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ABSTRACT 

A BAYESIAN STORMWATER QUALITY MODEL AND ITS APPLICATION TO WATER 

QUALITY MONITORING 

by 

Pedro Avellaneda 

University of New Hampshire, September, 2008 

Stormwater runoff is a topic of research that over the years has increasingly grown 

due to its impact on our water resources. Treatment systems have been developed to 

mitigate this impact by preserving the pre-development hydrologic and water quality 

characteristics of the drainage areas. Understanding of the systems' treatment 

capabilities is required for stormwater management. The goal of this research was to 

study the application of a decay treatment model as a conceptual tool for understanding 

the pollutant removal characteristics of stormwater systems. Three systems were 

studied in this research: a sand filter, a gravel wetland, and a retention pond. The 

contaminants under consideration include: total suspended solids (TSS), total petroleum 

hydrocarbons - diesel range hydrocarbons (TPH-D), dissolved inorganic nitrogen (DIN, 

comprised of nitrate, nitrite, and ammonia), and zinc (Zn). 

The mathematical model was based on the mass balance principle and the 

assumption that an n-order decay model describes the complex processes of pollutant 

removal (for example sedimentation, biodegradation, filtration, plant uptake, and 
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chemical precipitation). The model was defined by the parameters of removal rate (k) 

and the decay order (n). For each treatment system, a collection of storm events was 

monitored between 2004 and 2006. Monitoring of the treatment systems was performed 

in a side by side fashion so that each system received the same stormwater quantity and 

quality. This configuration made possible a comparison of the calibrated parameters 

obtained for each system. The best set of parameters of the decay model was 

determined by using a simulated annealing technique as part of the optimization 

process. Monte Carlo simulations were performed to describe the uncertainty of the 

estimated effluent concentrations. The gravel wetland achieved the highest median DIN 

and TSS removal rates. For TPH-D, the highest median removal rates were achieved by 

the retention pond and gravel wetland. The sand filter and the gravel wetland achieved 

the highest median Zn removal rates. First and second order decay models were more 

likely to describe the observed effluent concentrations. 

A Bayesian statistical approach for determining parameter uncertainty of the 

stormwater treatment model is presented. For this model, it was found that a second 

order decay model was more likely to reproduce estimated effluent concentrations. 

Mean removal rate values were computed from the posterior distributions. Specifically, 

for the gravel wetland: kTss = 59, kZn = 2115, kTpH-D = 88, kDiN = 7; for the sand filter: kTss = 

1-7, kZn = 1568, kTpH-D = 57, kD|N = 2; and for the retention pond: kTSS = 0.8, kZn = 4645, 

1<TPH-D= 88, kDiN= 8 (k in units of (mg/l)"1/day). 
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CHAPTER 1 

INTRODUCTION 

Objective 

Stormwater runoff is a topic of investigation that over the years has increasingly 

grown due to its impact on our water resources. Treatment systems have been 

developed to mitigate this impact by preserving the pre-development hydrologic and 

water quality characteristics of the drainage areas. Understanding of the systems' 

treatment capabilities is required for stormwater management. The goal of this research 

is to investigate the application of a decay treatment model as a conceptual tool for 

understanding the pollutant removal characteristics of stormwater systems. Three 

systems were studied in this research: a sand filter, a gravel wetland, and a retention 

pond. Contributions to the calibration and validation of the treatment model are provided. 

Organization Of Dissertation 

This dissertation consists of five chapters, four of them written as self-contained 

individual papers for submission to peer-reviewed journals. An introductory chapter 

presents the objectives and organization of dissertation. 

Chapter 2, "On parameter estimation of an urban stormwater runoff model", describes 

the application of an accumulation and wash-off model for estimating stormwater quality 
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from an urban watershed. Optimized parameter values are provided for a collection of 

contaminants. 

Chapter 3, "Modeling urban stormwater quality treatment: Model development and 

application to a surface sand filter", describes a decay treatment model for stormwater 

management. A probabilistic approach for estimating effluent water quality from a sand 

filter is introduced. 

Chapter 4 is "Modeling urban stormwater quality treatment of a gravel wetland, a 

retention pond, and a sand filter". The approach described in Chapter 3 is extended to a 

gravel wetland and a retention pond. A comparison of the model performance among the 

three systems is then provided. 

Chapter 5, "A Bayesian stormwater quality model and its application to water quality 

monitoring", describes how a Bayesian statistical approach is applied to the model 

developed in Chapters 3 and 4 for describing the variability of the model parameters. 

Site History 

The field site for this research is located at the University of New Hampshire 

Stormwater Center (UNHSC), Durham, NH. Since 2003, the center has conducted 

research to evaluate and enhance the performance of stormwater management 

systems. Stormwater runoff is provided by a 36,000 m2 commuter parking lot that is used 

to near capacity during the school year by a combination of passenger vehicles and bus 

traffic. Pollutant concentrations are above, or equal to, national norms for commercial 

parking lot runoff. The climatology of the area is characterized as coastal, with an 

average annual precipitation of 1220 mm uniformly distributed throughout the year. The 

average annual snowfall is 2032 mm. 
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The field site contains three classes of stormwater treatment systems: conventional, 

structural best management practices (BMPs) such as swales and retention ponds; low 

impact development (LID) stormwater designs such as tree filters, bioretention systems, 

and a gravel wetland; and manufactured BMPs such as hydrodynamic separators and 

subsurface infiltration / filtration systems. The parallel configuration of the systems 

normalizes the stormwater contaminant loading (same influent for each system), 

allowing for a comparison of performance. Each system is uniformly sized to address a 

Water Quality Volume (WQV) of 92.5 m3. 
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CHAPTER 2 

ON PARAMETER ESTIMATION OF AN URBAN STORMWATER RUNOFF MODEL 

Abstract 

An accumulation and wash-off model was applied and calibrated on an asphalt 

parking lot located in the northeastern United States. The field measured data consisted 

of rainfall, flow, and runoff samples taken over 26 storm events monitored from 2004 to 

2006. The contaminants under consideration include: total suspended solids (TSS), total 

petroleum hydrocarbons - diesel range hydrocarbons (TPH-D), dissolved inorganic 

nitrogen (DIN, comprised of nitrate, nitrite, and ammonia), and zinc (Zn). The aim of the 

study was to find the best fitting parameter values on a storm by storm basis. 

Subsequently, the range and variability of these parameters are provided for modeling 

purposes and other urban stormwater quality applications. A normal distribution was 

fitted to the optimized model parameter values to describe their distributions. A 

simulated annealing algorithm was used for the parameter optimization technique. 

Several examples are given in order to illustrate the methodology and the performance 

of the model. Finally, a Monte Carlo simulation was performed to assess the capability of 

the model to predict contaminant concentrations at the watershed's outlet. 
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Introduction 

As a consequence of the awareness of the pollution impact due to stormwater, 

managers need tools to evaluate and control stormwater according to water quality 

criteria (House et al., 1993; Ahyerre et al., 1998). Application of storm water runoff 

quality models is necessary to improve: watershed management, selection of 

stormwater technologies, parameterization for modeling purposes, understanding of 

model limitations, and assessment of how much confidence one could have in these 

models. 

Stormwater contaminant runoff models are commonly used for urban stormwater 

quality applications (DeCoursey et al., 1985; Tsihrintzis et al., 1997; Zoppou, 2001). 

These models are usually a combination of accumulation and wash-off equations. The 

accumulation of contaminants on impervious surfaces is non-linear and follows an 

exponential increase as it approaches to a maximum value (Alley and Smith, 1991). The 

total amount of contaminants is a function of the initial mass on the surface area and the 

length of the antecedent storm dry period. The common accumulation model: is entirely 

deterministic; follows an exponential time history; and does not take into account the 

spatial distribution of the contaminants (Alley and Smith, 1991). 

Sartor et al. (1974) performed several field experiments on street surfaces when 

investigating a mathematical expression for simulating the wash-off of contaminants. 

The study revealed that an exponential decay model was able to reproduce measured 

observations. This exponential decay model was a function of the available mass and 

rainfall intensity. Other studies have proposed the usage of the total runoff volume or 

runoff rate as opposed to rainfall rate (Haiping and Yamada, 1996). Computer models 

normally use a runoff rate approach and include a wash-off coefficient in the erosion 

model (Rossman, 2004). 
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There are a variety of techniques available for model calibration purposes. The 

simplest method is trial and error. Genetic algorithms, gradient-based functions, and 

simulated annealing are just a few of the more advanced calibration procedures that 

have been proposed to perform the optimization process (Hopgood, 2001). All these 

methods stochastically explore the domain of the objective function by using a different 

goodness-of-fit criterion. 

Alley and Smith (1981) provided an understanding of model sensitivity to the 

parameters for an urban runoff quality model. Water quality constituents in their study 

included total nitrogen, total lead, and suspended solids. To assess parameter 

sensitivity, mathematical expressions were derived for each model parameter by direct 

differentiation of the analytical accumulation and wash-off equations. The wash-off 

coefficient was found to be the parameter with more variability among the parameters of 

the accumulation and wash-off model. Further analysis of the variability of the 

parameters was recommended. 

Haiping and Yamada (1996) employed an adaptive step-size, random search 

algorithm to calibrate an urban runoff model. The wash-off model used in their study was 

a function of rainfall intensity. However, a wash-off exponent was not considered. The 

contaminants under consideration were total nitrogen, total solids, and total phosphorus. 

The model was applied continuously (long-term simulation) over a four month simulation 

period. Bounds of the calibration parameters were provided. 

Other studies (Kanso et al., 2003; Chen and Adams, 2006) analyzed the performance 

of a similar model that incorporates a wash-off exponent as a new parameter (the 

exponent of R in Equation (2)). This approach is recommended when the watershed 

seems to have a high non-linear response to rainfall. Recent computer models include a 

wash-off exponent to improve the quality of the results (Rossman, 2004). 
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Gaume et al. (1998) focused their study on the estimation and interpretation of 

parameter uncertainties. A wash-off exponent was used on the erosion model (Equation 

(2)). Difficulties during the calibration process were reported, mostly due to large 

uncertainty in the parameter values. A lack of recorded data was thought to be the main 

reason for calibration failure. This study provided calibrated parameter values for 

suspended solids on a storm by storm basis over the course of five rainfall events. 

For the study herein, stormwater runoff flow and water quality were monitored at a 

parking lot in Durham, NH. These data were collected to calibrate an accumulation and 

wash-off model. This study does not intend to evaluate different stormwater models. 

Instead, a model was selected for calibration and results are provided for a range of 

contaminants that have either not been studied or have little documentation. The 

selected model is similar to the one used by Haiping and Yamada (1996) (Equation (1) 

and (2)) and includes a wash-off exponent. This study focuses on the calibration of this 

model for a group of four contaminants using 26 storm events; identifying appropriate 

probability distributions for each parameter of the model and testing the prediction of 

pollutant concentrations at the catchment's outlet. 

Field Site 

The study area is a 36,000 m2 commuter parking lot at the University of New 

Hampshire in Durham, NH. The parking lot is curbed, constructed of standard dense mix 

impervious asphalt, and drained by catch basins. Parking lot usage is a combination of 

passenger vehicles and routine bus traffic. A total of 786 parking spaces are used to 

near full capacity throughout the school year. During the summer, the parking lot 

receives much less use than during the regular school year. Additionally, during the 
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summer the bus service is suspended. The parking lot is subject to plowing, salting 

(approximately 19 tons/year), and sanding (<5% of the mix) during the winter. 

Stormwater runoff flows from catch basins into a central 914-mm diameter reinforced 

concrete pipe. The runoff sampling station is located at the outlet of this pipe. The runoff 

time of concentration for the lot is 22 minutes, with slopes ranging from 1.5 - 2.5%. 

Contaminant concentrations are similar to typical values reported in stormwater (Pitt et 

a/., 1995; Zoppou, 2001; Minton, 2002). The climatology of the area is characterized as 

coastal, with an average annual precipitation of 1220 mm uniformly distributed 

throughout the year. 

Field Methods 

A total of 26 discrete rainfall events were monitored between August 2004 and 

September 2006. Water sampling was performed at the outlet of the 914-mm pipe using 

a 6712SR ISCO automated sampler provided with a stainless steel strainer, 9.52 mm 

vinyl collection tubing, and 24 discrete 1-liter polypropylene bottles and maintained at 

4°C. A storm was sampled if the total precipitation was higher than 2.5 mm and 

preceded by at least 72 hours of dry weather. An ISCO Model 674 tipping bucket rain 

gauge was used to monitor rainfall. The minimum depth that the rain gauge could record 

was 0.254 mm. 

Flow was monitored at the outlet of the 914-mm pipe, so a hydraulic model to 

estimate discharge was not necessary. The sampler was triggered on the basis of preset 

flow conditions (influent flow > 82 m3/day). 24 samples were taken for each storm event 

for a 24 hour collection period; however, normally only 8-12 of these samples were sent 

to the laboratory to be analyzed. Samples were analyzed with the intent of linearizing the 

runoff concentration graph. The sampling program was designed to collect five samples 
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within the first flush (4 min interval) and spread out the remaining samples over the rest 

of the hydrograph (24 min interval). ISCO 1 L ProPak disposable sampling bags were 

used to collect the stormwater samples. 

Runoff constituent analysis included: total suspended solids (TSS), total petroleum 

hydrocarbons - diesel range hydrocarbons (TPH-D), dissolved inorganic nitrogen (DIN, 

comprised of nitrate, nitrite, and ammonia), and zinc (Zn). Stormwater samples were 

analyzed by a laboratory that is state-certified for drinking water and wastewater. 

Guidance documents on collecting environmental data and the site quality assurance 

project plan were followed (EPA, 2006). Analyses were performed using techniques 

according to standard methods (APHA etal., 2005). Additional information on watershed 

characteristics and the sample monitoring program is found in Roseen et al. (2006). 

A summary of the monitored storm events is shown in Table 1. This data set includes 

variations of storm duration, peak flow, total volume, antecedent dry period, and season. 

Table 1 shows a variety of storm event characteristics, which is important when 

characterizing water quality of stormwater. 
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Table 1 Summary of monitored storm events 

Rainfall 
Event 

(m/d/y) 

9/18/2004 

10/30/2004 

11/24/2004 

1/14/2005 

2/10/2005 

3/8/2005 

3/28/2005 

4/20/2005 

6/22/2005 

8/13/2005 

9/15/2005 

11/6/2005 

11/30/2005 

12/16/2005 

1/11/2006 

2/17/2006 

3/13/2006 

5/2/2006 

5/9/2006 

6/1/2006 

6/21/2006* 

7/22/2006* 

9/6/2006* 

Peak 
Intensity 
(mm/hr) 

15 

21 

9 

24 

6 

3 

12 

12 

15 

24 

18 

12 

9 

18 

15 

12 

12 

12 

3 

125 

27 

40 

30 

Rain 
Duration 

(min) 

1075 

705 

705 

645 

1520 

1220 

1685 

480 

95 

765 

30 

100 

810 

630 

320 

110 

170 

1920 

565 

485 

80 

50 

585 

* Storms used for validation 

Total 
Depth 
(mm) 

50 

11 

18 

17 

32 

20 

60 

15 

8 

13 

5 

7 

18 

35 

15 

3 

7 

60 

14 

51 

5 

5 

16 

Peak 
Flow 

(m3/day) 

5642 

8678 

4394 

21101 

4437 

2338 

7675 

4274 

9120 

18408 

5518 

2801 

2503 

2561 

2903 

1493 

1345 

4642 

1621 

27194 

5190 

8333 

6087 

Volume 
(m3) 

1364 

281 

530 

1033 

795 

406 

3082 

1017 

266 

514 

86 

135 

363 

458 

214 

37 

75 

1331 

322 

930 

93 

81 

410 

Anticedent 
Dry Period 

(days) 

7.0 

13.0 

3.5 

1.3 

3.6 

5.7 

3.4 

5.9 

4.0 

10.0 

10.0 

10.8 

5.0 

5.5 

5.8 

2.5 

2.5 

7.0 

5.6 

10.7 

4.7 

7.5 

4.5 

Season 

Fall 

Fall 

Fall 

Winter 

Winter 

Winter 

Winter 

Spring 

Summer 

Summer 

Fall 

Fall 

Fall 

Winter 

Winter 

Winter 

Winter 

Spring 

Spring 

Summer 

Summer 

Summer 

Fall 
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Model Structure 

Typically, the pollutant accumulation and wash-off model can be described by the 

following equations (Shaheen, 1975; Chen and Adams, 2006): 

^K-KM, d> 
dt 

Mw=Ma(l-e-k»R) ( 2 ) 

where Ma is the amount of pollutant on the surface; Mw is the amount of pollutant 

removed from the surface during a storm; kd is a constant rate of pollutant deposition; kb 

represents the pollutant removal rate due to wind and traffic; kw is a wash-off coefficient; 

t is the antecedent dry period; and R is the total runoff volume. Equation (2) is called a 

"first order" model because the exponent of the total runoff volume, R, is 1. 

Pollutant Accumulation Model 

A pollutant buildup model is required to estimate the mass of contaminants on 

impervious surfaces between storm events. The accumulation of contaminants follows 

an exponential increase as it approaches a maximum value (Mm), regardless of the 

length of the dry period (Alley and Smith, 1981; Haiping and Yamada, 1996). Integration 

of Equation (1) results in the following equation: 

Ma=Mm(l-e-k>') + M0e-k»' ( 3 ) 
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where Ma is the mass of pollutant on the parking lot surface (g/m2); kb is the pollutant 

removal rate (day1); M0 is the residual amount of pollutant after the previous runoff event 

(g/m2); Mm represents the maximum amount of pollutant buildup (g/m2); and t is the 

antecedent dry period (days). These units will be used throughout the paper. For this 

study, M0 was assumed to be zero. It was assumed that each runoff event had enough 

energy to remove the mass of contaminants accumulated on top of the impervious 

surface. 

Pollutant Wash-off Model 

The pollutant wash-off model describes the removal of contaminants from the 

impervious surface during a runoff event. Most typical wash-off models are a function of 

the total runoff volume or discharge (Sartor et al., 1976; Alley and Smith, 1981; Haiping 

and Yamada, 1998; Millar, 1999; Kanso et al., 2003; Rossman, 2004). In this study, the 

washed-off mass was assumed to be proportional to the available mass and to the 

discharge. The pollutant wash-off model can be written as follows: 

where Mw represents the washed off mass (g/m2) at time t; Q(t) the discharge (m3/day); 

kw is a wash-off coefficient (dayw"1/m3w); Ma is the mass of pollutant on the parking lot 

surface (g/m2); and w is a wash-off exponent (-). The wash-off exponent w allows the 

model to have a non-linear dependency on the discharge, which could be convenient 

when the pollutograph is nonlinear. The pollutant concentration is calculated by dividing 

the eroded mass within a time interval At by the runoff volume of that same interval. The 
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accumulation (Equation (3)) and wash-off (Equation (4)) models can be used to obtain a 

single mathematical expression for continuous simulation (Chen and Adams, 2006; 

Haiping and Yamada, 1996). These two equations have to be multiplied by the 

watershed area if the total accumulated mass and total washed off mass are calculated. 

The Objective Function 

The aim of this study was to estimate the parameters that best fit the accumulation 

and wash-off model for four separate contaminants. The best fitting parameters were 

found by minimizing the sum of squares of residuals: 

O 
• \ m 2 

0j = min£(ci-C(0)) ( 5 ) 

where O denotes the objective function, 0 represents the best fitting parameter values, 

Cobs are the measured concentrations, Cest are the estimated concentrations when using 

0, and m is the number of samples analyzed during the storm event. 

Optimization Technique 

The accumulation and wash-off model was calibrated using field data and an 

optimization technique implemented to determine the most adequate fitting parameters 

for the model. Alley and Smith (1981) used Rosenbrock's method to find the best fit 

values for stormwater applications. A discussion on how parameter interaction affects 

the optimization technique was also provided. Gaume er a/. (1998) investigated the 

uncertainty of the calibrated parameter values on an urban runoff model similar to 
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equations (3) and (4). In their paper, the Powell method was used as the optimization 

technique and a description of the shape of the objective function was provided for 

several cases. One major difficulty was dealing with narrow valleys in the objective 

function, which would add more complexity to the search process. The lack of 

knowledge of the real pollutograph was a contributing factor to the failure of some 

optimization trials. 

Simulated annealing (SA) was proposed by Kirkpatrick et al. (1983) and is a 

stochastic global optimization technique that finds the global minimum or maximum of a 

given mathematical function. The SA technique is meant to be used on highly non-linear 

multivariable problems. It was initially tested on physical applications but currently is 

extensively used in other scientific fields including hydrology. This technique has not yet 

been used on stormwater runoff models. The searching algorithm can be visualized as a 

bouncing sphere that can travel over the peaks and valleys of a given surface (the 

objective function). Throughout the iterative process the "energy" at which the sphere 

bounces decreases as it gets closer to the optimal value. In simulated annealing, a new 

trial solution (new set of parameter values) is accepted when there is a reduction in the 

current objective function value (Kirkpatrick, 1983). First, the probability of accepting a 

new trial solution is calculated as follows: 

AO 

p(AO) = i T ( 6 ) 

where AO is the change in the objective function, T is a parameter called temperature 

(which represents the energy of the bouncing sphere), and p(AO) is the probability of 

accepting the proposed set of parameter values. At higher "temperatures" the algorithm 

extensively explores the parameter space so the global minimum is likely to be found. 
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When the temperature is high the probability of accepting the proposed set of 

parameters is high as well. As the temperature drops, the probability of accepting new 

candidates reduces and the search focuses on previous local optimal parameter values. 

The value of T is initially set high and is periodically reduced according to a "cooling 

schedule" (Hopgood, 2001) with a maximum number of steps st. A reduction coefficient 0 

< a < 1 is used to slowly decrease the value of T. A commonly used, simple cooling 

schedule is: 

TM=aTt i = 0,l,...,st ( 7 ) 

The SA annealing algorithm overcomes the problem of being trapped in a local 

minimum by accepting a trial solution that, although is not the best, may lead to the true 

optimal values. Large st values allow the control variable to decrease slowly and then 

perform the search on a broad area. In this study, the following annealing schedule was 

applied: T = 20000, a = 0.9, and st = 100. The annealing schedule determines the 

degree of uphill (or downhill) movement permitted during the search so it is critical to the 

algorithm's performance. These parameters are problem-specific and depend on the 

scaling of the change in the objective function AO. For this study, various annealing 

schedules were tested several times until the same optimal values were achieved. 

The total number of iterations was fixed (5x104) and the optimization process was 

stopped when the new set of parameter values did not change over 100 iterations. If 

these parameter values were still changing by the end of the total number of iterations, 

then the model was re-run again with a higher number of iterations (1x105). 

Bounds were necessary for the practical implementation of the SA method. The 

upper and lower bounds for all the parameters are given in Table 2. These values were 

determined after performing some trial runs with the data, and recommendations from 
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the literature (Haiping et al., 1996; Chen et al., 2006; Guame et al., 1998). SA results 

were compared to the Table 2 values to verify that the results were not close to the 

upper bounds. 

Table 2 Bounds of calibration parameters. Units: Mm (g/m2), kb (day1), kw (dayw1/m3w), 

and w (-). 

Mm kb kw w 
Contaminant 

Lower Upper Lower Upper Lower Upper Lower Upper 

TSS 0 10 0 0.2 0 0.2 0 2 

TPH-D 0 0.2 0 0.01 0 0.01 0 2 

DIN 0 0.2 0 0.01 0 0.01 0 2 

Zn 0 0.2 0 0.01 0 0.01 0 2 

Concentration Values Below Detection Limit 

A concentration value below the analytical detection limit (BDL) is reported when 

pollutant concentrations are below the analytical reporting limit of the laboratory. The 

application of the mathematical model requires finite concentration values. The 

researcher is left with few options when this situation arises: discard valuable information 

provided by the BDL samples or select an estimate of the concentration (14 and 0 the 

detection limit is common). A method for generating estimates is to fit a probability 

distribution based on the data above the reporting limit (Helsel and Hirsch, 2002). First, a 

distribution shape is assumed and then the distribution parameters are computed by 

using conventional methods such as Maximum Likelihood Estimator (MLE) or probability 

plot procedures. Finally, discrete BDL concentrations (values between 0 and the 

detection limit) can be randomly generated using the fitted distribution. Table 3 

summarizes the number of samples reported as BDL for each contaminant. In this study, 
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the detection limits were typically 0.50 mg/l for TPH-D, 0.03 mg/l for Zn, 0.05 mg/l for 

DIN, and 10 mg/l for TSS. However, the reported detection limit could vary depending on 

the actual sample volume and concentrations. 

Table 3 Summary of samples with concentrations reported as BDL. 

r. . Total Number _ „ . . _ _ p.... _ - „ 
Format f „ . TPH-D Zn DIN TSS of Samples 

Discrete 234 69 34 68 38 

Percentage 100% 29% 15% 29% 16% 

A gamma distribution was employed for this study since it adequately described the 

collected data (other distributions such as gumbel and log-normal were tested). The data 

consisted of the individual concentration values obtained for the storms summarized in 

Table 1, which were assumed to be independent. The parameters, y (shape) and 0 

(scale), of the distribution were determined by using the MLE method and are shown in 

Table 4. The probability density functions (PDFs) for each contaminant are shown in 

Figure 1 as well as the respective cumulative probability function (CDFs). The 

Kolmogorov-Smirnov test (KS-test) was used to measure the goodness-of-fit of the fitted 

probability distribution. A good fit was obtained for TPH-D, Zn, and DIN (Figure 1.b, 1.d, 

and 1 .f) since Dna < DcritiCai. The Dn,a statistic was computed for a level of significance a = 

0.05 (95% confidence interval) and n concentration values above the detection limit. The 

D statistic represents the maximum vertical deviation between the empirical and 

theoretical data probability distributions. Although for TSS the fitted distribution did not 

pass the KS-test at 0.05 level of significance, the fitted probability distribution was 

utilized for practical purposes. 
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Table 4 Parameters of the gamma distribution fitted to the data. 

Total samples 
Contaminant y (shape) 6 (scale) Dcriticai Dn<x 

above DL (n) 

TPH-D 165 2.82 0.39 0.11 0.11 

Zn 200 1.83 0.04 0.10 0.10 

DIN 166 2.08 0.31 0.11 0.10 

TSS 196 0.79 82.80 0.10 0.14 

Level of significance a = 0.05 

This statistical method is meant to preserve the entire distribution of the data both 

below and above the detection limit. The more data points above the reporting limit, the 

better the quality of the model from a statistical point of view. For TPH-D and DIN the 

shape parameter (y) is likely to be much smaller due to the fact that nearly 30% of the 

concentrations were reported below detection limit. 
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Figure 1 Empirical and theoretical data probability distributions. C.I: Confidence Interval. 
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Calibration Procedure 

A broad range of storms (Table 1) were independently used to obtain the optimal 

values of model parameters for each contaminant. The calibration was performed under 

the assumption of null residual mass after each rain event (M0 = 0). This assumption is 

not true when the storm event is flow-limited, in other words, when the storm is not 

intense enough and with enough volume to wash off the mass of contaminants on the 

surface. A continuous simulation approach was not performed because inter-event 

samples were not available. Additionally, not all storm events were monitored. The null 

residual mass assumption was verified by comparing the total available mass (Ma) and 

the mass that was actually washed off (Mw). Initial parameter values were randomly 

generated using the bounds shown in Table 2. The root mean square error (RMSE) was 

used as the quality criterion. When changes in the objective function remained 

significant, the model was re-run and the total number of iterations increased. On 

average, convergence was achieved after 2x104 iterations. For calibration, concentration 

values were used as they were reported from the lab and no further statistical analysis 

was applied to discard anomalous data. The calibration period included storms from 

09/08/2004 to 6/01/2006. The last three storm events described in Table 1 were utilized 

for validation. 

Results 

Model Application 

Figures 2 through 4 illustrate model results for some of the storms considered in this 

study. Each figure shows the hydrograph, hyetograph, observed concentrations, 

estimated concentrations, and the respective relative cumulative mass (CDF). The CDF 
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for each contaminant is a mass-based CDF and was obtained by multiplying the 

estimated concentrations by the synoptically measured flows. For example, Figure 2(a) 

shows flow rate changes (below) and rainfall pattern (top). The CDFs for each 

contaminant are shown in Figure 2(b). Figures 2(c), 2(d), 2(e), and 2(f) show observed 

and estimated concentrations for DIN, TPH-D, TSS, and Zn (RMSEs are reported). 

The 03/08/2005 event (Figure 2) had an almost constant rainfall intensity, and as a 

result, the hydrograph increased and decreased gradually. The model with calibrated 

parameters does a very good job for reproducing most of the observed data. The 

observed concentrations and pollutograph for TPH-D stand out from the other 

contaminants due to the poorer fit and the scatter of the data. The last seven samples 

for DIN were reported BDL (<0.5 mg/l). This explains the scatter of the observed values 

on the lower part of the graph since those values were randomly generated. 

Nevertheless, the smoothness of the estimated pollutograph does not seem to be 

affected. For this storm, BDL values were not recorded for TSS, Zn, and TPH-D. The 

CDFs look very similar for all contaminants. The parameter w was close to 1 because 

observed concentrations decreased smoothly. Optimized parameter values for the 

03/08/2005 storm event are presented in Table 5. 
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Figure 2 Results for the 03/08/2005 storm. Optimized parameter values are presented in 

Table 5. Cumulative concentrations (b) were computed using estimated values. 
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Table 5 Optimized parameter values for selected storm events. Units: Mm (g/m2), kb (day" 

1), kw (dayw-1/m3w), and w (-). 

Rainfall Event 
m/d/y 

3/8/2005 

4/20/2005 

1/11/2006 

Parameter 

Mm 

kb 

kw 

w 

Mm 

kb 

kw 

w 

Mm 

kb 

Kw 

W 

DIN 

0.1513 

0.0052 

0.0046 

1.0684 

0.1944 

0.0099 

0.0026 

1.1322 

0.0207 

0.0095 

0.0092 

1.2357 

Contaminant 

TPH-D 

0.1858 

0.0093 

0.0005 

1.3504 

0.1993 

0.0094 

0.0009 

1.1925 

0.1866 

0.0096 

0.0000 

1.8571 

TSS 

0.7119 

0.1896 

0.0079 

0.9711 

1.7269 

0.0980 

0.0038 

1.1539 

0.3383 

0.1918 

0.0057 

1.1560 

Zn 

0.0845 

0.0021 

0.0054 

1.0013 

0.1238 

0.0024 

0.0050 

1.0341 

0.0681 

0.0004 

0.0006 

1.5140 

A type of first flush event is demonstrated in Figure 3 for the 04/20/2005 storm. The 

highest intensity occurred early in the storm and a constant rainfall intensity occurred 

during the rest of the storm duration. The first flush effect is more pronounced for the 

total suspended solids CDF. BDL concentration values were reported for DIN, TSS, and 

Zn for the last 4, 3, and 2 samples, respectively. Only one BDL value was reported for 

TPH-D at 356 min. The estimated pollutograhs match the higher concentrations at the 

beginning of the storm. For TPH-D, observed concentrations increase at the very end of 

the event, however, the model is not capable of estimating this phenomenon. The 

parameter w ranged from 1.0 and 1.2 for the different contaminants due to the smooth 

decrease in observed concentrations. 
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Figure 3 Results for the 04/20/2005 storm. Optimized parameter values are presented in 

Table 5. Cumulative concentrations (b) were computed using estimated values. 

The 01/11/2006 storm was a late-peaking event (Figure 4). At least two peaks were 

observed in the measured concentrations for all the contaminants, one approximately at 

350 min and other at 550 min, in direct response to rainfall intensity peaks. BDL values 

were reported for Zn and DIN for samples taken at 501 and 601 min. Even though the 

peak flow occurred towards the end of the event, the highest concentration values were 

measured at the beginning of the storm. The parameter w ranged from 1.2 to 1.9 for the 

different contaminants, which agrees with the non-linear trend observed in the data. 
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Figure 4 Results for the 01/11/2006 storm. Optimized parameter values are presented in 

Table 5. Cumulative concentrations (b) were computed using estimated values. 

In general, the highest concentrations were observed at the beginning of the storm 

and few samples had values reported as BDL towards the end of the event. The storm 

events that are not shown possessed similar patterns. 

Figure 5 shows the changes in the objective function (Equation (5)) when the 

parameters were calibrated for Zn on the 03/13/2006 event. During the first iterations, 

high values for the objective function were obtained due to the fact that the SA algorithm 

was randomly exploring the parameters space. After 1x104 iterations the objective 
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function seemed to have reached its minimum value. The optimization process was 

stopped at 1.2x104 iterations. 
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Figure 5 Optimization process and calibration results for the 03/13/2006 storm. 

Optimized parameter values are shown for zinc. Optimized parameters: Mm = 0.13 g/m2, 

kb = 0.0004 day1, kw = 0.0002 dayw1/m3w, w = 1.71, and b = 2.50 days (antecedent dry 

period). 

Box and whisker plots of the optimized parameter values for all the storms and 

contaminants of the study are presented in Figure 6. Gaume et al. (1998) found fitting 
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parameter values after calibrating a similar runoff water quality model for suspended 

solids. In their study, the parameter values ranged as follows: 4 0 - 1 2 0 g/m2 for Mm, 0.2 

- 0.8 day"1 for kb, 0.005 - 0.030 daywVm3w for kWl and 1.0 - 2.0 for w. Note that their 

model was calibrated for an urban sewer system so this could explain why some 

parameter values are different from those provided in this paper. For example, Figure 7 

shows a range of 0.3 - 1.9 g/m2 for Mm> which is smaller than the one provided by 

Gaume etal. (1998) for suspended solids. 
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Figure 6 Box and whisker plot of the optimized parameter values. Units: Mm (g/m2), kb 

(day1), kw (dayw-1/m3w), and w (-). 
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Statistical Analysis 

Figure 7 shows the CDFs obtained for the different model parameters (optimized 

values) and pollutants. A normal distribution was fitted to these CDFs and a 95% 

confidence interval (a=0.05 level of significance) was computed to measure the 

goodness-of-fit of the distribution. For this purpose, the KS-test was used. The mean x 

and the standard deviation (s) of the fitted normal distributions are shown in Table 6. The 

distribution of the parameters Mm (for Zn), kw (for DIN), kw (for TSS) did not pass the KS-

test. Additionally, only 22 optimized parameter values were used for TPH-D and TSS 

since calibration failed for the 1/14/2005 (TPH-D) and 5/2/2006 (TSS) storms. 
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Figure 7 CDFs of optimized model parameter values (solid line) and fitted normal CDFs 

(dashed line). A 95% confidence interval is reported (dotted line). Units: Mm (g/m2), kb 

(day1), kw (dayw-1/m3w), and w (-). 

The mean Mm value (1.029 g/m2) was considerable higher for TSS than for the other 

contaminants. This agrees with the fact that, for this site, observed TSS concentrations 

were on average higher than those for Zn, TPH-D, and DIN. This characteristic was also 

reported by Chen and Adams (2006) when a similar stormwater model was applied on 
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total phosphorus, copper, total kjeldahl nitrogen (TKN), and TSS. Chen and Adams also 

reported a range of variation for Mm between 0.018 and 25 g/m2. The watershed used in 

their study was composed of residential and commercial land use. 

Table 6 Parameters of the normal distribution fitted to the optimized model parameter 

values. Units: Mm (g/m2), kt, (day1), kw (dayw1/m3w), and w (-). 

Parameter 

Mm 

kb 

kw 

w 

Statistic 

X 

s 

n 

'-'critical 

Dn,a 

JC 

s 

n 

'-'critical 

D„.« 

X 

s 

n 

'-'critical 

Dn,a 

X 

s 

n 

'-'critical 

Dn,a 

TSS 

1.029 

0.693 

22 

0.281 

0.178 

0.086 

0.060 

22 

0.281 

0.139 

0.005 

0.009 

22 

0.281 

0.297 

1.255 

0.290 

22 

0.281 

0.184 

TPH-D 

0.152 

0.042 

22 

0.281 

0.202 

0.007 

0.003 

22 

0.281 

0.246 

0.005 

0.004 

22 

0.281 

0.217 

1.298 

0.335 

22 

0.281 

0.175 

Zn 

0.053 

0.056 

23 

0.275 

0.270 

0.004 

0.003 

23 

0.275 

0.129 

0.005 

0.004 

23 

0.275 

0.194 

1.166 

0.252 

23 

0.275 

0.226 

DIN 

0.091 

0.066 

23 

0.275 

0.153 

0.005 

0.003 

23 

0.275 

0.179 

0.007 

0.003 

23 

0.275 

0.428 

1.187 

0.244 

23 

0.275 

0.163 

A correlation analysis was performed to study the degree of linear dependencies 

among the model parameters. Table 7 shows the correlation coefficients for the different 

parameter combinations and pollutants. A negative correlation value was obtained 
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between kw and w for all the contaminants; however, this can be explained by the 

mathematical formulation of the model (kw is a coefficient and w is an exponent). It was 

found some positive correlation between Mm and kb for TSS, TPH-D, and DIN. Similar 

results were reported by Kanso et al. (2003), where a positive correlation was obtained 

between Mm and kb for suspended solids. 

Table 7 Correlation matrixes arranged by pollutant. Units: Mm (g/m2), kb (day1), kw (dayv 

1/m3w), and w (-). 

Pollutant Parameter Mm kb kw w 

TSS Mm 1 

kb 0.38 1 

kw 0.03 -0.18 1 

w -0.12 -0.08 -0.56 1 

TPH-D Mm 1 

kb 0.19 1 

kw -0.27 -0.53 1 

w 0.32 0.02 -0.55 1 

Zn Mm 1 

kb -0.39 1 

kw -0.51 0.16 1 

w 0.31 -0.51 -0.66 1 

DIN Mm 1 

kb 0.10 1 

kw -0.31 -0.21 1 

w -0.59 -0.12 -0.38 1 

Monte Carlo Simulation 

A Monte Carlo simulation was performed to evaluate the ability of the model to predict 

pollutant concentrations at the catchment's outlet. Three storms were selected for 
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validation: 06/21/2006, 07/22/2006, and 9/6/2006. However, only results for the first two 

storms are shown in this paper. The fitted normal distributions to the optimized 

parameter values (Table 6 and Figure 6) were used to generate Mm, kb> kw> and w. The 

parameters were assumed to be independent and non-correlated for modeling purposes. 

Note that a multivariate test of independence was not performed for this study. Further 

research should explore the use of statistical tools such as the Generalized Likelihood 

Uncertainty Estimator (GLUE) when analyzing the uncertainties of the wash-off model. 

The GLUE procedure (Beven and Binley, 1992) implicitly incorporates the correlation 

structure of the model since it evaluates a set of fitting parameters rather than individual 

values. 

Simulation results are shown in Figure 8 and Figure 9. The central solid line indicates 

the median of the simulated values. The 10 (q10), 30 (q30), 70 (q70), and 90 (q90) 

percentiles were selected as a measure of uncertainty. The number of simulations was 

set to 5,000 for each contaminant. Figure 8 presents results for the 06/21/2006 storm. 

An acceptable performance of the model is achieved if observed concentration values 

fall within the uncertainty limits. The maximum observed concentration for TPH-D, TSS, 

and Zn was obtained for the first sample; however, the model was not able to adequately 

estimate these concentrations for TPH-D and TSS. DIN observed concentrations fell 

within the 30% and 70% uncertainty limits. Zinc observed concentrations fell within the 

10% and 90% uncertainty limits. 
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Figure 8 Monte Carlo simulations of predicted pollutant concentrations at the 

catchment's outlet for the 06/21/2006 storm event. U.L: Uncertainty Limits. The dark 

shaded region indicates the 30% and 70% uncertainty limits. The light grey shaded 

region indicates the 10% and 90% uncertainty limits. Observed concentrations values 

and the reported detection limits were plotted as discrete points. 

Monte Carlo simulations for the 07/22/2006 event are displayed in Figure 9. For DIN, 

the first three observed concentrations fell outside the plotted uncertainty limits (Figure 

9(a)). This indicates poor performance of the model. However, the remaining observed 

concentrations are much closer to the expected concentrations. Results for TPH-D fell 

within the 30% and 70% uncertainty limits and the expected concentration line predicts 

very well some observed concentrations (Figure 9(b)). Results for TSS tend to 

overestimate pollutant concentrations since there are six observed values that fell below 
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the 30% uncertainty limit (Figure 9(c)). For Zn, four samples fell within the 30% and 70 

% uncertainty limits and the remaining values below the 30% uncertainty limit (Figure 

9(d)). 
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Figure 9 Monte Carlo simulations of predicted pollutant concentrations at the 

catchment's outlet for the 07/22/2006 storm event. U.L: Uncertainty Limits. The dark 

shaded region indicates the 30% and 70% uncertainty limits. The light grey shaded 

region indicates the 10% and 90% uncertainty limits. Observed concentrations values 

and the reported detection limits were plotted as discrete points. 

The total (observed and estimated) washed off mass was computed for the 

06/21/2006 and 07/22/2006 storm events. The total observed mass was computed as 

the sum of the products between observed concentration and runoff volume over the 
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number of samples collected during the storm. The total estimated mass was computed 

similarly but using the estimated concentrations (Figure 9 and Figure 9). Table 8 shows 

results for each contaminant and storm event. The three estimated values correspond to 

the 30% (q30), 50% (q50), and 70% (q70) uncertainty limits. For each validation exercise, 

the observed mass fell within the 30% and 70% uncertainty limits obtained from the 

model. However, some median estimated values were higher than those observed, 

which suggests that the model overestimated the total observed washed off mass. 

Table 8 Observed and estimated total mass for the storms used for validation. 

Storm Pollutant 

6/21/2006 

7/22/2006 

TSS 

TPH-D 

Zn 

DIN 

TSS 

TPH-D 

Zn 

DIN 

5259 

39 

4.0 

34 

4887 

97 

4.5 

41 

Total Mass (g) 

Observed Estimated (q30) Estimated (q50) Estimated (q70) 

2548 

32 

3.3 

23 

3543 

40 

3.7 

33 

5354 

60 

6.4 

44 

6858 

71 

6.7 

59 

9378 

100 

10.6 

71 

11249 

112 

10.3 

90 

Conclusions 

An accumulation and wash-off model for common stormwater pollutants was 

calibrated for a standard parking lot using TSS, TPH-D, DIN, and Zn measured in runoff 

samples. Parameter values were found for each storm event assuming a null residual 

mass approach. A range of parameter values was provided for each parameter of the 

model (Figure 6). In general, a normal probability distribution was sufficient to describe 
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the variability of the optimized parameter values. The ranges of parameter values for 

TSS were higher than those for Zn, DIN, and TPH-D. This is possibly due to the fact that 

TSS concentrations are higher in magnitude when compared to the other pollutants. This 

may be avoided by normalizing the concentration values before running the model. 

The transport of contaminants due to runoff is a complex hydrological, physical and 

chemical phenomenon that depends on factors such as the catchment's response to 

rainfall, land use, wind, and human activities. The four-parameter model studied here 

reproduced reasonably well the dynamics of pollutant transport during the runoff 

process. Usually a 3 to 5 parameter model is recommended for rainfall-runoff modeling 

(Jakeman and Hornberger, 1993). Even though the wash-off model follows an 

exponential decay trend, the non-linear nature of the problem was taken into account 

and reflected in the range of parameter values of the wash-off exponent (w). 

The aim of this work was to apply a wash-off model on a variety of storm events and 

to provide scientists, watershed managers, regulators and planners with a range of 

parameter values for modeling purposes. The employed wash-off model has been 

extensively used to estimate TSS concentrations, but little documentation is found for 

Zn, TPH-D, and DIN. However, these model results should be considered as site-

specific and care must be taken when extending its usage to other watersheds. 

Concentration values were drawn from a fitted probability distribution when a BDL 

value was reported. A gamma probability distribution seemed to represent concentration 

values above the reporting limit. In general, BDL values were reported at the decreasing 

(falling limb) portion of the hydrograph so that the total washed off mass was not 

significantly affected. However, a more detailed analysis on how this approach affects 

the final results is recommended. 

The SA algorithm was successfully used as an optimization technique. An annealing 

schedule was determined for the characteristics of the objective function. Computation 
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time was not a concern and the algorithm converged quickly for the majority of the 

cases. 

The statistical information provided in this study is valuable for conducting risk 

analysis studies and estimating water quality impacts due to stormwater. Parameter 

values obtained in this study could be used in more complex applications such as 

Bayesian based models where an apriori probability distribution is necessary. 
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CHAPTER 3 

MODELING URBAN STORMWATER QUALITY TREATMENT: MODEL 

DEVELOPMENT AND APPLICATION TO A SURFACE SAND FILTER 

Abstract 

A statistical and mathematical model for simulating contaminant removal from a 

surface sand filter is introduced. The model is based on the mass balance principle and 

the assumption that an n-order treatment model describes the complex processes of 

pollutant removal. The parameters of the model are the removal rate k and the decay 

order n. The model is deterministic: changes in space are not considered, and time 

variability of flow and influent contaminant concentration are taken into account. System 

field monitoring was performed between 2004 and 2006. A total of 17 storms were 

selected for the study. Runoff constituent analyses included: total suspended solids 

(TSS), total petroleum hydrocarbons - diesel range hydrocarbons (TPH-D), dissolved 

inorganic nitrogen (DIN, comprised of nitrate, nitrite, and ammonia), and zinc (Zn). The 

objective was to explore the capabilities of a two parameter removal model for predicting 

effluent pollutant concentrations. A gamma distribution was fitted to the optimized 

removal rate values and then a Monte Carlo simulation was performed to validate the 

calibration process. It was found that a second order approximation was most likely to 

describe the pollutant removal of TSS and TPH-D, and a first order approximation for Zn. 

Poor model performance was obtained for DIN. Several examples are shown in order to 

illustrate the methodology and the application of the model. 
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Introduction 

Our awareness of stormwater impacts has led us to the development of different 

stormwater treatment strategies. Previous knowledge regarding traditional water 

treatment systems (drinking and wastewater) and the evaluation of current stormwater 

treatment strategies has helped designers understand what is appropriate to mitigate the 

deleterious effects of stormwater. The final selection of site specific stormwater 

treatment is driven by: the quantity of water to treat; pollutants to remove; peak flow; 

treatment efficiency; regulatory constraints; cost; and other design factors (Minton, 

2002). During the last decade, stormwater has been considered the next environmental 

challenge to be addressed (EPA, 1996). 

The surface sand filter is one of the stormwater treatment measures recommended 

for stormwater mitigation, yet not commonly selected. The system appears in state 

stormwater design manuals and its performance has been documented (Roseen et al, 

2006; Minton, 2002; EPA, 1999). It has been shown that sand filters are able to achieve 

high removal efficiencies for sediments and biochemical oxygen demand (BOD) when 

the system is properly maintained (EPA, 1999). Total metal removal is moderate and 

nutrient removal is often low. 

Although the sand filter's performance has been reported in numerous studies, there 

is little research investigating the usage of mathematical models to describe the 

stormwater quality improvement from sand filters. Managers, regulators, engineers, and 

scientists need tools to simulate the performance of sand filters under a variety of 

hydraulic and hydrological conditions. Moreover, efforts are needed to undertake the 

problem of predicting effluent concentrations. 

Changes in concentration as a function of time can be described by kinetic processes 

(Capellos and Bielski, 1972). This mathematical model describes the decrease of 
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concentration with time as a function of a removal rate (k) and the current concentration 

value to the n power (the reaction order). The reaction order may be an integer or a real 

number. Experience from wastewater treatment indicates that the reaction rate is a 

function of temperature and the nature of the chemical, biological, and physical 

processes that drive the reaction for each chemical or constituent. A chemical reaction is 

of zero-order if it is independent of the substance concentration; in other words, the 

amount dC by which the substance decreases in dt is constant throughout the duration 

of the reaction. In cases where n > 1, changes in concentration occur rapidly 

(proportionally to the n'h power of C) and slowly approach zero. The reaction order is 

likely to be greater than 1 in stormwater due to the fact that the initial pollutant 

concentrations are commonly comparatively low (Minton, 2002). The reaction order has 

not been determined yet in stormwater treatment systems for a variety of pollutants 

(Minton, 2002). 

Removal of contaminants from granular filters has been studied by using an 

exponential decay function. Iwasaki (1937) proposed an exponential decay model in 

which the decrease of concentration with media depth is proportional to a filtration 

coefficient multiplied by the current concentration value. The removed suspended 

particles accumulate in the filter pores. Iwasaki's model also provides a mathematical 

expression for determining the accumulating deposit in the filter medium. Changes in the 

filtration coefficient are expected over time due to the accumulation of suspended 

particles in the filter media. Iwasaki's model has been used in combination with other 

physicochemical and biological models to simulate the dynamics of sand filters in 

drinking water applications (Campos etal., 2006). 

Some studies have assumed a first order decay model to describe treatment by 

stormwater measures (Wong et al., 2006; Wang et al., 2004). However, usually the 

following assumptions are considered: steady state flow, constant influent 
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concentrations, and invariability of the model parameters. Kadlec (2000) studied the 

adequacy of first order decay models for the design of treatment wetlands. The 

parameters of the first order decay model were a removal rate k and a background 

concentration C*. This study recommended the use of a spectrum of parameter values 

for modeling applications. Further discussion of the so-called k-C* model can be found in 

the literature (e.g, Wong, etal., 2006; Kadlec and Knight, 1996). 

A surface sand filter was monitored for stormwater quality at a parking lot in Durham, 

NH. This study explored the applicability of an n-order decay model to estimate effluent 

pollutant concentrations from a surface sand filter. The parameters of the model are: the 

removal rate k and the decay order n. Particularly, the model was explored using a zero, 

a first, and a second order approximation (n = 0, 1, 2). Although the model was not 

developed to describe in detail complex chemical, physical, and biological processes; it 

was conceptualized with the intention of emulating the decay function observed in other 

science fields such as chemical kinetics and sand filtration. Calibration of the 

mathematical model is presented and optimum parameter values are provided. This 

study provides appropriate probability distribution functions (PDFs) for the removal rate 

parameter and identifies the most likely decay order for the contaminants of concern. 

The model's capability for predicting effluent concentrations is tested by performing 

Monte Carlo simulations. Additionally, the distribution of the estimated effluent Event 

Mean Concentrations (EMC) was compared against the distribution of the observed 

effluent EMCs. An Event Mean Concentration (EMC) is a parameter commonly used to 

characterize pollutant concentrations of a storm event (Sansalone and Chad, 2004; Lee 

and Bang, 2000). Examples for different storm events are provided. 
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Surface Sand Filter 

The surface sand filter monitored for this research is located at the University of New 

Hampshire Stormwater Center in Durham, NH. A commuter parking lot provides the 

stormwater runoff to the filter. The treatment system is a Low Impact Development (LID) 

design comprised of a sedimentation forebay and filter basin. The filter bed is 2.4 m x 

6.1 m. The filter is 0.6 m high and uses a mix of coarse to medium grain sand with D10 = 

0.3 mm, D50 = 0.7 mm, and D85 = 2 mm. The sedimentation forebay helps prevent the 

filter from premature clogging by removing the largest particles and performing flow 

equalization. The forebay was designed to hold 25% of the water quality volume (WQV, 

25 mm of precipitation on 4047 m2 of watershed). The designed WQV was 92.5 m3 and 

corresponds to the daily storm volume not exceeded 90% of the days with measurable 

precipitation. The filter basin above ground volume can hold the remaining 75% WQV. 

Temporary ponding is expected during larger storm events due to saturation of the filter 

media and the fact that inflow exceeds outflow. The filter bed is sub-drained by a 0.15 m 

diameter, perforated pipe bedded in a 0.20 m layer of crushed stone (D50 = 19 mm). 

Design parameters were adopted from the New York State Stormwater Management 

Design Manual (2001). 

Physical settling of the largest particles occurs in the sedimentation forebay. Physical 

and chemical water quality treatment occurs in the filter basin. A sand filter is commonly 

viewed as a system for removing mostly suspended solids. However, it has been shown 

that sand filters have the ability to remove dissolved phosphorus and metals (Minton, 

2002.). Performance of the surface sand filter used for this research is found in Roseen 

et a/. (2006) and Ballestero et al. (2005). 
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Monitoring 

For this study, storm events were selected between August 2004 and September 

2006 for a total of 17 discrete storm events. A storm was sampled if the total 

precipitation was higher than 2.5 mm and preceded by at least 72 hours of dry weather. 

Automated samplers (6712SR ISCO) were used to perform the sampling program. 

Although the ISCO samplers collected up to 24 samplers per storm event, normally only 

8-12 samples were used to characterize both influent and effluent stormwater quality. 

The sampling program for the system was based on analyses of various effluent 

hydrographs. Precipitation, influent, and effluent flows were monitored, so a hydraulic 

model to estimate discharge was not necessary. 

Constituent analysis of water samples included: total suspended solids (TSS), total 

petroleum hydrocarbons-diesel range hydrocarbons (TPH-D), dissolved inorganic 

nitrogen (DIN, comprised of nitrate, nitrite, and ammonia), and zinc (Zn). Stormwater 

samples were analyzed by a laboratory that is state-certified for drinking water and 

wastewater. Guidance documents on collecting environmental data and the site quality 

assurance project plan were followed to assure quality of the results (EPA, 2006). 

Characteristics of the storm events selected for this research are presented in Roseen et 

al. (2006). 

Model Structure 

Stormwater Treatment Model 

A simple n-order decay model was used to describe pollutant removal from the sand 

filter. An expression for computing effluent concentrations can be derived from a water 
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balance equation combined with the n-order decay model. This expression can be 

written as (Wang et al., 2004): 

dt " S S dt <"" ( 8 ) 

where Cout represents the effluent concentration (mg/l); Cin is the influent concentration 

(mg/l); Qin is the influent flow rate (m3/day); Qout is the effluent flow rate (m3/day); S is the 

storage within the system (m3); dS/dt is the change in storage (m3/day); t is time (days); 

k is the removal rate ((mg/l)"n+1/day); and n is the decay order (-). A boundary condition is 

defined as the concentration at t = 0. These units will be used throughout the paper. 

Equation (8) is a dynamic model that takes into account flow variations at the influent 

and effluent locations. The control volume included: the sedimentation forebay, the filter 

basin above ground, and the filter media. It is also assumed that the parameters k and n 

represent the combined effect of various pollutant removal mechanisms. Spatial 

variation of the variables is not considered. The effect of precipitation on the water 

budget was neglected since influent flow rates were much higher in magnitude. The 

model was applied during storm events so that evaporation was not considered. Ground 

water effects and other infiltration sources were also not included since the system was 

constructed in a clay soil. 

An analytical solution of the differential equation (8) can be found for some integer n 

values (Appendix A). For this research, the analytical solution was used and the analysis 

was performed by using a zero, a first, and a second order approximation (n = 0, 1, 2). 

For every storm the duration of the event was divided into time steps At = 5 min. The 

final solution was obtained by systematically solving the analytical solution of (8) for 
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each time interval. The effluent concentration found at interval i was then used as initial 

concentration for the i+1 interval. 

The Objective Function 

An objective function was necessary to estimate the best set of model parameters 0 

= {k, n}. The sum-of-squares estimator was adopted and is written as follows: 

O 
( \ 
0 

V J 

m 

= mm£(C*-C'-(®)) O) 

where O denotes the objective function; ® represents the vector of parameter values; 

Cout,obs a r e t n e measured effluent concentrations; Cout,est are the estimated effluent 

concentrations obtained from the treatment model (12); i denotes the current sample; 

and m is the number of samples taken during the storm event. 

Optimization Technique 

In this study, the simulated annealing (SA) algorithm was used as the optimization 

technique to minimize the objective function (9). The method uses a stochastic approach 

to locate the parameter values that maximize or minimize the objective function. A new 

set of parameter values are chosen from a probability distribution that depends on the 

change of the objective function (AO) and a parameter T called the temperature 

(Kirkpatrick et al, 1983). This probability distribution is written as follows: 

45 



A0 

P{0) = e T ( 1 0 ) 

The stochastic process is set up initially at a very high temperature so that new 

parameter values are highly likely to be accepted. Therefore, the parameters' space is 

searched extensively at the early stage of the process. The temperature is reduced 

during the process according to a "cooling schedule" chosen accordingly to the shape of 

the objective function. A solution that is not the "best" may be accepted occasionally so 

the algorithm does not get stuck in a local minimum. 

Measured Concentrations Below Detection Limit 

A detection limit is reported when pollutant concentrations are below the analytical 

reporting limit of the laboratory. Such concentrations are reported as being below the 

analytical detection limit (BDL). Half of the detection limit is commonly used if a discrete 

value is needed rather than a range (from 0 to BDL). Table 9 displays the percentages of 

influent and effluent concentration values reported as BDL for each contaminant, for the 

storms and samples used in this study. In this study, the detection limits were normally: 

0.50 mg/l for TPH-D, 0.03 mg/l for Zn, 0.5 mg/l for DIN, and 10 mg/l for TSS. 

Table 9 Summary of samples with concentrations reported as BDL. 

Location 

Influent 

Effluent 

Format 

Number 

Percentage 

Number 

Percentage 

Total Number 
of Samples 

166 

100% 

132 

100% 

TPH-D 

36 

23% 

97 

69% 

BDL 

Zn 

18 

14% 

61 

46% 

Samples 

DIN 

45 

34% 

27 

20% 

TSS 

20 

8% 

37 

21% 
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Estimates of the BDL concentration values can be made by implementing a 

probabilistic approach. In this scenario, a probability distribution is fitted to the data using 

only concentration values above the reported detection limit. Then, concentration values 

between zero and the detection limit can be drawn from the fitted probability distribution 

(Helsel and Hirsch, 2002). Note that the accuracy of this method depends on the amount 

of data available above detection limit. 

For this study, a Gamma distribution was fitted to the data. The parameters y (shape) 

and 9 (scale) of the distribution were computed using the Maximum Likelihood Estimator. 

The parameter values of the fitted probability distribution are shown in Table 10. The 

Kolmogorov-Smirnov test (KS-test) was used to assess whether or not the data followed 

the fitted distribution. The D statistic was computed for a level of significance a = 0.05 

(95% confidence interval) and i concentration values above the detection limit. The data 

follows the fitted distribution when Diia < Dcriticai- Empirical and theoretical probability 

distributions functions (PDFs) are shown in Figure 10. The D statistic represents the 

maximum vertical deviation between the empirical and theoretical data probability 

distributions. This methodology was used to develop probability distributions at the 

influent (Avellaneda et a/., 2008) 

Table 10 Parameters of the gamma distributions fitted to the effluent data. 

Total samples 
Contaminant y (shape) 9 (scale) Dcritlcai Dia 

above DL (i) 

TPH-D 35 4.61 0.15 0.23 0.13 

Zn 71 2.76 0.01 0.16 0.17 

DIN 105 1.72 0.46 0.13 0.07 

TSS 96 2.12 16.67 0.14 0.07 

Level of significance a = 0.05 
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Figure 10 Empirical (Data) and theoretical data (Model) probability distributions for sand 

filter effluent. C.I: Confidence Interval. 
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Calibration Procedure 

Optimal parameter values for the removal rates (k) and the decay orders (n) were 

obtained on a storm by storm basis. A total of 15 storms were utilized for calibration 

purposes, and two storms were selected for model validation using the Monte Carlo 

method. A continuous simulation approach was not performed because inter-event 

samples were not available. The initial concentration (at the beginning of the storm) was 

assumed to be zero. This assumption was considered reasonable since at the start of 

these of storms only groundwater baseflows existed typically at detection level 

concentrations for the contaminants of the study. 

During the optimization process new k and n candidates were randomly generated 

according to the SA algorithm. The root mean square error (RMSE) was computed for 

each set of candidates. For the new candidates to be generated it was necessary to 

establish a lower and upper limit of the parameters. A lower limit of 0 and an upper limit 

of 100 were used initially to test what the parameter space would be. The n value was 

selected among a first, second, and third order approximation (n=0,1,2). 

A linear decrement function was adopted to reduce the temperature T of the SA 

algorithm. The "cooling" schedule was defined by 

TM=aTt t = 0,l,...,s, ( 1 1 ) 

where T is the temperature; st is the number of steps of the cooling schedule; and a is 

the temperature reduction coefficient that varied between 0 and 1 (Hopgood, 2000). For 

this research, these parameters were set to T = 10,000, st = 20, a = 0.9, and 20,000 
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iterations were used. These previous parameter values were found by initially re-running 

the model several times and verifying that the random walk searched the entire domain 

and the temperature did not reduce too quickly. 

Results 

Model Application 

Figures 11 and 12 show model results for some of the storms considered in this 

study. Influent and effluent monitored hydrographs are also plotted. Influent 

pollutographs for all the contaminants of study were obtained from a calibrated 

accumulation and wash-off model (Avellaneda et al., 2008). Estimated effluent pollutant 

concentrations are plotted along with the observed effluent concentrations. RMSE 

values are also reported. 

The influent hydrograph for the 03/08/2005 event increased gradually, reached a 

maximum peak flow, and then decayed (Figure 11(a)). A delay was clearly observed in 

the effluent hydrograph. This is due to the sand filter's storage capacity and infiltration 

rate; although, it also depends on factors such as rainfall duration and intensity. An 

influent peak flow reduction was also observed. For all the contaminants, the first 

observed effluent concentration value was reported as BDL. The model does not explain 

the reported lower concentration of the first sample and tends to follow the trend of the 

subsequent higher concentration values. In this study, observed concentration values 

were used as they were reported from the laboratory, but not in the model itself since 

they could not be incorporated directly, but rather through their transformation by the real 
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time model. In general, all the effluent pollutographs showed a smooth exponential 

decay of concentration over time. 
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Figure 11 Results for the 03/08/2005 storm. Optimized parameter values are shown in 

Table 11 

Figure 12 shows model result for the 04/20/2005 storm event. Multiple flow peaks 

were observed on the influent hydrograph (Figure 12(a)). As expected, the influent 

hydrograph is attenuated by the storage available in this stormwater system, producing a 

smooth effluent hydrograph. The last two concentration values were reported below the 

detection limit for DIN, the last three for Zn, the last one for TSS, and only the first two 
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sample concentrations were reported above the detection limit for TPH-D. The model 

described the general trend observed of the measured concentrations. 
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Figure 12 Results for the 04/20/2005 storm. Optimized parameter values are shown in 

Table 11. 

The optimized parameter values for all the storms and contaminants included in this 

study are presented in Table 11. RMSE values are reported. Figure 13 shows box and 

whisker plots for the removal rate optimized parameter values. The highest removal 

rates were obtained for Zn and TPH-D; lower removal rates were achieved for TSS; and 

values relatively close to zero for DIN. 
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Table 11 Optimized removal rates (k) and decay orders (n) for different storms and 

contaminants 

Rainfall 
Event m/d/y 

09/18/04 

10/30/04 

01/14/05 

02/10/05 

03/08/05 

03/28/05 

04/20/05 

08/13/05 

09/15/05 

11/06/05 

11/30/05 

12/16/05 

01/11/06 

02/17/06 

03/13/06 

k 

0.4 

0.0 

0.0 

3.0 

6.8 

3.1 

0.7 

0.0 

-

-

0.0 

0.6 

0.0 

0.0 

0.0 

DIN 

n 

0 

2 

2 

2 

2 

2 

2 

2 

-

-

1 

1 

2 

0 

0 

RMSE 

0.10 

0.14 

0.72 

0.28 

0.25 

0.21 

0.19 

1.27 

-

-

0.35 

0.12 

0.55 

0.24 

0.31 

k 

15.0 

38.6 

-

6.8 

57.2 

0.0 

57.2 

8.4 

51.3 

-

23.3 

-

18.5 

36.7 

-

TPH-D 

n 

1 

2 

-

2 

2 

2 

2 

2 

2 

-

2 

-

2 

2 

-

RMSE 

0.11 

0.09 

-

0.20 

0.27 

0.32 

0.21 

0.43 

0.15 

-

0.18 

-

0.16 

0.21 

-

k 

0.0 

0.0 

31.0 

-

1.6 

5.7 

85.8 

18.2 

0.0 

-

-

1.5 

0.0 

2.0 

0.5 

TSS 

n 

0 

0 

2 

-

2 

2 

1 

1 

0 

-

-

2 

0 

2 

2 

RMSE 

48 

16 

34 

-

18 

47 

8 

9 

32 

-

-

12 

30 

10 

12 

k 

13.1 

59.5 

-

91.9 

75.2 

18.9 

74.0 

-

17.9 

50.7 

79.7 

125.0 

0.0 

111.7 

62.8 

ZINC 

n 

1 

2 

-

2 

RMSE 

0.01 

0.01 

-

0.03 

0.03 

0.01 

0.03 

-

0.00 

0.01 

0.01 

0.02 

0.01 

0.02 

0.01 

Note:"-" Indicates that data are not available, k has units of (mg/l)"n+ /day. n is dimensionless. 

RMSE has units of mg/l. 
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Figure 13 Box and whisker plot of optimized removal rates (k) for all the contaminants 

and decay order models (n = 0, 1, 2). k has units of (mg/l)"n+1/day. 

Statistical Analysis 

The cumulative distribution function (CDF) was developed for the optimized removal 

rate parameter values (Figure 14). Afterward, different probability distributions were fitted 

to the optimized parameter values and tested. It was found that the gamma distribution 

was appropriate to represent the CDFs obtained from the optimized values. Table 12 

shows the gamma distribution parameters fitted to the data. The parameters of the 

gamma distribution are the shape y and the scale 9. These two parameters are related to 
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the mean x and the variance s2 of the data as follows: x = y 0 and s2 = y 02. The KS-

test was used to measure the goodness-of-fit of the fitted gamma distributions. A 95% 

confidence interval is displayed in Figure 14 as well. 

Table 13 shows the frequency of the optimized decay orders for the different 

contaminants. In this case, a probability function was not fitted since the main goal was 

to explore what n values were more likely to characterize the treatment capabilities of 

the system. Results indicate that n = 2 was the optimum observed most frequently for 

TSS and DIN (Table 13). However, for some storms, n = 1 and n = 0 were found to be 

the best parameter values. For TPH-D, the treatment process seems to follow a second 

order decay model. A first order decay model is more likely to describe the removal of 

Zn. 

Table 12 Parameters of the gamma distributions fitted to removal rate optimized values. 

Total number 
Contaminant y (shape) 9 (scale) Dcriticai D]a 

of storms (j) 

TPH-D 11 1.9 15.2 0.39 0.18 

Zn 13 2.4 25.1 0.36 0.21 

DIN 13 0.3 3.7 0.36 0.33 

TSS 12 0.2 51.6 0.38 0.18 
Level of significance a = 0.05 
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Table 13 Frequency of optimized decay orders for the different contaminants. 
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Figure 14 CDFs of optimized removal rates (Data) and fitted gamma distributions 

(Model). A 95% confidence interval (C.I) is shown for each contaminant. 
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Event Mean Concentration (EMC) 

For this study, the estimated effluent EMC was compared against the observed 

effluent EMC to evaluate the performance of the model. The EMC of a storm event is 

defined as the total pollutant load divided by the total runoff volume. Equation (12) can 

be used to compute the EMC when discrete samples are collected during the duration of 

the storm: 

m 

EMC = -^ — . . . . 
^ ( 12 ) 
1=1 

where EMC is the effluent Event Mean Concentration (mg/l); d and Q are the average 

flows (m3/day) and concentrations (mg/l) within the time interval At (day); and m is the 

total number of time intervals. EMCs have also been utilized to evaluate the 

performance of stormwater treatment measures (Barret, 2005). 

EMCs were computed for the storms used for calibration. Figure 15 shows cumulative 

distribution functions for the observed effluent EMCs (Out (obs)) and the estimated 

effluent EMCs (Out (est)). Observed effluent EMCs were computed using the samples 

collected during the storm event. Estimated effluent EMCs were computed using the 

estimated pollutographs obtained after calibration and the respective effluent 

hydrograph. Note that the estimated pollutograph was computed using the calibrated 

parameters for each storm. 
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Figure 15 Sand filter CDF of Event Mean Concentrations (EMC). Out: effluent, obs: 

observed, and est: estimated. 

The K-S test was performed to assess whether or not the estimated effluent CDF 

followed the distribution of the observed effluent CDF. The estimated effluent CDF for 

TSS did not pass the K-S test since Dj,a > Dcriticai for a level of significance a = 0.05 (Djia = 

0.58, Dcnticai = 0.37, j = 12 storms). The model underpredicted effluent TSS 

concentrations. For DIN, TPH-D, and Zn, the estimated effluent CDFs passed the K-S 

test, which suggests that the calibrated model preserved the distribution of the observed 

effluent EMCs. 
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Monte Carlo Simulation 

A single set of parameter values should not be used for modeling purposes. As it has 

been reported so far in this study, the removal rate parameter (k) and the decay order 

(n) vary among storms and contaminants. One could determine the PDF of the model 

parameters when data are available. When the parameters' PDFs are provided, then a 

Monte Carlo simulation can be performed to assess the prediction capabilities of the 

model. Monte Carlo simulations incorporate uncertainty into the analysis and it has been 

recommended as a useful tool when assessing the water quality characteristics that 

would result from different environmental scenarios (Beck, 1987; Walker, 1994). 

For validation purposes, results of a Monte Carlo simulation are provided for two 

storm events: 05/02/2006 and 05/09/2006. The fitted gamma distributions (Table 12 and 

Figure 14) were used to generate (k) values. A decay order was selected for each 

contaminant: n = 2 for TSS, TPH-D and DIN; and n = 1 for Zn. These decay order values 

were selected upon the PDFs identified in Figure 14. The number of simulations was set 

to 5,000 for each contaminant. 

Simulation results for the 05/02/2006 and 05/09/2006 storm events are shown in 

Figure 16 and Figure 17, respectively. The central solid line indicates the expected 

concentrations. The 10 (q10), 30 (q30), 70 (q7o), and 90(q90) percentiles were selected as 

a measure of uncertainty. For the 05/02/2006 storm, DIN and TSS observed effluent 

concentrations fell above the 90% uncertainty limit (Figure 16(a) and Figure 16(c)). This 

indicates that, for this storm, the model underestimated effluent pollutant concentrations 

for DIN and TSS. Note that uncertainty limits for DIN were almost identical, which 

indicates poor model performance. The model predicted some treatment due to the fact 

that some level of pollutant removal (k > 0) was observed on the storms used for 

calibration. Simulation results for TSS are consistent with the fact that the treatment 
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model underestimates effluent TSS concentrations (Figure 15(c)). For TSS, four 

observed concentrations were reported below the detection limit (10 mg/l). Although 

observed concentrations fell outside the uncertainty limits, the model did predict effluent 

concentration values less or equal to the analytical detection limit. For TPH-D and Zn, all 

observed concentrations but the first one were reported below the detection limit. The 

detection limit was approximately 0.40 mg/l for TPH-D and 0.01 mg/l for Zn. The model 

did predict some effluent concentration values below the detection limit (Figure 16(b) 

and Figure 16(d)). 
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Figure 16 Monte Carlo simulations of predicted effluent pollutant concentrations for the 

05/02/2006 storm event. U.L: Uncertainty Limits. D.L: Detection Limit. The dark shaded 

region indicates the 30% and 70% uncertainty limits. The light grey shaded region 

indicates the 10% and 90% uncertainty limits. Observed concentrations values and the 

reported detection limits were plotted as discrete points. 

Figure 17 shows Monte Carlo simulation results for the 05/09/2006 storm event. As it 

happened for the 05/02/2006 event, the model did not accurately predict effluent DIN 

concentrations since they fell above the 90% uncertainty limit. However, the probable 

explanation for the poor model performance does not lie in the calibration procedure but 

in the conceptualization of the model approach for DIN. For this storm, all observed 

TPH-D effluent concentrations were reported below the detection limit. Effluent 

concentration values below the detection limit were predicted by the model (Figure 
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17(b)). Few concentration values were reported above the detection limit for TSS and 

Zn. The detection limit was approximately 10 mg/l for TSS and 0.01 mg/l for Zn. The 

model was capable of predicting the first two samples for both TSS (Figure 17(c)) and 

Zn (Figure 17(d)) within the 90% uncertainty limit. For these two contaminants, 

simulation results predicted concentrations values below the detection limit. 
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Figure 17 Monte Carlo simulations of predicted effluent pollutant concentrations for the 

05/09/2006 storm event. U.L: Uncertainty Limits. D.L: Detection Limit. The dark shaded 

region indicates the 30% and 70% uncertainty limits. The light grey shaded region 

indicates the 10% and 90% uncertainty limits. Observed concentrations values and the 

reported detection limits were plotted as discrete points. 
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Table 14 shows the total observed and estimated effluent mass for the 5/2/2006 and 

5/9/2006 storms. The observed mass was computed using two different approaches 

when a detection limit was reported: (1) using a zero concentration and (2) generating a 

concentration from the probability distributions fitted to the effluent data (Table 10). The 

three estimated values correspond to the 30% (q30), 50% (q50), and 70% (q70) uncertainty 

limits. The model underestimated the total effluent mass TSS and DIN. The total 

estimated mass was higher than the observed mass for TPH-D and Zn. 

Table 14 Observed and estimated total effluent mass for the storms used for validation. 

Storm 

5/2/2006 

5/9/2006 

Pollutant • 

TSS 

TPH-D 

Zn 

DIN 

TSS 

TPH-D 

Zn 

DIN 

Observed (1) 

631 

0.63 

0.03 

7.35 

101 

0 

0.09 

6.31 

Observed (2) 

735 

8.77 

0.24 

8.64 

147 

2.04 

0.19 

6.47 

Total Mass (g) 

Estimated (q30) Estimated (q50) 

12 

12.40 

0.03 

2.52 

81 

6.10 

0.11 

1.91 

15 

13.72 

0.05 

2.58 

100 

6.74 

0.14 

1.93 

Estimated (q70) 

20 

15.21 

0.09 

2.65 

129 

7.33 

0.18 

1.95 

(1) A zero concentration was used when a DL (detection limit) was reported. 

(2) Concentrations were determined from a fitted gamma probabiliy distribution (Table 10) 

when a DL was reported. 

Conclusions 

A decay model for pollutant treatment, with parameter removal rate (k) and decay 

order (n), was used to estimate effluent pollutant concentrations of a sand filter treating 

stormwater. The model was based on a water balance, was dynamic, and variations in 

space were not considered. The model was implemented for a zero, first, and second 
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order approximation (n = 0, 1, 2). Simulation results were described for two different 

storm events. The model was developed with the intention of emulating the decay 

function observed in chemical kinetics and sand filtration. 

Calibration of the model was performed on a storm-by-storm basis using events 

monitored during the 2004-2006 period. Optimized parameter values were found for 

each storm and provided for TSS, TPH-D, DIN, and Zn (Table 11). Examples of model 

performance were provided for two storms. These results suggest that the treatment 

process of TPH-D and TSS follows a second order decay model. It seems that a first 

order decay model represents the treatment process of Zn. For the storms selected for 

calibration, the decay model was able to preserve the overall distribution of the observed 

effluent EMCs for DIN, TPH-D, and Zn; however, it underestimated the distribution of the 

observed TSS effluent EMCs. The model could not adequately estimate effluent DIN 

concentrations of two storm events selected for validation. 

Calibrated parameter values reported in this study can be used for modeling 

purposes. A Monte Carlo simulation technique was implemented to assess water quality 

performance of the treatment model. For this purpose, a gamma distribution was fitted to 

the optimized removal rate values (Figure 14). Afterward, values for the removal rate 

parameter (k) were drawn from the gamma distributions. For some examples, the model 

was capable of predicting concentrations above and below the analytical detection limit. 

Simulation results suggest that the two-parameter model may be sufficient to describe 

the overall mechanisms of treatment within the sand filter. However, the decay model 

should not be used beyond its limitations; in particular, if a detailed description of the 

physical and chemical processes is required. 

Model results should be used carefully when comparing performance to other sand 

filters. It is has been reported that sediment particle size affects treatment performance 
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as well as influent concentrations (Minton, 2002, EPA, 2002). Consequently, parameter 

values may be affected by those factors. 

The statistical results provided in this study could be used in more complex models 

such as Bayesian applications. Additionally, one could add more complexity to the 

treatment model by incorporating other parameters that account for spatial variation and 

other transport and removal processes (for example the advection-dispersion transport 

equation). Further research should also explore the variables that affect the variation of 

the removal rate and the decay order. The treatment model can also be applied on other 

stormwater treatment systems such as: bioretention, retention ponds, gravel wetlands, 

and swales. 
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CHAPTER 4 

MODELING URBAN STORMWATER QUALITY TREATMENT OF A GRAVEL 

WETLAND, A RETENTION POND, AND A SAND FILTER 

Abstract 

Results of the application of a mathematical model for simulating contaminant 

removal from a group of stormwater treatment systems are presented. The stormwater 

treatment systems included: a gravel wetland, a retention pond, and a sand filter. The 

mathematical model was based on the mass balance principle and the assumption that 

an n-order decay model describes the complex processes of pollutant removal (for 

example sedimentation, biodegradation, filtration, plant uptake, and chemical 

precipitation). The model was defined by the parameters of removal rate (k) and the 

decay order (n). For each treatment system, a collection of storm events was monitored 

between 2004 and 2006. Monitoring of the treatment systems was performed in a side 

by side fashion so that each system received the same stormwater quantity and quality. 

This configuration made possible a comparison of the calibrated parameters obtained for 

each system. The runoff constituent analyses included: total suspended solids (TSS), 

total petroleum hydrocarbons - diesel range hydrocarbons (TPH-D), dissolved inorganic 

nitrogen (DIN, comprised of nitrate, nitrite, and ammonia), and zinc (Zn). The research 

objective was to determine the best set of parameters for each system in a storm-by-

storm fashion and compare the distribution of the removal rate (k) among systems. The 

best set of parameters of the decay model was determined by using a simulated 
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annealing technique as part of the optimization process. Monte Carlo simulations were 

performed to describe the variability of the estimated effluent concentrations. It was 

found that first and second order decay models were more likely to describe the 

observed effluent concentrations. A significance difference between the distribution of 

the gravel wetland TSS removal rates and those calculated for the sand filter and the 

retention pond was obtained. This statistically difference among the distributions was 

also observed for DIN. No significance difference among the distribution of the removal 

rate (k) was observed for TPH-D. Only for the sand filter, the distribution of the Zinc 

removal rate (k) was statistically different than those obtained for the gravel wetland and 

the retention pond. 

Introduction 

Stormwater runoff management aims to retain predevelopment hydrological and 

water quality characteristics. Watershed protection programs normally include some sort 

of stormwater management measure to help minimize impacts to natural systems 

resulting from land development. The effectiveness and performance of these 

management practices has been evaluated and documented for a variety of applications 

(Kayhanian et a/., 2005; Roseen ef a/., 2006; Ice, 2004). In addition to the 

documentation on the performance of the stormwater systems, watershed managers 

need to be provided with different tools to evaluate system implementation. 

Mathematical models can help conceptualize the behavior of a particular environmental 

system and can be used as a powerful tool for predicting the system's response to a 

variety of conditions. 

Arabi et al. (2006) calibrated and validated the Soil and Water Assessment Tool 

(SWAT) model to evaluate the effectiveness of various Best Management Practices 
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(BMPs). Grassed waterways, grade stabilization structures, field borders, and parallel 

terraces were used to examine the transport of total suspended solids (TSS), total 

phosphorus (TP), and total nutrients (TN) on a selected group of watersheds. The 

mathematical model integrated the SCS curve number method and the Modified 

Universal Soil Loss Equation (MUSLE) to perform the analysis. Calibrated parameter 

values were obtained for each BMP and it was advised that the use of uncertainty 

analysis was key factor during the decision-making process. 

Multivariate regression analysis has also been utilized for assessing water quality 

performance of stormwater measures. Edwards et al. (1996) fitted a non-linear 

regression model to estimate time variations of effluent pollutant concentrations from a 

collection of agricultural BMPs. The contaminants of concerned included: nitrate (N03-

N), ammonia (NH3-N), total kjeldahl nitrogen (TKN), total phosphorous (TP), total 

suspended solids (TSS), and chemical oxygen demand (COD). Decreasing trends were 

identified for NH3-N, TKN, and COD. 

Some difficulties have been identified for the analysis of stormwater quality data and 

model application: sparse knowledge concerning the processes involved, lack of data, 

and difficulty in calibration (Ahyerre et al., 1998). Additionally, depending on the 

measuring method and the sampling procedures, some degree of uncertainty may be 

present. Difficulties in calibration occur when different vectors of model parameters 

seem to describe the recorded data. An uncertainty analysis of the predicted values is 

concerned with the variability of the target variable for a range of likely parameter values. 

For example, if the target variable is the effluent concentration, then an uncertainty 

analysis should describe the variability of the estimated concentrations predicted by the 

model. 

Wang et al. (2006) investigated the application of a first order decay model to 

describe water quality of some stormwater treatment measures. In their model, (k) is the 
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areal decay rate constant (m/year) and was used to describe the pollutant removal 

capabilities of the stormwater systems. Steady state flow conditions are assumed so that 

short-term flow and concentration fluctuations are negligible (Kadlec and Knight, 1996). 

Wang et al. (2006) did not report calibrated decay rates but recommended the model as 

a lumped approach to describing the overall water quality treatment processes within the 

systems. Further research was recommended to explore the variability of the model 

parameters under different real hydrodynamic conditions (for example influent loading 

and flow). 

Influent flow and contaminant concentrations normally change over time as they enter 

the stormwater treatment system. Also, changes in the effluent concentration over time 

are expected as the treated water leaves the system. First order decay models have 

been used to estimate effluent pollutant concentrations from wet ponds (Wang et al., 

2004). The combined effects of several pollutant removal mechanisms were represented 

by the removal rate parameter. This model was not intended to describe the 

physicochemical means by which sedimentation, filtration, or plant uptake occur within 

the treatment system. In stormwater, the effect of a decay order different than one is yet 

to be studied. 

In this paper, the application of an n-order decay model to estimate effluent pollutant 

concentrations from stormwater systems was explored. The parameters of the model 

were the removal rate (k) and the decay order (n) (Avellaneda et al., 2008b). The 

contaminants of interest were: total suspended solids (TSS), total petroleum 

hydrocarbons - diesel range hydrocarbons (TPH-D), dissolved inorganic nitrogen (DIN, 

comprised of nitrate, nitrite, and ammonia), and zinc (Zn). The stormwater systems of 

the study included: a gravel wetland, a retention pond, and a sand filter. Each system 

received the same influent runoff from a commuter parking lot located in Durham, NH. 

The data consisted of flow and water quality information of storms monitored between 
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2004 and 2006. The objective was (i) to calibrate the treatment model and obtain 

parameter values on a storm-by-storm basis, (ii) to identify probability distribution 

functions for the reaction rate (k) and establish differences among the systems, and (iii) 

to study model uncertainty by performing Monte Carlo simulations and comparing the 

distribution of the observed and estimated effluent Event Mean Concentrations. The 

stormwater literature recommends the Event Mean Concentration (EMC) of a storm 

event as an index to characterize the total pollutant mass that enters or leaves a 

stormwater system (Urbonas, 1995; EPA, 2002). 

Stormwater Treatment Measures 

Three stormwater management measures were selected for this study: a retention 

pond, a sand filter, and a gravel wetland. The design parameters were taken from the 

New York State Stormwater Management Design Manual (2001). A pretreatment 

sedimentation basin was constructed for every system. The sedimentation basin helps 

remove large particles, provides for some flow equalization, and prevents the systems 

from premature clogging. The designed Water Quality Volume was 92.5 m3 (WQV), 

which represents 25 mm of precipitation over an impervious area of 4047 m2, and 

corresponds to the daily storm volume not exceeded 90% of the time on days with 

measurable precipitation. 

Gravel Wetland 

The gravel wetland is considered an infiltration/filtration system. The system is 

comprised of a sedimentation forebay and two horizontal-flow treatment cells. The filter 
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media is a combination of a gravel substrate at the bottom (0.6 m thick and D50 = 19 

mm) and a wetland soil on top. A 0.15 m perforated pipe is used to distribute the influent 

flow across the width of the subsurface gravel bed. Basic areal dimensions of the 

studied gravel wetland are 4.6 m x 9.8 m for the filter basin footprint (for each cell) and 

11.3 m x 17.1 m for the forebay footprint. Stormwater flows horizontally through the 

gravel substrate and is collected by subdrains on the far end of the second treatment 

cell. The forebay was designed to hold 10% of the WQV while each treatment cell holds 

45%. The total area of the gravel wetland is 507 m2. Contaminants are removed by 

filtration, biological uptake, and adsorption. 

Retention Pond 

Retention ponds are designed to retain a large volume of stormwater and slowly 

release it. Treatment is achieved by physical settling of sediment and biological uptake. 

The areal dimensions of the studied retention pond are 14 m x 21 m. The treated runoff 

leaves the system through a 0.15 m perforated standpipe with reducing coupling to 

0.025 m. The surface area of the retention pond is covered by algae or aquatic plants. 

Side slopes were stabilized with grass, and spillways with stone and geotextile. 

Sand Fitter 

The sand filter bed is 0.6 m thick, uses coarse to medium grain sand (D50 = 0.7 mm), 

and has areal dimensions of 2.4 m x 6.1 m. Temporary ponding of the filter basin is 

expected during larger storm events due to saturation of the filter media and the fact that 

inflow exceeds outflow. The sedimentation forebay was designed to hold 25% of the 
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WQV while the filter basin holds the remaining 75%.The filter bed is sub-drained by a 

0.15 m perforated pipe bedded in a 0.20 m layer of crushed stone (D50 = 19 mm). 

Monitoring 

These three stormwater treatment measures were monitored between August 2004 

and September 2006. A total of 15 storms were collected for the gravel wetland, 15 

storms for the retention pond, and 16 storms for the sand filter. Automated samplers 

(6712SR ISCO) performed the sampling. Up to 24 samples were taken for each system, 

for each storm; however, normally 8-12 samples were used to characterize both influent 

and effluent stormwater quality for each system. The sampling program for each system 

was based on analyses of various effluent hydrographs. Influent and effluent flows were 

measured with inline weirs. 

Runoff constituent analysis included: total suspended solids (TSS), total petroleum 

hydrocarbons - diesel range hydrocarbons (TPH-D), dissolved inorganic nitrogen (DIN, 

comprised of nitrate, nitrite, and ammonia), and zinc (Zn). Stormwater samples were 

analyzed by a laboratory that is state-certified for drinking water and wastewater. 

Guidance documents on collecting environmental data and the site quality assurance 

project plan were followed to assure good quality of the results. Table 15 shows 

characteristics of the storm events selected for this study. Note that the storm 

characteristics were obtained for the total watershed area; however, each system 

treated an equivalent fraction of the total storm volume. More description about the 

monitoring program is presented in Roseen et al. (2006). 
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Table 15 Summary of monitored storm events 

Rainfall Peak Rain Total 
Event Intensity Duration Depth 

(m/d/y) (mm/hr) (min) (mm) 

9/18/2004 

10/30/2004 

11/24/2004 

1/14/2005 

2/10/2005 

3/8/2005 

3/28/2005 

4/20/2005 

6/22/2005 

8/13/2005 

9/15/2005 

11/6/2005 

11/30/2005 

12/16/2005 

1/11/2006 

2/17/2006 

3/13/2006 

5/2/2006* 

5/9/2006 

6/1/2006* 

6/21/2006 

7/22/2006* 

9/6/2006 

15 

21 

9 

24 

6 

3 

12 

12 

15 

24 

18 

12 

9 

18 

15 

12 

12 

12 

3 

125 

27 

40 

30 

1075 

705 

705 

645 

1520 

1220 

1685 

480 

95 

765 

30 

100 

810 

630 

320 

110 

170 

1920 

565 

485 

80 

50 

585 

* Storms used for validation 

Peak 
Flow 

(m3/day) 

5642 

8678 

4394 

21101 

4437 

2338 

7675 

4274 

9120 

18408 

5518 

2801 

2503 

2561 

2903 

1493 

1345 

4642 

1621 

27194 

5190 

8333 

6087 

Volume 
(m3) 

1364 

281 

530 

1033 

795 

406 

3082 

1017 

266 

514 

86 

135 

363 

458 

214 

37 

75 

1331 

322 

930 

93 

81 

410 

Anticedent 
Dry Period 

(days) 

7.0 

13.0 

3.5 

1.3 

3.6 

5.7 

3.4 

5.9 

4.0 

10.0 

10.0 

10.8 

5.0 

5.5 

5.8 

2.5 

2.5 

7.0 

5.6 

10.7 

4.7 

7.5 

4.5 

Season 

Fall 

Fall 

Fall 

Winter 

Winter 

Winter 

Winter 

Spring 

Summer 

Summer 

Fall 

Fall 

Fall 

Winter 

Winter 

Winter 

Winter 

Spring 

Spring 

Summer 

Summer 

Summer 

Fall 
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Methodology 

Stormwater Treatment Model 

An n-order decay model was implemented to estimate effluent pollutant 

concentrations from the stormwater treatment systems. The parameters of the model 

were the removal rate (k) and the decay order (n). The treatment system was 

conceptualized as a black box where influent and effluent variables must be determined 

or measured (Avellaneda et al., 2008b). The partial differential equation that describes 

time variations of effluent pollutant concentrations can be written as follows: 

dC , CO-CO, C , dS , „ 
out _ in*Zm outzZ-oiit _ out _ h-C"1 

dt S S dt °ut d 3 ) 

where Cout represents the effluent concentration (mg/l); Cin is the influent concentration 

(mg/l); Qin is the influent flow rate (m3/day); Qout is the effluent flow rate (m3/day); S 

represents the storage within the system (m3); dS/dt is the change in storage (m3/day); t 

is time (days); k is the removal rate ((mg/l)"n+1/day); and n represents the decay order (-). 

These units will be used throughout the paper. 

The model was dynamic and spatial variations were not considered. Influent 

concentrations were computed by using an accumulation and washoff model 

(Avellaneda et al., 2008a). Ground water effects and other infiltration sources were not 

included since the systems were constructed in a low permeability, clay soil. 
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Parameter Estimation 

Model calibration requires an optimization technique in order to determine the group 

of parameter values that best estimate the measured effluent concentrations. The sum-

of-squares estimator was adopted as the objective function. This estimator is computed 

by summing up the squares of the residuals between observed and estimated 

concentrations: 

f \ m 2 

0 0 =min£(cijOfa-Ci;ej,(0)) M 4 ) 

where O denotes the objective function, & represents the vector of parameter values (k 

and n); Cout,obs are the measured effluent concentrations; Cout,est are the estimated 

effluent concentrations obtained from the stormwater treatment model; i denotes the 

current sample; and m is the number of samples taken during the storm event. The 

optimization algorithm extensively searches the parameter space until a minimum is 

found. In this study, the simulated annealing (SA) algorithm was utilized as the 

optimization technique (Kirkpatrick et al., 1983). The SA algorithm is a stochastic method 

that locates the parameter values that minimize or maximize a given objective function. 

Avellaneda et al. (2008b) described the algorithm with application to a stormwater 

treatment model. 

Measured Concentrations Below Detection Limit 

A detection limit is reported when pollutant concentrations are below the analytical 

reporting limit of the laboratory. However, a range of concentrations may not be practical 
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for modeling purposes. Table 16 summarizes, for each system and contaminant, the 

number of samples reported as below detection limit (BDL). Normally, the following 

detection limits were reported for the different contaminants: 0.03 mg/l for Zn, 10 mg/l for 

TSS, 0.3 mg/l for TPH-D, and 0.05 mg/l for DIN. The detection limit changed depending 

on the real sample volume available. 

Table 16 Summary of effluent samples with concentrations reported as BDL. 

System 

Gravel Wetland 

Retention Pond 

Sand Filter 

Total Number 
of Samples 

136 

117 

132 

TPH-D 

131 

71 

97 

BDL Samples 

Zn 

116 

71 

61 

DIN 

95 

46 

27 

TSS 

126 

35 

37 

One way of overcoming this issue is by generating concentrations for BDL data points 

from a probability distribution function (PDF) that describes the statistical characteristics 

of the concentration values reported above the detection limit. This approach aims at 

preserving the statistical properties of the sample population. Figures 18, 19, 20 show 

the empirical (solid line) cumulative distribution functions (CDFs) for the different 

treatment systems and contaminants considered in this study. A gamma probability 

distribution was fitted to the data (dashed line). Additionally, a 95% confidence interval 

was computed and the Kolmogorov-Smirnov test (K-S test) performed to evaluate the 

goodness-of-fit of the distribution (Kottegoda and Rosso, 1997). The fitted CDF was 

accepted if D < DCriticai- Critical values were obtained using the following approximation: 

Dcnticai = 1.36 / m05 for m > 40 (m number or samples); and from tabulated values in any 

other case (Miller, 1956). The parameters of the fitted distributions are shown in Table 

17. Note that a high percentage of the effluent concentrations collected for the gravel 
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wetland were reported below the detection limit. The D statistic was slightly higher than 

the Dcriticai on the fitted probabilities distributions for gravel wetland (Zn) and sand filter 

(Zn). In general, the gamma distribution was deemed sufficiently accurate and versatile 

to represent each variable and each system. 
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Figure 18 Empirical and theoretical CDF of effluent concentrations for the gravel 

wetland. C.I: Confidence Interval. 
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Table 17 Parameters of the gamma distributions fitted to the observed concentrations. 

System 

Gravel Wetland 

Retention Pond 

Sand Filter 

Contaminant 

TPH-D 

Zn 

DIN 

TSS 

TPH-D 

Zn 

DIN 

TSS 

TPH-D 

Zn 

DIN 

TSS 

Total samples 

above DL (i) 

5 

20 

41 

10 

46 

46 

71 

82 

35 

71 

105 

95 

y (shape) 

15.59 

2.69 

3.00 

5.22 

7.75 

3.89 

1.80 

0.99 

4.61 

2.76 

1.72 

2.12 

9 (scale) 

0.04 

0.01 

0.19 

2.34 

0.06 

0.01 

0.25 

39.26 

0.15 

0.01 

0.46 

16.67 

'-'critical 

-

0.29 

0.21 

0.41 

0.20 

0.20 

0.16 

0.15 

0.23 

0.16 

0.13 

0.14 

Di,a 

0.25 

0.32 

0.19 

0.29 

0.13 

0.20 

0.13 

0.14 

0.13 

0.17 

0.07 

0.07 

Level of significance a = 0.05 
"-" indicates that value is not available due to the sample size 

Results 

Model Application 

A group of storm events was selected for model calibration on each treatment 

system. Note that water quality data for all the contaminants were not available for all the 

storms; additionally, not exactly the same storm events were considered for all the 

systems due to maintenance or site issues. For calibration purposes: 14 storm events 

were selected for the gravel wetland; 14 events for the retention pond; and 15 for the 

sand filter. Moreover, one storm event was left for model validation for each system. 

The stormwater treatment model, Equation (13), was calibrated on a storm-by-storm 

basis with the hypothesis that different parameter values might be obtained for a variety 
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of storm intensities, pollutant loading, antecedent dry period, volume, etc. Figure 21 

displays a statistical comparison of the removal rate (k has units of (mg/l)"n+1/day) for the 

gravel wetland (GW), retention pond (RP), and sand filter (SF). Lower DIN removal rates 

were obtained for the sand filter probably due to the lack of vegetation. Median DIN 

removal rates ranged as follows: 0.3 - 0.7 (SF), 0.006 - 0.1 (RP), and 4 -10 (GW). The 

gravel wetland shows a slightly higher median TPH-D removal rate. Median TPH-D 

removal rates ranged as follows: 14-30 (SF), 0.008 - 71 (RP), and 0.5 - 46 (GW). For 

TSS, the highest median removal rate was obtained for the gravel wetland. The median 

TSS removal rates ranged as follows: 0.003 - 52 (SF), 0.003 - 21 (RP), and 4 - 45 (GW). 

The highest median Zn removal rates were achieved by the sand filter and gravel 

wetland. Median Zn removal rates ranged as follows: 30 - 75 (SF), 20 - 23 (RP), and 

0.02 - 37 (GW). Outliers were identified and are displayed in Figure 21. 
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Figure 21 Box and whisker plot of the removal rate (k) optimized parameter values for all 

the contaminants and decay order models (n = 0,1,2). SF: Sand Filter; RP: Retention 

Pond; and GW: Gravel Wetland. The removal rate has units of ((mg/l)~n+1/day). 
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Statistical Analysis 

A gamma probability distribution with parameters y (shape) and 9 (scale) was fitted to 

the optimized removal rates. For this purpose, the empirical cumulative distribution 

function (CDF) was found and the parameters of the gamma distribution computed. The 

K-S test was then performed to compare the fitted gamma distribution (Model) to the 

empirical CDF (Data). Table 18 shows statistical results for all the systems and 

contaminants. The fitted distributions for Zn (Gravel wetland) and DIN (Retention pond) 

did not pass the K-S test for a level of significance a=0.05 (D > Dcriticai)- Figure 22 shows 

the CDF obtained for the gravel wetland, retention pond, and sand filter. The empirical 

CDF (Data) and the fitted gamma distribution (Model) are plotted along with a 95% 

confidence interval. Table 19 shows the frequency of optimized decay orders for the 

different contaminants and systems. 

Table 18 Parameters of the gamma distributions fitted to optimized removal rate values. 

Critical values were obtained from Miller (1956). 

System 

Gravel Wetland 

Retention Pond 

Sand Filter 

Contaminant 

TPH-D 

Zn 

DIN 

TSS 

TPH-D 

Zn 

DIN 

TSS 

TPH-D 

Zn 

DIN 

TSS 

Total Number 

of Storms (i) 

13 

14 

13 

14 

13 

14 

14 

13 

11 

13 

13 

12 

y (shape) 

0.2 

0.2 

0.4 

0.2 

0.6 

0.2 

0.2 

0.1 

1.9 

2.4 

0.3 

0.2 

0 (scale) 

393 

740 

31 

285 

117 

439 

149 

354 

15 

25 

4 

52 

'-'critical 

0.36 

0.35 

0.36 

0.35 

0.36 

0.35 

0.35 

0.36 

0.39 

0.36 

0.36 

0.37 

Diia 

0.34 

0.47 

0.31 

0.24 

0.33 

0.32 

0.64 

0.23 

0.18 

0.21 

0.33 

0.18 

Level of significance a = 0.05 
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Figure 22 CDFs of optimized removal rates (k - Data) and fitted gamma distributions 

(Model) for the sand filter (SF), the retention pond (RP), and the gravel wetland (GW). 

The removal rate has units of ((mg/l)"n+1/day). C.I: Confidence Interval. 
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Table 19 Frequency of optimized decay orders for the different contaminants and 

systems. 

Decay Order (n) 
System Contaminant 

n = 0 n = 1 n = 2 

Sand Filter DIN 3 2 8 

TPH-D 0 1 10 

TSS 4 2 6 

Zn 0 11 2 

Retention Pond DIN 2 6 6 

TPH-D 2 1 10 

TSS 3 4 6 

Zn 0 12 2 

Gravel Wetland DIN 0 7 5 

TPH-D 1 5 7 

TSS 1 2 11 

Zn 0 13 1 

The fitted gamma CDFs to the removal rate were compared for each contaminant. 

For this purpose, the K-S test was conducted to assess whether or not for two systems 

the distributions were statistically different (for a level of significance a=0.05). The K-S 

test was selected due to the fact that no assumption about the distribution of the data 

was required (non-parametric test). Table 20 shows results from the statistical analysis. 

For DIN, no statistical difference was observed between the distribution of k for the sand 

filter and the retention pond. The distribution for the gravel wetland was significantly 

different (higher k values) than the distribution for the sand filter and the retention pond. 

The distribution of the TPH-D removal rate among the three systems was statistically 

indistinguishable. There was no statistical difference between the distribution of the TSS 

removal rate for the sand filter and the retention pond. However, the distribution for the 
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gravel wetland was significantly different than that of the retention pond and sand filter. 

For Zn, there was no statistical difference between the distribution of k for the gravel 

wetland and the retention pond. The distribution for the sand filter was significantly 

different than the distribution for the other two systems. 

Table 20 Comparison of the fitted removal rate cumulative distribution function between 

two systems. 

System Total number 
Contaminant •""critical 

Combination of k values (i) 
D, Are the distributions 

different? 
TPHD 

Zn 

DIN 

TSS 

GW and RP 

GW and SF 

RP and SF 

GW and RP 

GW and SF 

RP and SF 

GW and RP 

GW and SF 

RP and SF 

GW and RP 

GW and SF 

RP and SF 

13 

13 

11 

14 

13 

13 

13 

13 

13 

13 

12 

12 

0.36 

0.36 

0.39 

0.36 

0.36 

0.36 

0.36 

0.36 

0.36 

0.36 

0.37 

0.37 

0.31 

0.31 

0.38 

0.36 

0.41 

0.41 

0.41 

0.54 

0.29 

0.47 

0.44 

0.17 

No 

No 

No 

No 

Yes 

Yes 

Yes 

Yes 

No 

Yes 

Yes 

No 

Level of significance a = 0.05. Sand Filter (SF), Gravel Wetland (GW), and Retention 
Pond (RP). 

A similar analysis was performed for the decay order parameter. In this case, the goal 

was to assess whether or not there was a difference between a first and a second-order 

decay model among the gravel wetland, the retention pond, and the sand filter. The null 

hypothesis was that there was no difference between the two models among the three 

systems. A zero-order decay approximation was not considered in the analysis since 

only for a few cases of this model seemed to be more appropriate. To perform the 

85 



analysis, a contingency table was created and the x2-test used for testing the difference 

between proportions of the two decay models. The contingency was created using the 

frequency counts for a first and a second order decay model displayed in Table 19. 

For each contaminant, the x2 value was estimated and compared against the critical 

value using (3-1 )x(2-1 )=2 degrees of freedom (three systems and two models). The 

computed x2 values were: 3.51 (DIN), 5.04 (TPH-D), 1.79 (TSS), and 0.51 (Zn). The null 

hypothesis could not be rejected since those values were less than the critical value of 

the x2 distribution for a level of significance a=0.05 and two degrees of freedom (x2 = 6). 

Essentially, there was no evidence of a relationship between the two models and the 

systems. For example, a first-order decay model was found most frequently to be 

optimal for each of the systems. The x2 value for TPH-D was close to its critical value 

since for the gravel wetland the frequency of a first and a second-order model was 

similar. Note that this test is most accurate when the expected frequency in each cell of 

the contingency table is at least five. However, as it is reported in Table 19, the observed 

frequency was less than five in some cells. For this reason, poor performance of the test 

might be expected. 

Even though a rigorous statistical conclusion about the difference between the two 

decay models could not be achieved, a few descriptive statements can be drawn. The 

results indicated that the decay order n varies among contaminants. Only for a few 

storms and contaminants, a zero-order reaction model seemed to best describe effluent 

concentrations. For TSS, the objective function was frequently minimized when a 

second-order decay model was used. For the gravel wetland, this characteristic was 

particularly appreciable since only for three storms the optimized decay order was other 

than two. A second-order decay model was also the best approximation for the retention 

86 



pond and the sand filter; however, not as often as for the gravel wetland. The results for 

TPH-D suggested that a second-order decay model was likely to describe effluent 

concentrations. For the sand filter, a first-order decay approximation was found to be the 

optimal model only for one storm. For the retention pond, the optimum decay order was 

other than a second one only for three storm events. Moreover, for the gravel wetland, 

the frequency of a second-order decay model was slightly higher than the frequency 

obtained by a first-order model. A first-order decay model seemed to best represent 

effluent concentrations for Zn. For all the stormwater systems, a second-order decay 

model was found to be the optimal only for a few storms. For the gravel wetland and the 

retention pond, the frequency of a first-order and a second-order decay model was 

similar for DIN. A second order decay model was more frequent for the sand filter. 

Event Mean Concentration (EMC) 

For this study, the distribution of the observed effluent EMCs was compared against 

the distribution of the estimated effluent EMCs. The EMC of a storm event is defined as 

the total pollutant load divided by the total runoff volume (Charbeneau and Barret, 1998). 

Observed effluent EMCs were computed for the systems using discrete samples 

collected throughout the duration of the storm event. Estimated effluent EMCs were 

computed using the estimated effluent pollutographs obtained from the decay treatment 

model (using optimized values of k and n). The CDF for both the observed EMCs and 

the estimated EMCs was computed to assess the results obtained during calibration. 

Figures 23, 24, and 25 show the CDFs (observed and estimated) for the gravel 

wetland, the retention pond, and the sand filter, respectively. Calibration results can be 

examined by comparing the estimated effluent CDF and the observed effluent CDF. It 

should be noticed that this comparison looks only at the calibration results and does not 
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intend to validate the performance of the model, which should be assessed by analyzing 

storms not included during calibration. 

CDFs for the gravel wetland are shown in Figure 23. Note that a large portion of the 

effluent samples were reported with concentrations below the detection limit (Table 16). 

For example, 131 samples out of 136 were reported with concentrations values below 

detection limit for TPH-D. The CDF was computed using the detection limit for BDL data. 
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Figure 23 CDFs of Event Mean Concentrations (EMC) for the gravel wetland. Out: 

effluent; obs: observed; and est: estimated. 

Results for the retention pond are displayed in Figure 24. The K-S test was performed 

to assess whether or not the estimated effluent CDF followed the distribution of the 

observed effluent CDF. The estimated effluent CDF for TPH-D did not pass the K-S test 
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since Dn,a > DcrjWcai for a level of significance a = 0.05 (Dn,a = 0.50, Dcrmca\ = 0.38, n = 13 

storms). For the other three contaminants, the estimated effluent CDFs passed the K-S 

test for the same level of significance, which suggests that the calibrated model 

preserved the distribution of the observed effluent EMCs. 
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Figure 24 CDFs of Event Mean Concentrations (EMC) for the retention pond. Out: 

effluent; obs: observed; and est: estimated. 

Figure 25 shows the computed CDFs for the sand filter. The estimated effluent CDF 

for Zn, TPH-D, and DIN passed the K-S test. The estimated effluent CDF for TSS did not 

pass the K-S test for a level of significance a = 0.05 (Dn,a = 0.58, DcritiCai = 0.39, n = 12 

storms). This suggests that the model underestimates effluent EMCs for TSS. 
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Figure 25 CDFs of Event Mean Concentrations (EMC) for the sand filter. Out: effluent; 

obs: observed; and est: estimated. 

Monte Carlo Simulation 

Model validation was performed using the Monte Carlo technique. For each 

stormwater system, one monitored storm event was not included (randomly selected) in 

the calibration stage so that effluent concentrations could be predicted using the 

statistical results. The 07/22/2006 storm event was used for the gravel wetland, the 

06/01/2006 storm for the retention pond, and the 05/02/2006 storm for the sand filter. In 
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this paper, only results for the gravel wetland and the retention pond are shown. 

Simulation results for the sand filter can be found in Avellaneda et al. (2008b). 

For each Monte Carlo simulation, (k) was generated from the fitted gamma 

distributions and n was selected as the most frequent value observed after calibration. A 

total of 5,000 simulations were performed for each storm event and contaminant. Figure 

26 and 27 show simulation results for the gravel wetland and the retention pond, 

respectively. The central solid line indicates the expected mean concentrations. The 10 

(qio), 30 (q3o), 70 (q7o), and 90 (q9o) percentiles were selected as a measure of 

uncertainty. 

Figure 26 shows Monte Carlo simulation results for the gravel wetland. A decay order 

was selected for each contaminant: n=2 for TSS, n=2 for TPH-D, n=1 for Zn, and n=1 for 

DIN. A total of four samples were analyzed during this storm. The majority of the 

samples were reported with concentrations values below detection limit: 0.05 mg/l for 

DIN, 0.5 mg/l for TPH-D, 10 mg/l for TSS, and 0.01 mg/l for Zn. Only for the first sample, 

the concentration value was above the detection limit for TSS and TPH-D. For all the 

contaminants, the model predicted well the concentrations below and above the 

detection limit. 
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Figure 26 Gravel wetland Monte Carlo simulation results for the 07/22/2006 storm. U.L: 

Uncertainty limits. The dark shaded region indicates the 30% and 70% uncertainty limits. 

The light grey shaded region indicates the 10% and 90% uncertainty limits. Observed 

concentrations values and the reported detection limits were plotted as discrete points. 

Figure 27 shows Monte Carlo simulation results for the retention pond. The following 

decay orders were selected: n = 2 for TSS, n = 2 for TPH-D, n = 1 for Zn, and n = 2 for 

DIN. For this storm, concentrations below the detection limit were reported only for TPH-

D. The model underestimated effluent concentrations for DIN. It should be noticed that 

the poor results for DIN could be due to the fact that a good fit of the gamma distribution 

for (k) was not achieved. For TPH-D, simulated effluent concentrations fell below the 

reported detection limit. Observed effluent TSS concentrations fell within the 30% and 

70% uncertainty limits (except for the first sample) provided by the Monte Carlo 
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simulations. The model tended to underestimate effluent Zn concentrations; however, 

observed concentrations did fall within the 10% and 90% uncertainty limits. 
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Figure 27 Retention pond Monte Carlo simulation results for the 06/01/2006 storm. U.L: 

Uncertainty limits. The dark shaded region indicates the 30% and 70% uncertainty limits. 

The light grey shaded region indicates the 10% and 90% uncertainty limits. Observed 

concentrations values and the reported detection limits were plotted as discrete points. 

Table 21 shows effluent observed and estimated total effluent mass for the 

06/01/2006 storm for the retention pond (RP) and 07/22/2006 storm for the gravel 

wetland (GW). The observed mass was computed using two different methods when a 

detection limit was reported: (1) using a zero concentration and (2) generating a 

concentration from the probability distributions fitted to the effluent data (Table 17). The 
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three estimated values correspond to the 30% (q30), 50% (q50), and 70% (q70) uncertainty 

limits. The computed uncertainty limits were smaller than the observed effluent DIN and 

Zn mass for the 06/01/2006 storm. However, for this storm, the observed effluent TSS 

mass fell within the estimated uncertainty limits. For Zinc, the median estimated mass 

was 2.27 g and the observed mass was 0 g using method (1) and 6.89 g using method 

(2). For the 07/22/2006 storm, the median estimated effluent mass was higher than the 

observed effluent mass for all the contaminant when method (1) was used. However, the 

observed effluent mass was higher than q70 for all the contaminants when method (2) 

was used. 

Table 21 Observed and estimated total effluent mass for the storms used for validation. 

Storm 

7/22/2006 (GW) 

6/1/2006 (RP) 

Pollutant 

TSS 

TPH-D 

Zn 

DIN 

TSS 

TPH-D 

Zn 

DIN 

Total Mass (g) 

Observed (1) Observed (2) Estimated (q30) Est imated^) 

8 

0.32 

0.00 

0.00 

817 

0.00 

0.49 

4.58 

74 

2.42 

0.01 

2.92 

817 

6.89 

0.49 

4.58 

11 

1.02 

0.007 

0.20 

703 

1.60 

0.17 

0.25 

12 

1.30 

0.010 

0.32 

812 

2.27 

0.23 

0.38 

Estimated (q70) 

13 

1.76 

0.014 

0.51 

955 

3.25 

0.34 

0.62 

(1) A zero concentration was used when a DL (detection limit) was reported. 

(2) Concentrations were determined from a fitted gamma probabiliy distribution (Table 10) 

when a DL was reported. 
GW: Gravel Wetland. RP: Retention Pond. 

Conclusions 

The calibration of an n-order decay model to estimate effluent concentrations from a 

gravel wetland, a retention pond, and a sand filter was presented. The optimum 
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combination of the removal rate (k) and the decay order (n) was found on storm-by-

storm basis for each stormwater system. The variability of the parameters was 

summarized by using probability distribution functions. In particular, a gamma 

distribution was found to best represent the distribution of the removal rate. A zero, a 

first, and a second order decay model were investigated in this study. The simulated 

annealing method was used as the optimization technique and the sum-of-squares 

estimator was adopted as the objective function. 

A comparison of the median removal rate among the different systems was made. 

The highest median DIN removal rate was found for the gravel wetland. The DIN 

removal rate was lower for the retention pond and the sand filter. The median TPH-D 

removal rate was similar for all the systems. The gravel wetland exhibited the highest 

TSS removal rate whereas lower and similar median removal rates were obtained for the 

other two systems. Note that a multivariate analysis of variance was not performed due 

to the small size of the data set and the possibility that the distributions did not follow a 

normal distribution. 

It was found that first and second order decay models were likely to describe pollutant 

treatment for the different contaminants. A descriptive statement of the variability of the 

decay order was made by analyzing the calibrated values. Second-order decay models 

were found to best describe effluent pollutant concentrations for TSS and TPH-D. For 

Zn, a first-order decay model was frequently found as the optimum. Model results 

suggested that both a first and a second order decay model were likely to describe DIN 

removal. 

The effluent EMC was estimated and compared against the observed effluent EMC 

for the storms used for calibration. For this purpose, the similarity between the 

distribution of the estimated effluent EMCs and the observed effluent EMCs was tested. 

It was found that for most of the contaminants and systems, the calibrated model was 
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able to reproduce the distribution of the observed data. This criterion is recommended 

when assessing the quality of the calibrated model. This procedure could not be 

performed on the gravel wetland due to the fact that a high number of the effluent 

samples were reported with values below the detection limit, which ended up affecting 

the computation of the EMC. 

An effort to validate the calibrated model was made by performing Monte Carlo 

simulations using the statistical information obtained for each parameter. As an example, 

effluent concentrations were found for two storms not included in the calibration of the 

model. Removal rate values were generated from the fitted gamma distribution for each 

contaminant and the decay order was selected as the most likely approach between a 

first and a second order model. Most of the observed effluent concentrations fell within 

the uncertainty limits provided by the Monte Carlo simulations; although, poor results 

were obtained for the effluent DIN concentrations of the retention pond. Further 

investigations should assess the performance of the model using a large set of storms. 
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CHAPTER 5 

A BAYESIAN STORMWATER QUALITY MODEL AND ITS APPLICATION TO WATER 

QUALITY MONITORING 

Abstract 

A Bayesian statistical approach for determining parameter uncertainty of a 

stormwater treatment model is presented. Pollutant removal is simulated by using an n-

order decay model in which the removal rate (k) and the decay order (n) are the 

parameters. The ultimate goal was to determine the posterior probability distribution of 

the removal rate parameter for a selected group of stormwater treatment technologies 

and contaminants. The stormwater treatment technologies included: a sand filter, a 

gravel wetland, and a retention pond; all systems were loaded and monitored in a side 

by side fashion over a two year period. Stormwater runoff was generated by ambient 

rainfall on a commuter parking lot located at the University of New Hampshire. Results 

are presented for the following pollutants of concern: total suspended solids (TSS), total 

petroleum hydrocarbons - diesel range hydrocarbons (TPH-D), dissolved inorganic 

nitrogen (DIN, comprised of nitrate, nitrite, and ammonia), and Zinc (Zn). The targeted 

posterior distributions were numerically estimated by using a conventional Metropolis -

Hastings algorithm. It was found that first and second order decay models were more 

likely to reproduce estimated effluent concentrations. For a second order decay model, 

mean removal rate values were computed from the posterior distributions. Specifically, 

for the gravel wetland: krss = 59, kZn = 2115, krPH-D - 88, koiN - 7; for the sand filter: kxss -
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1-7, kZn = 1568, kTPHD = 5 7 - kDiN = 2; and for the retention pond: kTss = 0.8, kZn = 4645, 

kTPH-D= 68, kD|N= 8 (k in units of (mg/l)"1/day). 

Introduction 

Environmental models are developed, in general, to capture the complexity of a given 

physical problem and to conceptualize its features in mathematical expressions that 

describe the system dynamics. Normally, these mathematical expressions relate 

relevant environmental variables and some fitting parameters. The purpose of model 

calibration is then to find the best set of fitting parameters using field observations. 

However, due to the complexity of natural systems and the limitations on model 

components and characteristics, calibration may be difficult to achieve if not impossible. 

Furthermore, more than one set of parameters may describe the observed data. For that 

reason, parameter uncertainties must be considered when calibrating a model (Beven 

and Binley, 1992). Modelers turn to Bayesian inference when estimation of parameter 

uncertainties is necessary. 

Environmental Bayesian models have been formulated for a variety of applications: 

calibration and prediction in conceptual rainfall-runoff modelling (Kuzzera et a/., 2006), 

contaminant fate and transport in surface waters (Steinberg et al., 1996; Hong et a/., 

2005), flood frequency analysis using historical data (Reis and Stedinger, 2005; Seidou 

et al., 2006), and analysis of extreme values (Renard et al., 2006). In these studies, the 

objectives were to identify parameter values, evaluate the model structure, and state 

variable prediction. Additionally, Bayesian statistics provided a model for assessing 

parameter uncertainty. 

Some stormwater quality models have been developed to estimate pollutant 

concentrations at the outlet of a watershed. Flow and water quality information are 
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commonly used as the input variables so that parameters such as the accumulation rate 

and the wash-off coefficient are to be estimated. Kanso et al. (2003) studied parameter 

uncertainties of an urban stormwater model using a classical formulation for the 

transport of contaminants (the so-called accumulation and wash-off model). This study 

provided posterior probability distributions (PPDs) for the parameters of the model. 

Gaume et al. (1998) performed an uncertainty analysis using the Storm Water 

Management Model (SWMM). In their study, an accumulation and wash-off model was 

calibrated using a selected group of storms. Additionally, the study showed that even 

though a good fit between estimated and observed values was achieved, validation was 

still a challenge due to large uncertainties associated with the parameters. Other studies 

have used different statistical techniques to measure model performance on stormwater 

applications (Arabi et al, 2007; Walker, 1994). 

Very few applications have been implemented to describe parameter variations for 

models describing pollutant removal from stormwater management technologies. An n-

order decay model for simulating this type of treatment was applied by Avellaneda et al. 

(2008b, 2008c) on various systems, each receiving the same stormwater influent 

characteristics. Each system was individually monitored for a variety of contaminants. 

Calibrated parameter values were obtained on a storm by storm basis by minimizing the 

error function, which was defined as the sum of the squares of the residuals between the 

observed and estimated concentrations. Although a mechanistic approach was 

described in this research, this study suggested the application of more advanced 

statistical tools to explore parameter variation and uncertainty of estimated values. 

In this paper, a Bayesian statistical approach was used to estimate parameter values 

for a stormwater quality model. This was accomplished for an n-order decay model. The 

parameters of the model were the removal rate (k) and the decay order (n). The 

objectives were: (i) to calibrate a Bayesian stormwater quality model for three 
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stormwater systems (a gravel wetland, a sand filter, and a retention pond) using a 

collection of monitored rainfall events; (ii) to determine the posterior probability 

distribution (PPD) of the removal rate k for different decay order values (n = 0,1,2); and 

(iii) to perform Monte Carlo simulations to estimate effluent pollutant concentrations from 

the stormwater systems using the calibrated model. The contaminants of interest were: 

total suspended solids (TSS), total petroleum hydrocarbons - diesel range hydrocarbons 

(TPH-D), dissolved inorganic nitrogen (DIN, comprised of nitrate, nitrite, and ammonia), 

and zinc (Zn). Monitored data consisted of influent flow, effluent flow, and the analytical 

results water quality samples collected for storm events between the 2004 and 2006 

period. 

Stormwater Treatment Measures 

Three stormwater management measures were selected for this study: a retention 

pond, a sand filter, and a gravel wetland. The design parameters were taken from the 

New York State Stormwater Management Design Manual (2001). A pretreatment 

sedimentation basin was constructed for each system in order to help remove large 

particles, provides from some flow equalization, and prevents the systems from 

premature clogging. The designed Water Quality Volume was 92.5 m3 (WQV), which 

represents 25 mm of precipitation over an impervious area of 4047 m2, and corresponds 

to the daily storm volume not exceeded 90% of the time on days with measurable 

precipitation. 
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Gravel Wetland 

The gravel wetland is considered an infiltration / filtration system. The system is 

comprised of a sedimentation forebay and two horizontal-flow treatment cells. The filter 

media is a combination of a gravel substrate at the bottom (0.6 m thick and D50 = 19 

mm) and a wetland soil on top. A 0.15 m perforated pipe is used to distribute the influent 

flow across the width of the subsurface gravel bed. Basic areal dimensions of the 

studied gravel wetland are 4.6 m x 9.8 m for the filter basin footprint (for each cell) and 

11.3 m x 17.1 m for the forebay footprint. Stormwater flows horizontally through the 

gravel substrate and is collected by subdrains on the far end of the second treatment 

cell. The forebay was designed to hold 10% of the WQV while each treatment cell holds 

45%. The total area of the gravel wetland is 507 m2. Contaminants are removed by 

filtration, biological uptake, and adsorption. 

Retention Pond 

Retention ponds are designed to retain a large volume of stormwater and slowly 

release it. Treatment is achieved by physical settling of sediment and biological uptake. 

The areal dimensions of the studied retention pond are 14 m x 21 m. The treated runoff 

leaves the system through a 0.15 m perforated standpipe with reducing coupling to 

0.025 m. The surface area of the retention pond is covered by algae or aquatic plants. 

Side slopes were stabilized with grass, and spillways with stone and geotextile. 
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Sand Filter 

The sand filter bed is 0.6 m thick, uses coarse to medium grain sand (D50 = 0.7 mm), 

and has areal dimensions of 2.4 m x 6.1 m. Temporary ponding of the filter basin is 

expected during larger storm events due to saturation of the filter media and the fact that 

inflow exceeds outflow. The sedimentation forebay was designed to hold 25% of the 

WQV while the filter basin holds the remaining 75%.The filter bed is sub-drained by a 

0.15 m perforated pipe bedded in a 0.20 m layer of crushed stone (D50 = 19 mm). 

Monitoring 

Influent and effluent for these three stormwater treatment measures were monitored 

between August 2004 and September 2006. A total of 15 storms were collected for the 

gravel wetland, 15 storms for the retention pond, and 16 storms for the sand filter. 

Automated samplers (6712SR ISCO) performed the sampling. Normally 8-12 samples 

per storm event were used to characterize both influent and effluent stormwater quality. 

The sampling program for each system was based on analyses of typical effluent 

hydrographs. Influent and effluent flows were measured with inline weirs. 

Runoff constituent analysis included: total suspended solids (TSS), total petroleum 

hydrocarbons - diesel range hydrocarbons (TPH-D), dissolved inorganic nitrogen (DIN, 

comprised of nitrate, nitrite, and ammonia), and zinc (Zn). Stormwater samples were 

analyzed by a laboratory that is state-certified for drinking water and wastewater. 

Guidance documents on collecting environmental data and the site quality assurance 

project plan were followed. Table 22 shows characteristics of the storm events selected 

for this study. Note that the storm characteristics were obtained for the total watershed 

area; however, each system treated an equivalent fraction of the total storm volume. 
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Additionally, not always the three systems were monitored simultaneously for all the 

storm events. More description about the monitoring program is presented in Roseen ef 

a/. (2006). 

Table 22 Summary of monitored storm events. 

Rainfall 
Event 

(m/d/y) 

9/18/2004 

10/30/2004 

11/24/2004 

1/14/2005 

2/10/2005 

3/8/2005 

3/28/2005 

4/20/2005 

6/22/2005 

8/13/2005 

9/15/2005 

11/6/2005 

11/30/2005 

12/16/2005 

1/11/2006 

2/17/2006 

3/13/2006 

5/2/2006* 
5/9/2006 

6/1/2006* 
6/21/2006 

7/22/2006* 
9/6/2006 

Peak 
Intensity 
(mm/hr) 

15 

21 

9 

24 

6 

3 

12 

12 

15 

24 

18 

12 

9 

18 

15 

12 

12 

12 

3 

125 

27 

40 

30 

Rain 
Duration 

(min) 

1075 

705 

705 

645 

1520 

1220 

1685 

480 

95 

765 

30 

100 

810 

630 

320 

110 

170 

1920 

565 

485 

80 

50 

585 

Total 
Depth 
(mm) 

50 

11 

18 

17 

32 

20 

60 

15 

8 

13 

5 

7 

18 

35 

15 

3 

7 

60 

14 

51 

5 

5 

16 

Peak 
Flow 

(m3/day) 

5642 

8678 

4394 

21101 

4437 

2338 

7675 

4274 

9120 

18408 

5518 

2801 

2503 

2561 

2903 

1493 

1345 

4642 

1621 

27194 

5190 

8333 

6087 

Volume 
(m3) 

1364 

281 

530 

1033 

795 

406 

3082 

1017 

266 

514 

86 

135 

363 

458 

214 

37 

75 

1331 

322 

930 

93 

81 

410 

Anticedent 
Dry Period 

(days) 

7.0 

13.0 

3.5 

1.3 

3.6 

5.7 

3.4 

5.9 

4.0 

10.0 

10.0 

10.8 

5.0 

5.5 

5.8 

2.5 

2.5 

7.0 

5.6 

10.7 

4.7 

7.5 

4.5 

Season 

Fall 

Fall 

Fall 

Winter 

Winter 

Winter 

Winter 

Spring 

Summer 

Summer 

Fall 

Fall 

Fall 

Winter 

Winter 

Winter 

Winter 

Spring 

Spring 

Summer 

Summer 

Summer 

Fall 

* Storms used for validation 
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Model Structure 

Stormwater Treatment Model 

An n-order decay model was implemented to estimate effluent pollutant 

concentrations from the stormwater treatment systems. The parameters of the model 

were the removal rate (k) and the decay order (n). The treatment system was 

conceptualized as a black box where influent and effluent variables must be determined 

or measured (Avellaneda et al., 2008b). The partial differential equation that describes 

time variations of effluent pollutant concentrations is: 

dt S S dt m" d 5 ) 

where Cout represents the effluent concentration (mg/l); Cin is the influent concentration 

(mg/l); Qin is the influent flow rate (m3/day); Qout is the effluent flow rate (m3/day); S is the 

stored volume within the system (m3); dS/dt is the change in stored volume (m3/day); t is 

time (days); k is the removal rate ((mg/l)"n+1/day); and n is the decay order (-).These units 

will be used throughout the paper. For more details about the model see Avellaneda et 

al. (2008b, 2008c). 

Bavesian Parameter Estimation 

A conceptual model is necessary to establish a relationship between observed and 

estimated values. A nonlinear regression model can be used to define such relationship 

(Marshall et al., 2004; Kanso et al., 2003; Bates and Campell, 2001). Normally, the 

observed values are set equal to the estimated values plus a residual term as follows: 
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C , * = C ( * ' > ) + *' i = l...,m (16) 

where Cout,obs represents the observed effluent concentrations; Cout,est is the 

corresponding estimated effluent concentrations (Equation (15)); i denotes the current 

sample; a total number of samples m; x is the set of input variables (influent flow, influent 

concentrations, effluent flow, storage, and change in storage); © represents the 

parameter set (k and n); and e is a residual term. Further details on the residual term are 

provided later in this section. 

The Bayesian paradigm provides a framework for estimating model parameters using 

pre-existing knowledge about the parameters and observed information. The pre­

existing knowledge about the model parameters is summarized in the prior probability 

distribution or, P(0), for each parameter. In many cases, the prior distribution is given a 

large variance or a uniform distribution, reflecting the lack of knowledge about the 

parameter. A prior distribution can also be determined from previous studies or expert 

knowledge. After performing the Bayesian update, the current state of the parameter 

values is summarized in the posterior probability distribution (PPD). 

The PPD is obtained from Bayes' theorem, which states that the current state of the 

parameters is proportional to the likelihood function multiplied by the prior density. The 

PPD can be written as follows: 

Pl^r \ p ( c ° ^ l0H@) pK+ ' 0 H Q ) [0\oul,obs) = p ( c ^ ~ \pKtobA%)p{&)d& < " > 

105 



where: P(0 | Cout,obs) is the posterior probability distribution PPD of the model 

parameters; P(0) is the prior distribution of the model parameters; P(Coutobs | 0) is the 

likelihood function; and P(C0Ut,obs) is a normalizing factor that represents the probability of 

obtaining the observed concentrations. For this study, a uniform probability distribution 

was used as the prior distribution for the removal rate parameter and appropriate bounds 

will be provided in the following sections. The posterior distribution assumes a shape 

similar to the prior when available data are limited. The posterior distribution is more 

influenced by the data when sufficient information is provided (Mashall et al., 2004). 

The updating mechanism provided in equation (17) relies on the specification of the 

likelihood function P(Cout,obs I ©)• The likelihood function represents the probability of 

obtaining the observed concentrations given some parameter values. Normally, the 

likelihood is defined as a function of the residuals ^'(Beven and Binley, 1992). For this 

study, the residuals were assumed to be independent and identically distributed 

according to a normal distribution ^(O.o2). Then, the likelihood function was defined as 

follows: 

^ ( c _ j 0 ) = r i 7 — ^ iai ( 1 8 > 

The error variance a2 was treated as a parameter of the Bayesian model. Therefore, 

a prior distribution for the error variance was defined by using an Inverse Gamma 

function with parameters a i g = 0.01 and p i g = 0.01, which define a non-informative prior 

distribution. Non-informative prior distributions play a minimal role in the analysis and let 

the data define the posterior distribution. The full conditional posterior distribution for a2 

can be calculated from the likelihood function: 
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2 1/ T n ( m a S S E \ 

<j \k,x~Inv-Gamma\ aig+ — ,/>,.gH 
(19 ) 

m j 
SSE = 2_\yout,obs ~ Cout,est ) 

In some cases it is difficult to obtain the posterior probability distribution by direct 

calculation of the equation (17). In that case, the Metropolis - Hastings algorithm is used 

to obtain a numerical solution. 

Metropolis - Hastings Algorithm 

The objective of the Metropolis algorithm is to draw samples from the posterior 

distribution of the model parameters. In general, an arbitrary set of parameter values are 

used to start the process and then a subsequent set of parameters are generated from a 

Markov chain that follows a certain rule (Hastings, 1970; Smith and Roberts, 1993). This 

rule usually compares the current likelihood value to the likelihood calculated from a new 

potential set of parameter values. New "candidates" for the posterior distribution are 

accepted according to the likelihood ratio: 

™" p(c^\*)p(e)Q(«\ff) ( 2 0 ) 

where aratio is drawn from a uniform distribution U(0,1); 0 ' represents the current state of 

the parameters; and 0* are the parameter values generated from a proposal distribution 

Q. If the proposed values 0* are accepted, then 0 t+1 = 0 *. Note that values from the 
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proposal distribution will be accepted if there is an increase in the likelihood function: 

P(Cout,obs I © *) > P(Cout,obs I © ')• If the likelihood function decreases then the proposed 

values will be accepted with aratio probability. For this study, a normal distribution w(® \CT 

2) centered at the current state of the parameter was selected as the proposal 

distribution. An acceptance rate must be defined to ensure convergence of the Markov 

chain. An acceptance rate (ar) between 30 and 70% is considered to work well (Bates 

and Campbell, 2001). Additionally, a selected number of simulations are discarded at the 

beginning of the process to ensure that the final posterior distribution does not depend 

on the initial parameter values. 

Results 

Model Calibration 

A group of storm events was selected for calibration purposes for each stormwater 

system. A total of 14 storm events were selected for the gravel wetland; 14 events for 

the retention pond; and 15 for the sand filter. One storm event was left for model 

validation. The calibration phase was performed using all the information available for 

the storm events. Therefore, final results such as estimated effluent concentrations and 

posterior probability distributions are based on the overall behavior of the systems during 

the study period. 

A classical accumulation and wash-off model was used to calculate the influent 

concentrations (Avellaneda ef a/., 2008a). Optimum parameter values were calculated 

by minimizing the sum of squared errors of observed and estimated concentrations. 

Parameter values included: the mass of pollutant per unit area on the parking lot surface 
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(Mm); the pollutant removal rate (kb); a wash-off coefficient (kw); and a wash-off exponent 

(w). As an example, Figure 28 shows the sand filter influent information for the 

04/20/2005 storm. This information consisted of the monitored influent and effluent 

hydrograph and the influent pollutograph for each contaminant. Optimized parameter 

values are reported in Table 23. 

Influent 
Effluent 

200 300 400 
Time(min) 

o Observed 
Estimated 

RMSE0J22mg/l 

(b) 

600 

200 400 
Time(min) 

600 

2.0 

1 
9 10 

P 0.5 

0.0 

/ oo\ 
0 

o^-\ 

o Observed 
Estimated 

RMSE0.41mg/l '-

o * 

0 

" ^ ^ ~ ^ — _ _ ( 0 ) : 
r> . ~~^ 

200 400 
Time (mm) 

600 

o Observed 
_ Estimated 
RMSE8mg/l 

(d) 

200 400 
Time (min) 

600 200 400 
Time (min) 

600 

Figure 28 Sand filter influent information for the 04/20/2005 storm. 
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Table 23 Optimized parameter values for the 04/20/2005 storm (sand filter). 

Parameter 
Pollutant - -

Mm[g/m2] kb[day1] kw[-] w[-] 

DIN 0.194 0.010 0.003 1.13 

TPH-D 0.199 0.009 0.001 1.18 

TSS 1.73 0.098 0.004 1.15 

Zn 0.124 0.001 0.005 1.03 

Parameter estimation was performed for each system and contaminant. Equation (16) 

and an analytical solution for equation (15) were used to obtain the likelihood (18). Since 

the decay order (n) was treated as a discrete value, it was decided to perform the 

analysis just for three scenarios: a zero, a first, and a second order decay model. It was 

necessary to establish some bounds for the removal rate (k) so a uniform prior 

distribution was defined. A uniform prior distribution was assumed due to the lack of 

knowledge about this parameter and the fact that only discrete optimum values may be 

found in the literature (for a first order day model see Wang et al., 2004; and Minton, 

2002). Table 24 shows a range of values for each contaminant and system. These 

values were obtained from a previous study performed with the same database 

(Avellaneda et al., 2008c). A Gibbs sampler step (Gelman et al., 2004) was performed to 

generate values for the error variance a2 from the full conditional probability function 

(19). 
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Table 24 Bounds of the removal rate (k), which has units of ((mg/l) /day). 

System 

Gravel Wetland (GW) 

Sand Filter (SF) 

Retention Pond (RP) 

TSS 

0-1000 

0-100 

0-100 

Zn 

0-10000 

0-10000 

0-10000 

TPH-D 

0-1000 

0-1000 

0-1000 

DIN 

0-500 

0-100 

0-100 

Examples of the computed posterior probability distributions (PPD) obtained via the 

Metropolis - Hastings algorithm are shown in Figures 29 to 30. The parameter trace is 

displayed on top and the PPD for the removal rate (k) and the error standard deviation 

(a) below. To compute the PPD, the first 1000 samples were discarded to allow for a 

"burn-in" period. The following 1000 samples were used to compute the PPD. In some 

cases, the number of iterations was increased (up to 2000) to ensure an acceptance rate 

(ar) between 0.3 and 0.7. 
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Figure 29 Parameter trace, PPDs (solid line), and prior distribution (dashed line) for the 

Gravel Wetland (TPH-D) and different decay orders (n). The removal rate (k) has units of 

(mg/l)-n+1/day and the error standard deviation (a) units of mg/l. The acceptance rate (ar) 

is reported. 
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Figure 30 Parameter trace, PPDs (solid line), and prior distribution (dashed line) for the 

Sand Filter (TPH-D) and different decay orders (n). The removal rate (k) has units of 

(mg/irn+1/day and the error standard deviation (cr) units of mg/l. The acceptance rate (ar) 

is reported. 
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Figure 31 Parameter trace, PPDs (solid line), and prior distribution (dashed line) for the 

Sand Filter (DIN) and different decay orders (n). The removal rate (k) has units of (mg/l)~ 

n+1/day and the error standard deviation (a) units of mg/l. The acceptance rate (ar) is 

reported. 

Posterior probability distributions were calculated for each system and contaminant 

using the previously described procedures. Table 25 summarizes the PPDs of the 

removal rate for a zero, a first, and a second order decay model for each system. Table 

26 summarizes the PPDs of the error standard deviation. The mean (x), standard 

variation (s), and quartiles (Q) are also reported. Results indicate that the smallest error 

standard deviations were achieved by second order decay models. 
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î

 
9 

co
 

o
 

o> 
f- 

M
-

1* 
fvi 

rvi 
—

 
—

 
—

 

W
 

CM
 

*
-

O
 

O
 

O
 

O
 

O
 

5 

C
O

 
C

M
 

C
O

 
M

" 
C

M
 

T
- 

O
 

oo 
m

 
o> 

I s- 
(*- 

co 
o 

lO
 

r 
S

 
ID

 
K

l 
t 

t 

C
O

 
<

P
 

C
O

 
co 

r»- 
T

-

<" 
• 

~, 
»

- 
C

O
 

«
N

 

C
O

 
C

D
 

C
O

 
C

O
 

C
O

 
oo 

m
 

co
 •<-

co 
o

 
1

- 
m

 
i^ 

co
 

o> 
N

 
ci 

* 
N

 
r 

r 
6 

oo 
co

 
1

- 
in

 
in

 
C

D
 

C
M

 
^ 

•>- 
T

T
 

C
M

 
^ 

d
 

d
 

I-- 
-I- 

T
- 

co
 

in
 

o> 
co

 
C

O
 

i- 
m

 
M

" 
C

O
 

C
M

 
CM

 

f^ 
CO

 
O

 
f 

0
0

 
T

- 
° 

O
J 

CO
 

C
O

 
h

-

S
 

S
i 

?
! 

IO
 

(O
 

* 
CO

 
(^ 

C
D

 

i~- 
co

 
in

 
o

 
co

 
C

M
 

T
-

d
 

d
 

^ 
-^ 

d
 

d
 

d
 

I
s- 

C
O

 
0

> 
C

O
 

C
O

 
*

- 
h

~ 
C

M
 

O
 

C
O

i 
C

O
I 

CM
i 

C
M

 
I s 

in
 

co
 

oo
 

o> 
o> 

•* 
CM

 
T-" 

T̂
 

co
 

^ 
d

 
d

 
d

 

i^ 
o> 

r; 
CM

 
co

 
m

 
co

 
C

D
 

C
O

 
£

- 
0> 

(D
 

C
O

 
T

-

o
 a a o

 a 

CO
 

t 
S

 
ID

 
S

 
1

- 
T

- 
C

O
 

T
-

0
0 

C
O

 
»

-

h
- 

0
0 

JZ
 

C
D

 
0

0 
0

0 
0

0 
N 

n
 

J
: 

o) 
io

 
t 

n
 

•* 
r̂

 
O

J 
co

 
m

 
m

 
•* 

•>a- 
T

- 
co

 
o> 

*» 
en

 
m

 
m

 
^- 

•* 
i^ 

to
 

co
 

m
 

^- 
T

- 
co

 
m

 
T

T 
co

 
C

M
 

TJ- 
CT> 

T
- 

in
 

co
 

m
 

co
 

T- 1 
i-: 

co
 

T- 1 
d

 
d

 
d

 

o
 

o
 

CM
 

co
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Table 26 Summary statistics of PPDs for the error standard deviation (a). Gravel 

Wetland (GW), Sand Filter (SF), and Retention Pond (RP). S.S: Stormwater system. St: 

Statistic. 

X 

s 

Q90 

GW Q7 5 

Q50 

Q25 

Q10 

X 

s 

Q90 

SF Q7 5 

Q50 

Q25 

Q10 

X 

s 

Q90 

RP Q75 

Q50 

Q25 

Q10 

TSS 

39 

3 

42 

40 

38 

37 

35 

49 

3 

53 

51 

49 

46 

45 

46 

3 

50 

48 

46 

44 

42 

Zn 
0.10 

0.11 

0.22 

0.10 

0.05 

0.04 

0.04 

0.14 

0.13 

0.31 

0.15 

0.08 

0.06 

0.06 

0.25 

0.32 

0.80 

0.29 

0.09 

0.06 

0.05 

TPH-D 

0.49 

0.08 

0.58 

0.52 

0.46 

0.44 

0.41 

0.54 

0.04 

0.59 

0.57 

0.54 

0.51 

0.49 

0.41 

0.04 

0.45 

0.43 

0.40 

0.38 

0.36 

DIN 

0.36 

0.03 

0.39 

0.37 

0.35 

0.34 

0.33 

0.61 

0.04 

0.67 

0.64 

0.61 

0.58 

0.56 

0.46 

0.12 

0.60 

0.50 

0.43 

0.39 

0.36 

TSS 

6 

0.4 

7 

6 

6 

6 

6 

34 

2 

36 

35 

34 

32 

31 

44 

3 

49 

47 

44 

42 

40 

Zn 
0.019 

0.002 

0.021 

0.020 

0.019 

0.018 

0.017 

0.024 

0.002 

0.026 

0.025 

0.024 

0.022 

0.022 

0.025 

0.002 

0.028 

0.026 

0.025 

0.023 

0.022 

TPH-D 

0.23 

0.02 

0.26 

0.24 

0.23 

0.22 

0.21 

0.33 

0.02 

0.36 

0.34 

0.33 

0.31 

0.29 

0.35 

0.03 

0.38 

0.36 

0.34 

0.33 

0.31 

DIN 

0.32 

0.02 

0.35 

0.33 

0.32 

0.31 

0.29 

0.60 

0.04 

0.66 

0.63 

0.60 

0.58 

0.55 

0.37 

0.03 

0.41 

0.39 

0.37 

0.35 

0.34 

TSS 

6 

0.4 

6 

6 

6 

5 

5 

31 

2 

34 

32 

31 

30 

28 

42 

3 

47 

44 

42 

40 

39 

Zn 
0.018 

0.001 

0.020 

0.019 

0.018 

0.017 

0.017 

0.021 

0.001 

0.023 

0.022 

0.021 

0.020 

0.019 

0.024 

0.002 

0.027 

0.025 

0.024 

0.022 

0.021 

TPH-D 

0.20 

0.02 

0.22 

0.21 

0.20 

0.19 

0.18 

0.29 

0.02 

0.32 

0.31 

0.29 

0.28 

0.27 

0.32 

0.03 

0.35 

0.34 

0.32 

0.30 

0.28 

DIN 

0.31 

0.02 

0.34 

0.32 

0.31 

0.30 

0.29 

0.61 

0.04 

0.66 

0.64 

0.61 

0.58 

0.56 

0.38 

0.03 

0.43 

0.40 

0.38 

0.36 

0.35 

Model Validation 

A Bayesian approach was performed to validate the models. Water quality 

information for some storm events that were available and not included in the calibration 

phase was used in this step. The 05/02/2006 storm for the sand filter (Figure 32), the 

07/22/2006 storm event was used for the gravel wetland (Figure 33), and the 06/01/2006 

storm for the retention pond (Figure 34). The analysis was performed using a second 

order decay model. 
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To perform the Bayesian predictive analysis, a vector of 1000 pairs of parameter 

values (k, a2) was generated by using the Metropolis - Hastings output. Each removal 

rate was used to calculate a first estimated effluent concentration Ck
outest. Afterward, a 

final estimated effluent concentration C^at was randomly generated from a normal 

distribution as follows: 

ci~^(C>6,.^) (21) 

Figure 32 shows predicted effluent concentrations results for the sand filter. Normally, 

the median is adopted as a measure of the overall behavior of the targeted variable 

(Beven and Binlay, 1992). In general, observed concentration values fell within the 

uncertainty limits. Only for DIN, one observed concentration fell outside the uncertainty 

limits. Concentration values below the detection limit were estimated by the model, in 

particular for TPH-D and Zn, where only the first sample was reported with a 

concentration above the detection limit. 
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Figure 32 Monte Carlo simulations of predicted sand filter effluent pollutant 

concentrations for the 05/02/2006 storm event. U.L: Uncertainty limits. D.L: Detection 

limit. The dark shaded region indicates the 30% and 70% uncertainty limits. The light 

grey shaded region indicates the 10% and 90% uncertainty limits. Observed 

concentrations values and the reported detection limits were plotted as discrete points. 

Figure 33 displays simulation results for the gravel wetland. Water quality information 

for 4 samples was available. Figure 33(a) and 33(d) show that for this storm, a 

significant range of the estimated effluent concentrations for DIN and Zn fell above the 

reported detection limit. This is particularly appreciable for DIN, since the median 

estimated concentration values are much higher than the detection limit. It is difficult to 

explain this poor performance since excellent DIN and Zn treatment has been reported 

for the gravel wetland (Roseen ef a/., 2006). However, an analysis of a bigger number of 
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storms during the validation phase is advised. Model performance for TSS and TPH-D is 

acceptable considering the agreement between estimated and observed concentrations. 

For these contaminants, the mean estimated concentration values fell below the 

reported detection limit. 
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o 
o 

(a) '\ 
-10%&90%UX 
... 30%&70%U.L 

Median 
o Observed 
+ DX 

SO 
1 

100 

Time(min) 

~ 1 — 
ISO 200 

Time(min) 

Time(min) 

fi 

Time (min) 

Figure 33 Monte Carlo simulations of predicted gravel wetland effluent pollutant 

concentrations for the 07/22/2006 storm. U.L: Uncertainty limits. D.L: Detection limit. The 

dark shaded region indicates the 30% and 70% uncertainty limits. The light grey shaded 

region indicates the 10% and 90% uncertainty limits. Observed concentrations values 

and the reported detection limits were plotted as discrete points. 

Simulation results for the retention pond are shown in Figure 34. Observed 

concentration values fell within the uncertainty limits for all the contaminants. However, 
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the median estimated concentrations fell below the observed concentrations for DIN, 

TSS, and Zn. For TPH-D, the model predicted concentrations higher than the detection 

limit for samples 1 to 4 and lower values for samples 5 to 8. 
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Figure 34 Monte Carlo simulations of predicted retention pond effluent pollutant 

concentrations for the 06/01/2006 storm. U.L: Uncertainty limits. D.L: Detection limit. The 

dark shaded region indicates the 30% and 70% uncertainty limits. The light grey shaded 

region indicates the 10% and 90% uncertainty limits. Observed concentrations values 

and the reported detection limits were plotted as discrete points. 

Uncertainties associated with the estimated effluent pollutant concentrations can be 

reduced by improving the structure of the treatment model or updating the likelihood 

function by incorporating more field observations. Chen and Adams (2006) investigated 
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a dynamic settling model in storage / treatment facilities (for example a retention pond). 

Parameters such as the settling velocity of the particle of concern, the settling depth, the 

average detention time, and the average surface area were considered in the model. 

Other investigations (Beven and Binley, 1992) have suggested different likelihood 

functions for comparing observations and predictions of the model. Arabi et al. (2007) 

explored a likelihood function based on the Nash-Sutcliffe efficiency criterion and 

recommended its application for calibration of watershed models. 

Conclusions 

A Bayesian approach for parameter estimation of a stormwater quality treatment 

model was presented in this paper. Pollutant removal was assumed to follow an 

exponential decay model with parameters k (removal rate) and n (decay order). The 

calibration of the model was performed for three stormwater systems: a gravel wetland, 

a retention pond, and a sand filter; all monitored on a side by side fashion and treating 

equivalent stormwater from a nearby commuter parking lot. The implicit characteristics of 

the method allowed for an uncertainty analysis of the estimated effluent concentrations. 

Water quality information consisted of influent and effluent concentrations for TSS, TPH-

D, DIN, and Zn. This information was available for 23 storms collected during the 2004-

2006 period, although not all the systems were monitored for every storm. 

Zero, first, and second decay models were analyzed. Posterior probability 

distributions (PPDs) for the removal rate and the error variance were obtained for each 

system and contaminant. It was found that a second order decay model was more likely 

to reproduce the observed effluent concentrations. Mean removal rate values were 

computed from the posterior distributions. Specifically, for the gravel wetland: kTSS = 59, 

kZn = 2115, kTpH-D= 88, kD|N= 7; for the sand filter: kTss= 1-7, kZn = 1568, kTpH-D= 57, kD(N 

121 



= 2; and for the retention pond: kTss = 0.8, kZn = 4645, kTPH-D = 68, kD|N = 8 (k in units of 

(mg/l)'Vday). A summary of basic statistics of the PPDs was provided as well (Tables 25 

and 26). These PPDs can be used as prior distributions in further research. However, 

further research should take into account the system design characteristics. 

A Bayesian predictive approach was performed to estimate effluent concentrations 

from the stormwater systems. For this purpose, information for one storm was not 

included in the calibration phase, so it could be used for validation. Most observed 

concentrations fell within the uncertainty limits provided by the model. As for any other 

model application, it is strongly recommended to explore the predictive capabilities of the 

model with more field data. Further research should explore a likelihood function based 

on the Nash-Sutcliffe efficiency criterion, which has been reported as a better measured 

of the model performance (Engel et al., 2007). 

The conceptual formulation of the decay treatment model can be improved by 

incorporating new parameters that represent specific characteristics of the removal 

processes. In that sense, settling velocity is a parameter that needs to be considered 

when improving the model for a retention pond. Other factors such as vegetation are 

important and should be considered in further investigations. 

This paper provided useful statistical information for modeling water quality treatment 

from stormwater systems. Model results should be interpreted carefully and used in 

context, especially when extensive field information is not available. Further research 

should look at improving the conceptualization of the exponential decay treatment model 

and the Bayesian statistical approach. A revision of the treatment processes will help 

identify other variables that may play a significant role. As for the statistical analysis, a 

Bayesian approach that includes both the accumulation and wash-off model and the 

stormwater treatment model is suggested. 
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APPENDIX A: FUNDAMENTAL EQUATIONS 

Zero-order decay model 

For a zero-order decay model (n = 0), the governing differential equation (Equation (8)) 

can be written as follows: 

dC , C Q. -C ,0 , C , dS , 
out _ in*Z>m out-Z-out out _ JL 

dt S S dt ( 2 2 ) 

Direct integration of this equation gives the following analytical solution: 

C — — JJ\C — — \0~BAt 

°ut~B r ° B ) 

S ( 2 3 ) 
_ dS 
Qout+,-

B = &-

where Cout is the effluent concentration (mg/l); Cin is the influent concentration (mg/l); C0 

is the initial concentration within the system (mg/l); Qin is the influent flow rate (m3/day); 

Qout is the effluent flow rate (m3/day); S is the storage within the system (m3); dS/dt: is 

the change in storage (m3/day); At is the time interval (min); and k is the removal rate 

((mg/l)n+1/day). 
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First-order decay model 

For a first-order decay model (n = 1), the governing equation (Equation (8)) can be 

written as follows: 

dC , CO-C ,Q , C , dS 
out _ inzZm outzZout out 

dt S dt 
-kC ( 2 4 ) 

An analytical solution can be found by direct integration: 

E 

f nA 
Cn 

-EM 

D 
C Q 

dS 
Qout+ M 

E= 4L+k 

( 2 5 ) 

Second-order decay model 

For a second-order decay model (n = 2), the governing equation (Equation (8)) can be 

written as follows: 

"•Cout _CinQjn CmlQoul Cout dS . 2 

dt S dt ( 26 ) 

This is a form of the Riccati equation and has the following analytical solution: 
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C.„ =- 1 
• + -

* . = 

C0 - A k2 + IXk^ 

cin a, 

h = 
p +— 

(27) 

/Ci — /v 

-kz+^kl+Ak^ 

2L 
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