Oceanic Transform Fault Seismicity Earthquakes of a Different Kind

Margaret S. Boettcher
University of New Hampshire, Durham, Margaret.Boettcher@unh.edu

Jeffrey McGuire
Woods Hole Oceanographic Inst.

Thomas Jordan
Earth Sciences, Department of Southern California

Follow this and additional works at: https://scholars.unh.edu/ccom
Part of the Oceanography and Atmospheric Sciences and Meteorology Commons

Recommended Citation
Boettcher, Margaret S.; McGuire, Jeffrey; and Jordan, Thomas, "Oceanic Transform Fault Seismicity Earthquakes of a Different Kind" (2009). International Workshop on Statistical Seismology. 503.
https://scholars.unh.edu/ccom/503
Oceanic Transform Fault Seismicity Earthquakes of a Different Kind
Oceanic Transform Fault Seismicity - Earthquakes of a Different Kind...

Higher Predictability

Short-term, Long-term, and with respect to tectonic parameters

Margaret Boettcher, University of New Hampshire

Collaborators
Jeff McGuire, Woods Hole Oceanographic Institution
Tom Jordan, University of Southern California

April 15, 2009
6th International Workshop on Statistical Seismology, Lake Tahoe, CA
Scaling between **Tectonic and Seismic Parameters**

Boettcher and Jordan, 2004, JGR

Tectonic Parameters (L, V, & A_T)

65 Ridge Transform Faults

L ≥ 75 km (totaling≈16,000 km)

![Tectonic Parameters Diagram]

Seismic Parameters (M_C, ΣM, N₀, & β)

ISC Catalog 1964-1999

Global CMT 1976-2001

\[
N(M) = N_0 \left(\frac{M_0}{M} \right)^3 \exp \left(\frac{M_0 - M}{M_C} \right)
\]

(Kagan and Jackson, 2002, GJI)

\[
ΣM = μAD
\]
Are oceanic transform faults fully coupled?

No, on average, only ~15% of slip is accommodated seismically.

Effective Area of Seismic Slip

\[\Sigma M = \mu AD \]

\[\Sigma M/t = \mu A_E(D/t) \]

\[A_E = \Sigma M/(t\mu V) \]
Scaling between Tectonic and Seismic Parameters
Boettcher and Jordan, 2004, JGR

Will the largest event \((M_C)\) rupture the total fault area?

No… and furthermore \(A_C\) scales as \(A_T^{1/2}\)

\[
A_C = M_C / \mu D_C
\]
Scaling between Tectonic and Seismic Parameters

Global CMT Data from 65 faults 2000-2005
Scaling between Tectonic and Seismic Parameters

Global CMT Data from 65 faults 2000-2005

Computed magnitude-frequency curves are calculated assuming tapered Gutenberg-Richter distribution, L’s & V’s

Observed Scaling Relations

15% Coupling

M_C scales as fault area to the 1/2 power
Short Term Earthquake Predictability
McGuire, Boettcher, and Jordan, 2005, Nature

9 Mw ≥ 5.5, Mar. 1996 - Nov. 2001

Discovery Quebrada
Gofar
Simple prediction algorithm -
Mw ≥ 5.5 are preceded by a foreshock within 1 hour and 15 km
Simple algorithms can achieve large (500-1000) probability gains over random!

Probability of alerts, P(F)

Failure to predict probability, 1-P(F|M)
Seismic Cycles and Earthquake Predictability
McGuire, 2008, BSSA

Molchan error diagram for r=15 km:

- Alarms following every hydroacoustically detected event
- ETAS Simulation
- Random guessing
- 99% Confidence bound for random guessing
Using our Scaling Relations M_C for East Pacific Rise faults we expect

<table>
<thead>
<tr>
<th>L (km)</th>
<th>V (cm/yr)</th>
<th>M_C</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>14</td>
<td>6.0-6.2</td>
</tr>
<tr>
<td>70</td>
<td>14</td>
<td>5.8-6.0</td>
</tr>
</tbody>
</table>

Average slip in $M_W \approx 6.0$ is approximately 50-100 cm

Short Seismic Cycles, 5-10 years
Seismic Cycles and Long-Term Predictability
McGuire, 2008, BSSA

- $M_W \geq 5.5$
- $4.5 \leq M_W \leq 5.5$
- Hydroacoustic detection
McGuire’s 2008 Quebrada-Discovery-Gofar OBS Experiment
McGuire’s 2008 Quebrada-Discovery-Gofar OBS Experiment

September 18, 2008, $M_W \geq 5.5$ Gofar Earthquake

- $M_W \geq 5.5$
- $4.5 \leq M_W \leq 5.5$
- Hydroacoustic detection
High rate of foreshocks for about one week before the M6.

We will be able to locate ~5000 foreshocks in the last week before the rupture and use this spatial information to evaluate the presence or absence of aseismic fault slip.
Very smooth rupture to the east, probably at a velocity approaching the S-wave speed. => low fracture energy

A finite-fault model will give us information about the friction law and the spatial relationship between the foreshocks and mainshock slip.