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ABSTRACT

STUDIES OF VERTICILLIUM WILT AND CHARACTERIZATION OF 

CANDIDATE VERTICILLIUM WILT RESISTANCE GENES 

IN THE MINT SPECIES MENTHA LONGIFOLIA (L.) HUDS.

by

Kelly Jean Vining 

University of New Hampshire, May, 2007

To investigate the genetic basis of verticillium wilt resistance in mint 

(Mentha L., Lamiaceae), wild-collected germplasm obtained from the United 

States Department of Agriculture was employed to develop breeding populations 

for wilt resistance screening and molecular genetic study, including cloning of 

candidate verticillium wilt resistance genes.

A collection of fourteen Mentha longifolia accessions from Europe, Asia 

and South Africa was analyzed for morphological traits, oil composition, and 

verticillium wilt resistance. In addition, a preliminary molecular diversity 

assessment was conducted utilizing randomly amplified polymorphic DNA 

(RAPD) markers. The accessions were found to be diverse regarding all 

observed traits and the South African accessions in particular were shown to

ix
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possess unique features. Most importantly, highly wilt-resistant and highly wilt- 

susceptible accessions were observed.

A collection of twenty-seven resistance gene analogs (RGAs) was isolated 

from M. longifolia accessions using a PCR-based approach with primers targeting 

the conserved nucleotide binding site (NBS) domain found in most plant disease 

resistance genes. The mint RGAs shared predicted amino acid sequence similarity 

with disease resistance genes and RGAs from various other plant species, and 

were grouped into seven distinct families based on DNA and predicted amino acid 

sequence similarity. In addition to the NBS-related RGAs, a fragment of a 

verticillium wilt resistance gene candidate was isolated from a verticillium-resistant 

M. longifolia accession using a combination of PCR-based approaches that 

exploited known sequences of tomato Ve (Verticillium resistance) genes.

Finally, the complete coding region of the mint verticillium wilt resistance 

candidate gene, m Vel, was cloned and sequenced. Alleles of m V el were 

compared among four M. longifolia accessions used as crossing parents. These 

seven alleles were highly similar to each other (96.2-99.6% nucleotide identity) 

and had ~50% predicted amino acid sequence identity to the tomato Ve genes.

F1 and F2 populations were genotyped with respect to m Vel alleles, and 

individuals from these populations were screened for wilt resistance. No 

correlation was found between any mVe allele and resistance or susceptibility to 

verticillium wilt in plants in the studied populations. However, this result does not 

discount the possibility that an m V el gene product plays a role in mint verticillium 

wilt resistance.

x
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INTRODUCTION

This project was initiated to address a serious issue of commercial mint 

production in the United States: verticillium wilt disease. Peppermint and 

spearmint, specialty crops cultivated for their aromatic oils, are vegetatively- 

propagated perennials. The causal organism of mint verticillium wilt, Verticillium 

dahliae, is a soil-borne vascular wilt fungus that occurs worldwide and affects a 

large number of crop plants. Mint fields infested with V. dahliae suffer 

progressive decreases in annual oil yields and are eventually abandoned.

Genetic studies of commercial mints are hindered because of polyploidy 

and low fertility. In addition, because mints are vegetatively-propagated clones, 

little genetic diversity exists among the few commercial cultivars. Therefore, the 

approach taken to address the mint-verticillium wilt problem was to exploit a wild, 

diploid relative of the cultivated mints .Mentha longifolia. This species has a 

broad geographic distribution in Eurasia and Africa, is genetically diverse, and 

has proven to have many useful features in exploratory studies.

The disease organism, V. dahliae, disperses via two types of vegetative 

spores: conidia and microsclerotia. The latter can persist in soil for long periods 

of time. When spores germinate in the vicinity of host plants, fungal hyphae enter 

plant roots, grow through root tissue and reach the vascular system. The fungus 

invades systemically by producing waves of conidia that are carried upward in 

the transpiration stream. In mint, verticillium wilt has historically been spread via
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infected stolons being planted in fields. The combination of the perennial growth 

habit of mint with the persistence of V. dahliae in soil makes verticillium wilt of 

mint a particularly difficult problem, as infestations worsen from year to year.

While modern cultural practices include planting only certified disease-free stock, 

the fungus has already spread through most mint-growing regions of the United 

States.

This research project has generated substantial knowledge about the 

investigated species, M. longifolia, about verticillium wilt disease in mint, and 

about candidate resistance genes. Many valuable germplasm and genomic 

resources have been generated as well. This dissertation is presented as a 

series of related projects designed to demonstrate the usefulness of M. longifolia 

as a model for mint genetic studies and for plant pathology research. While each 

chapter is intended to stand alone, they collectively aim to provide a foundation 

on which future investigations may elaborate.

As a starting point for these investigations, a diverse collection of M. 

longifolia accessions was obtained from the United States Department of 

Agriculture (USDA) National Clonal Germplasm Repository in Corvallis, Oregon. 

These fourteen accessions represented plants that had been collected from Asia, 

Europe and South Africa. The diversity encompassed by this germplasm set is 

described in Chapter I, which was previously published in the journal 

HortScience, volume 40, issue 5, 2005. Three morphological traits—flower color, 

leaf shape and general growth habit—were described. Oil constituents were 

measured by collaborator Arthur Tucker at the University of Delaware using a

2
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gas chromatograph, and principal constituents (>5% of total oil content) were 

reported. A  protocol was developed for consistent screening of mint clonal plants 

for resistance vs. susceptibility to verticillium wilt, and a scale of disease 

symptom ratings used in all subsequent studies was introduced. The responses 

of the M. longifolia accessions to Verticillium dahliae inoculation were rated, and 

these data were used to select parents for sexual hybridizations which generated 

segregating populations used for studies in Chapter III of this dissertation. 

Examples of verticillium wilt disease symptoms are shown in photos in Appendix 

A. In addition to gross phenotypic character descriptions, Chapter I includes a 

molecular genetic diversity analysis using Randomly Amplified Polymorphic DNA 

(RAPD) molecular markers. Finally, Chapter I reports genome sizes (C values) 

for the two USDA M. longifolia accessions from South Africa; these values were 

determined by cooperating investigators at Kew Royal Botanic Gardens. The 

data from the various diversity analyses conducted in Chapter I reinforced the 

distinctiveness of the two South African accessions, and their value as study 

subjects with respect to many interesting genetic traits, in particular, oil quality 

and verticillium wilt resistance.

Chapter II introduces a collection of DNA sequences obtained in an initial 

exploration of the M. longifolia genome for putative disease resistance-related 

genes. The content of this chapter has been accepted for publication by the 

Journal for the American Society for Horticultural Science (JASHS). The mint 

DNA sequences presented therein were isolated via PCR-based approaches 

from six of the M. longifolia accessions evaluated in Chapter I. One type of

3
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sequence, Resistance Gene Analogs (RGAs), are short (289-680 bp) sequences 

containing motifs common to most known disease resistance genes. Chapter II 

also reports the isolation of a verticillium-resistance-like (\/e-like) DNA sequence 

fragment (445 bp) from a verticillium wilt-resistant M. longifolia accession. The 

mint \/e-like fragment was obtained as a result of specific targeting of a homolog 

of genes (Ve1 and Ve2) known to confer verticillium wilt resistance in tomato.

The RGA sequences were submitted to the National Center for Biotechnology 

Information (NCBI) GenBank® biological sequence database. In sum, Chapter II 

represents the first disease-resistance-focused molecular genetic investigation of 

any mint species, and, in addition, describes the initial steps in the isolation of a 

candidate gene that could be a functional component of a mint verticillium wilt- 

specific resistance mechanism.

Chapter III describes the complete sequencing of the m V e l, a mint 

homolog of the tomato Ve genes. As a first step in assessing molecular genetic 

diversity of this gene in M. longifolia, m Vel sequences were isolated and 

sequenced from two resistant and two susceptible M. longifolia accessions that 

were used as parents of F1 and F2 populations. Plants from these F1 and F2 

populations were genotyped with respect to m Vel alleles, and were screened for 

Verticillium inoculation response using the protocol developed in Chapter I. The 

hypothesis of association between an m Vel genotype and a Verticillium 

response phenotype was tested. No significant association between genotype 

and phenotype was detected. While this result does not discount the possibility 

that m Vel encodes a functional gene contributing to resistance, it does indicate

4
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that the observed verticillium wilt susceptibility in these segregating M. longifolia 

populations could not be attributed to an identified allele of m Vet.

Appendix B describes the construction of a genomic library for a 

verticillium wilt-resistant M. longifolia accession. The library was intended to be a 

tool for isolation and cloning of m V e l, but m Vel was cloned by other means 

described in Chapters II and III. Nevertheless, the M. longifolia genomic library is 

a resource that was developed during the course of this work, and is available for 

use in future investigations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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CHAPTER I.

MENTHA LONGIFOLIA (L.) HUDS.: A MODEL SPECIES FOR 

MINT GENETIC RESEARCH1

Abstract

Fourteen accessions of Mentha longifolia from Europe, Asia and southern 

Africa were evaluated as a diploid resource for genetic research relevant to 

economically important traits in the polyploid mints of commerce. This readily 

available germplasm, obtained from the US Department of Agriculture (USDA), 

Agricultural Research Service (ARS), National Clonal Germplasm Repository 

(NCGR), was highly diverse with respect to oil composition, verticillium wilt 

resistance, plant architecture and other aspects of morphology. Trans-piperitone 

oxide was the primary oil component of accessions CMEN 17 and CMEN 18, 

while pulegone was most abundant in CMEN 20, CMEN 500, CMEN 501 and 

CMEN 585. CMEN 584 was the only carvone chemotype, and CME:N 682 was 

the only accession with high menthol content. CMEN 585, CMEN 17, CMEN 501 

and CMEN81 were resistant to verticillium wilt, while CMEN 584 and CMEN 516 

were highly susceptible. Molecular genetic diversity was evaluated. Sixty-three

1 This chapter is revised from an article published in the journal HortScience ©2005 American 
Society for Horticultural Science Press. Vining, K.J., Q. Zhang, A. O. Tucker, C. Smith, T.M. 
Davis. Mentha longifolia (L.) L.: A model species for mint genetic research. Vol. 40, no. 5, pp. 
1225-1229.
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informative Random Amplified Polymorphic DNA (RAPD) marker bands provided 

data used to calculate pairwise similarity coefficients and to produce a 

Unweighted Pair-Group Method of Analysis (UPGMA) tree. CMEN 585 and 

CMEN 584 shared the greatest number of bands (16), and formed a distinct 

cluster in the UPGMA tree. Seven pairs of accessions had no bands in common, 

emphasizing the high degree of diversity represented by these accessions. M. 

longifolia has a comparatively small genome size (400-500 Mb) and diploid 

(2n=2x=24) genome constitution. These genomic features, along with its self

fertility, fecundity, and diversity with respect to economically relevant traits, make 

M. longifolia a potentially useful model system with relevance to the polyploid, 

cultivated mints, and also for the broader study of plant-microbe interactions and 

disease resistance mechanisms.

Introduction

The principal Mentha (Lamiaceae = mint family) species of commerce in 

the United States are vegetatively propagated polyploids that, as such, present 

problems for transmission genetic analysis and conventional breeding. Native 

spearmint (Mentha xvillosonervata Opiz) is triploid (2n=3x=36), although 

morphologically similar to fertile, tetraploid spearmint (M. spicata L., 2n=4x=48). 

Scotch spearmint (M. xgracilis Sole) is heptaploid (2n=7x=84). ‘Mitcham’ 

peppermint (M. xp/pen'fa L.) is hexaploid (2n=6x=72) (Tucker and Naczi, 2005; 

Tucker et al., 1990; Udo et al., 1962). Polyploidy increases composite genome
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size and allelic complexity, hampering structural and functional genomics studies, 

and may be accompanied by poor fertility. Not surprisingly, no genetic linkage 

maps have been constructed for Mentha. Other than an extensive literature on 

the genetics of oil quality, both classical (Hefendehl and Murray, 1976; Hendriks 

et al., 1976) and molecular (Croteau and Gershenzon, 1994), few traits have 

been characterized genetically, and few genomic resources have been 

developed. Gene identification in Mentha has been limited to genes encoding 

enzymes involved in menthol biosynthesis. These genes have been extensively 

characterized, and genetic manipulation of peppermint oil biosynthesis has 

begun (Mahmoud et al., 2004; Burke et al., 2004; Mahmoud and Croteau, 2001).

A diverse and widely distributed Mentha germplasm base has been 

documented (Tucker and Naczi, 2005). As of December 2004, the NCGR in 

Corvallis, OR maintained 441 Mentha accessions as vegetative clones and 52 as 

seed, representing 20 species and a diversity of interspecific hybrids 

(http://www.ars-grin.gov/cor/mentha/meninfo.html). Twenty-one accessions are 

M. longifolia, and six are listed as M. longifolia *  M. longifolia hybrids. In addition, 

of the 67 accessions listed as simply 'Mentha hybrid’, 30 include M. longifolia in 

the known or inferred pedigree. The USDA collection of M. longifolia accessions 

represents a wide range of geographic, phenotypic, and genetic diversity. The 

USDA National Plant Germplasm System Plant Information (PI) numbers for 

each accession are provided (Table 1.1).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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M. longifolia has the widest natural geographic distribution of any Mentha 

species, from western Europe to central Asia and in southern Africa. It may 

encompass 22 subspecies (Tucker and Naczi, 2005). Almost all are diploid (2/7 = 

2x = 24), but some tetraploid (2/7 = 4x = 48) forms have also been described 

(Chambers and Hummer, 1994). The size of the M, longifolia genome was 

reported as 1C = 385 Mbp (Bennett and Leitch, 2005), and in the range of 2C = 

0.84-0.99 pg (Gobert et al., 2002), or 1C = 405-477 Mbp. The M. longifolia C 

value is relatively small among those of cultivated plants, being comparable to 

that of rice (C = 400-466 Mbp) and about half that of tomato (C = 980 Mbp) 

(Bennett and Leitch, 2005). Phylogenetic analysis of Mentha indicates that M. 

longifolia is an ancestor of M. spicata, and may be the latter’s organelle genome 

source (Bunsawat et al., 2004). In turn, M. spicata is a parent of M. xgracilis and 

of M. xpiperita (Tucker and Naczi, 2005; Tucker et al., 1991; Tucker et al., 1990).

We have examined a set of M. longifolia accessions maintained by the 

NCGR, with particular attention to two traits of economic relevance: oil 

composition and resistance to verticillium wilt, an important disease of 

peppermint. This paper documents the phenotypic and genetic diversity among 

these M. longifolia accessions and reviews the features that make M. longifolia a 

potentially useful model species for Mentha genetic and genomic research.
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Materials and methods

Germplasm

Fourteen accessions initially identified as M. longifolia (Table 1.1), 

including four subspecies (subsp. capensis, hymalaiensis, polyadenia, typhoides) 

were obtained as rooted plants or rhizomes from the NCGR. Plants were 

maintained in 22 cm pots in a greenhouse at the University of New Hampshire, 

Durham, NH, and were propagated vegetatively. Observations of morphology 

were made by direct visual examination and by light microscopy.

Oil composition

Oils from whole flowering plants were distilled with a neo-Clevenger of 

Moritz after Kaiser and Lang with the modification of Hefendehl (Kaiser and 

Lang, 1951; von Rudloff, 1969). Mass spectra were recorded with a 5970 

Hewlett-Packard Mass Selective detector coupled to a HP 5890 GC using a HP 

50 m x 0.2 mm fused silica column coated with 0.33 mm FFAP (crosslinked).

The GC was operated under the following conditions: injector temp. 250 °C; oven 

temp, programmed: 60 °C held for one min to 115°C at 2.5 °C per min, then to 

210°C at 1.0°C per min and held for 30 min; injection size: 1mL (~50% solution in 

spectroscopy grade n-pentane) split 1:10. The MSD El was operated at electron 

impact source 70 eV, 250 °C. Identifications were made by Kovats Indices and 

library searches of our volatile oil library supplemented with those of NBS, NIST, 

and Wiley.

10
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Verticillium wilt resistance screening

Qualitative assessment of verticillium wilt resistance in all 14 accessions 

was conducted with a wild type Verticillium dahliae strain provided by Dennis 

Johnson at Washington State University. Based on the outcome of these initial 

trials, a subset of resistant and susceptible accessions was chosen for closer 

examination and for use as crossing parents for future genetic studies. The latter 

trials differed from the initial assessments in that a quantitative rating scale was 

employed, and a V. dahliae strain which was transformed with green fluorescent 

protein (GFP), provided by Linda Ciuffetti at Oregon State University, was used 

instead of the wild type strain. Both V. dahliae cultures were maintained in petri 

plates on Czapek-Dox medium, which was supplemented with 45 pg/ml 

hygromycin for the GFP strain.

M. longifolia cuttings of uniform size were rooted in 1206 cell packs with 

soilless Metro Mix 360 (The Scotts Co., Maryville, OH). They were maintained for 

2 weeks in a growth chamber with fluorescent lighting (15 ± 3 pmol/m2/sec), cool 

temperatures and a short-day cycle (22 °C, 10 hour light/ 20 °C, 14 hour dark) to 

minimize growth and prevent flowering.

Screening was performed using a modified root-dip inoculation technique 

based on that of Green and Simon (1996). An appropriate volume of V. dahliae in 

liquid Czapek-Dox medium was incubated for 1-2 weeks at room temperature on 

a shaker. The volume of liquid culture used depended on the number of cuttings

11
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to be inoculated. Liquid cultures were strained through a single layer of 

Miracloth® (Calbiochem, San Diego, CA) in order to separate conidia from 

hyphae. The filtrate was centrifuged @ 10,000 x g for 5 min to pellet conidia. 

Pellets were re-suspended in 100 ml distilled H2O. This step was performed to 

eliminate any residual medium as well as any substances secreted by the 

fungus. A hemacytometer was used to count conidia with a compound 

microscope (20x objective). The conidial suspension was diluted with distilled 

H20  to ~107 conidia/ml.

Screening trials had 12 replicate cuttings randomized within each 

treatment (control, inoculated). Control plants and inoculated plants were 

processed simultaneously. Cuttings were uprooted, soil was shaken from roots, 

and plants were placed in 50 ml beakers containing ~20 ml conidial suspension 

for 5 min. Plants were then replanted in new flats in the same soil type in which 

they were originally rooted. After inoculation, plants were kept in the growth 

chamber with minimal watering, continuing the aforementioned light and 

temperature conditions. After two weeks, plants were moved to the greenhouse 

under natural light and ambient temperature.

Observations were taken 8 weeks post-inoculation. For plants with dead 

primary stems, stem sections were surface-sterilized and plated on water agar to 

confirm the presence of Verticillium dahliae. Degree of plant stunting, horizontal 

leaf curling (“crescent leaf), and tissue chlorosis and necrosis were all observed 

in order to assign an overall symptom severity rating from zero (0) to four (4) 

(Appendix A). A zero rating indicated lack of visible symptoms; a four rating

12
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described a dead plant. Intermediate ratings described plants with mild to severe 

symptoms. Ratings data for inoculated plants were processed in Systat® v.10.0 

(SPSS, Madison, Wl) by ANOVA as a completely randomized design. Pairwise 

comparisons were made with Tukey’s tests.

DNA extraction

DNA was extracted from fresh, unexpanded leaf tissue using the CTAB 

miniprep method of Torres et al. (1993), with the following modifications: sodium 

bisulphate was not used in the grinding buffer, chloroform/octanol was not added 

to the grinding slurry prior to 65 °C incubation, and the ethanol wash utilized 70% 

ethanol without sodium acetate. DNA concentration was measured 

fluorometrically, then DNA was diluted with sterile H20  to a standard stock 

concentration of 40 ng/pl.

Polymerase chain reaction

Fourteen oligonucleotide primers (Operon Technologies, Alameda, CA) 

were used individually in PCR to detect RAPD polymorphisms. DNA was 

amplified in 25 pi reactions using 100 ng template DNA, 0.1 U Taq DNA 

polymerase (Eppendorf), 2.5 mM each of dNTP (Promega, Madison, Wl) and 0.8 

uM primer. The reactions were performed in a thermal cycler programmed for 

one cycle of 2 min at 94 °C followed by 39 cycles of 1 min at 94 °C, 2 min 30 s at 

35 °C, 30 s at 45 °C, and a final elongation step of 10 min at 72 °C.

13
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Separation and visualization of amplification products

PCR products were separated on gels containing 1% NuSieve GTG 

agarose (FMC Bioproducts, Rockland, ME) and 1% IBI agarose (Shelton 

Scientific, Shelton, CT) electrophoresed in 1X TBE, pH 8.0 at 90V for at least 3.5 

hours at 4 °C. Gels were stained with ethidium bromide and photographed under 

UV light.

RAPP marker diversity analysis

Only informative markers (bands that were present in at least two 

accessions and absent in at least one) were included in the analysis. A total of 63 

bands were treated in a binary format and scored as one (band present) or zero 

(band absent). Pairwise genetic similarities were calculated using the Jaccard 

similarity coefficient (a/(a+b+c)) (Jaccard, 1908). Additionally, a phenetic analysis 

was conducted using Paup*4.0b10. A dendrogram was generated using the 

UPGMA method with 1000 UPGMA replicates.

Genome size determination

Root tips were harvested from accessions CMEN 585, CMEN 584, and 

CMEN 17, which were viewed as likely candidates for future use in genome 

library construction. Root tips were fixed in Farmer’s solution (three parts 

ethanol:one part glacial acetic acid) and sent to Dr. I.J. Leitch, Jodrell Laboratory, 

Royal Botanic Gardens, Kew, where the C values were measured by Feulgen 

microdensitometry (Bennett and Leitch, 2005).

14
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Results

Among the morphological characters showing variation were flower color 

and leaf shape (Table 1.2). The two accessions from South Africa, CMEN 584 

and CMEN 585, were markedly different in appearance from the other 

accessions. Besides differing in flower color from all but one of the other 

accessions, CMEN 584 and CMEN 585 had lanceolate leaves, while the others’ 

leaves were ovate. Under the growth conditions in the UNH greenhouse, CMEN 

584 and CMEN 585 had a tall upright growth habit, reaching a height of ~100 cm 

at flowering. CMEN 682 and CMEN 34 had a moderately upright growth habit, 

but only reached 50%-75% of the height of CMEN 584 and CMEN 585. The 

other accessions had a shorter upright growth habit.

Oil composition was highly variable among the accessions (Table 1.2). 

Pulegone was the principal oil component of CMEN 20, CMEN 500, CMEN 501 

and CMEN 585. These accessions, along with CMEN 682 and CMEN81, 

contained moderate levels of menthone. CMEN 17, CMEN 18 and CMEN 635 

had high levels of cis- or trans-piperitone oxide. CMEN 584 was the only 

accession for which the principal oil component was carvone.

The M. longifolia germplasm showed diversity in response to inoculation 

with V. dahliae. Symptoms first became apparent two to four weeks post

inoculation. Symptoms ranged from mild horizontal curling of apical leaves to 

complete necrosis. Nine accessions, selected as representing extremes of 

inoculation response and other traits of interest, were then screened more
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rigorously, using the quantitative rating scale of zero to four (Table 1.2). Results 

of screenings conducted with the wild type Verticillium dahliae strain were highly 

consistent with those obtained using the GFP strain: the four accessions given 

zero to one ratings in the second trial had all received R qualitative ratings in the 

first trial, while accessions given ratings two and above in the second trial all had 

S ratings in the first trial (Table 1.2). Overall, CMEN 585 and CMEN 17 were the 

most resistant diploid accessions, and CMEN 584 and CMEN 516 were the most 

consistently susceptible diploid accessions.

Symptom development varied considerably among susceptible 

accessions. For example, by four to six weeks post-inoculation, CMEN 516 

exhibited overall chlorosis of leaf tissue, mild to moderate crescent leaf and little 

or no stunting, while CMEN 584 was consistently stunted >50% compared to 

controls and had substantial crescent leaf symptoms. Both CMEN 516 and 

CMEN 584 primary stems had died by the time final observations were recorded. 

However, asymptomatic shoot growth was sometimes seen emerging at the soil 

surface after complete death of primary stems above the soil line, indicating that 

at least some portion of these plants survived and escaped or recovered from 

fungal infection.

Similarly, wilt-resistant accessions showed differences in response to 

fungal inoculation. CMEN 585 occasionally had mild to moderate horizontal 

curling of apical leaves ~four weeks post-inoculation, followed by production of 

asymptomatic leaves. CMEN 17 commonly displayed shortened internodes and
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mild horizontal leaf curl ~four weeks post-inoculation, followed by apparent 

recovery.

For RAPD analysis (Fig. 1.1), 14 oligonucleotide primers produced a total 

of 63 informative bands. The number of bands shared by any pair of accessions 

ranged from 16 to zero: for example, CMEN 584 had 16 bands in common with 

CMEN 585 and none in common with five of the accessions (Fig. 1.2). The 

Jaccard similarity indices ranged from a high of 0.7619 (CMEN 584 vs. CMEN 

585) to a low of zero (e.g., CMEN 584 vs. CMEN 682) (Fig. 1.2). A UPGMA tree 

had five nodes with bootstrap support of 50% or better (Fig. 1.3). CMEN 585 and 

CMEN 584 formed a group that was highly distinct from, and sister to, the other 

accessions.

The genome sizes of M. longifolia diploid accessions CMEN 584 and 

CMEN 585 were reported to be 4C = 1.75 pg (1C = 440 Mbp) and 4C = 1.64 pg 

(1C = 410 Mbp), respectively (Hanson, pers. comm.). The genome size of CMEN 

17 was estimated to be 4C = 1.57 pg (1C = 385 Mbp) (Bennett and Leitch, 2005).

Discussion

Our examination of 14 clonally propagated NCGR accessions of M. 

longifolia detected considerable phenotypic and genetic variation. Plant height, 

flower color and leaf shape were obviously variable among the accessions. 

Variation was noted but not systematically examined in other morphological 

features such as leaf color, leaf margin type and stem thickness. Although
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Mentha species are distinguished primarily by their essential oil contents, the 

range of morphological variation in M. longifolia points to its potential for 

development as an ornamental species as well as a genetic model system.

M. longifolia has been a subject of numerous oil composition studies 

(Shaiq et al., 2002; Ghoulami et al., 2001; Venskutonis, 1996; Kokkini et al.,

1995; Kokkini and Papageorgiou, 1988; Hefendehl, 1977). M. longifolia oil 

composition has attracted recent attention due to its potential for antimicrobial 

and antifungal activity (Mimica-Dukic et al., 2003; Abou-jawdah et al., 2002). The 

present paper adds data on 14 NCGR accessions to the substantial body of 

knowledge about M. longifolia oil composition. CMEN 584 is the only carvone 

chemotype in the NCGR M. longifolia collection; however, other M. longifolia 

carvone chemotypes have been reported (Kokkini et al., 1995; Hefendehl, 1977).

One major focus of our research with M. longifolia is the identification of 

plants with differential responses to the fungal pathogen V. dahliae. Toward that 

end, all M. longifolia accessions were initially screened with a wild type strain of 

the fungus. When a GFP-transformed strain became available, it was used for 

subsequent screenings of selected accessions, and of F1 and F2 populations 

developed from resistant x susceptible crosses (results presented in Chapter III). 

Trials conducted with the GFP strain of V. dahliae produced results equivalent to 

those performed with the wild type strain. The GFP strain is of interest as a 

potentially useful tool for the study of the early events of fungal penetration of a 

plant host (Lorang et al., 2001).

18
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The disease resistance screening showed that some accessions are 

highly susceptible to verticillium wilt and others are highly resistant. The most 

susceptible M. longifolia accessions, CMEN 516 and CMEN 584, showed 

differences in symptom development, although the eventual outcome for both 

was primary stem death. Both genotypes occasionally exhibited secondary 

growth after death of primary stems, indicating that even when primary stems 

were completely dead above the soil line, some stem tissue survived and was 

capable of regeneration. It is possible that part of the disease resistance 

response in these plants involves blockage of part of the root vascular system in 

order to sequester the invading fungus. In the field, such a response could allow 

the plants to escape verticillium wilt disease by growing via secondarily-produced 

shoots and stolons to a non-infested area. A strategy for outgrowing soil-borne 

pathogens is especially important for a perennial species with a primarily asexual 

mode of reproduction.

M. longifolia is an interesting species from a phylogenetic perspective, 

because it is recognized as the most phenotypically diverse species of the 

taxonomically complex Mentha genus (Gobert et al., 2002). These investigators 

used AFLP markers to analyze 62 Mentha accessions, 6 of which are genotypes 

in the present study. They found that M. longifolia groups as a distinct taxon from 

other Mentha species, and is most closely related to M. spicata and M. 

suaveolens. The present study, which was aimed only at assessing genetic 

diversity in M. longifolia, demonstrated substantial molecular diversity as 

detected using RAPD markers. In pairwise comparisons of RAPD markers, only
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two pairs of accessions (CMEN 17 vs. CMEN 19, and CMEN 585 vs. CMEN 584) 

had >50% of phylogenetically informative markers in common.

The two South African accessions, CMEN 584 and CMEN 585, are 

remarkably different in appearance from the others. Both have a tall upright 

growth habit and lanceolate leaves. In addition, the RAPD marker data set these 

two accessions apart (Figs. 1.2, 1.3). However, despite their morphological 

similarity and the high number of shared RAPD markers, these two accessions 

were very different from each other in oil composition and verticillium wilt 

resistance. Our initial results indicate a need to expand the available germplasm 

collection to include a broader sampling of the South African representatives of 

M. longifolia.

M. longifolia is a suitable and valuable species to serve as a diploid model 

species for mint genetics for several reasons. The M. longifolia genome size in 

the 400-500 Mbp range is relatively small, making it a favorable subject for 

structural and functional genomics studies. The C values we obtained for CMEN 

585 and CMEN 584 are the first reported for South African genotypes of M. 

longifolia. They are comparable to previously published C value measurements 

of other NCGR M. longifolia accessions (Gobert et al., 2002). Because of the 

abundant genetic/phenotypic diversity apparent in the species, crosses between 

appropriately chosen representatives could be used to study the genetic basis for 

variation in numerous characters of economic relevance. Examples of trait 

diversity documented here include plant morphology, disease resistance and oil 

composition. Given the broad geographic range of M. longifolia, the species is
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likely to contain considerable variation for responses to environmental stress 

factors as well.

M. longifolia is also an intriguing subject for the study of host-pathogen 

interactions because of its perennial, mostly vegetative growth habit and stem 

morphology. Replication of screening experiments is facilitated because large 

numbers of cuttings (clones) may be quickly generated from a single plant.

Plants can be maintained in a perpetual vegetative growth state under short-day 

light regimens, minimizing variation due to hormonal differences between 

flowering and vegetative growth stages. M. longifolia is particularly useful for the 

study of vascular wilt pathogens because of stem morphology: stems are square, 

and each stem possesses exactly four vascular bundles— one at each corner—  

making it possible to observe localized disease symptoms and correlate them to 

pathogen invasion of particular vascular bundles. In addition, M. longifolia has a 

relatively small (C = 400Mbp) genome, which makes this mint species a good 

candidate for genomic library construction and map-based gene cloning. Thus, 

the many favorable features of M. longifolia make this species potentially 

valuable as a diploid model for studies of Mentha genetics and for plant 

pathology genetic studies in particular.
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Table 1.1. List of Mentha longifolia accessions maintained at NCGR, Corvallis,

OR.

Accession Status 2 nz Collected from

CMEN 17 (PI 557755) Breeding material 24 Unknown European country

CMEN 18 (PI 557756) Wild material 24 Netherlands

CMEN 19 (PI 557757) Wild material 24 France

CMEN 20 (PI 557770) Wild material 24 Syria

CMEN 34 (PI 557758) Wild material y India

CMEN 500 (PI 212313) Wild material 48 Afghanistan

CMEN 501 (PI 212314) Cultivated material 48 Afghanistan

CMEN 516 (PI 557760) Cultivated material y Italy

CMEN 584 (PI 557769) Uncertain improvement status 24 South Africa

CMEN 585 (PI 557767) Uncertain improvement status 24 South Africa

CMEN 592 (PI 557766) Wild material 24 Uzbekistan

CMEN 635 (PI 557768) Wild material 24 Nepal

CMEN 682 (PI617491) Cultivar: ‘Velvet’ y Russia

CMEN 81 (PI 557759) Probable hybrid of M. longifolia x M. spicata y United States

z Chambers and Hummer (1994). 
Undetermined chromosome number.
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Table 1.2. Phenotypes of M. longifolia accessions. Flower color is white (W) or 
purple (P). Verticillium wilt resistance qualitative ratings are from initial 
screenings conducted with wild type Verticillium dahliae before a numerical rating 
system was implemented. Qualitative ratings are R=resistant, ^intermediate, 
S=susceptible. Quantitative ratings are from subsequent screenings of plants 
used to make crosses. These trials were conducted with a GFP-transformed V. 
dahliae strain. Ratings are average scores for total numbers of plants screened 
for each genotype. The rating system is: 0=no visible symptoms; 0.5-2.5= mild to 
moderate symptoms; 3-3.5=severe symptoms; 4=dead. Ratings followed by the 
same letter are not significantly different from one another (p=0.05). Ratings with 
different letters are highly significantly different (p<0.01) according to a Tukey’s 
test. Only principal oil compounds (>5%) are listed.

Accession Leaf shape
Flower
color

Verticillium
qualitative

Verticillium
quantitative Oil composition

CMEN 585 Lanceolate W R 0a
32.8% pulegone 
24.3% menthone 
11.3% 1,8-cineole

CMEN 501 Ovate P R oa
30.4% pulegone 
25.3% menthone 
11.0% menthol 
5.0% limonene

CMEN 81 Ovate P R oa
39.2% menthone 
22.5% iso-menthone 
8.1% 1,8-cineole

CMEN 17 Ovate P R 0.3a
43.4% trans-piperitone oxide 
19.7% cis-piperitone oxide 
7.0% 1,8-cineole

CMEN 635 Ovate P R 1b
45.6% cis-piperitone oxide 
26.6% piperitenone oxide 
5.0% trans-piperitone oxide

CMEN 34 Ovate w S 2.0C
14.9% piperitenone oxide 
6.97% iimonene

CMEN 682 Ovate p S 2.6d
56.5% menthol 
14.8% menthone

CMEN 516 Ovate p S 3.5e
21.9% germacrene D 
18.6% trans-piperitone oxide 
11.7% limonene 
8.0% (Z)-B-ocimene

CMEN 584 Lanceolate w S 3.8e
59.6% carvone 
12.3% limonene

CMEN 18 Ovate p I
56.4% trans-piperitone oxide 
7.2% cis-piperitone oxide 
5.8% 1,8-cineole

CMEN 19 Ovate p S

CMEN 20 Ovate p R
13.5% pulegone 
11.7% nonanal 
7.8% menthone 
7.0% trans-piperitone oxide 
6.6% limonene

CMEN 500 Ovate p R
34.6% pulegone 
17.0% menthone 
14.2% sabinene 
6.1% limonene

CMEN 592
Ovate p S

22.4% (E)-B-famesene 
16.0% iimonene 
12.7% nonanal 
11.0% B- caryphyllene 
7.4% gamma-muurolene
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Figure 1.1. Example of electrophoretic banding pattern of PCR-amplified DNA 
fragments produced from RAPD primer OPO20. Lane 1 is a molecular size 
marker. Lanes 2-14 are CMEN 17, CMEN 18, CMEN 19, CMEN 20, CMEN 34, 
CMEN 516, CMEN 592, CMEN 500, CMEN 501, CMEN 635, CMEN 682, CMEN 
585 and CMEN 584, respectively.
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Figure 1.2. Jaccard similarity coefficient matrix. Values above the diagonal are 
the number of bands shared by each pair of accessions. Values below the 
diagonal are Jaccard similarity coefficients.
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Figure 1.3. RAPD marker-based, midpoint-rooted UPGMA dendrogram showing 
relationships of Mentha longifolia accessions. Numbers above branches are 
bootstrap values.
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CHAPTER II.

IDENTIFICATION OF RESISTANCE GENE ANALOGS AND VERTICILLIUM WILT 

RESISTANCE-LIKE SEQUENCES IN MENTHA LONGIFOLIA (L.) HUDS1.

Abstract

Resistance gene analog (RGA) sequences were obtained from four Mentha

longifolia (L.) Huds. accessions using degenerate PCR primers targeting the

conserved nucleotide binding site (NBS) domain found in many plant disease

resistance genes. Seven distinct RGA families were identified. All M. longifolia RGAs

showed similarity to sequences of the non-TIR (Toll-lnterleukin 1 Receptor) R  gene

class. In addition, degenerate PCR primers based on the tomato (Solanum

lycopersicum L.) verticillium wilt resistance (Ve) genes were used to amplify a 445

base pair (bp) \/e-like sequence from M. longifolia that had 56% to 57% predicted

amino acid identity with Ve. Mint-specific primers based on the original mint Ve

sequence were used to obtain mint-specific Ve sequences from four M. longifolia

accessions, and from peppermint (Mentha xpiperita L.) cultivar Black Mitcham that

had 95% to 100% predicted amino acid identity to the original mint Ve sequence.

Inverse PCR was then utilized to obtain flanking mint Ve sequence from one M.

longifolia accession, extending the mint Ve sequence to 1077 bp. This chapter

1 This chapter is revised from an article accepted for publication by the Journal of the American 
Society for Horticultural Science. Vining, K.J., Q. Zhang, C. Smith, T.M. Davis. Identification of 
resistance gene analogs and verticillium wilt resistance-like sequences in Mentha longifolia (L.) Huds.
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is the first report of RGA sequences in the Lamiaceae, and the first report of \/e-like 

sequences obtained with degenerate PCR primers.

Introduction

We are using M. longifolia (Lamiaceae) as a diploid model species with 

relevance to the polyploid commercial mints (Mentha L. sp.) and to the study of plant 

resistance to vascular wilt diseases. Verticillium wilt, caused by the fungus 

Verticillium dahliae Kleb., is the most damaging disease of commercial peppermint 

(Green, 1951; Lacy and Horner, 1965). With the goal of isolating genetic 

determinants of verticillium wilt resistance, we have identified highly resistant and 

susceptible M. longifolia accessions from the USDA National Clonal Germplasm 

Repository (NCGR) collection (Vining et al., 2005), and have used crosses between 

them to develop progeny populations segregating for resistance vs. susceptibility. As 

reported here, we have also exploited the availability of conserved motifs from 

resistance genes and resistance gene-like sequences from other species to isolate 

candidate resistance gene sequences in M. longifolia.

Our approach exploits the rapidly growing knowledge of disease resistance 

(R) genes and their commonalities in many crop and model plant species. The 

known or predicted protein products of most R genes described in plants to date 

encode one or two characteristic domains: a highly conserved -3 0 0  amino acid 

nucleotide binding site (NBS), and/or a highly variable leucine-rich repeat (LRR) 

region. The NBS has been implicated in defense-related cell signaling, while the 

latter is thought to be involved in pathogen recognition. Plant R genes are classified
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on the basis of their various combinations of NBS and LRR with receptor kinase, 

transmembrane, and other domains. While many LRR or LRR-receptor kinase 

proteins are predicted or demonstrated to have roles other than plant defense, the 

NBS-LRR proteins have been implicated solely in plant disease resistance (Meyers 

et al., 2005). The Arabidopsis thaliana (L.) Heynh. genome includes 149 NBS-LRR 

sequences (Meyers et al., 2005).

The NBS-LRR superclass can be divided into two classes based on motifs 

within the -2 0 0  amino acid region upstream of the NBS: the Toll-lnterleukin 

Receptor-like (TIR-NBS-LRR) class, and the non-TIR class, which has a coiled-coil 

domain (CC-NBS-LRR). The TIR domain has homology to the Drosophila 

melanogaster Toll receptor and the mammalian interleukin-1 receptor, both of which 

are involved in immune responses (Jebanathirajah et al., 2002). TIR and non-TIR 

classes of R genes can be distinguished by amino acids within the NBS. The TIR  

class has the amino acid motifs RNBS-A-TIR (LQKKLLSKLL) and RNBS-D-TIR 

(FLHIACFF), while the non-TIR class has RNBS-A-non-TIR (FDLxAWVCVSQxF) 

and RNBS-D-non-TIR (CFLYCALFPED) (Meyers et al., 1999). In addition, the 

presence of tryptophan (W) or aspartic acid (D) at the final amino acid position of the 

Kin-2 motif distinguishes the non-TIR and TIR classes, respectively, with 95%  

accuracy (Meyers et al., 1999).

The NBS itself, a protein domain represented in both prokaryotes and 

eukaryotes, contains highly conserved motifs. The most common NBS motif is the 

‘P-loop/Kinase 1a’ domain, involved in binding ATP or GTP (Saraste et al., 1990; 

Traut, 1994). NBS domains of plant R genes include the P-loop, as well as Kin-2,
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RNBS-A-D, and GLPL motifs (Meyers et al., 1999). R gene analogs (RGAs) are 

sequences sharing these conserved NBS motifs. Such NBS motifs were first 

exploited as target sites for PCR with degenerate primers for the purpose of isolating 

families of RGAs by Kanazin et al. (1996), Leister et al. (1996), and Yu et al. (1996). 

Degenerate primers have since been used extensively to identify RGA sequences 

and candidate R genes in numerous angiosperms (Brotman et al., 2002; Cordero 

and Skinner, 2002; Irigoyen et al., 2004; Lopez et al., 2003; Maleki et al., 2003; 

Martinez Zamora etal., 2004; Noiret al., 2001; Shen et al., 1998; Soriano et al.,

2004; Yaish et al., 2004), gymnosperms in the Pinus L. genus (Diaz and Ferrer,

2003; Liu and Ekramoddoullah, 2003), and even the bryophyte Physcomitrella 

patens (Hedw.) B.S.G. (Akita and Valkonen, 2002). RGAs are one of two categories 

of mint candidate gene sequences acquired using degenerate primers in the present 

study; the second category is putative homologues of the tomato Ve (verticillium wilt 

resistance) gene, as described below.

V. dahliae infects a large number of important crop plants, including tomato, 

potato (Solanum tuberosum L.), pepper (Capsicum L.), cotton (Gossypium L.), 

strawberry (Fragaria L.), lettuce (Lactuca L.), and melon (Cucumis L.) (Bhat and 

Sabbarao, 1999) as well as trees and woody and herbaceous ornamental crops 

(Sinclair et al., 1987; Smith and Neely, 1979). Verticillium wilt results from fungal 

invasion of the plant vascular system. For some plant hosts, variability in resistance 

has been identified in germplasm, but monogenic determinants of resistance have 

not been reported. The single exception is tomato, for which single-gene verticillium 

wilt resistance was identified in classical genetics experiments. The gene was
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designated Ve (Schaible et al., 1951). This resistance has been bred into many 

modern tomato cultivars and has proven durable. The Ve locus was eventually 

mapped to tomato linkage group IX (Diwan et al., 1999). Positional cloning then 

determined that this locus consisted of two functional genes, encoding products with 

84% amino acid identity, designated Ve1 and Ve2 (Kawchuk et al., 2001).

The S. lycopersicum verticillium wilt resistance genes Ve1 and Ve2 (to be 

collectively referred to as Ve) are predicted to encode cell surface receptor-like 

proteins that lack an NBS, but have 38 LRRs, an N-terminal leucine-zipper motif, 

and endocytosis-like signals (Kawchuk et al., 2001). Transfer of Ve transgenes to 

susceptible tomato and potato lines has conferred resistance to race 1 of V. dahliae 

(Kawchuk et al., 2001). Library probes and PCR primers specific to the tomato Ve 

sequences have been used to identify homologous sequences from other 

solanaceous species (Chai et al., 2003; Simko et al., 2004a,). Outside the 

Solanaceae, only a few sequences with homology to Ve1 and Ve2 have been listed 

in the National Center for Biotechnology (NCBI) GenBank® database, none of which 

have been shown to play a role in verticillium wilt resistance. However, the cloning of 

the tomato Ve genes has created the opportunity to use their sequences and those 

of possible homologues in other species as a basis for design of degenerate primers 

aimed at isolating Ve homologues in mint.

Here, we report the use of degenerate primer PCR for identification of two 

types of disease resistance-related sequences in M. longifolia: i) RGAs, which may 

represent a variety of disease specificities; and ii) sequences homologous to the 

known verticillium wilt resistance (Ve) genes of tomato.
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Materials and methods

Plant and fungal material

M. longifolia accessions were obtained as stolons or rooted cuttings from the 

U.S. Department of Agriculture, National Clonal Germplasm Repository (USDA- 

NCGR), Corvallis, OR. Plants were maintained in a greenhouse at the University of 

New Hampshire (Durham) in 22-cm-diameter pots and propagated vegetatively. 

Accessions CMEN17.001 (PI 557755), CMEN585.001 (PI 557767), CMEN501.001 

(PI 212314) and CMEN81.001 (PI 557759) were previously classified as verticillium 

wilt-resistant, while accessions CMEN584.001 (PI 557769) and CMEN516.001 (PI 

557760) were classified as wilt-susceptible (Vining et al., 2005). For convenience, 

the ".001" suffix common to all of these CMEN accession numbers is dropped 

throughout the subsequent text. Peppermint cultivar Black Mitcham, classified as 

verticillium wilt-susceptible (Douhan and Johnson, 2001), was also utilized. The 

accessions used in this study are diploid (2n=2x=24), with the exceptions of 

CMEN501 (tetraploid: 2n=4x=48), CMEN81 (unknown ploidy), and ‘Black Mitcham’ 

(hexaploid: 2n=6x=72) (Chambers and Hummer, 1994). The V. dahliae culture used 

to generate inoculum was provided by D. Johnson at Washington State University 

(Pullman, WA).

Molecular techniques

Genomic DNA was extracted from fresh, unexpanded leaf tissue using a 

modified CTAB miniprep method as described in Vining et al. (2005). For reverse 

transcription-polymerase chain reaction (RT-PCR), template RNA was obtained from
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roots of plants that had been incubated in either water or an aqueous V. dahliae 

spore suspension (~106 spores/mL) for 16-24 h. Total RNA was isolated from 100- 

200 mg fresh or frozen roots using Trizol® reagent according to manufacturer’s 

instructions (GIBCO, Carlsbad, CA). Messenger RNA (mRNA) was separated from 

total RNA using oligo d(T) cellulose columns (GIBCO).

PCR conditions are listed in Table 2.1. Reaction volumes of 25 pi contained 

100 ng template DNA, 0.1 U Taq DNA polymerase (Sigma, St. Louis, MO), 2.5 mM 

each dNTP (Promega Corporation, Madison, Wl) and either 4.8 pmol of each 

degenerate primer or 0.8 pmol of each specific primer. RT-PCR was performed with 

the ProSTAR® HF Single-Tube RT-PCR System (Stratagene, La Jolla, CA). Inverse 

PCR was used to obtain sequences flanking the mint Ve segment initially identified 

by degenerate primer PCR. One microgram of total genomic DNA from CMEN 585 

was digested overnight at 37 °C in a 20 pL reaction with 10 U of the restriction 

enzyme Msel (New England Biolabs, Ipswich, MA.). Two microliters of the digest 

were used directly in a ligation reaction with 400 U T4 DNA ligase (New England 

Biolabs) to circularize the genomic restriction fragments. The ligation reaction was 

incubated for 2.5 h at room temperature, then stored at 4 °C overnight. PCR was 

performed in 25 pL reactions using 5 pL of the ligation products as template, 0.1 U 

Taq polymerase (Sigma), 2.5 mM of each dNTP (Promega), and 0.8 pmol each 

inverse PCR primer.

Widely employed degenerate PCR primers targeted to the P-loop motif 

(forward primer s2) and hydrophobic domain (reverse primers as2 or as3) (Leister et 

al., 1996) were used for initial amplification of RGAs from genomic DNA (gDNA) and
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from cDNA produced by RT-PCR (Table 2.2). Degenerate primers intended to 

amplify Ve homologues in mint were designed manually, on the basis of tomato \/e1 

amino acid and nucleotide sequences aligned with the most similar sequences from 

A. thaliana and Oryza sativa L., obtained by searching GenBank®’s non-redundant 

(nr) database using the blastx algorithm (Altschul et al. 1990), submitting the tomato 

Ve1 amino acid sequence as a search query. Subsequently, specific (non

degenerate) primers intended to amplify segments of putative mint Ve homologues, 

or a 425 bp segment of the tomato Ve\ gene itself (as a positive control), were 

designed using PrimerSelect software version 5.53 (DNASTAR Inc., Madison, Wl). 

The tomato-specific forward and reverse primers, Ve5F19 and Ve5R23, bracketed 

Ve'\ nucleotides 1776-1794 and 2200-2178, respectively (Table 2.2).

PCR, RT-PCR and IPCR products were electrophoretically separated on 2% 

agarose gels in 1X TBE, pH 8.0 at 4.5 V/cm at room temperature. Gels were 

stained with ethidium bromide and photographed over UV light. Amplification 

products were recovered from gel slices using the Geneclean® Spin kit (QBiogene, 

Irvine, CA) and cloned with the TOPO TA Cloning® kit (Invitrogen, Carlsbad, CA). 

Recombinant plasmids were isolated using the Wizard® SV Plasmid Purification kit 

(Promega).

Cycle sequencing reactions were performed following the University of New 

Hampshire’s Hubbard Center for Genome Studies protocol (Hubbard Center for 

Genome Studies, 2002) using DYEnamic™ Terminator ET cycle sequencing premix 

(Amersham Biosciences, Piscataway, NJ) and standard plasmid vector primers
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M13F, M13R, T3 and T7. Reaction products were analyzed using an ABI PRISM®  

377 DNA sequencer (Applied Biosystems, Foster City, CA).

Sequence analysis

DNA sequence chromatograms were viewed and assessed for base-calling 

accuracy using SeqEd version 1.0.3 (DNASTAR, Madison, Wl). Similarity searches 

of the GenBank® nr database were conducted using blastx and tblastx algorithms 

(Altschul et al., 1990). Clustal X (Thompson et al., 1997) was used to perform 

sequence alignments, and to generate an amino acid sequence identity matrix of the 

RGAs, including top non-mint RGA matches from the GenBank® nr database (RGA 

blast hits). A Clustal X alignment of translated mint RGAs and top blastx hits was 

used to construct a neighbor-joining tree with 1000 bootstrap replicates.

Genome library construction

A genomic library was constructed in a fosmid vector using DNA from wilt- 

resistant accession CMEN 585. Methods for library construction are described in 

Appendix B.

Results 

RGAs

The insert sizes of 52 PCR product clones obtained from genomic DNA of 

four verticillium wilt-resistant M. longifolia accessions using degenerate RGA primers 

(s2 + as2, or s2 + as3) ranged from 289-680 bp. When these sequences were
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subjected to blastx and tblastx searches of the GenBank® nr database, 20 of them 

had best matches (i.e. blast hits) that were R genes and/or RGAs. These M. 

longifolia genomic RGA sequences will be referred to as gRGAs (Table 2.3).

Of the 20 gRGA sequences acquired (seven from CMEN585, six from CMEN 17, 

three from CMEN81, and one from CMEN501), 17 were found to be unique after 

discounting sequence redundancy. One gRGA sequence was represented by three 

identical clones: two from CMEN585 (clones 5856 and 58531), and one from 

CMEN17 (clone 1744). Another gRGA was represented by two identical clones,

1712 and 1725, both from CMEN 17.

All but three of the unique gRGA sequences consisted of uninterrupted open 

reading frames (ORFs). Clone 5857 had an RGA reading frame that was interrupted 

by one stop codon [position 271-273 (TAG)], and clone 171 had an RGA reading 

frame interrupted by two stop codons [positions 229-231 (TAA) and 358-360 (TAA)]; 

otherwise both of these interrupted RGA sequences were continuous ORFs. gRGA  

clone 173 had an RGA sequence that shifted reading frame forward one nucleotide 

at a point 245 bases into the sequence, dividing two nearly continuous ORFs that 

were each interrupted by a single stop codon [positions 79-81 (TGA), 386-388 

(TGA)].

The s2 + as2 degenerate primer combination was also used in RT-PCR with 

mRNAfrom both inoculated and non-inoculated roots. Following RT-PCR, the most 

densely staining area of the gel lane (in the 250-500 bp range), or a discrete gel 

band, if present, was excised for cDNA recovery. Among 23 sequenced cDNA 

clones, seven RGAs were identified (Table 2.3). These cDNA-derived RGAs will be
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referred to as cRGAs. All seven cRGAs were comprised of uninterrupted ORFs. Of 

the cRGAs from non-inoculated root tissue, one, two, and three cRGAs, 

respectively, were from CMEN17, CMEN585, and CMEN81. Clone 17B9 from 

CMEN 17 was the only cRGA recovered from inoculated roots. The sequence of 

cRGA clone 1719 was identical to that of gRGA clone 58513 from CMEN585.

Of 31 genomic and 16 cDNA non-RGA sequences obtained using the 

degenerate RGA primer pairs, one cDNA and four genomic sequences had ABC 

transporter sequences as best blast hits to the nr database, and three cDNA and two 

genomic sequences’ best nr database blast hits were gag-pol or Ty3/gypsy 

retroelements. Among the other cDNA sequences that had uninterrupted ORFs, 

blast matches included one chlorophyll a/b binding protein, one L29 ribosomal 

protein, and two different ‘senescence-associated proteins'. The rest of the non-RGA 

genomic and cDNA clones lacked uninterrupted ORFs and had no informative blast 

hits.

Among a total of 27 gRGA and cRGA sequences acquired using the 

degenerate RGA primer pairs there were 23 unique RGA sequences, all of which 

have been submitted to GenBank® (under accession numbers shown in Table 2.3). 

All 23 unique RGAs contained the RNBS-A non-TIR motif, and 20 of them had 

tryptophan in the terminal position of the Kin-2 motif, which is characteristic of the 

non-TIR RGAs. When each of the 23 unique mint RGAs was used in blastx and 

tblastx searches of the GenBank® nr database, the best blast hits were always mint 

RGAs from the present data set; but many very good non-mint blast hits were also
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obtained. In many instances, the same best non-mint blast hit was obtained for two 

or more mint RGAs.

The 23 unique mint RGAs and a selection of 14 GenBank® sequences 

chosen to represent the diversity of top non-mint blast hits were subjected to a 

Clustal X analysis that generated an amino acid sequence alignment (Fig. 2.1) and 

identity matrix (not shown). Percent amino acid sequence identities of pairs of 

unique mint RGAs ranged from 18% to 96%. From the Clustal X alignment, a 

neighbor-joining tree was generated which organized the 23 mint RGA sequences 

and best non-mint blast hits into three major groups (I, II, III) that were further 

subdivided into seven distinct families (A through G) (Fig. 2.2). Percent amino acid 

identities of mint sequences within families ranged from 48% to 96%. The two most 

similar pairs of sequences were in family E, where gRGA sequences 501AS38A and 

cRGA 81CRGC4 were 96% identical, and in family B, where gRGA sequences 5856 

and 178 were 89% identical. Mint RGAs in family G were most similar to 

Phytophthora infestans (Mont.) de Bary R genes from Solanum L. species, while 

mint RGAs in families C and D were most similar to potato and pepper R genes with 

known pathogen specificities (Table 2.4). For mint RGAs in families B, E and F, 

representatives from several angiosperm species were included among the top non

mint blast hits (Table 2.4). Top non-mint blast hits for mint family A were RGAs from 

Coffea L. species.
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When a blastx search of the GenBank® non-redundant data base was 

performed using the tomato Ve1 amino acid sequence as a search query, the most 

similar sequences (30% to 40% amino acid identities) were those from A. thaliana 

(NP_187712, NP_198058, NP_180861, NP_187217 ) and O. sativa (BAA96753, 

BAB08209). Using both amino acid and nucleotide alignments of the tomato Ve1 

and Ve2 sequence with the aforementioned A. thaliana and 0 . sativa sequences as 

a basis for identifying conserved regions, degenerate primers Ve2398-2416F and 

Ve2791-2810R (Table 2.2) were designed manually. These primers, which targeted 

sites approximately corresponding to codons 800-805 and 942-948 of tomato Ve1, 

amplified a 445 bp product from CMEN585, the sequence of which we designate the 

"original mint Ve". Excluding from consideration the amino acids coinciding with the 

primer sites, the original mint Ve predicted amino acid sequence shared 57.1% and 

56.5% amino acid identity with the corresponding regions of the tomato Ve1 and Ve2 

sequences, respectively (Fig. 2.3).

On the basis of the original mint Ve sequence, mint-specific primers (Ve4-24F 

and Ve403-386R, Table 2.2) internal to the degenerate primers sites were designed 

and tested on four M. longifolia accessions (CMEN numbers 17, 516, 584, 585) and 

peppermint cultivar Black Mitcham, in each case producing "second generation" mint 

Ve sequences of about ~400 bp that had 94.7-100% predicted amino acid identities 

to the original mint Ve. The predicted amino acid sequence of the second generation 

mint Ve product from CMEN585 is shown (as "Mint 2") aligned with the original mint 

Ve (Fig. 2.3).

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Also on the basis of the original mint Ve sequence, inverse PCR primers 

(IPCR138-153F, IPCR325-304R, Table 2.2) were designed and used to obtain 

extended Ve sequence from CMEN585 that included and flanked the original 

degenerate primer sites. The I PCR results extended the original Ve sequence by 

adding 202 and 431 bases, respectively, to its 5' and 3' ends (Mint IPCR, Fig. 2.3). 

Examination of the IPCR sequence revealed that the actual mint sequence at the 

site of the initial Ve degenerate primers was perfectly matched by one permutation 

of each of the original Ve degenerate PCR primer sequences, and that the second 

generation "mint specific" primer Ve4-24F had a two-base mismatch with the actual 

CMEN585 target sequence (Table 2.2). The extended mint Ve open reading frame 

ended with three sequential stop codons [TAA, TGA, TGA] at nucleotides 1013- 

1021. Nucleotides 1022-1077 were presumed to be part of the 3’ untranslated 

region.

Finally, the extended mint Ve sequences provided a basis for design of 

specific PCR primers (Ve111-133F and Ve974-951R, Table 2.2), which bracketed 

865 nucleotides of the extended mint Ve sequence. The predicted amino acid 

sequence of the extended mint Ve aligned with the C terminus of the tomato 

sequences, spanning amino acids 730-1053 and 728-1079 of Ve1 and Ve2, 

respectively. This section of the tomato sequences included the following regions 

defined by Kawchuk et al. (2001): LRRs 28-38 (end of region B), negatively-charged 

extracytoplasmic (C), membrane-spanning (D), and positively-charged cytoplasmic 

(E). While the extended mint Ve sequence shared 56% to 57% amino acid identity 

over the corresponding B region of the tomato Ve sequences, the mint sequence
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shared only 7/21 and 8/21 amino acid identities with the D regions of \/e1 and Ve2, 

respectively. The C and E regions of the mint and tomato Ve sequences could not 

be meaningfully aligned.

Discussion 

RGAs

We used degenerate primers targeting the NBS motif in genomic PCR and 

RT-PCR to identify a set of 23 unique RGA sequences from M. longifolia, 20 of 

which had uninterrupted ORFs. Best blast hits for these RGAs included angiosperm 

R genes with a variety of known disease specificities. The 40% to 50% range of 

amino acid identities to known R genes compares to that seen for RGAs identified 

using the same degenerate primers in other plant taxa, such as strawberry 

(Martinez Zamora et al., 2004) and coffee (Coffea arabica L.) (Noir et al., 2001). The 

presence of uninterrupted ORFs in 20 of the 23 unique RGAs is suggestive that at 

least some of these mint RGAs are derived from functional genes. One gRGA clone 

(1719) from CMEN17 was identical to a cRGA (clone 58513) from CMEN585, 

indicating that this particular RGA is both highly conserved and is expressed, 

strongly suggesting that it may encode a functional product involved in disease 

resistance.

Two of the 23 M. longifolia gRGA sequences had stop codons in otherwise 

uninterrupted ORFs, and one gRGA contained a frameshift that separated two 

nearly continuous ORFs. Similarly, Martinez Zamora et al. (2004) identified 51 RGAs 

in strawberry, of which 28 had uninterrupted ORFs and 23 had stop codons or
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frameshifts. In pine (Pinus monticola Dougl. ex. D. Don.), Liu and Ekramoddoullah 

(2003) found that 18 out of 46 genomic RGA clones and 14 out of 21 cDNA RGA 

clones had at least one stop codon or frameshift. RGAs with interrupted ORFs may 

be parts of pseudogenes. Plant R genes have been shown to occur in complex 

clusters of related functional genes, pseudogenes, gene fragments, and 

transposable elements (Lescot et al., 2004; Wei et al., 2002). Whether pseudogenes 

are evolutionary remnants -  once-active genes rendered inactive by accumulation of 

mutations -  or whether they have some function, regulatory or otherwise, remains to 

be determined on a case-by-case basis.

In two instances, identical RGA sequences were amplified from different 

accessions. The gRGA clone 1744 from CMEN17 was identical to gRGA clones 

5856 and 58513 from CMEN585, while gRGA clone 1719 from CMEN17 was 

identical to cRGA clone 58513 from CMEN585. The amplification of identical RGAs 

from different accessions suggests that the respective pairs of sequences come 

from orthologous genes. Four of the mint gRGAs obtained using degenerate primers 

were represented by multiple clones from the same accession. One pair of identical 

clones (1725, 1712) was from CMEN17, and another (5856, 58531) was from 

CMEN585. These identities are probably the consequence of redundant sampling of 

the same gene. The recoveries of non-identical RGA sequences from a single 

accession may result from sampling of different genes or different alleles of the 

same gene. The closest nucleotide sequence match between non-identical gRGAs 

within an accession was 79.8% (clones 8120 and 8116), which is low enough to 

suggest that these could be different genes.
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NBS-LRR genes comprise significant proportions of plant genomes. Whole 

genome sequences are available for only two plants: A. thaliana ecotype Col-0 and 

O. sativa ssp. japonica L. cv. Nipponbare. The A. thaliana genome of -157  Mb 

(Bennett and Leitch, 2005) contains 149 NBS-LRR genes (55 non-TIR, 94 TIR), 

representing ~1% of the genome (Meyers et al., 2005).The O. sativa haploid 

genome size is estimated to be 389 Mb (International Rice Genome Sequencing 

Project, 2005). O. sativa has -5 0 0  NBS-containing RGA sequences, all of which are 

of the non-TIR type, and which, like A. thaliana, represent -1 %  of the genome 

(Monosi et al., 2004). The M. longifolia genome size of -400 Mb is comparable to 

that of rice (Oryza sativa L.) (Bennett and Leitch, 2005). If the total number of M. 

longifolia RGAs parallels the -500  of rice, then the 23 RGAs reported here represent 

<5% of the potential M, longifolia RGAs. The low level of redundancy encountered 

among the M. longifolia RGAs is also indicative that these sequences represent a 

small subset of the RGAs in the mint genome.

Studies of resistance gene clusters have revealed evidence of duplication, 

recombination and rearrangement events leading to the expansion of clusters, 

growth of multigene families, and the potential for evolution of new resistance 

specificities (Chin et al., 2001; Graham et al., 2002; Kruijt et al., 2004). The 23 M. 

longifolia RGAs grouped into seven distinct families, each of which had identities 

with different RGAs and R genes from other plant species. Particular amino acid 

motifs conserved within mint RGA families may indicate some functional specificity. 

However, closely related R genes do not necessarily confer resistance to the same 

pathogen. The potato Gpa2 and Rx1 genes are in the same cluster on potato
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chromosome 12 and are considered to be highly homologous, but have very 

different specificities; Gpa2 is a nematode (Caenorhabditis elegans Miers) 

resistance gene, while Rx1 confers resistance to a virus (van der Vossen et al.,

2000). The M. longifolia RGA families C and D each have significant similarity to 

Gpa2 and Rx1. It would be interesting to determine whether family C and D mint 

RGAs map to a common genomic region or cluster, as their apparent counterparts 

do in potato.

All the M. longifolia RGAs amplified with degenerate primers based on the P- 

loop and GLPL domains, or amplified with mint RGA-specific primers, had motifs 

consistent with the non-TIR class. This result does not lead to a conclusion that TIR- 

class RGAs are absent from the M. longifolia genome. In general, dicot species have 

been found to contain varying ratios of TIR and non-TIR classes of RGAs, while in 

monocot species only non-TIR RGA sequences have been observed (Cannon et al., 

2002). However, dicot RGA sequences obtained from degenerate primer PCR have 

not given any indication that non-TIR and TIR classes are amplified in proportions 

that reflect their presence in plant genomes. The same P-loop and GLPL degenerate 

primers used in the present study, or very similar primers, amplified both TIR and 

non-TIR RGAs in alfalfa (Medicago L.) (Cordero and Skinner, 2002), but only non- 

TIR sequences from coffee (Noir et al., 2001). In soybean [Glycine max (L.) Merr.j, 

where Kanazin et al. (1996) found only TIR-class RGAs using P-loop and GLPL- 

based primers, Penuela et al. (2002) amplified non-TIR RGAs with a set of 

degenerate primers pairing a P-loop forward primer with a reverse primer based on 

the non-TIR RNBS-D motif (CFLYCALFPED). It is possible that the P-loop/GLPL
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degenerate primer set is biased toward T!R-class or non-TIR-class sequences in a 

species-dependent manner. The fact that only one RGA was obtained using the as3 

reverse primer may also reflect primer bias.

Although the isolation of non-RGA sequences among the PCR products 

generated by degenerate RGA primers seems inevitable, many RGA reports do not 

mention whether any non-RGA sequences were obtained with degenerate RGA 

primers. In the present study, two types of non-RGA sequences were common. Use 

of degenerate RGA primers generated seven PCR products that had high identity to 

transposable element-like sequences. Sequences with identity to transposable 

elements have been mentioned in a few RGA reports (Noir et al., 2001; Timmerman- 

Vaughan et al., 2000). Five of our mint degenerate primer PCR products had high 

identity to ABC transporter sequences. Joyeux et al. (1999) amplified an ABC- 

transporter-like sequence from Brassica napus L. using degenerate primers nearly 

identical to s2 and as2. Amplification of ABC transporter sequences with NBS 

degenerate primers is not surprising, since ABC transporters have an NBS motif 

similar to that of NBS-LRR disease resistance genes (Theodoulou, 2000). If the 

isolation of non-RGA sequences was detailed in more reports of degenerate RGA  

primer studies, potentially useful insight could be gained into commonalities and 

patterns of occurrence of such sequences in different species.

Ve

Since Ve is not an R gene of the NBS-LRR class, it would not be expected to 

be amplified by NBS-targeted degenerate primers such as those used to amplify

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



RGAs. We used degenerate primers targeting part of the tomato Ve LRR region to 

isolate an original \/e-like M. longifolia sequence of 445 bp from the verticillium wilt- 

resistant accession CMEN585. The 56% to 57% amino acid identity of this sequence 

to the corresponding regions of the tomato \/e1 and Ve2 sequences is higher than 

that for any other \/e-like sequence found in GenBank®. Design of mint-specific 

IPCR primers enabled us to extend the acquisition of mint Ve sequence to a 1077 bp 

segment, that corresponds to the distal B region and the C,D, and E regions of the 

tomato Ve genes as described by Kawchuk et al. (2001). To date, this is the first 

reported use of degenerate PCR primers to isolate a Ve-like sequence, and the first 

targeted isolation of such a sequence outside of the Solanaceae.

Specific primers based on the original mint Ve sequence detected Ve 

homologues in several wilt-resistant and wilt-susceptible M. longifolia accessions, 

and from wilt-susceptible cultivar Black Mitcham, indicating that this primer pair and 

others based upon the extended Ve sequence will be a valuable resource for use in 

a broader assessment of the diversity of Ve sequences among Mentha accessions 

and species.

Thus far, no verticillium wilt-related phenotypes have been associated with 

any of the Ve-\\ke sequences reported in 0 . sativa or A. thaliana. The potential rice 

Ve homologues have been listed as such in GenBank®, based on inference, as a 

consequence of the annotation of the O. sativa genome, but monocot species are 

not known to be hosts for Verticillium fungi. To date, no complementation studies 

have been performed to elucidate any connection between rice Ve homologues and 

non-host resistance to verticillium wilt. For A. thaliana, differences in symptom
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development such as stunting and early flowering have been observed, but no 

verticillium wilt-resistant ecotypes have been identified (Steventon et al., 2001; 

Veronese et al., 2003). Veronese et al. (2003) identified a locus (but not a gene) that 

was correlated with less severe symptom development in ecotype C-24, but they 

noted that disease development was difficult to parse from normal plant 

developmental and senescence features. Distinctly verticillium wilt-resistant and wilt- 

susceptible M. longifolia accessions have been described (Vining et al., 2005), 

making this a much more appropriate species than either O. sativa or A. thaliana for 

identification and characterization of Ve homologues and assessment of their 

possible roles in conferring verticillium wilt resistance. As yet, the available data do 

not permit association of the mint Ve-like sequences with resistant or susceptible 

phenotypes.

The isolation of candidate resistance genes such as RGAs provides a useful 

foundation for further study of the genetics and genomics of plant disease resistance 

in mint. This study also describes the development of novel degenerate primers and 

their use in the isolation of potential Ve homologues in mint. The present work is the 

first report of R gene-like sequences in Mentha and in the Lamiaceae, and the first to 

report the targeted isolation of Ve homologues outside of the Solanaceae. This work 

advances the development of M. longifolia as a model system for disease resistance 

in perennials and plants in general, and constitutes a step toward identification of 

associations between candidate R genes and phenotypically assessed resistances 

against pathogens, such as V. dahliae, for which clear resistance/susceptibility is not 

available in model plant species.
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The isolation of a Ve homologue from M. longifolia would open opportunities 

for introduction of verticillium wilt resistance into wilt-susceptible commercial mint 

varieties, although the marker-assisted introgression of verticillium wilt resistance 

from M. longifolia into peppermint may be precluded by the sterility of the latter, and 

by differences in ploidy. Transformation systems mediated by Agrobacterium 

tumefaciens Smith & Townsend, are available for peppermint and other commercial 

mints (Niu et al., 1998). The Ve-\\ke mint sequences reported here provide a 

potential tool for isolation of full-length, functional Ve alleles as candidates for 

introduction into wilt-susceptible commercial mint varieties.
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Table 2.1. PCR conditions used for amplification of resistance gene analog (RGA) 
and verticillium wilt resistance-like (\/e) sequences from Mentha longifolia. 
Degenerate, specific and inverse PCR profiles had an initial 2 min, 94 °C 
denaturation step and a final 7 min, 72 °C extension step. The reverse-transcription 
PCR (RT-PCR) profile had an initial, first-cDNA-stand synthesis step at 37 °C for 45 
min and a final extension at 68 °C for 10 min.

PCR profile PCR 
primer set2

Denaturation
step

Annealing step Extension
step

Cycles
(no.)

Degenerate 1+2, 1+3, 
4+5

94 °C 50 s 56 °C 1 min 20 s, 
45 °C 30 s

72 °C 
1 min

34

Reverse
transcription

1+2 95 °C 1 min 56°C 1 min 68 °C 
2 min

39

Specific 6+7, 
8+9, 10+11

94 °C 1 min 55 °C 1 min 72 °C 
1 min

30

Inverse 12+13 94 °C 1 min 58 °C 1 min 72 °C 
2 min 30 s

30

2 The listed numbers correspond to PCR primer sequences in Table 2.2.
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Table 2.2. Oligonucleotide primers used to amplify resistance gene analog (RGA) 
and verticillium wilt resistance-like (\/e-like) sequences from Mentha longifolia. 
Primers s2, as2 and as3 are from Leister et al. (1996). All other primers were 
designed during the present study for amplification of M. longifolia \/e-like 
sequences.

Primer name Target sequence Primer sequence (5’ to 3’)

1. s2 (forward) P-loop (GGVGKTT) GGNGGNGTNGGNAANACNAC

2. as2 (reverse) Hydrophobic
(GLPLAL)

domain NAANGCNAGNGGNAANCC

3. as3 (reverse) Hydrophobic
(GLPLAL)

domain NAGNGCNAGNGGNAGNCC

4. Ve5F19 
(forward)

Tomato 
Ve "/-specific

GGAGTACGTGGAACAGCCT

5. Ve5R23 
(reverse)

Tomato 
\/e 7-specific

AGTTATTCGCACTGAGGTCTAAT

6. Ve2398-2416F  
Actual sequence 
at primer site 
in CMEN585

Ve LRR ATYNTNGATATAGCYTCCAA 
(AT CAT CG AT ATAGCTT CC AA)

7. Ve2791-2810R  
Actual sequence 
at primer site 
in CMEN585

VeLRR CTGTGGRATYTCYCC  
(ATTCGGGATCTCTCC)

8. Ve4-24F 
Actual sequence 
at primer site 
in CMEN585

Mint Ve GTCGATATAGCTTCCAACAAT 
(AT CG ATAT AT CTT CCAAC AAT)

9. Ve403-386R Mint Ve TCGGTACATGCCCTGACA

10. Ve111-133F Mint Ve TACCGCCGAGCTTGTCCGTCCTT

11. Ve974-951R Mint Ve TTCCGCGTGGT CTTCTT CTT CTCC

12. IPCR138-153F Mint Ve GAAGCATCCCGAAGTC

13. IPCR325-304R Mint Ve CAGCTAGAGAAGTTTATTGATT
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Table 2.3. Mentha longifolia resistance gene analogs (RGAs) obtained with 
degenerate primer PCR from various M. longifolia accessions. PCR templates were 
genomic DNA (gDNA) or cDNA. RGA clone designations in parentheses indicate 
redundant (identical) gDNA or cDNA clones.

M. longifolia 
USDA 

identification no.

RGA 
GenBank® 

accession no.

RGA
clone

PCR
template

Primer set 
(Table 2.2)

Length
(bp)

CMEN 17.001 AF469684 17B9 cDNA 1+2 492
CMEN 17.001 AF48T104 171 gDNA 1+2 493
CMEN 17.001 AY029196 178 gDNA 1+2 493
CMEN 17.001 AF474173 1736 gDNA 1+2 495
CMEN 17.001 AF469683 1711 gDNA 1+2 496
CMEN 17.001 DQ174111 173 gDNA 1+2 515
CMEN 17.001 

(CMEN 17.001)
AF469685 1712

(1725)
gDNA
gDNA

1+2 526

CMEN 81.001 D Q 174431 81CRCG2 cDNA 1+2 481
CMEN 81.001 AF481109 813 gDNA 1+2 501
CMEN 81.001 AF481108 8126 gDNA 1+2 506
CMEN 81.001 DQ 174432 81CRCG4 cDNA 1+2 511
CMEN 81.001 AF474174 8116 gDNA 1+2 522
CMEN 81.001 DQ174109 8120 cDNA 1+2 680

CMEN 501.001 DQ 174433 501as38a gDNA 1+3 511
CMEN 585.001 DQ 174435 5857 gDNA 1+2 289
CMEN 585.001 DQ 174434 5853 gDNA 1+2 385
CMEN 585.001 DQ174108 58517 cDNA 1+2 386
CMEN 585.001 DQ174110 58519 cDNA 1+2 436
CMEN 585.001 

(CMEN 585.001) 
(CMEN 17.001)

AF469686 5856
(58531)
(1744)

gDNA
gDNA
gDNA

1+2 495

CMEN 585.001 AF469687 5858 gDNA 1+2 511
CMEN 585.001 AF481107 5854 gDNA 1+2 525
CMEN 585.001 AF481106 58530 gDNA 1+2 525
CMEN 585.001 
(CMEN 17.001)

AF481105 58513
(1719)

gDNA
(cDNA)

1+2 548
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Table 2.4. Closest matches (blast hits) for mint resistance gene analog (RGA) 
sequences obtained by blastx searches of the GenBank® nr database. Each listed 
sequence is represented on the neighbor-joining tree (Fig. 2.2). RGA family 
designations refer to those in Fig. 2.2.

Mint
RGA

family

Top blast hits 
(GenBank 

accession no.)

Plant species Confers 
resistance to

Amino
acid

identity
(%)

E-
value

A disease resistance
like protein 

(CAC82603)

Coffea arabica L. 48 2e-34

B NBS-LRR-like
(AA089149)

Gossypium 
barbadense L.

41 1e-26

RGA Pt19 
(AAN08179)

Citrus grandis Osbeck 
xPoncirus trifoliata (L.) 

Raf

43 1e-32

putative RGA 
(AAM77267)

Malus prunifolia 44 2e-33

C,D Bs2 (AAF09256) Capsicum chacoense Xanthomonas
campestris

Pammel

44 2e-29

Rx (CAB50786) Solanum tuberosum L. Potato virus X 44 6e-29
Gpa2 (AAF04603) S. tuberosum Globodera 

padilla (Stone) 
Behrens

52 2e-45

E disease resistance
like protein 

(CAC82598)

C. arabica L. 40 1e-22

NBS-LRR protein 
(AAZ07904)

Ipomoea batatas (L.) 
Lam.

37 2e-22

F NBS-LRR protein 
(AAZ07913)

1. batatas 53 6e-46

RGA (AAL30111) Solanum phureja Juz 
& Bukasov x Solanum 

stenotomum Juz & 
Bukasov

49 8e-43

kinase/encodes 
NBS (CAC79996)

Solanum 
pinnatisectum Dunal

51 6e-47

G RPI (AAR29069) Solanum 
bulbocastanum Dunal

Phytophthora 
infestans 

(Mont.) de Bary

52 2e-45

RGA1 (AAR29070) S. bulbocastanum P. infestans | 53 5e-45

52
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Figure 2.1. Multiple amino acid alignment of mint resistance gene analogs (RGAs) and most closely related R genes and 
RGAs from other plant species. M. longifolia RGAs are in green type; most closely related sequences identified by blastx 
and tblastx are in black type. Conserved nucleotide binding site (NBS) motifs as defined by Meyers et al. (1999) are 
boxed. The P-loop and GLPL motifs are the sites of the s2 and as2 primers, respectively.
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Figure 2.2. Neighbor-joining tree generated using Clustal X. Mint resistance gene 
analogs (RGAs) are in boldface type; most closely related sequences identified by 
blastx and tblastx are in lightface type. Numbers (percents) on branches represent 
bootstrap values for 1000 iterations. Roman numerals represent major groupings of 
RGAs. Branches defining families of closely related sequences are labeled A-G.
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Figure 2.3. Multiple amino acid alignment of mint Ve sequences with partial tomato 
Ve sequences. The segments of tomato Ve1 and Ve2 shown here correspond to 
amino acids 730-1053 and 728-1074, respectively, of the entire predicted gene 
products. Numbered arrows and corresponding boxes indicate locations of primer 
sequences listed in Table 2.2. Letters indicate regions of tomato Ve defined by 
Kawchuk et al. (2001).
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CHAPTER III.

ISOLATION OF A POTENTIAL VERTICILLIUM WILT RESISTANCE GENE, 

MVE1, FROM MENTHA LONGIFOLIA (L.) HUDS, AND ANALYSIS OF MVE1 

ALLELES IN F1 AND F2 SEGREGATING POPULATIONS

Abstract

We report the cloning and sequencing of the m Vel gene from the mint 

species Mentha longifolia (L.) Huds. m Vel is a potential homolog of the tomato 

(■Solanum lycopersicum L.) verticillium wilt resistance genes Ve1 and Ve2, and 

shares 51.4-51.7% and 50.8-51.0% predicted amino acid identity, respectively, 

with those genes. The m Vel gene has a coding region of 3051 bp (1017 amino 

acids), which ends with three consecutive stop codons. A major feature of the 

m Vel predicted protein is a leucine-rich repeat domain, which is a common 

feature of plant disease resistance proteins.

We isolated and compared seven m Vel alleles from two South African 

(SA) accessions (CMEN 584 and CMEN 585) and two European (E) accessions 

(CMEN 17 and CMEN 516) of M. longifolia. Two different alleles were isolated 

from each of three accessions, while only one allele was obtained from CMEN  

17. These seven alleles shared 96.2-99.6% nucleotide identity. All 

polymorphisms were base substitutions.
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Four progeny populations derived from resistant (R) x susceptible (S) 

crosses were genotyped with respect to m Vel alleles: SAF1 and SAF2 

populations from the cross CMEN 585 (R) x CMEN 584 (S), and EF1 and EF2 

populations from the cross CMEN 17 (R) x CMEN 516 (S). We screened subsets 

of each population for verticillium wilt resistance and looked for associations 

between m Vel genotype and wilt resistance or susceptibility. All four populations 

were found to be segregating with respect to identified m Vel alleles and wilt 

resistance vs. susceptibility. No association was found between m Vel genotype 

and wilt phenotype. Implications of these results are discussed.

Introduction

Verticillium wilt is a fungal disease of plants that is caused by two 

deuteromycete species: Verticillium albo-atrum and Verticillium dahliae. These 

soil-borne plant pathogens are distributed throughout the world, and are of major 

economic importance because of the breadth of their host range and the amount 

of crop damage they cause. As many as 300 different plant hosts have been 

reported (University of Illinois Extension, 1997; Bhat and Sabbarao, 1999).

Based upon shared patterns of host range specificity, both Verticillium species 

have been subdivided into races 1 and 2 (Bender and Shoemaker, 1984). 

Genotypes and varieties with varying levels of verticillium wilt resistance have 

been described in several plant species and a major locus (Ve) conferring 

qualitative resistance to this disease in tomato and potato has been cloned and
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characterized (Kawchuk et al., 2001). However, sources of qualitative resistance 

have not been identified in most host species.

On the organismal level, early events in Verticillium spp. infection have 

been studied using cultured roots and seedlings from tomato and eggplant. 

Typically, infection occurs when the fungus penetrates root hairs and the root 

epidermis, both inter- and intracellularly (Al-Shukri, 1968; Tjamos and Smith, 

1975). Hyphae then spread through the root cortex inter- and intracellularly, 

reach the stele, and invade the xylem (Tjamos and Smith, 1975). Once in the 

xylem, hyphae produce waves of conidia that spread upward in the transpiration 

stream and germinate in the vascular system (Brandt et al., 1984; Garas et al., 

1986). In advanced infections hyphae clog the xylem, blocking water flow through 

the stem and ultimately causing plant death. In many affected crops, cultivars 

referred to as “resistant” or “tolerant” to verticillium wilt are still colonized by the 

fungus, but only to a moderate extent, and disease symptoms are mild or absent. 

Regardless of disease symptom expression, yields are reduced in Verticillium 

spp.-infected plants (McFadden et al., 2001). Relative resistance or susceptibility 

seems to hinge on the ability of the pathogen to proliferate in the vascular system 

of the plant host.

On the cellular/molecular level, most studies of plant-Verticillium spp. 

interactions have identified components of general, basal plant defense 

responses rather than pathogen-specific recognition mechanisms. Timing of 

these basal defense responses to Verticillium spp. infection is slower in 

susceptible plants than in resistant plants (Williams et al., 2002). Basal defense
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responses have been demonstrated to include elemental sulfur accumulation in 

vascular tissue and associated parenchyma cells (Williams et al., 2002) and 

expression of pathogenesis-related (PR) protein genes (Hill et al., 1999;

McFadden et al., 2001).

The only genes confirmed to play a role in Verticillium spp.-specific 

resistance have been identified in tomato. Resistance to Verticillium spp. race 1 

in tomato was identified in a wild tomato accession and the single-gene nature of 

this resistance was subsequently shown in classical genetics experiments 

(Schaible et al. 1951). Tomato plants carrying the dominant Ve allele are 

resistant to race 1, but not to race 2, while homozygous recessive (ve/ve) plants 

are susceptible to both races.

When the Ve locus was mapped to tomato chromosome IX and 

subsequently positionally cloned and sequenced, it was found to consist of a pair 

of functional genes (Ve1 and Ve2) (Kawchuk et al., 2001). These tomato Ve 

genes each contain a lengthy leucine-rich-repeat (LRR) domain, a common 

feature of plant disease resistance genes that is thought to play a role in 

recognition of pathogen-derived molecules, either extracellularly or intracellularly. 

The tomato Ve gene products are predicted to be cell surface receptor proteins. 

Both genes were used to transform susceptible tomato and potato varieties, and 

each gene conferred resistance (Kawchuk et al., 2001). Since the cloning and 

characterization of Ve1 and Ve2, a few subsequent studies have focused on 

identification of Ve homologs in other Solanaceae species (Chai et al., 2003; Fei 

et al., 2004), on developing markers for marker-assisted selection in potato
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(Solanum tuberosum L.), (Simko et al., 2004a, Simko et al., 2004b), and on 

identifying virulence-related genes in the pathogen (Rauyaree et al., 2005). In 

addition, the EDS1 gene was subsequently shown to be required for Re

mediated resistance in tomato (Hu et al., 2005). Much work remains to 

understand the molecular details of Verticillium spp. infection of plant hosts, 

including identification of other plant defense components contributing to wilt 

disease resistance, and elucidation of the timing of virulence expression in the 

fungus and induction/expression of resistance in host cells.

Among the many crops affected by verticillium wilt are the commercial 

mints. Two of the three commercially-grown mint species in the United States, 

peppermint (Mentha xpiperita L.) and Scotch spearmint (M. xgracilis Sole), are 

susceptible to verticillium wilt, while the third, native spearmint (M . spicata L.) is 

relatively resistant (Berry and Thomas, 1961; Lacy and Horner, 1965; Sink and 

Grey, 1999). These species are perennial, clonally propagated plants that have 

been subjected to very little conventional breeding, and thus are, for all intents 

and purposes, wild plants. The mints are specialty crops in the United States. In 

2005, 76,000 acres of peppermint were harvested, yielding 6,980,000 lbs. of oil 

worth $84 million, and 18,000 acres of spearmint produced 1,933,000 lbs. of oil 

worth $20 million (NASS, 2006).

Mentha xpiperita L.(peppermint) is a hybrid of M. spicata and M. aquatica 

(Tucker et al., 1980). Peppermint plants bearing the names Mitcham Peppermint 

or Black Peppermint, brought from England to New England by colonists, 

escaped from gardens and became naturalized around streams; these plants, re-
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collected from the wild and put into cultivation starting in the 1790s, became the 

foundation of the U.S. mint industry (Landing, 1969). In 1883, stolons of 

peppermint cultivar Black Mitcham, presumed to be the same plant previously 

grown by colonists, were imported to Michigan from Mitcham, England by A.M. 

Todd for purposes of commercial production (Landing, 1969). Black Mitcham is 

still the primary peppermint cultivar in the U.S.

‘Native Spearmint,’ like peppermint, is believed to be an early colonial 

import from Europe that escaped from gardens and became naturalized 

(Landing, 1969). ‘Scotch spearmint,’ a hybrid of M. arvensis and M. spicata 

(Tucker et al., 1991), was discovered in a Wisconsin garden, purported to be an 

import from Scotland, and introduced into commercial production in 1910 

(Landing, 1969).

The incidence of verticillium wilt has shaped the history of the United 

States mint industry, particularly because wilt-susceptible ‘Black Mitcham’ 

peppermint has always been the predominant cultivated crop. Until the 1940s, 

most mint was produced in Indiana and Michigan. Verticillium wilt was first 

observed in Michigan peppermint fields during the 1924 and 1925 growing 

seasons (Nelson, 1926). By the 1950s, the economic damage caused by 

verticillium wilt had triggered a serious decline in acreage devoted to peppermint 

production (Green, 1951). Peppermint cultivation shifted to the northwestern 

U.S., and today, 89% of U.S. mint oil is produced in Washington, Oregon, and 

Idaho (NASS, 2006). Verticillium wilt continues to be the most limiting disease of
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commercial mints, particularly peppermint, and is suspected to have spread to 

northwestern mint fields via infected stolons (Douhan and Johnson, 2001).

‘Black Mitcham’ peppermint is a male-sterile hexaploid (2n=6x=96) 

(Chambers and Hummer, 1994). As such, it is not amenable to conventional 

plant breeding. In an attempt to produce wilt-resistant peppermint cultivars, 

workers from the A.M. Todd Company irradiated ‘Black Mitcham’ stolons in the 

late 1960s, and screened surviving (presumably mutant) stolons for wilt 

resistance, as well as for oil yield and quality (Murray and Todd, 1975). The 

result of this effort was the release of two peppermint cultivars, Todd’s Mitcham 

(Murray and Todd, 1972) and Murray Mitcham (Todd et al., 1977), which, along 

with Black Mitcham, are still in commercial production (Lundy, pers. comm.1).

More recently, somatic hybrids of ‘Black Mitcham’ and ‘Native Spearmint’ 

were generated via protoplast fusion, with the intention of combining the wilt 

resistance of the latter with the desirable oil quality and yield of the former 

(Krasnyanski et al., 1998). Sink and Grey (1999) screened 743 of these clonal 

plants for verticillium wilt resistance and found nine relatively resistant clones. 

The Mint Industry Research Council, a collective of mint oil producers, end-users 

and researchers, sponsored a second induced mutation study, conducted by the 

Plant Technologies company in Albany, OR, the results of which were evaluated 

by Johnson and Cummings (2000), who found one wilt-resistant irradiated 

mutant.

1 Rocky Lundy, Executive Director, Mint Industry Research Council, P.O. Box 971, Stevenson, 
WA 98648-0971. Email: mirc@gorge.net.
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While considerable effort has been made to evaluate mints for field 

resistance to verticillium wilt, no previous work has focused on the genetics of 

wilt resistance in mint. W e are developing the wild, diploid mint species M. 

longifolia as a model for the study of mint genetics and plant-microbe 

interactions. Toward this end, we have identified M. longifolia accessions from 

the United States Department of Agriculture (USDA) with varying 

resistance/susceptibility to verticillium wilt (Vining et al., 2005). As a first step 

toward identifying molecular determinants of verticillium wilt resistance in mint, 

we have also cloned resistance gene analog (RGA) sequences from some of the 

USDA M. longifolia accessions (Vining et al., 2007). Furthermore, we used 

degenerate primers based on the tomato Ve1 gene to isolate an initial 445 bp 

segment of a Ve-like sequence from mint, then used inverse PCR to walk 

outward, thereby obtaining a 1413-bp M. longifolia sequence that had 56-57%  

predicted amino acid identity to the equivalent regions of tomato Ve1 and Ve2 

(Vining et al., 2007). Here, we report the putatively complete coding sequence of 

an M. longifolia Ve homolog, m Vel, evaluate verticillium wilt 

susceptibility/resistance in M. longifolia F1 and F2 populations derived from 

crosses of wilt-resistant and wilt-susceptible M. longifolia accessions, and look 

for associations between m V el genotype and wilt disease resistance or 

susceptibility phenotype.
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Materials and methods

Plant materials

Mentha longifolia accessions were obtained as stolons or rooted cuttings 

from the National Clonal Germplasm Repository (NCGR) in Corvallis, Oregon. 

Based on the results of prior germplasm screenings (Vining et al., 2005), 

verticillium wilt-resistant, diploid accessions CMEN 585 (South Africa) and CMEN 

17 (unknown European country) and wilt-susceptible, diploid accessions CMEN 

584 (South Africa) and CMEN 516 (Italy), were chosen as parents for use in 

resistant x susceptible crosses.

The cross CMEN 585 *  CMEN 584 was performed by rubbing fingers on 

CMEN 584 inflorescences to gather pollen, and then applying the pollen directly 

to CMEN 585 stigmas, or by rubbing together inflorescences of the two parent 

plants. Self-pollination of CMEN 585 was not an issue, because CMEN 585 was 

never demonstrated to have functional pollen: numerous attempts to self- 

pollinate CMEN 585 and to use CMEN 585 as a pollen parent were 

unsuccessful. In addition, during the summer months, CMEN 585 anthers 

typically failed to develop and pollen was rarely observed. An F1 population from 

the cross CMEN 17 *  CMEN 516 was available at the onset of this investigation.

The F1 population produced from the South African (SA) cross CMEN 585 

x CMEN 584 will hereafter be referred to as SAF1, and the F1 population from 

the European (E) CMEN 17 * CMEN 516 cross will be called EF1. Respective F2 

generation populations (SAF2 and EF2) were then obtained by allowing one
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selected plant from each F1 population to self-pollinate in isolation. In addition, 

an S1 population (’17 self or 17®) was developed from accession CMEN 17 via 

self-pollination in isolation.

mVel sequencing

Three mint-specific primers based on the previously isolated m\/e1 

sequence from CMEN 585 (Vining et al., 2007) and four generic, degenerate 

primers (Table 3.1) were used in Thermal Asymmetric interlaced (TAIL)-PCR 

(Liu et al., 1995; Liu and Whittier, 1995) with template DNA from M. longifolia 

accession CMEN 585. Thermal cycling parameters are listed in Table 3.2. All 

reactions were performed using the Accuprime™ Taq DNA Polymerase System 

(Invitrogen, Carlsbad, CA) in 25 pi total reaction volumes. Primary TAIL-PCRs 

contained 3 pM degenerate primer and 0.4 pM specific primer. Products from 

primary TAIL-PCR were diluted 1:50 with nuclease-free water (Ambion, Inc., 

Foster City, CA) and used as templates in secondary PCR. Secondary and 

tertiary TAIL-PCRs contained 1.8 pM degenerate primer and 0.4 pM specific 

primer. Products from secondary PCR were used directly in tertiary PCR, without 

dilution. Secondary and tertiary TAIL-PCR products obtained from the 

combination of degenerate primers AD1 and AD6 with the m\/e-specific primers 

were cloned directly, using the TOPO TA Cloning® Kit for Sequencing 

(Invitrogen). Resulting colonies were PCR-screened to determine insert size, and 

recombinant plasmids were isolated using the Wizard® SV Plasmid Purification 

kit (Promega Corporation, Madison, Wl). Sequencing reactions were performed

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



using the UNH Hubbard Center for Genome Studies protocol 

(http://hcgs.unh.edu/protocol/sequence/), with DYEnamic™ Terminator ET cycle 

sequencing premix (Amersham Biosciences, Piscataway, NJ). Reaction products 

were analyzed using an ABI PRISM® 377 DNA sequencer (Applied Biosystems, 

Foster City, CA).

Once the preliminary draft of a putatively complete m Vel coding region 

was determined, PCR primers were designed in order to amplify PCR products 

containing this entire coding region from M. longifolia accessions CMEN 585, 

CMEN 584, CMEN 17, and CMEN 516. These products were amplified and 

cloned directly, as described for TAIL-PCR products above. To confirm accuracy 

of the mVe sequences, overlapping sequence reads were obtained from the 

clones by using a series of ml/e-specific sequencing primers (Table 3.3), plus 

standard vector (M13F, M13R) primers.

Sequence alignments and ORF translations were performed using 

Lasergene Megalign software (DNASTAR, Madison, Wl) and Clustal X 

(Thompson et al., 1997). GenBank® BLAST searches were done on the National 

Center for Biotechnology web site (http://www.ncbi.nlm.nih.gov). Alignments of 

m Vel predicted amino acid sequence with the tomato Ve predicted amino acid 

sequences were used to delineate protein domains. Further structural analyses 

of the putative mVel protein were executed on the Swiss EMBnet node server 

(http://www.ch.embnet.org) and Expasy Molecular Biology Server 

(http://www.expasy.org).
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Genotvpinq of F1 and F2 populations

Restriction digests of mVe PCR products were employed to determine 

allele compositions of parent plants, and of plants from F1 and F2 populations. 

Primers MA148 and MA151, which amplified the entire m Vel coding region as 

described above, were used to generate PCR products from all plants that had 

been screened for verticillium wilt resistance. To confirm PCR template quality, a 

pair of primers targeting a mint chalcone synthase gene (Lange et al., 2000) was 

employed. The chalcone synthase primers (ML414_79F, sequence 

5’GCATCACCAACAGCGAACA3\ and ML414_528R, sequence 

5’CGGAGCAGACGATGAGGAC3’) were based on peppermint cDNA clone 

ML414 (Genbank® accession number AW255394).

For restriction digests, 5 pi of PCR products were digested in 20 pi 

reactions with 10 units of either A/col and Xba\ (SAF1, SAF2), or 10 units of Agel 

(EF1, EF2) (New England Biolabs, Ipswich, MA). All digests were incubated 

overnight at 37 °C and digest products were electrophoretically separated on 2% 

agarose gels.

Verticillium wilt resistance screening

Verticillium wilt resistance screenings of F1 and F2 generation and 

parental plants were performed as described in Vining et al. (2005). Briefly, 

rooted cuttings were inoculated by root-dipping in 20 ml of a fungal spore 

suspension (concentration ~107 spores/ml) for 5 min, then replanted in sterilized 

soil. Following inoculation, plants were maintained in a growth chamber under a
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cool-temperature, short-day light regimen for two weeks before being moved to a 

greenhouse bench under ambient light and temperature conditions. Disease 

symptoms were evaluated at eight weeks post-inoculation using a rating scale on 

which zero designated a healthy plant, increasing scores indicated increasing 

symptom severity, and four described a dead plant. At least six rooted cuttings 

(clones) were evaluated per plant, and mean symptom ratings and standard 

deviations were calculated for each set of clones.

Genotype-phenotype association testing

The hypothesis of association between verticillium wilt resistance score 

and allele composition was tested using two statistical methods: one-way, 

parametric analysis of variance (ANOVA), and nonparametric, Kruskal-Wallis 

single-factor analysis of variance by ranks, both performed with Systat© version 

10 (SPSS Inc., Chicago, IL).

Results

Population development

The South African (SA) cross CMEN 585 x CMEN 584 produced an F1 

population (SAF1) of 55 plants, and self-pollination of one wilt-resistant F1 plant 

(SAF1-1) produced an F2 generation population (SAF2) of 120 plants. The 

European (E) cross CMEN 17 x CMEN 516 produced an Fi population (EF1) of 

16 plants, and self-pollination of one wilt-resistant Fi plant (EF1-8) produced an
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F2 generation population (EF2) of 18 plants. Self-pollination of CMEN 17 

produced an Si population (17®) of 31 plants.

Due to logistical considerations, including resource-based limitations on 

the number of plants that could be screened, and death of some plants during 

the term of this study, various population subsets were used in most of the 

population genotyping and wilt resistance screening assays. An obvious trait 

segregating in the SAF1 population was foliar scent, in that approximately half 

the individuals had a “spearmint” scent, while the other half had a “non

spearmint” scent. Therefore, plants representing each scent category were 

included in the SA population subsets chosen for wilt resistance screening.

mVel

Using TAIL-PCR to extend a previously-obtained Ve-like fragment, we 

completed a draft sequence of a putative homolog, m Vel, of the tomato Ve 

genes from verticillium wilt-resistant M. longifolia accession CMEN 585. Initial 

sequence assembly of the degenerate, inverse and TAIL-PCR fragments 

produced a sequence of 3328 nucleotides (nt), including 210 nt upstream of the 

putative start codon and 58 nt downstream of the putative stop codon (Appendix 

C). The m V el sequence has a predicted coding region of 3051 nt, with no 

introns. The predicted stop codon (TAA) is followed immediately (in frame) and 

consecutively by two more stop codons (TGATGA) (Fig. 3.1).

The predicted mVel protein, 1017 amino acids in length, is rich in leucine 

residues (15.2%). Five distinct sequence domains were identified in this
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predicted protein corresponding to the domains A through E of the tomato Ve 

proteins as defined by Kawchuk et al. (2001) (Fig. 3.2). The amino terminus of 24 

amino acids (domain A) precedes an LRR region (amino acids 25-934, domain 

B) with 36 imperfect copies of the consensus sequence 

[XXIXNLXXLXXLXLSXNXLSGXIP], Immediately adjacent to the LRR domain, a 

negatively-charged stretch (amino acids 935-951, domain C) precedes a putative 

transmembrane domain (amino acids 952-973, domain D). The carboxy terminus 

(amino acids 974-1017, domain E) is positively charged, and contains a stretch 

of seven consecutive arginine residues.

The predicted m Vel gene product has 51.4% and 50.8% amino acid 

identity with tomato Ve1 and Ve2 gene products, respectively. Blastx searches of 

the nr database using translated m Vel sequences as search queries have 

tomato Ve2 as the top Blast hit (score=854, e-value=0.0). Tomato Ve1 is within 

the top 10 Blast hits, as are the SIVel and SIVe2 sequences from Solanum 

lycopersicoides (Chai et al., 2003). Sequence identities among the translated 

m Vel sequences and the Solanum sequences are 48-50%. Other m Vel tblastx 

hits are leucine-rich-repeat proteins and predicted proteins from a variety of plant 

taxa (^41% identities).

When each of the tomato Ves was used as a search query in a blastx 

search of the nr database the top hits were sequences from other Solanaceae 

species (>80% identities). Outside of the Solanaceae, the closest blastx hits for 

the tomato Ve translations were from Medicago truncatula Gaertner (40-45%  

identities) and Oryza sativa (240% identities).
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With the objective of isolating and assessing sequence variation among 

m Vel alleles, PCR primers (MA148 and MA151, Table 3.1) based on the 3328 nt 

sequence were used to amplify products containing putatively complete coding 

regions from the four the M. longifolia accessions used as crossing parents 

(CMEN 585, CMEN 584, CMEN 17, CMEN 516). These m Vel PCR products 

were cloned and sequenced, identifying two alleles each from CMEN 585 (alleles 

I and II) and CMEN 584 (alleles III and IV), one allele from CMEN 17 (allele V), 

and two from CMEN 516 (VII and VIII) (Fig. 3.3). The seven distinct m Vel 

alleles have 96.2-99.6% predicted amino acid identity with each other. All encode 

predicted proteins of the same length (1017 amino acids), and all coding regions 

end in three consecutive stop codons. All differences among the m Vel alleles 

are base substitutions; there are no indel polymorphisms.

Comparisons of m Vel alleles within and among plant accessions revealed 

strong similarities among accessions from common geographic origins, as well 

as striking differences between alleles of South African plants and those from 

European plants (Fig. 3.3, Table 3.4). The two most similar alleles were from 

South African accessions CMEN 585 and CMEN 584 (alleles I and III, 

respectively), which differed at only two nucleotides, and were identical in amino 

acid sequence. Pairs of alleles from South African plants averaged 9 nucleotide 

differences, and alleles from European accessions differed by an average of 4 

nucleotides. In contrast, there was an average difference of 73 nucleotides in 

pairwise comparisons of South African with European alleles.
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mVel qenotypinq

The same PCR primers used to amplify and clone m Vel alleles from 

parent accessions were used to amplify alleles of plants in the SAF1, SAF2, EF1 

and EF2 populations derived from these accessions. Based upon the sequence 

polymorphisms described above, restriction enzymes that differentially cut 

particular alleles were chosen and employed for allele genotyping in the four 

populations.

Restriction digests of m Vel PCR products from SA parent accessions 

produced fragment sizes expected on the basis of the known restriction site 

positions (Fig. 3.4). In the SAF1 population, sixteen plants chosen for verticillium 

witl resistance screening (see below) were genotyped with respect to m Vel 

alleles. Given the inferred genotypes of the parent plants, there were four 

possible F1 allele compositions (each of which could be inferred from its 

respective banding pattern). All four of these expected allele compositions were 

represented in the SAF1 population sample. Eight SAF1 plants had allele 

composition I /  IV; four plants had allele composition II / IV; three plants had 

allele composition II / III; a single plant (SAF1-39) had allele composition I / III.

The SAF1 plant (SAF1-1) that was self-pollinated to produce the SAF2 

generation had allele composition I /  IV. In the SAF2 population, 74 plants were 

genotyped. As inferred from gel banding patterns, twenty-seven were 

homozygous for the CMEN 585-derived allele (I / 1), thirty-seven were 

heterozygous (I / IV), and ten were homozygous for the CMEN 584-derived allele 

( IV /IV ) .
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Death of several plants in the EF1 and EF2 populations prohibited 

genotyping of every individual from the initially produced populations. A further 

complication in genotyping of surviving plants was the high sequence identity/low 

number of polymorphisms among the European alleles. CMEN 17 allele V  and 

CMEN 516 allele VIII were distinguishable at the DNA sequence level, but could 

not be differentiated on the basis of restriction digests. Initially, evidence of only 

one kind of m Vel allele (allele V) in CMEN 17 suggested that this accession 

might be homozygous, but the EF1 and EF2 population genotyping results 

refuted this hypothesis, as explained below.

Restriction digest banding patterns obtained or expected in the European 

parents, EF1 and EF2 populations are depicted in Figure 3.5, which provides a 

necessary basis for the following description and explanation of results. The 

banding pattern obtained for CMEN 17 conformed to the known presence of a 

single restriction site in allele V, the only allele identified by cloning in CMEN 17. 

The pattern for CMEN 516 conformed to the known presence of one restriction 

site in allele VII (resulting in two bands of 1362 bp and 1769 bp, equal in size to 

the two bands characteristic of allele V) and two restriction sites in allele VII 

(resulting in bands of 1362, 1198, and 571 bp). Because alleles VII and VIII each 

produce a band of 1362 bp, CMEN 516 has only four gels bands, as shown.

A pivotal outcome was the absence of any m Vel PCR product band in 8 

plants of the SAF2 population (even though the same templates produced a 

band with the control chalcone synthase primer pair). This outcome prompted the 

inference that a null (non-amplifiable) m Vel allele was segregating in this

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



population. Given that only one m Vel allele had been identifiable via PCR 

amplification and cloning in CMEN17, it was hypothesized that CMEN 17 was the 

source of the null allele, which was designated allele VI(N). This hypothesis was 

tested by performing PCR amplifications of m Vel on the 17S1 population. If 

CMEN 17 carried the null allele, and had genotpye V /V I(N ), then 25% of the 

17S1 plants would be expected to have genotype VI(N) / VI(N), and produce no 

mVel PCR product. In support of the null allele hypothesis, six out of nineteen 

17S1 plants produced no m Vel PCR product (although the templates were good 

as confirmed by chalcone synthase amplifications).

Proceeding on the assumption that CMEN17 had the genotype V  / VI(N), 

four possible genotypes, and three possible banding patterns, would be expected 

in the EF1 (Fig. 3.5). Of the nine EF1 plants, 6 had banding pattern A, and 3 had 

banding pattern B. Expected pattern C did not occur, but its absence could be 

due to sampling “error” in this small population sample.

Verticillium wilt resistance screening

All 16 plants from the EF1 population were screened for wilt resistance, 

while a subset of 16 SAF1 plants was screened. Thirty-three SAF2 plants and 

18 EF2 plants were screened for wilt resistance. The original crossing parents 

were re-evaluated alongside progeny plants in the SAF1, SAF2 and EF2 trials.

Data from sets of clones with symptom ratings having standard deviations 

>1.2 were considered uninformative and were discarded; therefore, the final data
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set consisted of 16 SAF1 plants, 24 SAF2 plants, 16 EF1 plants and 16 EF2 

plants.

In the final SAF1 data set, six plants were resistant (mean ratings £0.5), 

six were moderately susceptible (mean ratings from 1.0 to 2.1), and four were 

highly susceptible (mean ratings >3.0) (Fig. 3.6A). In the SAF2 population of 24 

plants, 13 plants were resistant (mean ratings £0.6), eight plants were 

moderately susceptible (mean ratings from 1.4 to 2.0), and six were susceptible 

(mean ratings from 2.3 to 3.4) (Fig. 3.6B).

In the EF1 population, plants were either highly resistant (six plants with 

mean ratings < 0.5), or highly susceptible (ten plants with mean ratings >3.5)

(Fig. 3.7A). In the EF2 population of fifteen plants, ten plants were categorized as 

resistant (mean ratings £0.5), while the remaining five plants had various levels 

of disease symptoms (ratings ranging from 1.5 to 3.8) (Fig. 3.7B),.

Of the SAF2 plants subjected to verticillium wilt resistance screening, 

seven were homozygous for the CMEN 585-derived allele (I / 1); three were 

homozygous for the CMEN 584-derived allele (IV / IV); and 14 were 

heterozygous (I / IV). Analyses of variance did not show a significant effect of 

plant genotype on disease symptom rating in SAF2 population (p=0.137 for 

parametric ANOVA, p=0.100 for Kruskal-Wallis nonparametric ANOVA) or the 

EF2 population (p=0.085 for parametric ANOVA, p=0.099 for Kruskal-Wallis non

parametric ANOVA).
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Discussion

Verticillium wilt has been a particularly challenging problem in plant 

pathology, because of the broad host range of the pathogen, and because of the 

dearth of resistant genotypes in many plant species. Verticillium wilt has plagued 

the U.S. mint industry for more than 80 years, in large part due to the genetic 

homogeneity of the susceptible cultivated peppermint. W e have developed 

Mentha longifolia as a model species for the study of mint genetics, with 

particular attention to the problem of verticillium wilt resistance. We found in a 

previous study that some M. longifolia USDA accessions are highly resistant to 

verticillium wilt, while others are highly susceptible, under greenhouse conditions 

(Vining et al., 2005).

In the present study, we performed crosses between pairs of resistant and 

susceptible M. longifolia accessions from South Africa and from Europe, and 

generated segregating F1 and F2 generation populations as resources for 

genetic studies of verticillium wilt resistance. We have isolated putative homologs 

of the tomato verticillium resistance (Ve) genes from the four parental accessions 

used in these crosses, screened F1 and F2 populations derived from wilt- 

resistant x wilt-susceptible crosses, and looked for genotype-phenotype 

associations in F1 and F2 populations.

Starting with a gene segment obtained via degenerate PCR and inverse 

PCR (Vining et al., 2007), we used TAIL-PCR to acquire the putatively complete 

coding sequence of a potential Ve homolog from M. longifolia CMEN 585, and
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then cloned m Vel sequences from this and three other M. longifolia accessions. 

All of the m Vel sequences obtained from these accessions are complete ORFs 

of equal length and could encode functional proteins. Like the tomato Ve genes, 

there are no predicted introns in m Vel. The m Vel gene is predicted to encode 

36 leucine-rich repeats (LRRs), in contrast to the 38 LRR units of tomato Ve1 

and Ve2 genes. The amino acid alignment of the predicted m Vel and tomato 

Ve1 and Ve2 proteins showed two gaps in the mVel sequences relative to the 

tomato sequences, which corresponded to LRR units 8 and 17 in both Ve1 and 

Ve2. These gaps could represent a loss of individual repeats in the mint genes, 

or a gain of repeats in the tomato genes. Interestingly, when Ve homolog 

sequences from other species of Solanaceae were included in alignments, the 

same gaps existed in M. longifolia sequences relative to all Solanaceae 

sequences. Therefore, whatever gains or losses of LRR units occurred, they 

likely preceded the divergence of Solanaceae species.

Leucine-rich-repeat domains are common to the majority of known plant 

disease resistance genes. Most variation among homologs of disease resistance 

genes occurs in LRRs; there is evidence of diversifying selection at loci 

containing multiple orthologous LRR disease resistance genes (McDowell et al., 

1998; Meyers et al., 1998; Dodds et al., 2006; Seah et al., 2007). Homologs may 

have many amino acid differences, yet confer equivalent resistance to a 

pathogen, as is the case at the tomato Cf-9 locus, where two homologs with 61 

amino acid differences each confer resistance to the same isolate of 

Cladosporium fulvum (van der Hoorn et al., 2001). In other cases, closely related
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homologs that differ by only a few LRR amino acids may confer resistance to 

different isolates of a pathogen, as is the case for the L locus in flax, in which 

homologs encoding proteins with six LRR amino acid differences confer 

resistance to different isolates of Melampsora lini (Dodds et al. 2001).

The tomato Ve locus contains two presumably paralogous genes, both of 

which confer resistance to Verticillium spp. race 1. Homologs of the tomato Ve 

genes, StVel and SIVel from potato species, have not been tested for 

functionality. It is not known which, if any, amino acids in the LRR domain of Ve 

are key determinants of wilt resistance. The current picture of the mint-

Verticillium dahliae interaction is even more murky. At the present time, there is
%

no genetic map for any mint species; so there is no basis as yet to map either the 

m Vel locus or qualitative/quantitative trait loci involved in resistance itself. W e  

have identified a second mVe homolog, mVe2, the preliminary analysis of which 

does not show any linkage to m Vel (data not shown). Therefore, the m V el locus 

thus far is defined by a single gene.

The cloning of the m Vel sequence from M. longifolia accession CMEN  

585 facilitated the cloning of m Vel sequences from other M. longifolia 

accessions. Similarly, the identification of the tomato Ve genes provided a 

foundation for the homology-based cloning of potential Ve homologs from other 

members of the Solanaceae: SIVel from diploid potato Solanum lycopersicoides 

(Chai et al., 2003), StVe from diploid potato Solanum torvum Swartz (Fei et al., 

2004), and 11 StVel alleles from the cultivated, tetraploid potato Solanum 

tuberosum L. (Simko et al. 2004a, Simko et al. 2004b). The 11 StVel alleles of
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S. tuberosum share 76.2-99.6% predicted amino acid identity with each other, 

and 82.9-90.8% and 74.2-90.8% to tomato Ve1 and Ve2, respectively. In mint, 

among the m V el alleles, overall amino acid similarity ranges from 96.2-99.6%. 

The m V el alleles from European accessions are more similar to each other than 

are the alleles from South African accessions. This is not surprising, since the 

two South African accessions are considered different subspecies: CMEN 585 is 

M. longifolia subsp. capensis, while CMEN 584 is M. longifolia subsp. polyadenia 

(Tucker and Naczi, 2005).

The detection of a ‘null allele’ in CMEN 17 inhibited genotyping in the EF1 

and EF2 populations. This null allele could be a deletion of part or all of an allele. 

Alternatively, the m Vel primer sites could be missing or altered. Further 

investigations into the nature of this allele may include tests of alternative m V el 

primers and restriction digests of any partial m Vel products to further distinguish 

allele VI from CMEN 17; these investigations are necessarily open-ended, and 

extend beyond the scope of this dissertation.

In addition to cloning m Vel alleles from M. longifolia, we have begun 

cloning m V el alleles from other species in the Mentha genus, including the 

cultivated spearmint, M. spicata, and the Mentha xpiperita peppermint cultivar 

Black Mitcham (data not shown). It is probable that m Vel alleles are ubiquitous 

in Mentha. It remains to be seen whether any of these alleles encode proteins 

that confer verticillium wilt resistance in mint.

Plant defense responses to pathogen infections are complex and include 

pathogen-specific, early-recognition responses as well as all-purpose defenses
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that may be invoked by general environmental stresses in addition to biotrophic 

stresses. The tomato Ve protein, as a predicted integral membrane receptor 

molecule, is implicated as one of the early actors in the plant defense response 

to Verticillium spp. invasion, and, as such, may be essential to wilt disease 

resistance. However, Ve protein localization in cells has not been confirmed. In 

tomato, Ve-mediated resistance to verticillium wilt is dependent on EDS1, a gene 

product that is also required for plant disease resistance conferred by certain 

proteins of the Toll-lnterleukin-Receptor/Nucleotide-Binding-Site/Leucine-Rich- 

Repeat (TIR-NBS-LRR) class (Hu et al., 2005). It is not known what pathogen 

elicitor is recognized by Ve, or by what direct or indirect mechanism. Interactions 

of Ve with EDS and with other components of the plant defense system have not 

been determined. Other components of the Ve-associated defense mechanism 

remain to be identified.

The Verticillium dahliae screens of F1 and F2 M. longifolia populations 

showed that all were segregating for resistance/susceptibility to verticillium wilt. 

The EF1 progeny of a cross of European M. longifolia accessions were 

segregating approximately 1:1 for wilt resistance/susceptibility, while the EF2 

population presented more continuous data. The SAF1 and SAF2 populations 

derived from a cross of South African M. longifolia accessions both exhibited a 

continuous distribution of disease symptom ratings.

In each of the M. longifolia F1 and F2 populations tested in the present 

study, there was no association between m Vel allele composition and resistance 

or susceptibility to verticillium wilt. At the same time, the present analysis of
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m V el sequences in resistant and susceptible M. longifolia accessions has 

uncovered only putatively complete ORFs and no apparent pseudogenes, 

suggesting that the identified m Vel sequences belong to functional genes. 

Therefore, despite the observed lack of association between alleles of the m Vel 

gene and a verticillium wilt phenotype in the studied population, it remains an 

open question as to whether a functional mVel protein is required for verticillium 

wilt resistance in mint. Plant resistance to any pathogen is dependent upon the 

expression of multiple genes, a defect in any one of which could confer disease 

susceptibility.

The M. longifolia accessions used as crossing parents in this study, 

particularly the South African accessions, were highly phenotypically diverse 

(Vining et al., 2005). It must be presumed that this diversity extends to alleles of 

genes involved with all aspects of plant defense, and that alleles at many 

resistance-related loci may be segregating in the studied populations. The 

continuous distribution of disease symptom ratings in three of the four M. 

longifolia populations points to a polygenic model, although the studied 

populations are too small to provide a test of this hypothesis. Further population 

development, including the derivation of inbred lines for future crosses and 

genetic studies, will likely aid in the identification of genes of qualitative effect.

In sum, it is possible that the m Vel gene does play a role in the resistance 

of M. longifolia to verticillium wilt, but that the verticillium susceptibility observed 

in parents CMEN 584 and CMEN 516 and in segregating progenies derived from 

these parents is not due to mutation at the m Vel locus. Instead, it is possible that
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polymorphism in another gene or genes makes the difference between wilt 

resistance and susceptibility in these plants. Details of the molecular interactions 

between mint and Verticillium fungi remain to be elucidated. Future work with the 

M. longifolia-Verticillium dahliae interaction will include analysis of m Vel 

expression and a search for a mint EDS1 homolog and for other candidate genes 

of possible relevance to verticillium wilt resistance in mint.
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Table 3.1. Primers used in TAIL-PCR and m Vel coding region cloning. Primers 
AD1 and AD6 are from Liu et al. (1995); primers AD2 and AD3 are from Liu and 
Whittier (1995). All other primers were designed as part of the present study.

Primer name Purpose Sequence 5’ ->3’
AD1 TAIL-PCR

degenerate
NGTCGASWGANAWGAA

AD2 TAIL-PCR
degenerate

T GWG N AG SAN CAS AG A

AD3 TAIL-PCR
degenerate

AGWGNAGWANCAWAGG

AD6 TAIL-PCR
degenerate

WGTGN AGWAN C AN AGA

396R
(MA129)

TAIL-1 PCR 
m V e l-specific

TCTCCAACGACATGCAACTCTCA

362R
(MA131)

TAIL-2 PCR 
mt/ef-specific

G ATTTT CCCTTGTATAGCATT GTT GTTA

290R
(MA128)

TAIL-3 PCR 
m V el-specific

GAT GTGTCCGCT GAT GTT GTTT C

188F
(MA151)

m Vel coding 
region cloning

CAT CAT CACTCATCTCCTTCACAA

2789R
(MA148)

m Vel coding 
region cloning

TTGCGCAGAAACCTACA
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Table 3.2. Thermal cycling parameters used in TAIL-PCR, based on those of Liu 
et al. (1995). An Eppendorf Mastercycler ep was used for all reactions. 
Thermocycler lid temperature was 105°C. Temperature ramp was set at the 
default of 3°C/sec unless otherwise indicated.

Reaction No. of 
cycles

Thermal Settings

Primary 1 93°C, 1 min; 95°C, 1 min
5 94°C, 30 sec; 62°C, 1 min; 72°C, 2.5 min
1 94°C, 30 sec; 25°C, 3 min; ramp 0.3°C/sec to 72°C; 

72°C, 2.5 min
15 94°C, 30 sec; 68°C, 1 min; 72°C, 2.5 min; 

94°C, 30 sec; 68°C, 1 min; 72°C, 2.5 min; 
94°C, 30 sec; 44°C, 1 min; 72°C, 2.5 min;

1 72°C, 5 min, hold 4°C
Secondary 12 94°C, 30 sec; 64°C, 1 min; 72°C, 2.5 min 

94°C, 30 sec; 64°C, 1 min; 72°C, 2.5 min 
94°C, 30 sec; 44°C, 1 min; 72°C, 2.5 min

1 72°C, 5 min, hold 4°C
Tertiary 40 94°C, 30 sec; 44°C, 1 min; 72°C, 2.5 min

1 72°C, 5 min, hold 4°C
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Table 3.3. Primers used in confirmatory sequencing of m Vel. Primer sites refer 
to locations within the m Vel sequence shown in Figure 1B.

Primer Site in mVel (bp) Sequence 5’ ->3’

MA028 2455-2475 ATCG ATATATCTTC CAAC AAT

MA030 2837-2854 TCGGTACAT GCCCT GACA

MAO 3 3 2971-2987 AACGCGGGATTATGTGG

MA123 3302-3318 TTGCGCAGAAACCTACA

MA133 1965-1991 GGGCGACCTGCACCTCTTTATTTCTCC

MA138 3087-3110 ACAAT GATT CCT GAGCCCACAACA

MA142 1048-1071 C AAAAAC C C ACTCTAC AAAAT CTC

MA144 2127-2140 GACAAGGGGCTATA

MA150 775-794 GAAACATCGACACCATCAAG

MA152 424-437 TGGCCTGCACCGTC

MA157 253-276 ACAGCAACAACTTTTACT ACT CTT

MA227 350-374 CTACAACGTCTTCAACCGCACTCA

MA228 679-702 GCAAAGGCCCAGAAACACACAAT

MA229 661-685 GGAGTTT GAGCTT GCGTTATT GT A

MA230 1562-1585 TCAGGGAAGGCATGCAAGTCACA

MA231 1136-1160 TTCCACGTTGTTTCGAGGTCTATC

MA232 1110-1133 AAT GAGCCGGT GAAGAAGTTAGC
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Table 3.4. Pairwise comparisons of m Vel nucleotide sequences. Numbers of 
nucleotide differences are given, followed by number of amino acid differences in 
predicted protein sequences. Alleles I and II are from M. longifolia accession 
CMEN 585 (South Africa); alleles III and IV are from CMEN 584 (South Africa); 
allele V  is from CMEN 17 (unknown European country); alleles VII and VIII are 
from CMEN 516 (Italy).

ALLELES I II Ill IV V VII VIII
I - 13(7) 2(0) 6(1) 74 (33) 73 (32) 75 (33)

II - 13(7) 13(8) 71 (34) 70 (33) 72 (34)
III 1 - - - 6(1) 75 (33) 73 (32) 75 (33)
IV ■ - 74 (34) 73 (33) 75 (34)
V - 3(3) 7(4)

VII 6(3)
VIII
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Figure 3.1. Schematic drawing of Mentha longifolia m Vel sequence (not to 
scale). The predicted coding region is shown in gray; 5’ and 3’ UTRs are white.
A. Initial assembly of m Vel from degenerate, inverse and TAIL-PCR fragments. 
The 3’ 1413 bp were obtained with degenerate PCR and inverse PCR (Vining et 
al., 2007). The 5’ 1915 bp were obtained during the present study with TAIL- 
PCR. Relative locations of nested specific primers used in TAIL-PCR (sequences 
in Table 3.1) are indicated. B. Locations of m Vel primers used to clone coding 
regions from M. longifolia accessions. Clones included 40 bp of 3’ UTR.

A.
— TAIL 1 

-«— TAIL 2 
— TAIL 3

1 l i i i l l ' , > TAa|tGATGA ]

210 bp 3051 bp
W

------------------------► -<-------------------*-
67 bp

W
1915 bp 1413 bp

B.

MA151 M A I 48

P  I ATS ■ . 1 - , ' 11 .taaItgatga J

^ ---------
3051 bp 40 bp

------------------------------ w
3131 bp
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Figure 3.2. Primary amino acid structure of M. longifolia m Vel deduced from 
genomic DNA sequence. The polypeptide has been divided into predicted 
domains A-E as described in the text, based on alignments with the tomato Ve 
putative protein sequences.Domain A: amino terminus. Domain B: leucine-rich 
repeat (LRR) domain, separated into individual, imperfect copies of the 
concensus motif: [XXIXNLXXLXXLXLSXNXLSGXIP]. Leucine residues are in 
boldface type. Domain C: extracytoplasmic domain; Domain D: transmembrane 
domain; Domain E: cytoplasmic domain.

A  M ANLFLS V LM IS 11TA TTFTTLS  Y 2 4

B  SQQCLHHQKTSLLQLKNELKFDSSNSTKLVQWNR 58
KNNDCCNWYGVGCDGAGHVTSLQLDHEAISGGIDD 93

S S S L  FRLE FLE KLNLAYNVFNRT Q IP  119
RGIQNLTYLTHLNLSNAGFTGQVP 143

LQLS FLTRLV SLD IS KFR RG IEP 166
LKLERPNLE TLLQNLS GLRELCLDGVDV S SQKS 199

EW GLIISSCLPNIRSLSLRYCSVSG PLH 227
E S L S K LQ S LS IL ILD G N H LS S W P  251
NFFANFSSLTTLSLKNCSLEGSFP 275
EMIFQKPTLQNLDLSQNMLLGGSIP 300

PFTQNGSLRSMILSQTNFSGSIP 323
SSIS N LK S LS H ID LSY N R FTG P IP  347
STLGNLSELTYVRLWANFFTGSLP 371

STLFRGLSNLDSLELGCNSFTGYVP 396
QSLFDLPSLRVIKLEDNKFIGQ VE 420

EFPNGINVSSHIVTLDMSMNLLEGHVP 4 47
ISLFQIQ SLENLVLSHNSFSG TFQ  471
MKNVGSPNLEVLDLSYNNLSVDAN 4 95

VDPTWHGFPKLRELSLASCDLHAFPE 521
FLKHSAM IKLDLSNNRIDG Q IP 543

RWIWGTELYFMNLSCNLLTDVQK 566
PYHIPASLQLLDLHSNRFKGDLHL 590

F ISP IG DLTPSLYW LSLAN NSFSG SIP 617
TSLCNATQ LGVIDLSLNQ LSGDIA 641

PCLLENTG HIQ VLNLGRNNISG HIP 666
DNFPSQCGLQNLDLNNNAIQGKIP 690
KSLESCMSLEIMNVGDNSIDDTFP 714

CMLPPSLSVLVLRSNRFHGEVT 73 6
CERRGTW PNLQIIDISSNNFNGSLE 7 61

SINFSSWTAMVLMSDARFTQRHWG 785
TNFLSAS Q FYY T A A V A LT IK R V E LE LV K I 814

WPDFIAVDLSCNDFHGDIP 833
DAIG DLT S LY V LN IS  HNALGG S IP  857
KSLGQLSKLESLDLSRNRLSGHVP 881
TELGGLT FLSVLNLSYNELVG EIP 905

N GRQMH T F SADAFKGNAGLCGRHLERN CSD 935

C DRSQ G EIEIENEIEW V 951

D  Y V F V A L G Y W G L G IIW L L L F  972

E CRSFRYKYFDKIDKWQETFDARDRRRRRRRGTRIVRNQWRRSH 10 17
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Figure 3.3. Clustal X alignment of m Vel deduced amino acid sequences from four M. longifolia accessions. Amino acids 
are colored as follows: M,L,V,l = green; G,S,T,P = brown; FWY = blue; R,H,K,= red; A,Q,N,C,E,D = white. Symbols above 
columns denote levels of conservation: an asterisk (*) for single, fully conserved residue; a colon (:) or a period (.) for 
conservation within one of the following “strong” or “weak” groups, respectively, as calculated by Clustal X (which in turn is 
based on the Gonnet Pam50 matrix, where a “strong” score is >0.5 and a “weak” score is <0.5). strong: STA, NEQK, 
NHQK, NDEQ, QHRK, MILV, MILF, HY, FYW; weak: CSA, ATV, SAG, STNK, STPA, SGND, SNDEGK, NDEQHK, 
NEQHRK, FVLIM, HFY.

* * * * * * * * * * * * * * * * * * * * * * * *  ^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

mVel_I.pro MANLFLS7LMISIITATTFTTLSy3QQCLKHQKTSLL0LKNELKFDSSKSTKLVQWNRKNNDCCNWTGVGCDGAGHVTSLQ|jDHEAISGGIDDSS9LFHL3FLSKLKLAYNVFNRTQIPRGIQKLTYLTKC.SrLSNAGFTGQVPLQLgFLT 150
m7el_ZI.pro ^ANLFLSVLMISIITATTFTTLSYSQQCLHHQKTSLLQLKNELKFDSSKSTKLVQWNRKNNDCCNWYGVGCDGAGHVTSLQLDkEAISGGIDDSSSLFPLEFLEKLNLATNVFNRTQIPRQIQNLTYLTHLlILSNAGFTGQVPLQLSFLT 150
mVel_III.pro MANLFLSVLMISIITATTFTTr.SYSQQCLKHCKTSLLQLKNELKFDSSNETKLVQWNRmn3CCNWYGVGCDGAGHVTSLQ|DBEAISGGIDDSSSLFHLEFLEKLNLAYNVFNRTQlPSGlQKLTYI,THLNL3NAGFTG07PDCtSFlT 150
fflVel_ZV.pro |jANLFLSVLKISZXTATTFTTLSYSQQCIiHHQKTSLLQI&NEZiKFDSSNSTKL7QNNRKNNDCCZfflYG7GCDGAGH7TSLQLD||EAXSGGIDDSSSLFSLBFIiEKLNLAY11VFNRTQXPRGXQNIiTYIiTHZiNIiSNAGFTGQ7PLQL F0T 150
mVal_V.pro MANLFLSVLMISIITArTFTTLSY3QQCLHH2KTSLL0LKNELKFDSSNSTKLVQWNEKNNDCCNWYGVGCDGAGHVT£LQ|DHEAZSGGIDDS3SLFRLEFLEKLNLAYNVFNRTQIPRGIQELTYLTHLNLSNAGFTGQVPLQLbF[.T 150

aVel VIZ.pro MANLFLSVLMISIlTATTFTTLSYGQQCLHHQKTELLQLKNELKFDSSNSTKLVQmRMraDCCNMYGVGCDGAGHVTSLQLDEEAIEGGZDDSSSLFELEFLEKINLAYNVFNRTQlPEGfQNLTYLTHLN^SNApIGff^QLSFli: 150
7el_VXZI.pro fANLFLS7LMISIZTATTFTTLSYSQQc|HH0KTSLLQLKNELKFDSSNSTKLVQWNRKNNDCCNWYGVGCDGAGH7TSLQt,DHEAISGGIDDSSSLFRLEFLEKLNLAYNVFNSTQZPRGIQNLTYLTHLNLSNAGFTGQ7PLQLSFLT 150
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mV«l_I.pro RLVSLDISKFHRGIEPLltLERPNllETLtiQNLSGLRELCLDGVDVSSQKSEWGLIISSCLPNIllSLSLRYCSVSGPLHESLSKLQSLSILILDjGNHLSSWPNFFANFSSLTTLSLKNCSLEGSFPEMIFOKPTLQNLDLSQNWEiLGGSIP 300
»Vel_II.pro RLVSLDISKFRRGIEPLKLERPNLETLLQNLSGLRELCLIX3VDVSSQKSEWGLIISSCLPNIRSLSLRYCSVSGPLH3SLSKLQSLSILILDGNHLSSVVPKTFANFSSLTTLSLKNCSLEGSFP2MIFQKPTLQNIiDLSQNMLLGGSIP 300

aVel_ZII.pro RL7aLDISKFREGIEPLKLESPRLEILLCKLSGLEELCLDG7DVSSQKSE«GLIISSCLPSZRSLSLRYCSVSGPLHESLSKLQSLSZLZLEK3SHLSSV7PFFFANFSSLTTLSLKSCSI,EGSFPEMZF0KPTL0NLDLS0NKLt,GGSIP 300
aVel_XV. pro RLVSLDISKFRRGZEPLKLERPNLETLLQNLSGLRELCLDGVDVSSOKSSWGLZZSSCLPNIRSLSLPYCSVSGPLHESLSKLQSLSILILDGNHLSSTVPHFFANFSSliTTLSLKNCSLEGSFPEMZFQKPTLQNLDLSQNMLLQGSrP 300
a7el_V.pro RLVSLDISKFRRQIEPlKLERPtfLETLLQNLSGLRELCLDGVDVSSQCSEWGLIISSCLPNIRSLSLRYCSVSGPLHESLSKLQSLSILILDGNHIiSSVVPNFFANFSSLTTIiSLKNCSIiEGSFPEMIFQKPTLQNIjDLSQNMLLGGSIP 300

BVelJVIZ.pro KL7SLDlSKFRRGlEPLKLERPNLETLLQNLSGLRELCLDG7DZSSQKSE«GLIISSCtP»ZESLSLRYCSVSGPLHE3LSKLQSESILILDGNHLSEWPKFFANFSSLTTLSLKNCSI,EGSFPEHIFQKPrLQtJLDLS0N)JLLGGSIP 300
7el_7ZZZ.pro 8t7SZI3ZSKFRSGXEP|Kr,ERPNI,EILMNLSGLRE!cmGT?D7SSQKSEWGZ,IZSSCLP!aRSL3LEYCS7SGPLHESLSKLQSIJSILIIl)GNHtSS77PHFFAHFSSLTTI,SKNC3I,EG3FP0tZFQKPT|Q4DlisQNpi,CGqsip 300
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Figure 3.4. Restriction digest patterns used to distinguish m Vel alleles. Lane 1: 
1Kb Plus ladder (Invitrogen), lane 2: CMEN 585, undigested; lane 3: CMEN 584, 
undigested; lane 4: CMEN 585, A/col digested; lane 5: CMEN 584, A/col digested; 
lane 6: CMEN 585, Xba\ digested; lane 7: CMEN 584, Xba\ digested.
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Figure 3.5. Genotypes of m Vel observed and expected in EF1 and EF2 
populations.

Possible 
F2 patterns

Possible 
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VIIIVI(N) VIII
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C* this expected pattern did not occur.
N = null allele (no PCR product)
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Figure 3.6. Disease symptom ratings and genotypes of plants in F1 (A.) and F2 
(B.) populations derived from South African (SA) germplasm. Each graph bar 
represents an average rating of 6 clones, with standard deviations. Alleles of 
each plant, as identified with restriction digests, are represented with plusses (+). 
Parents of the SAF1 population are shown in boldface type. The SAF1 parent 
plant of the SAF2 population is boxed.
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Figure 3.7. Disease symptom ratings and genotypes of plants in F1 (A.) and F2 
(B.) populations derived from European (E) germplasm. Each graph bar 
represents an average rating of screened clones, with standard deviations. The 
allele composition of each plant is listed below the plant name; asterisks (*) 
represent plants that were not genotyped. Parents of the F1 generation are 
shown in boldface type. The EF1 parent plant of the EF2 generation is boxed.
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CONCLUSION

This project was initiated with the specific goal of identifying genes related 

to verticillium wilt resistance that could be used by the mint industry to genetically 

improve peppermint. Because of the complications of polyploidy, sterility, and 

genetic homogeneity in commercial peppermint, a wild diploid mint species, 

Mentha longifolia, was chosen as a focal point for genetic investigations. As the 

work progressed, the merits of this species as a generalized model for study of 

plant disease resistance and other genetic traits became apparent. Given this 

context, the results that have been presented in this dissertation are of three 

distinct types: 1) characterization and development of valuable germplasm 

resources; 2) refinement of protocols for reproducible verticillium wilt resistance 

screening; and 3) cloning of resistance gene candidates of two types. These 

categories reflect the history of the project, with the applied aspect of gene 

discovery and the broader, longer-term development of M. longifolia as a model 

plant for the study of mint genetics and plant-microbe interactions. The 

accomplishments in each of these areas are briefly summarized below, 

accompanied by recommendations for directions of future studies.

The work presented in Chapter I shows the evaluation of the mint species 

M. longifolia as a model plant for the study of mint genetics and plant pathology. 

The survey of USDA accessions uncovered diversity in plant morphology, oil type 

and verticillium wilt resistance. Because of the verticillium wilt observations, two
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accessions from South Africa (CMEN 585, CMEN 584) and two accessions from 

Europe (CMEN 17, CMEN 516), each pair representing extremes of wilt 

resistance and susceptibility, became the focus of crossing efforts, and two F1 

populations were produced. Screening of these F1 populations enabled 

identification of wilt-resistant individuals that were then allowed to self-pollinate to 

produce F2 populations. In verticillium wilt resistance trials of F2 populations, 

continuous variation in wilt phenotype was observed, indicating a resistance 

involving multiple genes. The F1 population (SAF1) produced from crossing 

South African accessions consists of 55 plants, and the respective SAF2 

population has 120 plants. Additional wilt resistance screening trials could be 

conducted with these populations in order to increase the power of future 

genotype-phenotype association studies. The F1 and F2 populations derived 

from European accessions (EF1, EF2) were small, consisting of only ~20 plants 

each, and therefore, these populations would not be practical subjects for further 

study unless they were expanded.

Success in wilt resistance screening was dependent on methodological 

improvement. The employment of a growth chamber for strict environmental 

control during rooting of cuttings prior to inoculation, and then for four weeks 

post-inoculation, was critical. Strict short-day light conditions ensured that floral 

initiation was prevented, and allowed reproducible screening results to be 

obtained year-round with long-day-flowering mints. Post-inoculation cool 

temperatures ensured fungal spore survival and germination was not inhibited. At 

four weeks post-inoculation, when plants were moved to greenhouse benches,
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warmer, more stressful conditions favored the development and observation of 

disease symptoms.

At the outset of the mint project, many plant genes conferring resistance to 

a variety of diseases had been isolated and sequenced from many plant species, 

but a verticillium wilt resistance gene was not among them. Therefore, a broad- 

based approach was taken to isolate generic resistance-gene-like sequences 

from M. longifolia with the intention of identifying and investigating candidate wilt 

resistance genes. The resistance gene analogs (RGAs) presented in Chapter II 

were the results of this effort. These RGAs have the potential to be useful 

genetic markers, and some of them may one day prove to be parts of functional 

disease resistance genes. However, when the tomato verticillium wilt resistance 

(Ve) genes were cloned and sequenced, the concentration of the mint project 

shifted to identification of a mint Ve homolog. This focus ultimately resulted in the 

cloning of the m Vel gene, as described in Chapters II and III. In addition, a 

second gene, mVe2, has recently been cloned and characterization is underway. 

The mVe gene sequences have been shared with the Mint Industry Research 

Council, and plasmid clones of both genes have been given to collaborators 

Rodney Croteau and Mark Wildung at Washington State University. Although no 

association between m Vel genotype and wilt phenotype was uncovered in 

studies of the M. longifolia F1 and F2 populations, a role for m Vel in conferring 

verticillium wilt resistance cannot be ruled out. Much remains to be learned about 

m Vel. For example, the m Vel promoter remains to be sequenced, and
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expression studies have yet to be performed. Future studies must also examine 

mVe2 and other genes that may function in wilt resistance.

While verticillium wilt was the only disease addressed in this dissertation, 

M. longifolia is a suitable subject for other plant pathology studies. For example, 

informal observations of greenhouse outbreaks of powdery mildew indicate that 

CMEN 682 is a particularly susceptible accession, while most of the other 

accessions appear to be resistant. The M. longifolia germplasm might also be 

evaluated for resistance to the fungal disease mint rust (caused by Puccinia 

menthae), or for resistance to a number of viruses that are known to infect mints.

In addition to plant pathology studies, the M. longifolia SAF1 and SAF2 

populations have several features that make could them especially useful for 

other types of genetic investigations. In Chapter I, parental accessions CMEN 

585 and CMEN 584 were reported to be at once very similar to each other and 

different from all the other M. longifolia accessions, with lanceolate leaves and a 

tall upright growth habit. Despite these similarities, CMEN 585 and CMEN 584 

were also found to be very different from each other with respect to verticillium 

wilt resistance and to oil type. CMEN 585 was highly wilt-resistant, while CMEN 

584 was highly wilt-susceptible. CMEN 585 had a more “pepperminty" scent, 

while CMEN 584 was the only carvone-rich (“spearminty”) M. longifolia 

accession. Results of wilt screenings in Chapter III show that the SAF1 and 

SAF2 populations are segregating for wilt resistance/susceptibility. Casual 

observations indicate that these populations are also segregating for oil type, but 

there is no obvious correlation between oil type and wilt phenotype.
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One genomics tool that is lacking for mint is a genetic map. The 

production of an M. longifolia map would aid candidate gene-phenotype 

association studies. RGAs and other resistance gene candidate markers would 

be important components of such a map.

A genomic library was constructed from the verticillium wilt-resistant South 

African USDA accession CMEN 585 (Appendix B). This library, consisting of an 

estimated 114,000 clones, could provide ~8.5x coverage of the M. longifolia 

genome. Only 18,432 clones were picked and spotted on filters. An existing 

repository of frozen clones could be picked and spotted to expand the library’s 

potential usefulness as a resource for gene discovery.

The endeavor to accumulate M. longifolia genetic resources at UNH has 

been productive and includes phenotypic documentation, breeding populations, 

and a collection of DNA sequences representing genes and gene fragments. 

These resources are ultimately intended to benefit commercial mint production, 

and constitute a model system for study of plant-pathogen interactions. 

Commercial peppermint— an extremely homogeneous, polyploid crop— is now 

served by an especially diverse diploid genetic base and a growing foundation of 

knowledge and genomic resources.
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APPENDIX A

Examples of verticillium wilt symptoms with associated numerical ratings. This 
rating system is a slight modification of a rating scale provided by Dennis 
Johnson1 at Washington State University.

ZERO
(0)

healthy

W

^  THREE  
(3)

severe
chlorosis,
severe
stunting,
10- 60%
necrotic

ONE
(1)

mild
chlorosis
or
crescent
leaf

FOUR

dead
plant

TWO
(2)

distinct
crescent
leaf,
chlorosis,
mild
stunting

1 Dennis Johnson, Washington State University, Department of Plant Pathology, P.O. Box 
646430, Pullman, WA 99164-6430.
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APPENDIX B

Mentha longifolia Genomic Library Construction

A CopyControl™ Fosmid Library Production Kit (Epicentre, Madison, Wl) 

was used to construct a genome library from a verticillium wilt-resistant Mentha 

longifolia accession. The manufacturer’s protocol was followed, with exceptions 

noted below.

DNA extraction

DNA was isolated from unexpanded leaves of accession CMEN 585 

(PI557767) using the CTAB method described in Chapter I with volumes scaled 

up to accommodate 1.8 grams of starting tissue.

Library host cell preparation

Eschericia coli plating strain EPI300™-T1R was provided with the Epicentre 

CopyControl™ Fosmid Library Production Kit. EPI300™-T1R cells were streaked 

on LB agar medium and incubated at 37 °C overnight. Plates were sealed and 

stored at 4 °C until the day prior to clone packaging and cell transformation. Fifty 

milliliters LB containing 10 mM MgSC>4 was inoculated with a single colony of the 

cultured cells and incubated at 37 °C for 24 h at 180 rpm on an orbital shaker. 

The day of the packaging reactions, 50 ml fresh enriched broth medium was
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inoculated with 5 ml of the liquid cell culture and incubated at 37 °C for 4 h at 180 

rpm on an orbital shaker to attain an OD600 = 0 .8 - 1.0.

End-repair of sheared DNA

The end-repair reaction was prepared as described in the Epicentre 

protocol, and consisted of 20.2 pg genomic DNA (23.5 pi @ 861 ng/pl), 1X End- 

Repair buffer, 0.25 mM of each dNTP, 1 mM ATP, and 4 pi End-Repair enzyme 

mix in a final volume of 80 pi. The reaction was incubated at room temperature 

for 45 min. The enzyme was inactivated by incubation at 70 °C for 10 min.

Size-selection of end-repaired DNA

Size-selection was performed as described in Method 1 of the Epicentre 

protocol. End-repaired insert DNA was electrophoresed on a 0.8% SeaPlaque® 

GTG® low melting point agarose (Cambrex, East Rutherford, NJ) gel in 1X TAE 

buffer. A T7 DNA Size Marker (Epicentre) was loaded in an adjacent lane of the 

gel. Subsequent to electrophoresis, the marker lane was cut from the gel, stained 

with ethidium bromide and visualized on a uv light box. The T7 marker was 

identified, and its position in the gel marked by cuts made with a clean glass 

cover slip above and below the marker fragments. The stained gel piece was 

covered with plastic wrap to protect the unstained gel piece from ethidium 

bromide contamination. The stained and unstained gel pieces were then 

realigned without uv light and the 40 kb region of the insert DNA was excised 

from the unstained gel and transferred to a 1.5 ml microfuge tube.
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Recovery of insert DNA

Size-selected insert DNA was recovered from the gel slice using slight 

modifications to the Epicentre protocol. GELase Buffer was not added to the gel 

slice to be melted. The gel slice (total 320 mg) was melted in a hybridization oven 

at 70 °C for 7 min. Digestion was performed by incubation of the melted gel with 

6.4 U GELase™ (Epicentre) in a 1.5-ml microfuge tube for 1 h 10 min at 45 °C. 

The enzyme was inactivated by incubation at 70 °C for 10 min. The tube was 

then chilled on ice for 5 min and centrifuged at 14,000 x g 20 min at 4 °C to 

pellet insoluble polysaccharides. The supernatant (~250 mg) was transferred to 

a fresh 1.5 ml microfuge tube and DNA was precipitated with the addition of 1/10 

volume 3M sodium acetate, pH 7.0, and 2.2 volumes 95% ethanol at room 

temperature for 10 min. DNA was pelleted by centrifugation at 14,000 x g for 30 

min at 4 °C. Pelleted DNA was washed twice with 700 pi 70% ethanol, allowed to 

air dry in a laminar flow hood for 15 min, and then resuspended in 15 pi TE  

overnight at 4 °C. A fluorometer reading of the recovered DNA was 160 ng/pl.

Fosmid vector ligation

A single ligation reaction was prepared with 272 ng (1.7 pi) of the 

recovered insert DNA in 1X Fast-Link™ Ligation buffer (Epicentre), 1mM ATP,

0.5 pg pCCIFOS™  vector and 2 U Fast-Link™ DNA ligase (Epicentre) in a 10 pi 

final volume, as described in the Epicentre protocol. The reaction was incubated 

at room temperature for 2 h and the enzyme inactivated at 70 °C for 10 min. A 

parallel control ligation was prepared with 500 ng pCCIFOS™  vector and 250 ng 

Fosmid Control Insert DNA (Epicentre).
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Vector packaging and titering of packaged clones

Packaging and titering of fosmid clones were performed as described in 

the Epicentre protocol. MaxPlax™ Lambda Packaging Extracts were thawed on 

ice just prior to use. For each packaging reaction, 25 pi of the thawed packaging 

extract was transferred to a sterile 1.5 ml microfuge tube into which a completed 

10 pi ligation reaction was added. Each reaction was mixed by pipetting.

Reactions were then incubated at 30 °C for 1.5 h. An additional 25 pi of thawed 

packaging extract was added and the reactions were incubated a further 1.5 h at 

30 °C. After the final incubation period, 940 pi Phage Dilution Buffer was added 

to bring the total volume to 1 ml. Twenty-five microliters chloroform was added 

and the suspension was mixed by inversion.

To titer packaged clones, serial dilutions of 100 pi of the packaging 

reaction were made in 10-fold increments to 10'4 with Phage Dilution Buffer. Ten 

microliters of each dilution was then transferred to 100 pi of the prepared 

EPI300™ -T1R cell culture and incubated at 37 °C for 20 min for transfection. 

These cells were then plated on LB agar containing 12.5 pg/ml chloramphenicol 

and incubated at 37 °C overnight to select for successful transfections. All 

remaining packaged phage particle dilutions were stored at 4 °C.

The entire control ligation reaction was packaged as described above. The 

packaged recombinant control DNAwas diluted 1:1000 in Phage Dilution Buffer 

and 10 pi of diluted control was transfected into 100 pi of the prepared EPI300™ - 

T1Rcell culture.
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Colonies were counted for each dilution plate and the number of colony 

forming units (cfu) per milliliter of culture was calculated. From this calculation, 

the total number of clones in the library was estimated to be 114,000, which 

represents ~8.5x coverage of the M. longifolia genome.

Library storage

A fresh culture of EPI300™-T1R cells was grown in LB + 10 mM MgSC>4 to 

O D 5oo= 0.9 (~3 h). Ten microliters of phage-packaged clones were diluted with 

990 pi phage dilution buffer, and the entire aliquot (1ml) was added to 10 ml cells 

and allowed to adsorb to the cells for 20 min at room temperature. The cells were 

then incubated at 37 °C for 30 min at 125 rpm on an orbital shaker. Cells were 

pelleted at 8000 x g for 5 min. The supernatant was discarded and the pellets 

were resuspended in 10 ml of LB + 20% glycerol. One hundred microliter aliquots 

of the suspension were pipetted into 1.5 ml microfuge tubes which were stored at 

-80°C.

Picking and arraying clones

A total of 18,432 fosmid clones was manually picked in a laminar flow 

hood using sterile toothpicks into 384-well plates (Genetix, Boston, MA) 

containing 0.2 ml LB + 20% glycerol per well. These clones were spotted in 

duplicate onto Performs II high-performance, positively charged, 22 cm x 22 cm 

nylon high-density filters (Genetix) using a Genetix Qbot at the Hubbard Center 

for Genome Studies (HCGS), UNH. Plates were stored at -80°C.
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APPENDIX C

Mentha longifolia m V el draft sequence, assembled from degenerate PCR, IPCR 
and TAIL PCR products. Start and stop codons are underlined.

GGTCGAGAGAG AAGAAAAACTAACAGAAAAAAAGATAAACTAAAG AAGAAAA 
AAT CT AAAATATGGG ACCAAATTAATT GT GGAAT CTGCCACGAAATT GAAGA 
GAAGAAATCTGAGAAGCAGCAGCCATATGCATATATACATGGATACAAATAC 
GTATATACCACAGCTAGCTGTAGTTTGCACACATCATCACTCATCTCCTTCA 
C AAT GGC G AACTT GTTCTTATCTGTACT CAT GAT CTCT ATT ATTAC AG C AAC A 
ACTTTTACTACTCTTT CCTACAGCCAAC AGT GT CT CC ACCAT CAAAAAACTT C 
GTT GCTT CAACT G AAGAATG AGTT G AAATT CGATT CTT CTAATT CAAC AAAAC 
TGGT GCAAT GGAAT CGAAAAAACAACGACTGCT GCAACT GGTACGGGGTGG  
GATGTGACGGTGCAGGCCACGTCACGAGTTTGCAGCTCGACCATGAGGCC 
ATTTCCGGTGGAATCGATGATTCGTCGAGTCTGTTCAGACTCGAGTTTCTTG  
AGAAGCT CAACCT AGCCT ACAACGT CTT CAACCGCACT CAGATT CCAAGAG 
GT ATT CAGAAT CT CACGT ATTT GACACACTT GAATTT GTCGAAT GCT GGTTTC  
ACT GGGCAGGTTCCACTT C AACTTT CCTTCTT G ACAAG ATTAGTTAGT CTCG 
ACATCTCCAAGTTCCGTAGGGGCATCGAGCCTCTAAAACTCGAGCGCCCAA 
ATTT GGAGACGCTT CT CCAGAAT CT GAGT GGACT CAGAGAGCTCT GT CTT GA 
T GGT GT CGAT GTTT CGT CT CAAAAGAGT GAGT GGGGT CTTATT ATCT CTT CC 
TGTTTACCAAACATTAGGAGTTTGAGCTTGCGTTATTGTAGTGTTTCTGGGC  
CTTT GCAT G AGAGCCTTT CGAAACTT CAATCCCTTT CCATT CTTATACTAGAT 
GGGAAT CAC CTTT CCT CAGTT GT CCCC AACTT CTTT GCAAATTT CT C AAGTTT 
GACAACTTT GAGT CTT AAAAATT GCT CTTTAGAAGGTT CTTT CCCT GAGAT G A 
TCTT CC AAAAACCCACT CT ACAAAAT CTCGATTT AT CT CAGAAT ATGCT ACTC 
GGT GGAAGCATACCGCC ATTT ACT CAAAAT GGAT CT CTTAGGT CTAT GAT CC 
T C AGCC AGAACAACTT CTCGGGGT CGATACC AAGTT CAATT AGC AAT CT CAA 
ATCGTTGTCGCATATAGACCTATCTTATAATAGATTCACAGGACCTATTCCAT 
CCACATT GGGTAACCT AT CT G AGTT GACATAT GT CCGTTT AT GGGCTAACTT 
CTTCACCGGCTCACTTCCTTCCACGTTGTTTCGAGGTCTATCCAATCTTGAT 
AGTTTAGAATTAGGGT GTAACTCATT CACCGGTTACGTACCCCAGTCT CT CT 
TT GAT CT CCCTT CACT GCGGGTAATT AAGCTT GAAGACAACAAATTT ATT GG 
GCAAGTT GAAGAATTT CCCAACGGAATTAAT GT CT CTAGCCACATT GTTACT 
TT AGAT AT GAGCAT GAAT CT ATTAGAAGGGCAT GTTCCT ATCT CT CTCTTCCA  
AATT CAAAGCCTT GG AG AACCTT GT ACTAT CCCACAACT CTTTT CCGGCACT 
TT CCAAAT GAAAAACGTTGGG AGCCCCAAT CTT G AAGTT CTT G ATTT AT CTT A 
CAACAACTTGTCAGTAGATGCCAACGTGGATCCAACTTGGCATGGATTTCCC 
AAGCT GAGAGAGTT AAGCCTAGCTTCGT GT GACTT GCAT GCCTT CCCT GAAT 
T CTT GAAACATT CT GCTAT GATTAAATT GGACCTTT CAAACAAT CGGATT GAT 
GGGCAGATACCTAGATGGATTTGGGGAACAGAGCTTTATTTTATGAACCTCT 
CTT GTAAT CTT CT G AC AG AT GTGCAAAAGCCTTACCATAT CCC AGCTT CT CTT 
CAATTACTAG ACTTAC ACT CT AACCGGTT CAAGGGCG ACCT GCACCT CTTTA  
TTT CTCCCAT CGGAG ACCT C ACGCCCT CT CTTTACTGGTTAT CT CTCG CAAA
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CAATAGTTTCAGTGGATCGATTCCAACCTCCCTATGCAACGCCACACAACTT 
GGAGTTATT GAT CT GT CTCT GAATCAATT GAGT GGAGAT AT AGCCCCTT GT C 
TGCTT GAAAACACT GGGCATATCC AAGTGCTTAAT CT GGGGCGAAAC AACAT 
CAGCGGACACATCCCGGACAATTTCCCTTCCCAATGTGGGTTACAGAACTT 
GGATCTTAACAACAAT GCTATACAAGGGAAAAT CCCAAAGTCCCTT GAGAGT 
TGCATGTCGTTGGAGATCATGAACGTCGGCGACAACAGCATCGACGATACT 
TT CCCATGCAT GCTACCGCCGAGCTT GT CCGTCCTT GTT CT GCGCT CCAAC 
CGGTTCCACGGAGAGGTTACCTGTGAGAGAAGGGGCACGTGGCCGAATCT 
CC AG AT CAT C GATATAT CTT CCAAC AATTT C AAT G G AAGT CTT GAAT C AATAA 
ACTTCTCTAGCTGGACAGCAATGGTGCTAATGAGCGATGCACGTTTCACGC 
AGCGCCACTGGGGGACTAACTTCCTGTCGGCTTCCCAATTCTACTATACGG  
CCGCGGTGGCGCTGACCATCAAAAGGGTGGAGTTGGAGCTCGTCAAGATT 
NGGCCGGACTTTATTGCCGTTGATTTGTCCTGCAATGACTTCCATGGAGATA 
TACC AGAT GC AATAGGCGAT CT GACCT CACT CTAT GTT CT CAACAT AT CT CA 
CAACGCTCTCAGTGGAAGCATCCCGAAGTCGATGGGTCATTTGTCAAAGCT 
CGAATCACTCGATCTCTCGCGAAACCGGCTGTCAGGGCATGTACCGACGGA 
GCTCGGAGGT CT GACATTCCT CT CGGT CTT GAACCT GTCGTACAAT GAGCT 
GGTTGGAGAGATCCCGAATGGGCGTCAGATGCATACATTTTCAGCTGATGC  
CTTCAAAGGTAACGCGGGATTATGTGGTCGCCATCTCGAGAGAAATTGCAG 
CGATGATCGATCGCAGGGGGAGATTGAGATTGAGAATGAGATTGAGTGGGT 
GTACGTTTTT GTT GCATT GGG ATAT GTT GTGGGCT CAGG AAT CATT GT GTG G 
CT ACTTTT GTT CT GCCGAAGCTT CAG ATAC AAATACTTCGAC AAAAT AGATAA 
GGT CGTT CAAGAGACATTT GAT GCCAGAGACAGGAGAAGAAGAAG ACCACG  
CGGAAC AAG AATAGTAAGGAAT CAAGT GGT CAGG AGAT CACACTAAT GAT G 
AGGCAT GTTATT GT CAAAGATTATT CAAGTTTT GTAGGTTT CTGCGCAACATT 
ATTTTA
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