

As mentioned in previous text, the essential motivation for studying and 

deploying networks with lateral connectivity comes from more or less simplified models 

of biological vision. The well known example is the Hartline-Ratliff equation [16] which 

describes the mutual inhibitory influences of visual receptor units of the limulus. The 

discussion presented herein is restricted to the simplified, linear model of the limulus 

equation and its steady state solution as described by: 

y = (l + B)-1x. (3.1) 
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This relation essentially summarizes equations 1.13 and 1.14 with modified notation for 

input and output. Vectors x and y from equation 3.1 are time invariant input and system 

output respectively while B represents the network connection matrix. Gutkin and Smith 

[67] studied the dynamics of linearized recurrent networks in the presence of additive 

noise and pointed out that the asymptotically attractive steady state in the mean described 

by equation 3.1 is achieved if all eigenvalues of the connection matrix B have real parts 

greater than -1 . The linearity between input and output as well as the contrast 

enhancement effects produced by the 1-D network with lateral inhibition were 

demonstrated by Furman [47]. Following Furman's work, the 2-D model of such a 

network was addressed by Messner [48] and later used by Szu and Messner [50] when 

deriving multiple-channel novelty filters of associative memory. In [48] and [50] the 

same authors suggested a strong correlation between actions of networks with recurrent 

Gaussian connectivity and spatial frequency theory of early visual processing [68]. The 

authors of [52] used the iterative method to solve the network characterized by 3.1 

without identifying the proper network weights that would guarantee convergence of 

such solution. The linear model of recurrent inhibition with DOG inter-neuron coupling 

was used to account for a Mach band effect, Herman grid illusion and White's effect 

[51]. Similar model effectively explained the modified Poggendorff illusion [69]. The 

network used in [51] yields a simple feed forward filter resulting from the matrix inverse 

operation. In this chapter it is demonstrated how to obtain such filters without explicitly 

inverting the usually large matrix I + B. 

Now, consider networks with a spatial distribution of sensory units producing the 

system characterized by the TBT (Toeplitz-Block-Toeplitz) matrix, i.e. the matrix with 
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block Toeplitz structure where each block is of Toeplitz type. The network response can 

be found by using specialized algorithms for such systems. Some of those techniques 

utilize the persymetry property of the TBT matrix [70], [71] and in the case of large 

matrices can still be computationally demanding. The solution of a TBT system 

reformulated as a 2-D deconvolution seen in [72] requires the smoothness of the TBT 

matrix entries. If the inter-neuron coupling is spatially limited or is extremely small for 

mutually distant units, the connection matrix becomes block banded with banded blocks 

and can be solved by techniques presented in [73] and [74]. Alternatively, the 

convolution with a kernel computed iteratively from the coupling model can be used to 

obtain a close approximation of the network output. Solving the system by this method 

can reveal important characteristics of the network impulse response filter and as such is 

implemented herein. In order to achieve the convergent result, the estimation of spectral 

properties of TBT matrix becomes critical. 

The continuous function/ : [-7t,x]2 —>R, generates the TBT matrix B n m of 

structure: 

B„ 

B0 Bj 

B , 

B -n+l 

B n- l 

B, 
B_j B0 

(3.2) 

with Toeplitz blocks 

B,= 

Ko h\ ••• Km-\ 
-7,-1 

K m+l •• K-\ bi,o 

(3.3) 

if: 
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bP , = -TT f / (*• yYi(px'qy)dxdy, where p,q = 0+1+2,... (3.4) 

The relationship between the spectra of Toeplitz matrix and its generating function was 

introduced by Grenader and Szego [75]. Following their work, Serra [76] and Tilli [77] 

showed that the interval containing the eigenvalues of the TBT matrix is closely related 

to the properties of the matrix generating function. More precisely, Serra [76] states that 

for the function / continuous on the interval [- n, Jt\ , and not identically constant, for 

any n andm, all the eigenvalues of Bn m lie in the interval(min, „ / ,max, ]2 / ) . 

This allows one to characterize the spectral properties of the TBT matrix B = B„ m based 

on the corresponding generating function. Such characterization can be used when 

choosing the neural network inter-neuron coupling functions. 

In [48] and [50] the microscopic neuron network solution for the 2-D receptor grid with 

recurrent lateral inhibition was found by approximating the inverse of the following 

matrix by a convergent power series: 

(I + B) 1 = I - B + B 2 - B 3 + (3.5) 

Identifying a proper connection matrix B guaranteeing convergence of this series is 

essential for valid calculation. 

The main theoretical concepts presented in the following sections of this chapter 

are as follows. Based on conditions for convergence of the matrix power series in 

equation 3.5 and the spectral properties of TBT matrices, the method for construction of 

inter-neuron connection models is identified and applied to obtain parameters of five 

different coupling functions. Once the convergence of 3.5 is guaranteed, the equivalent 

filter representing the network impulse response is pre-computed explicitly based solely 
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on the connection model. Finally, it is shown that for the inter-neuron coupling in the 

form of a function expandable in a Fourier series in polar angle, the network behaves as a 

steerable [78] filter. 

3.2 Construction and Efficient Solution of Recurrent Neural Network Characterized 
by TBT Matrix 

The simplified form of Hartline-Ratliff equation for the nxm 2-D system case 

with solution given by equation 3.1 can be written in the form: 

y = x - B y (3.6) 

where x and y are nmx\ vectors representing input and output of the system and B is 

the nmxnm connection matrix. Note that in the case of input in the form of an nxm 

image, the vector x from equation 3.6 is formed by sequentially aligning rows of the 

input image into single vector column. Discussion presented in this dissertation 

considers the network with a uniform distribution of receptor-neurons in a 2-D square 

grid with the structure as presented in Figure 3.1. 

(i,j) 

• • • • 
D D • • 

(k,i) 

n a n a 

• • • a 

Figure 3.1 Uniform receptor-neuron grid 
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It is assumed that the lateral interaction between units is in the form of 

additive/subtractive feed-backward connections yielding the recurrent network. The 

basic model of such interaction between two arbitrary sensory units is shown in Figure 

3.2. 

Receptor B 

Figure 3.2 Excitatory/inhibitory feed-backward interaction between two arbitrary sensory units 

The equations governing the model presented in Figure 3.2 are: 

Ya = Xa-babYb 

Yb = Xb-bbaYa 
(3.7) 

where coefficients bab and bba governing the amount of inhibition/excitation can take 

both positive and negative values. When the equations from 3.7 are expanded to a 2-D 

model, the resulting representation in matrix form is given by equation 3.6 with coupling 

coefficients being elements of the matrix B . For the spatially invariant inter-neuron 
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coupling and sensory distribution as given in Figure 3.1, the connection matrix is of TBT 

type. Furthermore, if the coupling depends only on distances between receptors, the TBT 

connection matrix is symmetric with symmetric blocks. Following the notation from 

(3.2) and (3.3), each block B ; of this matrix represents interactions between units in rows 

/ and k so that I = k-i. 

The TBT form of matrix B can efficiently be utilized when solving the system 

defined by equation 3.6. If all the eigenvalues of such a matrix satisfy the condition 

\At\ < 1, the series given in 3.5 converges [79]. When choosing the inter-neuron coupling 

model for the receptor grid with recurrent lateral inhibition-excitation, the direct 

implementation of Serra's result can ensure adequate spectral properties of the TBT 

connection matrix and allow for the system solution to be found by approximating the 

matrix inverse in the form of 3.5. After inspecting the equation 3.3 more closely, it 

becomes evident that entries of every sub-matrix B, are taken along the second 

frequency coordinate, while keeping the first one constant. Throughout the remainder of 

this dissertation it is assumed that when forming the matrix B 5 the sampling in Fourier 

domain is actually undertaken after the function / is rotated by 90 degrees yielding the 

new definition for the generating function of the TBT matrix: the continuous 

function/ : \-7t,7tf —> R generates the TBT matrix Bn m of structure given in equation 

3.2 and 3.3 if 

bpq=-7T \f9°°(^y)e-i(px+',y)dxdy, where p,q =0,±1,±2,... (3.8) 
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In the previous equation, f90 {x,y) represents the rotation of the function f{x,y) by 90 

degrees about the origin. Note that the 2-D convolution can be approximated by 

multiplying the 1-D vector of size nmxl by the TBT matrix of size nmxnm where the 

1-D vector is obtained by serializing the input image or 2-D signal into a single column 

vector [48]. Keeping this in mind, one can see that the reason for the "redefinition" of 

the generating function is the fact that the multiplication by the TBT matrix generated 

according to equation 3.8 closely approximates the 2-D convolution with the discrete 

kernel b(m,n) (assuming this kernel is center-symmetric) formed by sampling the 

Fourier transform of the (original, not rotated) function / in the form: 

b(m,n) = -^-T [f{x,y)e-j{mx+ny)dxdy, where m,n = 0,±1,±2,... (3.9) 
\-J!,Jt\ 

That is why, for the purposes of the work presented here, it is also said that the function 

/ generates the discrete function b(m,n) (or as later referred in the text connection 

function) if equation 3.9 is satisfied. 

Proposition 3.1 (Direct interpretation ofSerra's result for TBT matrices): 

If the connection matrix B from equation 3.6 is generated by the function / that 

is continuous and not identically constant on[- 7t,iz\ , and if: 

m a x ^ / f o ^ l (3.10) 

the series 3.5 will converge and the system response can be written in the form: 

y = ( l - B + B 2 - B 3 + )x. (3.11) 
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This proposition practically defines the method for construction of the network that can 

be solved without explicit matrix inversion. Provided convergence is guaranteed, the 

system response can be realized by the sum of finite number of filters constituting the 

series 3.5 [48]. The resulting filter can be pre-computed before actual processing takes 

place. Based on the rotation property of the Fourier transform [80] connection weights 

from 3.8 can be related to the convolution kernel b(m,n) as: 

Kn=b{n-m). (3.12) 

The overall impulse response of the network is given as: 

N 

ht{m,n) = S{m,n)+J^{-l)n b{i){m,n) (3.13) 

where b^'(m,n) is the discrete connection function convolved with itself i - l times and 

S(m,n) representing the 2-D unit impulse. The size of kernel b(m,n) can be quite small 

if the extent of the inter-neuron coupling is spatially limited. This is in agreement with 

all practical models addressed herein. As demonstrated in the subsequent text, the choice 

of generating functions with absolute values of their extremes significantly less than unity 

improves the speed of convergence and requires fewer components in the series 3.13 to 

be used. 

3.3 Construction of Connection Matrix (Five Practical Models) 

This section focuses on construction of the recurrent network with specific, a 

priori defined inter-neuron coupling models. Such models are inspired by functions 

commonly used to describe receptive fields at various stages of biological vision [65]. 
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The Gaussian kernel as defined herein can be represented in the spatial and frequency 

domains as follows: 

gaA
x>y)=ae 

2 2 

- ^ G « , < T ( " ' V ) : 

2xa 1a~ (3.14) 

Consistent with equations 3.1 and 3.8, the generating function is denoted as f{x,y) 

while the corresponding connection matrix is labeled as B . This matrix is formed by 

adequately sampling the Fourier transform of the generating function also named 

connection function. From this point on, it is assumed that the generating function is 

defined on the entire R2 domain, i.e. f: R2 —> R , but is also narrow-width, with values 

outside the interval [- it, 7t\ practically close to zero. When this is the case, based on 

3.12 the weights of the network can be approximated as: 

b-n,m =b{m,n) = b(u,v) 
u=mU A 2 

v=nV t\7Z 

\f{x,y)e-i(ux+vy)dxdy u=mU 
v~mV 

(3.15) 

where U =V = 1 and m,n = 0,±1,±2,... Note that while integrating on [-ff,n]2 the 

integral from 3.15 integrates the same function as that given in 3.9. In all cases except 

for the DOG model it is assumed that parameters > 0. Since the matrix B is real, it is 

necessary that generating functions have real Fourier transforms. 

3.3.1 Gaussian model 

When dealing with Gaussian coupling, cases with and without self-inhibition are 

studied. The generating function f{x,y) and the corresponding inter-neuron coupling 

are given as: 

f{x,y) = Ga>t7{x,y)- Generate >b{u,v)=gat(T{u,v) (3.16) 

46 



where, operation 'Generate' is defined by Eq. 3.15. For the network with self-inhibition, 

the condition for convergence of the series given in 3.5 becomes: 

2xa 
<1 (3.17) 

By eliminating self-inhibition, the elements on the main diagonal of B are set to zero. In 

this case the connection matrix spectrum is characterized by: 

/ U -a,—T-a 
a 

(3.18) 

Finally, for narrow-width generating functions with a < -fn the condition for 

convergence of 3.5 becomes: 

2na 
-a<\ (3.19) 

3.3.2 DOG model 

For the DOG inter-neuron coupling model, the generating and corresponding 

connection functions are: 

f{x, y) = Gaa{x, y)-G {x, y)- Generate *b{u,v)= gaa{u,v)- g Au,v). (3.20) 

Conditions for the convergence of series given in 3.5 are set by limiting the extreme 

values of the generating function or: 

max 271 
( \ 

a or, 
~ZJ — -.2 

2iza 2x0^ 
° r l n ^L 

<1 (3.21) 

The pure Gaussian connection model with unity DC component as used in [48] and [50] 

yields very slow convergence of the series given in 3.5. If Gaussian or DOG coupling as 

described by relations 3.16 or 3.20 are used, the network response can still be 
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characterized as the linear combination of Gaussian filters. For example, in the case of 

Gaussian connection profile without self-inhibition, and assuming the finite number of 

terms in the series 3.5 is used, the resulting filter can be rewritten as: 

i=i v £ j 
+ MN+ig

iN) 0.22) 

where g is a Gaussian kernel with DC component equal to £,. Coefficients jut can 

easily be obtained from equations 3.11 and 3.13 by replacing the unity matrix with the 

narrow width Gaussian g(0'. Equation 3.22 represents the result similar to that shown by 

[50], thus confirming that the recurrent network with Gaussian (or DOG) lateral 

inhibition/excitation behaves as a collection of multiple channel spatial frequency filters. 

3.3.3 Difference of Offset Gaussians (DOOG) model 

The generating and the connection functions for the DOOG model used herein 

are: 

f{x, y) = Gaa{x, y)[2jucos(xu0 + vv0)-1] G ~ ) 

b(u, v) = ju[ga a(u - u0, v - v0)+ ga a [u + u0, v + v0)]- ga a (u, v) 

By setting ju = 0.5, the model similar to the one from [65] consistent with the 

construction of the DOOG profile based on central differencing of Gaussian functions is 

obtained. In this case: 

f{x,y) = -2GaJx,y)sm' xu0 + yv0 (3.24) 

Assuming the offset is in the x direction (v0 = 0) the series given in 3.5 converges if: 

/(±VF,0)>-1 (3.25) 
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where 

. 3 \ 
u0 u0 

K2a2 8 j 

( 3 \ 
U0 UQ 

2 

y2o> 8 j 

4 

12<72 

t = -—*-±— (3.26) 

24a2 

approximates the location of the generating function minimum. Expression. 3.26 is 

obtained through the application of a Taylor series expansion. 

3.3.4 Second Order Derivative of Gaussian (20DG) model 

The last type of the inter-neuron coupling addressed is the Second Order 

Derivative of Gaussian. The analysis is based on the derivative in the x direction. 

Rotation of the generating function by an arbitrary angle (construction of derivative in 

different direction) causes the rotation of its Fourier transform while the extreme values 

remain intact yielding the same conditions for convergence of the series given in 3.5. 

The 20DG generating function and its coupling model are defined as: 

f(x,y) = -x2GaJx,y) G ~ >b(u,v)= a2(a2u2 -l)gaJu,v) (3.27) 

The condition for convergence of series 3.5 for this connectivity model is: 

i ^ < l . (3.28) 

e 

Figure 3.3 and Figure 3.4 depict examples of generating functions and the corresponding 

coupling models that were used. 
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Figure 3.3 Generating functions (left) and corresponding connection functions (right); Gaussian model 
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Figure 3.4 Generating functions (left) and corresponding connection functions (right); DOOG model (top), 
20DG model (bottom); 
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3.4 Steerability of the Recurrent Network with Lateral Inhibition-Excitation 

The network filter given in equation 3.13 represents the sum of N + 1 components 

with each function b(l'(n,m) constructed as / cascades of kernel b(n,m). Consider the 

connection function b(x, y) (note the replacement of variables u,v with x, y) that can be 

represented in polar coordinates r = ^x2 + y2 and <p = arg(x,y) as a Fourier series in 

polar angle: 

b{r,p)= 2>B(r)e*' (3.29) 
n=-N 

The Fourier transform of such kernel is a function that can also be expanded in a similar 

way: 

B{R,0)= j^An{R)eine (3.30) 
n=-N. 

where R = -yju2+v2 , 0 = arg(w,v) and AB(R)=2Z{- j)n^an{r)jn{2xRr)rdr, Jn being 

o 

the nth order Bessel function [81]. Cascading filters represented in the frequency domain 

by 3.30 produces a steerable filter, i.e. an arbitrarily rotated function can be synthesized 

by using the linear combination of basis kernels (for details about steerable functions see 

[78] and [82]). The steering property holds also for the entire resulting filter given by 

3.13 since the overall sum remains expandable in Fourier decomposition in polar angle. 

It is well known that a 20DG kernel can be steered by using the linear combination of 

three basis kernels [78]. As a special case of a kernel given in 3.29, consider the order n 
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directional derivative of a function bc(x,y) that is circularly symmetric in spatial and 

frequency domains. The m -1 convolutions of such a kernel with itself yields: 

*-fc>)=^'^'...-^U()krrt») (3.3D 
ox ox_ ox 

m-l convolutions 

The basis for steering of this cascade consists of nm + \ functions since the pure real (or 

imaginary) frequency response is the product of polynomial in u of order nm containing 

only odd or even terms and circularly symmetric function. The sum of filters: 

k(X,y) = ±(-lf"h^ld~b^K...^h^>') (3.32) 
* t r at- dx" ix" y ' 

i - l convolutions 

can similarly be represented as a product of polynomial in x of order nN and another 

circularly symmetric function where the polynomial coefficients may depend on the 

radius r. In this, more general case 2nN +1 basis functions are sufficient to steer the 

function h(x, y). This implies that when b"'l(x,y) is a connection function, the overall 

network impulse response given as: 

ht(x,y) = S{x,y)+h(x,y) (3.33) 

is steerable as well and represents the continuous equivalent of the filter given in 3.13. 

For n even, the number of basis functions that steer 3.33 is reduced to nN + 1. For 

example, in the case of 20DG coupling, 2 + 1 filters steer the network. Steerability can 

efficiently be used to determine the response of the network for arbitrary orientation of 

the connection function without performing its actual rotation. One just needs to 

calculate the linear combination of basis function responses. Limiting the basis set to a 

relatively small number of functions as well as enabling fast convergence of the series 

given in 3.5 is essential for practical implementations. Figure 3.5 depicts components of 
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the steerable impulse response of a network with the 20DG coupling model assuming 

N = 3 and continuous space. 

Figure 3.5 Steerable impulse response of the network with 20DG coupling model in continuum; 

ht (x, y) is an arbitrarily rotated filter while kl \0) and ht' (x, y ) are the interpolating and basis 

functions respectively. 

3.5 Simulation Results 

This section presents simulations obtained when processing synthetic images with 

networks whose connection weights are constructed using models of inter-neuron 

coupling addressed in sections 3.3 and 3.4. By bounding the generating function, the 

spectral radius of the connection matrix is maintained in the interval (0,l). This 

guarantees convergence of the power series given by equation 3.5 but it also enables 

finding of the network solution via the iterative scheme: 

y n + 1 =*-By„ (3-34) 
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In order to validate the network construction and solution introduced via Proposition 1 

and equations 3.11 and 3.13, the solution obtained by direct convolution with a 

pre-computed kernel (application of equation 3.13) of relatively small size is compared 

with the solution obtained by application of the iterative scheme given by equation 3.34. 

The estimated number of filters N from equation 3.13 necessary to produce the 

convergent result is reached once the energy of the term b^N'(n,m) is extremely small 

(0.0002%) when compared to the energy of the filterht{n,m). The iterative procedure 

given by equation 3.34 is terminated when the average absolute difference in pixel values 

between successive solutions is less than a predefined small threshold (for the grayscale 

images with levels of gray between 0 and 255 this threshold was set to 0.5). 

When changing parameters of the connection model(s), extremes of generating 

functions are varied. This in turn influences the rate of convergence of the series given 

by equation 3.5. For arbitrarily chosen parameters, the resulting sufficient number of 

filters N for all coupling models discussed in this paper is presented in Figure 3.6. 
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Figure 3.6 The number of sufficient filters versus Oi; Particular parameters chosen are: for Gaussian 

model O = 7113, for the DOOG model O = 7C13, u0 = 2 , for the 2DOG model 0-7tl5 while for 

the DOG model AT, = - 0 . 1 \,G = KI A,Ox = 7C15 . 

Based on Figure 3.6, appropriately chosen parameters of the connection function allow 

the use of a reasonably small N. Networks with circular symmetric inter-neuron 

coupling models (e.g. Gaussian and DOG) produce visually similar results since the 

response is not orientation sensitive. Similarly, when non-circular models (e.g. DOOG 

and 20DG) are used, the response is orientation sensitive. Figure 3.7 depicts the result 

obtained by processing the square test pattern of uniform intensity placed on a dark 

background when using the DOG connection model. 
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Figure 3.7 One pass convolution with pre-computed kernel (connection model is DOG 

with CXl, <J and C7l identical to those from Figure 3.6 and (X = —0.13 ); filtered square pattern (top), 

mid-line resulting profiles for iterative procedure and single-pass convolution (bottom); pre-computed 
kernel constructed by using N=7 

As shown by Figure 3.7 the result of processing the input pattern with a simple 

feed-forward filter is almost identical to the one obtained by finding the iterative solution 

to the system. As an example for the orientation sensitive model, processing by using a 

steerable network filter constructed from the 20DG connection function is also 

demonstrated. The number of sufficient filters is chosen based on results described in 

Figure 3.6. Interpolating coefficients necessary for steering are obtained from [78] while 

using basis functions evenly spaced between 0 and it. These coefficients are provided in 

the Table 3.1. 
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i 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

*,.(*/6) 

0.1333 
-0.2157 
0.6378 
0.6378 
-0.2157 
0.1333 
-0.0996 
0.0824 
-0.073 
0.0682 
-0.0667 
0.0682 
-0.073 
0.0824 
-0.0996 

kfa/2) 
-0.0667 
0.0682 
-0.073 
0.0824 
-0.0996 

0.1333 
-0.2157 
0.6378 
0.6378 
-0.2157 
0.1333 
-0.0996 
0.0824 

-0.073 
0.0682 

£.(5;r/6) 

0.1333 
-0.0996 
0.0824 

-0.073 
0.0682 
-0.0667 
0.0682 
-0.073 
0.0824 
-0.0996 
0.1333 
-0.2157 
0.6378 
0.6378 
-0.2157 

Table 3.1 Steering coefficients for the network with 20DG connection model ( # = 0.12, O = 7tI'5 , 

N = 1). 

The mesh plots of the network response ht{m,n) and its portion h(m,n) are shown in 

Figure 3.8. Results of processing the hexagonal test pattern by steering the filter h(m,n) 

are depicted in Figure 3.9. 
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Figure 3.8 Steerable network impulse response for 20DG connection model ((2 = 0.12, O = 7C15. 

N = 7) ; h(m,n) portion (top), ht{m,n) (bottom); 

Figure 3.9 Steering the network with 20DG connection model ( # = 0.12, G = 711'5 , N = 7) ; linear 
combination of 15 filters used to steer the response to three different orientations. 
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The theoretical and experimental results presented in this chapter clearly demonstrate 

when and how the large recurrent network with a priori defined lateral connectivity 

model can be solved by utilizing spectral properties of its connection matrix. The 

solution does not require large matrix inversion, nor calculation of the matrix eigenvalues 

in order to explicitly determine the matrix spectral radius. This advantage is very 

important for systems of considerable size. Biologically inspired receptive fields are very 

often characterized as steerable and discussion presented in this chapter revealed that the 

recurrent linear networks can also behave as steerable kernels. This is the case when the 

connection function of the neural coupling model is expandable in a Fourier series in 

polar angle. Practical construction and utilization of filters based on the responses of 

recurrent linear networks with lateral connections is the central topic of the following two 

chapters. 
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CHAPTER IV 

SEMI-BLIND PRE-WHITENING BY SPATIALLY INVARIANT 
NETWORKS WITH LATERAL INHIBITION/EXCITATION 

One of the most difficult tasks in pattern recognition is effective extraction of 

meaningful feature sets. The choice of signal processing tools that prepare and shape the 

information along the processing chain before the final pattern classification is made 

becomes critical. This chapter addresses the role of networks with lateral recurrent 

connectivity as pre-whitening filters. In particular, the computationally efficient kernels 

with relatively small memory footprint representing spatially uniform model of neural 

coupling are developed as pre-processors for category-specific signals. They are later 

utilized in practical feature extraction process. 

4.1 Decorrelation and Whitening by Recurrent Neural Networks 

Neural networks with recurrent connectivity have widely been used for modeling 

various information processing phenomena present in biological systems. A very 

attractive method of signal processing emerges from a specific type of adaptation of 

recurrent neural networks to input patterns. In the very influential paper published by 

Barlow and Foldiak [63] it was shown that the linear model of network with recurrent 

inhibition can learn about the input signal statistics. The network actually stores the 

information about the covariance matrix of input data if the interactions between units are 

adapted according to anti-Hebbian learning rule. As a result of such learning, the outputs 
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of the system become uncorrelated and this happens even in the case of strong 

correlations between input signal components. The linear network model with multiple 

outputs connected to multiple inputs via adaptive connections is shown in Figure 4.1. It 

represents the extension of the model shown in Figure 3.2 allowing for modification of 

lateral weights, and having more than two inputs/outputs. 

Xi+i P- yi+i 

Figure 4.1 The recurrent network with adaptive connections (self inhibition/excitation can potentially be 
allowed) used in [63] 
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The equation governing the output of the network from Figure 4.1 can be written as: 

where, biA represents the synaptic weight between units i and j 2 . The dash - dot 

connection pattern symbolizes the fact that the self-inhibition/excitation might be present 

in the model, although it was not allowed in the particular network of Barlow and 

Foldiak. The anti-Hebbian learning rule for this network is: 

AbiJ=ayiyj ifitj 

Abitj =0 otherwise 

where, a is the small positive constant which influences the rate of adaptation. The 

higher the correlation between two outputs, the stronger the inhibition between them. 

This in turn produces the stronger decorrelating action of the particular synapse in the 

network. The result of the learning process described by equation 4.2 is the network 

output data set with purely diagonal covariance matrix. The data decorrelation can 

essentially be achieved by various transforms, i.e. the decorrelation problem has 

generally more than one solution [30]. For example, one of the very common and well 

studied algorithms that decorrelates the input data is the Principal Component Analysis 

(PCA). When the neural approach is considered, several different architectures and 

accompanying learning rules are being used for decorrelation and/or PCA [63], [64], 

[83] - [90]. Many of these algorithms employ generalizations of classic Oja's Principle 

Component Analysis neuron and Hebbian learning algorithm [91], as well as lateral 

inhibition between neurons for decorelation of signal components. The algorithm for 

decorrelation addressed in this chapter has its impetus in the model proposed by 

2 Note that the inhibition in equation 4.1 is represented by positive values of synapses. 
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Plumbley [64]. In that work, the author describes the learning algorithm for 

maximization of transmitted information through the network when the outputs are 

corrupted by additive noise and under the limitation on available power for transmission. 

The optimization of information transfer for such a case is achieved when outputs of the 

network are decorrelated and at the same time have equal variance. This characterization 

of decorrelation and equal variance is equivalent to whitening of the output signals. 

Assuming the zero-mean process, the output covariance matrix of the whitened signal is 

given as: 

CY = E\yyT}= pi (4.3) 

where, output vector y is obtained in accordance with equation 3.1 In equation (4.3), the 

operator E denotes the expected value. The linear recurrent network with lateral 

connections between output and input units that achieves this type of signal processing is 

almost identical to the one used by Barlow and Fbldiak in [63]. It has an additional 

feedback from the output of each neural unit to its input - this is so-called self-inhibitory 

connection. The adaptation algorithm for this network given in a matrix form can be 

represented as: 

AB = a(yyT-pl) (4.4) 

where, a is the small learning constant and /? is the parameter that determines the value 

of the final output signal variance - the output covariance matrix becomes diagonal 

matrix with value /? on the main diagonal. 

The decorrelation and whitening has an important role in signal processing and 

pattern recognition disciplines. As outlined by Palmeiri et. al. [86] the decorrelation 

corresponds to "enforcing at least a first-order independence among the system 
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variables." As such, it can become the first step towards the detection of completely 

statistically independent events (components) within the processed signal. Over the past 

decade or so, the technique of ICA has gained a lot of attention since it represents the 

model which tries to find exactly such a representation of the input - the linear 

combination of statistically independent sources that comprise the analyzed signal. After 

the whitening of the input, the ICA processing becomes easier, or well-posed. This is 

because once whitening is achieved, the un-mixing of the signal components (the 

extraction and separation of independent components) for real-valued signals is achieved 

by using the orthogonal matrix [92] for data transform. In fact, whitening of the input 

data is required by some ICA algorithms while with others, it improves their convergence 

properties [58]. For example, the pre-whitening of the input signal is implemented in 

[30] and [93] before the actual ICA algorithm is executed. 

The input data to the network with lateral connectivity used throughout the 

remainder of this dissertation consists of patches extracted from various images. This 

method is based on the fact that correlations among pixels in pictures decrease rapidly 

with distance [94] and for practical information encoding purposes it is sufficient to 

observe correlations between pixels 4-5 distance units apart [95]. The patch of size nxn 

is transformed into an input vector x of size n 2 x l . This operation is achieved by 

successively transposing patch rows and concatenating them into resulting vector. The 

process of 2-D signal transformation into 1-D vector is shown in Figure 4.2. 
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2n+1 
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t i n 

Figure 4.2 Transformation of the image patch into single column vector 

In this chapter, specific methods of signal pre-processing are addressed in order to 

improve the performance of the whitening network with recurrent inhibition/excitation as 

described by equation 4.4. In particular, the attempt is made to construct efficient filters 

that are easy to store, i.e have small memory requirements, thus making them adequate 

for real-world (very likely embedded) implementations. These filters can be seen as 

special members of the family of kernels previously studied during the analysis of 

spatially invariant networks with lateral connectivity (Chapter II and Chapter III). 

However, their common characteristic is that the network connectivity matrix is not given 

a priori by the specific function. It is rather learned during the network 

training/adaptation but with certain constraints imposed on the connectivity pattern itself. 

Since the unsupervised model of learning described by equations 4.2 and 4.4 acquires the 
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knowledge about input signal statistics and spectrum during the adaptation itself, it can be 

expected that for similar input signals, similar decorrelating filters described by the 

matrix (l+B)~ arise. Construction of such filters for specific classes of images is 

addressed in this chapter. Prior to presenting this concept, it is necessary to address the 

usefulness of networks with spatially uniform lateral interactions with pre-defined and 

non-adaptive lateral connection models, i.e. models seen in Chapter II and Chapter III. 

4.2 Decorrelation Role of Non-Adaptive Networks with Lateral Connectivity 

Discussions related to spatially invariant lateral inhibitory/excitatory networks 

and their solution as given in Chapter II and Chapter III reveal and characterize 

techniques used to solve such systems. In particular, they outline some interesting 

concepts like steering properties or interpretation of such networks as collections of 

multiple bandpass filters. Obviously, the identical network architecture is presented in 

the model described in Figure 4.1 except that in this case, weights can be modified and 

are adaptive with no restrictions on spatial variability of the system (i.e. the connection 

matrix elements are not necessarily dependent on the distance between neural units or 

may not be a priori given in the form of some sort of explicit connection function). If the 

decorrelation of network outputs is desired, according to the adaptation models given in 

equations 4.2 and 4.4, it is necessary to increase overall inhibitory strength between two 

units that are more correlated. It is already shown that in the case of 2-D signals, the 

correlation in intensity between neighboring spatial locations is very strong [96]. 

Increasing the distance between pixels reduces that correlation [94], [96]. The behavior 

of such a correlation function is consistent with quite natural assumption that inhibitory 
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influence between neural receptors in biological systems decreases with distance too, i.e. 

it is always easier to inhibit your neighbor rather than some distant neuron. Note that 

models A and B or even the Gaussian model of inter-neuron coupling addressed 

previously assume such distance dependent decrease of inhibition between neural units. 

Considering these well known statistical properties of natural scenes and the general 

nature of learning rules given by 4.2 and 4.4, it is no surprise that certain networks with 

lateral inhibition (even with models that are non-adaptive) provide a significant level of 

signal decorrelation at the network output. That is why the first attempt aimed toward 

extraction of significant, meaningful features from the input signal is decorrelation via 

spatially invariant networks with pre-defined lateral connectivity function. The 

experimental results revealing the decorrelating characteristics of such systems are shown 

in section 4.4 of this chapter. Although significantly capable of reducing the correlation 

between input components, presented non-adaptive networks are limited by their 

potential to produce completely uncorrelated and what is more desired, whitened outputs. 

That is why alternative models of filters based on networks with recurrent connectivity 

are investigated. 

4.3 Category-Specific Pre-Whitening Filters 

Development of category-specific pre-whitening filters characterized by spatially 

invariant network with lateral connectivity is based on the adaptation algorithm given in 

equation 4.4. Essentially, the learning process has to remove the off-diagonal elements in 

the output covariance matrix when decorrelation of network outputs is desired. As a 

measure of decorrelation and whitening achieved, the difference between the target 
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covariance matrix jBl and the matrix E\yyT) has to be monitored. The direct 

implementation of the adaptation rule (equation 4.4) would of course produce completely 

whitened signal at the output. The task presented herein is to determine whether the input 

image data characterized as a certain signal category (i.e. image of nature, image of an 

object on dark background or some different category) would yield category-specific 

filter that can be used to meaningfully pre-process the input before adaptation and 

learning described by equation 4.4 even begins. Additionally, it is desired for the 

pre-processing to be done as efficiently as possible with the filter containing a minimum 

number of different coefficients, thus yielding a small memory footprint for storage of 

such kernels. These pre-processing operations are expected to aid in efficiency of 

algorithm described by equation 4.4. 

In order to develop the pre-processing filter in the form of linear network with lateral 

interactions between its inputs and outputs, it is the aim to experimentally find the 

adequate inhibition model that would be spatially uniform (characterized by single 

connectivity model) and that could still pre-process the input data in the manner of the 

whitening filter. This kernel does not necessarily have to strictly fit into any explicit 

form of a certain function (Gaussian, exponential, or similar). However, if such a 

connectivity model can be found, it should be stored in numerical form as a collection of 

coefficients representing a 2-D discrete function. If additional symmetry and space 

invariance assumptions for lateral connections between neural units are made, the 

connectivity matrix of the recurrent network becomes highly structured and easy to store. 

As mentioned earlier in the text, the spatially invariant convolution with the discrete 

kernel can be described as multiplication of Toeplitz-Block-Toeplitz matrix by the 
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vectorized input 2-D signal. Similarly, if the lateral inhibition between neural units is 

space-invariant, then the connection matrix is also of Toeplitz-Block-Toeplitz type. For 

systems where conditions presented by proposition 3.1 from Chapter III of this 

dissertation are satisfied, i.e. the matrix generating function is bounded by unity, the 

network filter response can be found without explicit matrix inversion. However, if the 

system input is effectively of dimension n2, where n is the relatively small patch size 

(usually 8,12,16 or similar) the matrix inversion problem is not a significant one for most 

of the computational platforms in use today. This is the major advantage of the network 

that processes local image patches compared to the system that would process the entire 

image of potentially large size. For the input signal patches of sizenxn, the resulting 

network connection matrix is of n2xn2 size. Full whitening in general requires n4 

coefficients in order to produce an ideal whitening filter. The proposed alternative to 

immediately learning and producing the filter requiring the connection matrix with 

essentially n4 different entries is to try to find the typical whitening filter corresponding 

to a certain class of images by restricting the connection matrix to symmetric Toeplitz-

Block-Toeplitz type with symmetric Toeplitz blocks. This condition corresponds to 

finding the adequate spatially uniform connectivity model for the neural network that can 

achieve only approximate whitening of the input signal. The connection function of this 

network is restricted to the function symmetric about both coordinate axes. If such 

connectivity matrix can be found, the storage requirements become far more relaxed 

since n2 numbers are sufficient to describe the connection model. Of course, the 

anticipated network is expected to properly decorrelate/whiten similar types of signals 

and the only information that is needed before applying the particular type of filter is the 
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knowledge of the category the input belongs to. The proposed algorithm for learning the 

pre-whitening filter can be described as: 

1. Acquire the input data from typical category of images the filter is designed for. 

This phase assumes the collection of "large" number of patches taken from input 

images, their transformation into 1-D vectors as shown in Figure 4.2, and 

removing the mean from every component of the input signal. 

2. Start the learning process according to equation 4.4. 

3. After every update of the connection matrix, transform the matrix B into 

symmetric Toeplitz-Block-Toeplitz matrix with symmetric Toeplitz blocks by 

averaging all the corresponding diagonal/symmetric entries. 

4. Based on the new connection matrix calculate the resulting output covariance 

matrix. The measure of algorithm convergence is the difference between desired 

and achieved covariance of output data. Assuming CY is the covariance of output 

data and pi is the desired covariance matrix, the difference between these 

matrices can be estimated as Frobenius norm: 

^=1X1^- /^1 (4-5) 
' J 

Once the norm EF is less then the small pre-defined constant the learning 

procedure is terminated. 

The algorithm presented herein requires the transformation of currently learned 

connection matrix into ideal symmetric Toeplitz-Block-Toeplitz form with symmetric 

Topelitz blocks. In order to achieve this structure, all elements of the matrix have to be 
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divided into groups with each group representing the unique entry in the resulting matrix. 

For illustration purposes, the simple form of such matrix partition is depicted in 

Figure 4.3. This example illustrates the situation where image data (i.e. patches) are of 

size 3x3 and there are nine different entries in the resulting Toeplitz-Block-Toeplitz 

matrix. Each group of identical elements is labeled by corresponding letter A-I. The 

sub-blocks of the model are depicted by different intensities of grey. 

A f: 

p A 

.-. ' I: 
1 

1! ' 

1 [' 

F 

G 

H 

1 

E 

H 

G 

H 

r. 

e 

A 

i 

1. 

D 

1 

H 

G 

D 

E 

F 

A 

3 

'-

D 

E 

F 

E 

D 

fifW 

>:;F||! 

G 

H 

E C 1 

& C 

A e 

iii 

E 

D 

E 

, • • : • ; 

i 
:i 

Rffi 

l is 
;if 'A 

A 

e 

c 

H 

G 

H 

E 

D 

.s.,!3:':; 

• to 

e 

A 

• 

1 

H 

G 

F 

E 
. i -^>-^: ' 

3fij|> 

r. 

3 

* 

Figure 4.3 The partition of TBT matrix into groups of identical entries 

The matrix depicted in Figure 4.3 can be considered as a pseudo-mask for generalizing 

the Toeplitz-Block-Toeplitz matrix given the arbitrary matrix Z of size 9 x 9 . Elements 

of matrix Z positioned at the location of particular letter are summed and scaled by the 

number of letters of that particular type in the matrix (averaging). The resulting matrix is 

obtained by placing such averaged coefficients into locations determined by particular 

letter after the summation takes place. The algorithm describing the learning of space 

invariant pre-whitening filters i.e. networks with uniform connection function is depicted 

in Figure 4.4. 
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Figure 4.4 Learning the pre-whitening filter 

It has to be noted that constraints imposed on entries of the connection matrix during the 

learning of the filter in some cases can not achieve ideally small EF. If this threshold is 

chosen to be too small, the algorithm might never stop and it becomes necessary to 

impose additional termination criteria, e.g. the maximum number of iterations allowed 

(alternative might be the increase of EF). The modification of connectivity coefficients 
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during the learning process is achieved by using the current output covariance matrix for 

the adaptation instead of individual network outputs as given by equation 4.4. 

The ultimate test of the learned filter is the pre-processing of the image data from 

the same class the filter is learned on. Of course, the test images would not be the same 

as those used for learning the filter coefficients. The expectation is that the filter will 

improve the speed of learning in neural adaptive whitening process compared to the case 

when the weights are initially zero or random values. Also, the comparison in 

performance should be evaluated for such pre-processing filter (formed by using only n2 

different values) and the one that contains full n2 xn2 connection model learned 

originally without imposing any particular constraints on the connection matrix B. 

4.4 Experimental Results 

This section presents two sets of experimental results. The first one is obtained 

when implementing filters based on networks with pre-defined, non-adaptive inter-

neuron connectivity model on images of nature - also referred as category 1. The second 

set represents the outcome of the network adaptation and learning of pre-whitening filters 

as addressed in section 4.3 on three distinct categories of images. Those categories are: 

images of nature, log-polar warped images of objects placed on the dark background and 

images of predominantly horizontal texture. Two examples from each of the three image 

categories are represented in Figure 4.5, Figure 4.6 and Figure 4.7. Note that the actual 

size of images differs and they are resized for display purposes. 
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Figure 4.5 Images of nature (category 1) 

Figure 4.6 Images of log-polar warped objects (category 2) 
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Figure 4.7 Images of predominantly horizontal gratings/texture (category 3) 
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The data collection from all images was performed by using patches of size 16x16. In 

order to approximate the statistical characteristics of each image category, the patches 

were obtained by randomly sampling the collection of images from particular category 

and creating the data set of 25000 samples. After performing such data collection, the 

resulting data set was stored as a 256x25000 matrix with each matrix row representing 

one component of the input. Two additional steps are taken before actual learning of the 

filter takes place - the removal of the mean from each component as well as normalizing 

the data so that the global variance of each 256x25000 data set is unity. When forming 

the data sets, the size of input images varied. For category 1 the image size was 

2048x1536, for category 2 it was 256x512 while for category 3 it was 1024x768. 

Each category of images was divided into four groups with each group containing certain 

number of images. For categories 1 and 3 five images per group were used and for 

category 2, each group contained eight images. The collection of data resulted in 

obtaining four data sets for each category of images. 

In the case of data processing with non-adaptive recurrent network with lateral 

connectivity as addressed in chapters 3 and 4, results obtained when using data from 

image category 1 are presented herein. The filters selected for experiments were two 

kernels reflecting model A and model B coupling as given in Figure 2.2 as well as two 

filters reflecting Gaussian connection matrix with and without self-inhibition as given in 

section 3.3.1. In the latter case, the filter coefficients were calculated according to 

equation 3.13 . The data processing is performed in the form of convolution with 

particular kernel i.e. the direct network solution was not utilized. In order to calculate the 

3 The coefficients from Gaussian connectivity model used in the case without self-inhibition were: 
# = 0 . 1 1 , < 7 = # 7 3 , while in the case with self-inhibition were: a = 0.15,0 = 7t 13. 
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measure of data decorrelation at the system output, it was necessary to obtain input and 

output covariance matrix (i.e. before and after particular filter is applied). The resulting 

image was sampled and processed in the identical manner as the input in order to obtain 

statistical properties of data. The results obtained by implementing filters characterizing 

non-adaptive recurrent networks with lateral inhibition are shown in Table 4.1. 

Group 
Number 

(Category 1 
used) 

1 
2 
3 
4 

Slcx(,"'^)| 

4401.4613 
5273.7644 
3990.5288 
4434.2161 

Measure of decorrelation for different connectivity 
models: ]£|Cj, (/,./) 

Model A 

665.9185 
796.4620 
603.1127 
668.4053 

Model B 

541.8871 
647.5157 
490.9116 
542.5185 

Gaussian 
without self-

inhibition 

1942.5685 
2325.5166 
1759.2033 
1952.3204 

Gaussian 
with self-
inhibition 

1334.3708 
1597.4860 
1208.9130 
1342.4003 

Table 4.1 The results of decorrelation with filters based on non-adaptive uniform networks with lateral 
inhibition 

As demonstrated in Table 4.1 all four models of lateral connectivity implemented in 

experimental work yielded significant reduction in correlation between image pixel 

intensities. This is actually expected result since both the correlation between pixels as 

well as inter-neuron coupling strength within addressed models fall off with 

inter-pixel/inter-neuron distance (i.e. the stronger the correlation, the stronger the 

inhibition). Additional results obtained when processing category 2 and category 3 of 

images with these non-adaptive filters are presented in Appendix A. 

When learning category-specific pre-whitening filters, the algorithm described in 

Figure 4.4 is performed. Only one data set per category is used to actually learn the 

category-specific filter. Once the network filter is obtained by learning the spatially 

invariant lateral connection model (the Toeplitz-Block-Toeplitz connection matrix), it is 
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tested in three scenarios. The ultimate goal in all of those scenarios is to whiten the input 

data by adaptive model described by equation 4.4 but with implementation of data 

pre-processing by category-specific filters. The first test compares the behavior and 

effectiveness of the learned pre-whitening filter with the case when the adaptation starts 

from zero, i.e. instead of initializing the connection matrix with zeros, the pre-whitening 

filter learned from similar, but not identical data set is used. The second case is 

comparison of the whitening process when data is pre-processed by the learned filter 

characterized with symmetric TBT matrix with symmetric Toeplitz blocks on one hand 

and, on the other hand, the filter that is obtained by completely whitening the training 

data from the same category without enforcing the strict Toeplitz-Block-Toeplitz matrix 

connectivity form at every learning step. Finally, the third test compares how filters 

learned on the data from one category behave when applied in "wrong category" data 

pre-processing. Figure 4.8, Figure 4.9 and Figure 4.10 depict results obtained by 

preprocessing (pre-whitening) different data sets obtained from three groups from each 

image category. Data pre-processing by the specific filter is equivalent to initializing the 

network connectivity matrix fiwith the coefficients characteristic for the recurrent 

network constituting the given filter. 

77 



Whitening for imges of nature - Category 1/Group 2 Whitening for imges of nature - Category 1/Group 3 

1 

_ - - - • — _ | . 

No pre-processing 
— Uniform pre-whitsning 

Uniform pre-whitening - Category 2 
Uniform pre-whitening - Category 3 . 

• 

- — — , - ^ ~ — - — - — , . • • • _ = , ^ ^ ^ g ^ 

120 140 160 

tl 

A 
••' \ 

1 \ \\ \ 

• \ 

- - 7~-?.-.-.^ _ •^=._....,-.i 

— No pre-processing 
• Uniform pre-whitening 

Complete whitening 
Uniform pre-whitening - Category 2 
Uniform pre-whitening - Category 3 

-

Iteration number 
0 20 40 60 80 100 120 140 16' 

Iteration number 

Whitening for imges of nature - Category 1/Group 4 Average value for Ep - Category 1 

11 

n 1 \ 1 \ 
•• t ^ - - - ^ ^ 

: * " " — • - ^ . 

=̂  ^̂ .....̂ .., 

No pre-processing 
- Uniform pre-whitening 

Complete whitening 
Uniform pre-whitening - Category 2 

- Uniform pre-whitening - Category 3 . 

-

-:::::: =-, "~=Z ~ ,7" ' " - ' " - : . " - • - " - - - ^ - ~ 

40 60 80 
Iteration number 

120 140 160 20 40 60 80 100 120 140 
Iteration Number 

Figure 4.8 Performance of learned pre-whitening filter when processing three groups of data from 
Category 1 
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Figure 4.9 Performance of learned pre-whitening filter when processing three groups of data from 
Category 2 
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Figure 4.10 Performance of learned pre-whitening filter when processing three groups of data from 
Category 3 

From Figure 4.8, Figure 4.9 and Figure 4.10 it is evident that learned pre-whitening filters 

can be efficiently used in order to prepare i.e. pre-process the data during the whitening 

operation as described in equation 4.4. In real-world scenarios, one would start from the 

pre-determined, reduced number of network coefficients forming the symmetric 

Toeplitz-Block-Toeplitz matrix with symmetric Toeplitz blocks and calculate the filter in 

the form given in equation 3.1. Once this operation is completed, the data whitening can 

continue based on Plumbley's model and without any restriction on the development 

(adaptation) of the connectivity matrix. As seen from these experimental results , the 

data pre-processing with filter formed by spatially invariant connectivity models (labeled 
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as uniform whitening) is almost as effective as pre-processing the particular category of 

data with the network whose connections are previously adapted to completely whiten the 

input. One should notice that certain prior knowledge about the specific category of data 

to be processed is necessary. This method of signal processing can be classified into the 

category of semi-blind data pre-whitening since only partial information about input is 

available (for example one knows that the input to the system is the image of log-polar 

warped object, but one does not know which object in particular is in question). 

Presented results also demonstrate that if the wrong filter pre-processes the data, the 

whitening becomes much slower and relatively inefficient. In addition to the results 

presented in this section, the performance of the pre-whitening filters based on adaptation 

model depicted in Figure 4.4 when processing individual images is described in 

Appendix A. The role of category-specific pre-whitening kernels in solving pattern 

recognition problems is demonstrated in the text that follows. 

81 



CHAPTER V 

BIOLOGICALLY INSPIRED INFORMATION PRE-PROCESSING 
AND OBJECT RECOGNITION 

This chapter addresses the use of category-specific, spatially uniform 

pre-whitening networks in ICA-based pattern recognition tasks. Specifically, the 

usefulness of such filters in signal pre-processing when obtaining sparse feature sets of 

data in log-polar domain is investigated. It is demonstrated that reducing the number of 

non-zero components in feature vector representations yields promising pattern 

recognition performance. 

5.1 Independent Component Analysis as Biologically Inspired Signal Encoding 

After acquiring category-specific pre-whitening filters through learning technique 

addressed in Chapter IV of this dissertation, it is quite natural to investigate practical 

usefulness of such biologically motivated signal pre-processing. Previous efforts to 

answer this question could be categorized into two basic theories. As demonstrated in 

[47], the lateral inhibition among receptor/neurons improves the signal contrast at the 

network output. In practical terms, this can be interpreted as an edge enhancement 

operation [46]. On the other hand, when observing statistical properties of input signals, 

the adaptations of the recurrent network partially governed by lateral inhibition 

mechanisms lead to signal decorrelation and whitening [64], [83], [84], [89] which in turn 

can serve as common and important pre-processors for ICA [60]. The fundamental 
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objective of this chapter is to demonstrate how the category-specific pre-whitening filters 

can be combined with filters constructed for ICA signal encoding in the log-polar domain 

for feature extraction and pattern recognition purposes. Note that the entire signal 

processing chain has a strong biological flavor. Still, it has to be emphasized that the 

goal of this dissertation was not to pursue an ideal machine model of some specific 

biological vision system that would pre-process the input and perform the pattern 

recognition task in a purely biological manner. That is why as a pattern recognition 

technique, the form of a well known, not necessarily biologically motivated pattern 

classifier is used. Before describing the approach taken when solving the problem of 

object recognition by using this biologically motivated information processing 

framework, it is necessary to reveal some of the basic characteristics and significance of 

ICA. 

It is well known that biological systems have evolved over long periods of time 

and that the development of mechanisms that process visual stimulus was driven towards 

effectively coping with signals received from the external environment. Bearing this in 

mind, it is reasonable to assume that the mammalian visual cortex (being part of 

image/signal processing chain) is no exception. The> notion of discovering efficient 

signal encoding strategies that would be in agreement with known characteristics of 

information processing in visual cortex has been a major scientific effort in the last few 

decades. Significant progress in this direction was made by Olshausen and Field [28], 

[29] who demonstrated that characterization of mammalian visual cortex simple cell 

receptive fields as localized, oriented and bandpass [29] is consistent with the sparse 

83 



coding of natural images. The sparse coding of input images l(x, y) can be described as 

signal representation in the form: 

l(x,y) = '£ds.al(x,y) (5.1) 

where, coefficients si have probability distributions (of their activity) with heavy tails 

highly peaked around zero. The functions at are called basis functions of the model. In 

practical terms, it is said that the particular neuron will be inactive most of the time and 

that it will fire rarely. This means that an image encoding is possible by only small 

number of active units. It is very important to point out that such sparse distributions 

reduce statistical dependence among output units [27], [31], thus providing the link 

between sparse coding and the ICA. The approximate illustration of the distribution of 

activity of code coefficients for sparse coding is shown in Figure 5.1. 
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Figure 5.1 Distribution of activity of code coefficients for two cases: sparse code (full line) and non-sparse 
code (dotted line) 
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An example of the information processing incorporating models of complex cell 

responses as present in visual cortex [97] and the neural layer responsible for sparse 

coding of outputs of those complex cells is described by Hoyer and Hyvarinen [98]. 

Such a network learns contour coding from natural images where responses of complex 

cells are given as squared and summed outputs of quadrature Gabor filters. 

Another important step in revealing efficient signal coding strategies potentially 

employed by the mammalian brain are techniques that are based directly on ICA. As 

stated by Bell and Sejnowski [30] the ICA is equivalent to Barlow's redundancy 

reduction problem [27] which postulates that the feature detectors of the HVS are 

developed and adapted with the goal of producing as statistically independent activations 

from each other as possible. Many different algorithms for ICA are published [58] and 

generally, their primary goal is to reveal statistically independent components present in 

the analyzed signal under the assumption that analyzed input is a mixture of some 

features (i.e. basis functions). One example of this direct link between algorithms for 

sparse code generation and ICA is given by Olshausen and Field [29]. They proved that 

the ICA algorithm of Bell and Sejnovski [99] based on maximization of mutual 

information between inputs and outputs of the encoding system can be interpreted as the 

model that finds the set of basis functions that maximize the average log-likelihood of 

images assuming coding coefficients are sparse and statistically independent. The 

decomposition described by relation 5.1 under the assumption of statistically independent 

and non-Gaussian coefficients st is called ICA and as stated by Hyvarinen and Hoyer it 

can be viewed from different perspective as sparse signal coding. The linear 

representation given by 5.1 has its counterpart in a matrix form: 
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x = As (5.2) 

which can be rewritten as: 

x = alsl +a2s2 +... + ansn (5.3) 

where, each basis function ai represents the column of matrix A (also known as a 

mixing matrix) while st is the component of vector s (particular independent 

component). The input to the system is the column vector JC which in the case of this 

dissertation can be seen as vectorized version of the 2-D signal obtained by serializing 

image rows into single column. For the particular set of different input signals, the 

coefficients st are different and in the case of practical ICA algorithms, they are as 

statistically independent as possible. For the given collection of images, the ICA 

algorithms attempt to find the best suited set of basis functions (or the mixing matrix A ) 

that satisfies the model given by equation 5.2 while observing the independence of 

coefficients s{. ICA captures the essential structure of the data and is suitable for many 

applications like feature extraction, signal separation (or more specifically for solving the 

well known cocktail party problem), separation of artifacts in MEG data, finding hidden 

factors in financial data or reducing noise in natural images [60]. ICA was recently 

successfully used for face recognition [100] where the authors showed that for such an 

application the ICA representations were superior to PC A ones. The utilization of ICA as 

a principle method for feature extraction from color and stereo images can be seen in 

[101]. This paper argues that treatment of chromatic and stereo information yields 

features and receptive fields that provide additional evidence for redundancy reduction 

process performed by the visual cortex. 
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In order to better understand the feature extraction model addressed herein, it is 

necessary to provide some detail about the specific ICA technique called FastICA [61], 

[102] since this method was used for ICA based image encoding for the purposes of this 

research. Originally, a fast fixed-point iteration algorithm for estimation of independent 

components from a given n-dimensional signal was proposed by Hyvarinen and Oja 

[102]. Many algorithms for ICA are performed by establishing an objective, or 

alternatively called contrast function with the ultimate goal of minimization or 

maximization of the same. In the case of the fast fixed-point ICA method from [102], the 

contrast function was kurtosis which for a zero-mean random variable s is defined as: 

kurt{s) = E{s4}-3{E{s2})2 (5.4) 

Alternatively to using kurtosis, as shown in [61], it is possible to perform the 

maximization of an objective function of type: 

JG{s)=[E{G{S)}-E{G{v)}f (5.5) 

where, v is a Gaussian variable of zero mean and unit variance and G is any non-

quadratic function. This objective function represents the approximation of negentropy 

or the nongaussianity of underlying data. The one-unit FastICA algorithm yielding the 

maximization of contrast function given by equation 5.5 is based on the iteration scheme 

revealing the single independent component: 

w{t +1) = E{xg(w{t)T x)\ - E{g'(w{t)T x)\W{t) (5.6) 

where, the weight vector w is normalized after each iteration. The function g represents 

the first derivative of function G from equation 5.5. The so-called demixing matrix 

Wthat yields estimates of all independent components: 

~s = Wx (5.7) 
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is given as: 

W={w1,w2,...,wJ. (5.8) 

In order to estimate all the different independent components, it is necessary to 

decorrelate outputs after each iteration. This can be done using several different schemes 

(see [61] for details). 

In order to produce ICA decomposition of the input signal, the model given by equation 

5.6 was used. The non-linearity G(u) had the form: 

G(w) = logcosh(w) (5.9) 

with derivative defined as: 

g{u)=tanh{u) (5.10) 

There are several reasons for the choice of the given ICA model. The algorithm is well 

known and proven to be extremely fast (the convergence is cubic). There are practically 

no user defined parameters. The function G(u) given in 5.9 is a good general purpose 

choice for the contrast function. There is no need of prior knowledge or estimation of the 

probability distributions of signal components. The algorithm is computationally simple, 

has small memory requirements and the code implementation of FastICA is readily 

available and well documented [62]. 

As previously stated, many of ICA algorithms assume the data is whitened since 

their performance becomes significantly improved when dealing with such data 

structures. This is the case with most fastICA models. This fact emphasizes the 

importance of pre-whitening filters discussed in Chapter IV of this dissertation. 

In the remainder of this chapter, the role of category-specific pre-whitening filters 

(based on networks with recurrent connectivity) in a complete chain of signal processing 
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for pattern recognition tasks will be revealed. The ICA based feature extraction 

techniques adapted for recognition of objects in the log-polar domain (i.e. cortical 

domain) are addressed. The rotation and scale tolerant feature space is formed and 

encoded via ICA filters by using only a limited number of locations in the image. These 

locations are chosen based on the responses of specific type of filters that are also 

biologically inspired - log-Gabor kernels. At the very end of the chapter, the results of 

object recognition based on multiple classifiers are reported. The experiments were 

conducted for images of objects taken under different lightning conditions. 

5.2 Recognition of Objects Through Log-Polar Transform and Local ICA Analysis 

The main problem addressed in this section can be described as recognition of 

objects in log-polar space based on localized ICA feature extraction. Essentially, the 

method of feature detection and encoding addressed herein relies on two groups of filters. 

The first group contains pre-whitening filters developed for specific class of input 2-D 

signals - log-polar warped objects sitting on a dark background. The second group 

contains ICA filters learned on the identical group/class of images. When working with 

log-polar images, the assumption that was constantly present throughout the entire 

research was that the center of the log-polar transform for a particular image is constant, 

i.e. the object is always properly centered and warped. This essentially allowed for 

rotation and scale tolerant information processing. The block diagram representing the 

algorithm used for feature extraction and pattern recognition is shown in Figure 5.2. 
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Figure 5.2 Feature extraction and object recognition based on pre-whitening and ICA filters 

The input to the pattern recognition model depicted in Figure 5.2 was the set of grayscale 

images of objects sitting on a dark background. Each object (class) was represented by 
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twelve different grayscale images (or potentially their rotated versions), with each image 

captured under different lighting conditions. More information about the database used 

for experimental work (Amsterdam Library of Object Images) can be found in [103] and 

[104]. A few examples of object images from the database are shown in Figure 5.3. 

Figure 5.3 Four objects from image database 

Figure 5.2 reveals that the algorithm contains the training mode and the actual 

recognition or test mode. Out of one thousand possible objects from the given database, 

forty of them were chosen for the experiment described in this dissertation. Out of 

twelve images of each object, eight were used in order to train the system and 

approximate the parameters necessary for accurate classification. Thus, the total number 

of training images was 320. Four images from each class were used for testing purposes, 

yielding a total of 160 test samples. After describing details of the feature extraction and 
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the pattern recognition algorithm the recognition rates are given for each implemented 

classifier. 

The feature extraction phase starts with the input image acquisition which in this 

case is already performed by a third party. In order to perform accurate log-polar 

warping on every image, it is desired to compute the objective center of the complex-log 

transform. In the case of images from the given database the problem translates to 

separation of background from the object and computation of the specific point in the 

object that would serve as the center for log-polar mapping. The method used to separate 

the object from the background is thresholding based on Otsu's method [105]. Once the 

suitable threshold is obtained, it is assumed that each pixel with the value above the 

threshold belongs to the object itself, while others belong to the background. The next 

step in image processing is thresholding and forming the binary image based on the given 

threshold value. This binary image is only the temporary signal (a mask) that aids in 

detection of outer boundaries of a given object along horizontal and perpendicular axes as 

well as the center point of log-polar transform - the object centroid. The calculation of 

the object centroid itself is based on the calculation of moment of order one [106]. Once 

outer boundaries and object center-point are found based on this black and white image, 

they are adapted as basic boundaries of the new gray-scale image (the object is still 

surrounded by a small background). The result of these operations is the image that 

contains an object that is centered according to an objective and consistent algorithm. 

Examples of objects centered by the described method are presented in Figure 5.4. 
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Figure 5.4 The result of centering of an object prior to log-polar mapping 

The centering is performed in such way that the pixel corresponding to the centroid of an 

object is always in the center of the resulting image. The procedure of obtaining the 

grayscale image of the centered object is depicted in Figure 5. 5. 
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Figure 5. 5 Centered object image extraction 

After object centering is performed, the log-polar mapping can take place. The mapping 

itself is performed by batch processing the entire set of input images using warping 

functions which are part of open source OpenCV library written in C/C++. Particular 

details about the entire library along with the help and sample codes can be obtained from 

[107]. For every image, the target size (the size of the image in log-polar domain) was 

set to 256x512 thus effectively representing 256 log-radial and 512 angular samples. 

The warped versions of objects from Figure 5.4 are shown in Figure 5.6. 
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Figure 5.6 Log-polar mapping of centered objects 

As shown in the block diagram depicted in Figure 5.2, after the images are converted to 

log-polar domain, the specific filtering with log-Gabor kernels is performed. This stage 

is also labeled as pseudo-saliency detection. The main reason why this step is chosen as 

a necessary part of the signal encoding process lies in the nature of log-polar mapping 

and the technique chosen for feature extraction. 

The rotational and scaling variations in input patterns are converted to horizontal 

and perpendicular shifts in log-polar space. This is the reason why the log-polar mapping 

is usually referred as very efficient image processing step towards scale and rotation 

tolerant feature representation. When dealing with ICA techniques in the log-polar 

domain one has to use special care. The pre-whitening filters described in Chapter IV are 

given in the form of networks with recurrent connectivity and they act upon signals 

formed from localized image patches. Similarly, one standard approach to describe the 
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effects of ICA algorithms (for example on natural images) is to sample great collection of 

image patches and treat them as specific signal outcomes. By following this model, this 

research attempts to identify efficient coding strategies for images already mapped to the 

log-polar domain while preserving rotation and scale tolerance of the mapping itself. 

Obviously, one possible method of feature encoding would be crude sequential scanning 

of the cortical image and taking patches of a specific size in a purely sequential order 

with fixed sampling grid. However, this has extremely negative effects in the case of 

object rotation or resizing. Only in the special case (that would most probably rarely 

happen in reality), when mapped object deformations in terms of scale and rotation angle 

are such that the content from one patch moves to represent the identical content 

contained in some other patch (i.e. rotations and scales are allowed only by multiple of 

certain discrete factor) the log-polar mapping would preserve it's size and scale tolerant 

feature encoding capacity. The demonstration of the effect of this fixed sampling grid in 

log-polar environment is depicted in Figure 5.7. 
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Figure 5.7 The problem of fixed grid with sequential patch sampling in log-polar space; example where 
rotation of object causes completely different content of patches (right); only for specific rotation angles 

this content is preserved (left) 
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This problem was solved by choosing only specific, localized regions of the log-polar 

image that would be interesting for further analysis. These locations and their immediate 

surrounding can be defined as interesting image patches whose content would be 

transformed by further stages of the algorithm and image features appropriately encoded. 

The advantage of this approach is that regardless of the pattern shift in the original or 

log-polar domain, the spatial location of sampling patches is not fixed as it is in the case 

presented in Figure 5.7. Rather, the patches and their locations are selected based on the 

points of interest in the image and they continuously move as the pattern itself moves due 

to rotation and/or scaling. This concept is shown in Figure 5.8. 
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Figure 5.8 Selection of patches based on points of interest - sampling locations are not a priori defined 

The model used for selection of pseudo-salient image regions is based on the responses of 

the complex log-Gabor filters [108]. Before describing the implemented pseudo-saliency 

selection process, it should be stated that alternative, relatively complex and biologically 
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inspired models for detection of salient image locations already exist and belong to the 

separate area of scientific research [109]. Such models are intended to mimic the 

processes of visual attention and are commonly implemented for revealing the 

conspicuous details in natural scenes (i.e. structures/objects that strongly differ or stand 

out from the background). The characterization of such saliency models in the warped, 

log-polar domain is a quite interesting and potentially very challenging task which is out 

of scope of this research. 

The model for selection of points of interest presented herein is based on the 

application of the bank of multi-scale and multi-orientation log-Gabor filters. Particular 

locations, selected based on highest responses of such filters are voted as pseudo-saliency 

points. The motivation for usage of log-Gabor instead of the most commonly used Gabor 

filters for this stage of image processing comes from the work of Field [110]. Based on 

the analysis of natural image statistics and it's spectra he concluded that encoding of such 

images is far superior with functions of log-Gabor type that have no DC components and 

are additionally characterized by extended tails in frequency domain. The commonly 

used regular Gabor functions would over-represent low frequency components since it 

would not be possible to maintain a low DC component and large filter bandwidth [108], 

[110]. Another argument Field used to justify usage of log-Gabor filters for image 

encoding is the symmetry of their frequency response on the log-frequency scale which 

as he claims is consistent with symmetry of spatial-frequency response of visual neurons. 

The log-Gabor function has the ability to capture broad spectral information with a very 

compact spatial filter [108]. 

The frequency response of the log-Gabor function is described by: 
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2log2f a 

G{f)=e Uo) (5.11) 

where, /„ is the filter center frequency while the term <r/f0 dictates the filter 

bandwidth. The function G(f) from expression 5.11 represents a Gaussian function of 

log-frequency. Since the log-Gabor filter has singularity at zero frequency, there is no 

analytic expression for the impulse response of the filter in the spatial domain. However, 

as described in [110] based on the analysis of their frequency response characteristic and 

by utilizing a numerical inverse Fourier transform, one can obtain the spatial form of 

these kernels. The computer code used for generating log-Gabor kernels for the purposes 

of this research is freely available [110]. The 2-D equivalent of the filter described by 

equation 5.11 has radial and angular components. The radial component is essentially 

identical to its 1-D counterpart while the angular component determines the orientation 

selectivity of the filter. Such a log-Gabor 2-D function with Gaussian model of angular 

component can be described as: 

log21 r 

2tog»l£| J°3l 
G{r,6) = e {r°je ie° . (5.12) 

The first component of the filter is circular symmetric and is a function of the radial 

frequency r. The angular selectivity of the filter is controlled by parameters 00 and 9a. 

The inverse Fourier transform of the filter given by equation 5.12 is a complex 2-D signal 

with the real part representing the "even-symmetric component" of the resulting 

log-Gabor kernel, and the imaginary part representing the "odd-symmetric component" 

of the spatial complex response. When constructing the bank of log-Gabor filters one has 
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to consider various parameters depending on the desired application. The details of filter 

implementation as well as recommended filter bank parameters can be found in [108]. 

For the purposes of this research, two scale filter bank with four distinct orientations was 

used. The spatial response of the complex log-Gabor filter obtained numerically as the 

inverse Fourier transform of the frequency response given by equation 5.12 is shown in 

Figure 5.9 and Figure 5.10. 

• f 

Figure 5.9 The spatial response of the even log-Gabor function; 2-D grey scale intensity model (left); 
center-line profile (right) 

Figure 5.10 The spatial response of the odd log-Gabor Function; 2-D grey scale intensity model (left); 
center-line profile (right) 
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The spatial shape of the log-Gabor filter reminds us of the conventional Gabor function. 

The role of these filters in saliency detection as used in this research is primarily to detect 

image regions in the cortical space that would best stimulate cortical-like neural cells. Of 

course, one could also use Gabor-like kernels or even DOG type filters for this purpose. 

However, the choice to use log-Gabor functions was preferred because of their previously 

mentioned characteristics. The selection process of points of interest is based on the 

magnitude of the complex log-Gabor filter bank responses. For each location in the 

cortical space the overall magnitude of complex log-Gabor filter responses is calculated 

as the sum of magnitudes of all individual responses to filters belonging to the filter bank. 

For each scale and orientation the magnitude of filter response can be calculated as: 

7,,« = 4Ievenle + Ioddle • (5-13) 

The overall response is given as: 

S=\ 1=1 

The selection is performed by searching for locations in the log-polar domain with 

maximum overall response, / . In order to achieve adequate separation of saliency 

locations as well as to allow the algorithm to properly advance from one salient location 

to the next one, it is necessary to effectively eliminate all already attended salient 

locations from further search. Once the maximum of / is found, the response function 

given by equation 5.14 at that location and the surrounding region is set to zero, i.e. it is 

locally inhibited. In this manner, the algorithm will search for the next significant 

response identifying the potential location of the new salient patch. The neighborhood 

size to be excluded from further search was 8 pixels. The number of pseudo-salient 
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locations chosen for processing was 16. Once the appropriate collection of locations in 

the cortical image with maximum overall response to the chosen log-Gabor filter bank is 

found, the corresponding coordinate pairs were sorted according to descending angular 

coordinate. In the case two locations with the same angular coordinate were found, the 

one with the lower log-radial coordinate preceded the one with the higher log-radial 

coordinate. The overall result of presented pseudo saliency detection process is the 

vector of 16 coordinate pairs with specific, ordered placement of salient locations in the 

vector itself. An example of the image in log-polar space with the resulting set of 

pseudo-salient locations is shown in Figure 5.11. Corresponding patches extracted from 

salient locations outlined in the right pane of Figure 5.11 are shown in Figure 5.12. 

II 
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Figure 5.11 An image in log-polar space (left) with outlined pseudo-salient locations (right) 
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Figure 5.12 Collection of patches centered at pseudo-salient points from Figure 5.11 

The actual response to log-Gabor filter bank is obtained by calculating the Fourier 

transform of given log-polar image, then multiplying this transform by the frequency 

response of particular filter member of the filter bank and finally the inverse Fourier 

transform of each of the products is taken. 

The feature vector characterizing each object can be represented as a matrix 

containing 16 columns - each column encoding one salient location. The first two 

components in the column are the x and y coordinates of the location center. The next 

256 components of each column represent an ICA decomposition of the higher scale 

patch while last 256 components are the ICA decomposition of the lower scale patch 

centered at the same salient coordinate. For each patch, the higher scale data was 

identified as a block of size 32 x 32. This block is subsequently processed by a low-pass 

Gaussian filter, down-sampled to a 16x16 patch and then further processed as a standard 

data vector containing 256 components. In order to estimate the statistics of the given 

image, an additional 2000 patches of size 16x16 were extracted from random locations 

and added to the data representing salient locations. This data set was normalized to unit 
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variance and zero mean. The ICA decomposition as described by equation 5.7 is 

performed by first pre-processing the data with pre-whitening kernels learned on the set 

of log-polar warped images of objects placed on the dark background according to the 

algorithm described in Figure 4.4. Here, the efficiency of pre-whitening filters realized 

as recurrent networks with symmetric Toeplitz-Block-Toeplitz connection matrix (with 

symmetric Toeplitz blocks) can be fully utilized. By using a very small number of 

coefficients forming the filter (i.e. initial network weights for data whitening) it is 

possible to pre-process the data such that complete whitening by the adaptive algorithm 

defined by equation 4.4 is achieved in a small number of iterations as shown in 

Figure 4.9. The same principles of signal pre-processing were followed when obtaining 

(learning) the actual matrix W from 5.7. This matrix was obtained by implementing the 

fast ICA algorithm on the additional data from the same category and by implementing 

identical whitening procedures. The matrix W in this case can be described as: 

W = B1BWT (5.15) 

where, B^ represents the entire two-phase whitening transformation of the input data. 

The estimated ICA representation of a given image patch is based on the modification of 

equation 5.7 affected by data whitening: 

s = fi,x (5.16) 

where, Jc represents whitened data x . The overall extracted feature vector can be quite 

large - 16 salient locations are represented as a 514x16 matrix. However, given the 

nature of ICA and its tight relationship to sparse coding, it is natural to expect that many 

of the given feature vectors (actually matrices) can be sparse or can adequately encode 

the given object by taking into consideration only certain and most probably small 
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number of largest coefficients in the overall IC A representation. This led to an additional 

transform of the given feature vectors into structures with only pre-determined number of 

non-zero ICA coefficients. For each scale, only certain number of highest (by absolute 

value) ICA coefficients were kept intact while others were set to zero. Thus, a very 

sparse data structure was created. The resulting feature matrix FM can be described as: 

FM = 

xx 

yx 

K i 

" 5 1 ,256 

Kl 

Is 
_ "1 ,256 

x2 

y2 

hs2l • 

^ 2 , 2 5 6 

Is 
" 2 , 1 

Is 
" 2 , 2 5 6 

X\b 

•• yi6 

•• h s m 

^ 1 6 , 2 5 6 

Is 
" 1 6 , 1 

•• Is 
"16,256 

(5.17) 

where, xt and v, represent coordinates of the salient patch center in the log-polar image, 

hsu represent the ICA coefficient of the higher-scale patch while lstj are ICA 

coefficients of the lower-scale patch. 

At the final stage of information processing, pattern classification is performed. 

Different types of distance based classification engines were tested: nearest neighbor, 

3-nearest neighbor [111] and a specific modification of the previous two types of 

classifiers. It was noticed that the significant improvement over traditional 

nearest-neighbor type classification is achieved if the feature matrix is considered as a 

collection of un-ordered 16 sub-vectors each representing the salient image location. 

Each sub-vector was classified as belonging to a particular object/class based on 

minimum distance to the one of the sub-vectors representing salient patches in the 

training set. This way, for each test pattern there would be a voting procedure based on 
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number of features/patches identified to belong to the same class. The class with the 

highest vote would be the winner providing it has more than 8 votes (belonging features). 

This algorithm of classification is named hybrid nearest neighbor classifier. In the case 

of hybrid 3-nearest neighbor classifier, each patch was characterized as belonging to the 

particular classes based on three nearest patches in the training set. Again, the final 

winner is the object/class characterized with the highest count of patches that belong to it. 

If the recognition is performed on potentially rotated object, a variable offset is added to 

the coordinate x of each column vector in FM thus achieving very fast rotation of the 

input test pattern. For each pre-determined rotation offset the winner class is found based 

on hybrid nearest neighbor classifier. Also, for each offset additional parameters are 

determined representing the number of features in the test pattern belonging to the 

particular class and the cumulative distance between all feature sub-vectors and 

corresponding closest feature sub-vectors in the training set. The pattern resulting in 

minimum cumulative distance parameter is the one chosen as input for final 

classification. If this pattern contains a majority of features belonging to the same class, 

then this class is proclaimed as winner. Otherwise, no decision is made. Alternatively, 

when implementing the hybrid 3-nearest neighbor classifier, for each rotation offset, 

besides deciding the winner class,,the confidence value is determined representing the 

number of times any of the feature sub-vectors was classified to belong to the winning 

object based on 3-nearset neighbor rule. The overall winner is the object with highest 

confidence count. 
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5.3 Experimental Results 

Finally, the results of signal processing and pattern classification algorithms 

described in the previous section are presented. The entire algorithm excluding the 

log- polar warping was implemented in MATLAB (the same stands for all experimental 

results presented in this paper). The actual computations were executed in off-line and 

batch mode, and no parameters were obtained that describe the system performance in 

terms of speed of execution. In all of the experiments the number of non zero ICA 

components was varied from a minimum 16 to a maximum of 256. Also, image rotations 

were introduced artificially through software by rotating the particular image about the 

log-polar transform origin by some random angle that was in the range(-10°, 10° J. The 

experimental results obtained by application of four different classification techniques are 

summarized in Table 5.1 and Table 5.2. 

Number of 
non-zero 

ICA 
coefficients 

256 
80 
64 
48 
32 
16 

Recognition result pass/fail for specific 

Nearest 
Neighbor 

143/17 
143/17 
143/17 
143/17 
143/17 
143/17 

3-Nearest 
Neighbor 

137/23 
136/24 
134/26 
135/25 
135/25 
135/25 

Hybrid 
Nearest 

Neighbor 
155/5 
156/4 
156/4 
156/4 
156/4 
155/5 

classifier 

Hybrid 3-Nearest 
Neighbor 

159/1 
159/1 
159/1 
159/1 
159/1 
159/1 

Table 5.1 The results of non-rotated object recognition by four different classifiers 
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Number of 
non-zero 

ICA 
coefficients 

256 
80 
64 
48 
32 
16 

Recognition result pass/fail for 
specific classifier 

Hybrid 
Nearest 

Neighbor 
153/7 
153/7 
152/8 
152/8 
152/8 
154/6 

Hybrid 3-Nearest 
Neighbor 

159/1 
159/1 
159/1 
159/1-
159/1 
159/1 

Table 5.2 The results of object recognition by hybrid classifiers (rotated objects as input) 

By comparing the results of object classification it can be concluded that the hybrid 

method is far superior to the traditional distance based classification. The reason to this 

might be in the fact that potential variations in the selection of salient locations (one or 

two salient locations differ or missed) might lead to very large distances between two 

feature vectors even when they contain large number of "correct" (i.e. identical) salient 

features. Also, certain experiments showed consistent pass/fail ratio for all possible 

variations of number of non-zero ICA components. Without going into detailed analysis 

of characteristics of each of the addressed classifiers, we point out few potential causes of 

this phenomenon. First, errors can happen in the pre-processing stages of feature 

extraction - if the crucial features are for example missed, classification based on any 

number of ICA components will fail. Second, since the signal encoding is sparse, only 

few "strong" non-zero coefficients in ICA representation are actually relevant and 

varying their number does not influence the result. The third factor would be related to 

potential dominance of x and y coordinates in the feature matrix over other feature 

components. If this dominance is significant one would require proper feature 
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normalization. While recognition rates for the case of recognition with hybrid classifiers 

when x and y components are normalized to range (0, 5) are presented in Table 5.3, we 

note that detailed feature normalization analysis was out of scope of this research. 

Number of 
non-zero 

ICA 
coefficients 

256 
80 
64 
48 
32 
16 

Recognition result pass/fail - non-
rotated objects 

Hybrid Nearest 
Neighbor 

148/12 
147/13 
146/14 
145/15 
146/14 
145/15 

Hybrid 3-
Nearest 

Neighbor 
146/14 
146/14 
147/13 
147/13 
148/12 
146/14 

Recognition result pass/fail -
rotated objects 

Hybrid Nearest 
Neighbor 

147/13 
146/14 
146/14 
143/17 
144/16 
140/20 

Hybrid 3-
Nearest 

Neighbor 
151/9 
148/12 
148/12 
149/11 
147/13 
147/13 

Table 5.3 The results of object recognition by hybrid classifiers and for x and y feature components 
normalized to range (0, 5) 

In order to additionally test the potential of the local ICA based feature encoding, the 

experiments were performed for non-rotated object classification and for the case when x 

and y features components are eliminated, i.e. their value is set to zero. The results of 

these experiments are presented in Table 5.4. The location of salient patches is obviously 

not robustly encoded in the feature vector and higher, but not catastrophic 

misclassification rate is evident. Standard nearest neighbor and 3-nearest neighbor 

classifiers performed very poorly in this test. 

4 Standard nearest neighbor and 3-nearest neighbor classifiers did not perform well in this case. 
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Number of 
non-zero 

ICA 
coefficients 

256 
80 
64 
48 
32 
16 

Recognition result pass/fail for 
specific classifier 

Hybrid 
Nearset 

Neighbour 
148/12 
147/13 
146/14 
145/15 
146/14 
145/15 

Hybrid 3-Nearest 
Neighbour 

146/14 
146/14 
147/13 
147/13 
148/12 
146/14 

Table 5.4 The results of non-rotated object recognition by hybrid classifiers and for eliminated x and y 
feature components 

All results obtained in this section demonstrate that addressed methods of signal 

pre-processing and feature extraction are very promising in solving pattern recognition 

problems. One has to observe that the significant strength of the local ICA encoding 

technique is a relatively small number of non-zero elements in the feature representation 

of each pattern. When the number of non-zero components in the feature matrix is 

significantly reduced, the classification performance remains practically intact. This fact 

leads to the conclusion that each input is properly encoded by only the few most 

significant ICA coefficients in the resulting sparse representation - feature matrix itself is 

actually sparse. Effectiveness of the proposed feature encoding algorithm is additionally 

demonstrated in Appendix B by quantitatively describing how sparse resulting codes 

really are. The overall signal pre-processing before ICA encoding is achieved by a 

combined deployment of category-specific, pre-learned whitening filters as well as the 

adaptive recurrent neural network. Such data processing is effective only in cases when 

the system knows a priori what category of signal can be expected as the input from the 

environment at particular time instance so that proper pre-whitening filter is deployed. 

Rotation variations did not present any major challenge to the model, but it is noted that 
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these are obtained artificially by assuming the correct center of the log-polar transform 

for each object of interest. Scaling variations in the input pattern were not simulated 

since they represent analogous shifts via different axis to those of rotations once the 

signal is mapped to log-polar space. 
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CHAPTER VI 

CONCLUSION AND DIRECTIONS 

Biologically inspired signal processing techniques and their practical utilization 

have for a long time been a very exciting and attractive branch of scientific research. 

This dissertation addressed the problem of efficient utilization of recurrent linear 

networks with inhibitory/excitatory connectivity in the context of log-polar coordinate 

mapping for signal processing and pattern recognition purposes. Both recurrent neural 

connectivity and the complex-log transform are viewed as strongly biologically inspired 

signal processing operations. It is argued that the natural way of using the neural 

recurrent model as a supplement to the non-uniform log-polar image transformation is 

uniform processing of information in the post-warped, or cortical domain. Such 

information processing as seen from the input (non-warped) domain correlates to 

spatially non-uniform operations and is similar to actions observed in the early stages of 

the HVS. The resulting receptive fields in the case of lateral inhibition at the output are 

space-variant and of center-surround type. One of the very important results 

demonstrated is the characterization of the response of the spatially uniform 

inhibitory/excitatory neural models based on the synaptic connectivity of the network. 

The network filter response can be obtained through implementation of a Taylor series 

expansion providing the generating function of the connectivity matrix is bounded by the 

unity. Also, it was shown that if the neural connectivity function is expandable in a 

Fourier series in polar angle, the network filter response becomes steerable. This is a 
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very intriguing result since steerability is often associated with biologically inspired 

filters like "derivative of Gaussian" family of functions. Theoretical results revealed in 

Chapter III of this dissertation pertaining to the network steerability as well as the 

characterization of the network response based on the bounds of the connectivity matrix 

generating function can effectively be used to compute the true response of the large 

neural models where matrix inversion has to be avoided. Another powerful feature of 

networks with lateral inhibition/excitation lies in their capability to decorrelate and 

whiten the input data. This process is extremely important for the statistically based 

signal processing technique of ICA. It was shown that recurrent networks with 

symmetric TBT connectivity matrix (with symmetric Toeplitz blocks) can be used to 

develop compact pre-whitening filters with small memory requirements. These filters are 

learned for specific category of signal input and can significantly improve the 

performance of whitening algorithms based on adaptive networks with recurrent 

connectivity. Finally, their usage for localized ICA based image/signal encoding in a 

log-polar environment produced extremely desired feature of sparse code at the output. 

Such sparse codes when combined with a specific selection of interesting regions in the 

cortical domain for feature encoding produced very promising pattern recognition results. 

The learning of the pre-whitening filter as described in this dissertation utilizes 

computations based on direct matrix inversion. Even with today's computational 

platforms this operation becomes undesirable and it is necessary to find a less 

computationally demanding method for filter response calculations. This in turn directs 

one to investigate the possibilities of using an adaptation of the network connectivity 

matrix which would observe and incorporate results from Chapter III while learning the 
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pre-whitening filter. It is shown that this filter response can be computed without 

implementing matrix inversion. 

It can be noticed that pre-whitening filters were developed, for a specific category 

of input images. It is also evident that there is no strict criterion that each image must 

satisfy in order to be classified as belonging to one of these categories. One of the 

interesting areas for future work that would provide a more distinct answer to the 

question of which pre-whitening filter to deploy at a particular time would be related to 

identifying the minimum or optimal set of characteristics of the input image/data that 

would classify that input into the proper signal category. One possible solution would 

most likely investigate characteristics of the input data covariance matrix. If the input 

data has predominant features emphasized along one or few directions, the usage of 

steerable filters (or recurrent steerable networks) can elegantly reveal additional 

information and provide an additional data set which may better characterize the input 

signal category (steerable filters would have one type of response to predominantly 

horizontal texture and completely different response to texture of predominantly different 

orientation). 

To prove out some of the hypotheses presented in this dissertation a few 

(essentially all distance based) pattern recognition engines were used when validating the 

feature encoding model based on data pre-whitening and the local ICA transform. It is 

very likely that more robust techniques can be identified and deployed within the given 

framework. One obvious approach would be the deployment of neural pattern 

recognition models that are also biologically inspired. When searching for alternative, 

more efficient classifiers one has to take under consideration that although sparse the 
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current feature encoding model suffers from large dimensionality. The reduction of the 

feature vector/matrix has to be yet another focus of future efforts in order for presented 

information processing framework to be more practical. The existence of a highly sparse 

information code provides a very promising basis for future improvements of the 

presented feature extraction model. Finally, it is also highly desirable to assess the 

performance of the given model when deployed on more complex (and less restricted) 

pattern recognition problems. It is the author's hope that future work will help us to 

understand the complex processing that occurs in the most complex pattern recognition 

system known to man - man himself! 
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APPENDIX A 

ADDITIONAL RESULTS DESCRIBING DECORELATION AND 
PRE-WHITENING BY FILTERS BASED ON NETWORKS WITH 

RECURRENT CONNECTIVITY 

In this section additional experimental results revealing decorrelationg, as well as 

pre-whitening property of filters based on recurrent linear networks are provided. For 

non-adaptive network, the outcomes of processing the category 2 and category 3 images 

(image categories are defined in Chapter IV of this text) with filters identified by Model 

A and Model B as well as kernels based on Gaussian inhibitory coupling with and 

without the self-inhibition (kernel parameters are identical to those used in section 4.4) 

are given in Table A. 1 and Table A.2. 

Group 
Number 

(each group 
= 5 images) 

1 
2 
3 
4 

XIC*M 

1535.4207 
3164.8795 
3185.9071 
2872.5191 

T,\CydJ)\ 

Model A 

227.2067 
471.7852 
473.9958 
427.1749 

2XM 
Model B 

181.7874 
379.7187 
381.0495 
343.2601 

Gaussian 
without self-

inhibition 
668.3953 
1382.6587 
1391.9602 
1253.8520 

Gaussian 
with self-
inhibition 
461.7766 
953.6703 
959.9482 
865.2592 

Table A.l The results of decorrelation with filters based on non-adaptive uniform networks with lateral 
inhibition - images from category 2 used for processing 
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Group 
Number 

(each group 
= 5 images) 

1 
2 
3 
4 

11190.6946 
11311.0326 
12286.4649 
13129.3181 

2XM 
Model A 

1709.1329 
1713.9901 
1866.9821 
1988.2022 

Model B 

1401.3824 
1396.9882 
1525.0382 
1619.7666 

Z|Q(/,;)| 
Gaussian 

without self-
inhibition 
4973.1744 
5001.6464 
5442.4803 
5803.6619 

IlQ(U)| 
Gaussian 
with self-
inhibition 
3409.2754 
3433.9132 

37344.6612 
3983.5492 

Table A.2 The results of decorrelation with filters based on non-adaptive uniform networks with lateral 
inhibition - images from category 3 used for processing 

Coefficients representing the measure of decorrelation from Table A. 1 and Table A.2 are 

highly in agreement with results shown in Table 4.1. 

When performing data whitening while using category-specific pre-whitening 

filters learned according to algorithm addressed in Chapter IV, it is interesting to 

pre-process individual image data, i.e. when forming the data input to the network, 

randomly chosen patches from single image are acquired. The results shown in Figure 

A.l, Figure A.2 and Figure A.3 depict averaged algorithm performance over the set of 

multiple images from each of three categories. For each individual image 2000 

16x16 patches were randomly sampled. The total number of images processed was 24 

from category 2 and 15 from category 1 as well as from category 3. 
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Whitening for imges of nature 

- No pre-processing 
Uniform pre-whitening 
Complete whitening 
Uniform pre-whitening - Category 2 
Uniform pre-whitening - Category 3 

80 
Iteration number 

Figure A.l Averaged performance of learned pre-whitening filter when processing 15 individual images 
from Category 1 
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Whitening of images of Log-Polar warped objects 

- No pre-processing 
Uniform pre-whitening 
Complete whitening 

" Uniform pre-whitening - Category 1 
Uniform pre-whitening - Category 3 

80 
Iteration number 

160 

Figure A.2 Averaged performance of learned pre-whitening filter when processing 24 individual images 
from Category 2 
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Whitening for imges of horizontal texture 

- No pre-processing 
Uniform pre-whitening 
Complete whitening 
Uniform pre-whitening - Category 1 
Uniform pre-whitening - Category 2 

80 
Iteration number 

Figure A.3 Averaged performance of learned pre-whitening filter when processing 15 individual images 
from Category 3 
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APPENDIX B 

SPARSENESS OF THE ICA BASED FEATURE ENCODERS 

The image encoding process described in detail in Chapter V and depicted in 

Figure 5.2 yields highly sparse image code. Such code can be utilized for efficient 

information storage since it contains a very small number of non-zero coefficients. In 

order to demonstrate the effectiveness of deployed feature encoding techniques this 

section provides additional experimental evidence addressing the statistical properties of 

unprocessed and processed log-polar warped images of objects sitting on the dark 

background. In particular, 32 images were processed according to addressed feature 

encoding algorithm with the exception of locating pseudo-salient points in the image. 

Comparisons of the kurtosis of the resulting signal and the kurtosis of the signal prior to 

pre-whitening and ICA processing itself were made in order to estimate resulting code 

characteristics. One example of signal properties prior and post ICA feature encoding is 

given in Figure B.l. In this particular case the kurtosis of the original warped signal was 

2.67 while the post-processed signal had kurtosis of 21.19. The average difference 

between kurtosis value (reflecting the sparseness of the signal code) between post and 

pre-processed image based on the entire 32 image/data set was 26.06. This fact confirms 

that the proposed pre-whitening algorithm along with the full ICA feature encoding 

technique produces highly sparse image code. 
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Figure B.l Warped image (top); histogram approximations of the pre-processed signal (bottom left) and of 
the post-processed signal by ICA feature encoding (bottom right) 
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