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1National Snow and Ice Data Center, Boulder, Colorado, USA, 2Also at Centre for Polar Observation and Modelling Pearson
Building, University College London, London, UK, 3Department of Sociology, University of New Hampshire, Durham,
New Hampshire, USA, 4Department of Atmospheric Sciences, University of Washington, Seattle, Washington, USA

Abstract Since 2008, the Study of Environmental Arctic Change Sea Ice Outlook has solicited predictions
of September sea-ice extent from the Arctic research community. Individuals and teams employ a variety of
modeling, statistical, and heuristic approaches to make these predictions. Viewed as monthly ensembles
each with one or two dozen individual predictions, they display a bimodal pattern of success. In years
when observed ice extent is near its trend, the median predictions tend to be accurate. In years when the
observed extent is anomalous, the median and most individual predictions are less accurate. Statistical
analysis suggests that year-to-year variability, rather than methods, dominate the variation in ensemble
prediction success. Furthermore, ensemble predictions do not improve as the season evolves. We consider
the role of initial ice, atmosphere and ocean conditions, and summer storms and weather in contributing to
the challenge of sea-ice prediction.

1. Introduction

Themodern satellite record that began in the late 1970s has been invaluable in documenting climate change
in polar regions. One of the most striking features is the large reduction and thinning in the Arctic’s floating
sea-ice cover. Trends in the total sea-ice extent are negative during all calendar months [e.g., Serreze et al.,
2007] but are largest at the end of the summer melt season in September. The mean September sea-ice
extent declined by about 14% per decade, or 40% overall, from 1979 through 2013. Accompanying the extent
reduction has been an overall thinning of the ice pack [e.g., Kwok et al., 2009], largely a result of first-year sea ice
replacing the generally thicker multiyear ice [e.g., Maslanik et al., 2011]. With shrinking ice has come a rising
demand for predictions at weekly to seasonal time scales, which have importance for ecosystems, coastal
communities, marine access, and resource extraction.

All climate model simulations in the latest Coupled Model Intercomparison Project phase 5 indicate that
the Arctic will eventually lose its summer ice cover as the concentrations of atmospheric greenhouse gases
increase [e.g., Stroeve et al., 2012a], but studies also suggest that until this happens, the summer ice cover is
likely to become more variable from year to year. For example, Holland et al. [2010] demonstrate that the
standard deviation in the September extent increases as the ice cover thins. This complicates the prospects
for near-term ice forecasts.

Since 2008, a Sea Ice Outlook (SIO) organized by the Study of Environmental Arctic Change (SEARCH) has
solicited predictions of the mean September sea-ice extent from the Arctic research community. This effort,
together with the Sea Ice for Walrus Outlook, provides a forum for the international sea-ice prediction and
observing community to compare their ideas.

Individual predictions are based on a variety ofmodeling, statistical, and heuristic approaches. They are solicited
in three cycles each year, at lead times from 2 to 4months—around the first of June, July, and August. The July
SIO predictions, for example, could be based on data through the end of June and are published in early July.
The SEARCH website describes the background and rules for this enterprise [Study of Environmental Arctic
Change (SEARCH), 2013].

In some years, the diverse methods used by the SIO contributors demonstrate collective skill in forecasting
the September mean extent. In other years, they do not. Below we explore this history by comparing
the distributions of SIO predictions with their target, the actual extent observed in September of each year.
Our goal is not to evaluate individual predictions or particular methods. Rather, we analyze the SIO
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predictions as an ensemble, which reveals a strong pattern. That pattern highlights the challenges for
improved sea-ice prediction.

2. Overview of SIO and Contributions

The SEARCH SIO effort emerged from the discussions at the “Arctic Observation Integration Workshops” held
in March 2008 in Palisades, NY, following the drastic and unexpected sea-ice decline witnessed in 2007. Each
month during the summer melt season, a request is sent to the International Arctic Science Community
soliciting predictions of the September ice extent. Submissions are reviewed by the Sea Ice Outlook Core
Integration Group and Advisory Group and summarized in monthly reports that synthesize expectations
from a broad range of prediction strategies [SEARCH, 2013]. The process starts in May and goes through
September, culminating in a retrospective analysis after the season ends.

From 2008 to 2013, the SIO received 309 individual contributions—11 to 23 predictions each month
(published in early June, July, and August) for 6 years. Many involve regression-type statistical models,
estimated from historical data, then applied to forecast the near future. The predictors used in regressions
might include sea-ice conditions (e.g., concentration, extent, and ice type), ocean temperatures, and
atmospheric conditions (e.g., temperature, sea level pressure, and cloud forcing). For example, Drobot [2007]
uses historical information on sea-ice concentration and fraction of multiyear ice, together with downwelling
longwave radiation, surface temperature, and albedo as predictors. Lindsay et al. [2008] test the observed and
modeled sea-ice and ocean conditions to improve forecast skill. Results suggest that for lead times of
2months or less, sea-ice concentration is the most important predictor, but that for longer lead times, ocean
temperature and sea-ice thickness become more important.

Alternatively, similar predictors could set initial conditions via data assimilation in forecasting techniques that
rely on coupled sea-ice-ocean-atmospheric models and heuristic approaches. Some techniques use ensemble
simulations from coupled ice-ocean models with prescribed atmospheric forcing from the historical record
[Zhang et al., 2008a; Kauker et al., 2008], while others are coupled ocean-atmosphere-sea-ice models, initialized
through data assimilation of ocean and sea-ice conditions. Ensemble members are typically constructed to
sample the uncertainty in the forecast that is a result of intrinsic summer atmospheric variability.

Figure 1a graphs the monthly distributions of predictions for the September mean sea-ice extent from all the
309 SIO contributions over 2008–2013. The median SIO predictions are close to the observed ice extent in
2008, 2010, and 2011—years that roughly follow the longer-term trend. In 2009 and 2012, on the other hand,
the median predictions are far off, and the observed ice extent falls well above or below any of the
predictions. In 2013, the observed extent exceeds almost all of the predictions. These high-error years are the
most anomalous in the observations since the SIO began, deviating both from the trend and the previous
year. Figure 1b highlights the bimodal pattern of success or failure by graphing the median and approximate
interquartile range (middle 50%) of the July predictions, together with the ensemble prediction error defined
as distance from the SIO median to the observed September ice extent.

In later years, the SIO contributors were additionally asked to supply estimates of their uncertainty. They did so
using varied methods from statistical confidence intervals to standard deviations, interquartile ranges, or other
calculations, which are not formally comparable. Figure 2 draws informal comparisons by graphing the
uncertainty bounds supplied by 15 contributors in July 2012 (Figure 2a) and 16 in July 2013 (Figure 2b),
subdivided according to the SIO criteria into the broad categories of “modeling” or “statistical” methods. Other
contributions in thesemonths, including some classified as “heuristic,” did not provide uncertainty estimates. The
observed 2012 ice extent, 3.63million km2, lies outside the intervals given with 11 of the 15 predictions and
barely inside the lower limit of three others. As a group, the 2012 statistical predictions (median 4.35million km2)
came closer to the unexpectedly low ice extent than the modeling predictions did (median 4.7million km2).

The observed ice extent was much lower than predicted in 2012, but in 2013, it was much higher (Figure 2b). The
observed September 2013 ice extent, 5.35millionkm2, lies outside the intervals givenwith 13 of the 16 predictions.
In 2013, themodeling predictions (median 4.35millionkm2), as a group, came closer than the statistical predictions
(median 3.9millionkm2). The next section tests for significant differences among the SIO method types.

Figures 1 and 2 show a pattern of collective prediction success in years along the overall downward trend and
collective failure when the observed extent was abruptly higher or lower. The same pattern identifying
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Figure 2. Predictions with contributor-supplied uncertainty from Sea Ice Outlook in (a) July 2012 and (b) July 2013, shown
with the observed September ice extent (gray line).
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Figure 1. (a) SEARCH Sea Ice Outlook predictions for June, July, and August reports compared with the observed mean
September ice extent, 2008–2013. (b) Median and interquartile range of the July SIO predictions compared with the
observed mean September extent.
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particular years as difficult to predict (2009, 2012, and 2013) occurs in two other less formal collections of sea-
ice predictions from science agency office pools. Those two data sets are described and analyzed in the
supporting information, using methods similar to Figure 1b.

3. Analysis of Prediction Errors

Figure 3a graphs the observed mean September extent for 1979–2013, along with the median July SIO
predictions for 2008–2013. The trend in observations is summarized by a Gompertz curve—an asymmetrical
S curve appropriate for the accelerating downward trend. If extended, this curve would approach zero
asymptotically, instead of steepening toward zero as quadratic or exponential curves do (although all three fit
well to the observations through 2013). This gives a reasonable approximation for the nonlinear historical
trend, with residuals reflecting interannual variation. Figure 3b graphs the prediction errors (observed extent
minus median July SIO prediction) against residuals from the Gompertz curve. SIO prediction errors and
Gompertz curve residuals have a strong positive correlation (r=0.90, p< 0.05). Ensemble prediction errors
are largest in 2012 and 2013, the 2 years that depart most sharply from the trend.

Table 1 analyzes the SIO prediction errors in more detail, summarizing four quantile regressions in which the
conditional median of absolute prediction errors is modeled as a function of year, month, and type of method
used. Quantile regression provides a multivariate generalization of our median-based analysis in Figure 1,
with similar advantages for these skewed and outlier-prone distributions (supporting information). Unlike
ordinary least squares, quantile regression has high resistance to outliers and does not assume normality
[Hamilton, 2013]. We also cannot assume that disturbances are independent and identically distributed,
because the 309 SIO contributions represent about 91 different researchers or teams. Consequently, robust
standard errors (Huber–White sandwich method) are employed for significance tests.

The coefficients in Table 1 are differences between themedian absolute prediction errors for a given category
of each variable (year, month, or method) compared with an arbitrarily-selected “base” category of that
variable. For example, we chose 2011 as the base year, because the median prediction error is lowest in that
year. Consequently, the coefficient for 2008 in Regression 1 (where all methods and months are combined) is

4
5

6
7

8

M
ill

io
n 

km
2

198019841988199219962000200420082012

Observed exent

SIO median

A

2008

2009

2010
2011

2012

2013

−
1.

2
−

0.
8

−
0.

4
0.

0
0.

4
0.

8
1.

2

O
bs

er
ve

d 
m

in
us

 S
IO

 m
ed

ia
n,

 m
ill

io
n 

km
2

−1.2 −0.8 −0.4 0.0 0.4 0.8 1.2
Observed minus Gompertz curve, million km2

B

Figure 3. (a) Observed September extent shown with Gompertz curve and median July SIO predictions and (b) prediction
errors versus deviation from curve.
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+0.34, indicating that the median absolute SIO prediction error for 2008 is 0.34million km2, greater than
for the base year, 2011 (0.57 versus 0.23million km2). The standard error of this difference is 0.13million km2,
so the median error in 2008 is significantly larger than in 2011 (p< 0.05). In Regressions 2, 3, and 4, each
year coefficient reflects adjustments for other variables (i.e., month or method). Regression equations are
written out in the supporting information.

Regression 1 is simply the regression of absolute prediction errors on (0,1) indicators for year. Median errors
are largest for 2013, followed by 2012 and 2009. Regression 2 tests whether, adjusting for year, ensemble
predictions improved from June (the base month) to July or August. Although predictions by some individual
contributors improved, the ensemble performance did not: The median July errors are slightly larger than
June (+0.06million km2) and in August, slightly smaller (�0.04). Neither difference is significant.

Regressions 3 and 4 compare method types, with “heuristic” as the basemethod. A distinction amongmethods
was not made in 2008, the first SIO year. For 2009–2013, both modeling and statistical approaches obtain
lower median absolute errors than heuristic methods. Regression 3 employs the full 2008–2013 SIO data set.
Statistical methods have median prediction errors of 0.14million km2 less than heuristic, a difference that falls
short of significance. Regression 4 excludes 22 SIO contributions classified as “general public” (mostly from
2012 and 2013, when interest in the SIO process broadened). Among the remaining contributions, those based
on statistical methods perform better than heuristic (�0.20million km2). Although modeling methods fare less
well than statistical methods overall, they have a significant advantage in the unexpectedly high-extent year of
2013 (supporting information). These analyses confirm however that year-to-year conditions remain the
dominant source of variation in ensemble prediction success.

4. Importance of Preconditioning

After the 2007 minimum, there was a growing consensus that the low extent in 2007 was largely a result of
atmospheric forcing [e.g., L’Heureux et al., 2008; Kay et al., 2008; Schweiger et al., 2008; Zhang et al., 2008b].
In particular, a strong Arctic atmospheric dipole anomaly—that featured anomalously high sea level pressure

Table 1. Quantile Regression CoefficientsWith Robust Standard Errors, Modeling theMedian Absolute Prediction Error as
a Function of (0,1) Indicators for Year, Month, and Methoda

Regression

1 2 3 4 (nonpublic)

Year

2008 0.34(0.13)b 0.30(0.11)c

2009 0.54(0.07)d 0.46(0.09)d 0.41(0.08)d 0.42(0.09)d

2010 0.24(0.10)b 0.20(0.11) 0.10(0.10) 0.08(0.10)
2011 base base base base
2012 0.54(0.09)d 0.50(0.09)d 0.52(0.09)d 0.52(0.09)d

2013 1.02(0.13)d 0.98(0.13)d 0.90(0.14)d 0.90(0.12)d

Month
June base base base
July 0.06(0.08) 0.05(0.07) 0.00(0.08)
August �0.04(0.07) �0.12(0.08) �0.12(0.08)

Method
Heuristic base base
Modeling �0.03(0.08) �0.08(0.08)
Statistical �0.14(0.08) �0.20(0.08)b

Constant 0.23(0.06)d 0.27(0.08)c 0.39(0.08)d 0.45(0.09)d

Estimation sample 309 309 265 243

aNotation: 2008 represents a dummy variable coded 1 if year=2008, 0 otherwise; July represents a dummy variable
coded 1 ifmonth= July, 0 otherwise; modeling represents a dummy variable coded 1 ifmethod=modeling, 0 otherwise;
and so forth. See supporting information for details.

bThe p< 0.05.
cThe p< 0.01.
dThe p< 0.001 t tests using robust standard errors.
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over the Beaufort Sea coupled with anomalously low sea level pressure over Eurasia [e.g.,Wang et al., 2009]—
persisted throughout summer 2007. This weather pattern produced a meridional wind anomaly that helped
to transport ice away from the shores of Alaska and Siberia toward the pole and into the North Atlantic,
advected warm air from the south, and gave rise to clear skies under the high pressure.

Several studies have focused on preconditioning of the ice cover prior to the 2007 minimum [e.g., Stroeve
et al., 2008; Lindsay et al., 2009]. This intuitively makes sense because under a thick ice regime, a summer
circulation pattern favorable for ice loss may translate into large changes in ice volume, but not necessarily
large changes in ice extent as the ice will still be thick enough to survive. It is possible to follow ice age
through Lagrangian tracking of individual ice parcels [Fowler et al., 2004]. Older ice tends to be thicker [e.g.,
Maslanik et al., 2007], so changes in the overall age of the ice also imply changes in ice thickness. As more
open water in September has led to more first-year ice in spring, preconditioning in the form of a larger
fraction of thin first-year ice increases the likelihood of low summer sea-ice extent. The fraction of first-year
ice in March correlates with the September sea-ice extent (r=�0.75). That is largely explained however by
their common downward trend (the “trends” described here are based on 35 years of data, 1979–2013, rather
than just the six SIO years). The near absence of a March–September correlation in detrended series
reemphasizes the importance of summer atmospheric and oceanic variability. We also see a correlation
between the simulated mean March sea-ice volume, estimated by the Pan-Arctic Ice Ocean Modeling and
Assimilation System [Zhang and Rothrock, 2003], and the September extent (r=�0.86), but this too is largely
explained by a shared nonlinear trend (supporting information).

The May ice extent was similar in 2012 and 2013, and there was a larger fraction of the first-year ice in 2013 at
the start of the melt season. Despite these preconditions, the September extent was 1.74million km2 higher
in 2013 than in 2012. The cooler summer of 2013 (June-July-August air temperatures 1–3°C colder than in
2012 over the Arctic Ocean and 1–2°C colder than the 1981–2010 mean) reduced melting, which was not
predicted by the SIO contributors. Modeling studies support a large role for the summer ice melt [Zhang et al.,
2008a]. The extent to which the atmospheric conditions depend on the sea-ice conditions will further affect
predictions. Only fully coupled atmosphere-ocean-sea-ice models run in an ensemble prediction mode can
predict this atmospheric response to sea-ice conditions. In contrast, coupled ocean-sea-ice models with
prescribed atmospheric conditions are not able to predict these interactions and thereforemay suffer. However,
there is no indication yet of fully coupled models yielding better sea-ice predictions among the SIO
contributions.

The rapidly changing Arctic also complicates statistical predictions based on historically observed
relationships. Using eight ensemble members from the National Center for Atmospheric Research (NCAR)
Community Climate System Model version 3, Stroeve et al. [2012b] report that the detrended September ice
extent is better correlated with the detrended March ice thickness as the ice cover thins. This result was also
found by Holland and Stroeve [2011]. Yet the long-term predictive capability for the September minimum
actually decreases [Holland et al., 2010]. The reduced predictive skill as the winter ice cover thins has been
noted in some of the contributions to the SIO and appears to be coincident with the rapid thinning of the
ice cover.

In summary, while a thin winter ice cover suggests that the September extent will not return to the levels
seen in the 1980s and 1990s, it has not shown good predictive skill for year-to-year variation. At present,
however, many prediction strategies are focused on state of the ice cover prior to the summer melt season
and suggest that assimilating sea-ice thickness and concentration could improve seasonal forecasts.

5. Discussion

In some years, the SIO ensembles accurately predict the September mean extent, while in other years, the
observed extent falls outside the range of any prediction. This is true regardless of the general method used
for prediction and whether or not we exclude contributions classified as general public. The predictions
tend to be poor when the sea ice departs from the long-term trend. Indeed, the root mean square error (RMSE)
of SIO predictions is only slightly better than a series of linear trend predictions, each calculated from data up
to but not including the target year. Both SIO and linear trends improve substantially on climatology; however,
RMSE=0.77 for SIO and 0.80 for linear versus 1.91 for climatology (also calculated from data up to but not
including the target year).
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Departures from trends reflect (1) synoptic conditions during the summer, (2) early spring sea-ice conditions,
and (3) methods used to make the prediction. Since forecasts cannot accurately predict (1) beyond a week or
two, we only focus on (2) and (3). Results shown here suggest that sea-ice thickness and/or age do not
yet provide enough predictive skill to outweigh the importance of summer atmospheric conditions. Nor do
the results establish that one general approach to sea-ice prediction consistently outperforms others.

The 6 year SIO period is very short for comparing predictions and observations. However, several groups have
published hindcasts of sea-ice extent for at least a few decades, and they find that the correlations for
detrended hindcasts at 4month lead times are as high as about 0.6 [e.g., Chevallier et al., 2013] and in other
studies are much lower [e.g., Lindsay et al., 2008; Sigmond et al., 2013]. Meanwhile, studies using a “perfect
model” framework, in which ensemble integrations are initialized from a reference model integration, give
evidence of initial value predictability for 1–2 years [e.g., Blanchard-Wrigglesworth et al., 2011; Tietsche et al.,
2013]. Such studies neglect errors from imperfect knowledge of the initial state and therefore give the
upper limit of predictability for a given model. Taken together, these results suggest that the SIO activity has
the potential to provide skillful forecasts and that the quality of the initial conditions and the method in
which they are utilized is a key area for improvement.

While the results shown by the SIO seem to indicate that extreme years are less predictable than nonextreme
years, it is unclear whether this is a robust feature of the natural system or a result of noise (given the
shortness of the time series—only 6 years). Tietsche et al. [2013] explicitly examined the predictability of
extremely low September sea-ice events in a perfect model context and found a significant skill that beat
both a climatological and damped persistence forecast from a 1 May initialization (equivalent to many of the
June SIO submissions). Indeed, their September sea-ice extent forecast error of ~0.5million km2 compares
favorably to the SIO errors of ~1million km2 in 2012 and ~1.3million km2 in 2013.

Nevertheless, how intrinsic predictability varies from one year to the next is poorly understood and subject of
current research. One may draw lessons from synoptic meteorology, where it is well known that different
synoptic situations have varying degrees of predictability, to hypothesize that some years could offer
significantly higher predictability than others. Additionally, modeling studies show that different extreme
events are the result of different forcings [Cullather and Tremblay, 2008] and thus likely have different levels
of predictability.

We have not tried to analyze individual SIO contributions, as these compare with each other or by month and
year. Such evaluation is left to the researchers, who can apply detailed understanding of their own methods
and inputs. Certainly some approaches rest on better grounded methods, and some show more skill in
particular years. In contrast, others are presented with little or no science justification. The individual
variations occur however within strong overarching patterns: for hard-to-predict years, the observed ice
extent falls outside the range of any (or almost any) individual point predictions (Figure 1) and outside the
uncertainty limits supplied for most (Figure 2). More nuanced classification of contributor approaches could
refine this picture but leave the general findings to date unchanged.
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