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ABSTRACT 

EELGRASS IN THE GREAT BAY ESTUARY, NEW HAMPSHIRE AND MAINE: 

MONITORING EELGRASS DECLINE AND EDUCATING LOCAL STUDENTS 

by 

Nora Thompson Beem 

University of New Hampshire, December, 2008 

Eelgrass monitoring efforts in the Great Bay Estuary (GBE), New Hampshire and 

Maine, by the New Hampshire Port Authority Mitigation Project (Chp. II) and Nutrient 

Pollution Indicator (NPI) testing (Chp. Ill) both confirmed a recent trend of eelgrass 

decline within the GBE. The decline has been most noticeable in the mid-estuary, where 

four major tributaries drain into the GBE. Eelgrass beds in proximity to Portsmouth's 

wastewater treatment facility have also experienced decline, highlighting the effects of 

such point sources on the eelgrass population. 

In an effort to introduce eelgrass, its recent decline and its role in the ecology of 

the GBE to students in the community, an eelgrass lesson plan was created for local fifth 

graders (Chp. IV). The experiential lesson was conducted through an outreach event 

hosted at University of New Hampshire's Jackson Estuarine Laboratory, sharing research 

with the local community. 
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CHAPTER I 

INTRODUCTION 

The objective of my thesis was to facilitate the sharing of scientific knowledge 

with the local community. I sought to achieve this through scientific assessments, 

educational efforts, and community outreach. 

The Great Bay Estuary (GBE) is an important natural resource forming the border 

of southern Maine and New Hampshire. The GBE supports a host of organisms, 

including eelgrass, the dominant species of seagrass found in New England (Short and 

Short 2003). In addition to being the dominant seagrass, eelgrass is also the dominant 

primary producer in the GBE. Historically the eelgrass population in the GBE has 

experienced two major wasting disease events, once in the 1930s and again in the 1980s 

(Short et al. 1986). While the eelgrass has since recovered from these events, there is 

evidence that a new stressor is affecting the GBE. Several ongoing field studies are 

monitoring eelgrass bed dynamics and potential causes of the decline. 

The New Hampshire Port Authority (NHPA) Eelgrass Mitigation Project was 

developed to compensate for the loss of eelgrass habitat resulting from the expansion of 

the New Hampshire State Port and associated dredging of the Piscataqua River. Recent 

results from the annual monitoring program show a decline in all plant parameters 

measured and indicate an overarching factor affecting estuary health (Chp. II). 

The Nutrient Pollution Indicator (NPI) was designed as an early indicator of 

eutrophication and a tool for identifying areas of localized nitrogen loading (Lee et al. 
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2004). Re-sampling the NPI in 2007 found the loss of four of the twenty eelgrass sites 

originally sampled in 1999 (Lee et al. 2004). In addition, results highlighted two new 

areas of localized nitrogen loading in the GBE (Chp. III). 

Using the findings of the NHPA and NPI projects, I created a supplemental 

eelgrass lesson plan utilizing the State of New Hampshire's fifth grade life science 

objectives (Chp. IV). The lesson plan and associated outreach event provided local 

middle school students with an understanding of the cascading consequences of the 

current eelgrass decline. 

There are three overall objectives I set out to achieve through my thesis. The first 

was to better understand contributors to the eelgrass decline in the GBE. The second was 

to use local natural resources, in this case the GBE and its eelgrass population, to address 

the State of New Hampshire science education objectives. The final goal was to link the 

research findings of the University with a practical understanding in the local community. 

I believe these goals have been met through the following three chapters and associated 

efforts. 
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CHAPTER II 

SUBTIDAL EELGRASS DECLINES IN THE GREAT BAY ESTUARY, 

NEW HAMPSHIRE AND MAINE, USA 

Introduction 

In 1993, the New Hampshire Port Authority (NHPA) Mitigation Project was 

developed to compensate for the loss of salt marsh, mudflat, and eelgrass (Zostera 

marina L.) habitat, as well as loss of potential habitat, resulting from the expansion of the 

New Hampshire State Port and associated dredging of the Piscataqua River in the Great 

Bay Estuary (GBE) on the border of New Hampshire and Maine. Eelgrass was 

transplanted (2.5 hectares) from 1993 to 1995 in the Piscataqua River and Little Bay, 

upstream from the Port. By 2000, the surviving transplanted eelgrass (0.8 hectares) had 

achieved comparability with the nearby natural eelgrass beds used as reference sites for 

measuring functional equivalence (Evans and Short 2005). The eelgrass transplanted for 

port mitigation receives annual evaluation as part of a 15-year (1995 to 2010) monitoring 

program of the NHPA Mitigation Project (Bosworth and Short 1993). The present study 

focuses on data from 2001-2007. 

Eelgrass is found throughout the GBE. Aerial mapping of the estuary in 1992 

showed 1,000 hectares of eelgrass (Short 1992), while studies 14 years later found 800 

hectares (NHEP 2006). Approximately three quarters of the eelgrass found within the 

upper GBE, the Great Bay itself, is intertidal, defined here as plant leaves lying on the 

water surface at mean low water. The eelgrass beds within Little Bay and the Piscataqua 
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River portions of the GBE are primarily subtidal, remaining submerged even at mean low 

tide. Within the estuary, it is the subtidal beds that most depend on clear water conditions 

to survive and thrive. The NHPA monitoring tracks subtidal eelgrass survival and health 

within the Piscataqua River and Little Bay portions of the GBE; combined with measures 

of eelgrass status in Great Bay itself (NHEP 2006; Short unpubl.), a picture of the status 

of subtidal eelgrass throughout the entire estuary emerges. The objective of the present 

study was to assess recent trends in subtidal eelgrass parameters as indicators of the 

health of the estuary. 

Methods 

Study Sites 

The monitoring sites were located within the Piscataqua River and Little Bay, part 

of the GBE (Fig. 1). During the 2001-2007 field seasons, the sites monitored included: 

(i) two transplant sites, Great Bay Fish Pier (Tl; 43°06.265'N, 70°47.694'W) and 

Defense Fuels North (T3; 43°06.693'N, 70°48.433'W); and (ii) three reference sites, 

Adlington Creek (R2; 43°07.188'N, 70°48.474'W), Dover Point (DP; 43°07.477'N, 

70°50.564'W), and Outer Cutts Cove (OCC; 43°05.188'N, 70°45.818'W). The reference 

site DP was added in 2003 after eelgrass disappeared from a reference site (Rl) on the 

Piscataqua River following the construction of the outfall for a new power generation 

facility. 

4 



HJV07' « 

3T 
MAINE 

NEW 
HAMPSHIRE 

*4i i v^& 
pc^ GK*.« ^ j 

ATI. A:\TfC 
OCHAS 

A 
*M sea MHf« 

4 8 ^ 'r*/i?i-' 

Figure 1. Map of NHPA eelgrass monitoring sites within the Piscataqua River and Little Bay in the Great 
Bay Estuary, New Hampshire. Squares indicate reference sites and circles indicate transplant sites. 

Field Assessment 

Eelgrass samples for primary production, three-dimensional canopy structure, and 

percent cover were collected at all sites every August from 2001-2007. Eelgrass 

production was assessed by measuring aboveground biomass (g m"2) in three 0.0625 m2 

sub-quadrats of a 1.25 m2 quadrat haphazardly placed in the eelgrass bed (Bosworth and 

Short 1993; Duarte and Kirkman 2001). Three-dimensional canopy structure was 

measured as shoot density (shoots m"), canopy height (cm, equivalent to 80% of the 
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mean maximum leaf height), and leaf area (cm shoot") (Duarte and Kirkman 2001). 

Laboratory Analysis 

Harvested plants were transported to the Jackson Estuarine Laboratory in 

Durham, New Hampshire. Plant processing included rinsing the plants in fresh water, 

determining the total number of shoots and dry weight biomass per sub-quadrat, and 

measuring plant parameters on 10 shoots per sub-quadrat (Evans and Short 2005) 

file://A:/TfC


including leaf width, sheath length (measured from the meristem to the top of the sheath), 

and leaf length (measured from the top of the sheath to the leaf tip). 

Eelgrass parameters (means ± SE) were tested for statistical significance over 

time using linear regression analysis starting at maximum biomass. The slope of eelgrass 

biomass over time as well as correlation coefficients and p-values are reported for each 

site. 

Results 

Aboveground eelgrass biomass declined significantly from 2003 to 2007 at all 

sites except DP. Decline in biomass at OCC and Tl began in 2001, while declines at T3 

and R2 began 2 years later (Fig. 2). At DP, reductions in eelgrass biomass were not seen 

until after 2005. The rate of decline was greatest at transplant site T3, where eelgrass 

biomass dropped at a rate of 47.5 g m"2 yr"1 between 2003 and 2007 (Fig. 2). 

Eelgrass shoot density, canopy height, and leaf area also decreased significantly at 

reference and transplant sites. Shoot densities declined at sites Tl, R2, and OCC after 

2001, at T3 after 2002 and at DP after 2005 (Fig. 3a). Shoot density decline at Tl was 

greatest, dropping from approximately 300 shoots m" in 2001 to zero in 2007 (Fig. 3a). 

All sites showed significant declines in eelgrass mean canopy height and leaf area by 

2006, with Tl, T3 and R2 beginning to decline after 2004 (Fig. 3b, c). 
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Figure 2. Simple regressions of the effects of time on mean (±SE) eelgrass biomass. Sites are presented 
moving up-estuary. 
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300 

Figure 3. Mean (±SE) eelgrass three-dimensional canopy structure at transplant (Tl, T3) and reference 
(DP, R2, OCC) sites from 2001 through 2007. Sites are presented from the Gulf of Maine to up-estuary, 
left to right. 

Discussion 

The eelgrass data collected for the first six years (1995-2000) of the Port 

Mitigation Project showed successful expansion of transplanted eelgrass beds to levels 
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equivalent to the reference sites (Evans and Short 2005). However, beginning in 2001, 

some sites, both transplant and reference, experienced declining plant parameters, 

particularly biomass (Fig. 2). Evidence at both categories of sites sampled and from 

additional eelgrass monitoring in the GBE (NHEP 2006) indicates that the trend of 

eelgrass decline was not isolated to the NHPA project sites but included eelgrass 

throughout the estuary. Overall, eelgrass areal cover in the GBE declined 17 percent 

between 1996 and 2004, with most of the loss occurring between 2001 and 2004 (NHEP 

2006). 

In the Piscataqua River, all four eelgrass sites sampled exhibited significant 

decline between 2003 and 2007. By 2007, two of the Piscataqua River sites (OCC, Tl) 

and the site in Little Bay (DP) were completely devoid of vegetation with eelgrass barely 

surviving at the other two monitoring sites (T3, R2). None of the sites, including T3 and 

R2, showed any eelgrass in the 2008 monitoring. Eelgrass biomass for Great Bay itself 

showed a significant decline from 2001 to 2004 (NHEP 2006), continuing through 2007 

(Short unpubl.). 

The overwhelming subtidal eelgrass decline at both reference and transplant sites 

and across all plant parameters measured indicates the losses are likely the result of an 

overarching factor affecting eelgrass health. The New Hampshire Estuaries Project 

(NHEP) has reported an increase of over 6,000 acres in impervious surfaces in the GBE 

watershed from 2000 to 2005 (NHEP 2006), contributing to increases in runoff, turbidity 

and nutrients (Paul and Meyer 2001; Steinke et al. 2007). A 59% increase in dissolved 

inorganic nitrogen documented over the past 25 years, predominantly from increased 

wastewater inputs (NHEP 2006), has further decreased water quality in the GBE. 
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Seagrass growth and health are directly affected by water quality (Orth et al. 2006; 

Wazniak et al. 2007). Efforts must be made to reduce nitrogen and sediment loading to 

the GBE in order to reverse these demonstrated eelgrass losses. 
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CHAPTER III 

ANALYSIS OF THE EELGRASS NUTRIENT POLLUTION INDICATOR (NPI) IN A 

DEGRADING ESTUARY: GREAT BAY ESTUARY, NEW HAMPSHIRE 

AND MAINE, USA 

Introduction 

Dispersed in shallow coastal waters, eelgrass ecosystems perform a number of 

ecologically important functions (Hemminga and Duarte 2000; Green and Short 2003). 

The physical structure of the plants, both below and aboveground, helps to stabilize 

sediments and filter particulate matter from the water column (Short and Short 1984). 

The eelgrass canopy reduces wave energy and slows water currents, allowing suspended 

material to collect within the eelgrass bed (Fonseca et al. 1982; Koch 2001). Densely 

growing plants offer protection to juvenile fish and invertebrate species from predation, 

while the leaves and detritus are the basis of an important estuarine food chain. Some 

species, such as lobster, burrow in the mud beneath the eelgrass beds (Heck and Orth 

1980; Short et al. 2001). Blue mussels, bay scallops (Heck et al. 1995), flounder, and cod 

(Gotceitas et al. 1997; Evans and Short 2005) have all been shown to utilize eelgrass 

meadows as critical nursery habitat. 

Seagrass declines have been documented both worldwide (Short and Wyllie-

Echeverria 1996; Green and Short 2003; Orth et al. 2006), and locally in New England 

(Short and Burdick 1996; Short et al. 1996; Deegan et al. 2002). Loss of critical eelgrass 

habitat, the dominant seagrass species in New England, has been attributed to nitrogen 
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loading (Orth and Moore 1983; Short et al. 1995; Deegan et al. 2002), increased housing 

development (Short and Burdick 1996; Short et al. 1996), wasting disease events (Short 

et al. 1986; Short et al. 1987) and grazing by Canada geese (Rivers and Short 2007). 

Shoreline development, characterized by impermeable ground cover such as asphalt and 

concrete, reduces an area's natural ability to absorb rain and runoff, promotes soil 

erosion, and leads to higher sediment and nutrient loads entering the estuary (Lee and 

Olsen 1985). 

Nitrogen (N) in estuarine and coastal waters along the U.S. northeastern seaboard 

(Maine to Virginia) has increased fivefold over the past century from 200 to 1,000 kg N 

9 - 1 

km" year" (Jaworski et al. 1997). Two of the largest contributors to N loads are septic 

and wastewater discharge (Short and Burdick 1996; Kennish et al. 2007), contributing up 

to 75% of water column N pollution (Driscoll et al. 2003). In the past 15 years, 

impervious surfaces in the Great Bay Estuary (GBE) rose from 4.7% to 8.0% of the 

watershed's land area. During this same time period, water column N levels have 

increased 59% (NHEP 2006). The recent growth in population and development in the 

GBE watershed has increased the flow into sewage treatment facilities, increasing N 

loading (Driscoll et al. 2003; Trowbridge 2006a; NHPA 2006). 

The GBE has historically supported significant eelgrass habitat (Short et al. 

1986). Wasting disease in the 1930s and again in the 1980s drastically depleted the 

estuary's standing stock of eelgrass (Short et al. 1986; Short et al. 1987). While eelgrass 

within the GBE rebounded after both of these wasting disease events, the current 

environmental stressors associated with shoreline development (N loading, impervious 

12 



surfaces and suspended solids) are increasing annually and show no sign of decline in the 

near future. 

Declining trends of eelgrass within the GBE motivated monitoring efforts, 

including Lee et al.'s (2004) nutrient pollution indicator (NPI). The NPI is an index that 

correlates to N increases based on plant response to changes in leaf N content and leaf 

mass (Lee et al. 2004). Individual NPI values are determined by calculating the ratio of 

leaf N content to leaf mass. Eelgrass beds exposed to comparatively higher levels of N 

exhibit greater NPI values. The NPI values serve as an early indicator of eutrophication, 

highlighting areas of excess nutrient loading. NPI measurements, rather than water 

column N, are used to measure eutrophication because direct measures of water column 

nutrients are generally ineffective. Water column N is rapidly utilized by phytoplankton 

and submerged vegetation, as well as diluted through tidal currents, leading to the 

underestimation of eutrophication (Tomasko et al. 1996). 

Measurements of the NPI within the GBE in August 1999 showed NPI values 

increasing significantly with distance up-estuary from the coast (Lee et al. 2004). 

Measurements of N loading within the GBE have shown a steady increase over the past 

25 years (NHPA 2006), and monitoring of eelgrass beds in the mid-estuary has shown 

substantial decline in eelgrass beds (Beem and Short 2008). To assess the current state of 

nutrient loading in the GBE on the eelgrass population, we retested the NPI of the 

original study sites in 2007 and compared the present trends with those from 1999. 

13 



Methods 

Study Sites 

The GBE is located on the border of New Hampshire and Maine (43°05'N, 

70°50'W). It has a maximum depth of 3.4 meters and a mean tidal range of 2.0 to 2.7 

meters (Roman et al. 2000). The original NPI eelgrass methodology executed in 1999 

(Lee et al. 2004) involved sampling 20 eelgrass beds within the GBE, from the seaward 

reference point at the mouth of the Piscataqua River up-estuary to the Great Bay (Fig 4). 
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Figure 4. Location of the study sites within the Great Bay Estuary sampled in August 1999 and 2007. The 
dots represent sites sampled both years, circles indicate sites devoid of vegetation in 2007, and the asterisk 
(*) indicates the new site sampled in 2007. The seaward reference point was used to calculate distance from 
the coast for each study site. 

The current study resampled all of the original sites (Fig. 4, Appendix B) where 

eelgrass still grew. Four of the original sites no longer supported eelgrass beds (6, 8, 10 

& 11). In addition, one of the sites (9) had such low eelgrass density that complete 

sampling was not possible. To address this issue, an alternative site (9A) close to the 

low-density site was added. 
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Eelgrass Collection 

Eelgrass collection and processing followed the protocol in by Lee et al. (2004). 

On August 27 and 29, 2007, ten mature terminal eelgrass shoots were collected from each 

study site using a hook sampler. Due to the low density of eelgrass at site 9, only four 

shoots were collected. Site 9A was sampled to ensure representative sampling from that 

area of the estuary. Eelgrass was transported to the Jackson Estuarine Laboratory in a 

cooler for processing and measurement. Prior to processing, plants were rinsed with 

fresh water. 

Plant Measurements 

For all of the plants collected, the number of leaves per shoot was counted. 

Sheath length was measured to the nearest 1.0 mm and sheath width to the nearest 0.2 

mm. The length of the first five leaves and longest intact leaf on each shoot were 

measured to the nearest 1.0 mm. The width of the longest intact leaf was measured to the 

nearest 0.2 mm. Percent wasting disease was estimated for each leaf measured (Burdick 

et al. 1993). 

Area normalized leaf weight (mg dry weight cm" leaf area), or leaf mass, was 

determined for each shoot. Six 10 cm long sections of constant width were cut from the 

second and third youngest leaves and dried at 60°C for 48 hours. The dried leaf sections 

were weighed to determine leaf mass (Olsen and Sand-Jensen 1993; Lee et al. 2004). 

Nitrogen Analysis 

To measure the leaf nitrogen (N) content of each plant, the dried leaf sections 

used for the leaf mass measurement were ground in a Thomas Scientific® Wiley Mill 

using a stainless steel 40 mesh sieve with a 1.0 mm diameter. The samples were stored in 
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20 ml scintillation vials with the lids loose in an oven at 20°C to keep the specimens at a 

constant weight while waiting to process. Between 1.5 and 2.5 mg of the ground samples 

were weighed on a Perkin Elmer® AD6 Autobalance Controller. The weighed samples 

were transferred into aluminum foil boats housed in 5x8mm plastic cylinders prior to 

combustion. The aluminum foil boats were then folded tightly using forceps and 

combusted in a PerkinElmer® Series IICHNS/O Analyzer 2400. The elemental analyzer 

uses the Pregl-Dumas method to combust the samples in a pure oxygen environment and 

measures the volume of nitrogen gas produced (PerkinElmer 2005). It then converts the 

gaseous volumes into percent weight based on the original mass of the sample. 

Distance from Coast 

A geographical measurement, distance from coast (m), was created to quantify the 

estuarine gradient. The ocean endpoint (43° 05' 12"N, 70° 68'86"W) was set on the New 

Hampshire coastline. Using an ArcGIS 9 ArcMap of the Great Bay Estuary, the distance 

of each study site from the ocean endpoint was calculated (Appendix B). 

Statistics 

Simple regression analysis of mean leaf length, leaf N content and leaf mass 

against distance from the coast was calculated to identify any spatial gradients. Mean 

leaf length was also regressed against leaf N and leaf mass. NPI for each site was 

calculated by dividing leaf N content by leaf mass. The NPI values were regressed 

against distance from the coast to identify estuarine gradients. The 2007 results were 

then compared with 1999 results to determine any significant differences. In addition, 

the 2007 NPI values were analyzed using a Tukey's multiple comparison test to 
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determine where the differences occurred within the GBE. Level of significance for all 

tests was p=0.05. 

Results 

Study Sites 

The GBE was analyzed in three sections; the lower-, mid-, and upper-estuary. The lower 

estuary included sites 1-8 and the upper estuary, or Great Bay proper, included sites 12-

20. The mid-estuary, made up of Little Bay and the Piscataqua River, included sites 9-

11. However, two of the four sites in the mid-estuary, sites 10 and 11, were devoid of 

eelgrass by 2007; a site, 9A, was added in 2007 due to low eelgrass density at the original 

site 9. The absence of eelgrass resulted in insufficient data to draw conclusions about the 

mid-estuary. 

Leaf N content and leaf mass 

The mean leaf N content of eelgrass ranged from 1.4 to 2.6% (Fig. 5), showing no 

significant trend with distance up-estuary (y=-4*10~6x+1.95; R2=0.02; p=0.59). 
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Figure 5. Eelgrass leaf N (±SE) at sample sites within the Great Bay Estuary. Sites 1-8, lower estuary; 9-
11, mid-estuary; 12-20, upper estuary. 

17 



Eelgrass leaf mass ranged from 2.0 to 5.8 mg dry wt cm" (Fig. 6) and was 

significantly lower (p<0.001) with distance up-estuary (Fig. 7). 
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Figure 6. Eelgrass leaf mass (+SE) at sample sites with the Great Bay Estuary. Sites 1-8, lower estuary; 9-
11, mid-estuary; 12-20, upper estuary. 
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Figure 7. Simple regression of the effects of distance up-estuary on eelgrass leaf mass. 

Relationship between NPI and plant parameters 

The NPI, defined as the ratio of eelgrass leaf N content to leaf mass, ranged from 

0.31 to 1.10 (Fig. 8) and increased significantly with distance up-estuary (p=0.009; Fig. 

9), although several peaks occurred throughout the GBE. Site 7 was significantly higher 
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(p=0.003) than all sites in the lower estuary except site 5 (Fig. 8). In the upper estuary, 

site 16 was significantly higher (p<0.001) than all sites except 15 and 20 (Fig. 8). 
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Figure 8. Eelgrass NPI (±SE) at sample sites within the Great Bay Estuary. Sites with the same tetter are 
not significantly different from one another (p<0.05). Sites 1-8, lower estuary; 9-11, mid-estuary; 12-20, 
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Figure 9. Simple regression of the effects of distance up-estuary on the NPI. 

Discussion 

Analysis of NPI values in the GBE showed an estuarine gradient similar to the 

one seen in the original sampling (Lee et al. 2004). The significant trend of decreasing 

leaf mass with distance up-estuary (Fig. 7) was also present in the 1999 data (Lee et al. 
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2004) However, the current gradient showed additional NPI peaks at site 7 in the lower 

estuary and 16 in the upper estuary, both of which are associated with areas of excessive 

N loading. Within the GBE, wastewater treatment facilities (WWTFs) are the single 

greatest contributor of excess N and are responsible for 34% of the N loading in the 

estuary (Trowbridge 2006a). The Portsmouth WWTF, the largest in the region, drains its 

effluent directly into the lower estuary near site 7. 

Tributaries are another major contributor of N, carrying excess nutrients into the 

estuary from upstream sources, including WWTFs. Seven rivers empty into the GBE, 

contributing 49% of the total N load - over 540 tons annually (Trowbridge 2006a) - to 

the estuary. Among these tributaries, the Lamprey, Squamscott, and Winnicut Rivers 

empty into the upper estuary, and carry with them nearly half (47%) of all tributary 

contributions of N (Trowbridge 2006a). The remaining 4 tributaries, the Cocheco, 

Salmon Falls, Oyster, and Bellamy Rivers, drain into the mid-estuary, carrying with them 

285 tons of N, 53% of tributary N loading (Trowbridge 2006a). The large amount of 

tributary-derived N into the mid-estuary likely contributed to the loss of eelgrass from 

sites within this portion of the estuary between 1999 and 2007 (Beem and Short 2008). 

The remaining 17% of the total N loading in the GBE is attributed to nonpoint 

source runoff (12%), atmospheric deposition (3%) and groundwater inputs (2%) 

(Trowbridge 2006a). The comparatively greater contribution of WWTFs and tributaries 

(83%), although not mutually exclusive, highlights these factors as important sources of 

N loading in the GBE. 

The highest NPI value observed in 2007 was at site 16, and was higher than all 

sites in the upper estuary except 15 and 20 (Fig. 8). Site 16 was located in Great Bay 
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proper between the mouths of the Lamprey and Squamscott Rivers. Combined, these two 

rivers contribute roughly 225 tons of N into the estuary annually (Trowbridge 2006a), 

over 40% of all tributary loading. The proximity of site 15 to 16 explains the similar 

results, as both sites were under similar influences. Site 20 was located on the opposite 

side of Great Bay from these sites, near the Winnicut River and the Portsmouth Country 

Club's golf course and was not significantly different from the other site at the eastern 

end of the upper estuary (site 19). 

The NPI value at site 7 was higher than all other sites in the lower estuary except 

5 (Fig. 8). Site 7 was bordered by two unvegetated sites (sites 6 & 8), that supported 

eelgrass in 1999 (Lee et al. 2004). Together, the 3 sites span the area of the Portsmouth 

WWTF. Site 5 was located directly downstream from site 7 and the bare site 6, and was 

under similar conditions, if slightly more distant from the WWTF outfall. 

Nitrogen loading within the GBE has implications extending beyond the eelgrass 

population. Studies in Waquoit Bay, Massachusetts, found that excess N has not only 

decreased eelgrass biomass, but that the decline in eelgrass has led to significant 

decreases in fish and decapod abundance, biomass, and diversity (Short and Burdick 

1996; Deegan et al. 2002). Similar trends are currently occurring in the GBE; monitoring 

of nutrient enrichment in the GBE has shown a 59% increase in dissolved inorganic 

nitrogen (DIN) over the past 25 years (NHPA 2006). Data from 1998 through 2004 

showed a decline in 4 of the 5 juvenile fish species monitored in the GBE (Trowbridge 

2006b). 

Between 1999 and 2007, four of the twenty original eelgrass study sites lost their 

eelgrass. Two of these sites (6 & 8) were in the lower estuary, near the outfall of the 
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Portsmouth WWTF. The other two sites where eelgrass disappeared were in the mid-

estuary, where over half of tributary contributions of N enter the GBE (Trowbridge 

2006a; Beem and Short 2008). The current results further highlight the contributions of 

WWTFs and tributaries to N loading in the GBE and their effects on nearby eelgrass 

beds, identifying two new sites of concern (7 & 16). If the current trends of increasing N 

continue in the GBE, these eelgrass beds may be lost as well. 
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CHAPTER IV 

CREATION OF AN EELGRASS LESSON PLAN TO SUPPLEMENT LOCAL 

MIDDLE SCHOOL SCIENCE CURRICULUM 

Introduction 

The terms "experiential education," "environmental education," and "place-based 

learning" all describe educational techniques that utilize a hands-on approach to 

education as a supplement for classroom teaching. The increasing shift towards these 

methods of education is reflected in the New Hampshire Science Literacy Curriculum 

Framework, the State's guidelines for science education. The Framework highlights 10 

broad goals of kindergarten through grade 12 education (K-12) science education, the 

first of which is for students to use "inquiry strategies" to investigate and better 

understand the natural world (NHDOE 2006). Inquiry strategies are methods used in the 

pursuit of information, and include making observations, testing hypotheses, and 

estimating outcomes (NWREL 1997). Other relevant goals include 1) ensuring students 

will be able to practice basic data collection methods used by scientists to obtain 

information and 2) allowing students to explore the natural world (NHDOE 2006). 

The NH Science Literacy Curriculum Framework further describes science 

standards specific to grade levels. For middle level science, grades 5-8, the overarching 

goal is for "students to identify and shape their understanding of the world (NHDOE 

2006, p. 8)." The objective is to be achieved through eight avenues, three of which relate 

directly to experiential education; these three are to 1) provide students with frequent 
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opportunities to engage in inquiry, 2) use experiments and observations to gather 

information, and 3) provide students ample opportunities for experimentation and data 

collection (NHDOE 2006). 

The Oyster River Cooperative School District (ORCSD), composed of students 

from the towns of Durham, Lee, and Madbury, New Hampshire, already shows a 

commitment to experiential education: the Oyster River Middle School (ORMS) sends its 

fifth grade students to a 4-day residential program at Ferry Beach Ecology School in the 

fall and to Squam Lake Natural Science Center for a day in the winter. In addition to 

these fieldtrips, ORMS teachers work to incorporate experiential learning into classroom 

teaching through the use of curriculum and activity guides such as Project WET, Project 

WILD, and Project Learning Tree. My interest in experiential science education led to 

my collaboration with ORMS and the creation of a supplemental science lesson based 

upon my research on eelgrass within the Great Bay Estuary (GBE). 

The GBE is located on the southern border of New Hampshire and Maine, and is 

home to a host of organisms, including eelgrass (Zostera marina L.), the dominant 

species of seagrass in the northeastern U.S. (Green and Short 2003) and the primary 

aquatic plant in system. Seagrass grows in intertidal and shallow subtidal portions of 

marine and estuarine waters, forming dense patches known as meadows or beds. 

Seagrass meadows are highly productive and perform a number of important functions in 

shallow, coastal waters. In New England, eelgrass beds help to stabilize sediment and 

filter the water column (Short and Short 1984), reduce wave energy (Fonseca et al. 1982), 

and provide a nursery habitat for juvenile fish and invertebrates (Heck and Orth 1980; 

Gotceitas et al. 1997). Unfortunately, eelgrass within the GBE has been declining 
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steadily since 2001 (Beem and Short 2008), which affects eelgrass' ability to perform 

these ecological functions within the estuary. 

The supplemental lesson, created to address the importance of eelgrass in the 

GBE, was designed for fifth graders and focused on both the ecological role of eelgrass 

and the effects of humans on the estuary, also referred to as "human impact." The lesson 

was conducted during a 2.5 hour outreach event at the University of New Hampshire's 

Jackson Estuarine Laboratory. 

Following the outreach event, interested students were given the opportunity to 

take the information learned at the event and create interpretive panels to display 

throughout the community. The panels highlighted the role of eelgrass in the GBE, 

factors contributing to the current decline in eelgrass, and potential actions/ behavior 

modifications to lessen human impact on the estuary. Through the outreach event and 

interpretive panels, students learned about the role of eelgrass in the GBE, increasing 

their knowledge and interest in preserving the estuary. In addition, the supplemental 

lesson met several of the overarching goals and specific objectives of the New Hampshire 

Science Literacy Curriculum Framework for middle level science (5-8 grades). The 

relevant goals focused on the importance of experiential education, including observation 

and data collection, and were fulfilled through the hands-on design of the activities 

conducted during the outreach event. 
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Methods 

Curriculum Development 

Creation of a supplemental lesson plan required the creation of experiential 

activities that provided students with information about eelgrass. Both the New 

Hampshire Science Literacy Curriculum Framework and the ORMS science "Curriculum 

at a Glance" were used to determine the appropriate age level and focus of the lesson. 

Fifth graders were ultimately chosen as the target audience because eelgrass fit well into 

their life science unit. A review of both documents highlighted interactions between 

organisms and the effects of human-induced change as two primary foci for fifth grade 

science (NHDOE 2006). 

A date in early June was decided upon for the outreach event; students would be 

learning about factors that influence water quality and the weather would be warm 

enough for students to be outside for several hours. The experiential lesson plan created 

for the outreach event (Appendix C) combines basic estuarine and eelgrass ecology with 

the effects of human behavior to create a story explaining the recent decline in eelgrass 

within the GBE. 

Outreach Event 

The outreach events held on June 5 and 6, 2008, involved two groups of 40 

students each day, teaching all 160 fifth graders over two days. To lower the student to 

teacher ratio as much as possible and maximize student involvement, the lesson was 

designed using three learning stations: eelgrass ecology, water quality, and human 

impact. Groups of 13-14 students rotated through the stations, remaining with the same 

instructor for continuity. The water quality and human impact stations required little in 
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the way of set-up, while preparation for the eelgrass ecology station began three weeks 

prior to the events. Because eelgrass is a marine plant growing within the waters of the 

estuary, it was not feasible for students to visit natural beds. To address the issue, six 1 

m mesocosm tanks were planted with eelgrass for student exploration (Davis and Short 

1997), but required several weeks to acclimate to the tanks. 

The eelgrass ecology station was designed to introduce students to the physical 

structure of eelgrass as well as its role as nursery habitat for juvenile fish and 

invertebrates. The water quality station provided students with a hands-on opportunity to 

measure various water quality parameters, similar to the in-situ measurements taken by 

researchers at Jackson Estuarine Laboratory. Because the water testing was done on 

floating docks, all participants were first outfitted with PFDs to ensure safety. Finally, 

the human impact station highlighted both the beneficial and detrimental impacts humans 

can have on a natural system. Full descriptions of activities and their objectives can be 

found in Appendix C. 

Feedback on the effectiveness of the outreach event was gathered from 

conversations with the ORMS teachers and students following the event. In addition, 

interested students were given the opportunity to create interpretive panels to display 

throughout the community. Discussions during afterschool work on the panels and 

interpretation of student artwork also contributed to determining the effectiveness of the 

lesson plan and outreach event. 
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Results 

Outreach Event 

Prior to breaking the students into the smaller groups for the learning stations, all 

40 participants were introduced to the abiotic requirements of eelgrass through Oh 

Eelgrass (Appendix C). The activity illustrated the effects of both excess and limited 

resources, such as nutrients and light, on an eelgrass population. 

At the eelgrass ecology station, large tanks planted with eelgrass introduced 

students to eelgrass and provided an opportunity to measure plant parameters and 

participate in activities. Predator Snapshot (Appendix C) emphasized the nursery role of 

eelgrass, comparing the effectiveness of bare sediment with vegetated tanks for fish 

habitats. Students were even given the chance to step into the role of juvenile fishes 

trying to escape predation during Camouflage (Appendix C). Both activities addressed 

the fifth grade science objectives of exploring organism interactions and dependence 

upon one another (NHDOE 2006). 

The water quality station provided students with an opportunity to measure 

salinity, temperature, and turbidity of the GBE. Salinity was measured using a 

hydrometer, temperature with a thermometer, and turbidity with a secchi disk. An YSI 

meter, an electronic data collector, was used after sampling to compare results for 

temperature and salinity. The comparison was conducted by recording student results on 

a white board and adding the YSI measurements next to them. The difference in the level 

of precision sparked a discussion among students regarding human bias and reliable 

measurements. Comparison of data collection methods is another objective of the New 

Hampshire Science Literacy Curriculum Framework for fifth graders (NHDOE 2006). In 
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addition, the data for each parameter was compared with ideal and survival ranges for 

eelgrass (Appendix C) to determine the quality of the area for eelgrass habitat. The 

comparison of water quality parameters in the GBE with eelgrass requirements touched 

on the fifth grade objective addressing the direct effects of water quality on living things 

(NHDOE 2006). 

The human impact station reviewed the cumulative effects of individual actions 

during Clean up the Bay! (Appendix C). The activity also focused on the effort and 

problems associated with cleaning up a degraded system compared with preventative 

methods. Habitat Hopscotch (Appendix C) illustrated the effects of habitat 

fragmentation, transforming students into juvenile fish seeking shelter in eelgrass beds 

throughout the bay. The two activities were designed to focus on the objective exploring 

the consequences of human-caused change in natural systems (NHDOE 2006). 

The outreach events culminated in a second large group activity, involving all 40 

students. Stressful Situation! (Appendix C) illustrated the effects of environmental 

stressors on eelgrass and linked the effects of human activity on the degrading water 

quality and the recent decline in eelgrass in the GBE. 

Interpretive Panels 

In the week following the outreach events, students were invited to share their 

new understanding of the GBE with the greater community through the creation of 3x4' 

interpretive panels. The panels presented a combination of text and student artwork (Fig. 

10) and highlighted 1) the role of eelgrass in the GBE, 2) contributors to the current 

eelgrass decline, and 3) possible mitigation efforts and behavioral changes to conserve 

eelgrass within the GBE. More than a dozen students participated in the creation of the 
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panels, which culminated in a student presentation to the Durham Conservation 

Commission. Creation of the interpretive panels addressed the state objective focusing 

on data presentation (NHDOE 2006). Versions of the panels were displayed at Durham 

Town Hall, Oyster River Middle School, Sandy Point Discovery Center, Jackson 

Estuarine Laboratory, and the University of New Hampshire. 

Figure 10. ORMS students posing with a completed interpretive panel 

Student Response 

To evaluate what students took away from the lesson plan and associated outreach 

event, I sought to determine which functions of eelgrass they valued most and what 

human impacts the students perceived as having the greatest effect on the estuary. 

Information used for the assessment was a combination of student responses during the 
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outreach event, information presented on the interpretive panels, and interpretation of 

student artwork. 

The importance of eelgrass as a nursery habitat for juvenile fish was clearly 

depicted in the students' artwork (Fig. 11) and in their responses. The stronger 

connection with eelgrass functions associated with animals reflects people's ability to 

relate better to animals than plants. The link between eelgrass and higher trophic levels 

provided the students something more tangible for the students to focus upon and better 

appreciate the foundation role of eelgrass in the estuary. Some of the students came away 

from the outreach event with the impression that fish in the GBE eat eelgrass, which is 

not the case. While the misconception was not picked up during the outreach event, 

several student drawings illustrated fish eating eelgrass, allowing me to realize the 

problem. Future outreach events should emphasize that while eelgrass provides 

important habitat fish in the GBE, it is not a food source for the fish. 
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Water quality testing of the GBE showed measurements within the ideal range 

for temperature and salinity, but not for clarity. Through further exploration of water 

quality during Clean up the Bay! (Appendix C), students identified fertilizer, soil erosion 

and septic/sewage inputs as the primary contributors to the reduced water clarity (Fig. 

12). A handful of students mentioned pesticides as a potential stressor to eelgrass, given 

the rural landscape of some of the surrounding towns. 
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Figure 12. Student images depicting the primary contributors to eelgrass decline within the Great Bay 
Estuary. 

Teacher Response 

Conversations with the ORMS teachers following the outreach event yielded 

overwhelmingly positive feedback. The ORMS teachers and principal were excited to 

collaborate with another organization within the local community and to learn more about 

research in the GBE. None of the teachers were aware of the local eelgrass decline prior 

to the creation of the supplemental lesson plan, but were eager to incorporate real trends 

into their curriculum. The science teachers were conducting a unit on water quality at the 

time of the outreach event, and found that study of the recent eelgrass decline fit well, 

allowing students to conduct 'detective work' through water quality testing to link the 

effects of human activity on eelgrass. The ORMS teachers, expressed a strong desire to 
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incorporate the outreach event and trip to UNH's Jackson Estuarine Laboratory into the 

science curriculum as an annual event. 

The teachers were particularly excited about the creation of the interpretive panels 

following the event. The teachers believed displaying the interpretive panels throughout 

the community would help instill a sense of pride and stewardship in the students. In 

addition, it would provide an opportunity for students to share the newly acquired 

information about the GBE with other members of the community. 

Discussion 

Creating an effective and relevant supplemental lesson plan required the 

involvement of the New Hampshire Science Literacy Curriculum Framework, ORMS 

teacher input, and an emphasis on experiential learning. The result was a 2.5 hour 

outreach event and the creation of interpretive panels displayed throughout the 

community. Investigation of the student responses revealed the nursery habitat role of 

eelgrass as the plant's most valued ecological function. However, the dominance of this 

response was likely a combination of the focus of the outreach and the prior knowledge 

base of students. The activities Web of Life, Camouflage, Predator Snapshot, and 

Habitat Hopscotch (Appendix C) all touched upon the connections between fish and 

eelgrass. 

The emphasis on food webs and trophic interactions was guided by the objectives 

of the NH Science Framework for fifth grade (NHDOE 2006), and led to the 

overshadowing of other essential functions of eelgrass. The more complex functions of 
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eelgrass, including water filtration and reduction of wave energy, may be more 

appropriate for high school science curriculum - a possibility for future outreach efforts. 

The outreach event was intended to both get students interested in eelgrass and 

get them outside. The increasing rates of television and computer use by children, now 

up to almost 7 hours a day (Roberts et al. 1999), are leading to an obesity epidemic 

(Institute of Medicine 2005) and nature deficit disorder. "Nature-deficit disorder," a term 

coined by author Richard Louv, refers to a disconnect with the natural world driven by 

children (and adults) spending less time outside and more time in front of television and 

computers (Louv 2005). The trend has been connected with the rise in both obesity and 

behavioral problems in children. Experiential education may be an important part of the 

cure. Not only has experiential education been shown to improve standardized test scores 

(SEER 2000), it also increases children's attention capacity and ability to deal with stress 

(Wells 2000). The academic and health benefits of experiential education make it an 

attractive and important supplement to traditional classroom teaching. 

The eelgrass lesson plan and outreach event brought the benefits of experiential 

education to ORMS, a school already committed to ecological awareness. The outreach 

event focused on familiarizing students with eelgrass and the local estuary while also 

adhering to the state science standards and fulfilling several of the overarching goals of 

the New Hampshire Science Literacy Curriculum Framework. The opportunity for 

students to learn using their local environment benefits not only their own academic 

achievement, but also the scientific and residential populations in the community. 
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APPENDIX A 

ORIGINAL DATA FOR CHAPTER I 

Mean biomass (g m"')and standard erroi 

2001 
2002 
2003 
2004 
2005 
2006 
2007 

OCC 

146.99 
97.98 
42.90 
56.43 
62.64 

5.85 
0.00 

SEOCC 

33.62 
17.84 
9.30 

19.84 
16.36 

1.27 
0.00 

Tl 

162.77 
109.99 
105.19 
82.91 
21.23 

7.07 
0.00 

for all NHPA sample sites 

SET1 

39.88 
12.10 
17.24 
18.14 
5.15 
1.75 
0.00 

T3 

40.86 
142.80 
184.14 
156.46 
117.62 
44.52 

2.88 

SET3 

11.39 
19.43 
15.95 
26.17 
12.20 
13.44 
0.79 

R2 

21.52 
67.86 

101.90 
79.91 
70.75 
28.74 

0.81 

SER2 

1.95 
17.99 
18.40 
18.13 
6.48 
4.41 
0.23 

DP 

30.76 
45.55 
59.75 
18.11 
0.00 

SEDP 

7.35 
9.47 

10.34 
4.83 
0.00 

Mean density (shoots m"2) and standard 

2001 
2002 
2003 
2004 
2005 
2006 
2007 

OCC 

325.00 
238.86 
163.00 
162.00 
173.00 
71.00 

0.00 

SEOCC 

29.24 
93.64 
27.34 
39.82 
39.34 
12.14 
0.00 

Tl 

304.00 
203.43 
217.00 
178.00 
103.00 
49.00 
0.00 

error for all NHPA sample sites 

SETl 

47.47 
27.85 
28.09 
28.32 
18.16 
12.27 
0.00 

T3 

226.00 
456.00 
415.00 
257.00 
317.00 
183.00 
44.00 

SET3 

33.53 
54.78 
45.72 
54.06 
32.77 
34.95 

8.14 

R2 

327.00 
212.00 
270.00 
130.00 
167.00 
118.00 
29.00 

SER2 

33.53 
33.47 
38.83 
18.44 
26.55 
18.62 
5.64 

DP 

123.00 
117.00 
167.00 
65.00 

0.00 

SEDP 

20.22 
17.69 
28.58 
13.73 
0.00 

Mean canopy height (cm) and standard 

2001 
2002 
2003 
2004 
2005 
2006 
2007 

OCC 

82.26 
78.00 
51.69 
50.90 
54.13 
19.20 
0.00 

SEOCC 

12.07 
10.52 
5.37 
6.54 
4.83 
1.34 
0.00 

Tl 

71.96 
61.51 
73.68 
76.36 
39.39 
25.57 
0.00 

error for all NHPA sample sites 

SETl 

5.46 
3.49 
8.88 
9.21 
2.70 
1.92 
0.00 

T3 

39.84 
54.37 
91.08 

112.75 
67.42 
38.82 

6.75 

SET3 

4.32 
6.69 
4.47 
2.41 
4.48 
3.14 
1.30 

R2 

61.13 
67.43 
79.41 
75.85 
59.13 
45.86 

4.05 

SER2 

6.36 
10.72 
6.21 
7.06 
5.52 
2.02 
0.81 

DP 

49.89 
52.16 
58.25 
41.61 

0.00 

SEDP 

5.89 
4.02 
4.01 
2.00 
0.00 

Mean leaf area (cm 

2001 
2002 
2003 
2004 
2005 
2006 
2007 

OCC 

208.30 
160.39 
128.72 
115.10 
117.19 
25.12 
0.00 

2 shoot"1) and standard error 

SEOCC 

33.72 
21.83 
16.49 
14.18 
15.58 
2.90 
0.00 

Tl 

165.02 
131.95 
169.74 
139.75 
70.99 
36.68 

0.00 

SETl 

14.21 
13.18 
20.67 
21.86 

8.29 
3.50 
0.00 

for all NHPA sample sites 

T3 

80.30 
109.56 

208.53 
229.08 
140.28 
55.20 

8.09 

SET3 

15.38 
15.25 
14.96 
7.88 

13.67 
9.42 
1.85 

R2 

155.02 
146.09 
218.30 
182.13 
113.60 
74.95 

4.16 

SER2 

18.71 
30,46 
23.95 
24.30 
12.43 
6.34 
1.00 

DP 

114.86 
123.13 
132.91 
82.50 

0.00 

SEDP 

15.28 
15.67 
15.58 
7.51 
0.00 
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Mean percent cover (%) and standard error for all NHPA sample sites 

2001 
2002 
2003 
2004 
2005 
2006 
2007 

occ 

83.37 
36.81 
49.13 
37.18 
13.90 
0.00 

SEOCC 

2.15 
2.48 
2.59 
2.18 
0.88 
0.00 

Tl 

51.60 
44.31 
65.32 
25.15 
21.18 
0.00 

SET1 

2.42 
2.75 
1.91 
1.90 
1.38 
0.00 

T3 

64.81 
95.05 
90.75 
72.43 
48.18 
5.28 

SET3 

2.77 
1.12 
1.29 
2.12 
2.22 
0.43 

R2 

61.83 
77.46 
53.29 
49.88 
55.48 
1.17 

SER2 

2.25 
2.02 
2.58 
2.13 
1.95 
0.14 

DP 

29.72 
37.98 
50.10 
34.85 
0.00 

SEDP 

2.10 
2.32 
2.15 
2.17 
0.00 

37 



APPENDIX B 

ORIGINAL DATA FOR CHAPTER II 

Latitude and longitude coordinates for the GBE study sites sampled in August 2007 

Site 

Gl 
G2 
G3 
G4 
G5 
G6 
G7 
G8 
G9 
G9A 
G10 
Gil 
G12 
G13 
G14 
G15 
G16 
G17 
G18 
G19 
G20 

Latitude 

43° 06' 66"N 
43° 07' 44"N 
43° 07' 24"N 
43° 07' 68"N 
43° 07' 17"N 
43°07'50"N 
43° 07' 56"N 
43° 08' 65"N 
43° 11' 15"N 
43° 11'99"N 
43° 12'50"N 
43° 12' 83"N 
43° 08' 97"N 
43° 08' 44"N 
43° 08' 42"N 
43° 08' 27"N 
43° 06' 34"N 
43°07'01"N 
43° 06' 88"N 
43° 06' 17"N 
43° 06' 64"N 

Longitude 

70° 69' 64"W 
70° 70' 02"W 
70°71'41"W 
70° 72' 47"W 
70°73'71"W 
70° 74' 15"W 
70° 74' 25"W 
70° 75' 82"W 
70°80'71"W 
70° 80' 96"W 
70° 84' 33"W 
70° 86' 11"W 
70° 86' 93"W 
70°86'91"W 
70° 86' 92"W 
70° 87' 60"W 
70°90'15"W 
70° 87' 27"W 
70° 86' 19"W 
70° 86' 37"W 
70° 84' 96"W 
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Distance of study sites from coast (m) using the set point (43°05'12"N, 70°68'86"W) as a reference 
Site Number Distance from Coast 

1 
2 
3 
4 
5 
6 
7 
8 
9 

9A 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

1830.49 
2747.35 
3403.73 
4773.08 
5282.53 
5798.97 
5904.20 
8169.91 
13025.71 
13753.05 
16682.74 
18210.75 
22774.14 
23362.76 
23411.95 
27147.03 
27493.85 
25084.24 
25884.51 
26144.65 
26910.15 

Mean Leaf Mass, %N, and NPI, including standard error, for study sites sampled August 2007 

Site 

1 
2 
3 
4 
5 
6 
7 
8 
9 

9A 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Mean % N 

1.6825 

1.8336 

1.7557 
1.8100 

2.0793 

0.0000 

2.5792 

0.0000 

2.0492 

1.7903 

0.0000 
0.0000 

1.8103 
1.7915 
1.6456 
2.2675 

2.1049 

1.5077 

1.3806 

1.8780 

2.1247 

SE 

0.0758 

0.0472 

0.0522 

0.0576 

0.0790 

0.0000 

0.1371 

0.0000 

0.1111 

0.0895 

0.0000 
0.0000 

0.1132 
0.1001 
0.0997 
0.1063 

0.0744 

0.0740 

0.1019 

0.1074 

0.0477 

Leaf Mass 
(mg cm"2) 

5.6321 

5.7576 

5.2725 
5.5796 

3.6047. 

0.0000 

3.0610 

0.0000 

3.8250 

3.7132 

0.0000 
0.0000 

2.8664 

3.2507 
2.8952 
2.6299 

1.9756 

2.9855 

3.1233 

2.3724 

2.4642 

SE 

0.4054 

0.5445 
0.2544 

0.5602 

0.3013 

0.0000 

0.1827 

0.0000 

0.4648 

0.1771 

0.0000 
0.0000 

0.1727 
0.1465 
0.2717 
0.1587 

0.0912 

0.1493 

0.1235 

0.0785 

0.1463 

NPI 

0.3125 

0.3377 

0.3413 

0.3499 
0.5973 

0.0000 

0.8734 

0.0000 

0.5642 

0.4892 

0.0000 
0.0000 

0.6622 
0.5703 
0.6050 
0.9005 

1.1020 

0.5206 

0.4558 

0.8077 

0.8934 

SE 

0.0271 
0.0274 

0.0220 

0.0308 

0.0356 

0.0000 

0.0745 

0.0000 

0.0784 

0.0244 

0.0000 

0.0000 

0.0590 
0.0545 
0.0613 
0.0822 

0.0981 

0.0421 

0.0433 

0.0647 

0.0795 



APPENDIX C 

SUPPLEMENTAL EELGRASS LESSON PLAN 

SEAGRASS OVERVIEW 

Seagrasses are not true 'grasses,' but marine flowering plants that grow in 

intertidal and shallow subtidal portions of coastal waters. Seagrasses are also not 

seaweed. Seaweeds are not plants but protists (organisms with no tissue specialization), 

have no root system, and produce asexually (Fish and Wildlife Research Institute 2008). 

Seagrasses are considered vascular plants possessing nutrient transport systems, have 

roots and underground stems called rhizomes, and produce flowers and seeds. It is also 

important to note that seagrasses are not salt marsh plants. Plants growing in salt 

marshes, such as cordgrass (Spartina alterniflora) and salt hay (Spartina patens) are salt-

tolerant terrestrial grasses even though they can become partially submerged during high 

tide. 

There are nearly 60 species of seagrasses worldwide (den Hartog 1970, Green and 

Short 2003) and can be found off every continent except Antarctica. The bioregion with 

the highest species diversity, 24 species, is the tropical Indo-Pacific region, the waters 

between east Africa, south Asia, tropical Australia, and the eastern Pacific (Short et al. 

2007). The northeast coastline of the United States has low species diversity, 2 species, 

and is dominated by the species eelgrass or Zostera marina (Short and Short 2003). 

Seagrasses fill an important niche in the world's oceans, creating a buffer at the land-

water interface of the coast. The information presented below focuses on eelgrass, 
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because it is the primary seagrass found in New Hampshire. Widgeon grass (Ruppia 

maritima) is also found in New Hampshire, and for a long time was not considered a 

seagrass, because of its ability to grow in fresh water (Green and Short 2003). 

As mentioned before, the physical structure of seagrass is one of the major 

differences between it and seaweed, another marine primary producer. The structure of 

seagrass can be divided into above and belowground material (Fig. la). Seagrasses are 

the only submerged marine plants with root systems (Short et al. 2007), which help to 

stabilize sediment while anchoring the plant. The belowground material also includes 

rhizomes, or underground stems, that branch out below the sediment and sprout lateral 

shoots. The aboveground plant material consists of the leaves, which grow in bundles 

called shoots. New leaves are produced in the center of the bundle of leaves with the 

oldest growing on the exterior of the bundle (Fig la). 

Youngest leaf 

Oldest leaf 

Lateral shoot 

Rhizome 

Distal end 

Terminal shoot 

Top of sheath 

Bundle sheath 

Merislem 

Figure la. Diagram of eelgrass plant structure. From Hoven (1992). 
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With the exception of some shallow intertidal beds, seagrass plants are always 

submerged, and thus do not possess a rigid leaf structure to support the plants. Out of the 

water, leaves are flaccid and lay on the surface of the substrate, illustrating their reliance 

on buoyancy to hold the plants upright. 

Seagrasses reproduce sexually through the production of flowers, fruits and seeds. 

Once a shoot becomes reproductive and produces seeds, it dies. However, all seagrasses 

also have the ability to reproduce asexually, or clonally (Short et al. 2007). As mentioned 

before, rhizomes grow horizontally below the sediment and send up new lateral shoots, 

which possess the same genetic material as the parent plant. The ability to reproduce 

clonally as well as through seed production enables seagrasses to better deal with 

environmental disturbances; many species have come to rely heavily on lateral shoots for 

population growth (Rasheed 1999). 

Water quality requirements for seagrasses vary among species. All seagrass 

species need light for photosynthesis, but the minimum requirement varies. Plants also 

have varying salinity and water temperature ranges. The ideal and survival ranges-of 

eelgrass for water temperature, salinity, and water clarity are presented in Table 1. 

Table la. Water quality requirements for eelgrass. 
Water Temperature 

Survival range: 
Ideal: 

Salinity 
Survival range: 
Ideal: 

Water Clarity 
Minimum: 

-6 to 34°C (21-93°F) 
25°C (77°F) 

5-60 
15-25 

22% of surface light 
References for the water quality parameters are as follows: water temperature (Biebl and McRoy 1971); 
salinity (Short and Short 2003); water clarity (EPA 2003). 
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Seagrass ecosystems perform a number of ecologically important functions in 

coastal waters. The physical structure of the plants, both above and belowground, helps 

to stabilize sediment and filter particulate matter out of the water column (Short and 

Short 1984). The filtering of the water column by seagrass increases water clarity and 

light reaching the plants, increasing their capacity to photosynthesize. Aboveground 

seagrass material also reduces wave energy and slows water currents, allowing suspended 

material to collect within the seagrass bed (Fonseca et al. 1982; Koch 2001). The older 

leaves and poorly rooted plants are often uprooted by storm events, creating floating 

islands of 'wrack' in within an estuary. The dead plant material eventually washes up on 

shore, providing an important food source for detritivores such as amphipods. The 

decaying plants found on beaches are how most people in New England are familiar with 

eel grass. 

The dense patches of seagrass shoots are known as beds or meadows. The 

physical structure and camouflaging ability of the seagrass canopy offers protection to 

juvenile fish and invertebrates from predation. Because juvenile fauna are regularly 

found in seagrass beds, they are often referred to as 'nursery habitats.' In New England, 

the habitat created by eelgrass not only provides shelter, but also an important link 

between other estuarine habitats such as salt marshes, oyster reefs and mussel beds. 

Species such as mud snails that are found in both salt marshes and eelgrass beds often 

start their life as eggs on an eelgrass leaf to prevent desiccation (Coulombe 1984). Blue 

mussels also settle on eelgrass leaves in their early stages before settling on the substrate 

(Heck et al. 1995). Some species, such as lobster, burrow in the mud beneath the eelgrass 

beds (Heck and Orth 1980, Short et al. 2001). Other commercially important species, 
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including flounder and bay scallops have also been shown to utilize eelgrass meadows as 

critical nursery habitat (Heck et al. 1995). 

In addition to providing shelter, seagrass leaves and the detritus that collects in the 

root system provide important food sources. Turtles and manatees graze on seagrass in 

tropical climates. In New England, small invertebrates such as isopods feed on eelgrass 

leaves. Larger invertebrates and juvenile fish in turn feed upon the isopods. The dead 

leaves and other detritus that collects in the eelgrass root system also contribute greatly to 

the estuarine food web. Gastropods (eg. snails), grass shrimp, and polychetes (marine 

- worms) all feed upon the detrital material in eelgrass beds, which can exceed the biomass 

of the living plant material (Adams and Angelovic 1970). The detritivores (organisms 

that eat decaying material) help convert nutrients in the plant material back into a usable 

form for the plants as well as provide another link in the estuarine food web. 

SEAGRASS MEASUREMENTS 

Measurements of seagrass parameters (eg. density, canopy height) provide useful 

information on the meadow's health and can be taken with little-to-no impact to the 

plants. Canopy height is defined as the height above the sediment of 80% of seagrass 

shoots. The measurement provides useful information about the ability of the bed to 

filter the water column and provide shelter for juvenile fish and invertebrates. To 

measure canopy height, bring together a handful of still-rooted plants (like a pony tail) 

and extend the leaves up through the water column to their full height, being careful not 

to uproot the plants. Ignoring the estimated tallest 20% of the leaves, place a meter stick 

at the surface of the sediment, and take a measurement of the highest of the other 80% of 
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the plants (Duarte and Kirkman 2001). Removing the tallest 20% of plants from the 

measurement helps reduce the influence of very tall leaves on the overall measurement of 

the eelgrass bed; these tallest leaves do not contribute to the canopy structure of the bed. 

Percent cover is an estimate of the percentage of estuarine bottom covered by 

eelgrass plants. The measurement gives a quick estimate of plant abundance, and 

although it is more subjective than measuring shoot density directly (see below), it has 

been shown in studies to be a very effective metric (Heidelbaugh and Nelson 1996). 

Placing a quadrat into the eelgrass bed, look straight down and estimate the percentage 

(0-100%) of bottom, or substrate, covered with eelgrass leaves (Duarte and Kirkman 

2001). It is useful to have reference photos illustrating various percentages of eelgrass 

cover (downloadable from http://marine.unh.edu/jel/faculty/fred2/fredshort.htm). 

Figure 2a. Measuring eelgrass percent cover using a quadrat 

In addition to percent cover, shoot density can be measured by counting the 

number of eelgrass shoots in a given area. To measure, place a quadrat of known size 
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into an eelgrass bed and count all of the shoots within the area, being careful not to 

uproot any plants (Duarte and Kirkman 2001). The measurement can be difficult in areas 

of soft, fine sediment, since water easily clouds when disturbed. The shoot counts can 

later be converted into a standard measurement of shoots per meter by multiplying the 

count by a given value, depending on the quadrat size. In the case of the 25x25cm 

quadrat, results can by multiplied by 16 to get shoots per meter . A measurement of 

shoot density can help determine the ability of the eelgrass bed to filter particles from the 

water column and to provide habitat for juvenile fish. 

All of these measures, if done repeatedly over time, give a sense of trends in 

eelgrass health. Additionally, there are efforts to map and monitor eelgrass and seagrass 

populations over time to better understand large scale trends. SeagrassNet, a global 

monitoring program, is the largest of these efforts; the program measures various 

seagrass parameters on a quarterly basis, collecting data on both seasonal and long term 

trends in 27 countries worldwide (www.SeagrassNet.org). 

NITROGEN AND EUTROPHICATION 

In addition to salinity, temperature, and water clarity, seagrasses require certain 

nutrients to survive. Small increases in N can benefit eelgrass if the meadows are N-

limited. A study of water column nitrogen enrichment found that fertilized plots of 

eelgrass exhibited significant increases in leaf length and biomass compared to controls 

(Orth 1977). A review of nitrogen addition experiments found increased eelgrass growth 

with low-to-moderate N additions (Burkholder et al. 2007). However, excess inputs of N 

have negative effects on seagrass in addition to increasing algal blooms. A mesocosm 
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experiment found that N additions to eelgrass resulted in 75-95% shoot die-off compared 

with unenriched plants (Burkholder et al. 1992). Another study showed that, unrelated to 

light reduction, eelgrass growth is significantly diminished under excess N additions (van 

Katwijk et al. 1997). 

In addition to the direct effects on eelgrass, N loading, the addition of excess 

amounts of nitrogen to a system, can lead to eutrophication. Eutrophication refers to 

increased plant growth caused by increased nutrient levels. While it can occur naturally, 

it is often associated with human inputs of N to a system, and is then referred to as 

cultural or anthropogenic eutrophication. In estuaries, eutrophication often leads to 

planktonic and macroalgal blooms (Orth and Moore 1983; Borum 1985; Kinney and 

Roman 1998). Algal blooms reduce the ability of surface light to reach the substrate, 

shading out seagrass. A study of N enrichment found excess nutrient loading 

significantly reduced eelgrass growth through competition with algae for light (Short et 

al. 1995). Eelgrass requires a minimum of 11% surface light (Duarte 1991) to survive, 

but needs much more light in order to thrive (Kautsky et al. 1986; Nielsen et al. 2002; 

Hauxwell et al. 2003). Percent surface light is a measure of the amount of light above the 

water reaching the substrate below. Eutrophication does not directly impede seagrass 

growth: excess nutrients are indirect stressors to the plants because of the algal blooms 

and associated light reductions they cause (Burkholder et al. 2007). 

CONTRIBUTORS TO EELGRASS DECLINE 

Seagrass decline has been documented both worldwide (Short and Wyllie-

Echeverria 1996; Green and Short 2003; Orth et al. 2006), as well as locally in New 
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England (Short and Burdick 1996; Short et al. 1996; Deegan et al. 2002). Since 1960, 

Rhode Island's coastline has experienced a decline in eel grass; in 2002 less than 40 

hectares of eelgrass remained in Narragansett Bay (Save the Bay 2002). Aerial mapping 

of eelgrass in New Hampshire's Great Bay Estuary (GBE) showed a decline from 1,000 

hectares down to 800 hectares over the past 14 years (Short 1992; NHEP 2006). 

In the 1930s and again in the 1980s, the GBE in New Hampshire experienced 

drastic declines in the eelgrass population caused by wasting disease (Short et al. 1986; 

Short et al. 1987). Eelgrass populations were nearly eliminated in the GBE in the 1930s 

and did not reestablish healthy populations until the 1960s (Short et al. 1987). The 

wasting events were cause by the slime mold Labyrinthula zosterae (Short et al. 1986), 

which infects the cells of eelgrass leaves, causing dark lesions and eventual death of the 

plant (Short et al. 1987). While eelgrass rebounded after both these events, the plants 

now face new environmental stressors. 

The recent decline in critical eelgrass habitat in New England has been attributed 

to nitrogen loading (Orth and Moore 1983; Short et al. 1995; Deegan et al. 2002), 

increased housing development (Short et al. 1996; Short and Burdick 1996), and grazing 

by Canada geese (Rivers and Short 2007). Shoreline development, characterized by 

impermeable ground cover such as asphalt and concrete, reduces an area's natural ability 

to absorb rain and runoff, promotes soil erosion, and leads to higher sediment and 

nutrient loads entering the estuary (Lee and Olsen 1985), both of which ultimately impact 

seagrass growth. 

Sedimentation, the addition of particulate matter into an aquatic system, is another 

major factor in seagrass decline. Excess additions of sediment into an estuary cloud the 
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water, increasing turbidity and reducing the amount of surface light reaching the 

substrate. Shoreline development and the creation of impervious surfaces increase the 

volume of sediment into a watershed (Steinke et al. 2007). In New Hampshire's Great 

Bay Estuary, sediment concentrations have increased 81% over the past 25 years (NHEP 

2006). 

In addition to declines caused by nutrient and sediment additions, seagrasses also 

experience direct physical damage from docks, boat moorings and propellers, and 

dredging. Boat docks reduce light levels, shading out plants and fragmenting eelgrass 

beds (Burdick and Short 1999). Dredging and dragging of the estuary bottom through 

moorings, channel widening, and harvesting of mussels, uproots plants and reduces water 

clarity from re-suspension of sediment in the water column (Neckles et al. 2005). 

Habitat fragmentation in regard to seagrasses is the shift from large, continuous 

seagrass meadows to smaller, isolated seagrass beds. Fragmentation can be caused by a 

number of different factors ranging from physical damage from boating and construction 

to localized nutrient or sediment loading. Fragmenting seagrass beds increases their 

vulnerability to erosion and diminishes their ability to stabilize sediments (Uhrin and 

Holmquist 2003). Isolating beds makes it harder for fish and invertebrate species 

associated with seagrass to travel between beds without being exposed to predation. 

SEAGRASS RESTORATION AND REGULATION 

The worldwide decline in seagrass and local decline in eelgrass in the Great Bay 

Estuary have lead to the creation of restoration techniques. Transplanting, the transfer of 

seedlings from a donor bed to a restoration area, is the most common method of 
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restoration. While there are many techniques for transplanting, including manually 

planting individual plants, recent restoration efforts in New England utilize the 

Transplanting Eelgrass Remotely with Frame Systems or TERFS methodology created by 

UNH's Dr. Fred Short. The method involves tying eelgrass shoots to wire mesh frames 

with biodegradable crepe paper and distributing the frames within the restoration area. 

The frames are retrieved several weeks later when the paper has degraded and the 

eelgrass shoots have taken root. To be successful, a restoration must be done in an area 

where the underlying issue (water quality, direct impacts) has been addressed. 

Figure 3a. Tying eelgrass shoots to a TERFS frame before planting 

In addition to restoration efforts, legal regulations are beginning to be created to 

address declining seagrass populations. In response to the declining redfish populations, 

Texas created the Redfish Bay State Scientific Area (RBSSA) along the state's Gulf 

Coast. The RBSSA, which became effective in May 2006, protects 32,000 acres of 

coastline, 14,000 acres of which are submerged seagrass beds (Texas Parks and Wildlife 
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1999). The protected area, popular with recreational fisherman, has made it a Class C 

misdemeanor and up to $500 fine to uproot seagrass plants (Texas Parks and Wildlife 

1999). The installation of the RBSSA was based upon similar boating regulations in 

Florida to deal with damage to seagrass beds from propeller scars. Federally, seagrasses 

are protected under the National Estuary Program (NEP), a 1987 amendment to the Clean 

Water Act (EPA 2007). The NEP is a voluntary program designed to maintain the health 

of an estuary through federal, state, and non-profit cooperation. Currently there are 28 

NEP partnerships nationally (EPA 2007). In addition to NEPs, Section 404(c) of the 

Clean Water Act states that any individual who takes part in activities that affect 

seagrasses must mitigate the results of their actions. 

THE GREAT BAY ESTUARY, NEW HAMPSHIRE 

The Great Bay Estuary (GBE) is located on the New Hampshire-Maine border 

and has a watershed, or drainage area, of 930 square miles (Short 1992). The GBE is 

subdivided into three parts; Great Bay proper, Little Bay/ Piscataqua River, and 

Portsmouth Harbor. The eelgrass beds within the Little Bay and Portsmouth Harbor 

portions of the bay are primarily subtidal, and remain submerged even at low tide. The 

eelgrass beds in Great Bay are largely intertidal; plant leaves lie on the surface of the 

water at mean low tide. Subtidal plants are more susceptible to declines in water clarity, 

since they are never exposed to direct surface light and rely on light filtering through the 

water column to photosynthesize. However, plants growing in intertidal and shallow 

areas are exposed to additional stresses, including grazing by Canada geese. A shallow 
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intertidal eelgrass bed located near Fishing Island in Portsmouth Harbor was completely 

lost because of over-winter grazing by Canada geese (River and Short 2007). 

The subsections of the GBE also experience differing dynamics from point and 

non-point sources of sediment and nutrient loading. Point source refers to an identifiable 

localized source like an effluent pipe, while non-point describes a diffuse source such as 

runoff. Seven main tributary rivers drain into the estuary, carrying with them sediment 

and nutrients from upstream. The largest carriers of N loads, the Salmon Falls and 

Cocheco Rivers, empty into Little Bay, along with the Oyster and Bellamy Rivers. The 

Great Bay portion of the estuary has the remaining three tributaries, the Lamprey, 

Winnicut, and Squamscott Rivers flowing into it. While nutrient loads in the upper 

portions of the GBE enter primarily through non-point tributaries, Portsmouth Harbor is 

additionally influenced by the presence of the city's wastewater treatment facility. 

Wastewater treatment facilities, such as the one located in Portsmouth, are the largest 

point source contributors to N loading in the GBE (NHEP 2006). 

New 11 i]ii|'.linc 

X - • • 

>-* Maine 
i m1

 I . I 

i .1 ita>ji ia I u i 

• ,«' ' '' •" . P . u b s i u . i i t l i l l : u l u . i 

J ' v. Ocean 
i New Hampshire '-.' ' -Q 
'•' N 

Figure 4a. Map of Great Bay Estuary, New Hampshire. 
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One of the state's most important natural resources, the GBE supports commercial 

fisheries, including lobster and flounder (Short et al. 2001; Evans and Short 2005). 

Unfortunately, the estuary has experienced a recent decline in annual catch for the 

majority of fish monitored (Trowbridge 2006b). 

While over-fishing remains an issue, the loss of nursery habitat also plays a role 

in this decline. Between 1996 and 2Q04, eelgrass biomass within the estuary dropped 

from 1,600 metric tons down to less than 1,000 metric tons. During this same time 

period, eelgrass cover decreased 17 percent (NHEP 2006). The loss of eelgrass habitat 

and the subsequent loss of higher trophic levels are of great concern, especially since 

eelgrass is the most abundant primary producer in the GBE and the basis of the estuary's 

food web. Several ongoing field studies are monitoring eelgrass bed dynamics and 

addressing potential causes of the decline. 

The New Hampshire Port Authority (NHPA) Mitigation Project was developed in 

1993 to compensate for the loss of salt marsh, mudflat, and eelgrass habitat as well as 

loss of potential habitat resulting from the expansion of the New Hampshire State Port 

and associated dredging of the Piscataqua River. Approximately 2.5 hectares of eelgrass 

were transplanted in areas of the Piscataqua River upstream from the Port. The 

completed eelgrass transplanting effort is evaluated annually through a 15-year (1995 to 

2010) monitoring program (Bosworth and Short 1993). By 2000, the eelgrass transplant 

sites had reached the functional level of nearby natural beds, indicating the transplant 

efforts were successful (Evans and Short 2005). However, data from 2001 to 2008 

showed a significant decline in eelgrass measurements, especially biomass (Beem and 

Short 2008). Increases in impervious surfaces, suspended solids, and water column 
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nitrogen have all contributed to the decline in GBE water quality, and are likely 

connected to the recent loss of eelgrass (NHEP 2006). 

GREAT BAY ESTUARY FOOD WEB 

In estuaries, as in many ecosystems, the energy from the sun fuels the 

photosynthetic process within primary producers. In the Great Bay, these are eelgrass, 

algae, and phytoplankton. Isopods, small arthropods, feed upon eelgrass leaves. In turn 

the isopods are fed upon by small fish, including sticklebacks, pipefish, and silversides. 

Sticklebacks and pipefish also seek shelter in eelgrass beds. These fish are fed on by 

larger fish, such as striped bass. Harbor seals also feed upon schooling fish like 

silversides in addition to crustaceans and squid (NEFSC 2007). 

Organisms also rely upon the physical structure of eelgrass for survival. Mud 

snails lay their eggs on eelgrass blades to prevent desiccation (Coulombe 1984) and blue 

mussels settle on eelgrass leaves in their early stages before settling on the substrate 

(Heck et al. 1995, Grizzle et al. 1996). Some juvenile invertebrates, such as lobsters, 

burrow in the mud beneath eelgrass beds for protection against predation (Short et al. 

2001). Horseshoe crabs forage in eelgrass beds looking for mollusks and marine worms 

(NYS DOS 2002). Green crabs also forage in eelgrass beds for soft shell clams and blue 

mussels. However, the foraging and burrowing by green crabs can be incredibly 

disruptive to the beds, as the crabs cut or tear eelgrass shoots during these pursuits (Davis 

et al. 1998). Even birds utilize eelgrass beds during low tide. Wading birds like blue 

herons search eelgrass beds for crabs and fish, while Canada geese graze directly on the 
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leaves (Rivers and Short 2007). The trophic interactions mentioned highlight the 

importance of eelgrass as the basis for the Great Bay's food web. 

SUPPLEMENTAL LESSON OVERVIEW 

Below is the outline of an outreach event hosted at the University of New 

Hampshire's Jackson Estuarine Laboratory in June 2008. The outline was designed for 

an event that lasted 2 hours and 15 minutes, allocating time for a group introduction and 

3 subsequent learning stations. The outline is intended as a guide; the described activities 

can be conducted during a single event or over an extended period of time, 

supplementing them into existing curriculum as appropriate. 
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OUTLINE FOR OUTREACH EVENT 

Total Event Time: 2 hours and 15 minutes 

I. Group Introduction - 20 minutes 
1. Introduce myself and other instructors 
2. Briefly highlight the objectives 

* 3. Introduce trend of declining eelgrass in the Great Bay Estuary (GBE), 
highlight thinking about causes - will revisit at the end of the day 

4. Introduce and play Oh Eelgrass 

II. General Ecology Review (focus on primary producers) - 10 minutes 
1.- Split larger group of students into three smaller groups 
2. Instructor introduction, student names 
3. Create GBE Web of Life, manipulate different components to see effects 

Rotating Stations (3) - 30 minutes each, 90 minutes total 
(Each station will include 25 min of activities and 5 min for travel between stations) 

III. Eelgrass Ecology - 25 minutes 
1. Introduction to the parts/structure and growth of eelgrass plants 
2. Understand the role of eelgrass as nursery habitat through Predator Snapshot 
3. Reinforce protective role of eelgrass through Camouflage 
4. Measure shoot density in tanks using 0.0625m2 (25cmX25cm) quadrats 
5. Measure canopy height using meter sticks and rulers 

IV. Water Quality Testing - 25 minutes 
1. Outfit all participants with PFDs before heading to boat docks 
2. Introduce the tools used to measure various parameters of water quality 
3. Break students into 3 smaller groups, have each group test either salinity, 

temperature, or turbidity and then switch 
4. Use YSI meter (adult) to test pH and compare with student results for other 

parameters 

V. Human Impact - 25 minutes 
1. Brainstorm potential human impact (good and bad) for GBE 
2. Use Habitat Hopscotch to help explain habitat fragmentation 
3. Review the cumulative effect of individual actions with Clean up the Bay! 
4. Discuss possible solutions/mitigation efforts to preserve eelgrass habitat 

VI. Group Wrap-Up - 15 minutes 
1. Revisit/review results of the three stations 
2. Brainstorm links between water quality, eelgrass ecology, and human impact 
3. Reminder of after school poster project 
4. Culminating activity - Stressful Situation! 
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ACTIVITIES 
Oh Eelgrass 
Oh Eelgrass, an activity that highlights the effects of limited or excess resources, is 
adapted from Project WILD's Oh Deer (1983a). The main objectives of this activity are: 

• Understand the basic resources needs for eelgrass survival: proper sediment, 
sunlight, and nutrients 

• Learn how excess or limit amounts of certain resources affect the populations 
• Address one factor (resource abundance) influencing eelgrass populations 

To prepare for this activity, you will need the following: 
• 4 cones or other objects to mark boundaries 

The activity works best with groups of 10 individuals or more. To begin, brainstorm the 
key resources for eelgrass survival. With help, students should be able to come up with 
sunlight, nutrients, and proper sediment. Next, split the group evenly in 2 and line the 
groups up facing one another on two parallel lines. One line will represent eelgrass 
plants and the other will represent the key resources eelgrass needs for survival. Each of 
the 3 resources will be designated by its own signal, which all participants must learn 
prior to beginning the activity. Potential signals include nutrients by hands on the 
stomach, light with hands forming goggles around the eyes, and sediment with hands on 
the feet. Once everyone learns the signals, the activity can proceed. For more in-depth 
assessments of the population patterns, instructors can record the results of each round for 
later discussion and even graphical representation. Each round will represent one year. 

To begin, the two lines should face away from one another. Participants on the eelgrass 
side will individually decide which of the 3 resources they need for the year. On the 
resource line, each person will decide which resource to represent. Participants are not 
allowed to change hand signals until the next round. On the count of 3, participants on 
both sides will turn around to face one another, displaying their chosen hand signals. The 
eelgrass will then run over to the resource side, looking for what they need to survive. 
When an eelgrass finds a resource displaying the same hand signal, he or she will then 
bring the resource back to the eelgrass line and both will represent eelgrass in the 
following round. Resources cannot move unless an eelgrass has claimed him or her. If 
an eelgrass cannot find the needed resource, then he or she dies and moves to the 
resource line. Resources that are not claimed remain on the resource line. 

Once the first round has finished, participants will again turn their backs to one another 
and decide on hand signals for the round. The activity should continue for as many 
rounds as it takes to illustrate a scarcity of resources followed by a die off of eelgrass. 
The activity can then continue to show the rebound of the surviving eelgrass into 
sustainable populations, followed by another population boom and resource shortage. 
The number of rounds will be dependent on group size and comprehension level. To 
address specific issues, instructors can silently assign the resources to all show the same 
signal, such as nutrients, or have no one signal a specific resource, such as light. 
Representing ecological stressors including eutrophication and sedimentation can help 
segue into human impact and our roles in the ecological landscape. 
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Web of Life (Great Bay Estuary) 
There are many variations on Web of Life activities. Project Learning Tree (1993) 
describes a passive Web of Life activity which has been adapted to be more interactive 
(Shutsky et al. 2006a). The following description focuses specifically on the Great Bay 
Estuary of New Hampshire, but can easily be changed to illustrate any local system. The 
main objectives of the activity are: 

• Understand the basic resources needed for different trophic levels 
• Describe food chain for local natural system 
• Learn about the direct and indirect interactions between trophic levels 
• See the cascading effects of certain human activities 

To prepare for this activity, you will need the following: 
• Web of Life role card for each participant (see examples below) 
• Ball of yarn 

Creating a human Web of Life works best with groups of 8 to 15 people. Larger groups 
can be split into sub groups and work with different ecosystems. Role cards can either be 
made up beforehand or written out on the spot according to participant responses. To 
begin, participants should stand facing one another in a circular formation. Together the 
group should brainstorm the driving force of life - the sun. From here subsequent 
organisms named should be directly connected or in the same trophic level as the one 
before (sun to primary producers to herbivores to carnivores). Beginning with the sun, an 
individual should take on the role of each component named (with nametag) until 
everyone has been dubbed with a Great Bay alter ego. 

Once everyone has been given a role, give a ball of yarn to the individual representing the 
sun and have him or her hold on to one end. Instruct the sun to hand the ball of yarn to 
someone in the circle they are directly connected to. The yarn recipient should continue 
this connection until everyone in the circle is holding a piece of yarn. (Note, in handing 
out nametags, it is helpful to disperse members of the same trophic level around the circle 
so they are not concentrated in a single area). The group has now created a Great Bay 
Web of Life. The strands of yarn represent direct connections between organisms. Have 
the participants comment on the how they think organisms might interact with one 
another if they do not share a direct connection. To illustrate different situations try 
removing certain individuals from the Great Bay Estuary by having him or her drop the 
yarn. Then determine the effects this would have on the organisms directly connected. If 
this would be negative, have them also drop the yarn, following the effect throughout the 
group until there are no more negative direct connection. Discuss the newly identified 
indirect interaction. Have the participants pick the yarn back up, restoring a healthy web 
of life. Try manipulating the loss of eelgrass and compare with the loss of an animal, 
such as striped bass to illustrate the effects of water quality decline as well as overfishing. 

Possible role cards for the Great Bay Estuary include: 
Sun Eelgrass Algae Mud Snail 
Blue Mussel Canada Goose Pipefish Lobster 
Horseshoe Crab Phytoplankton Isopod Blue Heron 
Harbor Seal Silverside Striped Bass Green Crab 
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Predator Snapshot 
The activity Predator Snapshot focuses on the protective role of eelgrass for juvenile and 
small organisms. The purpose of Snapshot is to compare the camouflaging ability of 
vegetated and bare sediment through an areal view of the habitats. The several second 
'snapshot' of the areas is based upon the activity Camera described by Joseph Cornell 
(1989). The primary objectives of the adapted activity are: 

• Compare the protective capability of vegetated and bare sediment 
• Understand the importance of eelgrass as a 'nursery' habitat 
• Assess one's own predatory ability 

To prepare for this activity, you will need the following: 
• Containers planted with eelgrass or something to simulate -an eelgrass bed 
• Fish cutouts of varying size tied down with weighted monofilament line 
• Blindfolds 

The activity outlined below takes advantage of the meter fiberglass mesocosm tanks at 
UNH's Jackson Estuarine Laboratory. However, Snapshot could easily be adapted to be 
run on a smaller scale using plastic storage bins or even baking dishes. While it requires 
the most preparation of all the activities, it is a useful and interactive way to address the 
structural role of eelgrass in an estuary. To prepare, you will need at least two tanks, 
although for larger groups more tanks increase the effectiveness. Half the tanks should 
be planted with eelgrass at a relatively high density - at least 100 shoots per square 
meter. The other tanks should be left with bare sediment. Place plastic or foam cut-outs 
of fish and invertebrates in both tanks at varying heights - surface, mid-water column, 
substrate. Placement can be achieved by tying different lengths of monofilament and 
sinkers to the cut outs. For additional assessment, try varying the color of the fish. 

Once the tanks have been prepared, blindfold participants and line them up around the 
vegetated tanks. Explain that on your command they are to remove the blind folds and 
study the scene in front of them until you give the cue to close their eyes again. 
Participants are transformed into one of the aviary estuary predators, such as blue herons. 
During this time their assignment is to silently count all the animals they can see in the 
tank. Their viewing time will only last 3 to 5 seconds. Once the participants have done 
this, lead them to the set of bare tanks and have them do the same thing. 

If the group is large and there are not enough tanks or space for everyone to go at once, 
have the participants view in shift. However, explain that animal counts must be kept to 
oneself until the very end. After all participants have seen a 'snapshot' of each tank, 
allow individuals to share how many animals they were able to see in each tank. Which 
tank was easier to spot prey in? Which colors were easier to see? After participants have 
discussed their findings, take them back over to the tanks for longer viewing. During the 
revisit to the tanks discuss how this activity translates into a real situation in the Great 
Bay. Eelgrass beds provide critical habitat for juvenile fish and invertebrate species 
through protective camouflage, helping to ensure healthy future populations. What if 
there were no more eelgrass beds? Connect this habitat comparison back to the Web of 
Life activity and the cascading consequences. 
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Camouflage 
The activity Camouflage facilitates the comparison of different habitats and their 
concealing capacity. The activity, adapted from Project WILD (1983b), can be executed 
at a designated time or as a surprise amidst other activities. The key objectives of 
Camouflage are: 

• Compare the concealing ability of vegetated and bare sediment 
• Understand the importance of eelgrass as a 'nursery' habitat 
• Assess the concealment quality of varying sizes and colors 

No materials are needed for the preparation of this activity. 

Whether you choose to deploy this activity as a surprise or not, it is necessary to first 
explain the rules. Camouflage can be used to effectively compare any number of 
habitats. The instructor will act as a large predator - in the case of the Great Bay Estuary, 
a striped bass or blue heron. The rest of the participants will take on the role of the prey 
-juvenile and small fish. The activity begins when the predator yells 'camouflage,' or 
any other agreed upon phrase, closes his or her eyes and counts aloud to 10. During 
those ten seconds, the prey must run and find a protective hiding spot where they can see 
the predator with at least one eye. It is important to explain that hiding prey must be able 
to see the predator - in a real life situation, prey would want to be able to see a predator 
to determine whether they have been spotted and need to run or hasn't and can stay where 
they are. Once the predator reaches the count of 10, he or she will open their eyes and 
begin looking for prey. However, the predator is not allowed to leave his or her standing 
spot - only rotate for a 360 degree view. 

When the predator spots prey, the predator can either call out the prey's name (if prey is 
identifiable) or describe their location and attire until the prey emerges, at which point the 
spotted prey comes out of hiding and stand quietly next to the predator. The predator will 
continue to call out prey until he or she can no longer spot prey. At this point the 
predator calls for the remaining prey to step out from behind their hiding spots. The prey 
closest to the predator that wasn't spotted is deemed the 'winner' for having the best 
camouflage while expending the least amount of energy. 

Camouflage works best when played in several different habitats: forest, field, beach, 
parking lot. Doing so allows participants to compare the camouflaging ability of 
different habitats. Playing in both a field and a forested area works well for the analogy 
of eelgrass meadows and bare sediment. While the Predator Snapshot activity provides 
similar comparison using actual eelgrass, Camouflage helps to secure participant 
understanding of eelgrass' protective canopy while getting to role play as members of the 
Great Bay Estuary. 
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Habitat Hopscotch 
Habitat Hopscotch is adapted from Migration Headache (Project WILD Aquatic 2001) 
and Wetlands Hopscotch (Shutsky et al. 2006b). Both activities focus on bird migration. 
However, I have adapted the activity to highlight fragmentation of eelgrass habitat in the 
Great Bay Estuary. The primary objectives of Habitat Hopscotch are: 

• Understand the implication of habitat fragmentation on higher trophic levels 
• Learn potential causes of habitat loss in the Great Bay Estuary 
• Identify possible solutions and mitigation efforts for habitat loss 

To prepare for this activity, you will need the following: 
• 10-15 carpet squares or other non-slip placemats to represent eelgrass beds 
• 8-10 'fate cards' for activity occurring in the GBE (see examples below) 

Start the activity by lining the 'eelgrass patches' (carpet squares) into a hopscotch-like 
formation. Explain to the participants that they have been transformed into small fish 
within the Great Bay Estuary. Their mission is to successfully travel from one end of the 
estuary to the other without getting eaten by larger predators. To do this, the fish must 
remain within eelgrass habitat at all times. Start by letting each fish hop easily from 
eelgrass patch to patch until they reach the end of the estuary. Then have the one of the 
participants pick a fate card from the bag and read it aloud. Apply the fate to the eelgrass 
and have the fish travel through the estuary again. 

If a fish is not able to make it from one end of the estuary to the other, then they are 
eliminated from the round. At the end of each round determine by a show of hands how 
many fish survived. For future or graphical analysis, the instructor can record the number 
of eelgrass patches and surviving fish. Play through several rounds with the fate cards 
until the students can no longer travel the entire estuary or understand the implications of 
habitat fragmentation. Afterwards, discuss with the participants what potential actions 
could be taken to reduce or restore eelgrass habitat. 

Possible Fate Cards: 

• Eliot builds a golf course on the waterfront - remove 1 square 
• Newington develops a water park next to the river - remove 1 square 
• Wagon Hill Park purchases abutting land for more trails - remove no squares 
• Newmarket installs a new sewage treatment facility - remove 1 square 
• Summer houses build on Nanny Island - remove .2 squares 
• Newington power plant shut down - remove no squares 
• Restoration effort replants grass - add 1 square 
• ORMS students urge conservation commission to re-vegetate park below Oyster 

River dam - remove no squares 
• Clear cutting for new housing development - remove 1 square 
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Clean up the Bay! 
The activity Clean up the Bay focuses on the complexities involved in cleaning up 
polluted waters. The activity is adapted from Ferry Beach Ecology School's Dirty Water 
and builds upon Build a Watershed, which shows participants how individual actions 
contribute to watershed dynamics (Shutsky et al. 2006c). The primary objectives of 
Clean up the Bay are: 

• Distinguish between effective and ineffective and clean up techniques 
• Understand how individual actions add up on a watershed-wide scale 
• Identify ways to mitigate individual contributions to watershed pollution 

To prepare for this activity, you will need the following for each group: 
• 1 clear or white container - 1 to 5 gallons 
• 6 'pollutants' from readily available household materials (ie: food coloring for 

nutrient additions, coffee grounds for sediment, vegetable oil for motor oil) 
• 4-6 tools for 'cleaning' the water - strainers, slotted spoons, plankton nets, etc. 

Divide the participants into smaller subgroups of approximately 6 people. Give each 
group a container of clean water and set of film canisters filled with the pollutants; set 
aside the second containers of clean water for later. Allow each student to add a pollutant 
into the water until all canisters are empty. When all of the pollutants have been 
discharged into the container, provide each group with an assortment of tools to clean the 
water. Have each group pick what item they think will be most useful and justify their 
reasoning. Continue having the groups choose the next best tool until they have 
exhausted their options. 

Looking at the containers, have the group successfully cleaned their water? Provide the 
groups with the second container of clean water for comparison. What were they able to 
remove and what weren't they? What tools ended up being most useful and why? Take 
a minute to brainstorm with the participants how the remaining pollutants might be 
removed. Offer the students the clean water as a way of treating the polluted water. 
Does this help? In real life, is adding more clean water a feasible solution for improving 
the water quality of the Great Bay? (Remind participants of the May flooding in recent 
years as why this would not work). While adding more water isn't a real option, what 
would have the same effect? If less of the pollutants were added to the watershed in the 
first place, then they wouldn't accumulate so much in the Great Bay Estuary. Brainstorm 
with participants ways to reduce pollution additions. Have each person think of an 
example specific to the pollutant he or she added to the clean water earlier in the activity. 
Which actions would be easy to accomplish and which would not? 
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Stressful Situation! 
The activity Stressful Situation! emphasizes the impact of 'stressors' on eelgrass 
productivity. The term stressor is used to describe any factor (cloudy water, excess 
nutrients) that inhibits the functional ability of eelgrass. The stressor/s can be as broad or 
specific as the instructor needs to emphasize particular inputs of the system. Stressful 
Situation! is loosely based upon Project WET's activity, Macroinvertebrate Mayhem 
(1995). The primary objectives of Stressful Situation! are: 

• Observe the effects of environmental stressors on overall eelgrass function 
• Monitor the functional ability of 'stressed' plants 
• Identify possible mitigation efforts to improve eelgrass function 

To prepare for this activity, you will need the following: 
• 4 cones or other objects to mark boundaries 

To prepare for the activity, start by clearly marking out two parallel lines 25-30 feet 
apart. Line all of the participants up along one side to explain the rules. One member of 
the group will start as an environmental stressor, such as turbid water, and the rest will be 
eelgrass plants. On the designated signal, the eelgrass will run to the opposite line. It is 
important to explain that the movement back and forth does not represent eelgrass 
uprooting itself and running along the floor of the Great Bay. The motion of the 
individuals is illustrating the productivity of different processes within a plant 
(photosynthesis, root growth, leaf growth). 

When the eelgrass is passing from one side to another, the role of the environmental 
stressor is to tag as many individuals as possible. Once plants cross the line, they are off 
limits for the stressor. When all of the participants are standing on the opposite line, ask 
for a show of hands from individuals who were affected (tagged) by the stressor. Plants 
that were affected have a lower functional ability than the healthy plants. To represent 
this, the plants affected by the stressor will have to cross the playing field on one leg in 
the next round. In the second round, plants will again travel to the far line with the 
stressor trying to tag as many as possible. Healthy (untagged) plants have use of both 
legs, while stressed (tagged) plants will have to hop on one leg. Once all of the plants 
have crossed for a second time, ask the participants how many healthy plants were 
affected by the stressor. These individuals will lose the use of one leg in the next round. 
Then ask how many stressed plants were again affected by the stressor. These doubly 
stressed plants will be reduced to crawling in the next round. If in subsequent rounds the 
highly stressed (crawling) eelgrasses get tagged by the stressor, they will be considered 
dead and can sit out the remainder of the activity. Depending on the instructor's intended 
effect, an alternative for dead eelgrass individuals is to become additional stressors in the 
system. 

Depending on the group size and intended emphasis on environmental stressor(s), the 
number of tagging stressors can be manipulated. After several rounds, take the time to 
discuss the implications of the different stress levels with the participants. How did the 
stressor affect healthy plants? How did the stressor affect the already stressed plants? 
What might these stressors be? How could we reduce their effect? 
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IMAGES OF STUDENTS PARTICIPATING IN THE ACTIVITIES 
The images presented below were taken during the Oyster River Middle School outreach 
event held at the University of New Hampshire's Jackson Estuarine Laboratory. The 
images are meant to help visualize how particular activities were conducted as well as 
how some of the measurements were taken. 

An instructor showing middle school students how to use an YSI meter for data 
collection on the dock at the Jackson Estuarine Laboratory, Great Bay, New Hampshire. 
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Middle school students using a Secchi disk to measure water clarity. 
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Students using a hydrometer to measure water salinity. 

Students measuring eelgrass canopy height in outside mesocosm tanks. 
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Students counting fake fish suspended in the mesocosm tanks during Predator Snapshot. 

Students learning about habitat fragmentation during Habitat Hopscotch. 
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The 'bay' after students tried to clean out pollutants during Clean up the Bay. 
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Students taking on the role of eelgrass during the activity Stressful Situation! 
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APPENDIX D 

IRB APPROVAL LETTER 

University of New Hampshire 

Research Conduct and Compliance Services, Office of Sponsored Research 
Service Building, 51 College Road, Durham, NH 03824-3585 

Fax: 603-862-3564 
02-Apr-2008 

Beem, Nora 
Natural Resources, James Hall 215 
5 Willey Road 
Durham, NH 03824 

IRB # : 4258 
Study: Eelgrass In the Great Bay: Field Research and Educational Outreach 
Approval Date: 31-Mar-2008 

The Institutional Review Board for the Protection of Human Subjects in Research (IRB) has 
reviewed and approved the protocol for your study as Expedited as described in Title 45, 
Code of Federal Regulations (CFR), Part 46, Subsection 110 with the following 
comment(s): 

If tfie school agrees to waiving parental consent, the IRB will agree to that process. This 
would require a letter from the school principal that recognizes parental consent 
requirements will be waived. 

Approval is granted to conduct your study as described in your protocol for one 
year from the approval date above. At the end of the approval date you will be asked 
to submit a report with regard to the involvement of human subjects in this study, If your 
study is still active, you may request an extension of IRB approval. 

Researchers who conduct studies involving human subjects have responsibilities as 
outlined in the attached document. Responsibilities of Directors of Research Studies 
Involving Human Subjects. (This document is also available at 
http;//www.unh.edu/osr/comp1lance/lrb.html.) Please read this document carefully before 
commencing your work Involving human subjects. 

If you have questions or concerns about your study or this approval, please feel free to 
contact me at 603-862-2003 or 3ulie.simpsongiunh.edu. Please mf&t to the IRB # above 
in all correspondence related to this study. The IRB wishes you success with your 
research. 

FortheIRB«s ,| 

Julie F. jsimpson 
'Manager 

cc: File 
Short, Frederick 
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