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ABSTRACT 

EXPERIMENTAL EVOLUTION OF VIBRIO FISCHERI TO SQUID SYMBIOSIS 

By 

Lauren Perry 

University of New Hampshire September, 2009 

Background: Co-evolution of Vibrio fischeri strains with Euprymna scolopes has 
led to isolates that are superior squid colonists [1, 2]. To better understand how V. fischeri 
adapts to symbiosis with squid we serially transferred a planktonic Hawaiian isolate, 
H905 [3], and the natural E. scolopes symbiont, ESI 14, in squid. We characterized 
derived isolates for colonization ability as well as other phenotypic traits that have been 
implicated as being important to symbiosis. 

Results: We hypothesized that as a result of adaptation to symbiosis H905 would 
become more phenotypically similar to ESI 14. We see this trend in luminescence and 
siderophore production of derived isolates; however, biofilm production and motility 
became more different from the natural squid symbiont. 

Conclusions: These findings may indicate that H905 utilizes different 
mechanisms of colonization than symbiotic isolates, or it could also be the result of 
differential regulation of phenotypes between H905 and ESI 14 under squid vs. in-vitro 
conditions. 

vii 



CHAPTER I 

INTRODUCTION 
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Symbiosis and Co-Evolution 

Nearly all groups of eukaryotic organisms depend on deeply involved 

partnerships with various bacterial species for success in their environment. Humans, 

cows, amoebae, ants, and squid [4-8] are just a few of the many organisms that rely on 

their microbial symbionts to assist them in carrying out normal life functions. Often, the 

basis for association is the bacterial partner, or symbiont, supplying its host with nutrients 

or protection that the host cannot itself produce. 

The nature of host-symbiont relationships varies greatly, but one element is 

common throughout, microbial symbionts must be able to bypass natural host defenses. 

Although symbiotic bacteria pose no threat to a host, there are ample pathogenic species 

that could cause great harm. To survive, hosts develop ways of blocking invaders, and as 

a result, commensal bacteria can be blocked as well. Commensal bacteria must develop 

ways of bypassing host defenses despite having many characteristics in common with 

pathogenic species the host is defending against. Exactly how symbiotic bacteria are able 

to regularly colonize hosts, while their pathogenic relatives are not is poorly understood. 

The process of overcoming these defenses can lead to symbionts that are highly 

specialized at colonizing particular organisms. 

In response to invasion by pathogenic bacteria, hosts survive by evolving new 

methods of blocking bacteria. This process of co-evolution between host and pathogen 

has a great impact on commensal bacteria because commensals must be able to overcome 

new host defenses in addition to the old ones. The co-evolution between host and 

symbiont can also lead to co-speciation as host groups separate from one another, 

effectively separating populations of their symbiotic bacteria. This creates species of 
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hosts that are related to one another by phylogenies similar to those of their commensal 

bacteria [9]. 

Squid- Vibrio Symbiosis 

Vibrio fischeri, the bacterial symbiont oiEuprymna scolopes, provides its host 

with camouflage through luminescence. When colonizing a specialized squid "light 

organ," light produced by V. fischeri illuminates the ventral surface of the squid making it 

indistinguishable from moonlight to nocturnal predators lurking along the sea floor [7]. 

This camouflage via counterillumination allows the squid to seek their prey at night 

without becoming prey themselves. 

Beyond nighttime camouflage, the relationship between E. scolopes and V. 

fischeri is an integral part of the squid's life, and they carry out a daily cycle of V. fischeri 

propagation [7]. At dawn, the squid vent 95-99% of the bacterial contents of their 

specialized light organs, reserving the rest as a starting culture for the next night. E. 

scolopes grows this culture by providing it with by nutrients and oxygen. With this care, 

the population becomes dense enough by dusk that quorum-sensing dependent 

luminescence is activated. The light organ glows throughout the night, protecting the 

squid. Shortly after dawn, the cycle begins again with a venting event and subsequent re-

growth of the bacterial culture [7]. By venting large numbers of V. fischeri daily, E. 

scolopes maintains a population of symbiosis-capable V. fischeri on the reefs they inhabit 

which is 24-30 times greater than populations of V. fischeri in similar locations not 

inhabited by the squid [10]. These high concentrations of V. fischeri are now available 

for the offspring of E. scolopes. Immediately after hatching, immature squid begin 

sorting through the seawater for their own bacterial symbionts [7]. 
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In order for V. fischeri to colonize E. scolopes, there are many barriers the 

bacterium must overcome. These barriers are the squid's natural defenses against 

potentially harmful bacteria. Once squid a hatches, it begins pumping seawater through 

its mantle and past a pair of specialized appendages located directly above the openings 

to the light organ. When the squid detects bacterial cells in this water, it begins secreting 

mucous on these appendages and around the pores that open to the light organ. Once in 

the mucus, V. fischeri must be able to aggregate and directionally move toward the pore 

openings. This requires both motility to swim through the mucous, and the ability to 

chemotax directly to the pores. Inside the pores are ducts lined with cilia that create a 

current to push bacteria out of the ducts and back into the mucous. If V. fischeri cells are 

able to overcome these physical barriers, they enter the ducts which contain both 

oxidative species and macrophages. V. fischeri that are able to overcome these challenges 

are then able to gain entry into the light organ where there is selection for specific 

characteristics in growth, nutrient utilization, and most importantly, light production [7]. 

While all wild-type V. fischeri are able to colonize E. scolopes, some isolates are 

more competitive than others. Isolates of V. fischeri obtained from light organs of wild 

E. scolopes are the best colonizers and out-compete all other wild-type strains[l]. 

Among environmental strains, ones that are more closely related to the natural symbiont 

out-compete those that are more distantly related [1]. Similarly, isolates of V. fischeri 

obtained from the light organs of closely related squid species to E. scolopes are more 

competitive than V. fischeri isolated from more distantly related squid species [2]. 
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Experimental Evolution 

The process of evolution has been studied under laboratory conditions since the 

late 19th century. At that time, William Dallinger evolved unicellular organisms by 

gradually increasing the temperature in an incubator over time. In doing so, Dallinger 

evolved organisms that grew optimally at temperatures more than 80°F higher than their 

original maximum level of tolerance. In experimental evolution, defined laboratory 

conditions are used to show the process by which organisms evolve and adapt through 

natural selection. With their short generation time, and ease of propagating and 

preserving lineages, bacteria are ideal candidate organisms for performing experimental 

evolution. The patterns of adaptation discovered in bacteria can be used to explain and 

predict the evolutionary past, present, and future of a variety of organisms. 

One notable experiment continuing today is the Lenski long-term experiment 

which began in 1988. The Lenski E. coli lines have been propagated by serial transfer, 

which involves growing a culture overnight, and transferring a percentage of that culture 

into fresh media the following day [11]. During growth, random mutations occur within 

the population. Through both natural selection by the environment, and random chance 

of transfer, these mutations lead to lines that are drastically different from their 

ancestors[12]. 

Much like Lenski began with isolates not specialized to glucose minimal media, 

our study began with isolates of V. fischeri that are not specialized to symbiosis with E. 

scolopes, and will use a serial transfer style experiment to evolve them in the squid 

environment. While it is clear that symbiotic isolates of V. fischeri are well adapted to 

the squid environment, it is not clear exactly what traits make them better suited than 
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free-living environmental isolates of V. flscheri, or the evolutionary history that has 

brought them to this point. Using non-symbiotic isolates and tracing how they evolve to 

accommodate the squid environment, we can identify traits that are of key importance to 

initiation and maintenance of the symbiosis. 

Previous research has suggested that the current symbiotic strains of V. fischeri 

have evolved over time with E. scolopes [9]. During this time, as E. scolopes' host 

defenses changed, they selected for only the V. fischeri that were capable of overcoming 

them; this changed symbiotic V. fischeri from their free-living counterparts. A previously 

characterized visibly luminous environmental isolate, H905, has shown the ability to 

establish the symbiosis with E. scolopes. When colonizing E. scolopes, H905 is a poor 

colonist, and not competitive against strains that are phenotypically similar to the natural 

symbiont [1]. Due to the phenotypic differences between H905 and ESI 14, we believe 

that by passaging H905 through a series of juvenile E. scolopes, H905 will adapt to 

become a better symbiont causing changes in phenotypes known to be associated with 

symbiosis. Additionally, we hope to identify some of these colonization traits by 

comparing derived H905 to its ancestor. 
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Specific Aims 
1. Characterize ancestral H905 and ES114 
2. Determine evolutionary capacity of H905 

3. Evolve H905 and determine the effects of passage 

Specific Aim 1: Characterize ancestral H905 and ESI 14 

Characterizing H905 and ESI 14 

We characterized H905 in phenotypes that are known to be associated with 

colonization of Euprymna scolopes including growth, luminescence, siderophore 

production, motility, and biofilm production. The same traits were measured for ESI 14 

as described in "Methods." 

Specific Aim 2: Determine evolutionary capacity of H905 

Colonization Characteristics 

We determined how many colony forming units per ml (CFU/ml) are needed in 

an inoculum to colonize 100% of inoculated squid, as well as what inoculum would be 

sub-optimal, such that we could potentially see improvement as a result of transfer. We 

also determined how many H905 cells are present in the light organ and how much light 

each cell produces during an established infection. 

Specific Aim 3: Evolve H905 and ESI 14 and determine the effects of passage 

Squid Serial Transfer 

To begin the transfer process, squid were colonized by the same 100 ml culture of 

either H905 or ESI 14. From that point on, six separate populations of both H905 and 

ESI 14 were established and passaged through a series of 15 juvenile E. scolopes. The 

transfer process utilized the natural venting cycle of the squid in order to recover bacteria 

for infection of the next animal. Samples of vented bacteria, as well as the colonized 

animals themselves were frozen at -80°C (See figure 1 for transfer diagram). 
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Data Interpretation/Recovery 

Frozen ventate was streaked onto rich media, and isolates with Vibrio fischeri 

characteristics picked for characterization. Recovered isolates were characterized for 

ability to colonize, as well as growth, luminescence, motility, siderophore production, 

and biofilm production. 

Conclusions/ Predicted Outcomes 

The squid host presents many obstacles to bacteria that attempt to colonize its 

light organ. Establishing the symbiosis means bypassing a gauntlet of stresses that 

require specific traits to overcome[7]. Even once colonization is established, there are 

still selective forces at work[13]. The nature of the squid's venting cycle itself may even 

cause changes to occur in the experimental strain. The growth-venting cycle of E. 

scolopes' colonized population of V. fischeri introduces daily bottlenecks in the bacterial 

populations. If there is selection for determining which colonizers remain in the light 

organ after venting to start the new population, then the post-venting population may 

have different traits than the pre-venting population. If there is no selection, and venting 

happens to a random 95-99% of the population, it is possible that any mutation regardless 

of whether it is neutral, beneficial, or deleterious, may become a significant portion of the 

new post-venting population. After being passaged through a series of squid, derived 

populations were assessed in their ability to colonize squid, and compete against 

ancestors and the natural symbiont. Through serial passage, we expected to see derived 

populations of H905 more closely resemble ancestral ESI 14. The most important effect 

is increased fitness in the squid environment determined by colonization experiments. 
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Additionally, because ESI 14 is so well adapted to squid symbiosis, we do not anticipate 

significant overall changes in derived ESI 14 phenotypes. 

The process of experimental evolution will give us insight into the relationship 

between E. scolopes and V. fischeri. We hope to use this experiment to allow the natural 

selective process of E. scolopes colonization to show what traits are of key importance to 

establishment and maintenance of the symbiosis. Because many of the defenses used by 

E. scolopes are part of innate immunity in other animals (oxidative stress, macrophages, 

etc.), these experiments may also show us what traits allow both pathogens and 

symbionts to bypass host defenses and establish populations in a variety of animals. 
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CHAPTER II 

EXPERIMENTAL EVOLUTION OF VIBRIO FISCHER! TO SQUID 
SYMBIOSIS 
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INTRODUCTION 

The success of eukaryotic organisms in their niches is dependent upon intimate 

relationships they share with microbial partners [14, 15]. They rely on their commensal 

and mutualistic symbionts to assist them in normal life functions ranging from digestion 

to protection. While the nature of these relationships, and the organisms involved, vary 

greatly, one commonality is that all microbial symbionts must be able to regularly bypass 

their host's natural defenses in order to maintain the relationship. Although symbiotic 

bacteria pose no threat to a host under normal circumstances, there are ample pathogenic 

species, often closely related to mutualistic ones that could potentially cause great harm 

to the host [16]. To survive, hosts must block or kill invading bacteria. As a result, 

beneficial bacteria may also be inhibited. In order to survive, successful symbionts, just 

like successful pathogens, must develop ways of bypassing established and evolving host 

defenses [16]. Exactly how symbiotic bacteria are able to regularly colonize hosts, while 

their pathogenic relatives are not is a poorly understood phenomenon [13]. Additionally, 

the process of overcoming these defenses as they change over time can lead to symbionts 

that are highly specialized at colonizing particular host organisms [2]. Understanding this 

process could give insight into how pathogens and symbionts associate with their hosts 

and what factors are important in association with and bypass of animal immune 

defenses. 

The ancient association between E. scolopes and V. fischeri has shaped the 

evolution of symbiotic Vibrio strains. In exchange for a protected, nutrient rich growing 

environment, V. fischeri provides E. scolopes with bioluminescence [7]. The squid 

utilizes this luminescence for counterillumination camouflage to protect itself from 
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predators when it emerges from hiding in the sand to hunt in the water column [7]. Over 

time, the co-evolution of V. fischeri strains with host E. scolopes squid has resulted in 

isolates of V. fischeri that are squid specialists [2]. These specialist strains are adept at 

colonizing E. scolopes, and out-compete other closely related isolates that are not squid-

specialists [1]. Although phenotypic differences can be identified between isolates, it is 

difficult to link an in-vitro phenotype with the increased affinity for squid colonization 

due to the natural diversity of phenotypes even among squid-specialists [17]. 

The two strains used in this study, ESI 14 [17] and H905 [3] were isolated from 

geographically similar locations, but lead very different lifestyles [1,17]. ESI 14 was 

isolated from the light organ of a wild-caught adult E. scolopes squid[17]. In previous 

studies it has been shown to be a superior squid colonist, and alterations of its phenotypes 

that are thought to be associated with symbiosis result in attenuated colonization ability. 

H905 was isolated from Hawaiian seawater, and is a poor colonist both alone (this study), 

and in competition with other strains [1]. Ancestral ESI 14 and H905 differ in a number 

of phenotypes that have been shown, or are suspected to be, important to the symbiosis, 

including biofilm formation, motility, luminescence, siderophore, and growth [18-22]. 

In this study, we used the experimental evolution of a non-symbiotic isolate of the 

luminous marine bacterium, Vibrio fischeri, to the sepioloid squid host, Euprymna 

scolopes, in order to glean insight into what bacterial traits are of key importance to 

establishing and maintaining squid symbiosis. In addition to the non-symbiotic H905, the 

natural symbiont of E. scolopes, ESI 14 [17], was also passaged to examine the impacts 

of juvenile squid adaptation without external environmental factors that the natural 

symbiont may experience in nature. Previously, experimental evolution studies have 
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been widely used to investigate a range of biological questions [23]. Within the field of 

host-microbe interactions it has been used to better understand the underlying 

mechanisms of host-microbe associations and their impact on organisms' evolutionary 

history [15, 24]. Experimental evolution generally consists of exposing an organism to a 

given environment over a series of generations in order to determine how the 

characteristics of the experimental organism are changed as a result of adaptation to the 

specific pressures of the given conditions. Often this is performed using a serial transfer 

technique in which batches of the organism (in this case, V. flscheri) are grown, and a 

small portion of that larger culture is passaged to a new cycle (fresh media, etc.). 

Conveniently, the natural cycle of the squid-Vibrio symbiosis consists of a daily culturing 

and venting cycle within the squid's light organ; making it an example of natural example 

of serial transfer and ideal for an experimental evolution study. 

Characterization of derived ESI 14 and H905 gives us new insight into both the 

squid- Vibrio symbiosis and our model system. Symbiosis associated traits (growth, 

motility, siderophore, biofilm, luminescence) were all quantified before and after squid 

adaptation for both isolates so we could determine what changes had occurred as a result 

of squid transfer. Based on the assumption that ESI 14's superior colonization abilities 

are linked with its in-vitro phenotypes, we had expected evolved H905 isolates to more 

closely resemble ancestral ES114 phenotypically as a result of transfer. In the end, we 

saw alterations in the phenotypes of all H905 populations after passage through squid. 

Some phenotypes such as luminescence and siderophore production were altered to more 

closely resemble the natural squid symbiont, ESI 14. This was an expected result. 

Others, such as biofilm production and motility, changed so that the squid-passaged H905 
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was even more different than ESI 14 than ancestral H905. ESI 14 populations passaged 

through our study, however, remained mostly the same as ancestral ESI 14. These 

alterations, both expected and unexpected will be studied more closely in the future to 

help understand the characteristics of the intimate relationship between E. scolopes and 

V. fischeri. 
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METHODS 

Bacterial strains and culture conditions: Two strains of Vibrio fischeri, both isolated 

from the same Hawaiian habitat were used including an Euprymna scolopes light organ 

isolate ESI 14 [17] and a planktonic isolate H905 [3]. Unless otherwise noted, individual 

colonies of V. fischeri were cultured at 28° C in SWT broth [10] containing 70% natural 

seawater, and lOg/L Bacto-tryptone® (Difco, USA) at 200 RPM or SWT agar plates 

containing 15% Bacto agar. For storage, strains were grown in LBS liquid medium [25] 

and frozen at -80°C with 20% glycerol. Artificial sea-water based iron-limited medium 

supplemented with both 0.3% case amino acids and 0.2% glucose, and buffered with Tris 

pH (6.8) instead of HEPES [26] 

Squid maintenance and serial transfer: 

Animal housing conditions: 

Adult squid were housed in 40L tanks in a Marine Biotech XR4 Aquaria Rack 

system maintained at temperatures of 23-26°C. Female squid were housed individually, 

and male squid were housed either individually or in groups of 2-3. Water used to 

maintain the system was a combination of Instant Ocean® (Spectrum Brands), and 

natural seawater obtained from the gulf of Maine (Sachs Aquaculture, St. Augustine FL). 

All squid were housed in a room with a 12 hour alternating day/night cycle. Egg clutches 

laid by females were transferred to individual glass bowls and maintained in artificial sea 

water (Instant Ocean®), rinsed every 48 hours and incubated at room temperature with an 

air stone for oxygenation until hatching. At hatching, juveniles were promptly removed 

from the bowl containing the remaining clutch and rinsed in filter sterilized Instant 
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Ocean® before use. Prior to each colonization experiment, juveniles were held overnight 

in individual scintillation vials with 4 ml filter sterilized Instant Ocean® and absence of 

any contaminating V.fischeri was confirmed by lack of bioluminescence. 

Squid colonization: 

All squid colonizations and experimental transfers were performed with juvenile 

squid in filter sterilized Instant Ocean® and maintained in either 20ml scintillation vials, 

glass custard dishes, or 24-well microtiter plates which were well rinsed and allowed to 

dry completely if re-used. Aside from the initial colonization event, all squid were 

housed separately when exposed to a colonizing inoculum. Colonization experiments 

were all performed at room temperature with a 12 hour daily light cycle. 

Serial transfer protocol: 

Wild-type (Ancestor) ESI 14 and H905 were streaked for isolation on SWT agar 

plates and grown at 28°C overnight. Single colonies of each were used to inoculate 2ml 

of SWT broth, and grown at 28°C with shaking until they reached an OD of 0.4-0.6. The 

bacteria were diluted to 5,000cfu/ml in 50ml filter sterilized Instant Ocean® and 

concentration of bacteria confirmed by plating on LBS agar. 10-12 juvenile E. scolopes 

were placed collectively into the inoculum or into uninoculated Instant Ocean® as 

controls for contamination for 16 hours, and then transferred to scintillation vials 

containing 3 ml filter sterilized Instant Ocean®. Luminescence was measured to confirm 

colonization by inoculum, and lack of contamination in no-inoculum control. Animals 

were then separated into 2ml filter sterilized Instant Ocean® in individual wells of a 24-
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well microtiter plate. 

In each 24-well plate, four animals were housed including two experimental 

animals in alternating rows with two un-colonized control animals (See Figure 1) to 

allow identification of cross-contamination. For two additional days following initial 

placement in the 24 well plates, individual squid were rinsed and then moved to new 

wells containing 2 ml sterile Instant Ocean® each morning following venting. After 

venting on the fourth day, squid were removed and frozen in a 1.7ml microcentrifuge 

tube at -80°C. Half of the ventate from each individual animal was added to 1.5ml filter 

sterilized Instant Ocean® in a 20ml scintillation vial and a newly hatched and 

uncolonized animal was placed in inoculum. The transfer cycle was repeated 15 times 

with each treatment and included uncolonized controls for every passage. Of the original 

10 parallel lines for each strain, a minimum of 6 for each strain were maintained through 

all sets of 15 transfers. 

To control for contamination between lines, uncolonized animals were passaged 

in rows separating squid containing experimentally evolving bacteria. These animals 

were checked for luminescence daily. During the course of the experiments no 

uninoculated control animals became colonized, indicating that the transfers were free of 

cross contamination. When newly hatched squid were not available on the fourth passage 

day, the ventate bacteria were frozen to allow restarting at a later date. Specifically, 1ml 

of ventate from a colonized squid was frozen at -80°C in 15% glycerol. When squid 

became available, the frozen ventate was thawed at room temperature, the cells pelleted 

by centrifugation for 2 minutes at maximum speed, the pellet rinsed briefly with 1 ml 

Instant Ocean® to remove residual glycerol, and the cells were pelleted again. Finally, 
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the cells were suspended into 1ml filter sterilized Instant Ocean®, and a newly hatched, 

uncolonized animal was placed in this mixture per normal transfer protocol. 

Figure I: Serial squid transfer: on the first day of each cycle, a single squid is colonized 
using the bacteria vented on the final day of the previous animal's transfer. In addition, 
each squid is frozen along with a sample of its ventate at the end of its last transfer cycle. 
During the 4 days a squid is used for transfer, it is rinsed and transferred to sterile 
Instant Ocean® daily. 

Recovery of evolved isolates: 

To recover light-organ evolved strains for characterization, a portion of the frozen 

ventate was plated and then individual colonies that were morphologically characteristic 

of Vibrio fischeri were streaked for isolation onto SWT agar, grown in LBS liquid media 

over-night and then frozen. Strains were stored in a rack containing 96-1.5ml tubes, and 

pin-replicated from these freezer stocks for experiments. See figure 2 for isolation and 

labeling scheme. 

18 



Figure 2: Chart illustrating how strains used in characterization studies were generated. 
For each strain (H905 and ESI 14) six (6) populations were passaged serially through 
squid. From each of those six populations, Jive isolates were recovered by plating and 
isolation streaking. 
In-squid phenotype characterization: 

After hatching, juvenile E. scolopes were maintained overnight in 4 ml of filter 

sterilized Instant Ocean® in 20ml scintillation vials, and lack of contamination confirmed 

by an absence of luminescence. Only if entire clutch was confirmed free of 

contamination were individual squid placed in 4ml of Instant Ocean® containing 

1,000cfu/ml of either ancestor or evolved V. flscheri. In colonization experiments, 

individual isolates from within evolved populations were pooled in a single inoculum. 

For each experiment, animal luminescence was measured at 24 and 48 hours. The 

colonization of light organs was quantified in a standard protocol which substantially 

reduces the number of living bacteria residing outside the light organ, but does not 

significantly reduce the population of V. fischeri within the light organ due to the 

osmoprotective light organ matrix [27]. CFU/light organ were determined from 

previously frozen light organs that were subsequently homogenized and dilution plated 

onto LBS agar. 
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In-vitro phenotype characterization 

Growth 

Evolved isolate strains were inoculated into a 96 well microtiter plate containing 

150ul LBS and grown at 28°C overnight without shaking. Overnight cultures were pin 

replicated into sterile 96 well plates containing 150ul LBS and placed in Tecan 

Infinite®200 plate reader for 20 hours at room temperature. Optical density (595 nm) of 

each well was measured every 15 minutes with a 5 second shaking step between each 

measurement. Each growth experiment contained triplicates of each isolate, and data was 

presented as the average of three of those experiments. 

Motility 

Motility was assessed using a modification of a previously described motility 

assay [28]. Isolates were pin replicates into 150ul SWT and grown overnight at 28° 

without shaking, then spotted (3ul spots, in triplicate for each isolate, onto the surface of 

a plate containing 70% Natural seawater, 1% Tryptone, and 0.3% agar. Migration 

distance (circle diameter) was measured every 2-4 hours. 

Siderophore 

Siderophore production was measured using a modified CAS liquid assay 

protocol [29]. Briefly, V. fischeri ancestral and evolved isolates were grown overnight in 

a 96 well microtiter plate containing 150(xl iron limited artificial seawater-based liquid 

media, and OD595 was measured. Cells were pelleted at 13,000*g and two 50ul aliquots 

of supernatant were removed, combined with 50ul CAS assay solution, incubated for 15 
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minutes at room temperature, then the absorbance was measured at an OD630 (S). As a 

reference for no siderophore activity, measurements were also taken for a media blank 

sample (R). Siderophore activity was calculated as described [29]; and normalized to 

OD595. Briefly: {[(OD630R-OD630 S)/OD630R]* 100}/OD595 s = % Siderophore units per OD595 

Biofilm 

Biofilm assay was conducted as previously described (O'Toole) with some 

modifications. Briefly; individual isolates were grown for 24 hours in 150(0.1 of 0.3% 

CAA, 0.2% glucose minimal media in 96-well microtiter plate. Absorbance was 

measured at OD595 and plates were inverted to remove unbound cells and media. Wells 

were then rinsed by gently adding 150ul of sterile water to remove unbound cells. To 

emptied wells, 200(xl 0.5% crystal violet was added and incubated for 30 min at room 

temperature. Plates were then inverted to remove stain, gently rinsed with Instant 

Ocean® 4 times, and allowed to dry, inverted, for 15 minutes at 28°C. After drying, 

wells were de-stained with 200 ul 95% ethanol for 15 minutes at room temperature, and 

absorbance at OD595 was measured after 10 seconds of shaking. 

Luminescence 

Isolates were grown overnight in LBS broth were replicated into 150ul SWT and 

grown until they reached an OD of 0.4-0.6. Absorbance at OD595 was measured, then, 

lOul aliquots were pipetted into lOOul Instant Ocean® in individual wells of a solid white 

96-well plate and emitted luminescence was measured for 1 second in a Tecan 

Infinite®200 plate reader (Switzerland). 
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Calculations: 

We estimated the number of generations during each squid transfer using 

published data on the dynamics of the squid transfer process[7]. Our calculations are as 

follows: 

Given: Starting inoculum = 20,000 cfu 

Founding population (F) = 10 cells 

Carrying capacity (K) light organ = 500,000 

Population post-venting (P) = 25,000 

Day 1 generations = log (K/F)/2 =15.6 

Day 2 and 3 generations = (log (P/F)/2)*2=8.6 

Total generations per squid = 24.2 

Approximate for 15 squid transfers = 364 

It should be noted that these calculations are complicated by conflicting data in 

regards to the number of cells that establish an infection, and an inability to directly count 

the number of cells that are withheld at the time of venting. Additionally, the nature of 

the relationship between H905 and E. scolopes has not been specifically calculated (all 

estimates are based on ESI 14 colonization.). The number of H905 cells involved in 

establishing and maintaining symbiosis with E. scolopes may also change as the 

populations adapt to squid symbiosis. 
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RESULTS 

Squid Colonization 

Ancestral ESI 14 is a more efficient squid colonist than ancestral H905. Although both 

visibly luminous (VL) and non-visibly luminous (NVL) V. fischeri naturally occur, squid 

light organs have limited diversity of predominantly NVL strains of V. fischeri [17] and 

enrich the relative proportion of NVL to VL bacteria in their immediate habitat through 

their daily culturing and venting [10]. Studies that directly compare VL and NVL 

planktonic isolates of V. fishceri from a squid habitat reveal that VL strains including 

H905 are poor colonists as evidenced by their comparatively delayed initiation of 

colonization, their total inability to colonize squid when in direct competition with NVL 

strains, and the ease at which they are displaced from light organs by NVL strains after 

establishing and initial population [1]. This data suggests that through squid selection, 

certain strains of V. fischeri have adaptively coevolved to become better symbionts. 

Because strain H905 has never been directly compared to a light organ isolate such as 

ESI 14, we first establish a baseline for its colonization abilities in our system. To do 

this, we exposed juvenile E. scolopes to a standard inoculum density (2000 CFU/ml) of 

either H905 or ESI 14, and determined the percent of squid that became colonized as 

assessed by luminescence emission during the three day period that followed exposure to 

V. fischeri. Colonization was confirmed and cell counts obtained from light organ 

homogenates at 72 hours. Not only was H905 delayed in initiation as previously shown 

[1], but also it was less efficient at colonization, and only colonized about half the 

animals (Figure 3). 
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Derived populations of H905 were improved in squid colonization. After the first 

three squid transfer cycles, squid became luminous within 24 hours of exposure to V. 

flscheri (data not shown). Once populations of H905 had been transferred through 15 

squid passages, we assessed their ability to establish squid colonization with sub-optimal 

number of cells. Changes in the ability to colonize at a low inoculum would indicate that 

derived populations had adapted to better establish symbiosis with the squid host. When 

exposed to 1000 CFU/ml of ancestral H905, 20% of squid were luminous at 24 hours 

whereas squid exposed to the same number of cells of derived (passage 15) H905, 100% 

of the animals became colonized at 24 hours (Table 1). Despite their clearly altered 

colonization abilities, derived H905 did not differ significantly from ancestral H905 in 

luminescence per animal; although luminescence per bacterial cell, and CFU/light organ 

was variable. For example, three out of six derived populations had a colonization level 

more similar to the ESI 14 level. Interestingly squid colonized by H905 had a greater 

number of cells per light organ, as well as more luminescence per bacterial cell (Table 1) 

as compared to those colonized by ESI 14. 

Due to the very low number of cells at which ancestral ESI 14 is able to fully 

colonize 100% of squid, we were not able to reliably quantify similar levels of increased 

colonization ability for derived ESI 14 populations. 

In-vitro Phenotypes 

Growth Characteristics 

Growth characteristics of derived ESI 14 and H905 in rich media are similar to ancestral 

growth. In order to investigate whether alterations in colonization were not a simple 
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factor of increased growth, we measured the growth rates of ancestral and derived 

isolates in rich media. All isolates of ESI 14 and H905 remained statistically the same in 

both their growth rate and their growth yield when compared to ancestor (Figure 4). For 

H905, there were two populations that showed qualitatively higher maximum growth 

rates than ancestor (Figure 4). Despite their qualitatively faster maximum growth rates, 

all isolates from both of these populations (3 and 6) end with the same growth yields as 

the ancestor after 24 hours (data not shown). 

Luminescence 

Luminescence decreased in derived H905 isolates, and increased in some derived ESI 14 

isolates. Although luminescence is essential to the squid-Vibrio symbiosis [30], isolates 

that naturally produce visible luminescence in culture are impaired in colonization [1]. 

Ancestral H905 produces significantly more luminescence in culture than ancestral 

ESI 14, so as a result of adaptation to symbiosis we anticipate a reduction in 

luminescence in derived H905 isolates. Not surprisingly, 26/30 of the H905 derived 

isolates were less luminous than their ancestor (Figure 5). The dimmed luminescence of 

these isolates is significantly brighter than ancestral ESI 14 (Figure 5). When 

luminescence was averaged across the population, five out of six H905 derived 

populations had significantly lower luminescence than their ancestor (Figure 5). 

Surprisingly, derived ESI 14 isolates also changed in luminescence, with four populations 

significantly increasing luminescence from the ancestral level (Figure 5). When ESI 14 

derived populations are compared on the same scale as H905's luminescence production 

derived ESI 14 luminescence production is an order of magnitude less than that of H905 
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(Figure 5). 

Motility 

Motility was altered in derived H905 isolates but was not in ESI 14 derived isolates. 

When colonizing E. scolopes, V. fischeri must swim through host mucus and colonize 

crypt spaces [7, 25, 31]. However, increased motility mutants of ESI 14 less effectively 

colonize squid [28]. It is not surprising that the squid colonist ESI 14 is more motile than 

ancestral H905 (Figure 6). What is surprising is that all derived isolates of H905 have 

significantly decreased motility when compared to ancestor (Figure 6). In addition to this 

quantitative shift in motility, derived isolates of H905 also show altered migration 

patterns in soft agar (Figure 7). During the first 18 hours after being spotted onto soft 

agar, ancestral H905 as well as both ancestral and derived ESI 14 spread from their origin 

making a diffuse circle in the agar (Figure 7). Derived H905 isolates, however, create a 

densely populated center and then slowly spread in the agar leaving apparent 

"microcolonies" instead of a diffuse ring, (Figure 7) similar to what has been observed 

with AinS quorum sensing mutants[25]. After 18 hours, the derived isolates of H905 will 

form a second ring outside of the area containing "microcolonies" where cells appear 

evenly distributed, much like the ancestor (data not shown). It should also be noted that 

ancestral H905 can sometimes form a less dramatic version of this phenotype, with 

apparent "microcolonies" forming towards the center of its diffuse ring of motility (data 

not shown). Derived isolates of ESI 14 have maintained ancestral-type motility (Figure 

7). 
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Siderophore Production 

Siderophore production by derived H905 and ESI 14 isolates is altered. Siderophores are 

iron sequestering molecules that have been shown to be important in other models of 

host-microbe interactions [32] as well as in the squid-Vibrio symbiosis [19]. Ancestral 

ESI 14 produces qualitatively more siderophore than ancestral H905 (Figure 8). As H905 

transitions from to a symbiotic lifestyle, we predicted it would shift towards increased 

siderophore production, similar to ESI 14. Derived isolates of both ESI 14 and H905 had 

altered siderophore production (Figure 8). At passage 15, all derived H905 populations 

had increased siderophore production, with four out of six showing quantitatively more 

siderophore production in all isolates. Populations of ESI 14 that had also been passaged 

through E. scolopes had variable siderophore production amongst populations and 

isolates (Figure 8). Despite the variability seen in derived ESI 14 isolates, none were 

significantly different in siderophore production compared to ancestral ESI 14. 

Biofilm Production 

Biofilm production increased in derived H905 isolates, but did not change in derived 

ESI 14 isolates. During colonization of E. scolopes, V. flscheri forms aggregates in the 

squid's mucous before migrating to the light organ [33]. Before squid passage, ancestral 

H905 produced significantly more biofilm than ESI 14 (Figure 9), although neither strain 

produced large amounts of biofilm in culture. All derived populations of H905 increased 

in biofilm production. Biofilm production by ancestral ESI 14 is very low, and derived 

isolates maintain biofilm production that is much lower than even ancestral H905 (Figure 

9). Derived ESI 14 biofilm production was highly variable, and as such it was difficult to 
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determine whether any patterns in biofilm alteration occurred as a result of transfer 

(Figure 9). 



FIGURES 
ANCESTRAL SQUID COLONIZATION 

Figure 3: Ability of ancestral ESI 14 and H905 to colonize juvenile E. scolopes at 
2200cfu/ml. Each squid cohort contained 9 animals that were communally exposed for 3 

hours to either ESI 14 or H906 and separated into individual vials containing FSW. 

29 



D
E

R
IV

E
D

 S
Q

U
ID

 C
O

L
O

N
IZ

A
T

IO
N

 

St
ra

in
 

A
nc

es
to

r 
E

SI
 1

4 
A

nc
es

to
r 

H
90

5 

In
oc

ul
um

 
(C

F
U

/m
l)

 

95
5 

11
25

 

24
 H

ou
rs

 
Pe

rc
en

t 
L

um
in

ou
s 

50
 

20
 

E
vo

lv
ed

 P
as

sa
ge

 1
5 

H
90

5 
P

op
ul

at
io

ns
: 

1 2 3 4 5 6 

11
00

 
90

0 
10

50
 

10
05

 
10

24
 

95
0 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

Pe
rc

en
t 

L
um

in
ou

s 
80

 
20

 

48
 H

ou
rs

 
R

el
at

iv
e 

L
um

in
es

ce
nc

e 
0.

13
 

0.
85

 

C
FU

/L
ig

ht
 

or
ga

n(
th

ou
sa

nd
s)

 
5.

6 
11

.9
 

10
0 

10
0 

10
0 

10
0 

10
0 

10
0 

0.
97

 
0.

78
 

0.
40

 
1.

02
 

0.
69

 
0.

84
 

10
.0

 
11

.4
 

11
.4

 
6.

2 
6.

5 
5.

8 

T
ab

le
 1

: Q
ua

nt
if

ic
at

io
n 

of
 c

ol
on

iz
at

io
n 

ab
ili

tie
s 

of
 d

er
iv

ed
 H

90
5 

is
ol

at
es

 a
ft

er
 1

5 
sq

ui
d 

pa
ss

ag
es

. C
oh

or
ts

 o
f 

5 
an

im
al

s 
w

er
e 

ex
po

se
d 

to
lO

O
O

cf
u/

m
l 

+/
- 

10
%

 fo
r 

3 
ho

ur
s 

th
en

 tr
an

sf
er

re
d 

to
 in

di
vi

du
al

 v
ia

ls
 o

f 
fi

lte
r 

st
er

ili
ze

d 
In

st
an

t 
O

ce
an

. 
L

um
in

es
ce

nc
e 

w
as

 m
ea

su
re

d 
at

 
24

 a
nd

 4
8 

ho
ur

s,
 a

t w
hi

ch
 ti

m
e 

sq
ui

d 
w

er
e 

sa
cr

if
ic

ed
 a

nd
 p

la
te

d 
to

 d
et

er
m

in
e 

co
lo

ni
za

tio
n 

by
 p

la
tin

g 
as

 w
el

l 
as

 l
um

in
es

ce
nc

e.
 

C
FU

/L
ig

ht
 o

rg
an

 w
as

 m
ea

su
re

d 
fo

r 
ea

ch
 e

xp
er

im
en

ta
l 

an
im

al
, a

nd
 s

ho
w

n 
is

 th
e 

lu
m

in
es

ce
nc

e 
pe

r 
ce

ll 
ba

se
d 

on
 w

ho
le

 a
ni

m
al

 
lu

m
in

es
ce

nc
e 

an
d 

lig
ht

 o
rg

an
 p

la
te

 c
ou

nt
s.

 R
el

at
iv

e 
lu

m
in

es
ce

nc
e 

w
as

 c
al

cu
la

te
d 

as
 th

e 
to

ta
l 

lig
ht

 e
m

itt
ed

 f
ro

m
 a

 li
gh

t 
or

ga
n 

di
vi

de
d 

by
 th

e 
nu

m
be

r 
of

 b
ac

te
ri

al
 c

el
ls

 (
*1

00
0)

. 

30
 



GROWTH CHARACTERISTICS 

ES114 Growth in SWT 
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Figure 4: Growth 
characteristics of 
H905 (A) and 
ESI 14(B) in 
SWT measured 
by reading OD595 
of cultures in a 96 
well plate every 
15 minutes. Error 
bars represent 
95% confidence 
intervals, and 
each bar 
represents the 
average of 5 
isolates per 
population in 
triplicate. 
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MOTILITY 
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Ancestor Motility 
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ES114 Passage 15 Motility 

Figure 6: Motility 
phenotypes of 
ancestral and 
derived (15 squid 
passages) H905 
and ESI 14 (A). 
Growth rates of 
H905 (B) and 
ESI 14(C) 
populations at 
passage 15 are 
shown with error 
bars representing 
95% confidence 
intervals. Each 
bar represents the 
average of 5 
isolates per 
population (each 
in triplicate) 

H905 Passage 15 Motility 
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MOTILITY Continued 

H905 Ancestor H905 Passage 15 

Figure 7: Pictures of typical morphologies of ESI 14 (A) and H905 (B) ancestors as well 
as ESI 14 (C) and H905 (D) passage 15 evolved isolates. 
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SIDEROPHORE PRODUCTION 

Ancestor Siderophore Production 

TO 

0? 8 

-I 

2.5 
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1̂ 1 
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^H 
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IH905 

ES114 Passage 15 Siderophore Production 

Population 

H905 Passage 15 Siderophore Production 

Figure 8: 
Quantification of 
Siderophore 
production of 
individual 
isolates as well as 
pooled 
populations at 
passage 15. 
Siderophore was 
measured using a 
modified liquid 
CAS assay [29] 
(A) Direct 
comparison of 
ES114andH905 
ancestor shows 
production 
relative to H905's 
siderophore 
production. (B, 
QResults for 
individual isolates 
and populations 
are shown as 
siderophore 
production 
relative to 
ancestral isolate, 
either ESI 14 or 
H905. In all 
cases, error bars 
represent 95% 
confidence 
intervals. 
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DISCUSSION 

Although the ubiquity of host-microbe interactions is widely known and accepted 

as being essential to species' development and survival [15, 24, 35, 36], the basis of and 

mechanisms for these relationships are poorly understood. Researchers have sought to 

understand these relationships by investigating microbial traits thought to be associated 

with these important interactions. Often, studies involve altering the characteristic 

presumed necessary for symbiotic competence, and quantifying the alteration's impact on 

the organism's ability to interact with its host [22, 37]. This study both compliments and 

expands upon this type of directed, one at a time, gene or trait based research by allowing 

the dynamics of colonization and host environment provide the selective environment for 

symbiotic adaptation and then investigating the impacts on "symbiotic" traits in a non-

symbiotic bacterium. As a proof of concept with the model we predicted that as naive 

planktonic bacteria were subjected to exclusive serial transfer in squid, not only would 

they become better symbionts, but some traits would converge with the symbiont ESI 14. 

As a result of the method in this study, we have confirmed the importance of some 

known symbiotic traits, and also made a step towards understanding key differences 

between isolates of the same bacterial species as they relate to symbiosis. Additionally, 

we have shown that our model system is capable of being used to study evolutionary 

processes under more natural conditions than many laboratory models allow. 

Passage of H905 through E. scolopes resulted in vastly improved colonization (Figure 

4) indicative of adaptive evolution and altered in-vitro phenotypes; however, our 

expectations that derived ESI 14 would remain phenotypically identical to its ancestor 
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which is already highly evolved to the squid symbiosis [l]and that H905 would become 

more similar to ESI 14 in all symbiotic phenotypes were not met. After 15 squid-transfer 

cycles, all populations of H905 were improved at colonizing E. scolopes (figure 3), and 

were also phenotypically distinct from their ancestor. Some predicted changes in 

symbiosis-associated phenotypes were correlated with increased colonization ability. In 

the short time they were passaged through the squid (about 350 generations), most H905 

evolved isolates decreased in luminescence and increased in siderophore production 

which is a phenotypic shift toward the known symbiont's traits. With biofilm production 

(which has not yet been shown to contribute to symbiosis) and motility, however, 

evolved H905 diverged even more from ESI 14. Interestingly, it is these two traits, 

motility and biofilm production, which changed most dramatically and consistently 

(Figures 6&9). The consistency of decreased motility and increased biofilm production 

across all derived H905 populations indicates that these traits may be partly responsible 

for the increased squid colonization, however other explanations, such as mutation 

hitchhiking, are also possible. Siderophore production is implicated in many host 

associations, and natural symbionts typically produce low amounts of luminescence 

relative to H905 [17-19], so changes we saw in these traits in our evolved lines may also 

have contributed to improved squid colonization, but not all populations of derived H905 

are distinct from their ancestor in these traits. Regardless of their role, the fact that not all 

populations are altered in the same one symbiotic characteristic, it is unlikely that any 

one of them is responsible for the improved squid colonization. 
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The general maintenance of some ancestral phenotypes in passaged ESI 14 

populations suggests that, for these phenotypes, ESI 14 was already well adapted to squid 

colonization. It also indicates that the differences between natural symbiosis and our 

model were not sufficient to lead to conserved significant phenotypic changes during the 

natural symbiont's passage. There were, however, some traits where derived ESI 14 

populations were altered from their ancestor. Some derived populations have decreased 

motility and/or increased luminescence relative to ancestor. There is, however, no 

phenotype that is significantly altered in all populations of ESI 14 making it inconclusive 

whether they were the result of selection from the system or a result of genetic drift 

exacerbated by the daily bottlenecking events involved in squid transfer. This indicates 

that in large part our model was an accurate representation of the natural conditions of 

squid association to which ESI 14 had adapted in nature, but that it is possible there are 

some evolutionary pressures in our system that are not in nature, or vice versa. There are 

a couple reasons why this may be the case. First, ESI 14 was isolated from an adult squid 

light organ. This means that ESI 14 had potentially been serially passaged by that adult 

animal for several months, and specifically adapted to adult symbiosis. Second, in 

nature, Vibrio fischeri experiences cycles of squid colonization and time spent in the 

water between colonizing squid. Our model all but eliminates this time spent in the open 

ocean, and the most time spent in a non-squid environment for our passaged lines would 

be several hours-not days or months as may occur in nature. The pressures from transfer 

through squid were, however, sufficient to warrant phenotypic changes in H905 in 

addition to improvements in squid colonization. This not only confirms that our model 

system led to adaptive evolution in passaged strains, but also suggests that some of the 
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phenotypes we chose to study were ones that convey significant colonization advantages. 

One of the most significant findings in this study is the maintained phenotypic 

difference between derived H905 and ancestral ESI 14. These results may lead to 

gleaning insight into some of the yet-unknown differences between H905 and ESI 14 and 

how they approach squid colonization. One possible explanation for this difference is 

that ancestral ESI 14's low biofilm production is a product of gene regulation. In-vitro 

biofilm production, which is what our assay, measured may be low but when colonizing 

the squid ESI 14 up-regulates biofilm production. H905, not having adapted to the squid 

for a long period of time, may not have the same gene regulatory mechanisms in place, 

and therefore showed increased biofilm production in in-vitro assays because it was 

selected for during colonization and it had no down-regulation mechanism in place. This 

can be said for any of the phenotypes we examined, as the in-Vitro assays we performed 

would be unable to identify changes in either strain involving regulatory mechanisms 

active during squid colonization. Alternatively, evolved isolates of H905 may have 

altered mechanisms of colonizing E. scolopes when compared to ESI 14. It is possible 

that as a result of their long-term co-evolution, ESI 14 is able to bypass E. scolopes' 

natural immune responses either undetected, or detected but unharmed. In order to 

overcome this deficit of history, H905 must utilize an alternative method for colonizing. 

It is possible that the increased biofilm production is a protective mechanism, as it has 

been shown to be in many pathogenic bacteria, which provides H905 isolates a better 

chance of colonizing despite increased killing by the host defenses. 
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What is clear as a result of this study is that it is possible for two strains of closely 

related bacteria to effectively adapt to the same conditions in very different ways. While 

the traits that we characterized in this study are likely relevant to symbiosis, there is still a 

wide range of other traits that we did not measure. It is likely that there is a wealth of 

knowledge awaiting recovery within the genomes of these derived populations of both 

H905 and ESI 14. Future studies will examine the differences between ESI 14 and other 

strains that are not natural E. scolopes colonists using experimental evolution and more 

detailed characterization of the derived lines. It is not possible to easily and cost-

effectively sequence individual isolates using a reference genome, which exists for Vibrio 

fischeri. This technology will allow us to more accurately pinpoint changes that occurred 

as a result of squid adaptation. 

In our study, effective adaptation happened rapidly and colonization efficiency 

increased even at early stages of the passage. This indicates that under the selective 

pressure of host immune response, maladapted colonists can quickly overcome 

challenges presented by a susceptible host. This has implications in how emerging 

pathogens may be changing in order to better adapt to human and other relevant hosts. 

By understanding the mechanisms and dynamics of H905's adaptation to E. scolopes, we 

may be able to better understand and approach emerging environmental pathogens. This 

experiment differs from much of the work done in experimental evolution because the 

squid host is a more dynamic and natural environment for the bacteria to adapt to than 

commonly used defined media environments. This presents, we believe, a more realistic 

picture of how evolution happens in nature, and in this case we have discovered that 
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adaptation in nature may happen much more quickly than we would anticipate based on 

studies of simple laboratory conditions, such as single carbon source environments. 

These studies are similar in that they show major improvements in fitness during the 

early stages of adaptation and smaller changes thereafter, however our study shows that 

an organism with a severe deficit in an environment can become nearly as fit in that 

environment after a very short period of time; for bacteria perhaps days or months rather 

than years or millennia. 
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