9-2010

Studies of Insulating Superconductors

Shawna M. Hollen

University of New Hampshire - Main Campus

J C. Joy

Brown University

Maura Lynch

Brown University

H Q. Nguyen

Brown University

M D. Stewart Jr

Brown University

See next page for additional authors

Follow this and additional works at: https://scholars.unh.edu/physics_facpub

Part of the Physics Commons

Recommended Citation

This Conference Proceeding is brought to you for free and open access by the Physics at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Physics Scholarship by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.
Studies of Insulating Superconductors

Authors
Studies of Insulating Superconductors1 S.M. HOLLEN, JAMES JOY, MAURA LYNCH, H.Q. NGUYEN, M.D. STEWART, JR., J. SHAINLINE, Brown University, Department of Physics, AIJUN YIN, J.M. XU, Brown University, Division of Engineering, J.M. VALLES, JR., Brown University, Department of Physics — We present data that shows evidence of superconductivity in a peculiar place: an electrical insulator. By evaporating Sb and then Bi onto a patterned substrate at 8K, we create amorphous 2D films with regular, nanometer-sized holes. A phase transition occurs with added Bi: the thinnest films insulate and the thickest superconduct. Surprisingly, the insulating films appear to contain the fundamental constituents of a superconductor: Cooper pairs of electrons. Their very high resistance oscillates in magnetic field with a period expected for charge 2e carriers. We present evidence that nanometer-sized undulations in film thickness localize the Cooper pairs to islands to prevent long range phase coherence from developing. In future experiments we will attempt to control the Cooper pair localization using tailored film thickness variations on rippled substrates and by using novel nanopatterning techniques on our existing holey substrates.

1This work was supported by the NSF through No. DMR-0907357, by the AFRL, and by the ONR.