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ABSTRACT 

UNDERSTANDING POLYAMINE METABOLISM THROUGH TRANSGENIC 

MANIPULATION IN POPLAR SUSPENSION CULTURES 

By 

Sridev Mohapatra 

University of New Hampshire; May 2008 

Polyamines are low molecular weight aliphatic amines that are obligatory 

requirements for cell survival and growth. The commonly occurring polyamines in plants 

are putrescine, spermidine, and spermine. Suspension cultures of poplar (Populus nigra x 

maximowiczii), transformed with a mouse ornithine decarboxylase gene (under the 

control of a 2X 35S CaMV promoter) were used to study the impact of up-regulation of 

putrescine biosynthesis (and consequent enhanced catabolism) on several aspects of 

cellular metabolism. The transgenic cells were compared with a control cell line that was 

transformed with the beta-glucuronidase {GUS) gene. 

It was observed that enhanced putrescine metabolism resulted in: (i) increased 

expression of arginine decarboxylase gene, along with enhanced activity of the 

corresponding enzyme, (ii) decreased expression of S-adenosylmethionine gene and 

activity of the enzyme, (iii) changes in the cellular contents of almost all amino acids, (iv) 

a compromise in cell health due to increased oxidative stress, (v) better tolerance towards 

Aluminum toxicity, (vi) increased susceptibility to glutamate decarboxylase inhibition, 

xviii 



(vii) greater assimilation of carbon from sucrose in the growth medium, and (viii) small 

changes in the expression of ornithine aminotransferase, proline dehydrogenase and A1-

pyrroline-5-carboxylate reductase genes, and an increase in ornithine aminotransferase 

activity. 

xix 



GENERAL INTRODUCTION 

What are polyamines? 

Polyamines (PAs) are low molecular weight aliphatic amines that are obligatory 

requirements for cell survival and growth (reviewed by Bais and Ravishankar, 2002; 

Kusano et al., 2007). Polyamines are known to have a role in plant stress response 

(Alcazar et al., 2006, and references therein) and development (Wallace et al., 2003; 

Kaur-Sawhney et al., 2003), although the exact mechanisms by which they operate are 

still under scrutiny. The commonly occurring PAs in plants are putrescine (Put), 

spermidine (Spd), and spermine (Spm); their structures are shown in Fig. 1. 

Putrescine: NH2-(CH2)4-NH3+ 

Spermidine: NH2-(CH2)4-NH-(CH2)3-NH3+ 

Spermine: NH2-(CH2)3-NH-(CH2)4-NH-(CH2)3-NH3
+ 

Figure 1. Structures of the three common polyamines 

Putrescine is the diamine precursor to the triamine Spd, which in turn produces the 

tetraamine Spm. Other than these three PAs, several uncommon PAs also exist in plants: 

namely, norspermidine (caldine), norspermine (thermine), pentamine, hexamine, 

homospermidine and cadaverine (Kuehn et al., 1990; Hamana et al., 1992). Kuehn et al. 

(1990) reported that uncommon PAs are found mostly in organisms that have to adapt to 

environmental extremes such as halophilic and thermophilic bacteria. Bagga et al. (1997) 

reported the occurrence of uncommon PAs in osmotic stress tolerant alfalfa. 
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While norspermidine and norspermine have been found in mosses, homospermidine 

is present in ferns and algae. Cadaverine, formed from lysine is found in legumes and 

serves as a precursor of quinolizidine alkaloids (Smith and Wilshire, 1975; Schoofs et al., 

1983). A recent report by Knott et al. (2007) states that spermine synthases from the 

diatom Thalassiosira pseudonana and from Arabidopsis thaliana are actually 

thermospermine synthases. 

Polyamines exist in free, bound and conjugated forms (Paschalidis and Roubelakis-

Angelakis, 2005). Free PAs are soluble in dilute perchloric acid (PCA) whereas bound 

forms are not. Polyamines are generally conjugated with hydroxycinnamic acid, fatty 

acids or alkaloids to produce plant defense-related compounds (Flores and Filner, 1985; 

Martin-Tanguy, 1997; Ghosh, 2000; Bagni and Tassoni, 2001). Polyamines also serve as 

precursors for secondary metabolites such as nicotine (Martin-Tanguy, 1997). Paschalidis 

and Roubelakis-Angelakis (2005) have recently reported on the spatial and temporal 

distribution of PAs in tobacco; they observed a decreasing trend in PA titers and 

biosynthesis along the plant axis. They showed that while Spd and Spm are 

predominantly synthesized in the shoot apical meristems, Put is the predominant PA 

produced in the hypogeal tissues. 

Why study polyamine metabolism? 

There are several important reasons why the PA metabolic pathway is of particular 

interest to scientists: 

1. Polyamines are important cations and because of the presence of positive charges 

on them, they can interact with macromolecules like DNA and RNA (Reviewed by 
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Lomozik et al., 2005). They are believed to be involved in stabilizing nucleic acids 

against methylation and denaturation induced by heat (Oshima, 2007) or by X-rays 

(Baeza et al., 1992). Polyamines affect DNA, RNA and protein synthesis (Cohen, 

1998; Bachrach, 2005). Besides, as mentioned earlier, PAs are ubiquitous and are 

considered indispensable for cell survival, growth and development 

2. The PA metabolic pathway can be considered a simple pathway (cf. photosynthesis 

and respiration), but is linked to some very important metabolites like glutamate 

(Glu), proline (Pro), ethylene and y-aminobutyric acid (GABA), and also serves the 

role of recycling the carbon and nitrogen moieties of key amino acids like Glu, 

arginine (Arg) and ornithine (Orn) (Fig. 2; also see Fig. Al for details). 

3. The molecular and biochemical properties of the enzymes involved in PA 

biosynthesis are a combination of features rarely found together in most pathways. 

These include: long UTRs (untranslated regions; Wallace et al., 2003; Kusano et al., 

2007), sometimes with open reading frames (ORFs) in the UTRs (Hanfrey et al., 

2005), absence of introns within most genes, rapid turnover of the protein, etc. 

(Wallace et al., 2003). 

4. Since they are indispensable for growth of any cell, their biosynthesis is the target 

of many chemotherapeutic treatments against cancer as well as against human 

parasites (Bachrach, 2004, 2005; Saunders and Wallace, 2007). 

For reasons outlined above, the PA metabolic pathway can serve as an excellent 

system for manipulation to modulate one or more steps in the same and study its 

metabolic regulation. It is expected that such a transgenic manipulation, either by over-
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Figure 2. Polyamine biosynthesis and related nitrogen metabolism. The enzymes are: 1. 
Nitrate reductase, 2. Nitrite reductase, 3. Nitrogenase, 4. Glutamine synthetase (GS), 5. 
Glutamate synthase (GOGAT), 6. Glutamate reductase, 7. Acetylglutamic-y-semialdehyde 
transaminase, 8. Acetylornithinase, 9. Ornithine aminotransferase (OAT), 10. Ornithine 
transcarbamylase, 11. Arginine synthase, 12. Arginase, 13. Ornithine decarboxylase, (ODC) 
14. Arginine decarboxylase (ADC), 15. Spermidine synthase, 16. Spermine synthase, 17. 
SAM decarboxylase (SAMDC), 18. ACC synthase, 19. ACC oxidase, 20. Glutamate 
decarboxylase (GAD), 21. Diamine oxidase (DAO), 22. Lysine decarboxylase (LDC), 23. 
P5C Reductase, 24. Proline oxidase, 25. P5C Dehydrogenase. 26. P5C synthase. 
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expressing a gene or suppressing its expression can lead to pleiotropic changes in cellular 

metabolism affecting those of several other important metabolites, either directly or 

indirectly related to PA metabolism. 

Metabolism of polyamines and related amino acids 

Polyamines are present in millimolar quantities in plant cells. This property, coupled 

with their richness in amine groups makes them useful in modulation of reduced nitrogen 

(N) and in the sequestration of free, cellular NH3 (Lovatt, 1990; Slocum and Weinstein, 

1990; Forde and Lea, 2007). The biosynthetic and catabolic pathways of PAs have been 

well described although details on the regulation of various steps in them are lacking. 

Parallels have been drawn with animal cells; however, at times, differences are 

significant (Slocum and Flores, 1991; Cohen, 1998; Bhatnagar et al , 2001, 2002; Page et 

al., 2007; Paschalidis and Roubelakis-Angelakis, 2005). Polyamine metabolism is 

intricately connected to the metabolism of several amino acids and other important 

metabolites that either serve as precursors to the biosynthesis of PAs, or are the products 

of their catabolism, or just intermediates in the process of PA metabolism (Fig. 2). 

The primary source of all PA biosynthesis is the amino acid Glu, whose conversion 

into the immediate precursors of Put, i.e. Orn or Arg is a multi-step process, which is 

poorly understood at present (Slocum, 2005). While Orn is the direct precursor to Put 

biosynthesis in almost all organisms, in plants, bacteria and fungi, Put us often produced 

from Arg. The former reaction involves a single step catalyzed by Orn decarboxylase 

(ODC; EC 4.1.1.17), while the latter involves two intermediates, agmatine (Agm) and N-

carbamoylputrescine, and is presumably regulated by Arg decarboxylase (ADC; EC 

4.1.1.19). The product of ADC (i.e. Agm) is converted by Agm iminohydrolase (EC 
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3.5.3.1.2) to N-carbamoylputrescine, which in turn is converted to Put by N-

carbamoylputrescine amidohydrolase (EC 3.5.1.53). The biosynthesis of Orn/Arg begins 

with N-assimilation into Gin by Gin synthetase (GS, EC 6.3.1.2) and Glu by Glu 

synthase, a.ka. Gln-2-oxoglutarate aminotransferase (GOGAT; EC 1.4.7.1). The primary 

source of carbon for these reactions is a-ketoglutarate (a-KG) derived from the TCA 

cycle (Coruzzi and Last, 2000; Forde and Lea, 2007; and references therein). Glu, 

through a series of intermediates produces Orn (Fig. 2) which then produces Arg via 

citrulline using the enzymes Orn transcarbamoylase (OTC, EC 2.1.3.3) and Arg synthase 

(EC 6.3.4.5). Arginine can be converted back to Orn by arginase (EC 3.5.3.1), which is a 

part of the urea cycle. The other two amino acids that are intricately connected to the PA 

metabolic pathway are Pro and GABA. 

The Pro metabolic pathway has been subjected to intense scrutiny owing to proposed 

roles of Pro in stress tolerance (Kocsy et al., 2005). Proline can be synthesized either 

from Glu or from Orn (Roosens et al., 1998, 2002). In both cases, the initial product 

formed is Glu-y-semialdehyde, a compound that non-enzymatically cyclizes to form A1-

pyrroline-5-carboxylate (P5C). The synthesis of Glu-y-semialdehyde is aided by the 

enzyme ornithine aminotransferase (OAT, EC 2.6.1.13) from Orn and by P5C synthase 

(P5CS; EC 2.7.2.11, 2.7.2.4.1) from Glu. The reaction from P5C to Pro is catalyzed by 

P5C reductase (P5CR; EC 1.5.1.2). For more details on Pro metabolism, see chapter VII. 

Another important amino acid in this pathway that plays parallel roles to PAs and 

Pro is GABA, the catabolic (oxidation) product of Put (by diamine oxidase - DAO, EC 

1.4.3.6) and the decarboxylation product of Glu brought about by Glu decarboxylase 

(GAD, EC 4.1.1.15). Putrescine is also the precursor of the other two common PAs; i.e. 
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Spd and Spm, which are synthesized by Spd synthase (SPDS, EC 2.5.1.16) and Spm 

synthase (SPMS, EC 2.2.1.22), respectively. For each of these reactions, an aminopropyl 

moiety is required which is provided by decarboxylated S-adenosylmethionine (dcSAM), 

a product formed from the decarboxylation of SAM by SAM decarboxylase (SAMDC, 

EC 4.1.1.50). In plants, SAM is also the precursor of ethylene. Hence, it is clear that the 

PA metabolic pathway interacts with the biosynthetic and catabolic pathways of several 

important metabolites. 

In summary, not only are PAs ubiquitous molecules that are considered obligate 

requirements for cell survival and growth because of their involvement in several 

important biochemical processes, but their biosynthesis and catabolism are closely related 

to the metabolism of several other important metabolites like Pro, ethylene, GABA etc. 

Hence, delineating the regulation of PA metabolic pathway and its interaction with the 

interacting pathways of Pro, GABA and ethylene biosynthesis is of particular interest. 

Genetics of polyamine metabolism in plants 

The generation or selection of mutants in plants to understand the functions and 

metabolism of PAs has a long history. In 1983, Malmberg and Mclndoo produced 

tobacco lines that were resistant to difluoromethylornithine (DFMO; an inhibitor of 

ODC) and methylglyoxal (bis)guanylhydrazone (MGBG; an inhibitor of SAMDC). 

Similar lines were also produced by Malmberg and Rose (1987), Hiatt and Malmberg 

(1988), Trull et al. (1992), and Fritze et al. (1995). Some common observations in these 

mutants included: inhibitor resistance, elevated PAs, and a variety of phenotypic changes 

e.g. dwarfism, alterations in floral morphology, etc. Martin-Tanguy (1985) reported the 

generation of a non-flowering mutant (RMB7) in tobacco which lacked the production of 
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PA conjugates in leaves and their subsequent transportation to the shoot apex, thus 

suggesting a potential role of PA conjugates in flowering. Gerats et al. (1988) reported 

higher Put content and ADC activity associated with alterations in floral morphology in a 

floral mutant of Petunia. Rastogi and Sawhney (1990) described a male-sterile 

stamenless-2 mutant in tomato, in which the mutated floral parts had elevated contents of 

PAs and higher activities of the PA biosynthetic enzymes, ODC and SAMDC. 

Mirza and Iqbal (1997) and Mirza and Rehman (1998) obtained two Spm resistant 

mutants in Arabidopsis, spr\-\ and sprl-2, each with a set of phenotypic peculiarities 

like longitudinally folded-in cauline leaves, vigorous growth, prominent flowers etc. 

Arabidopsis mutants deficient in ADC have been characterized by Watson et al. (1997) 

and Soyka and Heyer (1999). Two ADC\ mutants (spel and spe2) showed an 

enhancement in root growth and a decrease (but not complete abolition) in ADC activity 

accompanied by a reduction in PA content by about 10-20%. The other (spel or adcl) 

while showing no clear phenotype, had lower (by about 40%) activity of ADC. Hanzawa 

et al. (1997, 2000) yet again showed a possible connection between PAs and flowering in 

a SPDS3-deficient mutant acl5 (ACAULIS5) that showed "early proliferative arrest" of 

apical inflorescence meristems, resulting in reduced stem internode length and the 

number of flowers. 

Bagni et al. (1997) had earlier shown that in the Flacca-ABA deficient mutant in 

tomato, there was higher ADC than ODC activity in the older plants, with a decrease in 

the total PA content. The CS3123-late flowering mutant and 35SvAPETALA\ early 

flowering transgenic produced in Arabidopsis by Applewhite et al. (2000) showed that 

Spd promoted flowering in the former but not in the later. The double knock-out mutant 
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acl5/spms in Arabidopsis, with mutations in SPDS3 and SPMS genes (Imai et al., 2004A) 

had shorter stems but was able to complete its life-cycle normally. Double knock-out 

mutants adcl/adc2 and spdsl/spds2 in Arabidopsis with defects in seed development 

have been reported by Imai et al. (2004B) and Urano et al. (2005). 

Several PA biosynthetic and catabolic genes have been cloned and characterized 

from a variety of plants as shown in Table 1; Tables 2 and 3 list genes of the Orn, Arg 

and Pro biosynthetic pathways, which have been cloned and characterized in a variety of 

plant tissues. 

Genetic manipulation of poh amine metabolism 

Since most of the genes for PA biosynthetic enzymes are present in plants in 

multiple copies (Kusano et al., 2007), mutants have not been very useful in delineating 

either the regulation of PA metabolism or their specific developmental roles in plants. 

The genetic manipulation techniques with heterologous genes under the control of either 

a native or a CAMV-35S promoter have been used in many studies to alter the PA 

contents in several plants and to study their effects on plant development or their stress 

response (Kumar and Minocha, 1998; Kakkar and Sawhney, 2002; Kaur-sawhney et al., 

2003; Liu et al., 2007). Hamill et al. (1990) reported the first successful overexpression in 

tobacco of a yeast (Saccharomyces cerevisiae) ODC under the control of a CaMV 35S 

promoter. They observed an increase in not only ODC activity and Put content, but 

nicotine content as well. Herminghaus et al. (1991, 1996) and Fecker et al. (1993) used a 

35S::LDC gene construct to transform tobacco with increased cadaverine content. 

DeScenzo and Minocha (1993) used both a full length and a truncated mouse ODC 

cDNA under the control of a 35S promoter to transform tobacco. Plants with very high 
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Put content had crumpled leaves and some were male-sterile. Noh and Minocha (1994) 

used a human SAMDC cDNA to transform tobacco and reported an increase in SAMDC 

activity by about 9-fold. While Put content decreased; both Spd and Spm increased, 

sometimes as much as 2- to 3-fold. The transformants in this study were all 

phenotypically normal. Masgrau et al. (1997) reported the transformation of tobacco with 

an oat ADC cDNA with a tetracycline (tef)-inducible promoter. Substantial increases in 

ADC activity accompanied by phenotypic abnormalities like growth inhibition, leaf 

necrosis, etc. were observed; no phenotypic change was observed when ^-induction 

preceded floral growth initiation. Burtin and Michael (1997) used the same oat ADC 

cDNA (with CaMV 35S promoter) to transform tobacco and found that: while ADC 

activity increased along with enhanced Agm content, the contents of Put, Spd and Spm 

remained unchanged; and so did the activities of ODC and SAMDC. Bastola and 

Minocha (1995) again used the truncated mouse ODC to transform carrot cells and 

reported significant increases in Put content and ODC activity in the transgenics; 

concomitantly there was an improvement in somatic embryogenesis and tolerance to 

DFMA. Andersen et al. (1998) later demonstrated increased Put catabolism in the above 

transgenic carrot cells. Kumar et al. (1996) transformed potato cells with a 'sense' as well 

as an 'anti-sense' construct of SAMDC with both the 35S and a fer-inducible promoter. 

Whereas the constitutively expressing sense transformants did not survive beyond the 

microcallus stage, the tet- inducible sense transformants showed increases in SAMDC 

transcripts and PA contents after induction. Both kinds of anti-sense constructs had lower 

SAMDC activity in the transgenics. Pedros et al. (1999) also described potato 

transformants with sense and anti-sense constructs of SAMDC, driven by a tuber-specific 
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Table 1. Partial list of genes of the polyamine metabolic pathway and the plants from 
which they have been cloned. Updated from Kakkar and Sawhney, 2002. 

Gene 

ADC 

ODC 

SAMDC 

EC 

4.1.1.9 

4.1.1.7 

4.1.1.50 

Plant 

Oat 
Tomato 

Pea 
Arabidopsis 
Soybean 

Grapevine 

Carnation 
Tobacco 
Apple 

Wheat 

Rice 

Datura 
Tomato 
Apple 
Potato 
Spinach 
Catharanthus 
roseus 
Tritordeum 
Arabidopsis, 
rice, maize 
Carnation 
Apple 
Wheat 

Reference 

Bell and Malmberg, 1990 
Rastogi et al., 1993 
Perez-Amador et al., 1995 

Watson and Malmberg, 1996 
Nametal., 1997 
Pimikirios and Roubelakis-
Angelakis., 1999 
Chang et al., 2000 
Bortolotti et a l , 2004 
Hao et al., 2005A 

Bassie et al , 2008 

Akiyama and Jin, 2007 

Michael et al., 1996 
Kwak and Lee, 2001 
Hao et al., 2005A 
Mad-Arifetal., 1994 
Bolleetal., 1995 

Schroder and Schroder., 1995 

Dresselhaus et al., 1996 

Franceschetti et al., 2001 

Leeetal., 1997 
Hao et al., 2005B 
Bassie et al., 2008 

Continued on page 12 
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continued.... 

Gene 

SAM 
Synthase 

Spd/Spm 
synthase 

DAO 
PAO 

EC 

2.5.1.6 

2.5.1.16 

1.4.3.6 
1.5.3.3 

Plant 

Arabidopsis 
Carnation 

Parsley 
Tomato 
Poplar 
Rice 

Petunia 
Pea 

Flax 
Arabidopsis 

Apple 
Lentil 
Medicago 
sativa, 
Avena sativa 

Reference 

Peleman et al., 1989 
Larsen and Woodson, 
1991 
Kawalleck et al., 1992 
Espartero et al., 1994 
Doorsselaere et al., 1993 
Van Breusegem et al., 
1994 
Izhakietal., 1995 
Gomez-Gomez and 
Carrasco, 1998 
Lamblin et al., 2001 
Hashimoto et al., 1998 
Hanzawa et al., 2000 

Kitashiba, 2005 
Angelini et al., 1996 
Kocetal., 1995 



Table 2. Partial list of genes of the ornithine and arginine biosynthetic pathway and the 
plants from which they have been cloned. Updated from Slocum, 2005. 

Gene 

NAGS 

NAGK 

NAOAT 

NAOGAcT 

NAOD 

GAT 

EC 

2.3.1.1 

2.7.2.2 

2.7.2.8 

1.2.1.38 

2.3.1.35 

3.5.1.16 

2.3.1.35 

Plant 

Soybean 

Soybean 

Carrot 

Soybean 

Pea 

Pea 

Soybean 

Arabidopsis 

Soybean 

Pea 

Pea 

Soybean 

Watermelon 

Watermelon 

Reference 

Jainetal., 1987 

Jainetal., 1987 

Lohmeier-Vogel et al., 
2005 
Shargool et al., 1978 

Taylor and Stewart, 1981 

deRuiter and Kolloffel, 
1985 
Jain et al., 1987 

Kleffmann et al., 2004 

Shargool et al., 1978 

Taylor and Stewart, 1981 

deRuiter and Kolloffel, 
1985 
Jainetal., 1987 

Yokota et al, 2002 

Takahara et al , 2005 

Continued on page 14 
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Table 2-continued... 

Gene 

CPS 

OTC 

EC 

6.3.5.5 

2.1.3.3 

Plant 

Soybean 

Pea 

Pea 

Soybean 

Soybean 

Pea 

Pea 

Reference 

Shargool et al., 1978 

Taylor and Stewart, 1981 

deRuiter and Kolloffel, 
1985 

Jainetal., 1987 

Shargool et al., 1978 

Taylor and Stewart, 1981 

deRuiter and Kolloffel, 
1985 

Soybean Jain et al., 1987 

Arabidopsis Slocum et al., 2000 

Spinach Bellocco et al., 2002 

Soybean Shargool et al., 1978 

AS 6.3.4.5 Pea Taylor and Stewart, 1981 

Soybean Jain etal., 1987 

Arabidopsis Kleffinann et al., 2004 

AL 4.3.2.1 Soybean Shargool et al., 1978 

Pea Taylor and Stewart, 1981 
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Table 3. Partial list of genes of the proline biosynthetic pathway and the plants from 
which they have been cloned. 

Gene EC Plant Reference 

OAT 

P5CS 

P5CR 

PDH 

2.6.1.13 

2.7.2.11 

P5CDH 1.5.1.12 

1.5.1.2 

Arabidopsis Roosens et al., 1998 

Alfalfa Ginzberg et al., 1998 
Glycine max Porcel et al., 2005 
Lactuca sativa 
Alfalfa Miller et al., 2005 
Wheat, barley, Ayliffe et al., 2005 
maize, rice 
Soybean Delauney and Verma, 

1990 
1.5.9.9.8 Alfalfa Miller et al., 2005 

Tobacco Ribarits et al., 2007 
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patatin promoter. Although the sense transformants produced more SAMDC transcripts 

and a higher Spd content, and the anti-sense constructs resulted in a decrease in SAMDC 

transcripts and activity; neither affected the tuber number. 

Bhatnagar et al. (2001) used biolistic bombardment to transform poplar {Populus 

nigra x maximowiczii) cell suspensions with the same 35S::mODC construct as the one 

used by DeScenzo and Minocha (1993) and Bastola and Minocha (1995), resulting in 

several-folds increased production of Put. They and others since then have found several 

metabolic changes in these cells associated with enhanced PA metabolism (see more 

details below). Wisniewski and Brewin (2000) used the coding sequence of a pea DAO 

in both sense and anti-sense orientations using tissue-specific promoter to transform peas. 

They concluded that DAO does not have an essential role in the initiation of root nodules 

and that products resulting from DAO activity on Put could adversely affect the 

nodulation process. 

An oat ADC cDNA under the control of a CaMV 35S promoter was used to 

transform rice (Capell et al., 1998) in which Put content almost doubled in the leaves of 

transgenic plants, but a similar increase was not seen in the seeds. Later, the same Oat 

ADC cDNA in the anti-sense orientation was used in rice by the same group (Capell et 

al., 2000); they observed lowering of Put and Spd content, but not Spm. Bassie et al. 

(2000) and Noury et al. (2000) also reported the transformation of rice with an anti-sense 

oat ADC cDNA with the result that both ODC and ADC activities were down-regulated. 

Roy and Wu (2001) used the oat ADC cDNA under the control of an ABA-inducible 

promoter, again in rice, and found that the transgenic plants had greater Put and ADC 
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than the wild type plants; the second generation transgenic plants exhibited enhanced 

biomass production under conditions of salt stress. 

In addition to using specific PA biosynthetic genes, several studies have used non

specific genes such as Agrobacterium rhizogenes rol genes; e.g. rolA, and rolC (Martin-

Tanguy et al., 1990, 1993; Mengoli et al., 1992; Michael et al., 1990; Burtin et al., 1991; 

Altabella et al., 1995; Benhayyim et al., 1996), with interesting and sometimes 

contradictory effects on PA content and the phenotype. Table 4 represents some 

additional transgenic experiments in plants with genes encoding polyamine biosynthetic 

enzymes (updated from Kumar and Minocha, 1998). 

Functions of polyamines 

Polyamines in growth and development 

The role of PAs in cell growth and development has been a matter of major interest 

over the years (Reviewed by Bais and Ravishankar, 2002; Kakkar and Sawhney, 2002; 

Kaur-Sawhney et al., 2003; Kusano et al., 2007). Generally, the PAs seem to promote 

regeneration and somatic embryogenesis (Robie and Minocha, 1989; Minocha et al., 

1991, 1993, 1999, 2004B; Minocha and Minocha, 1995; Singh and Rajam, 1998; 

Martinez et al., 2000; Shoeb et al., 2001; Puga-Hermida et al., 2003; Sakhanokho et al., 

2005). More recently, Geoffriau et al. (2006) observed that in onion, specific 

proportions of the PAs were required for successful gynogenesis, and also that in the in-

vitro cultures, addition of Spd or Spm promoted embryogenesis. Chiancone et al. (2006) 

reported that Spd, but not Put stimulated gametic embryogenesis in Citrus Clementine. 

Vuosku et al. (2006) reported that in Scots pine, while PAs typically increased during the 

early stages of zygotic embryogenesis, they showed a decrease towards later stages. 
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Table 4. List of transgenic experiments in plants with genes encoding polyamine 
metabolic enzymes (updated from Kumar and Minocha, 1998). 

Gene 

Yeast ODC 

Mouse ODC 

Mouse ODC 

Mouse ODC 

Human SAMDC 

Potato SAMDC 

Promoter-orientation 

35S CaMV-sense 

35S CaMV-sense 

35S CaMV-sense 

2X 35S CaMV-sense 

35S CaMV-sense 

35S CaMV-sense 

Arabidopsis SAMDC CaMV-sense 

Carnation SAMDC 

Oat ADC 
Oat ADC 
Oat ADC 

Oat ADC 

Oat ADC 

Oat ADC 

Oat ADC 

Toabcco ADC 

Datura ADC 
Oat ADC 

Arabidopsis ADC 

Oat ADC 

Bacterial LDC 

Bacterial LDC 

Pea DAO 

Pea DAO 

Pea DAO 

CaMV- antisense 

CaMV- sense 

Tet-inducible-sense 
Maize ubiquitin-sense 
CaMV- antisense 

ABA inducible-sense 

35S CaMV-sense 

Maize ubiquitin 

35S CaMV-sense 

CaMV- antisense 

Maize ubiquitin- sense 
Tet-inducible- sense 

CaMV- sense 

CaMV-antisense 

35S CaMV-sense 

35S CaMV-sense 

35S CaMV-sense 
35S CaMV-antisense 

Plant 

Tobacco 

Tobacco 

Carrot 

Poplar 

Tobacco 

Potato 

Arabidopsis 

Tobacco 

Tobacco 
Rice 
Rice 

Rice 

Tobacco 

Wheat 

Reference 

Hamilletal., 1990 

DeScenzo and Minocha, 
1993 
Bastola and Minocha, 
1995 
Bhatnagar et al., 2001 

Noh and Minocha, 1994 

Kumar et al., 1996 

Hu et al., 2006 

Wi et al., 2006 

Masgrauet al., 1997 
Noury et al., 2000 
Capelletal., 1998 

Roy and Wu, 2001 

Burtin and Michael, 1997 

Bassie et al., 2008 

Cajanus cajan Sivamani et al., 2001 

Tobacco 

Rice 
Tobacco 

Arabidopsis 

Rice 

Tobacco 

Tobacco 

Pea 

pENOD 12-inducible-senseRice 

35S CaMV-antisense Rice 

Chinatapakron and 
Hamill, 2007 
Capell et al., 2004 
Panicot et al., 2002 

Alcazar et al., 2005 

Trung-Nghia et al., 2003 

Fecker et al., 1993 

Herminghaus et al., 1991, 
1996 
Wisniewski and Brown, 
2000 
Bassie et al., 2000 

Bassie et al., 2000 



Kumar et al. (2007) found that application of PA inhibitors to the culture medium 

inhibited shoot bud formation in Capsicum frutescens cultures. Steiner et al. (2007) 

reported that the addition of exogenous PAs to culture medium devoid of plant growth 

regulators, promoted growth of embryogenic cultures ofAraucaria augustifolia. 

The role of PAs in flowering and fruit development has also been studied by several 

workers (Slocum and Flores, 1991; Rodriguez et al., 1999; Applewhite et al., 2000; Kaur-

Sawheny et al., 2003; Liu and Moriguchi, 2007). Polyamines have been implicated in 

regulating cell cycle (Galston and Kaur-Sawheny, 1995; Kaur-Sawheny et al., 2003) in 

that dividing cells contain high PA contents, synthesized mostly by ODC, while those 

undergoing elongation and expansion show low PA content, synthesized by ADC. 

However, little ODC activity was detected in cell cultures of Catharanthus roseus, carrot, 

and poplar; all had ADC as the key enzyme involved in Put biosynthesis during cell 

division (Minocha et al., 1991, 1995, Bastola and Minocha, 1995, Bhatnagar et al., 2001). 

The role of PA metabolism in mediating the hormonal regulation of plant growth 

processes has been reviewed by Galston and Kaur-Sawheny (1995). It has been proposed 

that since Spd and ethylene share a common precursor, i.e. SAM, they may have 

antagonistic roles with respect to some physiological processes in plants (Kaur-Sawheny 

et al., 2003); e.g. PAs inhibit leaf senescence while ethylene promotes the same. This has 

lead to a suggestion that the metabolism of PAs may compete with the metabolism of 

ethylene; however, contradictory results have been reported depending upon the tissue 

and the plant species used (Chen et al., 1991; Liu et al., 2006). 
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Polyamines and stress 

The roles of PAs in plant stress response has been widely studied and has been 

reviewed by Bouchereau et al. (1999), Alcazar et al. (2006) and Liu et al. (2007). 

Although conjugated PAs had been implicated to have a role in plant defense against 

pathogen attack (Martin-Tanguy, 1997; Walters, 2000), Walters (2003) suggested a role 

for free PA catabolism in generating hypersensitive response (HR) to plant pathogen 

attack. The catabolism of PAs generates H2O2, a major component of the group of 

molecules collectively known as Reactive Oxygen Species (ROS) or Active Oxygen 

Species (AOS) that are responsible for causing oxidative burst (Wojtaszek 1997; Apel 

and Hirtz, 2004), possibly a form of HR. 

As early as 1952, Richards and Coleman reported that Put content of oat leaves 

increased in response to K deficiency. The expression of several genes involved in the 

PA biosynthetic pathway has been shown to change in Arabidopsis in response to salt 

(NaCl) treatment. Urano et al. (2003) and Zimmermann et al. (2004) reported that ADC\, 

ADC2, SAMDCl, SAMDC2, SPDS\, SPDS2 as well as SPMS were all induced in 

response to NaCl treatment. Increased salt tolerance has been achieved by increasing Put 

production by overexpression of a mouse ODC gene in rice (Kumria and Rajam, 2002). 

Yamaguchi et al. (2006) have investigated the protective role of Spm in salt stress of 

Arabidopsis. The importance of ADC route to PA biosynthesis under salt stress was 

reinforced by Liu et al. (2006) in apple callus. Simon-Sarkadi et al. (2007) reported that 

deletions of chromosome 5A, that houses several genes affecting abiotic stress in wheat, 

caused changes in PA content under salt stress. In rice, the overexpression of a 
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Tritordeum SAMDC, under the control of an ABA-inducible promoter, caused increased 

Spd and Spm accumulation and conferred salt tolerance (Roy and Wu, 2002). 

Nayyar and Chander (2004) demonstrated that water stressed chick pea plants 

showed increased accumulation of Spd and Spm and concluded that PAs had a protective 

role against drought stress in this species. They also studied the role of PA accumulation 

under cold stress in chick pea and reported an enhancement in Put content in response to 

the same. Capell et al. (2004) generated transgenic rice transformed with a Datura 

stramonium ADC gene and observed increased production of Put and improved response 

to drought stress. They concluded that increase in Put content, consequently also 

increasing Spd and Spm content, protected the plants against drought stress. Yang et al. 

(2007) reported that in rice, water deprivation led to higher activities of ADC, SAMDC 

and SPDS in the leaves, leading to an enhancement in the contents of Put, Spd and Spm. 

Kim et al. (2002) studied the role of ABA and PAs in cold-stressed leaves of tomato 

and observed that in both, the wild type and the ABA-deficient mutants, Put reduced 

electrolyte leakage induced by cold stress, while DFMO application increased this 

leakage. Pillai and Akiyama (2004) reported that in the cold tolerant varieties of rice, 

SAMDC transcripts increased for up to 72 h after stress treatment, while the susceptible 

variety showed no change. Spermidine content also increased in the cold resistant variety. 

Lomozik et al. (2005) have reviewed the chemistry behind the formation of 

complexes between PAs and metal ions in solution. Depending on the nature of the amine 

(-NHx) group, interactions between the N atom (containing a lone pair of electrons) and 

metal ions are possible. Since metal toxicity is a widely studied area of plant physiology 

and PAs are considered important molecules modulating stress response in plants, the 
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relationship between metal toxicity and PA metabolism has been investigated by several 

groups. Recently, Majerus et al. (2007) reported that in the African rice Oryza 

glaberrima, that shows varying degrees of resistance to iron toxicity, PA contents were 

always higher in a tolerant cultivar, in all organs of the plant and during all time periods 

of treatment. The concentration of Pro and soluble sugars increased in the sensitive 

cultivar, while remaining unaffected in the resistant one. Elevated Mn concentrations 

have been reported to increase PA and amino acid accumulation in Populus catahayana 

(Lei et al., 2007). Increased PA concentrations were also reported in tobacco (Kuthanova, 

2004) and sunflower (Groppa et al., 2007) due to Cd treatment. 

Since, most types of stresses, whether induced by temperature, drought or chemicals, 

are responsible for ultimately affecting the oxidative stress machinery by inducing the 

generation of ROS; several groups have studied stress response of PA metabolism in the 

light of oxidative stress (Nayyar and Chander, 2004). Also, the catabolism of PAs 

generates H2O2 which is a part of the ROS system (Papadakis and Roubelakis-Angelakis, 

2005). Despite this direct correlation between PA catabolism and oxidative stress, a role 

of PAs in ameliorating the harmful effects of ROS has been suggested. PAs can do so 

either by direct interaction with the ROS (Lovaas, 1997) or indirectly; e.g. by inhibiting 

the generation of NADPH-oxidase meditated ROS in membranes (Papadakis and 

Roubelakis-Angelakis, 2005). This area of research has been followed both in plants as 

well as in animals (Papadakis and Roubelakis-Angelakis, 2005 and references therein) 

Polyamines as indicators of stress in trees 

The role of foliar PA concentration as early indicators of abiotic stress in trees has 

been proposed by several authors (Dohmen et al., 1990; Hauschild, 1993; Minocha et al., 
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1997; Sanchez et al., 2005), and has been investigated in detail by R. Minocha et al. 

Earlier, Minocha et al. (1992, 1996) observed an inverse relationship between Al addition 

and Put content in suspension cultures of periwinkle {Catharanthus roseus) and red 

spruce (Picea rubens). A similar trend was seen later in mature trees of several species 

subjected to increased Al exposure due to acid precipitation (Minocha et al., 1997, 2000). 

Based on extensive analyses at several sites affected by a variety of abiotic stressors, this 

group has proposed that foliar PA (particularly Put) content can be used as an early 

indicator of abiotic stress in trees even before the appearance of visible symptoms of 

stress injury or loss of growth and productivity. For example, in response to acidic soil 

conditions (due to acid precipitation and Al solubilization), several-fold increase in the 

accumulation of foliar PAs (PCA-soluble) and inorganic ions in red spruce trees was 

observed; there was also an inverse relationship with Ca accumulation. A higher Ca:Al 

ratio in the soil resulted in lower Put and Spd content in the needles, as opposed to the 

contents of the same in trees growing on soil with lower Ca (Minocha et al., 1997). 

Minocha et al. (2000) also studied the relationship between free PA, inorganic ions and 

chronic N deposition in the soil, in pine and hardwood trees. They observed that chronic 

addition of N to the soil increased foliar Put content. In the hardwood trees, a strong 

negative correlation was again seen between foliar PAs and total Ca, Mg and Mn in the 

soil. Negative correlations were also seen among foliar PA s and exchangeable K and P 

in the soil. The amelioration of stress (e.g. addition of Ca in Ca-depleted soils) reversed 

the profile of both the Put content as well as cellular Ca in sugar maple (Wargo et al., 

2002). 
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Current status of polyamine research in our laboratory 

For over 20 years, research in our laboratory has focused on understanding the 

intricacies of the PA metabolic pathway and its physiological significance in plants. A 

variety of plant materials (carrot, tobacco, Arabidopsis, and poplar) and experimental 

approaches (use of inhibitors, enzyme activities, cloning of genes, analysis of gene 

expression, and genetic manipulation) have been used to understand the regulation of 

their metabolism and delineate their roles in embryogenesis and stress. Following earlier 

work with carrot (Robie and Minocha, 1989; Minocha et al., 1991; Bastola and Minocha, 

1995; Andersen et al., 1998) and tobacco (DeScenzo and Minocha, 1993; Noh and 

Minocha, 1994), recent efforts have concentrated on the use of cell cultures of poplar 

{Populus nigra x maximowiczii) transformed with a truncated version of mouse ODC 

(Bhatnagar et al., 2001, 2002; Quan et al., 2002; Page et al., 2007). The activities of key 

biosynthetic and catabolic enzymes have been studied in response to transgenic 

manipulation of a specific step in the PA metabolic pathway, i.e. up-regulation of Put 

biosynthesis. A summary of important findings with the transgenic poplar cells, which 

have been used in our research presented here, is given below: 

• Transgenic expression of mODC causes several-fold increase in Put production and 

accumulation, without negative effects on the native ADC activity and its 

contribution to Put production 

• The rate of Put catabolism is enhanced proportionate to its biosynthesis 

• The source of Orn production in these cells is primarily from Glu/Gln and not from 

Arg 
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• Ornithine biosynthesis becomes limiting for Put biosynthesis in the Put-

overproducing cells 

• The production of ethylene in these cells is not affected by increased PA 

metabolism 

One of the major applications of genetic manipulation in plants is as a tool to reveal 

information about the regulation of metabolism so that strategies can be developed to 

achieve optimal levels of desired cellular metabolites. This not only requires 

identification of rate-limiting steps in a pathway, but also understanding of how the 

pathway is regulated, particularly whether regulation occurs at the transcriptional, 

translational, post-translational or metabolite (substrates, cofactors, etc.) levels. The 

transgenic approach can help us reveal mechanisms of metabolic regulation that may not 

be seen through mutant analyses and/or inhibitor studies alone. Some examples of novel 

information that has come from the transgenic approach include the complex regulation 

of lysine (Lys), threonine (Thr) and methionine (Met) biosynthetic pathways (Galili, 

1995; Tzchori et al., 1996; Zhu and Galili, 2004; Lee et al., 2005), the complexity of 

glycolysis regulation by phosphofructokinase (Thomas et al., 1997), and the regulation of 

secondary metabolism in plants (Dixon, 2005). 

Objectives of the present study 

We hypothesized that: 

a) Put overproduction affects the metabolism of Pro, Arg and GABA, metabolites 

which are produced from intermediates of the PA metabolic pathway, and 

b) Enhanced PA metabolism has pleiotropic effects on the physiology of cells in 

terms of stress response, ionic balance and gene expression. 
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The specific objectives of my research were to investigate the effects of enhanced 

metabolism of Put in transgenic poplar cells on: 

• the activities of enzymes (and their transcripts) involved in PA biosynthesis; 

• the metabolism of amino acids like proline, arginine, ornithine, and GABA (for 

which Glu is a precursor) as well as other amino acids; 

• the oxidative state of cells; 

• the response to Al and its interaction with Ca in the culture medium; and 

• the assimilation of carbon into polyamines 

Suspension cultures vs. intact tissues 

Non-regenerating, suspension cultures of a cell line of hybrid poplar (Populus nigra 

x maximowiczii) were used in this study in contrast to the embryogenic cultures of carrot 

or intact plants of tobacco used in our lab in the past. Cell suspensions are excellent 

model systems to study cellular metabolism, particularly if they are comprised of non-

nodular clumps, which is the case with the cultures used here (Fig. 3). Not only are they 

easy to handle, they can be maintained under defined growth conditions year round. One 

of the major hindrances to working with biochemical pathways in intact plants is the 

complexity encountered with isotope feeding experiments due to heterogeneity of tissue 

types and the problem of uptake and distant transport. Generally cell suspension cultures 

allow better distribution of the label than in an intact plant organ, analogous to the 

microbial and animal cell culture systems that have been extensively used for numerous 

metabolic studies. Also, the growth conditions, including the growth medium and the 

physical environment, can be better controlled for cell cultures than for intact plants. 
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Figure 3. Control and HP cells as seen under light microscope. 

27 



GENERAL MATERIALS AND METHODS 

Cell culture and harvest 

The high putrescine cell line (called HP for "High Put") and the control cell lines of 

Populus nigra x maximowiczii used in this study have been previously described 

(Bhatnagar et al. 2001, 2002; Page et al. 2007). The former (previously called 2E -

Bhatnagar et al. 2001, 2002, Quan et al., 2002) expresses a mouse ornithine 

decarboxylase (mODC) gene. The control cells have either been non-transgenic or a line 

that expresses the ^-glucuronidase (GUS) gene; both transgenic cell lines also express 

neomycin phosphotransferase (NPTll) selectable marker gene. All three transgenes are 

controlled by variations of the 35S CaMV promoter. By using a transgenic control cell 

line in my study, the effect of kanamycin in the culture medium during maintenance of 

stock cultures gets neutralized. 

All cell cultures were maintained in MS medium (Murashige and Skoog, 1962; 

Sigma-Aldrich, St. Louis, MO, Cat # M-5524), containing vitamins of B5 medium 

(Gamborg et al. 1968; Sigma, G1019), 2% sucrose, 0.5 mg L"1 2, 4-dichlorophenoxy-

acetic acid (2, 4-D; Sigma, D7299) and 100 mg L"' kanamycin, except the non-transgenic 

cells (Genlantis, San Diego, CA, Cat # Ml50025). Liquid suspensions were subcultured 

weekly by adding 7 mL of 7-d-old suspension to 50 mL of fresh medium in 125 mL 

Erlenmeyer flasks. Kanamycin was added after cooling the medium to about 55 C; the 

antibiotic was not added for at least two weeks before experimentation. Stock cultures 

were maintained on solid medium with kanamycin with a 4 week culture cycle. All 

cultures were kept at 25±2 °C under a 12 h photoperiod (80±10. nem2.s"'); the liquid 
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cultures were kept on a gyratory shaker at 150 rpm. Cells were harvested by vacuum 

filtration through Miracloth (Calbiochem, La Jolla, CA, Cat # 475855). 

Free polyamine analysis 

Following vacuum filtration, 200 ± 20 mg (FW) of cells were mixed with 4x volume 

(800 ± 80 uL of 5% (v/v) perchloric acid (PCA) and frozen (at -20 °C) and thawed (at 

room temperature) three times (Minocha et al., 1994) before dansylation and 

quantification of PAs by HPLC (Minocha et al., 1990; Bhatnagar et al., 2001; Page et al., 

2007). Bhatnagar et al (2002) demonstrated that the freeze-thaw method enabled the 

extraction of the PCA soluble PAs, almost entirely. The thawed samples were vortexed 

until they were well mixed and centrifuged for 10-15 min (13,000 xg). Supernatant (100 

\xL) was used for dansylation. Parallel to the samples, 100 pL of a mixture of 3 PAs and 

the internal standard heptanediamine was dansylated to be used as standards. The PAs 

used as standards were Put-diHCl (Sigma, Dl-320-8), Spd-triHCl (Sigma, S2501) and 

Spm-tetraHCl (Sigma, S2876). The concentrations of the individual PAs in the mixture 

ranged from 0.002 mM Put, 0.001 mM Spd or Spm to 0.04 mM Put, 0.02 mM Spd or 

Spm. Twenty u,L of 0.1 mM heptanediamine (Sigma, D3266), used as an internal 

standard was added to both the standards and the samples. This was followed by the 

addition of 100 (J.L of saturated Na2C03 solution, and 100 jiL of 20 mg ml/1 (in acetone) 

dansyl chloride (Fluka, Milwaukee, WI, Cat # 39220). Following incubation for 1 h at 60 

°C, 50 |JL of 100 mg mL"1 L-alanine (Sigma, A7469) or 20 mg mL"1 L-asparagine 

(Sigma, A0884), made in distilled water, was added and the samples were vortexed 

briefly. After additional 30 min incubation at 60 °C, acetone was evaporated under 

vacuum (5 min) using a Speed-Vac (Savant Instruments Inc., Farmingdale, NY). Dansyl-
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PAs were recovered in 400 u.L of toluene (Photrex grade; J.T. Baker, Phillipsburg, Cat # 

9456-03). Following toluene addition, the standards and the samples were vortexed and 

allowed to stand undisturbed for 5 min to facilitate the separation of the organic and the 

aqueous phases. Following centrifugation at 13000 xg for 1 min, 200 uL of the organic 

(toluene) phase was transferred to a new microfuge tube and dried under vacuum. The 

pellet was reconstituted in 1 mL methanol (Fisher Scientific, Fair Lawn, NJ, Lot # 

970153) by vortexing for 2 min, followed by a 2 min centrifugation. The methanol 

extracts (500 pL) were transferred to autosampler vials and analyzed for free PAs by 

HPLC using a gradient of acetonitrile (40-100%; Burdick and Jackson, Muskegon, MI, 

Cat # AH015-4 or EMD Chemicals, Gibbstown, NJ, Cat # AX0145-1) and 10 mM 

heptanesulfonic acid (Fisher, O-3013), pH 3.4 on a reversed phase CI8 column (4.6 x 33 

mm, 3 um) using the Perkin-Elmer (PE) HPLC system (Minocha et al., 1990; Bhatnagar 

et al., 2001). The system included a PE series 200 autosampler fitted with a 200 uL loop 

(sample volume was 10 uL), a PE series 200 gradient pump at a flow rate of 2.5 mL min" 

'. For detection and quantitation, a series 200 fluorescence detector (Perkin-Elmer) with 

excitation and emission wavelengths set at 340 and 515 nm, respectively, was used The 

PE TotalChrom software (Version 328 6.2.1) was used to integrate data. A multiplication 

factor was incorporated into the software and data were calculated either as nmol mL"1 

PCA or nmol g"1 FW. 

Amino acid analysis 

The aqueous fraction, obtained after partitioning the samples with toluene (described 

above) was used for free amino acid analysis by HPLC (Minocha and Long, 2004B). To 

730 uL methanol, 135 uL of the aqueous fraction was added along with 135 uL of 2.9 M 
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acetic acid. After leaving the tubes open for 10-12 min to remove excess CO2, the 

solution was filtered through a 0.45 p. nylon syringe filter (Pall-Gelman Labs., Ann 

Arbor, MI). Quantitation was done against an external standard curve made by using a 

mix of 23 amino acids standard (21 L-amino acids + glycine- Fluka, 9416; GABA -

Sigma, A5835; Orn- Sigma, 02375). Dansylation of standards was done similar to the 

samples. A Hydro-RP, 4 fim, 100 mm x 4.6 mm i.d. column (Phenomenex, Torrance, 

CA) in a column heater (Bio-Rad labs, Hercules, CA) set at 40 °C was used for separation 

of amino acids. A Cjg security guard column (5 urn, 4 mm x 3 mm i.d.; Phenomenex) and 

a Cis Scavenger column (10 (j.m, 33 mm x 4.6 mm i.d. cartridge; Perkin-Elmer) were also 

used. Amino acid analyses were done by Stephanie Long in Dr. Rakesh Minocha's lab at 

the USDA Forest Service, NRS, Durham, NH. 

Determination of reduced glutathione (GSH), the phytochelatin PC2 and y-

glutamylcysteine (y-EC) 

About 100 mg of cells were collected in 500 uL of 6.3 mM diethyltriamine 

pentaacetic acid (DTPA; Fluka, 3238) containing 0.1% trifluoroacetic acid (TFA; Sigma, 

30248-1), derivatized and analyzed for GSH, PC2 and their common precursor y-EC by 

HPLC according to the method of Thangavel et al. (2007). After freezing and thawing the 

samples three times, the supernatant was collected by centrifugation at 13,000x g for 10 

min. To a mixture of 615 uL of 200 mM 4-(2, hydroxyethyl)-piperazine-l-propane 

sulfonic acid (Sigma, E-1894) buffer containing 6.3 mM DTPA, pH 8.2 and 25 uL of 20 

mM tris (2-carboxyethyl) phosphine hydrochloride (Sigma, C-4706), 250 uL mix of 

standards [y-glutamyl-Cys (Sigma, G-0903) + phytochelatins (PC2, PC3, PC4 and PC5; 

custom ordered from Anaspec, San Jose, CA) + GSH (Sigma, G-6529 )] or sample 
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extract was added. Following incubation of the reaction mix for 10 min at 45 °C, 10 uL of 

0.5 mM N-acetyl-L-Cys (Sigma, A-8199) was added which acted as the internal standard. 

Derivatization was done by the addition of 10 uL of 50 mM monobromobimane 

(Molecular Probes, Eugene, OR; M-20381) and subsequent incubation at 45°C in the 

dark, for 30 min; the reaction was terminated by adding 100 uL 1 M methanesulfonic 

acid (Fluka, 64280). Following filtration through a 0.45 um nylon syringe filter (Pall-

Gelman Labs, New York, NY); the samples were separated by HPLC as described above. 

The excitation and emission wavelengths were 380 and 470 nm, respectively. The PE 

TotalChrom software (PerkinElmer) was used to integrate data. Glutathione and 

phytochelatins analysis were done by Dr. Thangavel Palaniswamy in Dr. Rakesh 

Minocha's lab at the USDA Forest Service, NRS, Durham, NH. 

Ion analysis 

The method of Minocha and Long (2004A) was used to quantify cellular contents of 

inorganic ions; the analyses were done by Stephanie Long in Dr. Rakesh Minocha's lab 

at the USDA Forest Service, NRS, Durham, NH. The cell extracts (100 uL) in PCA 

(described under "free polyamine analysis") were diluted 50x with 4.9 mL H2O and 

analyzed for inorganic ions using a Varian Vista charged couple device (CCD) 

simultaneous Inductively Coupled Plasma-axial emission spectrometer (ICP-AES; Varian 

Inc., Melbourne, Australia). The ICP software (version 4.0; Varian Inc.) was used for 

data integration. Quantitation was done against an external standard curve made by using 

a mix of 8 elements (Al- ICP-013-5, Ca- ICP-020-5, K- ICP-019-5, Mg- ICP-012-5, Mn-

ICP-025-5, Ultra Scientific, North Kingstown, RI; Fe- PLFE2-2X, P- PLP9-2X, Spex 

Certiprep, Metuchen, NJ; Zn- 140-051-301, SCP Science, Baie D'Urfe, Quebec, Canada). 
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Measurement of mitochondrial activity and membrane integrity 

The method of Ikewaga et al. (1998) as modified by Minocha et al. (2001) was used 

to measure mitochondrial activity and membrane integrity in these cells. For 

measurement of mitochondrial activity, about 100 mg (FW) cells were placed in 1 mL 

MS medium containing 250 ug MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-

diphenyltetrazolium bromide, Sigma, M2128]. Following gentle mixing at room 

temperature for an hour, the cells were collected by centrifugation at 16,000 xg (10 min); 

the supernatant was discarded. Following resuspension in 1 mL of 0.04 M acid propanol 

(0.04 M HCL in isopropanol), the cells were centriftiged at 16,000 xg for 5 min and the 

supernatant analyzed for absorbance at 590 nm (Hitachi U-2000 spectrophotometer, 

Hitachi Instruments, San Jose, CA). 

For measurement of membrane integrity, about 100 mg of cells were incubated for 

15 min in 1 mL of 0.05 % (w/v) Evans blue dye (Sigma, E2129), centrifuged at 16,000 

xg for 15 min and the supernatant discarded. The pellet was washed (5x - 6x) with 

distilled water by centrifugation (16,000 xg) until the supernatant was clear. Cells were 

then resuspended in 1 mL 1% (w/v) sodium dodecyl sulfate (SDS; Sigma L4390), frozen 

and thawed once, centrifuged at 16,000 xg and the absorbance of supernatant measured at 

600 nm (Hitachi U-2000 spectrophotometer). 

Measurement of total protein content 

Soluble protein content was measured by the method of Bradford (1976). Cells (100 

mg) were collected in either 200 or 250 uL Tris-EDTA (0.1 M Tris-HCl; J.T. Baker, Cat 

# 4103-02 + 0.1 mM ethylenediamine tetraacetic acid) buffer, pH 6.8 or K-Pi buffer (0.1 

M KH2P04 + 0.1 M K2HPO4), pH 7.0. Cells were frozen and thawed once, vortexed, and 

33 



centrifuged at 16,000 xg for 5 min. The supernatant (25 uL) was diluted 2x (with either 

distilled water or buffer) and incubated with 1.5 mL Bio-Rad protein assay dye (Bio-Rad 

Laboratories, Hercules, CA, Cat # 500-0006) or Sigma Bradford reagent (Sigma, B6916), 

for 15 min. If the Bio-Rad dye was used, it was diluted 5x with distilled water prior to 

incubation with cell extract. Absorbance of the resulting solution was measured at 595 

nm in a "Spectronic® 20 Genesys™" spectrophotometer (Spectronic Instruments Inc., 

Rochester, NY). Known concentrations of bovine serum albumin (BSA; Sigma, A4503) 

dissolved in buffer or distilled water, were used as standards. 

Genomic DNA isolation and quantification 

Genomic DNA was isolated using a modified protocol from Murray and Thompson 

(1980). Approximately 100 mg of cells were ground in liquid nitrogen and incubated 

with 500 ul of pre-heated (60 °C) CTAB buffer [2% (w/v) Hexadecyltrimethyl-

ammonium bromide (Sigma, H6269), 1.4 M NaCl, 20 mM EDTA, 100 mM Tris-HCl, pH 

8.0, and 0.2% (w/v) P-mercaptoethanol ( J.T. Baker, Lot # 208358) added just before use] 

in 1.5mL microfuge tubes. The ground tissue was incubated at 60° C for 30 min with 

gentle agitation. An equal volume of chloroform (Sigma, C2432) : isoamyl alcohol 

(Fisher, A 393-500) (24:1) was added, the samples mixed by inversion, and centrifuged at 

14,000 xg for 5 min. The upper aqueous layer was removed and mixed with an equal 

volume of cold isopropanol. The tubes were incubated at -20° C for 15-30 min. The 

precipitated DNA was pelleted by centrifugation at 14,000 xg at 4° C for 15 min. The 

pellet was washed with 70% ethanol/10 mM ammonium acetate (Sigma, A1542) and re-

centrifuged for 5 min at 14,000 xg. The pellet was dried in a Speed-Vac and resuspended 

in 20-50 ul of TE buffer (10 mM Tris pH 8.0, 1 mM EDTA) or DNAse-free water. The 
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quality of DNA was checked by A26o/A28o ratio (> 2), and DNA quantified 

spectrophotometrically using the following formula: 

Concentration of DNA= O.D.260 nm x 50 ng/uL x dilution factor, where 50 ug/mL is the 

concentration of DNA where O.D.260nm= 1 and the dilution factor is 200x. 

Polymerase Chain Reaction (PCR) 

In order to confirm the presence of the mODC and GUS genes in the HP and control 

cell lines, respectively, and the NPJll gene in both, PCR was performed using either 

Ready-To-Go PCR Beads (Amersham Pharmacia Biotech, Piscataway, NJ, Lot # 6630), 

or Quick Load Taq Polymerase Master Mix (New England Biolabs, Ipswich, MA, Cat # 

M0271L). A typical reaction was performed in a total volume of 25 \i\ using 300-500 ng 

genomic DNA as template. Primers were added at 10 pmol per reaction. Buffer and 

dNTP's were a part of the PCR beads and Master Mix. Reactions were run in a PTC 100 

Programmable Thermocycler (MJ Research, Waltham, MA) with a heated lid. The PCR 

primers used were 5'ATG GGC AGC TTT ACT AAG GAC3' (forward) and 5'CAT 

GGC TCT GGA TCT GTT TCA3' (reverse) for mODC; 5'TAT GCG GGC AAC GTC 

TGG TAT CA3'(forward) and 5'ACG CTT GGG TGG TTT TTG TCA3'(reverse) for 

GUS; and 5'GAG GCT ATT CGG CTA TGA CT3' (forward) and 5'TCG GGA GCG 

GCG ATA CCG TA3'(reverse) for NPTll. The samples were subjected to initial 

denaturation at 93 °C for 1 min and another denaturation step at 94 °C for 30 sec; the 

annealing temperature was 55 °C, followed by an extension temperature of 72 °C for 1 

min. The reaction was repeated for 35-40 cycles, followed by extension at 72 °C for 5 

min and hold at 4 °C. The PCR products were separated on 1% Seakem LE agarose 

(Cambrex Bio Science, Rockland, ME, Cat # 50000), in TAE (40 raM Tris-acetate, 1 mM 
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EDTA) buffer. Samples were mixed with 6x loading dye; TriDye 2-Log DNA ladder 

(NEB, N3270S) was used as marker. Electrophoresis was run at 5 V/cm for 

approximately 1 h. Gels were stained with 0.5 |ig/ml ethidium bromide for 10 min 

followed by destaining in distilled water for 10 min. Gels were visualized on a UV trans-

illuminator and digitally photographed using Nucleotech Gel Expert (version 3.5) 

software and the Nucleotech gel-documentation system (Nucleotech, San Mateo, CA). 

For each gene, a negative and a positive control reaction was set up parallel to the 

samples. 

Statistical analysis 

For all experiments, unless stated otherwise, three replicate flasks were used for each 

cell line for a given treatment and time period. Data were combined from two or more 

separate experiments and subjected to analysis of variance (ANOVA) using SYSTAT, 

version 10.2. Significance at P<0.05 was determined using Tukeys test. 
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CHAPTER I 

PUTRESCINE OVERPRODUCTION AND ACTIVITIES OF THE POLY AMINE 

BIOSYNTHETIC ENZYMES 

In this chapter, data are presented on the comparison of cellular contents of PAs, 

activities of key PA biosynthetic enzymes, and changes in the transcripts of these 

enzymes over the 7 day culture period. This study was conducted in collaboration with 

Dr. Andrew Page, and the results have been published as Page et al. (2007). Whereas Dr. 

Page did most of the molecular analysis, I did all the enzyme assays and maintained cell 

cultures for this part. 

Introduction 

In spite of numerous publications on the importance of PAs in plant growth, 

development and stress responses, only limited experimental evidence for metabolic 

regulation of PA biosynthesis has been forthcoming. The major enzymes involved in PA 

biosynthesis in plants are ADC, ODC, SAMDC, SPDS and SPMS (Fig. 2). For decades, 

the most common approach to modulate cellular PAs was the use of inhibitors of these 

enzymes, a strategy hindered by severe limitations (e.g. differential rates of uptake, 

metabolic conversions, deleterious side effects on membrane characteristics, and the lack 

of specificity) for correct interpretation of results (McCann et al., 1987; Robie and 

Minocha, 1989; Nissen and Minocha 1993). Since the cloning of genes for the key 

enzymes in PA metabolism, the genetic manipulation of specific enzymes has become 

feasible (Kumar and Minocha, 1998; Bhatnagar et al., 2001, 2002; Roy and Wu, 2002; 
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Capell et al., 2004; Franceschetti et al., 2001; Kasukabe et al. 2004; Minocha et al. 

2004A; Alcazar et al. 2005., Imai et al., 2006; Kusano et al., 2007; Bassie et al., 2008). 

The use of genetic manipulation alleviates problems associated with the use of inhibitors 

and also allows the up-regulation of specific steps in a pathway, which is generally not 

feasible with inhibitors. 

Our lab has studied the regulation of PA metabolism in tobacco, carrot, poplar and 

red spruce using inhibitors as well as genetic manipulation (DeScenzo and Minocha, 

1993; Bastola and Minocha 1995; Andersen et al., 1998; Bhatnagar et al., 2001, 2002; 

Quan et al. 2002; Minocha et al. 2004A, B). The results of these studies, while providing 

considerable insight into the regulation of PA metabolism, have provoked several 

questions regarding the regulation of cellular Put content and its role as a regulator of the 

expression of other genes involved in PA metabolism: (a) If an alternate source of 

increased Put production was available to the cells which use ADC as the primary 

pathway (e.g. a transgenic ODC), how will it affect the native ADC and ODC enzyme 

activities and the expression of their genes? (b) What is the effect of increased Put 

accumulation on the activity of S-adenosylmethionine decarboxylase (SAMDC) and the 

expression of genes encoding SAMDC and Spd synthase {SPDS)1 (c) Is the expression of 

the introduced transgenic ODC under the control of a 35S promoter stable in the cells or 

does it vary with their metabolic state; if so, does the expression of other genes involved 

in PA biosynthesis vary in relation to this? 

The main hypothesis for the work presented in this chapter is that transgenic 

manipulation of a specific step in the PA biosynthetic pathway will cause concomitant 

changes in expression of the native genes encoding enzymes that regulate that step and 
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also the other reactions downstream of the manipulated step. As mentioned under 

"General Introduction", the PA metabolic pathway is a branched pathway which interacts 

with a limited number of adjacent pathways (Fig. 2), all of which are important in plants, 

rendering the study of these interactions important. Examining the effects of modulating 

a single step in PA metabolism on other branches of the pathway will help us in 

developing functional models for the regulation of PA metabolism and the metabolism of 

related compounds; e.g. Pro, Arg, y-aminobutyric acid (GABA), and ethylene (Fig. 2). 

This will also aid in achieving desirable manipulation of these compounds using the 

transgenic approach. Manipulation of PA metabolism in plants will potentially have far-

reaching implications, including some in the field of oncology, where foods with reduced 

PA content are deemed desirable to retard tumor growth (Quemener et al., 1994), 

particularly in combination with a strategy of chemotherapeutic use of PA inhibitors in 

cancer patients (Catros-Quemener et al., 1999; Stoneham et al., 2000; Milovic, 2001; 

Kalac and Krausova, 2005). 

The use of Quantitative Reverse-Transcriptase PCR (QRT-PCR) has enabled us to 

examine the expression of individual paralogues of genes and assess their relative 

contributions to PA metabolism in poplar cells. The gene expression data for this part of 

the study were generated by Dr. Andrew Page, using the same cells that were collected 

for enzyme activities and polyamine measurements. 

Materials and Methods 

ODC, ADC and SAMDC enzyme assays 

The activities of ODC, ADC and SAMDC were measured daily during the 7 d culture 

cycle using slight modification of the method of Minocha et al. (1999). Cells collected 
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by vacuum filtration (100 ± 5 mg FW for ODC and ADC, and 200 ± 5 mg FW for 

SAMDC) were placed in assay buffer in 16x100 mm glass test tubes [for mODC: 250 uL 

0.1 M Tris, 0.1 mM EDTA; pH 6.8, 0.5 mM pyridoxal phosphate (Sigma, P3657), 1.0 

mM DTT (Sigma, D9779); for poplar ODC and ADC: the same as for mODC but at pH 

8.4; for SAMDC: 350 pL 0.1 mM potassium phosphate buffer, pH 7.5, 3.0 mM 

putrescine-diHCl (Sigma, Dl-320-8), 1.0 mM DTT(Sigma, D9779)] and frozen for 2-4 h. 

After thawing, 50 uL of the appropriate labeled substrate [for ODC: 0.05 uCi of [1-

,4C]Orn, specific activity 58 mCi mmol"1 (Moravek Biochemicals, Brea, CA; Cat # 142-

173-953) plus 12 mM unlabeled L-Orn (Sigma, 02375); for ADC: 0.1 uCi of [l-14C]Arg, 

specific activity 57 mCi mmol"1 (Amersham Life Sciences, Elk Grove, IL; Cat # 

CFA.434) plus 12 mM unlabeled L-Arg (Sigma, A5006); for SAMDC: 0.1 jiCi of [1-

14C]SAM, specific activity 58 mCi mmol"1 (Moravek, Cat # 127-279-056) plus 4.0 mM 

unlabeled SAM (Sigma- A2408] was added to each tube, and a 2 cm2 Whatman 3 MM 

filter paper soaked with 50 uL Scintigest (Fisher Scientific, Lot # 872729) was placed in 

a polypropylene well (Kontes, Vineland, NJ) suspended from a rubber stopper. The tubes 

were incubated in a water bath (37 °C) for 60 min. Reactions were terminated by 

injecting 1.0 mL of 0.5 N H2SO4 into each tube through the rubber stopper. Following 

additional incubation of 30 min, the filter papers were removed and counted for 

radioactivity in 10 mL Scintilene (Fisher Scientific, Lot # 980805) in a LSC-6000 liquid 

scintillation counter (Beckman, Fullerton, CA). 

Enzyme activity was calculated as nmol C02.h"'.g"1 FW of cells as well as nmol 

C02.h"1.mg"1 soluble protein. The cellular contents of PAs and total proteins were 
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analyzed as mentioned under "General Materials and Methods". Details of quantification 

of gene expression are presented in Page et al. (2007). 

Results 

Confirmation of stable transformation 

In order to confirm the presence of the mODC gene in the HP cells, the GUS gene in 

the control cells and the NPTll gene in both, PCR amplifications were done. The 

expected fragment sizes of 0.8 Kb for mODC, 1 Kb for GUS and 0.7 Kb for NPTl] were 

observed, confirming the presence of the respective genes in these transgenic cell lines 

(Fig. 4, 5). 

Cellular contents of polyamines over the 7 d culture cycle 

The cellular contents of PAs (Fig. 6) were analyzed in the same batch of cells as the 

protein contents (Fig. 7) and the enzyme activities (Fig. 8-10) on a given day. Since the 

protein content varied over the 7 d culture period, the cellular contents of the three major 

PAs were also calculated both as nmol.g"1 FW and nmol.mg"1 protein. In either case, Put 

content of the HP cells was several-fold higher than the control cells on any given day of 

analysis (Fig. 6A, B); on some days the differences were 8 to 9 fold on g"1 FW basis. The 

trend in changes with time was different in the two cell lines. On FW basis, the control 

cells showed a small increase in Put around days 5 and 6; for HP cells, the peak of Put 

content was seen around days 2 to 4. Since the protein content of the latter was higher at 

days 2 to 4, Put content mg"1 protein was actually the lowest on these days and highest on 

days 1 and 7. Spermidine (g" FW) increased significantly in the HP cells between days 1 

and 2, rising to a peak on day 3, and then dropping to the lowest amount on day 7 

(Fig.6C). In control cells, on the other hand, the increase was much smaller and occurred 
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1Kb 

Figure 4. PCR amplification of (A) a 0.8 Kb mODC fragment in HP cells and (B) 
a 1 Kb GUS fragment in control cells. In both gel pictures, lane 1 represents the 
respective ce.ll line, lane 2 represents a water control and lane 3, a plasmid 
(positive) control. The NEB 2-Log DNA ladder was used as the marker. 
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1 Kb — 

Figure 5. PCR amplified 0.7 Kb fragments of NPJll in HP and control cells. 
Lanes 1 and 4 represent replicates of the HP cell line, lane 5, the control cell line, 
lane 2, a plasmid control and lane 3, a water control. The NEB 2-Log DNA ladder 
was used as the marker. 
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only around days 3 to 4. 

The Spd content in HP cells was higher around 2 to 3 d and somewhat lower on days 

5 and 6. Only a small increase in Spd was seen in either cell line within 1 d of transfer to 

fresh medium. When the data were normalized to protein content, both lines showed a 

small increase in Spd within a day of transfer to fresh medium followed by a significant 

decline in its content by day 2 (Fig. 6D). Thereafter, only small increase in Spd content 

mg"1 protein was seen in the two cell lines over the next 4-5 d. Overall, Spd content (g"1 

FW as well as mg"1 protein) was higher on days 4, 5 and 6 in the control cells (Fig. 6C, 

D). Significant differences in the Spm contents (g"1 FW) between control and HP cell 

lines were seen on days 4, 5 and 6 of the week (Fig. 6E) and on mg"1 protein basis, 

significant differences were seen between the two cell lines on days 2-6 (Fig. 6F), where 

the Spm content was lower in the HP cells than the control cells. 

Cellular contents of soluble proteins over the 7 d culture cycle 

The content of buffer-soluble proteins in the cells varied over the 7 d culture cycle 

(Fig. 7), rising to a peak at days 2 to 4, then falling throughout the remainder of the week. 

At days 2 to 4, the protein content (g_1 FW) in the HP cells was significantly higher than 

the control cells; however, on other days, no significant differences were observed. The 

apparent discrepancy between the enzyme activity data calculated on g"1 FW basis and as 

specific activity is obviously due to changes in the protein content of cells, reflecting 

changes in overall metabolism over the week-long culture period. Which of the two 

measurements more accurately reflects changes in enzyme activity that is important for 

regulation of PA biosynthesis is difficult to assess from these data. 
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Activities of ODC, ADC and SAMDC over the 7 d culture cycle 

The poplar and mouse ODC activities were distinguished from each other by using 

extraction and assay buffers of appropriate pH for each; i.e. 6.8 for mODC in HP and 8.2 

for pODC in control cells (DeScenzo and Minocha 1993). 

As reported earlier (Bhatnagar et al. 2001), ODC activity (g"1 FW) was rather low in 

the control cells as compared with the mODC-transgenic HP cells (Fig. 8A); 

nevertheless, it varied somewhat over the 7 d culture period (Fig. 8A) with an increase 

being seen during the first 3 d on transfer of cells to fresh medium and a decline after 

that. The specific activity (C02.mg" protein) of pODC remained rather constant over the 

7 d culture period (Fig. 8B), due to changes in protein content of the cells. The HP cells, 

where the total ODC activity was almost 25-fold higher than the pODC activity in the 

control cells on d 1, exhibited a similar trend for change of enzyme activity over the 7 d 

culture period; the peak of activity being seen on d 4 (Fig. 8A). The specific activity of 

ODC in HP cells, however, exhibited a different trend in that there was a significant 

decrease between d 1 and 2, after which there was no change, when it again increased 

significantly after d 6 (Fig. 8B). The pODC activity in HP cells could not be measured 

accurately because mODC activity still persists at pH 6.8, albeit at low levels (DeScenzo 

and Minocha, 1993); therefore the data on pODC in these cells are not presented. The 

activity of ADC (g"1 FW) was significantly higher in the HP cells than the control cells on 

any day of analysis (Fig. 9A). Whereas the HP cells showed a peak of ADC activity 

around d 2 to 4 and a decline thereafter, changes in ADC activity in the control cells were 

small and statistically insignificant over the 7 d culture period. On transfer to fresh 

medium on the 7th day, an increase in activity was seen only in the HP cells. 
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Figure 6. Cellular contents of (A, B) Put, (C, D) Spd and (E, F) Spm on (A, C, 
E) g"' FW and (B, D, F) mg"1 protein basis, in control and HP cells over the 7 d 
culture cycle. Data are mean (±) SE of 6 replicates from 2 experiments. An * 
indicates a significant difference (P<0.05) between the cellular PA content 
between the control and HP cells on a given day of the 7 d culture cycle. 
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When ADC specific activity was compared, the differences between the two cell lines 

over time were smaller, and also, the peak of ADC activity observed in the HP cells 

between d 2 and 4 was not apparent (Fig. 9B). In fact, highest ADC activity in these cells 

was seen on the 7th and the 1st d of culture, a situation similar to that for mODC activity. 

The activity of SAMDC (g"1 FW) was significantly lower in the HP cells than the 

control cells on all but the first 3 d of culture (Fig. 10A); both cell lines showed a 

decrease in enzyme activity over the course of the experiment after 2 d of culture in HP 

and after 4 d in the control cells. On transfer of cells to fresh medium, a small but 

significant increase in SAMDC activity was seen in both cell lines. When calculated as 

specific activity, differences between the two cell lines were seen over the entire 7 d 

period, the enzyme activity being always lower in the HP cells (Fig. 10B). It should be 

pointed out that the enzyme activity measurements did not distinguish between the 

products of various SAMDC genes. 

Expression of different genes over the 7 d culture cycle 

As mentioned before, gene expression data was generated by Dr. Andrew Page 

(Page et al., 2007) and are presented in the Appendix B. 

Discussion 

The calculation of enzyme activity and PA content on the basis of g"1 FW vs. mg"1 

protein may lead to somewhat different interpretations of data concerning changes in 

cellular metabolism with time during the 7 d culture cycle. Several of the genes tested in 

the present study showed a peak in expression and enzyme activity on g" FW basis during 

the first 2 to 3 d of culture (e.g. ADC and ODC), suggesting an association with rapid 

growth/cell division occurring in cell cultures around this period. However, due to higher 
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protein content during this period (Fig. 7), perhaps again due to rapid growth, differences 

over time in specific activity, particularly that of ADC, during the 7 d culture period 

became less apparent (Fig. 9B). Thus the data suggest that some of the changes with time 

are perhaps a reflection of general metabolic status of the cells during the 7 d culture 

cycle, including changes in total protein content and mitochondrial activity. 

In HP cells, the expression of mODC (Fig. B1A), the activity of ODC g_1FW (Fig. 

8A), and the content of Put (g_1FW; Fig. 7A) all showed a similar trend of an initial 

steady rise from the 1st to the 3rd or 4th d, which was concomitant with an increase in 

cellular protein content. In control cells, although the activity of pODC remained low 

throughout the culture period, an increase during the first 3 d was observed. It should be 

pointed out that a portion of 14C02 released from [l4C]Orn in the control cells could also 

have come from its conversion into [14C]Arg and subsequent decarboxylation by ADC. 

The lack of change in specific activity during the 2nd to 6th d is due to changes in protein 

content of cells which was higher during this period as compared to days 1 or 7. The 

increases in Put in both the control and the HP cells following transfer to fresh medium 

are consistent with the observed changes in ODC and ADC activities. The change in 

mODC expression (and resultant change in enzyme activity and Put production) is 

interesting in light of the fact that the transgene is under the control of supposedly a 

constitutive promoter (for review see Yoshida and Shinmyo, 2000). However, many 

studies have shown that the 35S CaMV-regulated expression is not entirely constant and 

varies according to tissue type as well as developmental stage (e.g. Sunilkumar et al., 

2002); a situation similar to that seen for ubiquitin-regulated promoter, another 
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commonly used constitutive promoter (Capell et al., 2004). Hence, mODC expression 

and enzyme activities vary with the metabolic state of cells. 

SAMDC is considered to be a regulatory enzyme for the biosynthesis of both Spd and 

Spm since it controls the production of dcSAM, the primary donor of aminopropyl 

moieties for SPDS and SPMS (Evans and Malmberg, 1989; Cohen 1998; Pegg et al., 

1998). Most plants have two SAMDC genes, sometimes even more (Franceschetti et al., 

2001; Tian et al., 2004). The SAMDC transcripts in both animals and plants have some 

unusual features such as a long (400-700 nucleotide) 5'UTR, which contains one or more 

translatable Open Reading Frames (ORFs); there may also be additional non-translated 

ORFs (Franceschetti et al., 2001; Law et al., 2001; Hanfrey et al., 2002; Thu-Hang et al., 

2002). The main SAMDC ORF in plants does not contain introns, but the 5'UTR typically 

contains two or more highly conserved introns. The situation in animals is just the 

opposite; i.e. no introns are present in the 5'UTR but several may be present in the ORF. 

Our present knowledge about SAMDC genes indicates that: (a) SAMDC transcription as 

well as translation are subject to regulation by Put and other PAs, (b) the different 

SAMDC genes are expressed differentially in different tissues, (c) SAMDC is an unstable 

enzyme with a half life of 20-60 min, (d) the coding sequence as well as the 5'UTR of 

SAMDC among different plants are highly conserved, and (e) while Put is an activator of 

SAMDC activity in animals, plant SAMDCs lack a Put-binding site for stimulation. No 

information on the effects of cellular Put content on the expression of various paralogues 

of SAMDC is currently available in plants. 

The QRT-PCR results revealed that not only does the transcript abundance of the 

three SAMDC genes in cultured poplar cells vary independently of each other over the 7 d 
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cycle but also that the three genes respond differently to increased accumulation of Put in 

the HP cells. The most significant and rather unexpected observation is that the mODC 

transgenic cells show a reduced expression of the predominant SAMDCl as well as the 

least expressed SAMDCl, with little effect on SAMDCl. Although the decrease in 

SAMDC\ and SAMDCl transcripts in HP cells is accompanied by a concomitant decrease 

in SAMDC activity; this apparently does not affect the rates of biosynthesis and 

accumulation of Spd in these cells (Bhatnagar et al., 2001). In fact, the HP cells generally 

produce and accumulate more Spd than the control celis, at least during the first few days 

of the culture period (P. Bhatnagar, R. Minocha and S.C. Minocha, unpublished data). In 

a study similar to ours, Capell et al. (2004) reported that overexpression of a Datura ADC 

in rice caused an increase in both Put and Spd. Although the authors pointed to a positive 

relationship between SAMDC transcripts and tissue Spd content in both wild type and 

transgenic plants on certain days in response to stress, this positive relationship between 

SAMDC transcripts and tissue Spd was not seen in the untreated tissue. Since they used 

gel blots for transcript analysis, no distinction was made among different paralogues of 

SAMDC; also, no enzyme activity data were presented to correlate them with the PA 

contents. On the other hand, an inverse relationship between cellular Put and SAMDC 

transcripts in both wild type and transgenic rice was observed on several days of stress 

treatment (Capell et al., 2004), a situation similar to our results with poplar. Of course, an 

increased production of Spd by SAMDC overexpression, such as that seen in tobacco by 

Noh and Minocha (1994) and in tomato by Mehta et al. (2002) would indicate that 

SAMDC alone may be sufficient to affect the cellular contents of Spd. In both these 

studies, as a consequence of increased utilization of Put as a substrate, its content in the 
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transgenic cells was actually lower. The normal control of SAMDC expression by Put in 

these cases was of course absent. These observations raise some interesting questions 

about the role of SAMDC in regulation of this part of the pathway as well as its own 

regulation by Put. For example: (a) how does a lower activity of SAMDC in HP cells 

sustain a higher rate of dcSAM production for increased Spd biosynthesis? (b) Is there a 

common mechanism by which high Put regulates expression of the two SAMDC genes 

(but not the third one), or is the reduction in transcripts of the two genes a reflection of 

their increased turnover? Although nothing is known about promoters of the three 

SAMDC genes in poplar, promoters of the two Arabidopsis SAMDC genes {AtSAMDCX 

and AtSAMDCl) show almost 50% sequence identity and possess several common 

motifs; such as, IBOX (light regulated), DRE Core (drought responsive), Myb-binding 

protein (abiotic stress), and GAREAT (GA responsive element) (C.F. Rice and S.C. 

Minocha, unpublished). It is conceivable that some common Put-sensory element(s) are 

present in the promoters of the pSAMDCl and pSAMDC3 genes which regulate their 

response to Put. 

While the transcript levels or enzyme activities for the key regulatory PA biosynthetic 

enzymes have been studied separately in a few cases, a direct correlation between the two 

has not been clearly demonstrated. Among the main reasons for lack of a positive 

relationship between transcript abundance and enzyme activity are translational controls, 

transcript turnover rates, enzyme turnover rates, availability of cofactors and other 

cellular metabolites that affect enzyme activity, and, finally, the processing and activation 

of the proenzyme. A strong temporal correlation between the transcript levels and 

enzyme activities (g"1 FW) of the transgenic mODC as well as the native ADC and 

54 



SAMDC were seen in poplar cells over the entire 7 d culture cycle. For example, HP cells 

which have higher ADC and lower SAMDC transcripts compared to the control cells (Fig. 

Bl) also have higher ADC and a lower SAMDC activity (Fig. 9A, 10A). An increase in 

mODC transcripts in HP cells between day 2 and 3 (Fig. B1A) is accompanied by a 

similar increase in ODC activity around days 2 to 4 (Fig. 8A), and a decrease in SAMDC 

activity (Fig. 10A) after day 2 follows a decrease in its transcripts (Fig. Bl, B2). Changes 

in ADC activity and its transcript during the first 4 d also parallel each other. 

A positive relationship between cellular PAs and respective enzyme activities 

responsible for their biosynthesis is readily apparent, whether the data calculations are 

done on g"'FW basis or mg"1 protein basis. Both ODC and ADC increase during early 

days of growth in the fresh medium (Fig. 8, 9), and this is accompanied by an increase in 

cellular Put (Fig. 6). Likewise, an increase in SAMDC during the first 3 to 4 days of 

culture in the control cells parallels changes in cellular Spd and Spm. As mentioned 

above, the main discrepancy in this respect is that in spite of lower SAMDC g'FW, the 

HP cells maintain a slightly higher amount of Spd (also g-1FW). The apparent lack of a 

large increase in Spd in the HP cells which have several-fold higher Put content indicates 

the lack of stimulation of SAMDC activity by Put. This is in contrast to the demonstrated 

up-regulation of animal SAMDC activity by cellular Put (Stanley et al., 1994, Ruan et al., 

1996, Xiong et al., 1997); but is consistent with our current knowledge that plant 

SAMDC is not activated by Put (Xiong et al., 1997; Park and Cho, 1999; Bennett et al., 

2002). An alternate explanation would be that Spd biosynthesis is regulated more by 

SPDS than by SAMDC; which is in contrast to what is generally believed (Ruan et al., 

1996, Thu-Hang et al. 2002). As discussed above, it is conceivable that reductions in 
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SAMDC transcripts as well as SAMDC activity in HP cells are actually caused by the 

increased Put (or total PA) content of these cells. 

The regulation of mammalian ODC is achieved by a complex mechanism involving 

an ODC antizyme which responds to cellular PA levels and helps its subsequent 

degradation by the 26S proteasome (Hoyt et al., 2003). The presence of an ODC 

antizyme in plants that is active against mODC has not been demonstrated; thus its 

turnover must be regulated by a different mechanism. It should be pointed out that the 

mODC gene used here has been modified to render it more stable by deletion of the 

PEST sequence at its C-terminus (DeScenzo and Minocha, 1993; Bhatnagar et al., 2001), 

which is responsible for its rapid turnover (Ghoda et al. 1989). 

Several studies have shown that dcSAM (the product of SAMDC) is required by 

SPDS not only as a substrate (it donates the aminopropyl group) but also for regulation of 

its activity (Pegg et al. 1986; Kauppinen, 1995; Pegg et al., 1998; Janne et al., 2004). 

Kauppinen (1995) also found that SPDS is a stable enzyme and its activity is not 

correlated with mRNA levels; it was further concluded that regulation of its translation 

was mediated by its 5' UTR. These findings would explain the observation in the present 

study that there was no difference between the two cell lines in SPDS expression. The 

enzyme activity of SPDS was not measured in the present study. These findings support 

the idea of a strong homeostatic control of Spd levels in the cells. 

The use of QRT-PCR has permitted us greater precision in measuring gene 

expression than that afforded by any other method (Gachon et al., 2004) and has allowed 

greater insight into the regulation of PA metabolism than was previously known in plants. 

Not only does it appear that PA metabolism is regulated, at least in part, at the 
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transcriptional level, but also that (as expected) different paralogues of a gene have 

differing roles in the maintenance of steady state enzyme activities and PA levels. This is 

in contrast to past publications based on alternate techniques which failed to reveal such 

precise metabolic regulation. For example, Trung-Nghia et al. (2003) found that over-

expressing an oat (Avena sativa) ADC in anti-sense mode resulted in a decrease in Put 

and Spd in rice {Oryza sativa) and concluded that there was no effect on the expression of 

downstream genes. However, the changes that we were able to detect using QRT-PCR 

could not have been detected using northern blotting or RT-PCR (the techniques used by 

Trung-Nghia et al., 2003) due to the relative insensitivity and difficulty in quantifying 

results with these techniques. Similarly, Primikirios and Roubelakis-Angelakis (1999) 

did not see a change in ADC expression upon exogenous application of Put in Vitis 

vinifera suspension cultures although a decrease in ADC specific activity was observed. 

Watson and Malmberg (1996) found a ten-fold increase in ADC activity and a twenty-

fold increase in Put in response to high K+ stress in Arabidopsis, but again using northern 

blotting, found no change in ADC transcripts. Likewise, many studies that have shown an 

increase in ADC activity in response to abiotic stress have not made a distinction between 

the two or more paralogues of this gene that are often found in plants. 

Although the results presented here show differential regulation of the three SAMDC 

genes, it is still not clear as to what the relative contribution of each to the final SAMDC 

activity is, and if there are differences in the properties of the three isoforms of the 

enzyme that may affect their contribution to the final reaction. This is due to the fact that 

each transcript and protein is subject to its own translational and post-translational 

controls, including possible variation in substrate affinities and pH responses (Kauppinen, 
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1995; Watson and Malmberg, 1996; Primikirios and Roubelakis-Angelakis, 1999; Trung-

Nghia et al., 2003). Little is known about the subcellular localization of the different 

SAMDC proteins as well. This indeed may be the challenge to deal with in metabolic 

engineering via genetic manipulation because, while changes in gene transcription, 

translation, enzyme kinetics, etc. can be quantified in vitro, their relative importance to 

the total reaction in vivo is often hard to assess. 

Conclusions 

This study provides an insight into the regulation of transcription and activities of 

enzymes that regulate PA metabolism in poplar cells with a combined breadth and 

accuracy previously not reported for any tissue. The results reveal that poplar ADC and 

ODC expression and enzyme activities are not subject to feedback regulation, while 

increased accumulation of Put may inhibit expression of some members of the SAMDC 

family, leading to lower SAMDC activity. This happens even though the biosynthesis and 

the accumulation of Spd is equal or greater in the HP cells. Furthermore, a quick response 

is seen for transcription as well as enzyme activities on transfer of cells to fresh medium. 
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CHAPTER II 

ENHANCED PUTRESCINE METABOLISM AND SOLUBLE AMINO ACD3S 

As can be seen from Fig. 2, the metabolism of PAs is intricately connected to the 

metabolism of several amino acids like Orn, Arg, Pro, GABA and Glu. While Orn is the 

direct precursor of Put, the latter can also be synthesized from Arg, both amino acids 

being ultimately formed from Glu. Glutamate is also a precursor of Pro, an important 

metabolite under stress conditions (reviewed by Kavi Kishor et al., 2005), that can also 

be synthesized from Orn in an alternate pathway. Both Put and Glu form GABA, another 

important signaling molecule under stress (Bown et al., 2006; Mazucotelli et al., 2006). 

Thus, PA metabolism, from several directions, is linked to the metabolism of Glu, an 

amino acid whose importance as a central molecule in cellular metabolism has gained 

considerable attention in recent years (reviewed by Forde and Lea, 2007). Glutamate not 

only serves as a precursor of the above-mentioned metabolites, but also as an important 

donor of amine groups to keto acids in several transaminase reactions, leading to the 

biosynthesis of several other amino acids. Thus, it was considered important and 

necessary to study the impact of over consumption of Orn and ultimately, Glu in our 

transgenic poplar cells, on the metabolism of other amino acids. 

Introduction 

The importance of Glu as a key intermediate in N metabolism cannot be over

emphasized (Forde and Lea, 2007). Glutamate serves as a key intermediate for not only N 

assimilation via the GS-GOGAT cycle (Lam et al., 1996; Coruzzi and Last, 2000; Weber 
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and Fliigge, 2002; Miflin and Habash, 2002; Foyer et al., 2003), but also serves as a 

substrate for the biosyntheses of several important metabolites, thus playing an important 

role in the C-N balance in cells (Fig. 11). It acts as a direct precursor to the biosynthesis 

of amino acids through aminotransferase/transaminase reactions (Coruzzi and Last, 2000; 

Forde and Lea, 2007; Ferrario-mery et al., 2000); its role in the biosynthesis of Orn, Arg, 

Pro and PAs has been discussed under "General Introduction" and represented in Fig. 2. 

Putrescine catabolism produces GABA, an important metabolite in stress response 

(Mazzucotelli et al., 2006) and signaling (Bouche and Fromm, 2004) that finally enters 

the TCA cycle through succinate, thus recycling both the N and the C component of Glu 

and Put (Bouche and Fromm, 2004). This important metabolite can also be produced 

directly from Glu by GAD (Bouche and Fromm, 2004). Thus, Glu is linked to not only 

the biosynthesis of several amino acids, but PAs as well. 

Amino acid metabolism is intricately connected to glycolysis and the TCA cycle in 

that these two pathways supply the carbon skeletons required for the biosynthesis of 

various amino acids (Fig. 12; Coruzzi and Last, 2000). Important glycolysis intermediates 

are 3-phosphoglycerate (3-PGA), phosphoenol pyruvate (PEP) and pyruvate (Pyr), while 

the TCA cycle contributes oxaloacetate (OAA) and a-KG (Coruzzi and Last, 2000). For 

most of these biosynthetic reactions, Glu serves as the amino group donor. As mentioned 

earlier, GS assimilates N H / , converting Glu into Gin. The other important enzyme in the 

N-assimilation pathway is GOGAT which converts Gin back to Glu, by transferring its 

amide amino group to a-KG. One form of this enzyme (EC 1.4.7.1) uses reduced 

ferredoxin (Fd) and the other (EC 1.4.1.14) uses NADH as the electron donor (Forde and 

Lea, 2007). Glutamine, formed from Glu is responsible for the synthesis of histidine 
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(His). Aspartate (Asp) is formed by the transfer of an amino group from Glu to OAA; the 

latter is in turn the precursor for asparagine (Asn) synthesis by an aminotransferase 

reaction, in which the amino group is donated by Gin, converting Asp to Asn and itself 

getting deaminated to Glu, the reaction is catalyzed by Asn synthetase (EC 6.3.5.4). 

Aspartate can also react with N H / to directly produce Asn. Aspartate is also the source 

of threonine (Thr), methionine (Met) and lysine (Lys); Thr then forms isoleucine (Iso). 

Met is the substrate for SAM, which is formed by SAM synthetase; the S component of 

SAM is recycled to Met through a series of intermediates. 

The aromatic amino acids phenylalanine (Phe), tyrosine (Tyr) and tryptophan (Trp) 

are synthesized via a series of intermediates from chorismate, again the aminotransferase 

reaction uses Glu as the amino group donor. Synthesis of Trp on the other hand utilizes 

N H / for a direct amination. Chorismate, the common branch point for the synthesis of 

these three amino acids is synthesized via two other intermediates from the glycolytic 

pathway intermediate; PEP 3-phosphoglycerate forms serine (Ser), which in turn gives 

rise to glycine (Gly) and cysteine (Cys). Pyruvate is the substrate for alanine (Ala), 

leucine (Leu) and valine (Val). 

Bhatnagar et al. (2002) showed that in HP cells Put catabolism is able to keep pace 

with its biosynthesis, leading to enhanced Put oxidation, which will in turn lead to an 

increase in GABA biosynthesis. Therefore, an increased consumption of Orn which 

occurs in the HP cells due to its over-utilization by mODC must be accompanied by its 

increased biosynthesis from Glu; this in turn will significantly affect Glu pool in these 

cells. We hypothesize that reduced Glu levels in the cells will affect the biosynthesis and 
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accumulation of other amino acids which are derived directly or indirectly from Glu. 

Thus we analyzed the cellular contents of all 20 protein amino acids along with two non

protein amino acids, namely GABA and Orn, in the two cell lines on each of the seven 

days of the culture period. 

Materials and Methods 

Amino acid analysis was done as described under "General Materials and Methods". 

Total organic carbon and nitrogen 

The total organic C and N was measured in 4-d-old control and HP cells. Cells 

(200±20 mg) were harvested, dried at 70 °C and analyzed for C and N content using a 

CHNS analyzer (Perkin-Elmer series 2-2400). 

Results 

Amino acids derived from a-ketoglutarate (the glutamate family) 

Glutamate content was significantly lower in the HP cells than in the control cells on 

all 7 days of the week (Fig. 13 A). Fresh medium effect on Glu content was seen in both 

cell lines; i.e. there was almost a doubling of cellular Glu within 24 h after transfer to 

fresh medium, followed by a similar decline within the next 24 h. The HP cells showed a 

gradual decrease in Glu content up to day 3, followed by a slight increase up to day 6. In 

the control cells, Glu did not change much after day 2 or 3. Cellular Orn, the precursor of 

the transgenic ODC, was present in relatively small amounts (typically 30 to 40 folds less 

than Glu) at any time; its amounts were always lower in the HP than the control cells on 

any day of analysis (Fig. 13B). While there was a significant increase in Orn in the HP 

cells on transfer to fresh medium, highest amounts of Orn in the control cells were found 

between days 4 and 6. 
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Although in the control cells, Arg content remained fairly stable throughout the 

week; in the HP cells, a sharp increase in cellular Arg was seen during the two days 

following transfer to fresh medium (Fig. 13C). Thereafter, a gradual decline in Arg was 

observed in these cells. Arginine is the primary source of PAs in the control cells and its 

utilization for Put biosynthesis in the HP cells is not affected by the presence of 

transgenic ODC (Bhatnagar et al., 2001). Changes in the cellular content of Pro were 

parallel to those in Arg while its amounts were higher than Arg in both cell lines (Fig. 

13D). There was a significant increase in Pro content of cells in response to fresh 

medium, particularly in the HP cells followed by a decline; only small changes with time 

in the control cells were seen. Pro was significantly higher in the HP cells on days two 

and three only. 

Glutamine was higher in the control cells as compared to the HP cells both at the 

beginning and towards the end of the culture cycle; the differences being several-folds on 

days 1, 6 and 7 (the same as day zero in Fig. 13E). In control cells, Gin content showed a 

trend that was somewhat opposite to that of Glu on transfer to fresh medium; i.e. a 

decline was seen within 24 h of transfer and a gradual increase during the latter half of 

the growth cycle (i.e. days 5 to 7). The Gin content of HP cells remained rather low and 

unchanged during the entire 7 d culture period. 

Finally His, which is the most basic of this group of amino acids, showed small but 

significant differences between the two cell lines on days 4, 5 and 6 (Fig. 13F), with the 

HP cells having lower His content on these days. Its content showed an increase on 

transfer to fresh medium with a peak on day 2 in both cell lines. 
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Amino acids derived from 3-phosphoglycerate (3-PGA) 

Serine and Gly, which are readily interconvertible, are derived largely from 3-PGA 

as shown in Fig. 12 (although Gly can also be made by direct transamination of 

glyoxalate); both pathways use Glu as the donor of the amide group. Along with Cys, 

which is made from Ser, all three amino acids of this group showed a similar trend of 

changes in both cell lines during the week; there was a decline (up to three-folds) in their 

cellular contents during the first 2 to 4 days on transfer to fresh medium, followed by a 

recovery during the latter half of the week (Fig. 14). While the cellular contents of Ser 

and Gly were comparable (Fig. 14A, B), Cys was present only in small amounts (20-30 

folds lower than either) quantities on any given day (Fig. 14 C). On most of the days, all 

three were higher in the control than in the HP cells, the difference being most 

pronounced for Cys + cystine (Fig. 14C). 

The aromatic amino acids (derived from phosphoewo/pyruvate) 

Of the three aromatic amino acids, two (Tyr and Phe) use Glu as the amide group 

donor, while Trp takes its amino group from Ser (Siehl, 1999). The carbon skeleton for 

these amino acids comes from phosphoenolpyruvate (PEP) via the intermediate 

chorismate (Fig. 12). The contents of Phe and Trp varied parallel to each other during the 

week in the two cell lines (Fig. 15); the changes were also similar to those seen for the 

three amino acids derived from 3-PGA. Cellular contents of Phe (Fig. 15 A) were almost 

twice as much as those of Trp (Fig. 15B) on a given day; both showed a decline on 

transfer to fresh medium and an increase during the latter half of the week. Differences 

between the two cell lines were significant both for Trp and Phe on most days of culture; 
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both being lower in the HP cells than the control cells. Tyrosine was not resolved in the 

HPLC system used here; thus data for this amino acid are not presented. 

Amino acids derived from pyruvate (the pyruvate family) 

Leucine, Val and He constitute a group of branched-chain amino acids; the former 

two being derived from pyruvate and the third from 2-ketogluterate (Singh, 1999). 

However, the enzymes involved in biosynthesis of Val and He are similar in that they 

perform parallel reactions but use different substrates. Alanine is also derived from 

pyruvate by a direct aminotransferase reaction from Glu. Of the three amino acids of this 

group, Ala was the dominant amino acid in control cells, followed by Leu and Val. The 

Leu content was at least three-folds lower in the HP cells than the control cells on almost 

all days of the week (Fig. 16A). While in the control cells, there was a rapid (more than 

two-fold) decline in Leu during the first two days of culture in the fresh medium, which 

was followed by consistent increase during the next four days; changes in Leu content of 

HP cells were much smaller in magnitude, although similar response to fresh medium 

was seen in these cells. In contrast to Leu, both Val and Ala were higher in the HP cells 

than the control cells during several days of culture (Fig. 16B, C); while the former 

showed an increase in HP cells on transfer to fresh medium, the latter did not change 

much on most days. In the control cells, a significant decrease in Ala was seen during the 

first two days of culture; its content recovered again during the last two days of the 7 d 

cycle. 
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Amino acids derived from oxaloacetate (the aspartate family) 

There are six amino acids that constitute the aspartate family and are derived from 

oxaloacetate (OA) as the source of carbon skeleton; five of these were analyzed in the 

present study. Each showed a somewhat different pattern of change during the week, and 

each showed different response to high PA metabolism in the HP cells (Fig. 17). The 

biosynthesis of both Asp and Asn can utilize free ammonia rather than depending entirely 

on transamination from Glu or Gin. Aspartate and Thr, the two dominant amino acids in 

this group showed a similar pattern of changes during the week in the HP cells but there 

were differences in their relative contents in the two cell lines (Fig. 17A, B). Both amino 

acids showed a rapid but transient increase (more than two-fold for Asp and four-fold for 

Thr) in response to fresh medium effect in the HP cells; only a small increase was seen in 

Thr in the control cells at this time. After two days, the cellular contents of both these 

amino acids declined to their original levels (of day 0) and stayed there for the remainder 

of the week. Moreover, while Asp was higher in the control cells, Thr was higher in the 

HP cells, at least for the first four days of culture. 

Lysine, Met and lie, all showed a decrease in cellular content in both cell lines on 

transfer to fresh medium followed by an increase during second half of the week (Figs. 

17C, D, E). Methionine was the lowest in amount of this group of amino acids, and 

remained higher in the control cells throughout the week-long culture period. While He 

was higher in the HP cells during the first 2 to 3 days, Lys was higher in the control cells 

during the latter part of the growth cycle. Threonine is among the few amino acids whose 

content increased the most in response to Put overproduction (i.e. in HP cells) on the first 

three days of culture (Fig. 17B). 
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Gamma-aminobutyric acid (GABA) 

Gamma-aminobutyric acid (GABA), is a non-protein amino acid which is produced 

both directly from Glu by glutamate decarboxylase (GAD) and from the catabolism of 

Put by diamine oxidase (Fig. 12; Rhodes et al., 1999). It serves as an intermediate in the 

recycling of C of Glu as well as the diamine Put, and has been implicated in some of the 

same roles as Put; e.g. response to low Ca and abiotic stressors. A distinct fresh medium 

effect was seen for GABA content in both cell lines (Fig. 18), resulting in a sharp and 

almost a three-fold increase from day 0 to day 1. Thereafter, the cellular content of 

GABA decreased in the control cells within the next day (from day 1 to day 2) and in the 

HP cell two days later (between days 3 and 5). Thus in the HP cells, GABA content was 

higher for at least two to three days of the 7 d culture period. 

Total carbon and nitrogen 

Both total C and total N were significantly higher in the HP cells than in the control 

cells on day-4 of the 7-day culture cycle when this analysis was done (Fig. 19). The total 

C content was several-fold higher than the total N content in both cell lines. 

Discussion 

While Glu is a precursor of a large number of nitrogenous compounds in plants, as 

well as a source of N for most other amino acids, large amounts of this amino acid are 

utilized in the production of Arg, Pro and GABA (Singh, 1999). Of course, Glu is also a 

common constituent of cellular proteins, and in whole plants, it can be transported 

between different tissues and organs. Hence, the cellular contents of Glu are subject to 

numerous regulatory signals, both on the production side as well as the consumption side 
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(Forde and Lea, 2007). How quickly do plant cells respond to the demand of Glu for 

variousmetabolic pathways, is not yet understood.Since (a) Orn is the primary substrate 

of the transgenic ODC in the present study, and its quantity in the cells is rather low (cf. 

many other amino acids; almost a 100-fold less in the present situation); and (b) Orn is 

also used in the formation of Arg (Slocum, 2005), and presumably Pro (Roosens et al., 

2002), both of which are produced in large quantities; its biosynthesis from Glu must 

respond quickly to the demand on its utilization imposed by the transgenic ODC. Thus it 

can be argued that the reactions that produce Orn keep pace with its utilization in the 

formation of Put, Arg, and Pro. What regulates these biosynthetic steps under normal 

conditions as well as under the conditions of its increased utilization is not known. A 

combination of microarray and QRT-PCR analyses of the genes for various enzymes 

involved in the biosynthesis of these three metabolites showed no significant change in 

transcript levels of any of these enzyme genes in response to up-regulation of Put 

biosynthesis in the HP cells (A. Page, S.C. Minocha, et al., unpublished data). This would 

indicate that the regulation probably occurs either at the level of translation or involves 

biochemical mechanisms that affect enzyme activities; e.g. cofactors, substrate 

availability, etc. The molecular analysis by QRT-PCR further shows that the transcription 

of the genes of all these enzymes is highly coordinated during the 7 d culture cycle (A. 

Page, S.C. Minocha, et al., unpublished data). 

A logical hypothesis would also involve some type of a sensing mechanism for 

monitoring Orn content in the cells and then triggering the pathway (at the level of 

translation or post-translational modifications, including the biochemical needs for the 

substrates and cofactors) for its biosynthesis from Glu. Moreover, since changes in Glu 
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concentration in the cells are smaller than its utilization in Put production; it can also be 

hypothesized that the biosynthesis of Glu (i.e. N assimilation) is also enhanced in the HP 

cells. Slocum (2005) has summarized various steps in the pathway for the biosynthesis of 

Orn and Arg from Glu (Fig. Al). However, no regulatory mechanism has been proposed 

for the entire pathway. 

Similarities between the postulated and documented roles of Pro and Put, and also 

GABA, particularly under conditions of abiotic stress conditions are remarkable. While 

no specific mechanisms for the roles of these metabolites have been suggested, they all 

appear to respond to the same treatments in a similar (and coordinated?) manner (Aziz 

and Larher, 1995; Aziz et al., 1998; Houdusse et al. 2005; Simon-Sarkadi et al., 2005, 

2006). While they are all rich in N, a major biochemical difference among them is the 

charges they carry under physiological conditions, which may call for different roles of 

these metabolites of the triangular pathways of Put, Pro and GABA (Fig. 2). Since their 

biosynthesis utilizes the same substrate, i.e. Glu, it is possible that a common signal 

transduction mechanism (molecule) triggers all three sub-pathways in a coordinated 

manner. While the nature of this mechanism is not known, Orn itself could play a major 

role in this pathway, acting both as a sensory as well as a regulatory molecule (S. C. 

Minocha, Personal communication). If that was the case, the most likely site of action 

will be the initial reactions that direct Glu into the three different but interacting 

pathways; i.e. the steps involving NAGS, P5CS, and GAD. 

Houdusse et al. (2005) have shown that the cellular contents of Pro were more 

correlated with Put than with Spd or Spm in wheat when different sources of N were 

used. With a 2-3 fold increase in Put with increased N supply, a similar 3 to 4 fold 
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increase was seen in Pro in all conditions of N, whether the growth was promoted or 

inhibited. Amounts of Pro g_1DW were 50-100 folds higher than Put or Spd in the foliage 

and about 10 fold higher in the roots. In pepper, the ratios of Pro to Put ranged from 2:1 

to about 5:1. In poplar cell cultures used here, Pro was never more than 2-3 fold higher 

than Put in control cells and almost equal to Put in the HP cells. 

Houdusse et al. (2005) also observed a strong negative correlation between Put and 

growth in pepper and wheat (r2 = 0.9478 and 0.6134, respectively) with different forms of 

N, i.e. N treatments that caused the accumulation of Put were negatively correlated with 

growth; in other words, the higher the Put index, the lower was the growth. The lower 

growth index was associated with high organic N treatment with lower nitrate. In poplar 

cells the growth index is positively correlated with Put as well as Pro; however, the cell 

health (membrane integrity and mitochondrial activity) is negatively correlated with this 

PA. The design of the present study does not permit us to determine the cause and effect 

relationship between Pro, Put, and growth vs. health of cells. The above authors made an 

interesting suggestion that increased Pro may be the source of Orn for Put biosynthesis; 

however, no experimental data were presented. According to them, the increased Put 

production from Orn acts as a trigger to make more Orn via P5CS and Pro. When P5CS 

activity is increased, and more Pro is made; NH4 toxicity is decreased and also there is 

more Orn/Arg available for Put production. 

We further extend this hypothesis and suggest that increased Put production (thus a 

resulting reduction in Orn) in the HP cells starts the futile pathway involving all three 

metabolites whose amounts in the mean time are elevated. An additional trigger must also 

enhance the uptake and assimilation of extra nitrogen (perhaps also Carbon) from the 
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medium, which compensates for the utilization of Glu in these three pathways. Our data 

on the observed increase in total N and C in HP cells (Figs. 19, 49A) support this 

contention. 

The production of Glu depends on nitrogen assimilation via the GS-GOGAT 

pathway (Lam et al., 1996; Coruzzi and Last, 2000; Weber and Fliigge, 2002; Miflin and 

Habash, 2002; Foyer et al., 2003). Another important enzyme in Glu metabolism is 

NADH dependent glutamate dehydrogenase (GDH; EC 1.4.1.2), whose primary role is to 

re-assimilate NH3 produced within the cells. Glutamine, formed from Glu is responsible 

for the synthesis of His. All Glu-derived amino acids, except Pro, were lower in the HP 

cells; perhaps a consequence of increased utilization of Glu for Put biosynthesis. 

However, each had a somewhat different profile of variation with time of culture, 

particularly with respect to the change in response to fresh medium effect. While Glu, 

Orn, Arg, Pro and His all increased on transfer to fresh medium, Gin in the control cells 

declined within a day of transfer to fresh medium. The changes with time in control cells 

were less pronounced for Arg and Pro, and in HP cells for Orn and Gin. Lower 

concentration of Gin in the HP cells is a predictable consequence consistent with its role 

as the source of Glu. The lower content of Arg in the HP cells is probably due to a 

combination of its reduced production from Orn as well as its increased utilization by 

ADC as shown earlier and also discussed above in Chapter I in that the HP cells have 

enhanced ADC activity (Bhatnagar et al., 2001). Histidine, the most basic amino acid in 

this group changes with time following a parallel course on different days in the two cell 

lines; more consistent with the fresh medium effect rather than the PA levels in the cells. 
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The aromatic amino acids Phe, Tyr and Tip are synthesized from phosphoenol-

pyruvate (Fig. 12) and chorismate, with Glu being the amino group donor for the former 

two. Unfortunately, the amino acid analysis technique used here was unable to resolve 

Tyr; therefore, it is not discussed further. Synthesis of Trp on the other hand utilizes 

NFLt+ for a direct amination reaction. Chorismate, the common precursor for the synthesis 

of these amino acids is synthesized via 2 intermediates from the glycolytic pathway 

(Coruzzi and Last, 2000). Since Glu is the amino-group donor in these reactions, it is not 

surprising that lower contents of these two aromatic amino acids are coincident with the 

lowering of Glu in the cells. The changes with time in Phe and Trp are parallel, 

suggesting their common mode of regulation. 

Although Val, Leu and He are synthesized in two different pathways (Fig. 12), they 

make up a functional group called branched-chain amino acids. The biosyntheses of Val 

and He follow a parallel path using different substrates but identical enzymes (reviewed 

in Binder et al., 2007). Leucine is then made from ketoisovalerate, the immediary 

precursor of Val biosynthesis. The branch point for Leu synthesis is presumably 

regulated by the enzyme isopropylmalate synthase (EC 2.2.3.13), which is feedback 

inhibited by Leu. The overall pathway for He biosynthesis is regulated at the first step of 

Thr deaminase (TD; EC 4.2.1.16) via feedback inhibition by lie; Val on the other hand 

can overcome this feedback inhibition by He (Halgand et al., 2002). 

A comparison of the profile of changes in Val and He accumulation in the HP cells 

shows an identical pattern; both rise during the first 24 h, decline during the next three 

days and rise again during the last three days of the culture period. A similar pattern of 

changes in these two amino acids is seen in the control cells; however, the two cell lines 
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differ from each other in their Val and lie contents during the first three days of culture 

(Figs. 16B and 17E). Val is 5 to 6 fold higher than He at any given time, which is 

consistent with the argument that its biosynthesis is less subject to feedback inhibition by 

He than its own (Halgand et al., 2002). The observed changes with time are consistent 

with the explanation of Binder et al. (2007), in that a surge in the accumulation of lie 

would inhibit TD; this will cause a reduction in its biosynthesis for the next few days 

until the inhibition is relieved and another surge in its accumulation can occur. 

A similar explanation applies to changes observed in Leu, if one assumes feedback 

regulation at the first step starting at the branch point of ketoisovalerate as discussed 

above. While initial changes in Leu vs. Val/Ile are in opposite direction, from days 3 to 6, 

all three amino acids follow a similar pattern. In actively growing cells, the actual 

changes in the cellular amino acids are perhaps regulated by a combination of their 

biosynthesis and utilization in protein synthesis and in secondary metabolic reactions. It 

is important to point out that there is a strong regulation of the degradation pathway as 

well. With respect to the branched-chain amino acids, the biosynthesis and degradation 

are spatially separated into chloroplasts and mitochondria, respectively (Binder et al. 

2007). Since most of these steps involve enzymes, each of them encoded by several 

genes, regulation of these reactions by substrates and products is probably an efficient 

way of metabolic homeostasis. Precise information about the number of genes encoding 

most of these enzymes and their spatial and temporal expression patterns in plants are not 

known; therefore, it is difficult to invoke the specific role of transcriptional and 

translational regulation of these enzymes. 
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As with the branched-chain amino acids, the two sulfur containing amino acids, Met 

and Cys are also synthesized in two separate pathways; the latter acts as the primary 

source of S for the former. While the biosynthesis of Cys is dependent on a series of S 

assimilatory reactions (Hoefgen and Hesse, 2007 and references therein), Met is a part of 

the Asp family of four amino acids, which is itself synthesized by transfer of NH3 from 

Glu. Thus it can be argued that a reduction in the cellular content of Glu would affect this 

part of the pathway with three branches leading to the synthesis of Lys, Met, Thr and He 

(Fig. 12). The branching for Lys synthesis occurs early, and is controlled by 

dihyrodipicolinate synthase (EC 4.2.1.52) via feedback regulation (Coruzzi and Last, 

2000). The lower Lys content in the HP cells is thus consistent with the possibility of Asp 

becoming a limiting factor for its biosynthesis (Fig. 17A). However, the regulation of Thr 

and Met accumulations is rather complex and depends on two enzymes (Thr synthase; 

EC 4.2.99.2 and Cystathionine y-synthase - CGS; EC 4.2.99.9) with contrasting 

properties (Amir et al., 2002; Lee et al., 2005). The common substrate O-phospho-L-

homoserine (HserP) plays a crucial role in the process as well. Since CGS has more than 

200-fold lower affinity for HserP than TS, and TS is regulated mostly at the enzymatic 

level (rather than at transcription level - Casazza et al., 2000), it is not surprising that Thr 

biosynthesis continues while Met biosynthesis is drastically reduced. The first step of the 

entire pathway which produces HserP, is controlled by Asp kinase (EC 2.7.2.4), which is 

subject to feedback regulation by Lys as well as Thr. In the poplar cells used here, since 

the amounts of Thr are more than 10-folds greater than Lys, it is possible that the 

pathway is regulated more by Thr than by Lys. A rapid increase in Thr in the HP cells 

(from day 0 to day 2) was followed by a concomitant reduction in both Thr and Lys 

82 



between day 3 and day 7 of culture (Fig. 17); Met was always low (near the detection 

limits) in the HP cells. 

Alanine, one of the simplest of the 20 amino acids, is a product of reductive 

amination of pyruvate, catalyzed by Ala aminotransferase (AT, EC 2.7.6.1) in a reaction 

where the amino group is donated by Glu (Coruzzi and Last, 2000). On several days of 

the week, Ala was the most abundant amino acid in both the control and HP cells. 

According to de Sousa and Sodek (2003), Ala is a major product of anaerobic 

metabolism in plants, caused by the induction of AT under conditions of low oxygen. 

Since the poplar cells used in this study are grown in liquid medium, perhaps under 

limited availability of oxygen, it is not surprising that Ala is the most abundant amino 

acid in these cells on most days of the week (Fig. 16C). Alanine naturally occurs in two 

forms: a and p form. While a -Ala is synthesized directly from pyruvate by AT (Coruzzi 

and Last, 2000), P-Ala in plants is believed to be produced by the degradation of Spd, 

propionate or uracil (Raman and Rathinasabapathi, 2004); its production from Spd/Spm 

also occurs in yeast (White et al., 2001) and animals (Urdiales et al., 2001). As early as 

1978, Terano and Suzuki reported the conversion of Spd and Spm into P-Ala in maize. 

The fact that HP cells have higher Spd content on some days of the week (Fig. 6C) may 

explain the enhanced production of Ala in the HP cells (Fig. 16C). 

Using a combination of mutants and transgenic plants of Arabidopsis, Lee et al. 

(2005) have further demonstrated that both CGS and TS are substrate-limited. A lower 

amount of Met in the HP cells is most likely due to the reduced availability of Cys, which 

is also required for Met biosynthesis. Since a major use of Met is in the production of 

SAM (Hoefgen and Hesse, 2007), the increased use of SAM in Spd production in the HP 
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cells may also have contributed to its low levels in these cell. While this argument is 

consistent with the observations of Aubert et al. (1998) with sycamore (Platanus 

occidentalis) and Echinochloa cell cultures, it is in contrast to the results of Lee et al. 

(2005) with Arabidopsis. Whether the differences are species-specific or due to the types 

of tissues being used in these studies (whole plants for Arabidopsis vs. cell cultures for 

others) is subject to speculation. Manipulation of both Lys and Met metabolism are the 

target of many studies, therefore, an answer to this question may determine the success of 

these attempts. Lee et al. (2005) have proposed that genetic manipulation of Met by 

overexpression of CGS may be more successful if it was accompanied by the presence of 

a feedback-insensitive Asp kinase. 

The two sulfur amino acids (Cys and Met), although synthesized in two separate 

pathways, responded in a similar way to high Put production in the HP cells, indicating a 

potential common regulation, probably because Cys is a precursor of Met for the S 

moiety. It is therefore quite conceivable that reduction in Met in HP cells is at least 

partially due to the limitation of Cys. It is noteworthy that all three amino acids (Ser, Cys 

and Gly) which are produced from 3-PGA were reduced in the HP cells; again pointing to 

a common signal for their production/accumulation. It is possible that the increased flux 

of 3-PGA towards the TCA cycle (because a-ketogluterate is being excessively used for 

Glu production) affects not only the biosynthesis of these three amino acids but also those 

of Leu, Phe and Trp, which are produced from the downstream intermediates PEP and 

pyruvate. On the other hand, both Cys and Met may be lower simply due to their 

increased utilization in protein synthesis, particularly during the first 2-3 days of culture 
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in the fresh medium. Cysteine content recovers during the latter half of the week 

probably due to protein degradation. 

Genetic manipulation of the biosynthesis of a single amino acid causing a change in 

the cellular content of almost all other amino acids has been previously reported. Simon-

Sarkadi et al. (2005, 2006) showed that genetic manipulation to alter Pro in soybean 

subjected to simultaneous drought and heat stress altered the concentrations of several 

other amino acids, whether or not directly related to Pro metabolism. In their study, 

increase in Pro concentration as a result of simultaneous drought and heat stress was 

accompanied by concomitant increase in Glu, but a reduction in Arg. They concluded 

that Arg content decreased because of the higher utilization of Orn in making Pro. A 

simultaneous decrease in GABA content was also attributed to the increased utilization of 

Glu for Pro biosynthesis. These observations point to a competition among these 

subpathways for Glu, which does not appear to be the case in poplar cells. These authors 

also observed an increase in Asp in response to water deprivation in the Pro-

overproducing transformants; which in turn resulted in enhanced accumulation of Lys, 

Met, Thr and He; all of them share Asp as an indirect precursor. Unfortunately, no data 

on PA content was provided in this study. 

It is interesting to note that the soluble protein content of HP cells is significantly 

higher than in the control cells during the first few days after transfer to fresh medium. 

This will also affect the cellular contents of the various amino acids. Following the rapid 

loss of cellular proteins in the HP cells during the latter part of the week, the cellular 

content of many of these amino acids would increase. Alternatively, the enhancement in 

Put accumulation in the HP cells could significantly reduce the availability of the carbon 
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skeleton which is also required for amino acid production. The data presented here show 

that there indeed is a change in the total C:N ratio in the HP cells as compared to the 

control cells. While most of the carbon skeleton comes from glycolysis and TCA cycle, 

the recycling of Put through its increased catabolism in the HP cells (Bhatnagar et al., 

2002) will also contribute carbon through succinate, which enters the TCA cycle 

following the breakdown of GAB A (Figs. 12, 43). 

Foyer et al. (2003) have reviewed the existence of signals regulating the organic C 

and N metabolism in plants and have pointed out that primary C and N assimilation in 

leaves is controlled by two important metabolic checkpoints, nitrate reductase (NR) and 

PEP carboxylase (PEPC). While, NR brings about the reduction of nitrate, one of the 

very first steps in N-assimilation, PEPC brings about the carboxylation of PEP to form 

OAA, feeding the anapleurotic TCA cycle that recycles the C-skeleton in the form of 

organic acids that provide precursors for amino acid biosynthesis. In HP cells, there is a 

higher utilization of both the available C and N for enhanced Put biosynthesis. Higher 

Pro content in the HP cells, when both its precursors (Glu and Orn) are being directed 

towards Put production, is enigmatic. However, it is consistent with the observation that 

both these metabolites often increase concurrently in response to a variety of abiotic 

stresses (Aziz and Larher, 1995; Aziz et al., 1998; Kocsy et al., 2005; Tonon et al., 2004). 

It has been argued in Chapter III that increased Put metabolism in HP cells puts them 

under a state of higher oxidative stress than the control cells. 

A comment must be made with respect to the use of cell cultures vs. intact plants in 

terms of the consequences of genetic manipulation of biochemical steps of branched 

pathways. In most cell cultures which are subcultured into fresh medium over a short 
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regime, the changes in metabolites being measured are more dynamic and show almost 

daily variation depending on the nutrient supply and the growth phase of cells. In 

contrast, in terminal (non-growing) tissues and organs (e.g. endosperm, storage tissue in 

tubers, or mature leaves), steady state accumulations of metabolites could be quite 

different. Nevertheless, numerous studies have shown that the enzymatic properties and 

the regulatory mechanisms are often cell specific and under genetic control; thus cell 

cultures are highly suitable in revealing them, particularly if a combination of metabolite 

measurements, enzyme activities and gene expression analyses are combined to delineate 

these controls. It must be kept in mind that all interpretations are based on the assumption 

that in these cells, all substrates are freely available to the enzymes, while in reality; 

compartmentation of the different metabolites within a cell may be a hindrance to such 

free interactions. 

In our cell cultures, we have observed through microarray analysis that there are only 

minor changes in the expression of genes (i.e. transcript levels) related to amino acid 

metabolism due to Put overproduction even though several hundred unrelated genes are 

up-or down-regulated (Page et al., unpublished data). Hence, it is proposed that most of 

the changes that we observed in amino acid content in relation to Put overproduction 

must be regulated at the enzymatic activity and/or metabolite levels, or by the changes in 

protein synthesis and degradation. 

Conclusions 

Although the pathways for the biosynthesis of various amino acids are regulated 

somewhat differently, each responding to a complex interaction of feedback inhibitory 

mechanisms and the availability of either inducible or constitutive enzymes, perturbation 
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in the biosynthesis or consumption of a single substrate like Orn has pleiotropic effects 

on the entire set of amino acid biosynthetic pathways. This is particularly intriguing since 

the amounts of Orn in the cell are rather low as compared to any other amino acid, 

although its consumption, therefore flux rate, is very high. Since the primary target of this 

study was the increased utilization of Orn in the mODC transgenic cells; it is remarkable 

that the accumulation of the entire set of amino acids in the cells was affected. Of 

particular interest are the concomitant increases in all amino acids that involve Orn as a 

potential substrate. We propose that cellular Orn levels may actually play a role as a 

sensor in the signal transduction pathway that regulates its biosynthesis from Glu. In turn, 

there may also be an increase in overall N assimilation in the plant cells. 
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CHAPTER III 

POLYAMINES AND OXIDATIVE STRESS 

There are numerous references in the literature emphasizing a role for PAs in aiding 

the cells overcome various forms of stress including oxidative stress (Lovaas, 1997; 

Nayyar and Chander, 2004; Foyer and Noctor, 2005; Papadakis and Roubelakis-

Angelakis, 2005; Shevyakova et al., 2006). Arguments have been made in favor of the 

ability of PAs to scavenge free radicals and experimental demonstrations of the effects of 

exogenous PAs on reducing or combating oxidative stress have been reported (Lovaas, 

1997; Papadakis and Roubelakis-Angelakis, 2005). There are few examples that directly 

demonstrate that increased PA biosynthesis increases the ability of plant or animal cells 

to overcome oxidative damage. While on one hand, PAs are believed to prevent the 

synthesis of ROS generation or ameliorate their presence, on the other, it is also known 

that the catabolism of PAs via DAO and PAOs itself generates H2O2, a common 

component of the oxidative damage machinery (Foyer and Noctor, 2005; Papadakis and 

Roubelakis-Angelakis, 2005; Shevyakova et al., 2006). 

We have already seen that the modulation of Put metabolism has effects on the 

metabolism of compounds like Pro, whose cellular concentration has been known to 

increase under oxidative stress; and Glu, a precursor to the synthesis of Pro, Put and 

glutathione (GSH - an ROS scavenging molecule; Kocsy et al., 2005). This chapter 

includes results of the analysis of a series of enzymes that are characteristic of the 
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oxidative stress pathway in plants and the general health of the cells as studied by 

measurement of their mitochondrial activity and membrane integrity. The results 

presented here lead us to conclude that enhanced Put metabolism adversely affects the 

oxidative state of poplar cells in culture. 

Introduction 

Although ROS are deemed important for their roles as second messengers in signal 

transduction cascades, their adverse effects on cells are also well known (Navrot et al., 

2007, and references therein). Termed also as AOS, they encompass superoxide (O2) and 

hydroxyl radicals (OH), hydrogen peroxide (H2O2), and singlet oxygen (O2) (Noctor and 

Foyer, 1998; Navrot et al., 2007). Reactive oxygen species are produced as byproducts of 

metabolic reactions in all parts of the cell, particularly in organelles like chloroplasts, 

mitochondria and peroxisomes. Each compartment has its own mechanism of regulating 

the synthesis of these compounds so as to prevent 'oxidative damage', a term used to 

define the collective harmful effects of these molecules (Apel and Hirtz, 2004). The 

antioxidative system within plant cells is comprised of several antioxygenic enzymes and 

metabolites that aid in processing reactions to rapidly break down ROS and protect the 

cell from oxidative damage. 

As mentioned above, ROS play important roles in cell signaling, e.g. root 

gravitropism (Joo et al., 2001), regulation of plant cell growth (Foreman et al., 2003), 

defense reaction to pathogen attack, by what is known as the "oxidative burst" 

(Wojtaszek, 1997; Apel and Hirtz, 2004), and cellular responses to abiotic stress and in 

programmed cell death (Noctor and Foyer, 1998; Mittler, 2002; Navrot et al., 2007). The 
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generation of ROS in response to environmental changes has been widely studied 

(Mittler, 2002; Blokhina et al., 2003). Although ROS are postulated to be indicators of 

abiotic stress and to aid in defense against pathogens, their over-production can be 

harmful, causing oxidative stress in cells. The major damaging effect of most superoxide 

radicals involves the initiation of reactions resulting in the production of molecules such 

as lipid peroxidases. Oxidative stress can be induced by various factors, such as, drought 

(Moran et al., 1994), salinity (Hernandez et al., 2001), light (Fryer et al., 2002), 

aluminum (Yamamoto et al., 2002), etc. 

Several antioxygenic enzymes work in tandem in order to destroy toxic molecules 

like O2" and H2O2; these are glutathione reductase (GR), ascorbate peroxidase (APX), 

ascorbate oxidase (AO), dehydroascorbate reductase (DHAR), monodehydroascorbate 

reductase (MDHAR), superoxide dismutase (SOD) and catalase (CAT). Their roles in 

various reactions are shown in Fig. 20. Hydrogen peroxide oxidizes thiol groups rather 

rapidly, creating a disruption in the photosynthetic machinery by breaking down the 

thiol-regulated photosynthetic enzymes; hence its accumulation in the chloroplast must 

be prevented (Noctor and Foyer, 1998). Although CAT converts H2O2 into H2O and O2, 

H2O2 can also be broken down by peroxidases, especially in the absence of CAT (e.g. in 

the chloroplasts). Peroxidases need a reductant like reduced glutathione (GSH), reduced 

ascorbate (AsA), NADH or NADPH to reduce Hs02. Both GSH and AsA have been 

known to act as reductants in the ROS scavenging pathway in plant cells (Noctor and 

Foyer, 1998). The ascorbate-GSH cycle functions efficiently to bring about reactions that 

prevent oxidative stress in plants (Fig. 20). The reduction of H2O2 to H2O and O2 by APX 

generates monodehydroascorbate (MDHA), which gets (non-enzymatically) converted to 
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dehydroascorbate (DHA), which is then reduced to ascorbate by DHAR, using GSH as 

the reductant. Oxidized glutathione (GSSG), produced as a result is reduced to GSH by 

GR (Noctor and Foyer, 1998). Superoxide dismutase is present in chloroplasts, 

cytoplasm, and mitochondria and in peroxisomes (Mittler, 2002). While APX is believed 

to be present in these cellular compartments as well, catalase is localized to the 

peroxisomes (Mittler, 2002). Glutathione reductase is reported to be present in the 

cytoplasm, chloroplasts and mitochondria (Andersen et al., 1995). Dehydroascorbate 

reductase and MDHAR have been reported mostly in chloroplasts (Chen and Gallie, 

2006). 

There are several places where PAs have been suggested to interact with ROS 

generation or amelioration. This area of research has been followed both in plants as well 

as in animals (Papadakis and Roubelakis-Angelakis, 2005 and references therein). While 

on one hand, PAs are believed to prevent the synthesis of ROS generation, on the other, 

through their catabolism they potentially generate large quantities of these harmful 

oxidative molecules (Foyer and Noctor, 2005; Papadakis and Roubelakis-Angelakis, 

2005; Shevyakova et al., 2006). Over the past 30 years, there have been several reports 

linking PAs with antioxidative properties. As early as 1979, Kitada et al. discovered that 

PAs inhibited lipid peroxidation in rat liver microsomes. Verma et al. (1979) reported 

that oxidative stress induced by UVB irradiation in mice led to an increase in activities of 

ODC and SAMDC. Hillebrand et al. (1990) also reported an increase in epidermal ODC 

in mice following UV radiation. Several members of ROS have been known to increase 
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Figure 20. The ascorbate-glutathione cycle (adapted from Noctor and Foyer, 1998). 
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PA biosynthesis. These include 02~ (Fischer et al., 1988), 0 3 (Langebartels et al., 1991) 

and peroxides (Binder et al., 1989; Harari et al., 1989). 

Reports mentioning an uptake of PAs in response to oxidative stress have been made 

by Byers and Pegg (1989) in Chinese hamster ovary (CHO) cells and Toninello et al. 

(1992) in rat liver cells. Minton et al. (1990) and Balasundaram et al. (1993) reported that 

cells defective in PA biosynthesis are exceedingly sensitive to oxygen. Khan et al. (1992) 

and Muscari et al. (1995) observed that PAs play a role in protection of isolated DNA 

against oxidative damage. Lovaas (1997) has elucidated the chemistry which may make 

PAs potential scavengers of ROS, although he points out that PAs are inefficient 

scavengers of ROS as compared to other antioxidants like Asc. He states that among the 

different oxidants of the ROS family of molecules, PAs can effectively scavenge only O3. 

Borell et al. (1997) studied the inhibitory effect of PAs on lipid peroxidation in 

senescing oat leaves. They found that exogenously supplied diaminopropane, Spd, Spm 

and guazatine (an inhibitor of PAO) inhibited the loss chlorophyll and also decreased the 

levels of malondialdehyde (a product of lipid peroxide decomposition) in dark-incubated 

and osmotically stressed oat leaves. Spermine also decreased the activity of the enzyme 

lipoxygenase (EC 1.13.11.12) which is believed to be involved in membrane lipid 

peroxidation during plant senescence. They suggested that the anti-senescence effects of 

PAs may be occurring through the inhibition of lipid-peroxidation. As mentioned in 

general introduction, most types of stresses, induced by temperature, drought or 

chemicals, are responsible for ultimately affecting the antioxidative machinery by 

inducing the generation of ROS. Stress response of PA metabolism in light of oxidative 

stress has been studied by Nayyar and Chander (2004) who studied the role of PA 
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accumulation under cold stress in chick pea and reported an enhancement in Put content 

in response to the same. 

The catabolism of PAs generates H202 which can act as a potential oxidant 

(Pappadakis and Roubelakis-Angelakis, 2005). Despite this direct correlation between 

PA catabolism and oxidative stress, a role of PAs in ameliorating the harmful effects of 

ROS has been suggested. Polyamines can do so either by direct interaction with the 

oxidative species (L0vaas, 1997) or indirectly, e.g. by inhibiting the generation of 

NADPH-oxidase meditated ROS in membranes (Papadakis and Roubelakis-Angelakis, 

2005 and references therein). Kubis (2005) studied the effects of exogenous Spd on 

activity of SOD and levels of oxidants like H2O2 and superoxide radical in barley leaves 

subjected to drought stress and observed that PA treatment caused a decrease in the 

contents of the two toxic molecules. Tang and Newton (2005) observed that PAs 

decreased salt-induced oxidative damage by increasing the activities of antioxidative 

enzymes and decreasing lipid peroxidation in Virginia pine. Verma and Mishra (2005) 

observed that Put alleviated growth in salt stressed Brassica juncea by stimulating an 

antioxidative defense system. 

In the high Put (HP) poplar cells used here, Put catabolism via diamine oxidase 

(DAO), which generates H202, has been shown to keep pace with its increased 

biosynthesis (Bhatnagar et al., 2002). It was concluded that in these cells the rate of Put 

catabolism is proportional to the rate of its biosynthesis and increased Put degradation 

occurs without significant changes in the extractable DAO activity. It is known that cells 

in culture are exposed to oxidative stress by what has been termed by Halliwell (2003) as 

"culture shock". We hypothesize that modulation of Put metabolism also has an effect on 
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the metabolism of related compounds like Pro, whose cellular concentration has been 

known to increase under oxidative stress; and Glu, a precursor to the synthesis of Pro, Put 

and GSH (Kocsy et al., 2005). This would in turn affect the oxidative state of the cells. 

Thus there is a strong rationale for investigating the effects of enhanced putrescine 

turnover on the activities of ROS scavenging enzymes and related effects of ROS 

production. The results presented here lead us to conclude that enhanced Put metabolism 

changes the oxidative state of poplar cells in culture. 

Materials and Methods 

Glutathione reductase (EC 1.6.4.2) assay 

The method of Schaedle and Bassham (1977) as described by Jahnke et al. (1991) 

was slightly modified to extract and assay this enzyme. The technique involves 

measuring oxidation of NADPH by the enzyme, consequently resulting in the reduction 

of the substrate, glutathione disulphide (oxidized glutathione or GSSG). For enzyme 

extraction, 100 mg (FW) of cells were collected in 200 u.L of 50 mM potassium 

phosphate (K-Pi) buffer (pH 7.0) containing 0.2 mM diethylenetriamine pentaacetic acid 

(DTPA). After a round of freezing (-20 °C) for 2 h and thawing (on ice) for 30 min, the 

mixture was vortexed for 5 min and centrifuged at 16,000 xg for 10 min. To 50 uL of the 

supernatant, 850 uL of K-Pi buffer (25 mM, pH 7.8 with 0.2 mM DTPA) was added. 

Then, 50 uL of 3 mM NADPH (Sigma, N7505) made in 3 mM NAOH was added. 

Change in absorbance with time due to oxidation of NADPH was monitored for 30 to 50 

sec with U-2000 Spectrometer (Hitachi Instruments Inc., Schaumburg, IL). This was 

followed by addition of 50 uL of 10 mM GSSG (Sigma, G4376) and the rate of its 

reduction (to GSH) was monitored by measuring the change in absorbance again for 30 
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sec. This rate of change of absorbance was subtracted from the one determined in the 

absence of GSSG. Enzyme activity was expressed as ^mol NADPH oxidized min"1 g"1 

FW; calculations were done by using the millimolar extinction coefficient of NADPH 

(millimolar S340 = 6.2; Jahnke and White, 2003). Specific activity of the enzyme is 

expressed in terms of umol NADPH oxidized min"1 mg"1 protein. 

Ascorbate peroxidase (EC 1.11.1.11) assay 

The method of Nakano and Asada (1981) as described by Jahnke et al. (1991) was 

modified to assay this enzyme. Briefly, 100 mg cells were collected in 400 uL of 50 mM 

K-Pi buffer (pH 7.0) containing 0.2 mM DTPA. After freezing, thawing, and 

centrifugation as above, 50 uL of the supernatant was mixed with 850 uL K-Pi buffer. 

After zeroing the spectrophotometer at 290 nm, 25 uL of 10 mM ascorbic acid (Sigma, 

A7506) was added, followed by 50 uL of 10 mM H2O2. The decrease in absorbance with 

time due to oxidation of ascorbate was monitored for 30 sec. Enzyme activity was 

expressed in terms of umol ascorbate oxidized min"1 g"1 FW and calculations were done 

using the millimolar extinction coefficient of ascorbate (millimolar e29o = 2.8; Jahnke and 

White, 2003). Specific activity of the enzyme is expressed in terms of umol ascorbate 

oxidized min"1 mg"1 protein. 

Monodehydroascorbate reductase (EC 1.6.5.4) assay 

Cell free extracts were made from 100 mg cells in 200 uL of 50 mM K-Pi buffer (pH 

7.0) containing 0.2 mM DTPA as described above. To 850 uL of K-Pi buffer (25 mM, 

pH 7.8 with 0.2 mM DTPA), 25 uL of this extract was added, followed by 50 uL 50 mM 

ascorbic acid. This was used to blank the spectrophotometer. Following the addition of 

50 uL of 3 mM NADH (Sigma, N8129) made in 3mM NaOH, the absorbance at 340 nm 
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was measured for 30 sec (modified from Hossain et al., 1984). This was followed by the 

addition of 25 uL of ascorbate oxidase (12 U mL"1; Sigma, A0157). The slope of change 

in absorbance was subtracted from the slope with the addition of NADH alone. Activity 

was expressed in terms of umol NADH oxidized min"1 g"1 FW and calculations were 

done using the millimolar extinction coefficient of NADH at 340 nm (millimolar £340 = 

6.2; Matsushita et al., 1987). Specific activity was calculated in terms of umol NADH 

oxidized min"1 mg"1 protein. 

Measurement of mitochondrial activity, cell viability (membrane integrity) and 

cellular contents of PAs, amino acids, GSH and ions were done as described under 

"General Materials and Methods ". 

Results 

The cellular PA contents over the 7 day culture period are presented in Fig. 6 (For 

details, see Chapter I). 

Total soluble protein 

Cellular contents of total soluble (buffer extractable) protein (g'FW) were 

significantly higher in the HP than in the control cells on days 1 through 4 (Fig. 21). 

Starting with similar amounts of soluble protein on day 0 (the same as day 7), the HP 

cells showed a rapid and significant increase in protein content with a peak on day 2, 

followed by a rapid decline during the next 3 days. On the contrary, in the control cells, 

there was only a small fluctuation in protein content over the 7 day culture cycle. For the 

last 3 days of culture, protein content g"'FW was similar in the two cell lines. 
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Standardization of glutathione reductase activity 

Before starting experiments involving the 7-day activity profile of GR in the control 

and HP cells, its activity was characterized in 4-day-old cells. Decrease in absorbance 

due to oxidation of NADPH was measured after 5 min of incubating the cells with the 

buffer and the substrate and the result is represented in Fig. 22A. The rate of change of 

absorbance was several-fold higher in the HP cells than the control cells. For determining 

the linear range of the slope due to decrease in absorbance (caused by the oxidation of 

NADPH by GR), a time-course scan was performed in both cell lines for 250 sec and it 

was determined that for -50 sec, the slope was perfectly linear in the HP cells while the 

linearity was maintained for as long as -200 sec in the control cells (Fig. 22B). Diluting 

the HP cell extract caused a proportionate decrease in the rate of change in absorbance 

(Fig. 22C). 

Glutathione reductase (GR) 

The activity of GR was several folds higher in the HP cells than the control cells on 

the first four days of the week (when calculated as units.g"1 FW) and on all seven days 

when calculated as specific activity (units.mg1 protein) (Fig. 23A, B). The data were 

statistically significant for all days of the week. The peak of enzyme activity (g_1FW) was 

seen on day 3 following transfer of cells to fresh medium. The lowest amount of activity 

calculated either way was seen on day 6 or 7. The HP cells showed a significant surge in 

enzyme activity within 24 h of transfer to fresh medium; on the other hand, the control 

cells showed little variation in GR activity over the 7 day culture cycle. 
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Figure 21. Cellular contents of total proteins in the control and HP 
cells over the 7-d culture cycle. Data are mean (±) SE of 6 
replicates from 2 experiments. An * indicates a significant 
difference (P<0.05) between the cellular protein content between 
the control and HP cells on a given day of the 7-d culture cycle. 
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Figure 22. Standardization of GR activity in the control and HP cells. (A) 
Change in absorbance with time (measured for 5 min) in the control and HP 
cells on day 4 of the 7-d culture cycle. (B) The slope of Absorbance vs. Time 
in the HP cells was found to be perfectly linear for -50 sec. (C) Change in 
absorbance with time in 4-day-old HP cells at different concentrations of the 
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Figure 23. (A) Activity (g~ FW) and (B) specific activity (mg~ protein) of 
GR over the 7-d culture cycle in control and HP cell lines. Data are mean (±) 
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Ascorbate peroxidase (APX) 

Significant difference in the activity of APX (units.g"1 FW) was seen between the HP 

and the control cells on some days of the 7 day culture cycle (Fig. 24A); in HP cells, a 

decrease in APX activity was seen after day 3. In the control cells, enzyme activity 

remained higher than in the HP cells during the last 3 to 4 days of the week (Fig. 24A). 

Due to significant differences in the protein contents of the two cell lines (Fig. 21), 

statistically significant differences in the specific activity of APX were seen on all days 

of the 7 day culture cycle; the specific activity of APX being higher in the control than 

the HP cells (Fig. 24B). A several fold increase in APX activity (g"1 FW) was seen within 

48 h of transfer to fresh medium in both cell lines. Coincident with the increase in soluble 

protein content, HP cells showed a small decline in APX specific activity within a day 

after transfer to fresh medium. 

Monodehydroascorbate reductase (MDHAR) 

As with GR, MDHAR activity was also higher in the HP than the control cells, 

although significantly only on days 2, 3 and 4 (Fig. 25A). In both cell lines a peak of 

enzyme activity (units.g"1 FW) was seen around midweek. When MDHAR activity (g"1 

FW) was normalized to specific activity (Fig. 25B), the variation over time in both cell 

lines over the entire week of study was smaller and so were the differences between the 

two cell lines on days 2 to 4. This was obviously due to the peak of MDHAR activity in 

HP cells coinciding with the peak of soluble protein content in these cells. 

Glutathione 

Biosynthesis of GSH uses the amino acids Glu, Cys and Gly (Noctor et al., 1998); 

the first two combine to form y-glutamylcysteine (y-EC) in an ATP dependent reaction 
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catalyzed by y-EC synthetase. Following this, y-EC combines with Gly in another ATP 

dependent reaction catalyzed by the enzyme GSH synthetase to produce GSH. We 

measured the cellular contents of GSH over the entire 7 day culture cycle. Cellular 

contents of GSH were significantly lower in the HP than in the control cells on each of 

the 7 days (Fig. 26). There was no effect of transfer to fresh medium and the GSH 

amounts did not change appreciably with time over the 7 day culture cycle. 

Accumulation of Ca and K 

Figures 27A and B compare the accumulation of PCA soluble Ca and K in the control 

and the HP cells over the 7 day culture period. The accumulation of Ca in the HP cells 

was several-fold higher in the HP cells as opposed to the control cells for most of the 7 

day culture cycle, being significantly so on days 1, 2, 3, 4 and 7 days. On the other hand, 

an opposite response was seen for the accumulation of K in these cells in that, it was 

significantly lower in the HP cells as compared to the control cells for the entire culture 

period. A distinct and significant fresh medium effect on the uptake of K was seen in 

both cell lines within 24 h of transfer, with a gradual decline in the same thereafter; i.e. 

from day 1 through day 7. 

Mitochondrial activity and membrane function 

Colorless MTT interacts with the mitochondrial electron transport chain and gets 

reduced to form a blue colored product called formazan (Mosmann, 1983; Minocha et al., 

2001). Thus, when the overall mitochondrial oxido-reductase activity is higher, the 

intensity of blue color is proportionately higher. As shown in Fig. 28A, the mitochondrial 

activity was generally comparable in the two cell lines, it being slightly lower (but not 

significantly so) in HP cells than in the control cells on days 3 and 4 of culture. 
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Figure 27. Cellular contents of (A) Ca and (B) K in the control and HP cells 
over the 7-d culture cycle. Data are mean (±) SE of 6 replicates from 2 
experiments. An * indicates a significant difference (P<0.05) in the ion content 
between the 2 cell lines on a given day. 
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Evans Blue is a non-permeating dye that can enter the cells only through a damaged 

(depolarized) plasma membrane, thus staining the contents of membrane-compromised 

cells (Mosmann, 1983; Minocha et al. 2001). Hence, higher the number of membrane-

compromised cells, greater is the absorbance of the supernatant obtained after allowing 

the cells to absorb the dye and then releasing it with SDS. Evans Blue retention 

(absorbance g"1 FW) was significantly higher in the HP cells than the control cells on all 

three days of analysis (Fig. 28B), indicating a significantly higher number of membrane-

compromised HP cells in the culture. But the membrane integrity of HP cells appears to 

improve with time between day 3 and 5, as seen by lowering of the dye retention by the 

cells. Evans Blue retention in the control cells remained practically unchanged from day 

3 today 5. 

Discussion 

The postulated association of PAs with oxidative stress has a long history (Kitada et 

al., 1979; Russo et al., 1985) and has received considerable attention in recent years 

(Walters, 2003; Nayyar and Chander, 2004; Papadakis and Roubelakis-Angelakis, 2005; 

Shevyakova et al., 2006). Papadakis and Roubelakis-Angelakis (2005) found that all 

three major PAs are responsible for suppressing ROS generation in tobacco cultures, 

possibly by inhibiting the microsomal membrane NADPH oxidase-mediated generation 

of O2'". They also found that a supply of exogenous Put ameliorated the toxic effects of 

H2O2 generated via increased PA catabolism. Nayyar and Chander (2004) found an 

increase in PAs as a response to cold and water stress in chickpea (Cicer arietinum L.), 

along with an enhanced accumulation of ROS scavenging metabolites like AsA and GSH 

on different days of the week. 
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Figure 28. (A) Mitochondrial activity as measured by MTT reduction and (B) 
cell viability as measured by Evans blue retention in the control and HP cells. 
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Polyamines have been known to mediate programmed cell death and oxidative burst 

in plant cells as a response to several environmental factors like pathogen attack. A 

constitutive increase in Put accumulation as well as catabolism in the HP cells (Bhatnagar 

et al., 2001, 2002) has probably made them prone to greater damage by enhanced 

oxidative stress, but as pointed out above, high Put could also be instrumental in 

ameliorating its own adverse effects. Therefore, it was deemed important to examine the 

level of oxidative stress in poplar cells whose PA content has been altered through 

genetic manipulation. 

Biochemical indicators of greater ROS generation (and therefore higher oxidative 

stress) in plant cells include a higher activity of ROS scavenging enzymes such as GR, 

MDHAR, APX, CAT, etc. (Kocsy et al., 2005). The redox state of a cell is further 

indicated by pools of oxidized and reduced forms of antioxidants like GSH, ascorbate, 

Pro, and PAs. The presence of large pools of these antioxidants is responsible for the 

regulation of redox homeostasis in the cells (Foyer and Noctor, 2005). Increased 

accumulation of the reduced metabolites like AsA and GSH also points to lower 

oxidative stress and thus, better cell health. From the data presented here, it is apparent 

that not only are the activities of antioxidative enzymes GR and MDHAR higher in the 

HP cells as opposed to the control cells, but also that the cellular content of the ROS 

scavenger GSH is lower than the control cells on all days of culture. These data, coupled 

with slightly lower mitochondrial activity (Fig. 28A) and increased membrane damage 

(Fig. 28B) in the HP cells, point to a state of higher oxidative stress in these cells as 

opposed to the control cells. 
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In general, biosynthetic metabolism of HP cells is much higher during the first two 

days after transfer to fresh medium as exemplified by rapid increase in protein 

biosynthesis (Fig. 7, 21, 51C), the accumulation of Pro (Fig. 13D), the expression of 

several PA biosynthetic enzymes (Fig. 8-10) and the accumulation of PAs (Fig. 6); most 

of them showing a rapid decline afterwards. As mentioned above, Evans Blue is a non-

permeating dye that can enter a cell only through a damaged plasma membrane. The 

absorbance of Evans Blue by the cells significantly decreased from day 3 to day 5 in the 

HP cells, indicating a recovery in cell health with time. This can be attributed to a higher 

production of ROS in the HP cells on day 3 as opposed to day 5. The activities of 

enzymes GR and MDHAR are not only higher in the HP cells than the control cells (for 

most of the 7-day culture cycle), but also within the HP cells, the activities of these 

enzymes increase significantly from day 1 to day 3. These data correlate well with the 

Evans Blue retention data to possibly suggest that these cells experience the highest level 

of oxidative stress between days 2 and 4. This is followed by a rapid decline in soluble 

protein content in the HP cells. It is postulated that this decrease in soluble proteins is due 

to increased proteolysis. The fact that the HP cells are experiencing higher growth and 

metabolism during days 2 to 4; this could lead to the generation of higher amounts of 

ROS as by-products of several of these metabolic reactions, including an enhanced 

turnover of PAs. But there is also a higher scavenging of these molecules during this 

period as indicated by the higher activities of GR and MDHAR. These patterns are not 

seen in the control cells on different days of the week; they maintain a rather steady state 

of these molecules, and also of total soluble proteins. Whether or not higher fluctuations 

in soluble proteins and the other metabolites on different days of culture are a 

110 



consequence of enhanced biosynthesis and turnover of PAs is not clear. While it is not 

plausible at present to suggest a mechanistic model of signal transduction for the rapid 

changes in protein content of HP cells, it can be argued, however, that a major difference 

between the two cell lines is that on transfer to fresh medium, the HP cells undergo a 

flurry of metabolic activity as a result of increased activity of ODC (due to transcription 

as well as translation of the mODC gene). Consequently, increased Put production is 

accompanied by its increased turnover, resulting in a situation where a protector molecule 

(i.e. Put) actually becomes a contributor to the oxidative stress in these cell; and hence an 

enhancement of protein degradation. 

Although AsA has a direct role in scavenging reactive oxygen species, it is the 

cascade of reactions following oxidation of AsA that reduces GSSG to GSH (Fig. 20). 

While GR uses NADPH to reduce GSSG to GSH, various free radicals and oxidants are 

able to oxidize GSH back to GSSG (Noctor et al., 1998). Also, as a response to high 

oxidative stress, greater recycling of AsA in the HP cells might be responsible for the 

lower level of GSH in these cells. This causes a change in the normal redox state of the 

cells, leading to decline in cell health in the HP cells as opposed to the controls. 

Glutathione and AsA are important metabolic indicators of the oxidative state of a cell. 

As mentioned above, APX activity (gFW"1) was significantly higher in the control cells 

on some days of the week (Fig. 24A), while both the GR (Fig. 22A) and MDHAR (Fig. 

25A) activities were higher in the HP cells on almost all days of the week. This shows the 

rate of H2O2 scavenging via APX is higher in the control cells than in the HP cells. But, 

AsA recycling from MDHA is higher in HP cells, potentially resulting in higher GSH 

metabolism. Hence the question arises; what happens to the excess AsA in HP cells if it is 
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not being used up to scavenge H2O2 via APX? Pignocchi et al. (2003) have argued that in 

plant cells, although AsA is localized mostly in the cytoplasm, a portion of it is 

transported to the apoplast where the first line of defense against antioxidants is 

generated. This AsA is then oxidized in the apoplast to MDHA by ascorbate oxidase 

(AO); the unstable MDHA being rapidly converted into DHA and AsA. Thus, in the HP 

cells, the high MDHAR activity could be a consequence of high AO activity. 

Furthermore, it is possible that, although in the control as well as HP cells a similar 

amount of AsA is being oxidized by APX to produce MDHA, there is higher MDHA 

production in the apoplast of HP cells by AO, thus providing additional substrate for 

MDHAR activity, ultimately resulting in the higher recycling of AsA as explained below. 

Ascorbic acid plays a multitude of roles in plant cells. Not only is it a major 

contributor to scavenging of ROS by its rapid conversion into MDHA via APX or AO, 

but it also acts as a cofactor in the hydroxylation of prolyl and lysil-residues by peptidyl-

prolyl and -lysil hydroxylases, playing a role in cell wall synthesis and in cell division 

(Conklin, 2001). Smirnoff (1996) and Conklin (2001) have suggested a role of AsA and 

AO in the regulation of cell expansion. There is evidence that the cell wall generates 

MDHA via AO and reduces it back to AsA by a plasma membrane-bound, NADPH-

requiring cytochrome b (Horemans et al., 2000). Ascorbic acid thus produced is 

transported to the apoplastic free space, a process that has been reported to aid in cell 

expansion. Smirnoff (1996) also suggested that AsA and MDHA in the cell wall aid in 

controlling cell expansion by helping in regulation of the cross-linking of cell wall 

proteins and polysaccharides, lignification and Ca levels. The fact that M6HAR activity 

is mostly high in the HP cells on days 2 and 3 of the 7-day culture cycle, a period when 
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cell division is in the logarithmic phase, supports the proposal that increased MDHAR 

activity is a consequence of increased AO activity in the cell walls of HP cells. It has 

been shown in tobacco cells that during cell elongation, AsA and the apoplastic activity 

of AO increase (Kato and Esaka, 1999). It is unclear as to what other factors may 

stimulate the production of MDHA via AO as opposed to APX in the HP cells. The 

oxidation of AsA by AO in the apoplast and by APX and AO in the cytoplasm suggests 

that the reduced and oxidized forms of ascorbate are transported between the two 

compartments so as to keep a balance in the redox state of the cell. It is possible that in 

the HP cells, greater recycling of AsA occurs in order to increase the redox state, thus 

compensating for the lower accumulation of GSH as a means to minimize the damage 

caused due to high oxidative stress. 

Biosythesis of GSH occurs by an ATP utilizing reaction which combines y-glutamyl 

cysteine (y-EC) with Gly, brought about by the enzyme GSH synthetase (Noctor et al., 

1998). Biosynthesis of y-EC is catalyzed by y-EC synthetase which involves the 

condensation of Glu with Cys. As pointed out earlier, the cellular contents of Glu (Fig. 

13A), Cys (Fig. 14C) and Gly (Fig. 14B) are different in the two cell lines on all days of 

the week. As discussed previously, the difference in Glu in the two cell lines is perhaps a 

consequence of its increased utilization in the production of Put in HP cells. The low 

cellular content of GSH in the HP cells (Fig. 26) could then also be the result of a 

reduction in the availability of its precursor molecules, i.e. Glu, and also, Cys and Gly. 

Lower Cys and Gly in HP cells may be the consequence of either a reduction in their 

biosynthesis or utilization in increased protein synthesis soon after transfer to fresh 

medium. Higher GR activity in the HP cells points towards a greater requirement of the 
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cell to recycle GSH from GSSG, probably in an attempt to scavenge the higher quantities 

of ROS generated in these cells. To further complicate this interaction, it has been shown 

that stress-induced alterations in Pro may also influence the amount of GSH, and hence, 

the activity of GR, since Glu is a common precursor for both (Kocsy et al., 2005). The 

HP cells during the first few days do have higher amounts of Pro as well. While a 

probable reason for higher amounts of Pro in the HP cells during the first two days is an 

overall increase in biosynthetic metabolism on transfer to fresh medium, this time is also 

coincident with the increase in protein accumulation and inversely related to decrease in 

Glu, which is its precursor. 

The observed increase in cellular Ca and a decrease in K are additional indicators of 

heightened oxidative state of the HP cells. Foreman et al. (2003) demonstrated that an 

inwardly rectifying Ca2+ channel was activated by membrane-associated NADPH 

oxidase-generated OH radicals; this activation did not occur in response to treatments 

with either H2O2 or Cu2+ or ascorbate. This activation caused increased Ca accumulation 

in root cells in the elongation zone. Pei et al. (2000) demonstrated that the Ca2+ channel 

can actually be activated by H2O2 in the guard cells of Vicia faba. Bowler and Fluhr 

(2000) had earlier suggested a connection between the ROS and the signal transduction 

pathways involving cytosolic Ca. Demidchik et al. (2003) observed a simultaneous 

activation of the Ca,„ and Ko„, channels in response to ROS and postulated that the 

activation of these channels was regulatory in nature and not due to a loss of membrane 

permeability. A similar activation of Ca and K channels by ROS has been demonstrated 

in animal cells as well (Kourie, 1998). Thus it can be argued that the loss of membrane 

integrity and a concomitant increase in Ca and a decrease in K accumulation in the HP 

114 



cells observed here are not merely the harmful effects of increased ROS activity; rather 

these effects are mediated by independent mechanisms. Moreover, since OH itself is not 

membrane permeable (Demidchik et al., 2003), it is possible that either these radicals are 

being produced in the apoplast or it is the H2O2 produced by PA oxidation that is 

responsible for this response (Pei et al., 2000). 

It can further be suggested that while the Ca influx and K efflux may be due to the 

activation of specific channels, the loss of membrane integrity as seen by Evans blue 

retention in HP cells may be due to the harmful effects of ROS on lipid peroxidation in 

the membrane, which is a well known phenomenon both in animal and plant cells (Stark, 

2005). Stark has further pointed out that the increased accumulation of Ca may also be 

due to depolarization of the membrane potential, and may actually be the cause of cell 

death. While an interaction of ROS with plasma membrane Ca2+ channels seems widely 

documented, only a few reports have explored a strong and specific interaction of ROS 

with voltage-sensitive outward rectifying K+ efflux channels (Demidchik et al., 2003; 

Shabala, 2006; Cuin and Shabala, 2007). This interaction leads to an efflux of K from the 

cells; our data on lower accumulation of K in the HP cells vs. the control cells is 

consistent with this argument. A further effect of ROS that would non-specifically 

influence the cellular ionic imbalance as well as result in increased permeability to the 

Evans blue dye could be due to the known effects of ROS on membrane lipid 

peroxidation (Kourie, 1998; Stark, 2005; Cuin and Shabala, 2007, and references 

therein). 
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Conclusions 

Based on the vast amount of literature pointing to contrasting roles of ROS in plants 

(i.e. a key function in signal transduction, opposite effects on Ca2+ and K+ transport, and 

harmful effects on membrane peroxidation), it is not surprising that a somewhat 

contradictory effect of enhanced PA metabolism is seen in poplar cells. While the past 

discussion on PAs has generally emphasized their positive role in ROS scavenging and 

increasing plant tolerance to a variety of abiotic stress responses in plants (Foyer and 

Noctor, 2005; Papadakis and Roubelakis-Angelakis, 2005; Shevyakova et al., 2006), we 

found that an overproduction of PAs could actually be detrimental to the cells, if it was 

accompanied by their enhanced catabolism. It is shown here that Put overproduction 

(accompanied by increased catabolism) changes the oxidative state of poplar cells in 

culture; the HP cells exhibiting several of the biochemical effects of increased ROS, 

including enhanced activity of ROS scavenging enzymes, a reduction in K accumulation, 

a boost in Ca accumulation and increased membrane damage. While acting as protectants 

against oxidative stress, and in turn other forms of abiotic stress, in moderate to high 

quantities, the enhanced production of PAs in these cells may actually become 

detrimental due to a concomitant increase in their catabolism which results in increased 

ROS production. It is the balance of the two contrasting phenomena that determines the 

overall health of cells. 
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CHAPTER IV 

POLYAMINES AND ALUMINUM TOXICITY 

As described earlier, PAs have been implicated to play a role in imparting tolerance 

to a variety of abiotic stress conditions, including those related to fluctuations (both high 

and low concentrations) in essential (e.g. K) or harmful (e.g. heavy metals) inorganic ions 

in the soil. Aluminum (Al) toxicity in plants has received considerable attention in recent 

years (reviewed by Rout et al., 2001; Kochian et al., 2004, 2005; Vitorello et al., 2005). 

Since the HP cells have substantially higher amounts of Put, and cellular Put has been 

suggested to play a role in Al toxicity via interaction with cellular Ca, we tested the 

effects of Al, in the presence of normal and lower amounts of Ca in the medium, on the 

physiology of HP and control cells. 

Introduction 

Aluminum toxicity in plants is often manifested in acidic soils, below a pH of either 

5.0 (Kochian et al., 2004; Sharma and Dubey, 2007) or 5.5 (Rout et al., 2001, Kochian et 

al., 2004; Vitorello et al., 2005). The harmful effects of Al include reduced DNA 

replication and restriction of cell division, resulting in decreased growth and 

development, particularly in the roots (Minocha et al., 1992; Zhou et al., 1995; Jones et 

al., 1998; Rout et al., 2001; Yamamoto et al., 2002; Minocha and Long, 2004A; Wang 

and Kao, 2006). The toxic effects of Al vary with the tissue and its uptake depends upon 

an interaction with other ions in the soil, particularly Ca (reviewed by Rengel, 1992; 
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Rengel and Zhang, 2003). It is known that Ca greatly ameliorates the negative impacts of 

Al (Rengel, 1992; Rout et al., 2001; Rengel and Zhang, 2003; Hossain et al., 2005). One 

of the proposed ways in which Al is cytotoxic in plants is by blocking Ca2+ channels in 

the plasma membrane. There have been several reports on interference of Al with cellular 

Ca homeostasis consequently impairing the Ca-dependent signal transduction cascades 

that may be essential for cell growth and division (Rengel, 1992; Jones et al., 1998; 

Rengel and Zhang, 2003; Kochian et al., 2004, 2005). Studies with mature trees as well 

as cell cultures have shown that Al causes changes in Ca uptake. While Zhou et al. 

(1995), Minocha et al. (1996, 1997), and Jones et al. (1998) showed that Al inhibited Ca 

uptake in plant cell cultures, Sivaguru et al. (2005) reported a moderate increase in 

intracellular Ca content due to Al treatment in tobacco cells. In addition to Ca, Al also 

interferes with the uptake of other essential inorganic ions like Mg, Mn and P (Rengel, 

1992; Zhou et al., 1995; Jones et al., 1998; Rout et al., 2001). Aluminum inhibition of P 

uptake may result in P deficiency in plants growing in the acidic soils (Rout et al., 2001). 

Studies of Al tolerance in rice by Sivaguru and Paliwal (1994) demonstrated that the 

tolerant cultivars were more efficient in uptake and utilization of Ca and P than the Al 

sensitive varieties. 

Typically, a several-fold increase in the accumulation of Put has been observed in 

response to high Al and low Ca in the soil; leading to the suggestion that this response 

can actually be used as a biochemical marker of Ca deficiency in forest trees (Minocha et 

al., 1996, 1997; Wargo et al., 2002; Minocha and Long, 2004A). Along with changes in 

the uptake of other inorganic ions, cell growth, cell viability and mitochondrial activity, 

Put content has been shown to fluctuate in plant cell cultures as well in response to Al 
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treatment (Minocha et al., 1992; Zhou et al., 1995). In cultures of Catharanthus roseus, 

Minocha et al. (1992) found a significant increase in cellular Put content 4 h after Al 

addition, but a decline was observed in the same thereafter, up to 32 h. They also 

observed an increase in the Spm content at 24 and 48 h after Al addition. These 

observations were accompanied by inhibition of the activities of several important 

enzymes of the PA metabolic pathway at various time periods after Al addition. Similar 

observations were reported by Zhou et al. (1995) who found that the largest increase in 

Put was observed at 6 h after Al addition. Minocha and Long (2004A) observed an 

enhancement in cellular Put content due to Al addition to red spruce suspension cultures. 

More recently, Wang and Kao (2006) have reported that the inhibition of root growth 

in rice by Al is mediated by enhanced Put content. They observed that treatment with Al 

increased the Put content concomitant with decreases in Spd and Spm contents in rice 

roots. While treatment with Al resulted in marked inhibition of root growth, addition of 

known inhibitors of Put biosynthesis such as D-Arg and a-methyl-Orn caused a recovery 

in the growth of roots. 

Since Put has been implicated to be an indicator of abiotic stress (including Al stress) 

in trees and the Put content of cell cultures has also been shown to be affected by Al 

stress, we wanted to study the effect of enhanced Put accumulation on several aspects of 

cell metabolism due to Al addition to the HP cells. Also, as stated before, Ca has been 

suggested to alleviate the deleterious effects of Al (Rengel, 1992). The rationale behind 

the experiments including Al addition to low Ca poplar cultures was to see if there was 

any difference in the uptake and effect of Al due to lowering of Ca (to 0.8 mM) in the 

medium as the culture medium normally contains 4 mM Ca. 
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Materials and Methods 

Cell growth and harvest 

As described earlier, for routine subculture, 7 mL of 7-d old cells were added to 50 

mL fresh medium. With experiments involving treatments with Al alone, 0.1 or 0.25 mM 

AICI3 was added to the cells 3 d after subculture. Subsequently, cells were collected at 6, 

24 and 48 h after addition of Al for various analyses. With experiments involving cells 

growing in different concentrations of Ca, 7-d old cells were subcultured into medium 

with either normal (lx, i.e. 4 mM), 0.2x (0.8 mM) or 0.05x (0.2 mM) concentrations of 

Ca. Medium for these experiments was prepared by mixing individual constituents of the 

MS medium rather than using a pre-mixed powder as used in experiments involving Al 

alone. The amount of CaCU was varied with treatment. Cells were also grown in 

commercially available MS medium mix (Sigma) for comparison of results. 

In experiments involving Ca and Al interaction, a similar set-up (as above) was used 

in terms of subculturing the cells into medium with varying Ca concentration, except that 

only lx and 0.2x concentrations of Ca were used. After 3 days of growth, they were 

either left untreated or were treated with 0.1 mM A1C13. Collections were done 6, 24 and 

48 h after adding Al. 

Determinations of mitochondrial activity, cell viability (membrane integrity) and cellular 

contents of PAs, amino acids, inorganic ions, GSH, PC2 and y-EC were done as 

described under "General Materials and Methods ". 
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Results 

Effect of Al and Ca on cell growth 

Starting with similar size of the inoculum (as indicated by the fresh weight at 6h after 

Al addition), the fresh weight of the harvested pellet was comparable in the two cell lines 

at given time of analysis (Fig. 29). In response to Al addition, slight increase in pellet 

fresh weight was seen in the HP cells at 24 h, with the 0.1 mM concentration vs. no Al. 

The fresh weight of untreated as well as the Al-treated cells in both cell lines increased 

from 6 h to 48 h. While lowering the Ca concentration in the medium caused a reduction 

in the fresh weight of HP cells at 24 and 48 h, adding Al to low Ca cultures reversed this 

effect (Fig. 29B). There was no effect of either lowering the Ca concentration or the 

addition of Al to low- or normal-Ca medium in the control cells. 

Effect of Al and Ca on mitochondrial activity and membrane permeability 

The mitochondrial activity of untreated cells of the two lines was quite comparable 

and showed only small changes at different times of analysis (Fig. 30A). Whereas both 

cell lines showed a significant reduction in mitochondrial activity when treated with 0.25 

mM Al within 6 h; in both cell lines, the effect was reversed by 24 and 48 h. In fact, a 

small but significant increase in mitochondrial activity was seen in HP cells at both these 

times in the presence of Al (at both concentrations at 24 h and in 0.1 mM Al at 48 h). 

In general, the untreated HP cells retained higher amounts of Evans blue showing more 

compromised cell membranes than the control cells at any time of analysis; the change 

with time in either case was small (Fig. 30B). While the membrane permeability of 

control cells was not affected by Al, the response of HP cells to Al was variable with 

concentration and time of treatment. These cells showed a small but significant 
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improvement in membrane integrity in response to treatment with Al, as shown by a 

decrease in Evans blue retention at 48 h in lower Al concentration. 

As mentioned earlier, the damaging effects of Al are typically apparent when Ca 

supply is limited. In order to test the possibility that the culture medium was Ca saturated, 

and therefore, Al effects may be masked; the cells were grown in a medium with reduced 

amounts of Ca. The two media prepared differently (one from the pre-mix powder -

marked as "C" and the other made by combining individual components - marked as lx 

Ca) showed no significant difference in mitochondrial activity (Fig. 31 A) or Evans blue 

retention (Fig. 3 IB) in either of the cell line at any time. While in the control cells, the 

mitochondrial activity was adversely affected only after lowering the Ca content twenty-

fold (to 0.05x of normal Ca) at 5 days after subculture, the HP cells showed a reduction 

in mitochondrial activity even at five-fold (0.2x of normal Ca) reduction in Ca, both at 

days 3 and 5 of analysis (Fig. 31 A); the effect increased with time but was not affected by 

further lowering of Ca concentration in the medium. The Evans blue retention data (Fig. 

3 IB) show that a reduction of Ca concentration in the medium had an adverse effect on 

membrane integrity of both cell lines on day 5 but only in the control cells on day 3. 

Addition of Al to the complete growth medium (with normal amounts of Ca) only 

affected the mitochondrial activity of HP cells, but not the control cells (Fig. 32) as in the 

previous experiment. In the medium with low Ca, however, where the mitochondrial 

activity of HP cells was significantly reduced, an increase in the same was seen on Al 

addition to low Ca cultures (Fig.32). 
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Figure 29. Fresh weight of control and HP cells growing in 
different concentrations of (A) and Al (B) Al and Ca 6, 24 and 48 
h after Al treatment. Each bar represents mean (±) SE of 6 
replicates from 2 experiments in (A) and 9 replicates from 3 
experiments in (B). An * indicates a significant difference 
(P<0.05) in the g FW between the untreated and Al treated cells in 
(A) and between the cells growing without Al in normal Ca and 
those growing in different concentrations of Al and Ca in (B) 
within the same cell line and time period. 
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Figure 30. Absorbance of (A) MTT reaction products and (B) Evans blue 
retention in control and HP cells 6, 24 and 48 h after Al treatment. Each bar 
represents mean (±) SE of 6 replicates from 2 experiments. An * indicates a 
significant difference (PO.05) in the absorbance g"1 FW between the untreated 
and Al treated cells within the same cell line and time period. 
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Figure 31. Absorbance of (A) MTT reaction products and (B) Evans blue 
retention in control and HP cells 3 and 5 days after transfer to media with 
different concentrations of Ca. Each bar represents mean (±) SE of 4 replicates 
from 2 experiments. C refers to cells growing in commercially available MS 
medium. An * indicates a significant difference (PO.05) in the absorbance g"1 

FW between the cells growing in normal Ca and those growing in reduced Ca 
within the same cell line and time period. 
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Figure 32. Absorbance of MTT reaction products in control and HP cells 
growing in normal and reduced Ca, 6, 24 and 48 h after Al addition. Each bar 
represents mean (±) SE of six replicates from two experiments in (A) and nine 
replicates from three experiments in (B). An * indicates a significant difference 
(P<0.05) in the absorbance g"1 FW between the cells growing without Al in 
normal Ca and those growing in different concentrations of Al and Ca within the 
same cell line and time period. 



Effect of Al and Ca on cellular polyamines 

As expected, cellular Put content was higher (by as much as 8 to 10 folds) in the HP 

cells than in the control cells; the differences in Spd were much smaller (Figs. 33). 

Cellular Put was lowered by more than 50% in response to Al treatment in both cell lines, 

the decrease being significant at 24 and 48 h in both cases (Fig. 33A). The effects of Al 

were not concentration dependent. Cellular Spd concentrations only showed a small 

decrease in the control cells at 48 h and the HP cells at 24 h after Al addition (Fig. 33B). 

Overall changes in Put and Spd were relatively minor during the period of this study. 

Lowering the amount of Ca in the growth medium by five- or twenty-folds caused a 

significant decrease in the cellular Put content in HP cells at 5 d after transfer to low Ca 

medium (Fig. 34A); only the lowest concentration of Ca had an effect on Put in the 

control cells. No significant change was seen in cellular Spd content as a result of 

lowering the amount of Ca in the medium, except for a small increase in the HP cells on 

day 5, with a twenty-fold reduction in Ca (Fig. 34B). Adding Al to medium with low Ca 

further lowered the Put content in both cell lines at 24 and 48 h (Fig. 35A). Again, only 

minor changes were seen in cellular Spd with the addition of Al to medium with low Ca 

(Fig 35B). 

Effect of Al and Ca on accumulation of inorganic ions 

The HP cells accumulated somewhat higher amounts of Ca than the control cells on 

any given day regardless of the presence or absence of Al in the medium (Fig. 36A, B); 

the differences were not always statistically significant. No change in Ca accumulation 

was seen in the control cells in response to Al treatment at any time of analysis. In the HP 

cells, however, both concentrations of Al caused a significant increase in Ca 
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accumulation at 48 h, although the enhancement was not concentration dependent (Fig. 

36A). By this time, the untreated cells had lower Ca than the day before in both cell lines, 

indicating a loss of accumulated Ca during this period. In other words, the presence of Al 

prevented the loss of Ca from the HP cells. Lowering the amount of Ca (to 0.2 x) in the 

medium resulted in significantly lower Ca accumulation in both the control and the HP 

cells (Fig. 36B). However, there was no further change in cellular Ca in response to Al in 

the low Ca cultures (Fig. 36B). As in the previous experiment, increased Ca accumulation 

in the HP cells due to 0.1 mM Al was seen at 48 h with normal amounts of Ca in the 

medium. It must be kept in mind that the compartmentation of Ca within the cell may be 

a hindrance to its extraction. 

Cellular contents of Mn, which were similar in the two cell lines at most times of 

analyses, were enhanced in the HP cells by the presence of Al in a time dependent 

manner; there was no dependence on concentration of Al (Fig. 36C). Lowering the 

amount of Ca in the medium by itself caused an increase in Mn accumulation in both cell 

lines except in the control cells at 24 h (Fig. 36D). Adding Al to low Ca cultures caused 

no further change in Mn content in either cell line. At 0.1 mM concentration, the uptake 

of Al was lower in the HP cells than the control cells at all three time periods (Fig. 37A). 

At 0.25 mM, Al accumulation increased drastically in the control cells at 24 and 48 h and 

in the HP cells at 6 h. However, in the HP cells there was a significant decrease in the 

accumulation of Al with time after 6 h. In other words, with time, while the control cells 

retained higher amount of Al, the HP cells lost more than 50% of accumulated Al by 48 h 

of treatment. Decreasing the concentration of Ca in the medium did not have a significant 

effect on Al uptake (Fig. 37B) at its lower concentration (the higher concentration was 
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Figure 33. Cellular contents of (A) Put and (B) Spd in control and 
HP cells 6, 24 and 48 h after Al addition to the media. Each bar 
represents mean (±) SE of six replicates from two experiments. An * 
indicates a significant difference (P<0.05) in the polyamine content 
between the untreated and Al treated cells within the same cell line 
and time period. 
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Figure 34. Cellular contents of (A) Put and (B) Spd in control and HP cells 
on days 3 and 5 after transfer to media containing different concentrations 
of Ca. Each bar represents mean (±) SE of four replicates from two 
experiments. C refers to cells growing in commercially available MS 
medium. An * indicates a significant difference (PO.05) in the polyamine 
content between the cells growing in normal Ca and those growing in 
reduced Ca within the same cell line and time period. 
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Figure 35. Cellular contents of (A) Put and (B) Spd in control and HP cells 
growing in normal and reduced Ca, 6, 24 and 48 h after Al addition to the media. 
Each bar represents mean (±) SE of nine replicates from three experiments. An * 
indicates a significant difference (P<0.05) in polyamine content between the cells 
growing without Al in normal Ca and those growing in different concentrations of 
Al and Ca within the same cell line and time period. 
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not tested in these experiments); the HP cells did show a leakage of Al from the cells at 

48 h. 

Cellular content of Mg was similar in the untreated control as well as HP cells at all 

time periods (Fig. 37C); the presence of Al did cause a small dose-dependent decrease in 

Mg accumulation at 6 h in both cell lines, although this decrease was statistically 

significant only in the HP cells. Lower Ca in the medium caused a significant increase in 

Mg content in both cell lines at 6h, while no such effect was seen in either cell line at 24 

and 48 h (Fig. 37D). Adding Al to low Ca cultures decreased the Mg content in both cell 

lines at 6h, while causing an increase in the Mg content of HP cells 48 h after treatment. 

The accumulation of Fe was significantly higher in the HP cells (and to some extent 

in control cells as well) with the addition of 0.25 mM Al (Fig. 38A). Lowering the 

concentration of Ca in the medium had an effect similar to that of the addition of Al; i.e. 

higher accumulation of Fe in the HP cells (Fig. 38B). Adding Al to the low Ca medium 

did not further affect Fe accumulation in either cell line. The accumulation of P, which 

was similar in the two cell lines, was not affected either by the addition of Al or the 

reduction in Ca (Fig. 38C, D); P accumulation in the two cell lines on any given day was 

quite comparable. 

While cellular content of K was higher in the HP cells than the control cells at any 

given time of analysis (Fig. 39A, B), adding Al mostly caused an increase in K content at 

24 and 48 h, at both concentrations of Al in the HP cells and mostly at the higher 

concentration in the control cells. Lowering Ca alone decreased the cellular content of K 

in both cell lines at 24 h, while Al addition to low Ca cultures increased the K content of 

the HP cells at 24 and 48 h (Fig. 39B). The cellular content of Zn mostly increased with 
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the addition of Al in both cell lines (Fig. 39C, D). Also, lowering Ca in the culture 

medium significantly increased the Zn content in both cell lines at 6 h and also in the HP 

cells at 48 h. Adding Al to low Ca cultures did not significantly affect the accumulation 

of Zn in either cell line (Fig. 39D). 

Effect of Al on GSH, y-EC and PC2 

Since Al toxicity is known to cause oxidative stress (Yamamoto et al., 2002; 

Kochian et al., 2004, 2005) and because GSH is a known scavenger of ROS (Noctor and 

Foyer, 1998; Foyer and Noctor, 2005), we studied the effects of Al addition on cellular 

GSH content in the control and HP cells. The HPLC method used to quantify GSH also 

enabled the quantification of PC2 (a known chelator of heavy metals like Zn, Cd, etc.) as 

well as their common precursor, y-EC. As seen shown in Fig. 40, the cellular contents of 

all three sulfur metabolites in the HP cells were lower than those in the control cells on 

any day of analysis; the differences were at least 4-5 folds for PC2 and y-EC and about 

two-folds for GSH. The presence of Al caused a small but significant increase in the 

accumulation of PC2 in the control cells (Fig. 40 B) and a significant decrease in GSH in 

the HP cells (Fig. 40A); otherwise, there was no effect of Al on these metabolites at any 

time in either cell line. The cellular contents of these metabolites did not change much 

with time during the experimental period. 

Effect of Al and Ca on cellular free amino acids 

Changes in the cellular content of amino acids, particularly those which are directly 

involved in PA biosynthesis, were analyzed in the control and the HP cells in response to 

treatments with 0.1 mM and 0.25 mM Al in the presence of normal (lx) Ca and 0.1 mM 

Al in the presence of both normal and five-fold reduced concentration (0.2x) of Ca. 
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Although in the HP cells, Orn is the major contributor to Put biosynthesis, its cellular 

content was below detection limits of the HPLC system in all cases; therefore data on 

Orn are not presented. As stated earlier (Chapter II), the content of Glu in the HP cells 

was about half that in the control cells. Addition of Al significantly increased the cellular 

content of this amino acid in both cell lines (Fig. 41 A, B); almost doubling it in the 

control cells and tripling it in the HP cells (with 0.1 mM Al). Lowering Ca content of the 

medium did not significantly affect Glu content in control cells but reduced it in the HP 

cells. The presence of Al even in low Ca medium reversed the effects of low Ca in these 

cells; Glu content of Al-treated cells was similar whether Ca content of the medium was 

normal or lower (Fig. 41B). 

Glutamine was also lower in the HP cells than the control cells; the reduction being 

greater than two-fold. Gin content was not significantly affected by Al treatment in the 

presence of normal amounts of Ca in the medium, except for a reduction in control cells 

at 0.25 mM Al (Fig. 41C). Lowering the Ca content in the medium caused a significant 

increase in cellular free Gin in the control cells, but a reduction in the HP cells (Fig. 

41D). Adding Al to low Ca cultures restored the Gin content in both cases to their 

respective amounts in the untreated cells. 

No significant effects of Al or Ca were seen on the cellular contents of Arg (Fig. 

41E, F), while Pro significantly increased in the HP cells in response to 0.25 mM Al 

(42 A). GAB A, which is made directly from Glu by decarboxylation as well as from Put 

by its oxidation, was higher in the HP cells as compared to the control cells, and its 

content was enhanced by the presence of Al (Fig. 42C) as well as the lowering of Ca in 
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Cell line-Time Cell line-Time 
Figure 36. Cellular contents of (A, B) Ca and (C, D) Mn in control 
and HP cells growing in different concentrations of (A, C) Al and (B, 
D) Al and Ca. Each bar represents mean (+) SE of six replicates from 
two experiments. An * indicates a significant difference (P<0.05) in 
ion content between the untreated cells and cells growing in Al in (A) 
and (C) and between cells growing without Al in normal Ca and those 
growing in different concentrations of Al and Ca in (B) and (D), 
within the same cell line and time period. 
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Figure 37. Cellular contents of (A, B) Al and (C, D) Mg in control 
and HP cells growing in different concentrations of (A, C) Al and (B, 
D) Al and Ca. Each bar represents mean (+) SE of six replicates from 
two experiments. An * indicates a significant difference (P<0.05) in 
ion content between the untreated cells and cells growing in Al in (A) 
and (C) and between cells growing without Al in normal Ca and those 
growing in different concentrations of Al and Ca in (B) and (D), 
within the same cell line and time period. 
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Figure 38. Cellular contents of (A, B) Fe and (C, D) P in control and 
HP cells growing in different concentrations of (A, C) Al and (B, D) 
Al and Ca. Each bar represents mean (+) SE of six replicates from two 
experiments. An * indicates a significant difference (P<0.05) in ion 
content between the untreated cells and cells growing in Al in (A) and 
(C) and between cells growing without Al in normal Ca and those 
growing in different concentrations of Al and Ca in (B) and (D), 
within the same cell line and time period. 
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Figure 39. Cellular contents of (A, B) K and (C, D) Zn in control and 
HP cells growing in different concentrations of (A, C) Al and (B, D) 
Al and Ca. Each bar represents mean (±) SE of six replicates from two 
experiments. An * indicates a significant difference (P<0.05) in ion 
content between the untreated cells and cells growing in Al in (A) and 
(C) and between cells growing without Al in normal Ca and those 
growing in different concentrations of Al and Ca in (B) and (D), 
within the same cell line and time period. 
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the medium in both cell lines (Fig. 42D). The presence of Al in the low-Ca medium 

further enhanced GABA content in control cells while lowering it in the HP cells. 

Cellular content of His increased significantly in the HP cells with the 0.25 mM 

concentration of Al and on lowering Ca in the control cells (Fig. 42E, F). 

Addition of Al mostly caused an increase in the cellular content of Thr, especially at 

the higher concentration in both cell lines (Fig. CIA). No significant changes were 

observed in Thr content in either cell line either on lowering Ca or adding Al to low Ca 

cultures (Fig. C1B). Cellular content of Val was comparable in both cell lines with or 

without Al treatment (Fig. C1C). Lowering Ca significantly increased cellular Val 

content only in the control cells, while adding Al to low Ca cultures caused a reduction in 

the same. No such fluctuations were seen in the HP cells (Fig. C1D). Addition of Al 

caused an increase in the cellular Lys content only in the HP cells at 0.25 mM 

concentration (Fig. C1E). Lowering Ca in the medium caused an increase in the Lys 

content only in the Con cells. Adding Al to low Ca cultures did not cause any further 

change to the Lys content (Fig. C1F). 

Cellular content of Ser was not affected by Al addition to control cells (Fig. C2A). 

The HP cells showed a small increase in Ser content due to 0.1 mM Al addition. 

Lowering Ca caused a surge in the cellular Ser content of the control cells, while 

decreasing the same in the HP cells (Fig. C2B). Adding Al to low Ca cultures restored the 

cellular content of Ser in both cell lines. Cellular contents of Cys + cysteine decreased 

significantly on Al addition in both cell lines, the decrease being somewhat dose 

dependent (Fig. C2C). Decreasing Ca caused a significant surge in Cys + cysteine content 

only in the control cells (Fig. C2D). Adding Al to low Ca 
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Figure 40. Cellular contents of (A) GSH, (B) PC2, and (D) y-EC 
in the control and HP cells due to different concentrations of Al 
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cultures decreased the cellular content of these amino acids in these cell lines. While 

addition of Al did not cause much change in the cellular Gly content in either cell line, 

lowering Ca concentration in the medium caused a surge in Gly in the control cells only 

(Fig. C2E, F). No such fluctuations were seen in the HP cells. 

Cellular content of Phe decreased in both cell lines on Al treatment, especially in the 

highest concentration (Fig. C3A). Lowering Ca content in the medium increased the 

cellular content of Phe only in the control cells (Fig. C3B). Cellular Tip did not change 

much on Al addition to either cell line (Fig. C3C). Lowering Ca in the medium caused an 

increase in the Tip content of control cells and adding Al to low Ca cultures, restored the 

Tip concentration (Fig. C3D). 

Discussion 

As mentioned before, the negative effects of Al in plants involve restriction of cell 

division, reduction in DNA replication and decrease in cellular respiration; it also affects 

the uptake, transport and utilization of mineral nutrients like Ca, Mg, P and Fe (Minocha 

et al., 1992, 2001; Zhou et al., 1995; Rout et al., 2001). That Al exposure stimulates the 

generation of ROS, induces the expression of several genes of the ROS scavenging 

machinery, and causes peroxidative damage to membranes are also well known 

(Yamamoto et al., 2002; Kochian et al., 2004, 2005). The effects of Al on mitochondrial 

dysfunction and membrane damage are additional factors contributing to its harmful 

effects (Minocha et al., 2001; Yamamoto et al., 2002). 

Yamamoto et al. (2002) reported a rapid suppression of mitochondrial activity within 6 h 

of Al addition to cultured tobacco cells, which was followed by an increase in 

mitochondrial activity for up to 12 h; Al also impaired the growth capabilities of these 
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cells. Based on several parameters, the authors proposed that Al caused damage to the 

mitochondrial electron transport chain, leading to an increased production of O2" by the 

leakage of electrons directly to O2. We found a similar response of poplar cells with 

higher amounts of Put (i.e. the HP cells) to Al addition. At 0.25 mM concentration, Al 

caused a reduction in mitochondrial activity within 6 h; the effect was fully reversed by 

24 h (Fig. 30A). 

The Evans blue retention data show that despite a transient reduction in 

mitochondrial activity, which could be responsible for enhanced generation of ROS, and 

therefore, potential membrane damage, (Chapter I), the plasma membrane integrity in 

these cells was still maintained (Fig. 30B). However, by 24 h after 0.25 mM Al treatment, 

when the effects on mitochondrial activity were fully reversed, there now was a 

noticeable increase in membrane disruption. Interestingly enough though, this condition 

was reversed at 48 h, i.e. the membrane integrity in the HP cells was restored. The 

timings of the two events indicate a lag between when effects on mitochondrial activity 

are seen and when the resulting damage to the membrane integrity occurs. This is further 

borne out from the results of the effects of 0.1 mM Al, which caused an increase in 

mitochondrial activity at 24 h without short term (6h) adverse effects; this treatment 

caused a recovery in membrane damage at 48 h. It is noteworthy that the uptake of Al at 

its lower concentration was several-fold lower in the HP cells as compared to the control 

cells, and the accumulation of Ca in the former (i.e. HP cells) was higher than that in the 

control cells. It can therefore be argued that maintenance of higher amounts of Put in the 

HP cells increases their uptake of Ca and inhibits the uptake of Al; thus preventing the 

damage due to Al (at least at its lower concentrations). Under low Ca conditions, when 
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Ca accumulation is lower (Fig. 36B), the response in these (HP) cells is reversed in that 

both the mitochondrial activity as well as the membrane integrity are adversely affected 

(Fig. 31, 32). Still having higher amounts of cellular Ca in the HP cells growing in the 

low-Ca medium, provides some protection from Al damage in these cells (Fig. 36 HP at 

24 and 48 h). Therefore, as mentioned earlier by Minocha et al. (1997), it is the ratio of 

Al: Ca in the medium that is a predictor of Al toxicity and not Al concentrations alone. 

As expected, the Put content was always higher in the HP cells than in the control 

cells during this part of the study. In response to Al treatment, cellular Put decreased 

significantly in both the control and the HP cells (Fig 33A). This is consistent with an 

earlier report involving Catharanthus roseus cell cultures, which also showed a reduction 

of Put accumulation in response to Al treatment (Zhou et al., 1995), but in contrast to 

other reports (Minocha et al., 1996, 1997). What is not clear is if reduced accumulation of 

Put is due to lower biosynthesis, increased catabolism and/or leakage due to disruption of 

plasma membrane integrity. Knowing that: (a) the half-life of Put in these cells is about 

6-7 h (Bhatnagar et al., 2002), (b) the decrease in Put is not seen until 24 h after Al 

treatment, and (c) Al has little effect on membrane integrity by this time; it can be 

hypothesized that the effect of Al is exerted through inhibition of Put biosynthesis or 

enhancement of its catabolism, and not through increased leakage of Put from the cells. 

The effects of Al on cellular Spd were rather small; so were the effects of reduced Ca 

or a combination of Al and lower Ca. This is consistent with numerous observations, in 

cell cultures as well as mature plants, on the changes in Spd in response to a variety of 

treatments, including abiotic stress and genetic manipulation (Kasukabe et al., 2004; 

Sanchez et al., 2005). 
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The adverse effect of Al on cellular Put is in contrast to the repeatedly observed 

effects of Al on Put accumulation in mature trees subjected to Al solubilization in the soil 

due to acidic deposition (Minocha et al, 1997); in that situation, the uptake/accumulation 

of Ca ions was adversely affected by Al (Minocha et al., 1996; Rout et al., 2001). 

Minocha and Long (2004A) have suggested that the symptoms of Al toxicity and Ca 

deficiency in plants are similar. The accumulation of Mn, Mg, Fe and P also decreases in 

roots and shoots exposed to increased Al supply (Rout et al., 2001). Increased availability 

of divalent cations like Ca and Mg in the soil ameliorates rhizotoxicity and other adverse 

effects of Al in crop plants (Rengel, 1992; Rout et al., 2001) as well as in forest trees 

(Minocha et al., 1997; Wargo et al., 2002). The data presented here show that the 

accumulation of Ca, Mn and Fe actually increased in the presence of Al in the HP cells, 

although such a trend was not seen in the control cells (Fig. 36, Fig. 38A, B). While the 

increased uptake of these ions, especially Ca, may have a protective role in HP cells 

against Al toxicity, it may also be related to enhanced activity of ROS in the HP cells due 

to high PA turnover, whose byproduct is H2O2 (See Chapter III). 

The relationship between ROS and the accumulation of Ca and K has been discussed 

in Chapter III. Increased ROS, which can be induced by Al, have been shown to activate 

the inwardly rectifying Ca2+ channels in plant cells (Pei et al., 2000; Bowler and Fluhr, 

2000; Foreman et al., 2003). Demidchik et al. (2003) observed a simultaneous activation 

of the Ca,„ and Kout channels in response to ROS and postulated that the activation of 

these channels was regulatory in nature and not due to general membrane depolarization. 

It can further be argued that while the Ca influx may be due to the activation of specific 

channels, the loss of membrane integrity as seen by Evans blue retention in HP cells, may 
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be due to the harmful effects of ROS (produced in the apoplast) on lipid peroxidation in 

the membrane, which is a well known phenomenon in both animal and plant cells (Stark, 

2005). In line with the suggestion of Stark (2005), it is also conceivable that the increased 

accumulation of Ca and Mn may in reality be the cause of cell damage in the HP cells. 

Surprisingly, however, the accumulation of Al itself was substantially lower in the 

HP cells than the control cells at 0.1 mM concentration of Al. At 0.25 mM Al, however, 

membrane depolarization may have resulted in a burst of Al uptake, followed by its slow 

release, thus producing a completely different profile of accumulated Al in these cells. 

Kochian et al. (2004) described two distinct classes of Al tolerance mechanisms in plants, 

one that works towards excluding Al from the root apex and one that allows the plant to 

tolerate Al accumulation in the root and shoot symplasm. The pattern of rapid Al uptake 

(at 6 h), followed by its efflux with time is similar to the profile of K+ accumulation in 

these cells without Al addition (Fig. 27B, Fig. 39A). Although the efflux of K+ is 

suggested to be regulated by activated Kout channels (Demidchik et al., 2003), the cause 

of Al leakage in HP cells but not in the control cells (Fig. 37A) is not known. 

The cellular contents of phytochelatins like PC2 (Fig. 40B), and its precursor y-EC 

(Fig. 40C), have been shown to increase in response to metal toxicity in plant cells 

(Hirata et al., 2005; Thangavel et al., 2007). Although, it is common knowledge that 

phytochelatins bind heavy metals, thus playing a role in ameliorating metal toxicity; 

Vitorello et al. (2005), who reviewed the mechanisms of Al toxicity and resistance in 

higher plants, argued that phytochelatins and metallothioneins do not play any major role 

in binding of Al. The HP cells always showed significantly lower contents not only of 

GSH and PC2, but their common precursor y-EC as well (Fig. 40). This was not 
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unexpected because y-EC is synthesized by condensation reactions involving the amino 

acids Glu, Cys and Gly; we have seen that the cellular contents of these three amino acids 

are lower in the HP cells than the control cells (Figs. 13 A, 14B, C). Although, the cellular 

contents of PC2 increased significantly with Al addition to the control cells at 24 and 48 

h, no such change in PC2 was observed in HP cells (Fig. 40B). As mentioned above, Al 

uptake is much lower in the HP cells than the control cells at the 0.1 mM concentration, 

while there is a slow time-dependent release of Al from these cells at higher Al 

concentration (Fig. 37A). This low accumulation and gradual release could be a reason 

for the lack of a stimulatory effect of Al on PC2 content of HP cells. Hence, it can be 

postulated that while both cell lines are responding to Al treatment in an attempt to 

minimize its toxic effects, the HP cells are doing so at the level of Al uptake, while the 

control cells, that probably lack the ability to regulate its entry into them, are doing so 

post-uptake by enhanced PC2 biosynthesis. The content of GSH decreased significantly in 

the HP cells at 48 h, in response to Al addition (Fig. 40A), being indicative of a low 

redox state of the cells, and hence, probably higher oxidative stress (see also Chapter III). 

It was deemed important to study the effects of Al toxicity on the cellular contents of 

amino acids for three reasons: (i) Along with other N containing compounds like PAs, 

betaine and nicotinamine, the accumulation of amino acids like Pro and His have been 

shown to increase by metal toxicity (Sharma and Dietz, 2006). (ii) since the cellular 

content of Put decreased due to both Al addition and Ca deprivation in the two cell lines 

(Figs. 29, 30, 31), we were interested to see if the metabolism of amino acids related to 

the PA metabolic pathway was affected; and (iii) organic acids like citrate and malate 

have been shown to be secreted from the cells in response to Al treatment and also bind 
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to Al (Pellet et al., 1995; Ma et al., 2001; Minocha and Long, 2004B; Kochian et al., 

2005); thus their decreased availability should affect the amino acids derived from them. 

The response of the poplar cells to Al treatment in terms of changes in the contents 

of free amino acids that were quantified (Fig. 41, 42) were not very different in the two 

cell lines except for Gin, the cellular content of which significantly decreased in the 

presence of 0.25 mM Al in the control cells (Fig. 41C), and Pro, which significantly 

increased in response to 0.25 mM Al in the HP cells. Since Pro has been postulated to 

play a protective role against metal toxicity because of its complex-forming ability with 

metals (Sharma and Dietz, 2006), a significant increase in the Pro content of HP cells in 

response to 0.25 mM Al can be considered as a protective mechanism to deal with Al 

toxicity. Sharma and Deitz (2006) also mentioned His to be another amino acid whose 

content increases under conditions of metal toxicity. The cellular content of His, which 

was lower in the HP cells as compared to the control cells, also increased at the 0.25 mM 

Al concentration at 48 h after treatment in the HP cells (Fig. 42E). Decreased Ca in the 

medium had a similar effect on His in the control cells (Fig. 42F). 

Significant increases in GAB A content in response to Al and low Ca treatments in 

both cell lines can be correlated with enhanced Put catabolism (GABA is an oxidative 

product of Put), which may also be the cause of the reduction in Put content in response 

to Al treatment in these cells. It is surprising then that despite greater utilization of Put 

and higher accumulation of Pro and GABA in response to Al treatment, the cellular 

content of Glu in these cells was maintained at a higher level in the presence of Al (Fig. 

41 A); Glu is an indirect precursor of Put and Pro as well as that of GABA. For more 

discussion on the regulation of GABA, see Chapter V. 
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Calcium, an essential plant nutrient, is required for various physiological and 

regulatory functions in cells, acts as a counter ion for anions in the cell, and also acts as 

an intracellular messenger in the cytosol (White and Broadley, 2003; Hepler, 2005). 

Hence, it is understandable that decreasing Ca concentration in the growth medium 

would adversely affect both cell lines in terms of mitochondrial activity as well as 

membrane integrity (Fig. 31, 32). The rationale behind the experiments of lowering the 

amounts of Ca in the medium to which Al was added was to see if saturating amounts of 

Ca were actually minimizing the Al effects in the normal MS medium which contains 4 

mM Ca. It would be expected that adding Al to low Ca cultures, could cause further 

respiratory stress leading to cytotoxicity. On the contrary, mitochondrial activity 

increased in the HP cells on addition of Al to low Ca cultures, pointing to tolerance of Al 

by these cells (perhaps via reduced Al uptake at this concentration). However, since 

cellular Put in HP cells decreased on addition of Al to low Ca medium, it is apparent that 

whatever Al was taken up, it did have a significant metabolic effect on cells. These 

observations support the argument of a protective role of high Put in poplar cells against 

Al toxicity. As stated before, Ca has been known to alleviate the deleterious effects of Al 

(Rengel, 1992, Rengel and Zhang, 2003). Lower Ca in the medium did not seem to have 

an impact on the uptake of Al in either cell line (Fig. 36B); even though it seems that we 

may have reached limiting levels of Ca in the medium for reactions that affect 

mitochondrial activity, membrane integrity, ion uptake, and PA metabolism. 

Minocha et al. (2001) studied the effect of Al in red spruce cultures on several 

parameters including intracellular localization of Al. They reported the presence of Al in 

cell walls, cytoplasm, plastids and vacuoles of red spruce cells, 48 h after Al treatment. 
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Movement of Al across the plasma membrane did not cause any substantial cellular 

disruption. Measurement of cell growth and cell viability (membrane function) indicate 

that a 48 h exposure to different concentrations of Al resulted in growth inhibition, 

decrease in mitochondrial activity and membrane damage. 

There was an obvious leakage of Al from the HP cells into the growth medium at 

0.25 mM Al concentration. A higher uptake of Ca and a decrease in the uptake of Al with 

time as a response to Al addition in the HP cells can be perceived as an attempt by these 

cells to minimize the toxic effects of Al. Hence, these events were accompanied by a 

simultaneous increase in mitochondrial activity and cell viability, 48 h after Al addition. 

The fact that these repercussions of Al addition were also accompanied by a decrease in 

Put content in the HP cells raises the question: Is the over-produced Put getting used up 

(catabolized) faster to trigger a cascade of reactions in several different pathways 

ultimately preparing the HP cells to fight against Al toxicity better? Based on the above 

arguments, we hypothesize that in response to Al addition, a series of reactions from 

several different pathways is triggered in the HP cells to protect them against Al toxicity. 

These include, but are not limited to, reduced Al uptake at lower concentration of Al, 

increased Al efflux, enhancement of mitochondrial activity, improved membrane 

integrity, and enhanced accumulation of Ca. Although it can be argued that the influx of 

cations such as Ca2+ and Mg2+ may be indicative of increased oxidative stress in the HP 

cells, due to Al addition, a recovery in both mitochondrial activity and membrane 

integrity between 24 and 48 h of Al addition to HP cells suggests a protective role of high 

Put against Al toxicity. This hypothesis is further supported by the observation that in the 
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HP cells although lowering Ca content in the medium caused a severe impairment in 

mitochondrial activity, adding Al to the low Ca cultures significantly restored the same. 

Conclusions 

Although both the control and the HP cells showed a decrease in cellular Put content 

in response to Al addition, several responses in the HP cells suggest a protective role of 

the enhanced Put metabolism in them against Al toxicity. Not only did Al addition result 

in lower Al accumulation and greater efflux in these cells as opposed to the control cells, 

but it also lead to greater accumulation of Ca, a potential alleviator of Al toxicity. Both 

membrane integrity and mitochondrial activity also improved in these cells at some Al 

concentrations and at certain time periods. While lowering Ca proved detrimental to both 

cell lines, adding Al to low Ca cultures recovered normal conditions in the HP cells 

alone. 
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CHAPTER V 

POLYAMINES, GAD AND GABA 

As pointed out earlier, the biosynthesis and catabolism of PAs are metabolically 

linked with the biosynthesis of GABA and Pro since they all utilize a common substrate, 

i.e. Glu. Also, their accumulation in the cells occurs under similar conditions involving 

responses to a variety of abiotic stresses (Aziz et al., 1998; Shelp et al., 1999; Kinnersley 

and Turano, 2000; Mazucotelli et al., 2006; Simon-Sarkadi et al., 2005, 2006). The 

biosynthesis of GABA occurs by an anabolic decarboxylation of Glu as well as by 

catabolic oxidation of Put (Fig. 2, Fig. 43). Since the HP cells being used here have an 

elevated rate of Put catabolism (Bhatnagar et al., 2002), potentially providing a major 

source of GABA production, it was hypothesized that the production of large amounts of 

GABA via this route may affect its production via GAD. Thus the activity of GAD and 

the expression of its genes were investigated in the control and the HP cells on different 

days of the 7 d culture cycle. The effect of an inhibitor of GAD on the production of 

GABA from the two pathways was also investigated. 

Introduction 

The non-protein amino acid GABA, discovered in plants about half a century ago, 

has gained considerable attention as not only an important neurotransmitter in mammals 

(Bouche and Fromm, 2004, Mazzucotelli et al., 2006), but also as a signaling molecule in 

plant cells (Bouche and Fromm, 2004; Beuve et al., 2004; Bown et al., 2006). 
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A short pathway known as GABA-shunt (Fig. 43) is responsible for the metabolism 

of GABA in both plants and animals (Kinnersley and Turano, 2000; Bouche and Fromm, 

2004; Mazzucotelli et al., 2006). The three important enzymes making up this pathway 

are the cytosolic glutamate decarboxylase (GAD, EC 4.1.1.15), and the mitochondrial 

GABA transaminase (GABA-T, EC 2.6.1.19) and succinic semialdehyde dehydrogenase 

(SSADH, EC 1.2.1.16; also mentioned as 1.2.1.24; Busch and Fromm, 1999). The 

irreversible decarboxylation of Glu to produce GABA is catalyzed by GAD which is 

apparently regulated by the Ca -calmodulin (CAM) complex (Akama and Takaiwa, 

2007). GABA is then transported into mitochondria where a transaminase reaction 

converts it into succinic semialdehyde (SSA). This reaction is catalyzed by GABA-T 

which uses either a-ketoglutarate (a-KG; GABA-TK) or pyruvate (Pyr; GABA-TP) as an 

amino group acceptor. The enzyme SSADH reduces SSA to succinate which is then 

catabolized via the TCA cycle. The activity of SSADH can be inhibited by both ATP and 

NADH. This pathway of GABA catabolism (the GABA-shunt) bypasses two steps of the 

regular TCA cycle, namely the conversion of a-KG to succinyl-CoA by a-KG 

dehydrogenase (a-KGDH; EC 1.2.4.2) and succinyl CoA to succinate by succinyl-CoA 

ligase (SCoAL; EC 6.2.1.5). Alternatively, especially under conditions of hypoxia, SSA 

can be reduced to y-hydroxybutyric acid (GHB) via succinic semialdehyde reductase 

(SSAR, EC 1.1.1.61), also called GHB dehydrogenase (GHBDH; Breitkreuz et al., 2003). 

This reduction product of SSA is a potential neurotransmitter in animals, while its 

production and its role in plants are still unknown (Bouche and Fromm, 2004). 

The other route for the synthesis of GABA in plants is via the oxidation of Put by 

DAO; the product A'-pyrroline gets converted stoichiometrically to GABA by A1-
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pyrroline dehydrogenase (PyDH; EC 1.5.1.35) (Bhatnagar et al., 2002; Cona et al., 2006). 

While the pathway for the origin of GABA from Put is well known, most of the 

prominent articles on GABA do not give it a major importance while discussing GABA 

metabolism (Shelp et al., 1999; Bouche and Fromm, 2004). Cona et al., 2006 have 

reviewed the functions of amine oxidases in plant defense and development. Diamine 

oxidase is a Cu-amine oxidase which has been isolated from a variety of plants including 

rice (Chaudhri and Ghosh, 1984), barley (Cogoni et al., 1990), maize (Suzuki and 

Hagiwara, 1993) and wheat (Suzuki, 1996). 

The importance of GABA shunt has been established through observations that 

GABA accumulates in response to a variety of abiotic stresses (Shelp et al., 1999; 

Kinnersley and Turano, 2000, Mazucotelli et al., 2006). Rolin et al. (2000) observed that 

GABA contents reached as much as 50% of the free amino acid pool in cherry tomato 

fruits with pH fluctuations during development. Breitkreuz et al. (1999) found that 

growth of Arabidopsis was quite efficient on medium containing GABA as the only 

source of nitrogen, showing that its catabolism could provide sufficient amounts of N to 

regenerate Glu and other amino acids. Bouche and Fromm (2004) pointed out a role of 

GABA in storage and transport of nitrogen; they stated that the GABA shunt was a 

pathway that assimilated carbon to generate C:N fluxes for the TCA cycle. This was 

further confirmed by Studart-Guimaraes et al. (2005), who demonstrated that a reduction 

in the expression of SCoAL (by antisense expression of this gene), which reduces the 

production of succinate in the TCA cycle, can be compensated by upregulation of the 

GABA shunt thus providing an alternate source of succinate in tomato leaves. This was 

ascribed to an increase in the activity of GAD. Both SCoAL and GABA-shunt provide 
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succinate to the TCA cycle. This enhanced participation of the GABA-shunt in feeding 

the TCA cycle resulted in mild phenotypic changes even in transgenic lines where the 

SCoAL activity had been strongly inhibited. Their study not only points to the 

importance of succinate as a metabolite, but also towards importance of the alternate 

route to its production, i.e. via the GABA shunt. Unfortunately, these authors did not 

study PA metabolism in the antisense transgenic plants. Castanie-Cornet et al. (1999) and 

Ma et al. (2002) have mentioned a role of GABA shunt in acid resistance in bacteria, thus 

indicating a role of GABA in regulating cytosolic pH. The activity of GAD and 

accumulation of GABA have been known to increase in plants by acidic pH (Snedden et 

al., 1995, 1996; Shelp et al., 1999). 

A role of GABA shunt has also been suggested in protection of plants against 

oxidative stress (Bouche et al., 2003; Bouche and Fromm, 2004). Bouche et al. (2003) 

reported that Arabidopsis mutants under-expressing SSADH lacked the ability to 

scavenge H2O2, thus being more susceptible to oxidative stress. Based on the fact that the 

conversion of SSAD to succinate generates both succinate and NADH to the respiratory 

chain, they hypothesized that the utilization of GABA for production of succinate may 

limit the accumulation of reactive oxygen intermediates during oxidative stress when 

some TCA cycle enzymes are inhibited. Coleman et al. (2001) reported that yeast knock

out mutants of GABA-shunt genes were more susceptible to injuries caused by H2O2. 

The property of GABA to act as a neurotransmitter in animals prompted the idea that 

it might be a potential deterrent towards insects feeding in plants (Bouche and Fromm, 

2004). Ramputh and Bown (1996) demonstrated that an enhancement of GABA 

biosynthesis in plants inhibited the growth and development of certain types of insect 

157 



larvae. Bown et al. (2002) found that "insect footsteps" on leaves stimulated the synthesis 

of GABA. Over-expression of GAD has not only been suggested to make tobacco plants 

resistant to the root-knot nematode (McLean et al., 2003), but also to prevent their 

feeding by phytophagous insect larvae (MacGregor et al., 2003). Janzen et al. (2001) 

noted an enhancement in GABA synthesis during oxidative burst in the mesophyll cells 

of Asparagus sprengeri. The role of GABA as an osmoregulator has been studied by 

Rentsch et al. (1996) who reported that an Arabidopsis Pro transporter, which also 

transports GABA, is induced during water or salt stress. 

As mentioned above, GABA is not only a decarboxylation product of Glu, but also 

an oxidation product of Put (Cona et al., 2006). As mentioned in Chapter III, Bhatnagar 

et al. (2002) reported that in the HP cells, the rate of Put catabolism keeps pace with its 

biosynthesis. Greater catabolism of Put occurs without significant increase in the activity 

of DAO. Thus, we were interested to test how the inhibition of GAD by 3-

mercaptopropionic acid (3-MPA), an established inhibitor of GAD (Martyniuk et al., 

2007) affected the metabolism of GABA and that of PAs in the HP cells. As described 

earlier, the catabolism of Put releases H2O2 (Bhatnagar et al., 2002), the accumulation of 

which has been correlated with cell death (Pellinen et al., 2002, Gechev and Hille, 2005). 

Thus, the inhibition of GABA synthesis by GAD could have an accelerating effect on Put 

catabolism by DAO to compensate for the loss of GABA in both the HP and control 

cells, a condition that may lead to an even greater accumulation of H202 in the HP cells, 

causing greater cell damage than in the control cells. Therefore, we also studied the 

viability of these cells and their mitochondrial activity in response to treatments that 

inhibited GAD activity. 
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Materials and Methods 

Three-day-old suspension cultures of control and HP cells were used for analysis of 

the effects of 3-MPA on growth, PAs, MTT activity and Evans blue retention. In the first 

experiment, 50, 100, and 250 uL of a 100 mM stock solution (in water) of 3-MPA were 

added to 50 mL suspension cultures giving final concentrations of 0.1, 0.25 and 0.5 mM. 

For further analysis, only 0.1 mM 3-MPA (Sigma, M6760) was used, and cells were 

harvested by vacuum filtration (as described before) at 6, 24 and 48 h after treatment. 

Cells were analyzed for mitochondrial activity (by MTT assay), membrane damage (by 

Evans blue retention), cellular contents of PAs, GABA, GSH and Ca as described under 

"General Materials and Methods". 

Characterization of glutamate decarboxylase (GAD) activity 

Three-day-old control and HP cells (not treated with 3-MPA) were harvested by 

vacuum filtration (200 ± 5 mg FW) and placed in assay buffer (350 uL 0.1 M Tris, pH 

7.3, 0.1 mM PLP, 10% glycerol, 1 mM DTT) in 16x100 mm glass test tubes and frozen 

(-20 °C) overnight. After thawing on ice for 1 h, 50 (iL of labeled substrate (0.1 |j.Ci [1-

HC]Glu (Cat. # ARC0240; American Radiolabeled Chemicals, Inc., St. Louis, MO; sp. 

Act. 50-60 mCi mmol"1) in 5.0 mM unlabelled Glu (Sigma, G8415) was added to each 

tube. A 2 cm2 Whatman 3 MM filter paper (Whatman, Maidstone, UK) soaked with 50 

(j.L Scintigest (Fisher Scientific, Lot # 882757) was placed in a polypropylene well 

(Kontes, Vineland, NJ; Cat # 88230-0000) suspended from a rubber stopper as for the set 

up of ODC activity. In order to test for the in vitro inhibitory effects of 3-MPA on 

enzyme activity, either 1 or 5 mM 3-MPA was added to the tubes. The tubes were 

incubated in a water bath (30 °C) for 60 min at 60 rpm. Reactions were terminated by 
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injecting 1.0 mL of 0.5 N H2SO4 into each tube through the rubber stopper. Following 

additional incubation for 30 min, the filter papers were removed and counted for 

radioactivity in 10 mL Scintiverse (Fisher Scientific, Lot # 036130) in a liquid 

scintillation counter (LSC-6000; Beckman, Fullerton, CA). Enzyme activity was 

calculated as nmol CG^.rf'.g"1 FW. This experiment was done twice and each time, two 

replicates per cell line, per concentration of inhibitor were used. 

Results 

Glutamate decarboxylase (GAD) 

Activity (g"1 FW) of GAD was almost 40% higher in the untreated HP cells than the 

control cells (Fig. 44). Addition of 1 or 5 mM 3-MPA to the reaction mix caused 80-90% 

reduction in enzyme activity in extracts of both cell lines showing that 3-MPA was an 

effective inhibitor of GAD. 

Effects of 3-MPA on growth and fresh weight of cells 

In a preliminary experiment, three different concentrations (0.1, 0.2 and 0.5 mM) of 

3-MPA were used for treatment with three day old cells. Within 24 h, the HP cells 

appeared sticky and unhealthy in the two higher concentrations; they died by 48 h. 

However, the control cells appeared healthier at 0.1 and 0.2 mM concentrations. Based 

on these observations, only the 0.1 mM concentration was chosen for subsequent 

experiments. The fresh weights of the harvested pellets of the untreated control and HP 

cells per flask were comparable at any given time of analysis (Fig. 45A). Significant 

decrease in fresh weight was observed in both control and HP cells at 24 and 48 h after 

addition of 0.1 mM 3-MPA, although this decrease was much higher in the HP cells than 
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in the control cells . 

Effects of 3-MPA on mitochondrial activity and membrane function 

As mentioned before, colorless MTT interacts with the mitochondrial electron 

transport chain and gets reduced to form a blue colored product called formazan. Thus, 

when the overall mitochondrial oxido-reductase activity is higher, the intensity of blue 

color is proportionately higher. As seen in earlier experiments, the mitochondrial activity 

in the two cell lines was quite comparable at a given time. Both, the control and the HP 

cells responded quickly to treatment with 3-MPA in that they showed a significant 

reduction in mitochondrial activity within 6 h (Fig. 45B). During the next 42 h, the 

response of the two cell lines was quite different; while in the HP cells, a further decrease 

in mitochondrial activity was observed at 24 h, in the control cells, there was a small (but 

statistically significant) increase in mitochondrial activity at 24 after addition of 3-MPA. 

By 48 h, the HP cells had almost entirely lost their mitochondrial activity; however, the 

control cells seemed to maintain it at a still higher level in the MPA-treated cells than the 

untreated cells. 

Evans Blue retention, which indicates depolarization of the plasma membrane, 

showed (as before) that there were more membrane-compromised HP cells than control 

cells at each time of analysis (Fig. 45C). A significant increase in membrane damage in 

response to 3-MPA treatment was seen within 6 h in both types of cells; however, the 

control cells showed a recovery from the effect, while in the HP cells the adverse effect 

continued until 48 h of treatment. 
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Effects of 3-MPA on polyamines, GABA and glutathione 

As expected, the Put content was several-fold higher in the untreated HP cells than 

the control cells at all times during the period of this experimentation (Fig. 46A). A 

significant decrease in Put content on addition of 3-MPA was seen at 24 and 48 h in both 

cell lines, although this decrease was much greater (as a percentage of the original 

amount) in the HP cells than the control cells; little effect on Put content was seen at 6 h 

in either cell line. No significant changes in cellular Spd was seen in the control cell line 

on treatment with 3-MPA (Fig. 46B); however, in the HP cells 30 to 40% reduction in 

Spd content was seen with 3-MPA treatment. 

The effect of the GAD inhibitor 3-MPA on GABA and GSH content was studied 

only at 24 h after 3-MPA addition. It was seen that the presence of 3-MPA caused a 

significant increase in GABA content in the control cells, while a significant decrease in 

GABA was seen in the HP cells under the same conditions (Fig. 47). As with GABA, the 

addition of 3-MPA caused no significant change in the GSH content of control cells (Fig. 

48); in the HP cells, an almost 70% reduction was seen in GSH content in response to 3-

MPA addition. 

Discussion 

As mentioned earlier, the decarboxylation of Glu and oxidation of Put, both lead to 

the production of GABA which then enters the TCA cycle via succinate and the GABA 

shunt. It is however not known if the two pools of GABA ever mix or perform separate 

functions; even though their catabolic fate is the same, i.e. entry into the TCA cycle via 

succinate (Fig. 43). Putrescine catabolism is thus not only instrumental in recycling the 
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carbon skeleton of this PA, and, thus furnishing some important TCA cycle intermediates 

with its carbon skeleton, but also aiding in the recycling of the nitrogen component of 

Put. Since GABA is an important intermediate, which is often accumulated in response to 

a wide variety of abiotic stress factors, its cellular content at a given time is regulated by: 

(a) its biosynthesis from Glu directly by GAD or indirectly via Orn and/or Arg by ODC 

and/or ADC and DAO, and (b) its recycling via GABA-T and SSADH. It has already 

been established that the HP cells have both a higher rate of Put production as well as its 

catabolism (Bhatnagar et al., 2002), thus the contribution of this pathway is several-fold 

higher in these cells than the control cells. The higher amount of GABA in the HP cells 

observed here on a given day, and that observed earlier in our lab on several days of the 7 

day culture cycle (M. Serapiglia, R. Minocha and S.C. Minocha, unpublished data), is 

consistent with this argument. 

It has been suggested that high Ca content stimulates calmodulin-mediated GAD 

activity (Kinnersley and Turano, 2000). As can be seen from Fig. 27A, HP cells have 

significantly higher Ca content than the control cells on almost all days of the week. This 

may explain as to why GAD activity is several-fold higher in the untreated HP cells as 

opposed to the untreated control cells (Fig. 44). This observation is also consistent with 

the detailed analysis of GAD activity by M. Serapiglia in the two cell lines. Serapiglia 

also observed that there was no major difference in the mRNA of GAD between the two 

types of cells on several different days of analysis during the 7 day culture cycle. These 

observations lead us to conclude that either the biosynthesis of GABA by GAD is not 

feed-back regulated at transcriptional or enzyme activity levels, or the two pools of 

GABA are compartmentalized separately in the cells. The use of 3-MPA as an inhibitor 
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of GAD, has been reported in animals (Martyniuk et al., 2007); it acts as a competitive 

inhibitor of the enzyme. It is evident from Fig. 44 that 3-MPA was quite effective in 

inhibiting GAD activity in poplar cells. 

Based on several parameters, we found that the response of the two cell lines to the 

GAD inhibitor 3-MPA was quite different. A sharp decrease in cell fresh weight was seen 

in the HP cells, 24 and 48 h after addition of the inhibitor, indicating a strong decline in 

growth (Fig. 45A). While the mitochondrial activity (Fig. 45B) was significantly affected 

in the control cells only at 6h, a decrease in mitochondrial activity in HP cells was seen 

up until 48 h by 3-MPA treatment. These data correlate well with the data from Evans 

blue retention assay which measures damage to the cell membrane (Fig. 45C); membrane 

damage due to 3-MPA treatment was greater and longer-lived in the HP cells than the 

control cells. This may cause more Put (and perhaps GABA and GSH as well) to be lost 

from the HP cells than the control cells in response to 3-MPA treatment, especially at 24 

and 48 h after treatment. 

A decrease in the GABA content of HP cells in response to 3-MPA shows that GAD 

activity in these cells is a major contributor to GABA, despite the fact that Put catabolism 

in these cells is several-folds elevated. This is consistent with a higher GAD activity in 

the HP cells seen here (and also earlier on all days of the 7-d culture cycle by M. 

Serapiglia, R. Minocha and S.C. Minocha; unpublished data). This observation suggests 

that there probably is no feed-back regulation of GAD by GABA. However, the increase 

in GABA in control cells in the presence of 3-MPA is an unexpected observation, unless 

3-MPA has some role in stimulating the activity of DAO in these cells. Perhaps DAO 

activity is subject to stimulation by reduced GABA, which will be the case with control 
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cells in the presence of 3-MPA. There is currently no evidence in favor of or 

contradictory to this argument. An alternate explanation would be that the observed 

decrease in mitochondrial activity and increase in membrane damage to HP cells due to 

3-MPA (as mentioned above) result in the loss of GABA from HP cells. It should be 

pointed out that the mitochondrial activity and membrane damage are differentially 

affected in the control and the HP cells; the former recovering by 24 h and the latter 

continuing to show the effect. The difference in the reduction in cellular Put in two cell 

lines is consistent with this explanation; the HP cells lose more Put than the control cells, 

assuming its production is not affected by 3-MPA. This may also be an explanation for 

lower cellular contents of GSH in these cells. 

This increase in GABA content in the control cells on 3-MPA addition could be 

attributed to either a higher catabolism of Put or a lower catabolism of GABA, resulting 

in its greater accumulation. The latter seems more probable since Put content does not 

decrease significantly in the control cells on addition of 3-MPA. Thus, inhibiting GABA 

synthesis from Glu could be acting as a signal to inhibit its utilization in downstream 

processes, leading to its greater accumulation. In the HP cells, however, a significant 

decrease in Put content due to GAD inhibition points towards an even greater catabolism 

of Put to compensate for the loss of GABA from Glu, resulting in greater generation of 

H2O2 . This could explain the greater loss in membrane integrity and mitochondrial 

activity in these cells on GAD inhibition. 

As stated before, a role of GABA has been suggested in preventing oxidative stress 

in plants (Bouche and Fromm, 2004). It was observed that Arabidopsis mutants, 

exhibiting limited expression of SSADH lacked the ability to scavenge H2O2, thus being 
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more susceptible towards the toxic effects of oxidative stress (Bouche et al., 2003). Since 

the conversion of SSAD to succinate supplies both succinate and NADH to the 

respiratory chain, Bouche et al. (2003) hypothesized that the utilization of GABA 

towards production of succinate may limit the accumulation of reactive oxygen 

intermediates during oxidative stress when some TCA cycle enzymes are inhibited. Also, 

as stated before, Coleman et al. (2001) reported that yeast knock-outs in GABA shunt-

genes were more susceptible to injuries caused by H2O2. Hence, it is possible that 

inhibiting GABA production from Glu in the HP cells leads not only to greater 

catabolism of Put, leading to higher generation of H2O2, but also to enhanced utilization 

of GABA itself, so as to scavenge the same. The GSH content does not change much due 

to 3-MPA addition in the control cells, while in the HP cells, it decreases significantly 

(Fig. 46). This is further indicative of enhanced oxidative stress in HP cells due to GAD 

inhibition, since the lower content of GSH could mean a possible utilization of the same 

as a reductant to ameliorate the toxic effects of H2O2 generation. 

Conclusions 

Data presented here show qualitatively different responses of the HP and control 

cells towards GAD inhibition by 3-MPA. While, the already stressed HP cells show a 

general decline in cell health, Put and GABA content, the control cells exhibit a better 

tolerance towards the possible negative impacts of GAD inhibition by 3-MPA. 
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CHAPTER VI 

PUTRESCINE OVERPRODUCTION AND CARBON ASSIMILATION 

The carbon skeleton of PAs is derived primarily from a-ketogluterate (a-KG), an 

intermediate of the TCA cycle and the primary precursor of Glu. In poplar cell cultures 

used here, the ultimate source of carbon is sucrose in the medium. Sucrose is taken up by 

the cells either by symplastic transport or by diffusion through the plasma membrane 

(Dennis and Blakely, 2000). Depending upon the biochemical needs in non-

photosynthetic tissues, sucrose is channeled along a variety of pathways into different 

sub-cellular locations (Sturm, 1999). The catabolism of sucrose occurs by its conversion 

into hexoses either by sucrose synthase (EC 2.4.1.1.3) or invertase (EC 3.2.1.26). While 

sucrose synthase, in an UDP utilizing reaction, converts sucrose into UDP-glucose and 

fructose; invertase produces the monosaccharides glucose and fructose. As mentioned 

earlier, the TCA cycle intermediate a-KG provides the carbon skeleton for biosynthesis 

of amino acids like Glu, the amine group being derived from assimilated N via Gin. Since 

the increased production of Put in the HP cells will utilize large amounts of Glu, it was 

considered prudent to study the incorporation and assimilation of 14C-sucrose from the 

medium into PAs. We wanted to test if the increased utilization of carbon into PAs in 

these cells results in higher uptake and assimilation of sucrose or there only is a shift in 

the metabolism of carbon without effects on sucrose uptake; thus we studied the uptake 

and incorporation of 14C from sucrose into PAs in the control and the HP cells during the 

7 d culture cycle. 
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Introduction 

As described above, the pathway for the biosynthesis of PAs has been well 

established in a variety of organisms. While changes in PAs during development as well 

as in response to various environmental conditions have been described in detail; very 

few attempts have been made to relate these changes to the availability of precursors and 

their effect on carbon and nitrogen metabolism in the cell. Little information is currently 

available on the incorporation of carbon from the primary carbohydrates (sucrose, 

glucose) into PAs when their cellular concentrations fluctuate either during development 

or in response to abiotic stress, although the study of incorporation of labeled carbon into 

amino acids has a long history. As early as 1955, Koeppe and Hill elucidated the 

incorporation of carboxyl and bicarboxylate carbon into Glu in rat. Hill et al. (1958) 

suggested that labeling patterns in Glu, Ala, Ser and Asp could be used to differentiate 

between most of the known routes of metabolism of non-carboxyl carbons in rats. 

Gaitonde et al. (1964) studied the incorporation of carbon from glucose into amino acids 

in rat brain and liver and observed that about 30 min after intravenous injection with 

[14C]glucose, brain Glu incorporated 37% of the label and liver Glu, 5.2%. They also 

made some important observations about different pools of amino acids present in rat 

brain. Stone et al. (1972) found that the incorporation of carbon from [14C]glucose into 

several amino acids was greater in hypoglycaemic dogs as opposed to the control 

animals. Vuorinen (1992) studied the metabolism of inorganic carbon in willow roots and 

observed that 1 h after feeding the cuttings with 14C-labelled NaHC03, most of the 14C 

was fixed into organic acids and amino acids both in light and in darkness in all parts of 

the plants. More recently Chikov et al. (2005) studied the metabolism of carbon from 
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labeled glucose and made several interesting observations on the incorporation of label 

into metabolites like sucrose and amino acids in different tissues and organs of the plant. 

The incorporation of labeled carbon from [14C]Orn and [14C]Arg into PAs in the HP 

cells was studied by Bhatnagar et al. (2001, 2002). They observed that the incorporation 

of label into any of the three PAs was significantly higher in the HP cells than the non-

transformed controls at all time periods tested. The amount of label in the Put fraction 

was seen to decline slightly after the first 4 h of incubation in response to Put 

overproduction. Total amount of label recovered in Put was several-fold higher than that 

in the other two PAs, while the uptake of both labeled amino acids was similar in the two 

cell lines. Bhatnagar et al. (2002) also studied the regulation of Put catabolism in the HP 

cells by feeding them with [14C]Orn and [14C]Put and following the loss of [14C] Put in 

them at various times after transfer to label-free medium. They concluded that in these 

cells the rate of Put catabolism was proportional to the rate of its biosynthesis; the 

increased Put degradation occurred without significant changes in the DAO activity. 

Earlier studies suggest that the turnover of Glu in plants is rapid (Forde and Lea, 

2007). This observation combined with the fact that the TCA cycle intermediates also 

cycle the carbon rapidly, one can assume that changes in PA biosynthesis will directly 

affect the pool of Glu and in turn that of a-KG, its direct precursor. Therefore, we 

investigated the incorporation of 14C from labeled sucrose into PAs in the control and the 

HP cells. We also studied the effect of limiting carbon supply in the medium on the direct 

utilization of Arg into PA biosynthesis in the two cell lines. 
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Materials and Methods 

14C sucrose feeding 

Three days after transfer to fresh medium, the contents of several flasks of control 

and the HP cells were pooled separately into 500 mL Florence flasks and mixed by slow 

stirring on a magnetic stirrer. The cells were then aliquoted into 10 mL portions in 50 mL 

Erlenmeyer flasks, to which 1 uCi [U-14 C]sucrose (ICN, Cat # 1113783) was added. The 

cells were collected by vacuum filtration on Miracloth at 8, 24, 48 and 72 h after 

incubation with radioactivity. In a separate experiment, collections were also done at 2, 4, 

6 and 8 h. The cells were washed with -20 mL 2% sucrose solution after filtration. Free 

polyamines were extracted with 1 mL of 7.5 % perchloric acid (PCA; Fisher scientific, A-

228) per 500 mg FW of cells and processed for analysis of PAs by slight modification of 

the procedure of Bhatnagar et al. (2002). Following freezing and thawing three times, the 

cells in PCA were mixed by vortexing for 1-4 min and centrifuged for 10 min at high 

speed. To 500 \xh of the supernatant (in a disposable glass test-tube), equal amounts of 

saturated sodium carbonate was added. The mixture was then transferred to a 2 mL 

microfuge tube and 250 uL of a 40 mg/mL solution of dansyl chloride in acetone were 

added. Following 1 h incubation in a water bath at 60° C, 100 \iL of 100 mg/mL Ala and 

200 mg/mL Pro (Sigma, P0380) were added. This was followed by 30 min incubation at 

60° C, after which PAs were separated from amino acids by addition of 300 uL photrex 

toluene. Following vortexing and centrifugation, 250 uL of the top organic layer was 

removed to a fresh 1.5 mL microfuge tube. The remaining layer was re-extracted with 

additional 200 uL toluene. The toluene and aqueous fractions, as well as the original 

PCA fraction (50 uL each) were counted for radioactivity in 5 mL scintillene (for toluene 
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fraction; Fisher SX 2-4) or scintiverse (for aqueous and PCA fractions; Fischer 12-4) 

using a liquid scientific counter (Beckman, Fullerton, CA; LS 6000SC). 

14C arginine feeding 

For 14C-Arg feeding experiments, two flasks of either control or HP cells (3-day old) 

growing under normal conditions were pooled and ~ 50% of the spent medium was 

removed. Each flask was then incubated with 1 uCi [U-14C-D, L]Arg for 2 h. Cells were 

then washed with label-free medium and transferred to fresh medium with or without 2% 

sucrose. Cells were harvested at 0, 8, 24, 48 and 72 h after transfer to fresh medium and 

analyzed for incorporation of radioactivity into PAs as described above. 

Results 

14C-sucrose feeding 

The radioactivity recovered in the toluene phase accounted for the recovery of label 

in total free PAs and is presented in Fig. 49A. The assimilation of labeled carbon into 

PAs was significantly higher in the HP cells than in the controls, at all time periods of 

analysis after 8 h of incubation; small increase was visible as early as 2 h of incubation. 

The assimilation of 14C into PAs could be detected as early as 2 h after feeding the cells 

with 14C-sucrose. While there was a steady increase in ,4C assimilation into PAs in the 

HP cells for at least up to 72 h after feeding, in the control cells, this assimilation seemed 

to change much less after 24 h. 

The radioactivity in the aqueous fraction of the dansylation reaction mix contains 

both unused sucrose and its various metabolites, including total free amino acids (Fig. 

49B). Up until 24 h, the radioactivity recovered in the aqueous phase was almost the 

176 



2 4 8 24 48 72 

Time (h) 

2 4 8 24 48 72 
Time (h) 

500000 

400000 

^" 300000 
D) 

Q. 200000 
Q 

100000 

0 

2 4 8 24 48 72 
Time (h) 

Figure 49. Radioactivity recovered in the (A) toluene (B) aqueous 
and (C) PCA extracts at different time periods after [U-14C]sucrose 
feeding to control and HP cells. Each bar represents mean (±) SE of 
three replicates for 2, 4 and 72 h and six replicates from two 
experiments for 8, 24 and 48 h. An * indicates a significant 
difference (P<0.05) in 14C assimilation between the control and HP 
cells at any one time of analysis. 
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same in both cell lines, perhaps due to the fact that this fraction also contains 14C-sucrose. 

At 48 and 72 h, a greater amount of radioactivity was seen in the HP cells than in the 

control cells. At these times, there was also a net loss of 14C content in both the cell lines; 

the loss being greater in the control than the HP cells. The maximum assimilation of 14C 

in the aqueous fraction was at 24 h in the control cells and at 24 and 48 h in the HP cells. 

Radioactivity in the PCA extract (Fig. 49C) was a measure of the total radioactivity 

that had entered the cells from the culture medium and it followed trend similar to that for 

the aqueous fraction, since the percentage of radioactivity entering the PAs (and hence 

the toluene phase) was much smaller than the amount recovered in the total amino acids 

(i.e. the aqueous phase). 

14C arginine feeding 

The recovery of label in the toluene fraction was, as expected (Bhatnagar et al., 

2001), higher in the HP cells than in the controls (Fig. 50). For most of the time-periods, 

in both cell lines, there was a decrease in ,4C content in PAs with deprivation of carbon, 

although these numbers were still higher in carbon deprived HP than in the control cells 

growing in regular (sucrose supplemented) medium. The difference between plus and 

minus sucrose cultures increased with the time of culture. Also, with time the total 

amount of radioactivity in the PA fraction decreased in all cases. 

Discussion 

During glycolysis, one molecule of sucrose (2 hexose molecules) produces 4 

molecules of Pyr, which, through acetyl CoA (a 2-C compound) enter the TCA cycle. 

Acetyl CoA is formed from Pyr in a decarboxylation reaction (with the release of a single 
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Figure 50. Radioactivity recovered in total PAs at different time periods 
after [U-C14]Arg feeding and subsequently growing the cells with or 
without sucrose. Each bar represents mean (±) SE of six replicates from 
two experiments. An * indicates a significant difference (P<0.05) in 14 C 
assimilation between the cells supplemented with sucrose and the ones 
without it within the same cell line and time period. 



C02 molecule), brought about by the enzyme Pyr dehydrogenase. Since sucrose that was 

fed to the cells was uniformly labeled, a 14CC>2 molecule was released during the 

conversion of Pyr to acetyl CoA. Two more molecules of CO2 are released during TCA 

cycle, one during the conversion of isocitrate to a-KG and the other one, in the 

subsequent step, i.e. during the conversion of a-KG to succinyl-CoA, although, the 

carbon molecules lost through CO2 generation in these two steps are not the ones derived 

from acetyl CoA (which carries the labeled C from Pyr), hence the label gets carried 

through to the next intermediate. 

The 5-C compound a-KG is responsible for the biosynthesis of amino acids of the 

Glu family, including Orn and Arg, the two precursors of Put. Both l4C atoms, per 

molecule of a-KG get carried to Glu and subsequently to Orn. The CO2 released during 

decarboxylation of Orn to yield Put, does not carry the label, hence, both 14C atoms get 

transferred to a molecule of Put. The data presented in Figs. 49 B & C show that the 

uptake of sucrose during the first 24 h period was somewhat lower in the HP cells than 

the control cells. After a peak in 14C accumulation at 24 h, both cell lines lost the label; 

the loss being slower in the HP than the control cells. Thus at 48 and 72 h of incubation 

in 14C-sucrose, the amount of label in HP cells was greater than that in the control cells. 

This loss of radioactivity includes all metabolites derived from sucrose as well as its 

respiratory loss as !4C02. However, the incorporation of 14C into PAs in the HP cells was 

greater than that in the control cells from the very beginning; small difference being 

visible within two h and the difference being sustained through out the study period (Fig. 

49A). This shows that the flux of sucrose into PAs was increased without additional 

uptake; which is not surprising since the total fraction of radioactivity incorporated from 
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sucrose into the PAs was about 1 -2% of the sucrose taken up by the cells. The data also 

indicate that the arte of C in the PAs was turned over slower than in other metabolites 

(combined) because while the total amount of radioactivity in the cells decreased after 24 

h; the fraction in the PAs actually increased with time up to 72 h in both cell lines. 

The 14C-Arg feeding experiment was conducted to compare the conversion of 14C-

Arg to 14C-Put between the two cell lines under conditions of carbon deprivation. We 

have reported earlier that the activity of ADC in our suspension cultures is higher in the 

HP cells than in the controls on almost all days of the 7-d culture cycle (Chapter III). It 

has been suggested that Orn biosynthesis in the HP cells is enhanced due to its enhanced 

utilization in Put biosynthesis. Thus the increased incorporation of Arg into PAs is in line 

with earlier results of Bhatnagar et al. (2001, 2002) and Page et al. (2007). Since the 

absence of sucrose in the medium caused a reduction in radioactivity in the PA fraction 

that was derived from Arg; it can be argued that this reduction is the result of a faster turn 

over of Put in the cells. This may be due to the fact that the cells start using PAs as a 

source of carbon under conditions of carbon deprivation in the medium. 

Conclusions 

The hypothesis governing the 14C-sucrose feeding experiment was that the 

assimilation of carbon into PAs should be higher in the HP cells than in the control cells. 

As expected, the recovery of label in total PAs was higher in the HP cells than the control 

cells. It is also interesting to note that while the assimilation of radioactive carbon into 

control cells increases by more than 50% between 8 and 24 h, it does not increase 

significantly after that. This is consistent with more than 75% loss of radioactivity from 

the cells during the period of 24 to 72 h in the control cells. In the HP cells, however, this 
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assimilation maintains an upward trend up to 72 h after feeding, consistent with the 

profile of total radioactivity in these cells. 
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CHAPTER VII 

PUTRESCINE OVERPRODUCTION AND THE PROLINE PATHWAY 

The PA metabolic pathway is intricately connected to Pro metabolism (Fig. 2, Fig. 

Al) in that they both share common precursors Glu and Orn. The greater utilization of 

both Glu and Orn towards Put biosynthesis and at the same time, an increase in Pro 

accumulation in response to enhanced Put metabolism made it necessary for us to study 

the effect of such a genetic manipulation on the metabolism of Pro. Thus in addition to 

the cellular contents of Pro, we analyzed the enzyme activity and the transcript levels of 

two key enzymes in Pro biosynthesis in the two cell lines on several days of culture. 

Introduction 

Proline is one of the most widely studied molecules in plant cells under abiotic stress 

conditions (Madan et al., 1995, Kavi Kishor et al., 2005; Kocsy et al., 2005). Among 

common responses in all organisms for regulating internal osmolarity is the accumulation 

of compatible solutes such as sugars and neutral amino acids. Proline accumulation in 

stressed plants, with salt stress being the most widely studied, confers enhanced 

osmotolerance to the plant. The enzymes mainly responsible for Pro biosynthesis in 

plants are OAT, P5CS and P5CR (Kocsy et al., 2005; Kavi Kishor et al., 2005). Proline 

can be made either from Glu or from Orn. The former occurs via the enzyme P5CS and 

the latter via OAT (Fig. 2). Proline is catabolized by its conversion to P5C, the reaction 

being catalyzed by PDH or to Glu by P5CDH (Hare et al., 1999). The cellular contents of 
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Pro are regulated by a combination of its biosynthesis and degradation as well as its 

utilization in protein synthesis (Kavi Kishor et al., 2005). The role of the Glu pathway in 

Pro accumulation under stress conditions has been well established (Kavi Kishor et al., 

1995, 2005; Vendruscolo et al., 2007). The role of Orn pathway in Pro accumulation 

during stress has been a matter of debate (Roosens et al., 1998, 2002; Kavi Kishor et al., 

2005). The results of transgenic manipulation of the PA metabolic pathway in poplar 

cells to overproduce Put also showed an increase in the accumulation of Pro. The fact that 

both share common precursors for their biosynthesis, prompted us to investigate the role 

of OAT, which aids in the synthesis of Pro from Orn in the transgenic poplar cells. 

Genetic manipulation of tobacco to alter Pro metabolism has also been studied 

previously (Kavi Kishor et al., 2005). The transformation of tobacco was done with the V. 

aconitifolia P5CS gene regulated by the 35S promoter. The transgenics were reported to 

produce a high level of the enzyme and accumulated 10 to 18-fold more Pro than the 

corresponding wild type plants. Overproduction of Pro also enhanced root biomass and 

the plants tolerated NaCl stress under glasshouse conditions. Although several reports 

have been published on the transformation of plants to independently manipulate either 

Pro or PA metabolism, the effect of such a manipulation of one metabolite over the 

metabolism of the other has not been published. 

As mentioned earlier, the levels of cellular Put increase in plants under conditions of 

abiotic stress. It has been seen that both PA and Pro levels were affected by cadmium 

stress in soybean root nodules (Balestrasse et al., 2005); i.e. increased concentrations of 

Cd increased levels of Put as well as Pro in some of the plant organs. Also, it has been 

known that both Put and Pro accumulate under conditions of high nitrogen nutrition, thus 
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acting towards the sequestration of excess nitrogen (Minocha et al., 2000; Bauer et al., 

2004). So intimately are the pathways for synthesis and degradation of Pro and Put 

related that it becomes essential to study the impact of over-production and in turn, 

catabolism of Put through genetic manipulation on the pathway of Pro biosynthesis. 

Ornithine aminotransferase is a pyridoxal phosphate-dependent enzyme that utilizes 

L-Orn and a-kG to produce glutamic-y-semialdehyde; the latter cyclizes non-

enzymatically to form P5C (Kim et al., 1994). Proline can be produced either from Glu or 

from Orn, with glutamic-y-semialdehyde being an intermediate in both pathways 

(Bhatngar et al., 2001). It has been known from labeling experiments that Orn can serve 

as a precursor to Pro in microorganisms, mammals as well as higher plants (Roosens et 

al., 1998). Although in bacteria, Orn is converted to a-keto- 5- aminovalerate by a-OAT, 

followed by a spontaneous cyclization of the product to pyrroline 2-carboxylate (P2C), 

in plants 5-OAT is responsible for the conversion of Orn to P5C (Kavi Kishor et al., 

2005). The S -OAT gene in plants has been studied by several groups (Delauney et al., 

1993; Roosens et al., 1998, 2002; Armengaud et. al., 2004). Subcellular localization of 

OAT has been mostly indicated to be mitochondrial (Kim et. al. 1994; Armengaud et. al., 

2004). It has been reported from several sources that OAT activity does indeed increase 

as a prerequisite for Pro levels to increase (Hervieu et al. 1995; Madan et al., 1995; 

Roosens et al. 1998, 2002). The other genes of the Pro metabolic pathway, namely, 

P5CS, P5CR, PDH, P5CDH (Fig. 2), have been cloned and characterized in a variety of 

organisms (Delauney and Verma, 1990; Ginzberg et al., 1998; Miller et al., 2005). 
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Materials and Methods 

OAT assay 

Ornithine-8-aminotransferase was assayed by slightly modifying the method of Kim et 

al. (1994). Cells (200 ± 5) mg were collected by vacuum filtration on Miracloth and placed 

in 400 uL extraction buffer in 1.5 mL microfuge tubes. The extraction buffer consisted of 

100 mM potassium phosphate (K-Pi) buffer, pH 8.0, 0.2 mM pyridoxal 5-phosphate (PLP) 

and 0.2 % triton-X 100 (Sigma, T9284). The cells were frozen (at -20° C) and thawedg on 

ice; they were vortexed until thoroughly mixed and centrifuged at 14,000 rpm in a 

microfuge for 10 min. The supernatant (200 uL) was used for enzyme assay. 

The assay mixture (in 2 mL microfuge tubes) in a final volume of 1 mL consisted of 80 

mM K-Pi buffer, pH 8.0, 35 mM L-ornithine (Sigma, 02375), 5 mM a-ketoglutarate 

(Calbiochem, 4210), 0.05 mM PLP, 5 mM o-aminobenzaldehyde (Sigma, A9628) (a 100 

mM stock of o-aminobenzaldehyde was made in 95% ethanol). The tubes were incubated 

in a 37 °C water-bath for 45 min. Following incubation, the reaction was stopped by adding 

500 uL 10% trichloroacetic acid (Sigma, T6399). After additional incubation at room 

temperature for 30 min, absorbance was measured at 440 nm using a Hitachi U-2000 

spectrophotometer. 

Enzyme activity was expressed as umol P5C produced per g"1 FW h"1, which was 

calculated using the millimolar extinction coefficient (2.71) for the product of this 

enzymatic reaction with o-aminobenzaldehyde as mentioned by Kim et al. (1994). 

Specific activity was expressed as umol P5C produced mg"1 protein h"1. Protein content 

was determined as mentioned in "General Materials and Methods". 
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PCR amplification 

Potential coding sequences in poplar for the genes of interest were determined by 

searching the Populus trichocarpa database (http://genome.jgi-

psf.org/Poptrl/Poptrl.home.html) using the known sequences from several other plants. 

Based on the aligned sequences, primers were designed using the Primer-3 software 

(version 0.4.0) to PCR-amplify the corresponding gene fragments from the cDNA library 

from our cells (constructed by Dr. Andrew Page from our poplar suspension cultures, 

using a Creator SMART cDNA Library Construction Kit; BD Biosciences, Palo 

Alto, CA) or from the genomic DNA. The annealing temperatures were set at 56 °C for 

both genes; the rest of the PCR profile was the same as described under "General 

Materials and Methods". This approach identified one P5CR and two PDH paralogues 

(named PDH\ and PDH1). The PCR primers used were: 

P5CR: Fwd (PP5CR-F) 5 'CAA TCC ACT CAA ATC CTG CT 3' 

Rev (PP5CR-R) 5' GCA GCA ACA ACA GCA TTC AT 3' 

PDH\: Fwd (PPDH-F) 5' CAG TCT CCC CTC TAA A-3' 

Rev (PPDH-FR) 5' CCA CAA TCT CTC CTG GCC TA-3' 

PDH2: Fwd (PPDH-99F) 5' CGC CGC CTC TCC TCT AAA T-3' 

Rev (PPDH-680R) 5' CAT GGA AGG TTG AAG GAA GGA TC-3' 

While the PDH\ and P5CR gene fragments were amplified from the cDNA library, 

genomic DNA from the poplar suspension cultures was used to amplify PDH2 as it could 

not be amplified from the cDNA library. Details of the PCR reaction and agarose gel 

electrophoresis have been described under "General Materials and Methods". 
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An OAT fragment had been previously amplified and cloned in our lab from the 

cDNA library by Dr. Sridevi Ganapathi, using the following primers. The PCR primers 

used for OAT were: 

OA T: Fwd 5' GAG GAG TTC TTG CTA AGC CTA CAC A-3' 

Rev 5' CGA GCT GAT GTG GTG TAC TCT GAT-3' 

TOPO-ligations and transformation of Escherichia coli 

Following PCR amplification, the gene fragments were ligated to the TOPO vector 

using an Invitrogen TOPO TA cloning® kit (Invitrogen, Carlsbad, CA, Lot # 1401099). 

The ligation reaction, in a final volume of 6 uL, contained up to 4 \iL of the fresh PCR 

product, 1 uL salt solution, and 1 uL TOPO® vector. The reaction was incubated at room 

temperature for 5 min. The ligated products (2 uL) were used to transform OneShot® 

TOP 10 chemically competent Escherichia coli cells according to the manufacturer's 

instructions (Invitrogen, Lot # 1402704). Following a 30 sec heat-shock at 42 °C, the 

cells were immediately transferred to ice and treated with 250 |xL of S.O.C medium (2% 

Tryptone, 0.5% yeast extract, 10 mM NaCl, 2.5 mM KC1, 10 mM MgCl2, 10 mM 

MgS04, 20 mM glucose). The vials were placed horizontally in an incubator shaker (New 

Brunswick Scientific, Edison, NJ) at 200 rpm and 37 °C for an hour. 

Cells were plated on LB medium supplemented with 50 mg L"1 ampicillin and 20 mg 

mL"1 X-gal in dimethylformamide (to enable blue/white screening) and incubated 

overnight at 37 °C. Following this, white colonies (transformed) were isolated and grown 

overnight in liquid LB medium (containing 50 mg L"! ampicillin) at 37 °C and 250 rpm. 
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Plasmid DNA isolation 

Plasmid DNA was isolated from E. coli cultures by using the FastPlasmid® Mini Kit 

(Eppendorf, Hamburg, Germany; Cat # 95150619). Approximately 3 mL of culture was 

centrifuged at 12,000 xg for 1 min and the supernatant discarded. The pellet was mixed 

thoroughly with 400 uL ice-cold Complete Lysis Solution by vortexing for 1 min. 

Following incubation at room temperature for 5 min, the lysate was transferred to a Spin 

Column Assembly and centrifuged for 1 min at 16,000 xg. The DNA was washed with 

400 uL of Wash Buffer and eluted with 50 uL Elution Buffer. The concentration of DNA 

and its quality were measured by UV spectrometry (Abs26o and A260280, respectively). 

Analysis of ligated products by restriction digestion 

Restriction digestion was performed using EcoRl (New England Biolabs, Ipswich, 

MA; Lot # 32) to confirm the presence of the insert in the TOPO vector. Reaction mix 

contained lx buffer (NEB, Lot # B306), approximately 2 U/ug DNA of restriction 

enzyme, 150-200 ng of template DNA (for analysis), brought to a volume of 10 uL with 

sterile distilled water. Reactions were incubated for 2 to 6 h at 37 °C, and the products 

were separated by electrophoresis on 1 % agarose gel and analyzed as described earlier. 

DNA Sequencing and sequence analysis 

A typical 20 uL reactions included 8 uL of sequencing premix, 66-132 ng DNA, 5 

pmol primer (either T7 or Ml3), and brought to volume with sterile water. Reactions 

were cycled 20-30 times followed by ethanol precipitation and sent to the UNH Hubbard 

Genome Center for sequence analysis. DNA sequences were analyzed and aligned using 

the BioEdit Sequence Alignment Editor (Hall, 1999). 
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RNA Extraction 

Total RNA was isolated from cell samples using the RNeasy® Plant Mini Kit 

(Qiagen, Valencia, CA; Cat # 74904). Cell samples (100 mg) were ground in liquid 

nitrogen and mixed (by vortexing) with 450 uL RLT buffer. The lysate was then 

transferred to a QIAshredder spin column placed in 2mL collection tube and centrifuged 

for 2 min at 16,000 xg. The flow-through was transferred to a new microfuge tube and 

mixed with half the volume 100% ethanol. The sample was then applied to an RNeasy 

minicolumn placed in a 2 mL microfuge tube and centrifuged for 15 sec at 10,000 xg. 

The RNA was washed with 700 uL of Buffer RW1, followed by two washes with 500 uL 

of Buffer RPE and eluted with 50 uL of RNAse free water. 

For DNase treatment, RNA was quantified (Hitachi U-2000 spectrophotometer) and 

approximately 3 \ig RNA was used in a 30 ul DNase reaction containing 3 ul RQ-1 

DNAse Buffer (Promega, M198A), and 3 ul RQ-1 DNase enzyme (Promega, M 610A). 

The reaction was incubated at 37°C for 30 min. Protein was removed by bringing the 

volume to 100 ul with RNase-free water and adding an equal volume of phenol: 

chloroform: isoamyl alcohol (25:24:1). The reaction was centrifuged at 4°C for 5 min at 

top speed. The upper aqueous layer was transferred to a new tube and an equal volume 

of chloroform:isoamyl alcohol (24:1) added, followed by 5 min centrifugation at 4°C at 

top speed. RNA was precipitated with an equal volume of isopropanol and incubation at 

-20°C for 20 min, followed by a 15 min centrifugation at 4°C. The supernatant was 

discarded and the pellet washed with 80% EtOH by centrifugation at 4°C for 5 min. The 

pellet was dried in a vacuum centrifuge and resuspended in 10 uL RNase-free water. 

190 



cDNA synthesis 

DNAse-treated RNA was reverse-transcribed using Superscript™ III Reverse 

Transcriptase (Invitrogen, Cat # 18080-044). In a total volume of 13 uL, about 5 ug total 

RNA was pre-incubated with luL of 50 mM oligo-(dT)20 (Promega, Cat # 18418-020), 1 

(xL of 10 mM dNTP mix and an appropriate volume of RNAse free water at 65 °C for 5 

min. Following that, the mixture was treated with 4 uL 5x First-Strand Buffer, 1 uL 0.1 

M DTT, 1 uL of 40 units uL"1 RNAseOUT™ of Recombinant RNAse Inhibitor (Cat # 

10777-019) and 1 uL of Superscript™ III Reverse Transcriptase. The mixture was 

incubated at 50 °C for 60 min. Resultant cDNA was stored at -20 °C before QRT-PCR. 

Normalized gene expression 

A SYBR-green dye based assay was performed to quantify gene expression. Typical 

30 uL reactions contained 15 jxL of Absolute SYBR Green Rox mix (Thermo-Fisher, Cat 

# AB-1162/A) in a final concentration of lx, 50 nM each of the forward and reverse 

primers, an appropriate amount of cDNA (upto 500 ng), and an appropriate volume of 

DNAse free water. Samples were transferred to a MicroAmp™ Fast Optical 96-Well 

Reaction Plate (Applied Biosystems, Foster City, CA; Part # 4346906) and subjected to 

quantitative real-time QRT-PCR using the Applied Biosystems 7500-Fast Real-Time 

PCR System. The thermocycling conditions included a pre-incubation at 50 °C for 2 min, 

dye activation at 96 °C for 15 sec, denaturation at 95 °C for 15 sec, primer annealing at 56 

°C for 30 sec, and extension at 72 °C for 1 min. A dissociation curve (60 °C to 95 °C) 

confirmed that majority of the amplification signal was due to interaction of the SYBR-

green dye with the specific amplicon and not the primer dimers. Known amounts of 

cDNA were used as standards and the expression of the gene of interest was extrapolated 
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from a standard curve. This expression was normalized to the expression of 

glyceraldehyde-3-phosphate dehydrogenase (G3PDH) gene used as an internal control. 

Results 

OAT activity and total protein content 

The activity of 8-OAT g FW"1 fluctuated during the 7-d culture cycle in both cell 

lines (Fig.51A); the changes being much less in control cells than the HP cells. Activity 

was found to be consistently higher on days 2, 3 and 4 than on days 1, 5 and 7 in both cell 

lines. Activity of S-OAT in HP cells was 4 to 5 fold higher than the control cells on days 

2, 3 and 4, largely due to an increase from day 1 to day 2 on transfer to fresh medium; 

this increase was rather small in the control cells. The enzyme activity in both cell lines 

peaked on days 2 and 3 of the week and declined sharply from day 4 onwards. 

The 5-OAT specific activity pattern over the seven-day culture cycle was similar to 

its activity based on FW basis (Fig.51B), with the HP cells showing significantly higher 

specific activity than the control cells on days 2,3 and 4. 

The total protein content of both cell lines showed an increasing trend from the first 

to the third days after which they started to decline; the results being similar to those seen 

in other experiments where soluble protein content was measured (Fig. 51C). Protein 

content in the HP cells was significantly higher than in the control cells on days 1 to 4. 

In summary, the HP cells showed a greater fresh medium effect than the control cells 

for all three of the parameters studied. 

Normalized gene expression 

As mentioned previously, one copy of P5CR and 2 copies of PDH were identified in 
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poplar cells used here. Following PCR amplification of the gene fragments (Fig. 52) and 

their ligation into the TOPO vector, the ligated products were analyzed by restriction 

digestion and subsequent electrophoresis on 1% agarose gel which showed the expected 

-700 bp insert in P5CR-TOPO and PDH1-TOPO and the 3.9 Kb vector (Fig. 53A, B). 

Since the 1.1 Kb insert in PDH2-TO?0 (Fig. 46B) had a -200 bp EcoRl fragment, 

restriction digestion produced a -200 bp product, a -900 bp product and the 3.9 Kb 

vector (Fig. 47B). 

The expression of PDH\ was declined significantly with time soon after transfer of 

cells to fresh medium but remained higher in the HP cells than in the control cells on day 

one (Fig. 54A). Both cell lines showed an increase in PDH\ expression thereafter with 

the expression in HP cells being several-fold higher on day 4. For the remainder of the 

week, no significant difference was seen in the expression of this gene between the two 

cell lines. 

No significant differences in the expression of P5CR were seen between the two cell 

lines on any given day (Fig. 54B). The expression of P5CR followed a similar pattern in 

both cell lines, showing an increase on transfer to fresh medium up until day 2 followed 

by a small decline. Over the entire period of 7 days, the maximum fluctuation was about 

3 fold in either cell line. The expression of PDHL was much lower as compared to PDH\ 

and could not be accurately measured by the SYBR-green QRT-PCR assay used here. 

Figure 52 (C) represents PCR-amplified PDHl and PDH1 fragments from control and 

HP cDNA, extracted each day of the week. The extremely faint bands of PDHl are 

indicative of much lower transcript levels as compared to expression level as compared to 

PDHl. Normalized expression of OAT also showed considerable variation on different 
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Figure 52. (A) PCR amplification of the 0.7 Kb P5CR (lanes 1 and 2) and 
PDH1 (lane 3) gene fragments from a poplar cDNA library. Lanes 4 and 
6 represent the no-template controls and lane 5 has a 0.6 Kb ADC 
fragment used as positive control. (B) PCR amplification of a genomic 
1.1 Kb PDH2 fragment (lane 1). Lane 2 represents a 1.1 Kb genomic 
fragment of PDH\ as positive control and lane 3 represents a no template 
control. (C) Gel 1 represents PCR amplification of 0.7 Kb PDH\ 
fragment and gel-2 represents the 0.58 Kb PDH1 fragment from control 
and HP cDNA from all days of the 7 d culture cycle. The NEB 2-Log 
DNA ladder was used as the marker. 
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Figure 53. EcoRl restriction digestion of several clones of (A) TOPO-P5CR 
(B) TOPO-PDHl and (C) TOPO-PDH2 showing fragments of the desired 
lengths i.e. single fragments of approximately 700 bp in (A) and (B) and two 
fragments (200 bp and 900 bp) in (C). The NEB 2-Log DNA ladder was used 
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days of the week in both cell lines. Small but significant differences in the normalized 

expression of OAT were seen between the two cell lines on some days but the differences 

were always less than 2-folds. 

Celluar proline content 

As mentioned before (Fig. 13D), Pro was significantly higher in the HP cells on days 

two and three. A significant increase was seen in the content of this amino acid in 

response to fresh medium in the HP cells followed by a decline, while only small changes 

were seen with time in the control cells. 

Discussion 

The effects of transgenic manipulation of the PA metabolic pathway on Pro 

biosynthesis and vice versa, have not been studied in details although several reports have 

been published on independent manipulation of each pathway (Roosens et al., 1998, 

2002; Kavi Kishor et al., 2005; Bhatnagar et al., 2001, 2002). This is particularly 

interesting since both pathways share a number of common regulatory aspects: both share 

common precursors Glu and Orn and both are upregulated by a variety of abiotic stress 

responses. The results from my experiments also show clearly that the upregulation of 

Put causes a concomitant increase in Pro accumulation. What we see here is that the 

activity of OAT, the enzyme presumably functioning to convert Orn into P5C is 

significantly higher in the HP cells than the control at a time that is coincident with 

higher Pro levels in the cells. While the role of this enzyme in Pro biosynthesis is not 

clearly understood (Roosens et al., 1998), this observation is rather surprising in light of 

the fact that orn levels in these cells are already low, perhaps due to its over utilization by 
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the transgenic ODC. Increases in the expression of P5CR, although small, are consistent 

with the increase in Pro seen in these cells at this time. No major change in the expression 

of OAT was seen on any day of the week. As stated earlier, the role of the Glu pathway in 

Pro accumulation via PDH and P5CR has been well established. 

Considering the response of S-OAT in osmotic stress conditions, there has been a 

discrepancy between results that indicate an increase in enzymatic activity occurring in 

many plants (Kandpal and Rao, 1982; Hervieu et al., 1995) and the decrease in mRNA 

level observed in others (Delauney et al., 1993). Roosens et al. (1998) showed that salt 

stress induced a higher OAT activity in Arabidopsis thaliana seedlings while the adult 

plants did not show much increase. Levels of S-OAT mRNA also increased in these 

plantlets under salt stress conditions. Recently, Armengaud et al. (2004) showed a 

positive correlation between the accumulation of proline and OAT transcripts in 

Medicago truncatula. 

Since the HP cells overproduce Put from Orn, it can be expected that Put 

overproduction makes Orn limiting for the synthesis for Pro; i.e. if Orn is a source of Pro 

in these cells, the latter should decrease in response to the overproduction of Put. This 

can also be expected while considering the other pathway for Pro biosynthesis; i.e. 

directly from Glu. But what was instead found with the trends in OAT activity was a 

higher activity and specific activity of OAT in the HP cells for most of the 7 d culture 

period. The activity of OAT in the HP cells peaked on the second or third day and was 

almost at par with the control cells on the first and fifth days of the week and even lower 

than that in the control lines on the sixth and the seventh days. The trend in OAT activity 

over the 7 d culture cycle in the HP cells resembled the trend in activity of ODC 
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(Fig.7A). Thus, by up-regulating the Put biosynthesis, Orn probably does not become 

limiting for the synthesis of Pro, but rather, the whole pathway gets up-regulated in the 

forward direction. An alternate explanation would be that OAT instead of functioning in 

the forward reaction for P5C production acts to in the reverse direction to produce Orn 

from P5C, thus compensating for its over utilization in Put production; a suggestion that 

has been made earlier for animal cells (Haslett et al., 2004). This is further supported by 

the observed increase in the expression of P5CR and PDH, which would provide the 

substrate for this reaction. 

Gabaculine and 4-amino-5-hexyonic acid have been used as inhibitors for OAT 

(Hervieu et al., 1993) and 5-fluoromethylornithine has been reported as a specific, 

irreversible inhibitor of the same (Daune et al., 1988). Gabaculine has been previously 

used in our lab to study the inhibition of OAT on polyamine levels (Bhatnagar, 2002: 

Ph.D thesis) and it was found that at a concentration of 1 mM, gabaculine increased Put 

and Spd production significantly in the HP cells, 72 h after treatment, while only 

decreasing the Put content in the non-transformed controls. The increase in PA levels in 

the HP cells on inhibiting OAT can be explained on the basis of more Orn being available 

for its conversion to Put. 

Conclusions 

Cellular content of Pro has been observed to be higher in the HP than the controls in 

the first three days of the week (Fig. 13D). This raises the question: is there a common 

regulation of the pathway for the synthesis of Pro and Put, even though the regulatory 

point for Put production is ODC? Increased expression of PDH and P5CR and increased 

OAT activity seem to support the above argument. Although there is a lack of 
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information in literature regarding the conversion of Pro to Orn in plants; i.e. of the 

reversibility of OAT, this might well be the case in the HP cells, considering the fact that 

there is an enhanced consumption of Orn in them, and yet a higher activity of OAT. In 

animals OAT is known to be a reversible enzyme (Haslett et al., 2004), although its 

reversibility in plant has not been demonstrated. Since P5CR leads to the biosynthesis of 

Pro, while PDH leads to its degradation, it is possible that in these cells Pro is acting as a 

substrate to synthesize Orn. Biochemical assays for the enzymes other than OAT and 

measurement of their expression levels (including that of OAT) will provide more insight 

into this debate. 
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GENERAL CONCLUSIONS 

Data presented here clearly demonstrate that manipulation of a single step in a 

metabolic pathway has far-reaching consequences for several reactions within the 

pathway (Fig. 55-58). Enhanced Put metabolism caused by genetically modifying poplar 

cells to over express a mouse ODC gene resulting in several-fold higher production of 

Put not only caused concomitant changes in the accumulation of several related 

metabolites but also affected the physiological responses of these cells to abiotic stress 

treatments. This study provides an insight into PA metabolism in poplar cells with a 

combined breadth and accuracy previously unseen in any tissue. The results reveal a 

complex homeostatic mechanism at work for PA metabolism (as well as the metabolism 

of pro and GABA; also that of ethylene as shown earlier by Quan et al., 2002) involving 

several parts of the pathway operating in a coordinated manner. The use of transgenic 

cells in which a single step in the PA metabolism has been manipulated in a constitutive 

manner provides evidence for co-regulation of the expression of several genes that 

control this pathway, and shows that the PA content of cells is indeed under a complex 

regulation involving multiple layers of control. Specifically, we see that ADC and ODC 

expression and enzyme activities are not subject to feedback regulation, while increased 

accumulation of Put may inhibit expression of some members of the SAMDC family, 

leading to decreased SAMDC activity. 

Suspension cultures such as those used here offer a unique opportunity to study the 

effects of modulating a specific step in a metabolic pathway without complications of 

different tissue/organ types, translocation of the metabolites from one part of the plant to 

the other, or intercellular variations in biochemistry. It is, however, possible that different 
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genes, and in particular different members of the same gene family, may be regulated 

differently in mature plants in response to different stimuli. Global analysis of the 

transcripts (by microarrays), combined with complete metabolic profiling, should reveal 

mOch' more information than the present study has done (A. Page, S.C. Minocha, and R. 

Minocha -r unpublished). Thus far we have seen that upregulation of Put biosynthesis 

causes: (i) Increased expression of ODC and ADC genes, along with enhanced activities 

of the corresponding enzymes; (ii) Decrease in expression of SAMDC and activity of the 

enzyme; (iii) Changes in the cellular contents of almost all amino acids; (iv) A 

compromise in cell health due to increased oxidative stress; (v) Better tolerance towards 

Al toxicity; (vi) Increased susceptibility to GAD inhibition; (vii) Greater assimilation of 

carbon from sucrose in the growth medium; and (viii) Small changes in the expression of 

PDH and P5CR and an increase in OAT activity. 
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APPENDIX A 

A STRUCTURAL REPRESENTATION OF THE METABOLISM OF 

POLY AMINES AND RELATED AMINO ACIDS 
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Figure Al. Metabolism of polyamines and related metabolites. The enzymes are: 1-
N-acetylglutamate synthase (NAGS); 2- JV-acetyl-glutamate kinase (NAGK); 3- N-
acetylglutamate-P Reductase (NAGPR); 4- A/2-Acetylornithine aminotransferase 
(NAOAT); 5- JV2-AcetyI-ornithine:glutamate acetyltransferase (NAOGAcT); 6- N2-
Acetylornithine deacetylase (NAOD); 7- Ornithine transcarbamoylase (OTC); 8-
Arginine synthase (AS); 9- Arginine decarboxylase (ADC), 10-Agmatine imino-
hydrolase (AIH); 11- N-carbamoylputrescine amidohydrolase (CPA); 12- Ornithine 
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APPENDIX B 

ANALYSIS OF GENE EXPRESSION 

(Results of Dr. Andrew Page; Page et al., 2007) 

As expected, the control (Gt/S-transformed) cells showed no signal corresponding to 

the transcripts of mODC on any day of analysis; the expression of mODC in the HP cells 

varied on different days (Fig. B1A). The mODC transcripts increased slightly between 

days 1 and 3, and declined to almost 50% between days 3 and 5. The mODC transcripts 

again showed a small but statistically insignificant increase on day 7. Comparing the 

transcript data for days 7, 1 and 3, it is clear that following transfer to fresh medium, 

there was a lag of about 3 d before an increase in mODC transcript was seen (Fig. B1A). 

The pODC transcripts were analyzed in a semi-quantitative manner (using a pair of 

primers that amplified all three pODCs) by band density analysis of the PCR products at 

20, 25, 30 and 35 cycles of amplification; no difference in the transcripts of pODC was 

seen between the two cell lines on any day of analysis (data not presented). 

The pADC transcripts in the mODC transformed HP cells were higher than those in 

the control cells on any given day (Fig. BIB); however, differences between the two cell 

lines were not statistically significant (P<0.05). A small increase in pADC transcript was 

seen on day 3 followed by a decline thereafter in both cell lines. A fresh medium effect 

on pADC transcript abundance was clearly visible in both cell lines within 1 d of transfer; 

the effect continued until 3 d in the fresh medium. 

Out of the three pSAMDC genes whose transcripts were quantified by QRT-PCR, 

pSAMDCl showed by far the greatest expression (Fig. B1C); its transcripts in the control 

cells being almost 20 and 200 times greater than those of pSAMDCl and pSAMDCl (Fig. 
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B2A, B), respectively on d ayl. In control cells, the pSAMDCl transcript levels fell 

almost three-fold between days 1 and 5, after which there was no significant change. On 

transfer to fresh medium on day 7, a significant increase in the transcripts of this gene 

occurred within 1 d. In the HP cells, there was neither a significant difference in 

pSAMDCl expression between any of the time points, nor was there a fresh medium 

effect apparent from comparison of data for days 7 and 1. Furthermore, pSAMDCl 

transcripts were significantly lower in the HP cells vs. the control cells on any day of 

analysis. 

Transcript levels of pSAMDCl were not significantly different between the two cell 

lines on any of the days tested (Fig. B2A). Both lines exhibited a significant (P<0.05) 

decrease in pSAMDCl transcripts between days 1 and 5, after which there was no further 

loss of transcripts by day 7. In contrast to pSAMDCl transcription, which did not change 

on transfer to fresh medium in HP cells, a comparison of pSAMDCl transcripts on days 7 

and 1 showed a significant increase in transcription of this gene on transfer to fresh 

medium in both cell lines. 

The transcripts of pSAMDCi (Fig. B2B) fell during the course of the 7 d culture 

period in both cell lines; its transcript abundance in HP cells was consistently lower than 

the control cells. As with pSAMDCl, there was an increase in transcripts of this gene 

within 1 d of transfer to fresh medium. 

Of the two pSPDS genes, the maximum expression of pSPDSl (Fig. B2C) was almost 

5-fold lower than that of pSPDSl (Fig. B2D) on day 1 of culture. The two cell lines on 

any given day had similar amounts of pSPDS\ transcripts; the same was true of pSPDSl. 

Transcripts of both genes showed a significant increase on transfer to fresh medium (day 
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7 vs. day 1); the increase for pSPDSl transcripts continued in both cell lines until day 3 

but pSPDS2 mRNA increased only in HP cells; thereafter a decrease in transcripts of both 

genes was seen in both cell lines. 
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APPENDIX C 

EFFECTS OF Al AND Ca ON CELLULAR AMINO ACIDS 

B D 1x Ca-OmMAI 
• 1xCa-0.1mMAI 
H0.2x Ca-OmMAI 
• 0.2x-0.1 mMAI 

Con HP 
Cell line 

1600 

Con HP 

Cell line 
• 1x Ca-OmMAI 
• 1xCa-0.1 mMAI 
B 0.2x Ca-0 mM Al 
• 0.2x-0.1 mMAI 

Con HP 
Cell line 

Con HP 

DOmMAI 
B0.1 mMAI 
B0.25mMAI 

Cell line 

D 1x Ca-OmMAI 
Gl1xCa-0.1mMAI 
B0.2x Ca-0 mMAI 
• 0.2x- 0.1 mMAI 

250 

^200 

"o»150 
o 
E100 
c 

Con HP Con HP 
Cell line 

Cell line 
Figure CI. Cellular contents of (A, B) Thr, (C, D) Val and (E, F) Lys in the control 
and HP cells due to different concentrations of Al (A, C, E) or Al and Ca (B, D, F), 48 
h after treatment. Each bar represents Mean ± SE of six replicates from two 
experiments. An * indicates a significant difference (PO.05) in amino acid content 
between the untreated cells and cells growing in Al (in A, C, E) and between cells 
growing without Al in normal Ca and those growing in different concentrations of Al 
and Ca (in B, D, F) within the same cell line. 
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APPENDIX D 

ENHANCED PUTRESCINE METABOLISM AND CELLULAR INORGANIC 

IONS 

The relationship between PAs and inorganic ions has been studied in both plants and 

animals (Minocha et al., 1997, 2000; Williams., 1997; Oliver et al., 2000). Williams 

(1997) reviewed the interaction of PAs with ion channels in animal membranes and 

mentioned that intracellular Spm is responsible for blocking inward rectifier K+ channels 

by directly "plugging" the pore of the ion channel. A similar review by Oliver et al. 

(2000) emphasized the roles of PAs as "gating molecules of inward rectifier K+ channels. 

Minocha et al (1997) studied the relationship between foliar PAs with foliar soil 

inorganic ions in red spruce (Picea rubens Sarg.) trees across northeastern United States. 

They found an inverse correlation of foliar Put and Spd with foliar Ca and Mg content, 

while no such significant correlation was observed with Al, K, P and Mn. They also 

observed negative correlations between soil exchangeable Ca and Mg and foliar PAs, 

while a positive correlation of the later was seen with soil exchangeable Al. Minocha et 

al. (2000) also studied the impact of "chronic N additions" to pine and hardwood forests 

on the contents of foliar PA and inorganic ions. They found a negative correlation 

between foliar Put and most cations in the soil. Foliar Put content was also negatively 

correlated with foliar Ca, Mg and Mn in hardwoods. 

As mentioned in Chapter IV, the cellular contents of both PAs and inorganic ions 

changed in response to Al treatment to our poplar cells. Changes in the contents of 

inorganic ions in response to Al addition have also been previously seen in cell cultures 
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of Catharanthus roseus (Minocha et al., 1992; Zhou et al., 1995) and red spruce 

(Minocha et al., 1996, 2001). These changes in the inorganic ion content were either 

positively or negatively correlated with cellular PA content. Cellular contents of PCA 

soluble inorganic ions were quantified in both control and HP cells on all 7 days, as 

described in "General Materials and Methods". 

Fluctuations in the cellular contents of K and Ca (Fig. D1A, B) in response to 

enhanced Put metabolism have been described Chapter III. The accumulation of Ca in the 

HP cells was several-fold higher in the HP cells as opposed to the control cells for most 

of the 7 day culture cycle, being significantly so on days 1, 2, 3, 4 and 7 days. On the 

other hand, an opposite response was seen for the accumulation of K in these cells in that, 

it was significantly lower in the HP cells as compared to the control cells for the entire 

culture period. A distinct and significant fresh medium effect on the uptake of K was seen 

in both cell lines within 24 h of transfer, with a gradual decline in the same thereafter; i.e. 

from day 1 through day 7. As discussed in Chapter III, the observed increase in cellular 

Ca and a decrease in K are additional indicators of heightened oxidative state of the HP 

cells. 

Cellular content of Mg saw a fresh medium effect in both cell lines 24 h after 

subculture (Fig. D1C). Significant differences were seen between the two cell lines on 

days 1, 2, 4, 5 and 6 in that the cellular Mg content was higher in the HP cells on days 1 

and 2 and lower on days 4, 5 and 6. From day 2 onwards, a gradual decline in the cellular 

Mg content was seen in both cell lines, this decrease being somewhat sharper in the HP 

cells than the control cells. Cellular Mn content was significantly higher in the HP cells 

than in the control cells on all days of the week (Fig. DID). Its content remained fairly 
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constant in both cell lines, except for a rise on day 4 in the control cells and a sharp 

decline on day 5 in the HP cells. 

Cellular Fe content was significantly higher in the HP cells on days 1, 2, 4 and 7 

while being lower on day 4 (Fig. D2A). In both cell lines, Fe content first decreased for 

the first 3-4 days and then gradually increased. Phosphorous was significantly lower in 

the HP cells than the control cells on almost all days of the week (Fig. D2B). In both cell 

lines, a sharp increase in the cellular P content was seen 24 h after transfer to fresh 

medium, followed by a gradual decline for the rest of the week. Cellular content of Zn 

was higher in the control cells than in the HP cells on almost all days of the week (Fig. 

D2C). 
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