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ABSTRACT 

BIOLOGICALLY INSPIRED COMPOSITE IMAGE SENSOR FOR DEEP FIELD 

TARGET TRACKING 

by 

Pavlo Melnyk 

University of New Hampshire, September, 2008 

The use of nonuniform image sensors in mobile based computer vision 

applications can be an effective solution when computational burden is 

problematic. Nonuniform image sensors are still in their infancy and as such have 

not been fully investigated for their unique qualities nor have they been 

extensively applied in practice. In this dissertation a system has been developed 

that can perform vision tasks in both the far field and the near field. In order to 

accomplish this, a new and novel image sensor system has been developed. 

Inspired by the biological aspects of the visual systems found in both falcons and 

primates, a composite multi-camera sensor was constructed. The sensor 

provides for expandable visual range, excellent depth of field, and produces a 

single compact output image based on the log-polar retinal-cortical mapping that 

occurs in primates. This mapping provides for scale and rotational tolerant 
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processing which, in turn, supports the mitigation of perspective distortion found 

in strict Cartesian based sensor systems. Furthermore, the scale-tolerant 

representation of objects moving on trajectories parallel to the sensor's optical 

axis allows for fast acquisition and tracking of objects moving at high rates of 

speed. In order to investigate how effective this combination would be for object 

detection and tracking at both near and far field, the system was tuned for the 

application of vehicle detection and tracking from a moving platform. Finally, it 

was shown that the capturing of license plate information in an autonomous 

fashion could easily be accomplished from the extraction of information 

contained in the mapped log-polar representation space. 

The novel composite log-polar deep-field image sensor opens new horizons 

for computer vision. This current work demonstrates features that can benefit 

applications beyond the high-speed vehicle tracking for drivers assistance and 

license plate capture. Some of the future applications envisioned include 

obstacle detection for high-speed trains, computer assisted aircraft landing, and 

computer assisted spacecraft docking. 
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INTRODUCTION 

The utilization of space-variant image sensors in mobile computer vision has 

not been sufficiently explored [1], [2], [3]. Although both mobile computer vision 

and space-variant visual sensors have been well developed for constrained 

machine vision domains, there are very few efforts that leverage such sensors for 

mobile applications [4]. It is the author's view that the potential of space-variant 

sensors is underestimated for mobile vision based applications. 

Biologically motivated non-uniform image sampling was introduced in 

machine vision in the 1970's; it is a mathematical model resembling the primate 

retino-cortical projection [5]. Since this biologically motivated solution adopts the 

non-uniform distribution of photoreceptor cells found in the eyes of animals, the 

inherent non-uniform sampling that occurs in biologically based image acquisition 

offers a compromise between high resolution, wide field of view and a lighter 

demand for computing power. Because of this feature, retina-like sensors have 

gained some attention and development in the area of mobile robotic vision 

where limited computing resources are available and a significant amount of 

image processing needs to be performed [4]. 

Current investigation of the applicability of non-uniform sensors to mobile 

machine vision has been narrowly focused on mobile vision applications that 
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detect and track moving vehicles on the road from a mobile platform. This 

emphasizes a family of applications such as, driver assistance [2], autonomous 

vehicle navigation [6], and security applications (e.g., license plate scanning [7]). 

At the moment mobile computer vision applications are built around standard 

uniform visual sensors in several variations: 1) single video camera based, 2) 

stereo camera based [8], 3) multiple camera systems [9], and 4) data fusion of 

video and data from other sensors such as microwave radars [10] and laser 

radars (lidars) [11], [12]. 

With regard to on-road vehicle detection, different sensors and algorithms 

are used for three distinct groups of vehicles [1]: 1) overtaking vehicles, 2) close-

by vehicles, and 3) midrange/distant vehicles. Surprisingly, detection of 

approaching vehicles in incoming lanes received little attention. Perhaps the 

reason for this is the high relative speeds of vehicles in incoming traffic that 

require early detection and tracking at greater distances, and hence a different 

more complex kind of visual sensor. This fact became a departing point for the 

current research which led to the approaches developed. A diagram describing 

the research flow is shown in Figure 1. 

Initial investigation discovered a niche in visual sensors for mobile machine 

vision: sensors that would have arbitrary deep field of view. The approach taken 

was the development of a non-uniform visual sensor motivated by studies of two 

biological based vision systems: 1) birds of prey (e.g., falcons, eagles and hawks 

[13], [14], [15]) and 2) the primate vision system [5], [16], [17], [18], [19]. 
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The key idea behind the new visual sensor is a novel paradigm based on a 

unique interpretation of the well known log-polar transformation where the log-

polar grid is viewed as a two dimensional projection of a special three-

dimensional surface. As depicted in Figures 2 and 10, this novel idea introduces 

a virtual three-dimensional surface in the form of a logarithmic funnel. The center 

axis is coincident with the direction of camera gaze. Now, if a 3D world in front of 

the observer camera is projected onto the surface of the funnel, this projection 

allows theoretically infinite depth of field around the center of the funnel (axis Z). 

Since the projection of the logarithmic funnel on the image sensor plane XY 

takes a form of a log-polar grid, this means that the log-polar image space 

mapped from the grid offers a scale invariant image of infinitely deep view. This 

concept is thoroughly explained in Chapter 2. 

This proposed paradigm manifests itself in the creation of an expandable-

deep-field-of-view composite visual sensor [20]. To briefly explain its operation, 

imagine making a panoramic picture with a sequence of smaller pictures 

captured at different view angles. The pictures are stitched together to form a 

continuous wide view. The concept of the deep-field-of-view composite visual 

sensor is similar, but instead of the wide view it creates a continuous deep view 

by stitching images taken by cameras with different magnification settings. 

Moving from the concept to working prototypes, Chapter 2 continues with 

design theory and a description of the original sensor specific required 

calibration. Introduction of this novel sensor for deep-field object tracking in a 
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a) Classical log-polar transformation grid as a model for non-uniform sensor 

b) Anovel paradigm interprets log-polar grid as a 2D projection of 3D log funnel 

Fig. 2. Log-polar transformation as a 2D projection of "Log Funnel" 3D space warp 
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mobile environment poses new challenges and gives rise to a chain of original 

design solutions. In general, the introduced approaches are aimed to make 

object tracking more efficient and also faster. The idea is to implement object 

tracking in log-polar space with much less computation load than it would take for 

the same task performed in a higher resolution Cartesian space. Having 

significantly less computations is important for the composite image sensor 

because of its expandable field of view. "Expandable" means that the amount of 

image data increases with every additional camera placed in the sensor. 

Therefore, computation efficiency and infinite field of view have to be present 

together or else the system's performance will be limited. 

How to take advantage of log-polar image space in order to simplify vehicle 

tracking is described in Chapter 3. Also a very important camera alignment issue 

is solved on the preprocessing level. Two algorithms for aligning the sensor's 

optical axis to the host vehicle trajectory were developed in order to compensate 

for vibration and trajectory deviations (micro turns) [21]. Both of these algorithms 

were tested in the field and the one with better performance was chosen for the 

composite sensor alignment module of the final image processing pipeline. 

The actual vehicle tracking algorithm was developed and successfully tested 

in the field. This is discussed in Chapter 4. It was hypothesized that utilization of 

a log-polar space-variant image sensor would open new possibilities for mobile 

computer vision. For instance, the proposed composite deep-field image sensor 

makes possible a more computationally simple method for the task of early 
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detection and tracking of high speed vehicles in incoming traffic. This has not 

been successfully accomplished with a conventional uniform image sensor. It 

was proposed that a good proof of concept application would be the capture and 

reading of license plates from incoming traffic. The log-polar based vehicle 

tracking engine provides a trigger for the acquisition and subsequent reading of 

the license plate information from approaching vehicles. Acquired license plate 

snapshots are stored on disk and then fed into the third party license plate 

recognition software [22]. This application was fully implemented and 

demonstrated reliable license plate acquisition. 

The appendices present important implementation details. Appendix one 

and two provide complementary material for Chapter 2. They contain information 

about the composite sensor design theory and the construction of several 

prototypes: 1) a laboratory prototype, designed for tests in the driving simulator 

and 2) a more rigid and compact composite sensor for field tests. Appendices 

three and four provide complementary material for Chapter 3. They contain 

detailed descriptions of the log-polar based and Cartesian based algorithms for 

vanishing point fixation that are used for composite sensor alignment. 

In terms of tailoring the proposed computer vision system to be implemented 

in an embedded mobile platform, this research is based on previous work in the 

field of video evidence recording for law enforcement [23], [24]. Additionally, 

leveraging of the log-polar model in the current research was inspired by the 

dissertation of Messner [25] and it is accompanied by a parallel work in the area 

of biologically inspired active vision conducted by Vidacic [26]. 
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CHAPTER I 

BACKGROUND 

Biological influence on space-variant sensors 

Nature has always been a source of inspiration for new ideas due to the 

efficient and elegant way that nature evolves biological systems. Many 

researchers thus contemplate nature and try and leverage and model biological 

systems to solve some interesting problems. This is especially true for the area 

of synthetic vision. There is a significant interest in creating computer vision 

systems that would "see" and interpret the environment in a manner similar to 

humans. This trend is natural. The ultimate goal is enabling machines to work 

without operator interaction or supervision for the benefit of mankind. 

This "human factor" thought spawned an aggregation of biologically inspired 

machine vision and image processing research and development. Biologically 

inspired synthetic vision is multidisciplinary; it is based on parallel studies in the 

fields of biology, image processing and synthetic vision. A lot of attention and 

development in biologically inspired synthetic vision is based on studies of the 

human visual system. These studies involved studies on eye geometry and 

optics, retina structure on the cell level, and the retino-cortical projection [5], [17], 

[16], [18], [27], [28]. Some findings in biological research were interpreted into 
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mathematical and engineering models and applied into synthetic vision problems 

[5], [29]. 

Because of its complexity, the human vision system was not the only source 

of inspiration in biologically motivated machine vision. Other biological vision 

systems have also been investigated due, in some cases, to the relative 

simplicity and convenient replication that could be done in silicon. For instance, 

other visual systems being researched and modeled for robotic vision have 

included more primitive visual systems such as those possessed by insects [30] 

and crabs [31]. 

One of the paradigms adopted from biological vision systems is the non­

uniform distribution of receptors in the eyes of animals. Non-uniform sampling in 

the image acquisition front end offers a compromise between high resolution, 

wide field of view and smaller amount of visual data. The latter is proportional to 

the computation power required for image processing tasks. These three 

components are essential requirements for many machine vision applications, 

yet they conflict with each other in cases which use an image sensor with uniform 

pixel density [29]. Indeed, in order to increase the field of view given a standard 

uniformly distributed camera sensor, it is necessary to tradeoff the effective 

resolution. However, if high resolution is to be preserved along with a wide field 

of view, the amount of visual data and affiliated computational resources grow 

often times exponentially. 
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Far seeing in vulture's vision 

Raptors, like falcons, hawks and eagles, can see their prey miles away and 

simultaneously use their vision for navigating in near field. These raptors have 

several times better resolution power than humans despite a smaller eye size 

and photoreceptor density [13], [14]. Their special eye structure allows for 

simultaneous perception of distant and near objects and scenes. If an image 

sensor with similar properties is constructed, it would be useful for synthetic 

vision applications where high acuity in the far field of view and wide view angle 

in the near field of view are of equal importance. Possible applications may 

include deep field object tracking and navigation for both airborne and ground 

based unmanned vehicles. 

The study of a raptors' eye structure shows that unlike humans, they have 

two foveae in each eye. One is dedicated to the near visual field and the other is 

dedicated to the far visual field. The fovea for near field processing is the shallow 

fovea with straight forward line of sight that provides acute vision for navigation. 

The other fovea is the deep field fovea that has a line of sight that points 

approximately 45° to the side of the head axis (see Figure 3a). The deep fovea 

has better acuity and a higher photoreceptor density, and is used for locating 

remote targets. The interesting consequence of the deep fovea being located at 

45° angle is that raptors move in spiral paths while approaching their prey [14]. 

In the falcon's eye there are also two separate optical channels for each of 

the foveae. The pupil lens is the common optical element for both foveae. 
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Avian eye and cross-section of the retina through the deep fovea 

»iiMf|6>^aimMiigiir -
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1 Waits 

a) Section of head of a hawk showing line of sight of the deep and shallow foveas 
b) Thick section of the retina in region of deep fovea. Arrow shows the concave region of the foveal pit 

thought to act as diverging optical element to project magnified element on receptors at center of 
fovea. ELM - external limiting membrane; OD - oil droplets; OS - outer segments of cone 
photoreceptor cells; PE - pigment epithelium 

Schematic of the telephoto lens 

c) 

d) 

V 
, , s ,nr-n 

R n„ 

c) Classical design 
d) Equivalent system from the avian eye 

m - magnification of the system 
n , n - refractive indexes of the medium 

r c 

s - distance from the apex of the spherical surface to the image plane. 
R - radius of the curvature of the concave spherical surface 

Adapted by permission from Macmillan Publishers Ltd: [Nature 275, 127 - 129, "Telephoto lens system of 
falconiform eyes", ALLAN W. SNYDER & WILLIAM H. MILLER, 1978 ], copyright © 1978 

Fig. 3. Telephoto optics in falconiform eye 
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However, in addition to the pupil lens, it has been shown that the spherical 

depression in the deep fovea (Figure 3b) acts as a negative lens component 

similar to that of the telephoto lens system found in binoculars [13]. The optics 

equivalent to the deep fovea structure [13], [15] is shown in Figure 3c. The 

purpose of a negative concave lens is to increase the focal length of the 

combination of lenses. This preserves the overall smaller dimensions of the 

system more so than an equivalent single lens system would have. The 

equivalent optical model of the foveal pit is shown on Figure 3d. 

The idea inspired by the falconiform eye study is that two separate optical 

channels can be built into a single image sensor: one channel for far visual field 

and another for near visual field. It would be helpful to have some knowledge 

about the retino-cortical projection from the eye to the brain of these birds. 

However, there is no such information in the literature and it is impossible to tell 

how the images from two foveae are mapped in the bird brain and how they are 

treated. The alternative source of information about the retino-cortical projection 

found in biological systems comes from more comprehensively studied visual 

system of primates. It is referred next for mathematical model of retino-cortical 

projection. 
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Image data reduction in the primate retina 

From the standpoint of synthetic vision one of the most interesting biological 

vision mechanisms is the ability to reduce the amount of visual data that must be 

processed. For instance, in the human visual system data reduction occurs 

through the whole pathway traveling from the receptors of the retina to the striate 

cortex of the brain. This retina-cortical pathway is thought to contain three distinct 

stages. First, the non-uniform photoreceptor distribution of cones in the eye 

forms a small region of high acuity with a wide area of lower resolution 

surrounding it. The second stage of data reduction occurs inside the retina 

layers itself, which is evident from the fact that the number of photoreceptors is 

much larger than the number of ganglion cells axons (i.e. data channels) in the 

optic nerve. Finally, the third stage takes place in the visual area of the cortex 

(Area V1) [16], [17], [18]. 

Studies made on the primate visual system uncovered a mechanism of 

visual data reduction in the retina due to non-uniform photoreceptor distribution 

[17], [18]. This distribution consists of a small area of high acuity in the center of 

retina called the fovea and a wide periphery with a much smaller photoreceptor 

density (see Figure 4). This allows for the coexistence of a wide field of view with 

a high resolution at the center of view and a lower acuity moving away form the 

center of view reducing the amount of data for processing. This non-uniform 

organization provides a tradeoff between wide area of view and a high resolution 

at the central viewpoint. Naturally, this is only one of the mechanisms of data 
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reduction in the overall system. Biological systems are far more complex 

because both data reduction and reinterpretation of the data happens also in the 

visual pathway and visual area of the cortex [16], [17], [18]. The complete picture 

of how the human vision works is neither completely explored nor understood. 

However, having said this, the eye structure itself suggests possible ways of 

building non-uniform image sensors that maybe effective for real-time synthetic 

vision applications [29], [32]. 

Structurally, the retina has three layers built of six types of cells. Of interest 

here is the topmost layer consisting of photoreceptors, the cells that transform 

light into electrical impulses [16]. There are two types of photoreceptors: rods 

and cones; responsible for different light conditions. Rods are responsive to low 

intensity light; they are very sensitive but do not differentiate color. Cones are 

responsible for high illumination conditions, high acuity vision and color 

sensitivity. There are three different types of cones dedicated to red, green and 

blue spectra. The retina can be roughly divided into two regions characterized by 

photoreceptor density. In the center of retina, there is a small depression with 

high cone concentration. This depression, which covers about 5.2° of visual 

angle, is called fovea. The distribution diagram for cone photoreceptors as shown 

in Figure 4 suggests the highest density for cones within 1°-2° of visual angle 

[18], [33]. The periphery, which occupies the rest of retina around the fovea, 

consists of a lower density of cones as one moves away from the fovea center. 

As was already mentioned, the non-uniform photoreceptor distribution is the 
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very first mechanism for data reduction in the human visual system. Although the 

human visual system reduces data further along the visual pathway we are only 

concerned with the data reduction accomplished through the non-uniform 

sampling at the retina. For additional information on the human visual system the 

reader is referred to the bibliography related to this section [17], [18], [16]. This 

research focuses on a retina-like sensor design, and in particular a log-polar 

based model of non-uniform image acquisition [19], [29]. 

Log-polar retina model 

Discovered as a mathematical model resembling the primate retino-cortical 

projection [5], [27] the log-polar image representation has been used for several 

decades in computer vision. The log-polar transformation is interesting because 

of its properties. It is a conformal mapping and under certain conditions is scale 

and rotation tolerant. Also, its non-uniform sampling can be used for data 

reduction. If a Cartesian sampled image is resampled by a log-polar mapping 

the resulting resampled image can be much smaller than the Cartesian sampled 

image. This property allows for the implementation of various geometry-specific 

and often real-time image and video processing. Some synthetic vision 

application areas where the log-polar transformation has been exploited include: 

optical flow [6], time-to-collision and depth from motion [34], [35]; active vision 

systems [36], [37]; target tracking [38]; spacecraft docking [39]; pattern 
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recognition [40]; image registration [41]; retina-like image sensors [42], [43], [44], 

[29]; and front-end for space-variant image processing [45], [46], [47]. 

The log-polar retina model has been well developed and has a number of 

variations [29]. The most common model used in synthetic vision is shown in 

Figure 4. The input domain mapping template (i.e., the log-polar grid), consists of 

a center part called the fovea and an outer part called the periphery. Because of 

the singularity of the logarithm at zero (i.e. in the center of log-polar transform), 

the inner part is often replaced with a Cartesian x y image. This particular step is 

optional and often is ignored. Instead, a so-called central blind spot log-polar 

model is used (see Figure 5). 

The log-polar space (u,v) is a modification of the polar coordinate space (p,d) 

with radial logarithmic scaling. Polar coordinates (p,6) axe related to Cartesian 

coordinates (x,y) as (p,0)=(Vx2+y2,avctan{ylx)) and the reverse relations is 

given as {x,y)={pcos(0),psia(6)). The log-polar transformation of the 

Cartesian space that is used in this work is shown in (1). It is called the central-

blind-spot model commonly encountered in synthetic vision [19]. The term p0 is 

the radius of innermost ring, that is actually cut out, and is the starting point of the 

transformation in radial direction (axis u in Figure 5). 

, p , /Mx +y N 

r O r O 

v=0=arctan(j/x), O°<0<36O° 
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The reverse transformation from log-polar coordinates back to Cartesian 

space is given in (2). 

x=a"cos(v) 
y=a sin(v) 

The log base is calculated according to (3): 

Pa 

a=e " - , since umax = \oga-
Po 

(3) 

Since images captured by a uniform camera index their pixels in positive 

Cartesian coordinates the log-polar mapper takes the form shown in equation set 

(4). Coordinates {xc,yc) define the center of log-polar transformation. These 

coordinates specify where the log-polar mapper grid is applied in the Cartesian 

image. Also, equation (4) implies the four-quadrant version of arctangent. 

, ^(x-xcf+{y-ycf u=loga{ ) 

t iy-y.) (4) 

v^arctan-(x-xc) 

The discrete log-polar transform is shown in equation set (5). The discrete 

form is used by synthetic vision applications, ( e.g. software log-polar mapper). 

Typically discrete image warpers are implemented using look-up tables for real­

time log-polar mapping [48], [49]. 
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ud=floor {\oga-2-)t 

vd = floor {^^), where (5) 
d J 360° 

vmax is the number of sectors, and0°<6<360° 

From (5) the size of output log-polar image is N-umax-vmax pixels. 

Oversampling is an essential property of discrete log-polar mapping when 

applied to Cartesian images, since the latter has finite resolution. The receptive 

fields (RF) near the center of the log-polar grid become smaller than Cartesian 

pixels (see Figure 6). Therefore, information near the center of Cartesian image 

results in a highly redundant area in the log-polar image. This effect is called 

oversampling, because the Cartesian image is oversampled close to the log-

polar grid center. The oversampling effect manifests itself in the output log-polar 

image as a blocky area at small u (see Figure 6). 

An opposite situation takes place in the periphery, where there is a many-to-

one relation between Cartesian pixels and log-polar receptive fields. This is 

called undersampling and this is exactly the reason why the log-polar mapping is 

used for data reduction [19]. 
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Properties of log-polar transformation 

The log-polar transformation has been shown to possess scale and rotation 

"tolerance" properties and the ability to compress the input image through non­

uniform sampling [29], [19]. Log-polar transformation is a conformal mapping, 

which maps a circular region in Cartesian space into a rectangular region. Its 

geometric properties are illustrated in Figure 7. The concentric circles in a 

Cartesian image become vertical lines in the cortical space because of the 

constant radius at all angles. Similarly a Cartesian image of radial lines, which 

have constant angle but variable radii, result in a map of horizontal lines. 

This picture also illustrates the rotation tolerance property of cortical image. 

If the camera rotates around the center point the cortical image stays intact and 

only shifts in the vertical direction. This shift will be up or down depending on the 

rotation direction. 

The scale tolerance property manifests itself in following. If the observing 

camera moves towards an object, its appearance does not change in the log-

polar image and only shifts in the horizontal direction. This property is derived 

from the fact that the logarithmic function is applied in the radial dimension and 

the major utility of logarithms is that they reduce multiplication to addition (see 

Equation 6). 

log (scale • dimention)—log (scale)+log (dimention) (6) 
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Cartesian space Log-polar space 

Fig. 7. Properties of log-polar transformation. 
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Retina-like sensors 

Non-uniform image sampling has gained significant interest in the synthetic 

vision community. Researchers have created various retina-like visual sensors 

to explore their properties and application. Retina-like sensors can be divided 

into two categories: 1) log-polar model based [42], [44], [45], [48], [49] and 2) 

non-uniform but non-log-polar based sensors [43]. The first category assumes 

that photo-element distribution follows the log-polar grid pattern (i.e., the photo-

element density grows exponentially towards the center (Figure 8a)). The second 

category of sensors utilizes a simplified version of the human eye which include 

two distinguishing structural features: 1) high photo receptor density in fovea and 

2) low density in periphery. This results in two levels of photo element density as 

it is shown in Figure 8b. 

There are three distinct types of log-polar retina-like visual sensors: 

1) Solid state retina-like sensors. This is a group of specially designed and 

manufactured sensors that have photo element distributions directly yielding a 

log-polar grid arrangement [42], [44]. 

2) Software log-polar remappers use standard 2-D raster scan camera 

sensors and produce the log-polar transform by resampling the 2-D Cartesian 

images at the input to produce the log-polar output image [45]. 

3) Hardware remappers or virtual sensors use custom remapping hardware 

with standard 2-D raster scan camera sensors as input [48], [49]. 

It is easily noticeable that these three groups differ only by location of the 
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Fig. 8. Photo element distribution in retina-like sensors 
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log-polar data sampling or remapping in the visual data path. The first group of 

solid state retina-like sensors provides the most transparent image acquisition. 

No extra pixel mapping (and hence computing) is required because the sensor 

pixels already yield non-uniform distribution on the silicon surface. Their only 

drawback is in the manufacturing costs. Because these sensors are application 

specific their usage and acceptance has been limited. In contrast, the two other 

groups provide more cost effective solutions since they use low cost standard 

uniform image sensors for initial image acquisition. Hardware remappers are 

more expensive versus software ones, yet they are typically faster. As computers 

have increased in speed, and the fact that the log-polar remapping can be done 

through predefined look-up tables (LUT), software implementation can compete 

easily with dedicated hardware designs in many applications. In fact this is why 

the era of hardware implementation (both sensors and remappers) fell off during 

the late 1990s [42], [44], [48], [49], [50]. 

Similar classification of solid state versus software-based visual sensors can 

be made for non-log-polar retina-like sensors. Visual sensors with a photo 

element distribution shown in Figure 8b are known to be implemented on a single 

silicon die [43] and also by using two separate cameras with different 

magnification [51], [52]. In the latter case the software part of the sensor has to 

perform a relatively computationally expensive task of image registration or 3D 

reconstruction in order to locate the foveated (zoomed) image within a wide 

peripheral camera view. 
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CHAPTER II 

A NOVEL COMPOSITE SENSOR FOR DEEP-FIELD VISION 

Composite image sensor 

In modern computer vision the log-polar transformation is a classical model 

for visual data reduction in primate vision. The log-polar grid outlines the 

spatially-variant photoreceptor density and hence defines the visual acuity. Here 

a novel interpretation of log-polar geometry is proposed. The novel image sensor 

is motivated by the vision system characteristics found in the falcon. Of particular 

interest is the far-seeing ability and the fact that there exist two foveae with 

dedicated optics for near and far vision. 

To describe the idea behind the sensor, an imaginary three-dimensional 

surface in the form of a logarithmic funnel as depicted in Figure 9 is introduced. 

This surface is created by rotating a log curve around the vertical axis. This axis 

will be further referred to as the center axis of the log funnel. The surface of the 

funnel asymptotically approaches the axis at infinity, since log(x)->-oo when 

x^O. 

Imagine that such a 3D surface is created around the gaze line of a camera 

as shown in Figure 10. Now consider a parallel projection of the 3D world in front 
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Fig. 9. 3D log funnel and its 2D projection in the form of log-polar grid 
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of the camera onto the log funnel surface. Since the funnel goes to infinity when 

approaching the line of gaze, arbitrary distant fragments of the 3D world can be 

projected onto the log funnel surface. Consider now the projection of the same 

3D log funnel upon a 2D plane of the camera sensor. The projection takes on the 

form of a log-polar grid. This suggests that in log-polar space it is possible to 

implement an infinitely deep field of view! 

Naturally, an infinitely deep field of view can not be reached with a regular 

camera because of the inherent finite magnification and resolution. Instead, a set 

of cameras with different magnifications can be used together composing a 

composite visual sensor. Shown in Figure 11, the proposed composite sensor 

consists of two or more cameras that form a set of nested views fitting into the 

3D log funnel model. The optical axes of all cameras comprising the composite 

sensor must be parallel and they should be packaged as close together as 

possible. Therefore, for sufficiently outlying scenes it can be approximated that 

the optical axes of all sensors' cameras rest on the same line that is now to be 

referred as the composite sensor's optical axis. Another condition is that the 

maximum radius, pmax(n+i) in every nested image should be equal to the inner 

(minimum) radius p0(n) of the containing image. This implies that the nested 

images are seamlessly merged one inside the other. Under these conditions the 

log-polar images mapped from the nested cameras seamlessly merge into a 

single homogeneous composite log-polar space. This in turn is due to the scale 

tolerance property of log-polar transformation (Figure 12). 
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A two-camera composite sensor prototype shown in Figure 13 demonstrates 

this spacial continuity of output in the log-polar image. Due to the properties of 

the log-polar transformation a continuous output image space can be created 

from a set of discrete image inputs taken at different magnification. Moreover, the 

depth of field is arbitrarily expandable. This proposed approach has not been 

considered before, but it extends classical log-polar sensor designs in a novel 

manner [29], [42], [44], [36], [37], [47]. 

A positive collateral effect of the nested view design is that the issue of 

oversampling in log-polar images can be virtually eliminated. Cartesian images 

acquired from nested uniform cameras increase the effective resolution in the 

center of log-polar remapper. Therefore, the size of Cartesian pixels is reduced 

to keep up with decreasing receptive fields. 

The scale tolerance property of log-polar transformation makes this 

proposed sensor uniquely advantageous for deep-field object tracking. When 

properly aligned the sensor preserves constant size of objects traveling at 

trajectories parallel to the sensor optical axis (Figure 13). It is an exceptional 

property for object tracking because the appearance of the objects remains 

relatively constant with distance. For the purposes of the mobile vision 

application to be revealed, this property will be referred to as a "perspective 

mitigation", meaning that the objects and scenes whose appearance is changed 

in size due to visual perspective preserve their scale in the log-polar image space 

independent of distance to the observer camera. 
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Fig. 13. Composite log-polar output in two-camera deep-field sensor 
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Composite log-polar image 
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Fig. 14. N-camera composite log-polar image 

To illustrate how deep is the theoretical depth of field in the composite log-

polar sensor the sketch of an N-camera composite sensor output is provided in 

Figure 14. This picture gives an idea of how far the sensor can "see" having so 

many cameras. The distance grows and the view angles decrease exponentially 

with each camera increment. The complexity and price of required optics grow 

somewhat "exponentially" as well. For better visualization the first two log-polar 

images are taken from the two-camera field-test prototype (see Figures 20 and 

A.36). 

This work is also focused on leveraging the proposed sensor for object 

tracking in the context of mobile computer vision. One of the reasons for this is 

that mobile computer vision is one of synthetic vision domains that would benefit 
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most from the proposed vision sensor. This conclusion comes directly from 

properties of the sensor. For example when a mobile observer and objects to be 

tracked move linearly in close parallel trajectories, the sensor offers 1) object 

tracking in long range and possibly with high relative speeds due to its deep field 

of view, and 2) additional computational simplicity benefit due to mitigation of 

perspective distortion. Therefore, synthetic vision applications that can benefit 

from the proposed sensor may include vehicle tracking from a mobile platform, 

computer vision for driver assistance, mobile computer vision applications for 

trains and aircraft, space based applications such as, computer assisted docking 

and navigation of unmanned vehicles. 

Composite sensor design 

The composite sensor design focuses mainly on methodology of how 

images from nested cameras should be stitched together and the way of 

choosing log-polar mapping parameters. The main goal of the guidelines is to 

achieve the best image quality in the output log-polar image. This section starts 

discussion of composite sensor design fundamentals that continues into 

Appendix B with more discussion and design charts. This discussion provides 

information on how to balance between reasonable log-polar image size, amount 

of oversampling given the resolutions of the input cameras and the lens choice 

for the cameras comprising the composite sensor. 

Ideally, in order to maximize log-polar image quality, the oversampled area 
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in fovea should be omitted from mapping. It is recommended because the 

oversampled region in the log-polar image is nothing else but stretched pixels 

from the center of Cartesian image as shown in Figure 6. In other words it is a 

low resolution region in log-polar image that has limited or no use. Therefore it is 

preferable to choose the inner ring (p0) of our center-blind-spot log-polar grid 

shown in Figure 5 as the border of oversampled region. 

The transition between the oversampled region in the fovea and the 

undersampled periphery in the log-polar transformation is called the border point. 

This is the location where receptive fields in Cartesian and cortical images are 

equal, i.e. the receptive field in log-polar image is the size (in radial dimension) of 

1 pixel in Cartesian space. In other words it is the point where the first derivative 

of the function u=loga(p) is equal to one, i.e. the function growth is a single pixel. 

By solving this equation the border point radii values in the input and output 

spaces can be obtained. Formula (7) identifies the border circumference of 

radius pA measured in Cartesian pixels on the camera sensor, and corresponding 

value of ub in log-polar domain. 

d , 1 
dp p-m\a) 

P-In(a) (7) 
1 

Pb ln(a) 
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Foveal and peripheral camera sensor spaces in logarithmic transformation 

Peripheral camera 

O Border point 

Foveal camera 

200 300 400 
Camera sensor space (pixels) 

500 600 

Fig. 15. Foveal and peripheral camera sensor spaces in logarithmic transformation. 

The border point between oversampled and undersampled regions shows 

how the input images from the foveal and peripheral cameras should be fused 

into an output image (see Figure 15). The image from the foveal camera should 

be fused into the output image within the area of radius pb defined by the border 

point. At the same time the circle area of radius pb in the center of the peripheral 

camera input image does not participate in the fusion. In order to make a 

seamless insertion exactly at the border point a certain relation must be 

maintained between foveal and peripheral camera angles of view. This relation is 

called a fovea overlay scale factor and is described by equations (8) and (9). 

Kb=-
Pb 1 

•In (a) (8) 
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Since the trigonometric function of the tangent can be approximated as a 

linear function near zero, the fovea overlay scale factor K can be reduced to 

foveal-to-peripheral angles ratio at small angles (i.e., 612 < 45°). 

K = Pb ^ t a n ( 0 / O v / 2 ) 
b Pmax tan {6per/2) 

Kb^,ifefov^o,eper^o 
per 

The foveal camera view angle should be equal to the view angle of the 

peripheral camera times its scale factor as shown in equation (10). In practice it 

might be difficult to find cameras with matching view angles because usually 

manufacturers have certain lens parameters stepping while producing camera 

lenses. Therefore there are two ways to meet this design rule. One is to use a 

foveal camera with an adjustable zoom as is the case in the present prototype. 

Another is to adjust the log base a o r / w using formula (8). 

efov=Kb-eper (io) 

In order to show both foveal and peripheral camera pixels on the same 

logarithmic curve (see Figure 15), equation (11) is used. Because of 

magnification in the foveal camera it can be said that it increases resolution in the 

center of peripheral camera image space. It can be observed from Figure 15 that 

the pixels from the foveal camera participate as sub-pixels in the foveal region of 

the log-polar software remapper. In order to use native indexing of the foveal 

camera pixels in the joint logarithmic mapping shown in Figure 15, the first 
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equation in equation set (1) changes into equation (11) that takes into account 

the scale factor. Notation fov in subindexes of pfov and pfovo shows that these are 

radii values for the foveal camera coordinates (in pixels). Practically, equation 

(11) shows that the foveal image is shifted left by the size of peripheral image, 

which otherwise means that both images are stitched together as shown in 

Figure 13. 

l l = l0gfl((^L).JS:4) = l 0 g B ( ^ ) - l 0 g f l ( ^ ) (11) 

The composite sensor design theory continues in Appendix B. 

The remainder of this section provides a clearer picture of the composite 

sensor design process. Figure 16 shows the design cycle. Typically, this process 

takes several iterations to match initial technical specification and available optics 

and equipment. It starts with determination of such log-polar parameters as log 

base, the upper and lower radii of the center-blind-spot log-polar grid, and the 

size of log-polar image (see Figure 5). The driving factor for choosing log-polar 

parameters is the size of target objects (here: vehicles). Then the same set of 

parameters should be found for the nested camera: 1) the log base remains 

constant, 2) the lower radius of peripheral log-polar grid becomes the upper 

radius of the nested (foveal) camera grid and the foveal camera view angle is 

determined using equation (10); 3) the joint log-polar image size is calculated. 

Now the foveal camera view angle drives the design process. Normally, the 

calculated view angle varies more or less from camera optics available from 
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Initial technical 
specifications: 

- number of cameras in the 
composite sensor and their 
resolutions 
- distance range 
- target size 

Find the log-polar 
transformation 

parameters: 

- the log-polar image size 
- the log base 
- log polar grid geometry: 
p„ and p 
' 0 ' max 

Adjust the log-polar 
parameters: 

the log base 
the log-polar image size 
p„ and p 
' 0 ' max 

Find the closest 
matching optics 

Derive lens 
specifications for the 

cameras comprising the 
sensor: 

- starting angle for the 
peripheral camera 
- nested lenses scale 
factors 

Fig. 16. Composite sensor design cycle 
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manufacturers. Therefore, a camera with closest view angle should be chosen 

and the same calculations should be repeated backwards. If the size of target 

objects in the new resized log-polar image is satisfactory, then the design may be 

considered finished. 

Once the composite sensor is assembled it should be properly calibrated. 

Calibration 

Since the proposed composite log-polar image sensor is an original and 

novel idea, the developed calibration technique is also novel and original. No 

mention of camera calibration in log-polar space has been found in the literature. 

Therefore a popular "chessboard" camera calibration pattern has been adapted 

for log-polar space. 

It is proposed to use the "Log-polar Chessboard" pattern depicted in Figure 

17. The idea is to have the chessboard pattern in log-polar space. Therefore, in 

Cartesian space this pattern is transformed into a concentric form with 

exponentially scaled radial dimensions. 

An example of calibration installation for a two-camera composite image 

sensor is shown in Figure 18. The Log-polar Chessboard pattern should be large 

enough to overlap from the foveal camera view into the peripheral camera view. 

An example of a calibrated log-polar image is also shown in Figure 18. The 

chessboard pattern in log-polar space makes it easy to detect angular and radial 

misalignments between cameras comprising the composite sensor. Examples of 
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Calibration pattern in Cartesian space 

Log-polar space 

U 

Fig. 17. "Log-polar Chessboard" calibration pattern 

angular and radial misalignments are depicted in Figure 19 (a and b). 

Angular (or rotational) misalignment is caused by differences in camera 

angles around their optical axis. It manifests itself in a vertical shift in calibration 
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a) Angular misalignment 

From foveal camera From peripheral camera 

b) Radial misalignment 

From foveal camera From peripheral camera 

c) Optical axis misalignment 

Foveal camera view Peripheral camera view 

Fig. 19. Objectives of composite sensor calibration 
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pattern (see Figure 19a). It can be adjusted both mechanically or 

programmatically. Typically, rough adjustments are made by physically rotating 

the camera. However, fine-tuning on pixel-level is done by adjusting look-up 

tables of the software log-polar mapper. 

Radial misalignment happens because of a mismatch between the inner 

radius of peripheral log-polar grid and the outer radius of foveal log-polar grid. It 

manifests itself in shrunk or stretched chessboard squares on the border of 

foveal and peripheral log-polar sections (see Figure 19b). The adjustments are 

made programmatically by changing radii values in the software log-polar 

mapper. 

Optical axis misalignment means that the optical axis of the cameras that 

comprise the composite image sensor are not strictly parallel. Optical 

misalignment can be detected with the calibration pattern in the following way: if 

the foveal camera image center is pointed at the center of the Log-polar 

Chessboard pattern then peripheral camera image center is offset from the 

center of the Log-polar Chessboard pattern as shown in Figure 19c. In this case 

the calibration software reads the peripheral camera coordinates of the pattern 

center and uses them to adjust the position where the center of the log-polar 

mapper is applied. 
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CHAPTER III 

ADAPTATION FOR AUTOMOTIVE APPLICATIONS 

Composite log-polar space in automotive applications 

As discussed in the prior chapter, the scale tolerance property that the log-

polar transformation possesses offers a unique framework for merging multiple 

nested camera views into a single cortical image space. Since the initial 

motivation for this research had been focused on vehicle tracking of incoming 

traffic, the first question that arose was how many cameras in a composite image 

sensor would be enough to provide a reasonable depth of field for vehicle 

tracking. Field experiments showed that a two-camera composite image sensor 

is a reasonable number to work with. The "field-test" composite sensor prototype 

(see Figure A.36 in Appendix A) with a 98 degree peripheral view angle and a 

10 degree foveal view angle provides vehicle appearance suitable for feature 

extraction in terms of size and detail at a distance of approximately 0.22 miles 

(see Figure 20). This provides approximately 6 to 7 seconds to detect a vehicle in 

incoming traffic moving with an average speed of 60 mph. Assuming that both 

vehicles are traveling at 60 mph in opposite directions the effective approach 

speed is 120 mph. An additional advantage is that the two-camera sensor does 

not require massive high-magnification optics. The constructed assembly is light 
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and compact and can be easily mounted behind the windshield of the vehicle. 

For further information see Appendix A. 

Left lanes • ;..,..:-| 
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j Right lanes ,,^ 

Fig. 21. Road segmentation in log-polar space 

For automotive applications there are several benefits of using a composite 

deep-field image sensor (see Figures 21 and 22). First, the single joint image 

space can significantly simplify the task of detecting and tracking vehicles moving 

from far to near fields of view at high speed. Secondly, because of its scale and 

rotation tolerant properties, the log-polar mapping mitigates the perspective 

distortion that occurs in the image. Thus in log-polar space vehicles preserve 

their size at any distance from the observer (Figure 22). This reduces the 

complexity of the object caused by size changes due to the approach of the 

object from the far field to the near field. This, in turn, keeps the object feature 

set relatively constant. Thirdly, the log-polar image of the road provides for 

Incoming traffic 

Vehicles and 
obstacles ahead 

Road shoulder 
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excellent lane segmentation since the lanes appear in cortical space as 

rectangular horizontal sections (Figure 21). Fourthly, the log-polar transformation 

produces a much smaller image processing space as opposed to the high 

resolution Cartesian image. Consequently, operations in this smaller space is 

less computationally demanding. 

It is important to note that the features of perspective mitigation and road 

segmentation are possible if and only if the optical axis of the camera is parallel 

to the road. In practice this means that the center of the log-polar transformation 

should be coincident with the vanishing point of the road perspective. Therefore, 

the advantages of log-polar representation are limited to linear road sections. 

Since the proposed far-vision sensor is most effective for high speed traffic, this 

limitation is negligible for high-speed highways due to the fact that they are 

mainly comprised of straight road sections. 

The foveal side of a log-polar image is very sensitive to deviation from the 

vanishing point. For instance, Figure 23 shows possible log-polar image 

outcomes from a road scene acquired in the driving simulator. Figure 23a shows 

the ideal log-polar representation, and Figure 23b,c,d shows possible outcomes if 

the center of log-polar mapping is 5 pixels off the vanishing point in different 

directions. Thus, it is necessary to have a vanishing point fixation mechanism in 

order to keep the center of the log-polar grid on the vanishing point at all times.. 
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Vanishing point fixation 

In order to locate the road vanishing point in images (e.g., like the peripheral 

camera video frame depicted in Figure 20) it is possible to use some a priori 

knowledge about the environment. For instance it is possible to use such distinct 

visual features as road edges and painted lane separation lines to help the 

system properly center the transform. Since these road lines virtually converge at 

the vanishing point it is possible to estimate the vanishing point location as the 

crossing point of these lines. 

A classical approach for line detection in an image is the Hough transform 

[53]. However, this can be computationally expensive especially when done in 

the high resolution Cartesian image space. Thus, it was decided to defer the 

Hough transform as a candidate for the vanishing point detection method and try 

to develop an alternative approach that would be application specific but more 

computationally effective. A new formulation was developed which conducts line 

detection directly in the log-polar space rather than in the high resolution 

Cartesian image. Performing the operations in the log-polar space provided two 

distinct benefits. The first benefit is that processing is done on a much smaller 

array of data and hence the computational burden for finding the lines can be 

significantly reduced. The second benefit is that finding lines in log-polar space 

reduces to merely searching a restricted area for only horizontal lines [21]. 

The concept of this approach is illustrated in Figure 24. The video stream 

acquired from the peripheral camera of the composite sensor is converted into a 
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log-polar image and then used for vanishing point detection. In order to find the 

road lines a simple horizontal edge detection is applied to the log-polar image. 

The longest horizontal lines are considered to be fragments of the road lines. The 

horizontal line length is calculated by counting adjacent pixels in the horizontal 

direction. By performing these running sums the result is also made tolerant to 

small breaks in the lines that can appear due to visual imperfections. Once lines 

are identified the algorithm takes the two longest horizontal lines in log-polar 

space, maps them back into Cartesian space and finds their crossing point in the 

image space. This crossing point is then the estimate of where the log-polar 

transform center is to be placed. For complete detail on this algorithm see 

Appendix C. 

In the driving simulator this algorithm showed excellent precision since the 

computer generated environment provides clear road lines, sharp road edges, 

constant ambient lighting conditions, and ideal pavement conditions. However, 

when the vanishing point detector was tested in video sequences taken from an 

actual vehicle in a real road environment, it turned out that the algorithm is 

sensitive to poor visibility of the road markings (see Appendix C). 

Visibility of the road lines greatly depends on weather conditions and natural 

illumination. Intuitive expectations of how weather would affect the functionality of 

the prototype computer vision system were quite different from the actual system 

response for the various environmental lighting conditions encountered during 

the field tests. For instance sunny weather is not ideal for road line detection. 
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This is due mainly to the presence of shadows which tend to cause false edges. 

Tree shadows were particularly troublesome. Another problem with both direct 

sunlight and sunlight reflected from the pavement is that it can simply "blind" the 

camera. One of the friendliest weather condition is an overcast sky with no rain. 

This condition provides a more even ambient light illumination. Another case 

where conditions were more favorable for success was during night driving. In 

this case the vehicle headlights illuminate the painted lane lines that are used for 
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estimating the vanishing point. Also, it can be difficult to detect painted lines in 

the rain because pavement becomes highly reflective and their visibility 

deteriorates; the road sides are thus a better feature for vanishing point 

estimation. 

Because the proposed method showed rather unstable vanishing point 

detection in a real environment, another vanishing point detector was built using 

the Hough transform in Cartesian space (see Figure 25). In this case the 

location of the vanishing point is calculated inside the peripheral camera view. 

First, the Hough transform line detection algorithm is applied to a video frame. 

Following this the road lines are identified and retained from all lines detected in 

the image. Lines not deemed to be road lines are eliminated from consideration. 

The crossing point of the road lines is then calculated and the coordinates of the 

vanishing point in the peripheral view video frame are obtained. Using these 

coordinates, the vanishing point in the foveal camera video frame is found. This 

can be done knowing the composite sensor geometry determined during 

calibration. The log-polar transform is then applied to both video frames centered 

at their respective vanishing points. The details of this vanishing point detection 

algorithm and complete field test results are provided in Appendix D. 

The Cartesian based method for finding the estimated vanishing point 

proved to be better than the log-polar based method because of the larger image 

space and hence higher resolution. This is a rather classical engineering trade­

off: larger image space and higher precision versus demand for more 
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calculations resulting in larger CPU loads. The log-polar based algorithm trades 

on smaller CPU loads, and the Cartesian based algorithm provides for better 

estimation precision. Precision is more important at this "preprocessing" stage of 

our image processing pipeline because the vanishing point is critical for the 

camera alignment module, which forms the composite log-polar video stream for 

subsequent processing. The effectiveness of the vehicle tracking algorithm 

depends highly on the log-polar image quality. Therefore, the Cartesian based 

vanishing point detector is chosen for the camera alignment module in the image 

processing pipeline even though it has a higher computation burden. 
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CHAPTER IV 

VEHICLE TRACKING IN COMPOSITE LOG-POLAR SPACE 

"The utilization of space-variant image sensors in mobile computer vision is 

not sufficiently explored." That was the initial observation and driving force 

behind this research. It was hypothesized that log-polar based space-variant 

image sensors may provide benefit for the implementation of certain tasks in 

mobile computer vision applications. The invention of the composite deep-field 

image sensor provides the ability to perform vehicle detection and tracking at 

greater distances. In conventional single-camera systems it is problematic to 

perform in-time vehicle detection for license plate capture because approaching 

vehicles are detected only in near proximity [6]. Before approaching vehicles 

grow to sufficient size to be detectable, they might already enter the license plate 

capture region and it might be too late to trigger the capturing camera. 

The main benefits offered by the composite log-polar image sensor are: 1) 

the improved far visual range (see Figure 20), 2) the excellent road segmentation 

ability (Figure 21), 3) the scale invariant vehicle representation (Figure 22), and 

4) the very compact image space. A system that possesses these features can 

perform the task of high speed vehicle detection and tracking in incoming traffic 
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by converting a complex set of methods that must be performed in Cartesian 

space into a relatively much simpler job of tracking an object of constant size 

moving along a linear (horizontal) trajectory contained in a much smaller 

rectangular image section, which ensures real-time execution. 

It was proposed that a good proof of concept application would be license 

plate capture from incoming high speed traffic. In this application the log-polar 

based vehicle tracking engine triggers the license plate capture camera when 

approaching vehicles move into the capture range. While a vehicle moves 

through the capture region a number of license plate snapshots are made and 

stored on disk. The stored images are then fed into the third party license plate 

reading application that produces a text string with the license plate number [22]. 

On-road vehicle detection overview 

The first step in vehicle tracking algorithm is to select reliable features for 

vehicle detection. There is a lot of material accumulated in this area during its 

several-decade history summarized in the best to date vehicle detection review 

by Zehang at al. [1]. This review classifies vehicle detection methods into three 

categories: 1) knowledge-based, 2) stereo vision based and 3) motion based. 

Only the first and the third categories are of our interest since they utilize a single 

camera input. 

Knowledge-based vehicle detection employs a priori knowledge about 

spatial features introduced by the vehicle's presence in an image. Since vehicles 
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are man made objects, they can be distinguished by strong geometrical features 

such as symmetry, vertical and horizontal edges and corners. Other, less robust, 

vehicle detection methods are based on vehicle shadow, vehicle color, and 

texture based detection. All these methods do not work well for nighttime vehicle 

detection. In this case vehicle headlights are often used as the most distinct 

feature. 

Motion-based methods are based on calculating optical flow. Giachetti et al. 

[6] published one of the best optical flow vehicle detection studies based on a 

dense optical flow vector field. They produced optical flow that can directionally 

and quantitatively distinguish approaching vehicles, and departing/overtaking 

vehicles from the background optical flow introduced by the host vehicle motion. 

However, using a dense optical flow vector field [6] is time consuming and 

impractical for a real-time system. In contrast, a sparse optical flow reduces the 

vector field to certain image features such as corners [54] or color blobs [55]. 

These methods lend themselves to a more real-time implementation in practice. 

Speed-based vehicle tracking in log-polar space 

The feature choice for the vehicle detection and tracking method to be 

adopted for the deep-field composite log-polar image sensor is based on the 

premise that a good vehicle tracking system should not be dependent on vehicle 

color, size, shape and lighting conditions at any time during day or night. The 

only unique geometric and light independent feature of vehicles in incoming 
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approaching traffic is their relative speed. When this feature is associated with 

optical flow it is unique in terms of direction and magnitude. 

The proposed vehicle detection and tracking method is thus based on optical 

flow calculation. The compressed image space produced by the composite log-

polar sensor offers an efficient platform for optical flow based tracking due to the 

limited pixel space processed (see Figure 26). The main benefit comes from the 

fact that the incoming lane stretching 0.22 miles ahead from the host vehicle 

(shown in Figure 20) can be segmented out (see Figure 21) and localized into a 

small image strip shown in Figure 26. Since optical flow calculation is a 

computationally expensive procedure, the reduced image calculation space 

ensures that there will be a smaller number of velocity vectors and thus faster 

execution. The scale-tolerance of log-polar space is also important because the 

vehicle shapes remain nearly constant along with geometrical features that will 

be used later as a base for the creation of the sparse optical flow vector field. 

The next step is to decide how to generate a feature-based sparse optical 

flow. Since vehicles are man made objects they posses various salient features. 

A general paradigm of finding salient features in an image based on color, 

intensity and linear fragments orientation is described in [56]. Since color and 

intensity are not reliable features considering various light conditions and vehicle 

colors, a better method would be to rely on corners as salient features. Moreover, 

corners have been tested as features for vehicle tracking based on sparse optical 

flow [54]. 
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The principle of the proposed optical flow based vehicle tracking algorithm is 

shown in Figure 26. After preliminary image processing (i.e., the vanishing point 

fixation, the log-polar image composition and the road segmentation), the 

algorithm receives the isolated left lane image strip as an input. The resulting 

lane image is divided into "initialization" and "tracking" regions. The initialization 

region serves as vehicle detection ground: here the hypothesis generation 

regarding a vehicle presence takes place. The tracking region is for hypothesis 

verification: if an optical flow vector grows above the speed threshold, then it is 

identified as being generated by a vehicle. 

The vehicle tracking algorithm works as a two-stage conveyor. The first 

stage is "hypothesis generation", alternatively called "initialization". It is set to 

detect the ten most salient features - corners with strongest eigenvalues. A small 

initialization region in the input image guarantees that some of those features will 

belong to vehicles. Obviously, some corners will be generated by the 

environment itself and not a vehicle. Once a feature is detected it is entered into 

the feature set for calculating the optical flow. Optical flow is calculated using the 

Lukas and Kanade algorithm [57]. Those features that propagate beyond the 

initialization region, (i.e. faster features), stay in the set. All others are dismissed 

before the next initialization. Hypothesis generation takes place once in 50 

frames. This corresponds to 2 seconds given a 25 fps video frame rate giving 

enough time for vehicles to move out of the initialization region. The 50-frame 

interval between initializations was determined experimentally. It is a parameter 

64 



that can be changed to match other frame rates or tuned to different applications 

and target object speeds. 

The second stage of the algorithm is "hypothesis verification", alternatively 

called "tracking". The features that reliably stay with vehicles within the tracking 

region have the largest speed and longest travel distance. A vector length 

threshold is introduced to determine if an optical flow vector belongs to a vehicle. 

This threshold is further referred as the "speed threshold". In reality it is 

measured in pixels comprising an optical flow vector calculated over an interval 

of fifty video frames. All vectors with horizontal component (X coordinate ) above 

the threshold are marked in red as shown in Figure 26. The coordinates of these 

features identified in red are now considered to be immediate coordinates of a 

vehicle. Thus a target vehicle is detected and its position in the input image is 

determined. This information can be used to determine the distance and 

trajectory of the approaching vehicle with respect to the host vehicle. One 

drawback to this algorithm is that it can not be reliably used for estimation of 

actual vehicle size. In practice the proposed vehicle tracking algorithm is an 

excellent candidate for driver assistance or warning systems, and for license 

plate scan applications. It can be used beyond the automotive environment and it 

is proposed that further work can be applied for applications related to high 

speed trains or aircraft. 

As to graphical notation in Figure 26 and further in Figures 27, 28, 29 the 

features that are currently in the optical flow calculation set are shown with bold 
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dots. Lines connected to the dots show the distance vectors of propagating 

features. Green indicates features below the speed threshold and red indicates 

those that are above the threshold. 

Figures 27, 28 and 29 illustrate the different cases of vehicle tracking. Figure 

27 shows tracking of a single vehicle in a step-by-step fashion. In the right 

column there is a collection of images illustrating vehicle propagation between 

the feature initialization region and the last frame when the vehicle has left the 

scene. On the left there are two pairs of foveal and peripheral camera snapshots. 

The first pair is related to the second log-polar lane image in the sequence and 

the second pair corresponds to the second log-polar image from the end of the 

sequence. These snapshot pairs provide a better visualization and understanding 

of where the vehicles are situated in Cartesian space. 

In Figures 27 and 28 it is interesting to see how salient features are detected 

and how they propagate with respect to the vehicle motion. As expected, most of 

the corners are detected in and around the vehicle as hypothesized. However, 

some of these features slip away from moving vehicles which can be 

problematic. For the "lost" features there are two further possibilities to consider. 

Firstly, they can remain on the background and thus be switched to the slow 

motion category (i.e., non vehicle). In this case if they were marked as "red", 

their vectors are reset during the next initialization phase. Secondly, the slipped 

features can "stick" to the next incoming vehicle in which case they can 

essentially become "lost" then "found". This situation is well illustrated by the 
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F/g. 27. Optical flow based tracking of a single vehicle. 
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Fig. 30. "Lost" and then "found" optical flow vector features. 

example of tracking a chain of vehicles as depicted in Figure 28 then shown in 

more detail in Figure 30. Similarly, the features originally detected in the 

background may "jump on" a passing vehicle and stay there. This can happen 

due to the original background texture being blocked by passing vehicles. When 

the vehicle leaves behind strong features in the background, they can attract the 

optical flow calculation algorithm and "steal" a feature vector from the vehicle. 

Because of these issues, the most stable features for a vehicle are located in the 

front part of the vehicle. This statement is supported by examples in Figures 27, 

28 and 29. 

For vehicle tracking in the night time (Figure 29) there appears a different set 

of features from those that appear for day time. For night time it is seen that the 

corners are detected on the borders of a halo formed by the headlights. Although 

a bit unexpected, without any algorithmic or system modifications, headlight 
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halos provide good features to track and the tracking algorithm performs as well 

as in day time. 

License plate scan 

The proposed motion-based vehicle tracking algorithm can be used in a 

license plate capture application for vehicle detection in incoming traffic without 

further modifications. Screen shots from the proof-of-concept license capture 

application are displayed in Figure 32. For this application one more camera is 

added to the system. This camera is dedicated to capturing the high resolution 

imagery of the license plate. This third camera is installed on the dashboard in 

front of the steering wheel as shown in Figure 31. 

The vehicle tracking engine software module triggers the license plate 

capture camera if an approaching vehicle enters into the capture range. The 

capture range is represented as "capture region" in the log-polar image of the left 

lane (see Figure 32). While a vehicle moves through the "capture region" the 

capture camera is active and takes snapshots with a frame rate of 25 fps. In this 

manner a number of license plate snapshots are made to ensure that a suitable 

image is stored for subsequent analysis by a character recognition module. 

Before being stored onto disk the acquired snapshot image is deinterlaced 

(see Figure 33). The deinterlacing stage is present in the system since the 

capture camera acquires video in NTSC standard format [58]. The NTSC system 

used in North America and Japan captures frames every 25th of a second, but 
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Fig. 31. License plate capture camera and the composite sensor installed in the test vehicle. 

they are recorded as a series of 50th second fields, each containing only the odd 

or even lines of the display. Therefore, for every captured license plate image 

there are actually two images that are saved to disk. The two images are 

identified as the odd lines or the even lines and together form the whole image 

frame. Logically, these images are half the height of the original. This step is 

only necessary if one is to use interlaced format cameras for the system. Other 

cameras which are not interlaced can be purchased if desired and then this step 

is unnecessary. Interlaced cameras were chosen for this dissertation since they 

are easily obtained and are cost effective. 
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Fig. 34. Third-party license plate recognition software. 

In order to demonstrate that the license scan system produces legitimate 

captures of license plates, the stored images are fed into a third party license 

plate recognition application that creates a text string out of a license plate 

number (see Figure 34). The third party software that was used for testing is a 

demonstration version of the license plate recognition application made by Hi­

Tech Solutions [22]. This software is normally used for stop-and-go traffic at 

automatic gates. Using this as a module to the vehicle detection/tracking system 

it effectively became the license recognition portion of the proposed mobile 

application. 

The demonstration license plate recognition software depicted in Figure 34 

reads the image files previously stored by the license plate scan application and 

displays the recognized number on the screen. The test demonstrated that for 

every vehicle the capturing camera made two to four clear snapshots of the 
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license plates. The recognition software did not read all license plates with 100% 

accuracy. On average the software was capable to recognize all symbols in one 

of the snapshots made from the same vehicle. In other snapshots one or several 

figures or characters were identified erroneously. Although optical character 

recognition methods and robustness are beyond the scope of this dissertation, it 

was observed that such misreadings seemed to be directly related to the 

similarity of letters and/or numbers and the illumination and conditions of the 

environment at the time of image capture. 
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CONCLUSIONS 

Two significant contributions to the field of synthetic vision are apparent from 

this dissertation. For the first contribution a new interpretation and view of the 

classical log-polar transformation is developed via expanding to a third dimension 

and viewing the z axis as being a mapping in the form of a log funnel. This novel 

paradigm shows how far visual fields can be seamlessly mapped into a single 

log-polar composite space. This visualization is new and offers researchers a 

method to combine far and near visual acuity into one computational space that 

can support simultaneous computation on both the near field and the far field in a 

unified way. The second contribution is that this work has demonstrated the 

benefits of log-polar image representation in a mobile computer vision based 

application with the ultimate test being of robust high frame rate performance in a 

"real world" automotive environment. 

The novel composite log-polar deep-field image sensor opens new horizons 

for computer vision. Its theoretically unlimited expandability of depth of field 

paired with the ability to compress space in a scale tolerant manner makes this 

image sensor an efficient input device for computer vision applications imaging 

over large distances. The author has found no other single camera with standard 
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optics in the literature that can deliver better depth of field performance. In this 

dissertation the complete composite image sensor theory was developed 

followed by design guidelines, optics considerations, special calibration 

procedure and calibration tools which can now be used by other researchers for 

consideration in their applications. 

It has been shown that under correct camera alignment the log-polar image 

space offers excellent image segmentation and perspective distortion mitigation 

for far outstretched scenes. In the case of vehicle tracking, this manifests itself in 

excellent road segmentation and scale tolerant vehicle representation. When the 

camera alignment is done properly, the center of log-polar transform (i.e., the 

optical axis of the composite sensor) is coincident with the road vanishing point. 

To ensure for correct camera alignment, appropriate vanishing point detection 

and fixation algorithms were developed. The downside for this strict camera 

alignment requirement is that failure of vanishing point fixation algorithm leads to 

road deformation in the log-polar space and the advantages in road 

segmentation and scale-tolerant vehicle representation are lost. The vanishing 

point fixation algorithm failure may happen on occasions when less then two road 

lines are detected. An example of such a situation is an unmarked road in the 

night time. This drawback may be mitigated by coupling other methods for 

alignment to the vanishing point. This is left as a topic for future work. 

The proof-of-the-concept vehicle tracking application demonstrated the 

following advantages for the use of the composite log-polar image sensor: 1) 
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extended visual range that allows for vehicle detection at distances unattainable 

for contemporary computer vision systems [1], 2) convenient road segmentation 

in the form of horizontal rectangular sections, 3) scale tolerant vehicle 

representation, and 4) significantly smaller image space that reduces 

computational load. Furthermore, field tests demonstrated that motion-based 

vehicle detection and tracking is equally successful in both day time and night 

time. Preliminary test results showed near 100% vehicle detection and tracking, 

however extensive testing under different weather conditions in all seasons is 

recommended for future work. Another topic for further investigation would be 

looking at the phenomena of the "lost" and "found" features in the optical flow 

calculation. Such research might offer a method to prevent the tracked features 

from "slipping off' the vehicles under some observed conditions. 

Not only does the composite sensor expand the depth of the field, but it also 

mitigates perspective distortion and significantly reduces the amount of visual 

data required to process. This in turn allows for real time tracking of vehicles from 

the far field to the near field. In the proof-of-the-concept application the input 

foveal camera image (with resolution of 640x480 pixels) and the input peripheral 

camera image (with resolution of 320x240 pixels) are collapsed into the joint 

composite log-polar image. In this log-polar space the incoming lane is extracted 

and has a resolution of 180x30 pixels. This represents a reduction in the data 

necessary to be processed of seventy-one. Thus the optical flow technique used 

for vehicle tracking is also on the order of seventy-one times faster in the log-

polar space than if it is implemented in two separate Cartesian images. 
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The proof-of-the-concept vehicle tracking application developed in this 

dissertation is only scratching the surface of all possible applications for such a 

composite deep-field image sensor. From experience gained in this research, a 

general observation can be made about applications where such a sensor would 

be suitable. It is observed that this sensor is most effective for tracking objects 

with high relative speeds moving on linear trajectories parallel to the sensors' 

optical axis. In a similar manner to the automotive computer vision application 

presented in this research, the two-camera composite sensor can be used in 

obstacle detection for high-speed trains (e.g., magnetic levitation trains). 

Considering that the speeds of the fastest trains exceed 500 km/h the three-

camera composite image sensors would be applicable to a system where an 

operator would want to be alerted to an obstacle in the tracks with sufficient time 

to slow the train. Such a scenario would necessitate a far field view to be 

successful. 

This current work has not pushed the limits of the composite sensor. Any 

future work would require the exploration of three-, four-, and possibly greater 

multi-camera nested composite sensors. It is unlikely that ground-based 

applications such as vehicle tracking, or obstacle detection for high-speed trains 

will require more than three-camera composite sensors. It is the author's view 

that airborne and space borne applications may will benefit greatly from a vast 

depth of field. An example would be for computer assisted aircraft landing and 

computer assisted spacecraft docking [39]. 
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APPENDIX A. COMPOSITE IMAGE SENSOR PROTOTYPES 

First "Laboratory" prototype of the composite image sensor. 

The laboratory prototype of the composite sensor is based on a tilt, pan and 

zoom (TPZ) network camera Panasonic BB-HCM381A. This camera serves as 

the foveal camera. It has variable zoom that provides optical magnification up to 

21 times and the view angle as small as 2.6°. The peripheral camera is the 30° 

view angle ultra-compact Panasonic GP-CX161/53 camera. It is mounted above 

the TPZ camera lens as shown in Figure A.35. Such composite sensor prototype 

provides a very flexible laboratory platform. For instance the variable zoom was 

used to match the log base in experiments supporting the composite sensor 

design theory (see Figure B.38). 

Second "Field-Test" prototype of the composite image sensor. 

One of the requirement for the "field-test" prototype is rigid and compact 

design. The choice of cameras was made from rigid surveillance cameras with 

small "lipstick" form-factor. The peripheral camera has a 98 degrees view angle. 

Foveal camera has a 10 degrees view angle that provides visual range of 

approximately 0.22 miles for the vehicle tracking application. Also, both cameras 

have compact consumer-grade optics rather then bulky and heavy professional 

lenses. This makes the assembly light and compact and it can be easily mounted 

behind the windshield. 
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a) The "laboratory" prototype of 2-camera composite sensor 

b) Test setup in Project54 driving simulator 

Fig. A. 35. Composite sensor "Laboratory" prototype 
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Fig. A. 36. The "field-test" composite sensor prototype and installation inside a vehicle 
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The design of the composite image sensor does not pose any special 

requirement on cameras other then view angle scaling shown in equation (10). 

The "field-test" prototype shows that a regular surveillance camera retailer is 

capable to offer a satisfactory choice of mainstream cameras and optics to build 

a composite sensor. It is not relevant to mention what camera models were used 

in the "field-test" prototype because the industry has many alternatives and 

frequent upgrades. However, it is worth to mention that the total camera cost for 

the sensor was below $250. 

The proposed two-camera composite image sensor has several look-a-likes. 

However, they come from areas of computer vision other then vehicle tracking 

[51], [52]. There are several differences that set aside the proposed image 

sensor from these similar in appearance non-log-polar foveated two-camera sets. 

1) They do not target the same goals, i.e. single image output, expandable range 

and scale invariance. 2) These cameras were designed for near field. Their 

magnification ratio between the foveal and peripheral cameras is about 2x to 4x. 

In contrast, the magnification ration in the log-polar composite sensor is as much 

as 10x. 3) A user of the composite log-polar sensor is abstracted from the 

number of cameras in the composite sensor. From the user's standpoint it is a 

single image sensor with a single output image. In contrast, the look-a-like 

camera sets are treated as sets of separate cameras where the foveal-to-

peripheral view relation is established via relatively computationally expensive 

tasks of image registration [51] and 3D reconstruction [52]. 
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APPENDIX B. COMPOSITE SENSOR DESIGN THEORY 

Secondary oversampling in nested cameras. 

As it was shown the composite sensor design section of Chapter 2 it is a 

good design practice to adjust the fovel camera view to overlap and eliminate the 

oversampled region of peripheral log-polar image. Naturally, a similar 

oversampled region also exists in the foveal camera log-polar image. This 

oversampled region will be further referenced as a secondary oversampling. 

Similarly to equation set number (7) the equations (12) identify the border 

circumference of radius pbFov measured in Cartesian pixels on the foveal camera 

sensor, and corresponding value of ubFov in log-polar domain. The last formula in 

equations (12) shows how foveal border point is positioned in joint log-polar 

space. The effect of using the foveal camera is shown in Figure B.37. Higher 

resolution provided by the foveal sensor has reduced the oversampled region but 

it was not eliminated completely. 

i =i 
P^-m(a) (12) 

PbFov = 1 ln(a) 

"*f0»=logfl(A'6-p4fov) = loga( - 7 -
Pmax-fo

 a 
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Foveal and peripheral camera sensor spaces in logarithmic transformation 
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Fig. B.37. Decreasing the oversampled region with foveal camera. 

In fact it is possible to influence the size of secondary oversampling by 

choosing appropriate dimensions for the input and output spaces or, more 

precisely, by choosing the relation between them. Figure B.38 shows different 

log-polar mapping schemes and corresponding peripheral and foveal border 

points. From these diagrams an interesting observation can be made: as the 

higher resolution input space is collapsed into a smaller resolution output space 

secondary oversampling is lessened. Actually, with certain parameters the 

secondary oversampling can be eliminated completely. Given the camera sensor 

resolution as a design constant, the secondary border point in the output space 
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Image sensor resolution in foveal and peripheral cameras 

640 x 480 320 x 240 

Q. 

O 
Q. 
i 

D) 
O 

!3 O 
"S CO 

to 

• / 

/ 
i 

F M d . I I d peripheral camera sensor spaces in logarithmic transformation 

, „ - - " " 

Peripheral camera mapping field 
—©— Peripheral border point 
——~~~ Fovsal camera mapping Held 

O Foveal border point 

. 

-

-

100 200 300 400 500 600 
Camera sensor space (pixels) 

Fowal and peripheral camera sensor spaces in logarithmic transformation 

300 

250 

TB 200 

H 
• 1=0 

S 
100 

50 

Foseal and peripheral camera sensor spaces in logarithmic transformation 

_ , ^ - ' ' " ' 

> / 
/ 
/ 
/ • 1 

i 
1 
J 

-

-

-

-

-

' / 
• / 

/ 

1 

Fowal and peripheral ca Tiera sensor spaces 

--"""" 

n logarithmic transformation 

""" 

-

-

• 

400 500 
Camera sensor space (pixels) 

Fowaal and peripheral camera sensor spaces in logarithmic transformation 

50 100 150 200 250 300 
Camera sensor space (pixels) 

Fo\eal and peripheral camera sensor spaces In logarithmic 

250 300 

Camera sensor space (pixels) 

Fig. B.38. Primary and secondary oversampling under different input resolutions 

(ubFov) can be made as small as desired by changing the base of logarithmic 

transformation. 
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This leads to another design consideration: 

The size of the secondary oversampled area can be tuned using formula (12), 

but now as a function of logarithm base: wAF0v(a)=1°g«( TT - ) 
Pmax-m- a 

Figure B.39 shows this function for the two input space resolution used in 

current composite sensor design. 
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Fig. B.39: Radius of secondary oversampled area as a function of log base 

The change of log base will also influence the size of output log-polar space 

in radial dimension, since umax=\oga{pmca) . In fact there might be a tradeoff 

between the output space size and the size of secondary oversampled area. To 

make a design decision the output space must be assessed as a function of the 

input space size, oversampled area size, and log base value (equation (13)). 
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"'""=ln( ' , ) ('3> 

Composite Sensor Design Chart is a helpful tool for choosing sensor 

design parameters (see Figure B.40). This chart offers a quick graphical tool for 

choosing a combination of key parameters (a, umax, ubFov) based on formulas (12) 

and (13). Joint-parameter diagrams given in Figure B.40 reflect two popular 

camera resolutions: (a) 640x480 pixels (pmax =240) and (b) 320x240 pixels [pmca 

=120). These camera resolutions are used in the current composite sensor 

prototype. Once the parameter combination choice is made, the foveal camera 

view angle should be calculated using formula (10). 
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Fig. B.40. Composite sensor design charts. 

91 



Custom design charts for arbitrary resolutions can be generated using 

MATLAB code inside "CompositeSensorDesign.m" file that can be found on the 

CD/DVD accompanying this dissertation. 

Example. Design of a composite sensor with no secondary oversampling in 

output image. Peripheral camera angle is static and equal to 53.4 degrees. The 

initial design constrains applied on foveal and peripheral cameras are following: 

Case 1: camera resolution is 640x480 pixels. 

Case 2: camera resolution is 320x240 pixels. 

Case 1: 640x480 input (pmax = 240) Case 2: 320x240 input (pmax = 120) 

From Figure B.40a the log base at 
UbFov=0 is a ~ 1.066 

Output log-polar space radial dimension: 
umax= 86 pixels 

Camera angles: 
0per= 53.4° 
0fov= 3.5° 

From Figure B.40b the log base at 
UbFov̂O is a ~ 1.095 

Output log-polar space radial dimension: 
umax

= 53 pixels 

Camera angles: 
©per= 53.4° 

©fov= 4.9° 
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APPENDIX C. VANISHING POINT FIXATION IN LOG-POLAR SPACE 

The proposed vanishing point fixation method is based on some a priori 

knowledge about the environment. The road edges and painted lane separation 

lines are used for estimating the vanishing point location. Since the 

aforementioned road lines virtually converge at the vanishing point, the log-polar 

mapping centered on the vanishing point transforms the road edges and lane 

separation lines into strictly parallel lines (see Figure 23a). If the center of log-

polar mapping drifts from the vanishing point, the parallel lines start bending on 

the log-polar image (see Figure 23b,c,d). This bending has an important 

property: because the foveal (left) region of the log-polar image is more sensitive 

to the center point shift in opposition to the peripheral (right) region, the road 

lines in the log-polar image bend mostly in the foveal region while their peripheral 

section stay parallel withstanding larger deviations from vanishing point. This 

property is immediately evident from the geometry of the log-polar 

transformation: 1) the angular shifts corresponding to the center point 

displacement are larger with regards to a point in the foveal region opposed to a 

point in the periphery because the latter is more distant from the log-polar 

mapping central point; and also 2) because the size of receptive fields in the 

fovea are smaller then in the periphery (see Figure 5). 
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(Xc, Yc) at the vanishing point. Begin: 
camera frame captured 

(Xc, Yc) is offset. 
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I 
Segmenting the road 
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I 
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threshold 

I 
Use bend information to 
adjust (Xc, Yc) to the 

vanishing point 

Fig. C.41. The vanishing point fixation algorithm. 
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The algorithm for vanishing point fixation is described in Figure C.41. Images 

on the sides of the blocks display actual data at every stage of the image 

processing pipeline. The notation (Xc,Yc) is used to describe the center of log-

polar mapping applied to the incoming Cartesian images - the video frames 

captured with a uniform sensor camera. Initial position of the log-polar mapping 

center is the middle point of the video frame: Xc = FrameWidth/2 and Yc = 

FrameHight/2. It is assumed that the host vehicle is moving straight along the 

road and the optical axis of the camera is parallel to the road. In the ideal case 

these conditions are sufficient for the center point of the acquired image be 

coincident with the vanishing point of road perspective. In practice, the deviations 

that cause their misalignment are inevitable and persistent. They are caused by 

vehicle vibration and micro-turns peculiar to the human way of driving via 

adjusting to the road. These two causes were discovered during our laboratory 

and field tests. Those tests also showed that the vanishing point deviations have 

a relatively small amplitude around the center of the image. However, it is 

impossible to give a definite quantitative evaluation of the vanishing point 

deviations amplitude, because they entirely depend on particular camera fixture, 

properties of the pavement, vehicle suspension and possibly other parameters. 

For the purposes of this paper it is assumed that the vanishing point remains in 

the central part of the image within a circular region of diameter equal to 1/6 of 

the image width. 

The algorithm starts with log-polar image acquisition by applying the log-
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polar mapping with center at (Xc,Yc) as shown in Figure C.41. The horizontal 

edge detection using a Sobel filter followed by gray level thresholding is then 

applied to the acquired image. This is the first step in extraction of the road lines. 

The peripheral sections on the road lines remain parallel to each other and 

perpendicular to the axis v of the log polar grid . This property allows the use of 

running sums (projection) in the vertical direction of the image for the purpose of 

detecting straight lines perpendicular to the axis v. In order to identify the best 

candidates for the road lines, the running sums not belonging to the road section 

on the log-polar image are segmented out. Then, two global maximums have to 

be found between the remaining running sums, which correspond to two most 

significant straight lines perpendicular to the axis v. They are treated then as 

parallel sections of the two most recognizable road lines. Later in the algorithm 

the intersection of two road lines in the Cartesian space will estimate the location 

of the vanishing point. 

When the two most prominent parallel segments of road lines are extracted, 

they are used to assess the deviation of the log-polar mapping center (Xc,Yc) 

from the vanishing point. The shorter road lines' parallel segments are, the earlier 

they bend in the log-polar image, the larger is the deviation from the vanishing 

point. Therefore, the running sum maximums are thresholded against a reference 

value. This threshold essentially states that if the parallel road segments are 

above it, then the center of the log-polar mapping (Xc, Yc) is in sufficient proximity 

to the vanishing point. The higher the threshold is set implies the higher the 
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precision. Here, the threshold is defined as a fraction of the log-polar image size 

in u dimension, or otherwise a percentage of umax (t/max is shown in Figure 5). In 

our experiments the threshold values from 60% to 80% were used. 

If thresholding detects a significant deviation from the vanishing point, the 

algorithm branches into calculation of its better approximation. For every set of 

two running sum maximums the corresponding pixels in the edge-detected log-

polar image are found. Neighborhoods are then searched for the bending 

fragments in upper left and right directions. Once such "bending neighbor" pixels 

are acquired, their log-polar coordinates are converted back to Cartesian space, 

(X1 RunMaxi,Y1 RunMaxi). Now we need another point on the road line corresponding to 

the same running sum maximum to derive the (road) line equation in the 

Cartesian space. For this purposes the (vRunMaxi , umax) is taken and its Cartesian 

coordinates are calculated (X2RunMaxi,Y2RUnMaxi). Then these points are used to 

calculate the line equation in Cartesian space in form of y = kx + b (shown in 

(14)). 

i _ i _\* ^ RmiMaxl~ * ' RimMaxl) , 
"'l~'"•RunMaxl~/ yy — YJ \' 

\A^ RunMaxi A 1 RunMaxi) (] A\ 

, _ , _V RunMaxi*** RnnMaxl~ ^RunMaxi* ** RunMaxi) 
"'l~"'RunMaxi~ I yj _ yy \ > 

X^-1 RunMaxi ^Z RunMaxi) 

Finally, two road line equations in Cartesian space are obtained for each of 

the parallel road segments (or running sum maximums) found earlier. We will 

denote them as y = fax + £>? and y = k2x + b2. These line equations describe the 

two most distinguishable road lines, which may belong to road edges or painted 
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lane markings. Naturally, the vanishing point would be the intersection of these 

lines. Hence, the new estimation for the vanishing point, i.e. its coordinates 

{XvP,yvp), would be calculated as shown in (3). 

_(b2-bl) _{kl-b2-k2-b1) 

Once the new estimation for the vanishing point is made, the log-polar 

mapping is applied to the same video frame. The parallelism of road lines on the 

log-polar image is verified again until a sufficient threshold is reached, or the 

algorithms is stopped because the maximum number of iterations has been 

reached. The latter may occur if the input image is of bad quality and the road 

lines do not produce distinctive edges. 

The demonstration of the algorithm is presented in Figure C.42. The input 

video was acquired in the driving simulator while moving along a two-lane road. 

The left column shows several time-interval successive video frames from the 

sequence. The corresponding "motion compensated" log-polar video frames are 

shown on the right. Since the input video quality is very good and the simulated 

environment is free from the pavement imperfections, the algorithm performed 

with high accuracy (near 100%) to achieve the desired vanishing point 

approximation defined by 60% threshold. 
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Fig. C.42. Vanishing-point fixation applied to video stream taken in driving simulator. 
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Fig. C.43. Field tests of the vanishing point fixation algorithm 
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In order to complete evaluation of the road follower, it was tested in a video 

sequences taken in real environment on the road (see Figure C.43). These tests 

have shown that the algorithm greatly depends on visibility of the road markings 

and it is sensitive to the lane markings damage and their reflective properties. 

Weather conditions, quality of ambient illumination, and road marking 

imperfections may cause problems which diminish algorithm performance. On 

"good" road sections the algorithm is able to detect the vanishing point as shown 

in Figure C.43. 



APPENDIX D. VANISHING POINT FIXATION IN CARTESIAN SPACE 

Like the vanishing point fixation method in log-polar space described in 

Appendix C the Cartesian method also relies on painted lane separation lines 

and road edges to detect the vanishing point. The road lines virtually converge at 

the vanishing point. Therefore, the major stages of detection algorithm are 1) to 

find the road lines in peripheral camera video frames, 2) find their line equations 

and 3) calculate the crossing point coordinates. 

The block diagram of vanishing point detection algorithm in Cartesian space 

is shown in Figure D.44. The principal element of this algorithm is line detection 

based on Hough transform [53]. Before the Hough transform is applied the video 

frame has to be preprocessed. First, the region of interest in the image is set to 

the lower part of the video frame which contains the road. Second, the Canny 

edge detection algorithm [59] is applied to this region. The output of this 

preprocessing stage is a binary image of the road containing edge information. 

Typically, the road sides and painted lane dividers produce long linear edges that 

are well detected by Hough transform. When Hough transform is applied to the 

road image there are many more lines detected in addition to the road lines and 

lane dividers. At this point it is necessary to filter the road lines from rest of the 

lot. 
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F/g. D.44. Vanishing point fixation algorithm in Cartesian space 
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The results of Hough transform are presented as a table of line parameters 

in polar coordinate system, i.e. (p, 0). The elements of this table are sorted into 

four bins: 1) left road border, 2) left lane divider, 3) right lane divider, and 4) right 

road border. Each bin has a filter of polar coordinates (p±Ap, 6>±A6>) that 

corresponds to expected location of each aforementioned road line. Those lines 

in the Hough detection result table which parameters do not match any of the 

bin's filters are thrown away. Now, each bin may contain zero, one or many lines. 

No lines in a bin means that it was impossible to detect any line in this location. It 

often happens to lane dividers because of poor visibility due to physical damage 

or if those are dashed road dividers. One line in a bin is usually generated by 

single lane border lines. Most often there are several lines in a bin. They are 

usually generated by double lined lane dividers and lines and linear textures on 

the road sides. If there are several lines in a bin their (p, 0) parameters are 

averaged to produce a single representative of this road line as it is shown in the 

fourth block down on Figure D.44. 

p2cos0l — plcos02 \ 

Plsm02-p2srn9lj 
(16) 

Pi 
cos{9x — 62) 

The last algorithm stage is to calculate crossing point of the detected road 

lines. General equation for calculating a crossing point of two lines in polar 

coordinates is given in (16). Each pair of the road lines generates a candidate for 

vanishing point. Therefore, if total number of N road lines (where 0 < N < 4) is 
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detected in a video frame, the number of vanishing point candidates is: (N - 1)1. 

Finally, in order to obtain a single vanishing point estimate the coordinates of all 

candidates are averaged. 

Once the vanishing point polar coordinates are calculated they are 

translated into Cartesian coordinates of the peripheral camera video frame. The 

log-polar software mapper is then applied with the center at this point as it is 

shown in Figure 25. Also, the Cartesian vanishing point coordinates are 

translated into video frame coordinates of the foveal camera. It is made with 

respect to scale factor K from equation (8) and optical axis coordinate 

adjustments stored during calibration of the composite sensor. Again, the center 

of log-polar mapper is applied at the vanishing point in foveal video frame. 

Together with the peripheral log-polar image they compose the joint log-polar 

video frame as it is shown in Figure 25. 

The field tests of the Cartesian vanishing point detection algorithm have 

shown excellent results (see Figures D.45 and D.46). The vanishing point 

estimates where stable and accurate. The quality of vanishing point detection 

can be judged by appearance of the road lines in composite log-polar image: on 

straight road they should be parallel in horizontal direction. The video sequences 

in Figures D.45 and D.46 show peripheral and foveal camera inputs along with 

corresponding composite log-polar video output. The circles in foveal and 

peripheral images show the areas around the vanishing points where the log-

polar mappers are applied. Also the peripheral camera images show 1) the result 
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of edge detection applied on the image section containing the road and 2) the 

road lines detected from these "edge" images. The detected road lines are 

marked with cyan lines. 

The algorithm demonstrated nearly 100% precise vanishing point estimation. 

It is equally reliable in both day time and night time road tests despite different 

lighting conditions (see Figures D.45 and D.46). The simple explanation is that 

the algorithm shall work as long as two of the road lines are visible. In night time 

the headlights usually provide illumination to make visible at least two reflective 

lines bounding the immediate lane of movement. Often the headlights provide 

enough illumination to pick up as many lines as in day light. 

The algorithm is rather robust because it is designed to detect four road 

lines, but under poor visibility it is sufficient to detect only two road lines to 

estimate the vanishing point location. However there are situations when no road 

lines are visible. For instance on freshly paved and unmarked road in the night 

when neither lane dividers nor edges of the road are visible. Same situation may 

happen if it rains in the night. Rain makes pavement highly reflective, so lane 

dividers have poor visibility. Possible solution is to use a night vision infrared 

camera. Such camera should provide reliable visibility in night time and possibly 

in other harsh weather conditions like fog and heavy snow. 
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