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SYNTHESIS AND PROPERTIES OF POLY(ITACONIC ACID) 

by 

Ming Cao 

University of New Hampshire, September, 2008 

Abstract: Previously, itaconic acid (IA) was known to be at best a difficult 

monomer to be polymerized. Here we report effective conditions for an easy 

polymerization of itaconic acid to high conversion and high molecular weight. 

tert-Butyl Hydroperoxide (tBHP) was used as an efficient initiator for solution 

polymerization of IA. Conversions higher than 90% can be reached in less than lhr. 

Molecular weights of poly(itaconic acid) have been analyzed in GPC. The structure of 

PIA was studied by H-NMR, C-NMR. The initiator concentration dependence and 

monomer concentration effect have been investigated. 

Based on the polymerization process of itaconic acid, a simple process to 

prepare biodegradable non-starch superabsorbents from renewable resource was 

developed. The hydrogel was prepared by free-radical polymerization of half 

neutralized itaconic acid in aqueous solution using tetra(ethylene glycol) diacrylate 

(tEGDA) as crosslinker. Biodegradation of polyitaconic acid and polyitaconic 

superabsorbent were studied by Biological Oxygen Demand (BOD) measurement. 

Keywords: polyitaconic acid; polymerization; tert-Butyl Hydroperoxide; molecular 

weight; molecular structure; superabsorbent; swelling capacity; biodegradation 
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CHAPTER I 

REVIEW 

1.1 Itaconic acid 

Itaconic acid (IA), called methylenesuccinic acid, is one of the three acids 

obtained by the distillation of citric acid. [1] Citric acid is a natural preservative acting 

as an antioxidant. It is an important intermediate in the citric acid cycle of metabolism. 

[2, 3] The other two acids formed from the distillation are citraconic acid and 

mesaconic acid which are two isomers of itaconic acid. In this thesis, we provide 

evidence for the transition between these three acids during heating. 

In 1837, Itaconic acid was discovered by Baup as a thermal decomposition 

product of citric acid. [4] In 1932, the biosynthesis by fungi from carbohydrates was 

first reported by Kinoshita who isolated itaconic acid from the growth medium of an 

osmophilic fungus, Aspergillus itaconicus. [2, 3] In 1952, C.E. Schildknecht reported 

that itaconic acid can not homopolymerize. This conclusion has been later proved 

wrong. In 1966, the prominent developments in itaconic acid production (batch 

fermentation, free suspended biomass) took place, so that the large scale production of 

low cost IA was made possible. [5] 

There are two carboxylic groups in the itaconic acid molecule, which has 

structure similarities with acrylic acid. The melting point of IA was reported to be 

around 165°C. Acidified IA can be dissolved in alcohol, water and acetone. Until now, 

the applications of itaconic acid have been limited to its monomer, copolymer and 

oligomer. [6, 7] There is no commercial application for the homopolymer of itaconic 

acid because of the difficulty to prepare it. IA monomer and its ester have been used 
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as additive for producing cation exchange resin. IA itself can be used as fragrance 

agent. Mixture of IA and aromatic diamine are good additive for lubricant, herbicide. 

[8] 1% to 5% itaconic acid and styrene copolymer are used for carpet coating and 

bookcover. LA improves properties such as water proof and anticorrosion. [9] Itaconic 

acid is used as a third co-monomer in acrylonitrile fiber. It helps the fibers to absorbe 

dyes. Acrylic acid and itaconic acid copolymer emulsion are excellent adhesive for 

fiber products. [10] Also, teeth adhesives made from acrylic acid and itaconic acid 

have good compression resistance. [11] Copolymer of acrylic acid and itaconic acid 

can also be used as detergent. Lens or artificial gems made with itaconic acid 

copolymer have special luster. [12] 

1.2 Existing process for polvitaconic acid 

The polymerization of itaconic acid has been studied previously by a number 

of researchers. Most of the research on itaconic acid has been focused on copolymers 

such as poly(acrylic acid-co-itaconic acid),[13-17] poly(itaconic 

acid-co-acrylamide),[15, 17-20] poly(acrylonitrile-co-itaconic acid)[13, 21-25], etc. 

Only few homopolymerization processes for IA has been reported in the past. 

The solution polymerization of acidified itaconic acid has been reported. The 

first homopolymerization of polyitaconic acid was described by Marvel and Shepherd 

in 1959.[26, 27] The conversion was 35% achieved in 68 hours at 50°C in acid 

conditions [28, 29] using persulfate initiation. Seigou Kawaguchi repeated the 

experiment by Marvel and Shepherd at 60°C for 3 days, and the conversion was 10%. 

[26, 27] Evangelia Grespos, etc. [30] described a polymerization process for acidified 

itaconic acid using K2S2O8 as initiator at 25°C for 4 days, 50% conversion was 

reached. The structure of PIA was analyzed by 13NMR. David Stawski, etc. [31] 
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described another process for acidified IA with persulphate ammonium as initiator at 

60°C for 30 hrs. Conversion was 16%. 

In the recent years, the solution polymerization process has been improved. 

High conversion can be reached in polymerization of neutralized itaconic acid. In the 

paper written by Nakamoto, Ogo and Imoto,[32] they described radical 

polymerization of itaconic acid in various solvents under high pressure with about 

50% of monomer remaining in the product. US patent No. 5,223,592 describes a high 

conversion polymerization process using neutralized itaconic acid with a large amount 

of sodium persulfate to obtain an oligomer with molecular weight of about 2000 

g/mol. Swift and Graham [33] described a high conversion polymerization process 

with 50 wt% hydrogen peroxide of the total monomer. US patent No. 5,336,744 

described a 100% conversion polymerization process with large quantity of hydrogen 

peroxide with metal salts as redox initator system. The molecular weights of the final 

polyitaconic acid are less than 2000g/mol. 

Alternatively, polyitaconic acid can be obtained from polyitaconate esters or 

polyitaconic acid anhydride. US patent No. 2,294,226 describes the polymerization of 

dimethyl itaconate as the dipotassium salt by refluxing it with alcoholic potassium 

hydroxide, and subsequently hydrolyzing it to produce polyitaconic acid. Stefan 

Polowinski and David Stawski obtained polyitaconic acid anhydride (PIAn) at 60°C in 

16 hrs with AIBN as initiator. Then they obtained PIA by hydrolysizing the PIAn. The 

conversion for PIAn or PIA was not reported. Kenji Yokota did the same experiment, 

and the conversion for PIAn was 70%. 

Anti Y. Sankhe used atom transfer radical polymerization (ATRP) [34] to 

prepared PIA layer with initiator molecules of 4-(chloromethyl)-benzoylchloride. 
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1.3 Decarboxylation of itaconic acid during preparation 

In the early studies on the polyitaconic acid, IR absorptions [35-40] showed that 

a series of chain transfer reactions took place during polymerization and that 

decarboxylation occurred when drying dramatically. In addition, the evolution of CO2 

[28, 29, 41-43] was observed during both the polymerization and drying, which 

proved that a complex polymer chain structure of the product was being formed. It 

was used to explain the low yield of the product and the need for extended 

polymerization times to reach a certain molecular weight and conversion. 

1.4 Itaconate super absorbent 

In order to produce superabsorbents (SAPs) from itaconic acid, two major 

difficulties need to be overcome. Itaconic acid is a very sluggish monomer to be 

polymerized because of the steric hindrance in the molecule blocking the attack of 

radical. Now, even though there are several processes of polymerization of itaconic 

acid reported, two major problems obviously block the possibility to prepare 

superabsorbent from itaconic acid. 1. Low conversion, and 2. Low molecular weight. 

Low crosslink density polyitaconic acid can be prepared only if these two difficulties 

in polymerization of linear PIA are overcome. No attempts at making itaconic 

superabsorbent has been reported before. 

1.5 Existing Commercial Superabsorbent 

Before superabsorbents were invented, cotton, paper and sponge were used as 

absorbent materials[44]. They can absorb up to 20 times their own weight of liquid, 

with poor retention under pressure. Superabsorbents can overcome these problems. 

Superabsorbents [45-52] are low crosslink density polymers which can absorb 

4 



and hold water hundreds of times under load. 

There are many applications for superabsorbents [53-61]. They can be 

wrapped inside the communication cables and used to absorb the water from the 

atmosphere, so that they will protect the communication cables. SAPs are used in 

food absorption pads to absorb blood, in order to keep the food package clean. Above 

90% superabsorbent are used in baby diapers. All the commercial superabsorbents 

have the problem of lower absorbency rate compared with traditional absorbent 

materials, so it requires other traditional absorbent materials to be combined in the 

product to increase the absorbency rate. For example, fluffy pulp was combined with 

SAP beads for absorbent layer in the diapers[46-48, 62, 63]. 

There are two problems for the superabsorbent we currently use.[62, 64-70] 

Most products containing superabsorbents, such as baby diapers and feminine napkins, 

are disposable. More than 95% of superabsorbents are made from polyacrylic acid, 

which are not biodegradable. 1.5-2.0% of total landfill solid waste in the US is 

attributed to disposable diapers, which obviously increases the burden on the 

environment. Moreover, Polyacrylic acid is derived from petroleum. Petroleum will 

be exhausted one day. 

1.5.1 Acrylate Superabsorbent 

The majority of commercial superabsorbents are made from polyacrylic acid. 

Nowadays, Polysodium acrylate is the most economical superabsorbent for 

commercial applications. The industrial process for producing acrylate superabsorbent 

is relatively simple. However, acrylate superabsorbent can only be applied to water or 

low concentration water solution. The absorbency of ionic superabsorbent is sensitive 
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to ions present in the water solutions. The swelling capacity of this kind of absorbents 

decreases rapidly with the ion concentration in water. The swelling rate is slower than 

the traditional absorbent materials such as cotton and paper. 

To overcome the shortcoming of acrylate absorbents, non-ionic absorbents 

such as crosslinked polyvinyl alcohol [71] have been produced. The absorbency rates 

(the speed at with the superabsorbent absorb liquid) of these absorbents are relatively 

high, and is independent to the ion concentration in solution, but the absorbency 

capabilities are much lower than acrylate absorbents. 

1.5.2. Superabsorbent from natural sources 

Also, superabsorbents can be made from grafted natural macromoleculars such 

as starch and cellulose. The advantages of these superabsorbents is their 

biodegradablility. However, their applications are limited due to their high cost 

associated with a complex production process. 

Starch - acrylonitrile graft copolymer[50, 72-74] was the first superabsorbent in 

the world. The absorbents ratio can reach up to 3000 times. The swelling capacity can 

be increased by grafting different acrylic monomer such as methacrylic acid and 

acrylamide. 

Grafted cellulose can be used to improve the absorbency of synthetic fibers. 

The swelling rate can reach hundreds of times, which is relatively low. 

1.5.3 Synthetic process of existing Superabsorbent 

In general, polyacrylate superabsorbents are prepared by radical 

polymerization with in a solution or inverse suspension polymerization process. 
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Figure 1 General Polymerization Process of acrylate superabsorbents. R represents the group 
between the two functional double bonds 

Figure 1 shows the general polymerization process of acrylate superabsorbents. 

Water soluble initiate such as KPS, H2O2 and redox initiators such as E^Oi-ferrous 

sulphate, KPS -sodium bisulphate are used. Temperature of reaction is between 20 

and 80°C. In order to get a high molecular weight, a lower temperature is required. 

The ratio of neutralization is between 60 and 90%, If higher than 90%, then it is 

difficult to obtain a crosslinked polymer. 

1.5.4. Physics of Superabsorbent 

The superabsorbent swells in water according to the following steps: the 

charged groups of the polymer form hydrogen bonds with the water from the 

surroundings. The electrostatic repulsion between charged groups provides more 

room for water to come in. The driving forces for the liquid mobility are the 

Gibbs-Donnan effect (Osmotic pressure experiment with semi-permeable membrane, 

it is the behavior of charged particles near a semi-permeable membrane to fail to 

evenly distribute across the two sides of the membrane) [75] and the free energy of 

mixing of the solvent and polymer. The equilibrium is achieved when the ionic and 

dissociation effect is balanced by the elastic response of the network. 
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The chemical potential [76, 77] is the combination of the three contribution 

11—Ttmix "ntnet^^ion 

Where 7tmiX is the free energy of mixing ancbtnet is the elastic response ancbtjon 

is the free energy of ion effect 

1.5.5 Swelling properties model from Florv's theory 

The relation between swelling ratio Q and crosslinker density can be 

derived from Flory's solution theory and Flory's elasticity gel theory.[78-80] 

In the swelling process, the free energy change of the system can be 

considered as two parts: the mixing of the gel and the solvent AGm, and the elastic 

response of the network AGei. [81, 82] 

AG - AGm + AGe, 

From Flory-Huggins solution theory and Flory's elasticity gel theory: [83] 

Q5J3 =[(i/2v2S
l/2)2 +(l/2-Zl)/vl]/(vc/V0) 

Where V2 is the volume of the system. Vi is the molar volume of water. (p2 

is the volume fraction of the polymer inside the swollen gel, p2 is the density of 

polymer. Mc is the molecular weight between crosslinks. X is the Flory-Huggins 

parameter, representing the affinity of the solvent for the polymer. Where 

( l /2 -^ , , ) / v 1 is the affinity between polymer and solution, and v c /F 0 i s the 

crosslink density, Vo is the total volume of the system, i I v2 is the concentration of 

fixed charge, S is the ionic strength. 

In the equation above, the swelling capacity of superabsorbent increases with 

molecular weight between crosslinks Mc, and has a negative relation with the affinity 
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between the liquid and the polymer molecule %. [78, 79, 84] 

1.5.6 Environmental Concern 

The pollution caused by plastics or rubber products is more and more serious 

in the United States.[85-87] The "one-time use" diaper or feminine napkins contain 

non-degradable polymeric parts, with a negative impact on the environment. 

Composting the acrylate superabsorbents requires hundreds of years to degrade, and 

produces a series of toxics during this period. [88] The itaconate superabsorbent 

provides the potential to solve these problems above. Over 90% of superabsorbent 

products are disposable. According to reports from Sanders, 2001, 18 billion 

disposable diapers are used per year in the US alone, 3.4 billion gallons of oil is 

needed annually to manufacture them [78, 89]. In one infant's lifetime, approximately 

8,000-10,000 disposable diapers is used. Each one of those diapers takes 

approximately 500 years to degrade in a landfill.[90] In the late 1980s bans or taxes 

on disposable diapers were being considered in at least 20 states.[91, 92] 

However, we have biodegradable superabsorbents made from grafted 

starch,[72, 86, 93-99] which was actually the first superabsorbent. However, the 

process of preparing grafted starch is too complex and time-consuming, limiting its 

large scale commercial applications. 
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Figure 2 Future process for completely biodegradable diapers. 

From the literature review above, there are several major problems which have 

held back the industrial applications of homopolymerization of IA and copolymers 

with a high percentage of IA. Namely: limited conversion in the final products, very 

long polymerization times, and low molecular weights. The purification of 

polyitaconic acid from itaconic acid is difficult. It is particularly interesting for the 

process we report here, that it can reach 100% conversion. Additionally, 

polymerization times in excess of one day are not acceptable for cost efficient 

considerations. The applications are not limited to oligomers due to the efficient 

process with low molecular weight available currently. The oligomers can be widely 

used as dispersant agent in industrial applications of paint, printing inks. The novel 

simple synthesis process we developed resolves these issues. Itaconic acid was proved 

to be capable of reacting as efficiently as acrylic acid, and the kinetics related to the 

synthesis process have been studied. 

With the efficient process for the homopolymerization of itaconic acid 

reported in the thesis, we expected the application of homopolymer of itaconic acid 

will expend. Since the price of itaconic acid is similar to that of acrylic acid, the price 

of polyitaconic acid should be affordable. Also, with the fast increase in the demand 

for itaconic acid monomer, a decrease of its price is expected, which is important for 

the future development of homopolymers of itaconic acid. 
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CHAPTER II 

POLYMERIZATION PROCESS OF ITACONIC ACID 

2.1 Experimental 

2.1.1 Materials 

Itaconic Acid (IA) (99%+, Aldrich); Sodium hydroxide (Acros Organics), 

Tertiary Butyl hydroperoxide (tBHP) (Aldrich) were used without further purification. 

2.1.2 Synthesis method 

A typical batch polymerization process was applied. Itaconic acid was half 

neutralized with NaOH in Dl-water with cooling by ice water, forming a concentrated 

solution, which was deoxygenized by purging with N2, and then heated to the reaction 

temperature. It takes 30+15 minutes to reach the reaction temperature. 70wt% tBHP 

water solution was injected to start the polymerization, we used tBHP as a high 

temperature thermal initiator (228 hours half life at 100°C, 10 hours half life in 

benzene at 170°C according to Aldrich catalogue) to try to achieve a high yield of PIA. 

The half life is much less in the Itaconic acid water solution than that in pure water, 

since the acid itself is catalyst for thermodissociation of tBHP. Itaconic acid combined 

with tBHP is a redox initiator system here. With a similar process, we used initiators 

such as AIBN and persulfate and obtained unsatisfactory results. Figure 3 shows the 

image of a final sample in aluminum pan. Figure 4 shows the polymerization process 

of itaconic acid. All the samples we prepared in this chapter were shown in table 1. 
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One typical temperature control of the reactions is shown in Figure 5. At the 

beginning half an hour, a heat kick was observed due to the heat generated by the 

polymerization reaction. The temperature of the oil bath was always 3 to 5 degree 

above the temperature in the reactor. The reactant solution becomes viscous with the 

polymerization time. At the end of the reaction, samples are packaged and cooled 

down. 

Figure 3 PIA by solution polymerization 

Figure 4, Reaction equation of polymerization of half neutralized itaconic acid 
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Figure 5 Temperature Control of PIA-9 

Sample 
No. 

I A M v n n M DI-H20 tBHP(70%) „ /on. Reaction 
IA(g) NaOH(g) . n / i( Temp.(°C) ,. „ . Vto/ v o / (ml) (ml) v v ' time (hrs) 

PIA-1 

PIA-2 

PIA-3 

PIA-4 

PIA-5 

PIA-6 

PIA-7 

PIA-8 

PIA-9 

PIA-10 

PIA-11 

PIA-12 

PIA-13 

100.19 

100.21 

100.24 

100.02 

100.21 

100.09 

100.73 

100.33 

100.15 

100.15 

100.31 

100.44 

100.24 

31.42 

30.77 

30.79 

30.86 

30.82 

30.79 

0 

18.55 

43.07 

61.54 

30.8 

30.87 

30.89 

50 

50 

50 

50 

100 

30 

50 

50 

50 

50 

50 

50 

50 

0.625 

0.5 

0.1 

2 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

100+2 

100±2 

100±2 

100±2 

100±2 

100±2 

100±2 

100±2 

100±2 

100±2 

70+2 

80±2 

90±2 

2.5 

4 

2 

2 

2 

2 

2.5 

2.5 

2.5 

2.5 

1.5 

1 

0.5 

Table 1 Recipe of polymerization of poly(itaconic acid) 
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2.1.3 Conversion ratio calculation- 1H-NMR analysis 

1 H-NMR and 13C-NMR spectra were obtained with a 400MHz Varian NMR 

spectrometer at 25 °C in D2O. 

Figure 6 shows the ' H-NMR spectra for the neutralized itaconic acid 

samples. Itaconic acid monomer spectra can be found in figure 7. The two sharp peaks 

around 5.4 and 5.7ppm represent the protons in group CH2= and the sharp peak 

around 3.0 ppm represents CH2- in the side groups of the unreacted itaconic acid. The 

biggest peak around 4.7 ppm is for H2O remaining in the sample and also present in 

the D2O solvent. 

—1—f—1" 'i ' i'1 a—1—%—1—1—¥—[—t—'•%—1—r"•"•]"" r"""r"""i—r—r l , ii' "t1"" v" 1—1—1—"%—t—1—a—r 

5.0 4.0 3.0 ZO 1.0 ppm (f1)7.0 6.0 

Figure 6 The H-NMR spectra of the polymerization of itaconic acid at four 
separate times with [M]=6.20 mol/1 (PIA-2) 

14 



H-NMR was used to calculate the conversion ratio of the polymerization of 

itaconic acid. Figure 6 shows the l H-NMR spectra for samples at certain 

polymerization time. In addition to the peaks for itaconic acid monomer, another two 

distinct broad peaks with similar integrals around 2.7 and 2.0ppm describe the CH2-

in side group and backbone of PIA separately. The conversion is equal to half of the 

areas of CH2- in side group and backbone divided by areas of two vinyl groups. With 

the increase in polymerization time, the conversion of the monomer increases as seen 

in figure 6 by the reduction in the peaks at 5.4 and 5.7ppm, with the increase of the 

broad peak at 2-3ppm.. 

- \Ha,+Hh,+Hr 
'-) J a b c 

Conversion = 
lHa+Hb + -JHa.+Hb.+Hc 

2.1.4 Reaction kinetics Study with Reaction Calorimeter 

A reaction Calorimeter is an instrument which can detect the heat flow vs 

reaction time during a chemical reaction. A 250ml flat bottom reaction calorimeter 

reactor equipped with thermometer, pressure guage and mechanical stirring was 

immersed into 15 L of water or ethylene glycol for providing a constant temperature 

surrounding. 

For our experiments, we used a Reaction Calorimeter CPA2000. Ethylene 

Glycol was used as thermostatting liquid (Temperature range from 70 to 200°C), in 

order to provide fast heat transfer because of its low viscosity. For each experiment, 

final conversion was measured by NMR as previously described on the final product. 

The stirring speed was set at 500 rpm. Pressure during the reaction was always one 
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atmosphere. 

The final report from reaction calorimeter was a curve of heat flow (KJ) 

during reaction VS polymerization time. The heat, Q, is generated from 

polymerization, which has a linear relation with the conversion of monomer. 

Combining the information, a plot for conversion ratio VS reaction time can be 

obtained. In addition, polymerization enthalpy can be obtained from the reaction 

heat and the relative conversion. The value of enthalpy of the reaction AHp can be 

deduced: 

0.77P 

Here P is the conversion of monomer. 0.77 is the number of moles of 

monomer we used in all our samples. 

Unfortunately, reaction calorimeter only gives us reliably the polymerization 

rate during the first half an hour. After more and more polyitaconic acid forms during 

reaction, the system becomes more viscous. At that point, the heat was not only 

generated by polymerization of the monomer, but also from the mechanical stirring of 

the viscous polymer solution. The second part of heat was not negligeable once the 

conversion reached more than 50%. The data by reaction calorimeter from the 

beginning is continuous and accurate. But it needs to be combined with NMR to 

detect the entire process of high conversion polymerization of itaconic acid. 

2.1.5 Molecular Weight Analysis 

HP 1100 Series High performance liquid chromatography (HPLC) Systems 

and three TSK gel GPWXL columns packed with G4000 PWXL, G5000 PWXL, G6000 

PWXL resins were used to analyze the molecular weights. 20 mM PBS (Phosphate 
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Buffered Saline) solution was used as eluent and filtered through 0.22 um PES bottle 

top filter from Corning Incorporated, Corning, NY. The columns and detector were 

kept at 35°C. The flow rate was set to be 1 ml/min. The calibration was made with 

five polyacrylic acid standard samples with molecular weight ranging from 830 to 

153,250 Daltons. The analysis was performed on the crude reaction mixture without 

precipitation. Sample injection volume was lOOuL. All the samples were filtered 

through 0.1 jim inorganic membrane filter from Whatman before injection. 

2.2 Results and discussion 

2.2.1 The effect of neutralization 

We recorded the NMR spectra of IA monomer at various level of 

neutralization. Overall, with the increasing neutralization degree of itaconic acid, the 

two peaks of CH2= in the itaconic acid monomer shift to lower resonance. Figure 7 

shows all these three peaks for itaconic acid shifted. The peak for H2O at 4.6 ppm is 

reference here. 
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H CHj-COOH 
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H COOH Itaconic Acid 
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.JL. 

Disodium Itaconate 
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Figure 7 Peak shift for different neutralization degree of monomer. 

It is important to understand the neutralization process of IA, in order to study 

the polymerization mechanism. Two different pKas for the two carboxyl groups were 

previously reported [20, 100, 101], 3.85 and 5.45 for the carboxyl groups, labeled A 

and B in the molecular formula below. In the neutralization process of itaconic acid 

monomer, since carboxyl group A is next to a double bond, a conjugative effect is 

generated with A, while CH2 as a electron donating group connects to carboxyl group 

B, we assigned the PKa of carboxyl group A at 3.85 and dissociation of A occurs first. 

This helps us understand the effect of neutralization degree on polymerization 

process. 
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B 

CH2-OOOH PKa= 5.75 
ru Zip/" \ CH2-COOH 
U - l $ = ^ \ +NaOH o u / 

COOH/ PKa= 3.85 2 \ 

A / oocr 
" " ] " ' Dissociation of A occurs first 

conjugative effect 

Figure 8 partial neutralization of itaconic acid monomer 

2.2.2 Polymerization 

In Figure 9, initiation shows the mechanism for the initiator radical to react with 

the itaconic acid monomer. It attacks CH2= side of the double bond because of high 

steric hindrance on the other side of the double bond. And then, the double bond is 

open and forms monomer radical. 

Figure 9 Initiation step 
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0.8 

Figure 10 The effect of neutralization degree of IA on conversion at 100° C. 
Polymerization time is two and half hours. Neutralization Degree: 0% (PIA -7); 30% 

(PIA-8); 50% (PIA-2); 70% (PIA-9); 100% (PIA-10) 

To study the neutralization effect on the polymerization rate, IA with different 

neutralization degree at 6.2mol/l monomer concentration was polymerized in two and 

half hours at 100°C. Figure 10 shows the relation between conversion for the final 

sample and neutralization degree of the monomer. During the neutralization process 

of IA and NaOH, water is generated and change the monomer and initiator 

concentration. The conversions also depend on monomer and initiator concentration. 

We evaluated the monomer and initiator concentration for these experiments. The 

evaluated conversions without considering the neutralization effect and less than 8% 

variation was predicted. Consequently, the data of figure 10 is showing a significant 

effect of the neutralization degree on the polymerization rate. We obtained significant 

polymerization yields only at 50 to 70% neutralizion. where carboxylic acid A is 

dissociated. One explanation is that the conjugative effect between carbonate and the 

free radical makes the latter more stable (Figure 8). 
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Na 

Figure 11 Neutralization effect of itaconic acid on free radical polymerization 

Possibly, from 0% to 50% neutralization degree of itaconic acid, the stability 

of the radical of IA monomer increases with the neutralization degree once the 

itaconic acid is attacked by initiator radical. All carboxyl groups A are dissociated at 

50% neutralization degree. With the further increase of neutralization degree, 

carboxyl group B starts to be dissociated. The dissociated carboxyl group B does not 

increase the stability of radical of monomer any more; instead, it increases ionic 

repulsion between monomer, which decreases the polymerization rate. Moreover, the 

stability of the radical highly reduces the possibility of decarboxylation [35, 37, 38, 

102, 103] during the polymerization process. The radical on IA monomer can be 

transferred to the -CH2- group and generate another radical 'COOH, which results in 

decarboxylation. 

2.2.3 Cooling in the neutralization process 

Two 'H-NMR spectra were compared. One is neutralized itaconic acid kept 

cold during the neutralization, within ice water, and the other sample without cooling 

during the neutralization. The neutralization of itaconic acid always generated large 

amount of heat, which can heat the sample up to 100°C without cooling, resulting in 

small amount of itaconic acid (up to 1%) changing its structure. The structure change 
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of neutralized itaconic acid was indicated by extra peaks pointed by red arrow in 

Figure 12, which will affect the polymerization process of itaconic acid. The detail of 

the structure change will be discussed in the next chapter. 

Without ice water 

T 

^ A 

with ice water 

fi»5Ili«^ 

Figure 12 H-NMR spectra for neutralized itaconic acid with its neutralization 
process cooling by ice water and another sample without cooling. 

2.2.4 Structure analysis of polyitaconic acid 

Process can be referred to synthesis method above. 100 gram of itaconic acid 

was half neutralized. 0.625ml 70wt% tBHP was fed with syringe pump in 2.5 hrs at 

100°C. (PIA-1) After reacted 2 and half hours, ^ -NMR and 13C-NMR analysis were 

performed on the sample. 'H-NMR shows no peaks around 5.4 and 5.7ppm indicating 

total consumption of monomer. 100% polyitaconic acid calculated according to Error! 

Reference source not found., combined with C-NMR spectra, in which all the 
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peaks related to carbon for PIA are shown in Error! Reference source not found.. 

The C-NMR peaks for polyitaconic acid are enlarged to give a clear view in Error! 

Reference source not found., compared with the 13C-NMR peaks for itaconic acid. 

From monomer to polymer, chemical shift for carbon 1 and carbon 2 changed from 

128 and 130.5 to 47.8 and 49.2ppm. Carbons on the double bonds of the monomer 

were shifted to carbons on the backbone of the polymer. Slight changes of chemical 

shifts for the rest of the carbons were observed. Chemical shifts of all peaks for 

monomer and polymer are shown in table 2. Polymerization kinetics for PIA-1 is 

shown in Error! Reference source not found. 13. About 90% conversion can be 

reached in one hour. And 100% conversion can be reached in 2 and half hours. The 

reaction is slower than expected at the beginning. Oxygen dissolved in the sample 

might be the reason for this inhibition. 

l r •̂""""""* * * * 

v o. 8 - r 
Cd / 

O S / 

c 0. 6 - / 
o / 
S 0. 4 - / 
CD / 

> / 
o 0. 2 - / 

0 « ^ - ' ' ' ' ' ' ' 
0 50 100 150 200 250 300 350 

Time (min) 

Figure 13 Conversion curve for PIA-1 sample with 100% conversion 
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ppm 

Figure 14 Polyitaconic acid PIA-1 sample with 100% conversion. 

H?C 

3 4 
CH2^OOH 

\ . I V 
J^<A»J 

Chemical shift/ppm 

Carbon 

Figure 15 13C-NMR for itaconic acid monomer and PIA-1 

CI C2 C3 C4 C5 

Chemical shifts for IA 

Chemical shifts for PIA 

128.0 130.5 36.8 176.2 171.1 

47.8 49.2 42.8 178.9 180.6 

Table 2 iJC NMR chemical shifts in ppm for PIA-1 and itaconic acid monomer 13, 
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Figure 16 Full 13C-NMR spectra for PIA-1 

2.2.5 The selection of the initiator 

In this work, tBHP was used as the initiator in all effective polymerizations due 

to three reason. First, high temperatures are required to overcome the strong 

intermolecular repulsion of the double carboxylic acid and to give a higher rate of 

molecular collisions, we used tBHP as a high temperature thermal initiator (228 hours 

half life at 100°C, 10 hours half life in benzene at 170°C according to Aldrich 

catalogue) to try to achieve a high yield of PIA. The half life is less in the presence of 

itaconic acid than in pure water, since the acid itself is a catalyst for the 

thermodissociation of tBHP. Itaconic acid combined with tBHP is effectively a redox 

initiator system here. The real half llife of the system is unknown. With the similar 

process, we used common initiator, such as AIBN and persulfate and obtained 

unsatisfactory results shown in apendix. Last, the higher polarity and electroneutrality 

of the tBHP radicals make it easy to overcome the ionic and steric hindrance of the 

neutralized itaconic acid. 
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2.2.6 Effect of initiator concentration 

In order to determine the initiator concentration effect on polymerization rate, 

6.20 mol/1 half neutralized itaconic acid water solution was polymerized at three 

different initiator concentrations ranging from 0.00626mol/l to 0.125mol/l. The 

polymerization kinetics measured by NMR are reported in figure 17. 

1 ! 

0.9 

0.8 

0.7 

I 0.6 
c 

I 0.5 
1 0.4 
o 

0.3 

0.2 

0.1 

0 

/ 

50 100 
Polymerization time (min) 

• [0=0.00626 mol/l 

[0=0.0313 mol/l 

-*-[0=0.1252 mol/l 

150 200 

Figure 17 polymerization conversion vs time at different initiator concentration 
for half neutralized itaconic acid at 100 °C. [M] is 6.2 mol/l. 
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Figure 181 logRp vs log [I] for half neutralized itaconic acid at 100 °C. [M] is 6.2 
mol/1. 

As expected, the initial polymerization rate and final conversion increases 

with the increase of initiator concentration. Initial polymerization rates can be 

calculated as the slopes at time=0. Figure 18 of the polymerization rate vs initiator 

concentration shows that the reaction rate is proportional to [I]1/2, indicating a classic 

free radical mechanism. With initiator concentration at 0.00626mol/l, the conversion 

at 3 hours is 20%. With initiator concentration at 0.125mol/l, above 90% conversion 

can be obtained. 

27 



2.2.7 Effect of monomer concentration 

To determine the monomer concentration dependence on the the polymerization 

rate, three conversion vs time curves with different monomer concentration were 

obtained at 100 °C by batch process with itaconic acid concentration at 7.69 mo 1/1, 

6.20 mol/1 and 4.42 mol/1. These reactions were repeated in reaction calorimeter to 

give accurate initial polymerization curves. 

0 . 8 

o 
•H 

u 
> 
c o o 

0 

X X 

* 6.2M-RC 
- » - 6 . 2M-NMR 
- ^ - 4 . 42M-RC 
X 4.42M-NMR 
* 7. 69M-RC 
• 7.69M-NMR 

50 100 

Time (min) 

150 200 

Figure 19 polymerization yield vs time at different monomer concentration of half 
neutralized itaconic acid at 100 °C. The continuous lines are the result of the reaction 

calorimeter (RC). The dots are the result obtained by NMR. 

The initial slope as well as the conversion ratio increases steadily with the 

monomer concentration. The Reaction Calorimeter data and NMR data fit well, but 

a small deviation is observed for the reactions at 7.69M monomer concentration. 

28 



7.69mol/l sodium itaconate monomer solution was found to be highly viscous, 

much more viscous after polymerization which results in challenges when recovering 

the sample. Therefore, 6.2mol/l [M] or lower concentration of monomer is 

recommended for practical applications. During the polymerization at 7.69 mol/1 [M] 

bubbles were observed in the samples. Decarboxylation during polymerization may 

be favored at high concentration. 

PIA-2 PIA-6 PIA-5 

Reaction time (min) 75.5 51 86.5 

Conversion 0.4572 0.6281 0.3164 

Total Heat (J) 15301.5 16772.4 9228 

AHp (KJ/mol) 43.51 34.71 37.91 

Table 3 calorimetric results for determination of polymerization enthalpy of IA in 
different monomer concentration reaction. 

The final conversions, total reaction heat and polymerization enthalpy values 

are presented in table 3. The value of AHp is 38.7 ± 4.8 at 100°C. 

2.2.8 Kinetics model 

We studied the kinetics of polymerization of itaconic acid for isothermal 

batch process at high temperature. To measure the conversion, about 0.2g of samples 

were taken in situ at certain polymerization time and cooled immediately in iced 

water to avoid further formation of polymer. The samples were directly dissolved in 

D2O without drying and H-NMR analysis was performed. With the method to 

calculate the conversion ratio we discussed previously, a set of data with different 

polymerization time can be used to plot polymerization kinetics curves. 
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Also, GPC can be used to plot the polymerization kinetics curve. Figure 20 

shows the molecular weight of PIA sample at different polymerization time. Separated 

peaks represented monomer in low molecular range and polymer in high molecular 

range. From the ratio of the integral of the peaks for the polymer to the monomer, the 

conversion can be obtained. We compared data from NMR and from GPC. Figure 21 

is two polymerization curves from NMR and GPC. The data set by GPC fits well with 

the NMR data we obtained. However, the curve plotted by NMR is "smoother". We 

found out the method using NMR is more reliable. 
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Figure 20 GPC data for polymerization sample with [M]=6.2mol/l and 
[I]=0.0388mol/1 in three different reaction time: 118minutes (green); 135minutes (red); 

160minutes (blue). 
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Figure 21, The comparation of polymerization curve ploted based on NMR 
spectrum and GPC data. [M]=6.2 mol/1 and [I]=0.155 mol/1. 

A classic polymerization model was applied here to study our polymerization 

kinetics. The isothermal polymerization rate is a function of time, monomer, initiator 

concentration and degree of neutralization. 

At polymerization time = 0, initiator was added at reaction temperature. tBHP 

is dissociated into radicals: »0(CH3)3 and •OH. Because radical »OH is significantly 

less active enough to open a double bond, only one radical is accounted after 

dissociation of each tBHP. 

I^^I< 

The initiator radical attacks LA monomer and form itaconic acid radical. 

/ • + M — * - > R » 

Initiator dissociation rate: —-—- = fkd[I] 
dt 

where f is the initiator efficiency resulting from cage effect. 

Polymer chain growth: 
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RM • +M >RMM • +M >RMMM • +M >R 

Termination of the radicals: Rn • +Rm • —'—>Rm+n 

The coupling termination mechanism of the radicals is discussed later in this 

document. 

We apply the pseudo steady state assumption. The radical concentration is 

assumed constant in the system: 

dR< 
- = 0 = Rt+Ri so we can write: kt[R «]2 = fkd[i] 

dt 

We rearrange the equation above to obtain: [R •] = ( d y 

K 
The monomer consumed in the propagation steps: 

RP =-^=kp[M][R.]=kp[M\{£^y =kp(j^y[M][iy 

Where kp is the propagation rate constant, ka is the initiation rate constant, kt is 

termination rate constant. 

V2 power of [I] indicates termination of the radical process 

The polymerization constant is a function of reaction temperature and we 

assumed a classic Arrhenius model 

k = Ae~EalRT where k = k(^-f 
p kt 

A is the Arrhenius coefficient, R is the molar gas constant, T is the reaction 

temperature. 

When we derive the equation above we obtain: 

lnk = lnA-Ea/RT 

From equation, the polymerization rate can be expressed as: 

InRp = C - Ea/RT 
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Where C is constant, equal to InA + ln[M] + 0.51n[I] 

2.2.9 Model Fitting 

In order to calculate the reaction constants, we built a model to fit the 

experimental data including the NMR data set and the Reaction Calorimeter data set 

for sample 2 to sample 6. Microsoft Office Excel 2007 was used to to find the best 

constant fkd and kp{kt)
 2 to fit the model and data, by minimizing the sum of 

square of the difference between the model and experiment. 

From the Initiator dissociation rate: = fkd[I] 
dt 

We can obtain the instant initiator concentration: 

[I] = [I]0exp{-Jkdt) 

From the polymerization rate 

R d[M] 

" dt 

We can obtain the instant monomer concentration by applying a discrete step 

model: 

[A/](*,)=[M](O + * ,(Ox(*y-0 

\M]\tj) is the monomer concentration at time tj, [M](^)is the monomer 

concentration at time tj. In our model, we take tj-t; = 6minutes. 

The polymerization rate Rp (f, )at time ti can be obtained from the equation: 

*P(0=Mf^xw(0xm(^ 

With the information above and an interactive evaluation of the polymerization 
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constants fKj and Kp/(kt) , theoretical conversion VS reaction time with different 

initiator concentration and monomer concentration can be plotted as in Figure 22 and 

Figure 23. By adjusting the constants, the most fitting model and the comparison 

between theoretical and experimental data was found. The constant QQ = 2xl0"4 and 

Kp/(kt)
1/2 in the range of 0.07 to 0.1 is found to fit best the experimental data. 

Kp/(kt)
1/2is 0.07 for model fitting in Figure 22 and 0.1 for model fitting in Figure 23 

and Figure 24. 

Figure 23 and Figure 24 are for monomer concentration effect. The model 

curves we plotted fit well sample 2 and 5. For sample 6 with the highest monomer 

concentration, the data from the reaction calorimeter (RC) and NMR has a 10% 

variation. A small amount of kinetics sample not cooled down immediately could 

yield a higher conversion at the end of the reaction. It is possibly the effect that leads 

to different values of the final conversion. The model curve for sample 6 is between 

the polymerization curves obtained by RC and NMR. 
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Effect of initiator concentration at 100 C [M]=6.2 

0 50 100 150 200 

Time (min) 

Figure 22 Model fitting of initiator concentration effect by NMR from sample 2 to 
4. [M] for these experiment is 6.2M. Initiator concentration is: 0.0313M (PIA-2); 

0.00626M (PIA-3); 0.125M (PIA-4) 
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Effect of monomer concentration at 100 C 
Reaction calorimetric data 

• RCPIA-2 

Model PIA-2 

• RCPIA-5 

Model PIA-5 

X RCPIA-6 

Model PIA-6 

Time (min) 

Figure 23 polymerization kinetics at different monomer concentration of half 
neutralized itaconic acid at 100 °C. Continuous thin lines are the best model fittings of 

the data by reaction calorimeter (RC) for PIA-2, PIA-5, PIA-6. 
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Effect of monomer concentration at 100 C 
NMRdata 

• NMRPIA-2 

Model PIA-2 

H NMR PIA-5 

Model PIA-5 

X NMRPIA-6 

Model PIA-6 

80 90 

Figure 24 polymerization kinetics at different monomer concentration of half 
neutralized itaconic acid at 100 °C. continuous lines are the best model fitting of the 

data by NMR for PIA-2, PIA-5, PIA-6. 

2.2.10 Effect of temperature and its model fitting 

The effect of temperature was also studied. Figure 25 illustrates the 

polymerization kinetics at different temperatures. 

For the temperature effect, the constant k can be evaluated by changing the 

activation energy Ea to fit the model with polymerization kinetics at different reaction 

temperatures. 

k=zAe-Ea/RT w h e r e k = k JK^ 
" k, 

The best model fitting at different reaction temperature is shown in Figure 25. 
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The constant fKd = 2xl0"4 and Kp/(kt)
1/2 = 0.082 is found to fit best our experimental 

data. 

Temperature control was set at 70 °C, 80 °C, 90 °C and 100 °C, and 

polymerization kinetics were monitored by reaction calorimetry. The monomer 

concentration for all these reactions is 4.42mol/l. The reaction rates at the beginning 

of the four low conversion reactions are used to calculate the temperature effect. 

Initiator concentration was 0.0223 mol/1 at time = 0. Initiator was injected into the 

reactor once sample reached reaction temperature. It took 30+15minutes to reach the 

desired reaction temperature starting from room temperature. 

* RC PIA-12 

Model PIA-12 

• RCPIA-13 

Model PIA-13 

A RC PIA-11 

Model PIA-11 

O RCPIA-5 

Model PIA-5 

40 60 80 

Polymerization Time (min) 

Figure 25 Model fitting of polymerization curve by Reaction Calorimeter at 70 °C 
(Red, PIA-11), 80 °C (Purple, PIA-12), 90 °C (Green, PIA-13), 100 °C (Blue, PIA-5). 

The polymerization rate can be calculated from the initial slopes of these 
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curves in Figure 25. The relation between polymerization rate and 1/T (K") is plotted 

in Figure 26. The initial polymerization rate is nine times higher at 100 °C compared 

to 70 °C. The apparent activation energy is the slope of the linear ln(Rp) versus 1/T 

plot. 

Ea = 92.4 KJ/mol 

1000/T(KA-1) 

Figure 26 Arrhenius plot for the polymerization of itaconic acid 

From the slope in Figure 26, we can calculate the value of Arrhenius energy Ea 

= 92.4 kJ/mol for polymerization of itaconic acid. The activation energy of half 

neutralized acrylic acid polymerization are 10.6 Kcal = 44.35 KJ/mol. The activation 

energy of acidified acrylic acid polymerization is 9.6 Kcal/mol = 40.17Kj/mol. The 

higher activation energy means that the polymerization rate of IA is more sensitive to 

temperature than that of acrylic acid. 

2.2.11 Molecular weight of polvitaconic acid 

Low molecular weight of polyitaconic acid in previous patents and papers is a 

limit to the application of PIA. Compare with US patent 5,336,744 and US patent 

5,233,592, the molecular weight of PIA with our process is more than 4 times higher 
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than theirs. Figure 27 shows the number average molecular weight of polyitaconic 

acid at different conversion ratio during the reactions. Molecular weights were 

compared at different initial monomer concentration and initiator concentration. It 

reveals that the molecular weight decreases with the conversion and follows roughly a 

linear relationship. This is generally observed in free radical solution polymerization. 

The sample with the highest monomer concentration and lower initiator concentration 

has the highest molecular weight. 

The equation bellow relates the kinetic chain length and the monomer and 

initiator concentration: 

Where u is kinetic chain length. 

In the equation, monomer concentration has a large effect on kinetic chain 

length. Also, kinetics chain length increases with the decease of initiator concentration. 

With the decrease of monomer remaining, kinetic chain length decreases with 

polymerization time. 

The number average molecular weight can be expressed as: 

— R 
X = 

Rt is the rate of termination. Rtr is the rate of chain transfer. For polymerization 

of itaconic acid, the chain transfer to monomer is overwhelming. 

UM.][M] 
X = p<-

n 2kt[M.f+ktrm[M.][M] 

Re-organizing the equation, instant number average molecular weight can be 

obtained: 
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X„} k][M] 

Where ^n!L = CM 
kP 

The number average molecular weight M (tt) at time ti can be obtained from 

the equation: 

{%kX[M](U-M(',M 
M(t)-

{'([M](U-W(0) 

By adjusting the value of CM, we obtained the best fitting model for the number 

average molecular weight by GPC. The best fitting model of the number average 

molecular weight data is shown in Figure 27. The constant fKa = 2xl0"4, Kp/(kt)
1/2 

=0.07 and CM = 0.012 were used in that fit. 
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Figure 27 Comparison of number average molecular weight of polyitaconic acid 
vs. conversion ratio. Polyitaconic acid was prepared with tBHP at 100 °C. Five 

continuous lines represent evaluated Mn vs. conversion model. 

In conclusion, the conversion of our polymerization process for polyitaconic 

acid can reach 100% in two and half hours under certain condition. Polymerizatioin 

rate is affected by neutralization degree, reaction temperature, monomer and initiator 

concentration. 
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CHAPTER III 

STRUCTURE ANALYSIS 

In 1966, Braun and Sayel, Kenji, Yokota [40] found out that a large amount of 

carbon dioxide caused by decarboxylation was collected during the free radical 

polymerization of itaconic acid. After that, it was believed that decarboxylation was 

the major structural change observed during IA polymerization. Furthermore, PIA can 

change to polyitaconic anhydride during drying process above 60°C with vacuum. 

The final structure after decarboxylation is still unknown. Even though numerous 

papers mentioned decarboxylation, based on the data in literatures, most of their 

evidences came from IR spectrum and elementary analysis data. [100, 101] I believe 

that these two methods were not suitable for analyzing the structural changes. 

Because of the difficulty of drying water from polyitaconic acid samples, it is not 

sufficient to use ER and elementary analysis to determine the appropriate chemical 

structure. 

For our polymerization system, the structure change of itaconic acid has been 

investigated. In chapter II, I already mentioned that half neutralization of the 

monomer has the potential effect of preventing the decarboxylation of itaconic acid. 

Carbon dioxide was not clearly observed for our reaction systems. Structure changes 

of itaconic acid do exist. However, decarboxylation is not the major one we 

encountered. 

We found that most of our reactions, as presented in the previous chapters 

were slow down after about 80 minutes polymerization. Large amount of monomer 

remained and can not continue to react. We contemplated that we may run out of 
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initiator radicals. However, based on the long half life of tBHP/COOH redox system 

(fkd=104) we found out in previous chapter, it must be some other reasons causing the 

end of the reaction. 

J CM OH QH QH QH 

3. Radical Transfer to PIA ^ ^ J ^ J ^ J ^ J ^ J ^ 

0 0 0 0 0 

Chain Transfer to Polymer 

H H ,0 
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4. Radical Transfer to CA „ \ — / 
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T 
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Chain Transfer 
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Figure 28 map of several possible paths for attack of active radical. I* represents the 
initiator radical 

The map above indicates all possible paths for the reaction of the active 

radical. Path 1 is the polymerization of the monomer. Path 2 is the radical transfer to 

IA monomer. Path 3 is the radical transfer to polymer. The radicals are transferred to 

PIA instead of IA. Path 4 is the radical transfer to citraconic acid (CA). In this chapter, 

I provide evidence for path 4 which strongly affect the polymerization rate and 

conversion for PIA. 

Figure 29 shows the structure change of half neutralized itaconic acid at high 

temperature in aqueous solution. The double bond of itaconic acid shifts its position 
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and citraconic acid is formed. A better understanding of the structure change can be 

obtained from Figure 29. The majority of isomers of half neutralized IA are half 

neutralized citraconic acid, which has a hydrogen bond between two carboxyl groups 

inside the molecule. Less than 1% of the isomers is mesaconic acid, which is the trans 

structure of citraconic acid. There is no intramolecular hydrogen bond in half 

neutralized mesaconic acid, so the fraction of citraconic acid among the isomers is 

favored. 

High Temperature 

* H-

m 

T~~\ m ^ H~~/ 
f Y__n. J 

w 
Aqueous Solution 

Citraconic acid Mesaconic acic 

Figure 29, Structural change of Itaconic acid to citraconic acid and mesacnic acid 
during heating 

3.1 Experimental 

First, several granules of hydroquinone were added to a 6.2mol/l half 

neutralized itaconic acid aqueous solution. The solution was replaced in a 3-neck 

flask equipped with condenser and nitrogen feed. Several samples were prepared at 

different temperature with different heating times. The solution were blanketed with 

nitrogen. 
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H-NMR was used to analyze the structure change of the itaconic acid. The 

samples were dissolved in D2O without separation, due to the difficulty to separate IA 

and CA. Furthermore, Heteronuclear Multiple Quantum Coherence (HMQC) and 

Heteronuclear Multiple Bond Coherence (HMBC) were run on a 400MHz NMR to 

analyze the structure change of itaconic acid monomer after heating. HMQC and 

HMBC are 2-dimensional inverse H,C correlation techniques, which can be used to 

determine the connectivity of carbon to hydrogen. HMQC is specific to for direct C-H 

coupling, while HMBC gives longer range couplings (2-4 bond coupling). One IA 

samples prepared at 110°C for 5 hrs was used for long range proton NMR testing. 

Temperature for these NMR experiments was set to be 25°C. Width for HMQC is 

6410 Hz, 2D width is 17094 Hz. Total acquisition time for HMQC is one and a half 

hours. Width for HMBC is 6410 Hz, 2D width is 24096 Hz. Total acquisition time for 

HMBC is 35 minutes. 

3.2 Result and discussion 

Figure 30 shows us the NMR spectrum which has several additional peaks 

compared with that of itaconic acid in Chapter II. More extensive NMR techniques 

were used to give us a clearer idea of what they represent. 
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Figure 30, H-NMR for half neutralized itaconic acid monomer in water solution 
after heating at 110°C with different heatinig time: lh, 2.5h, 12h, 36h. 
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Figure 31 H-NMR for half neutralized itaconic acid after heating in 110°C for 20 
hours. The split of peaks is clearly seen at 5.7ppm. 

Figure 32 ' H-NMR for citraconic acid 

3.2.1 Chemical structure of itaconic acid during polymerization 

Figure 31 is the 'H-NMR spectrum of the IA sample after heating at 110° C for 

20 hours. Except for the peaks of itaconic acid, two major extra peaks around 1.95 
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and 5.75 were shown in Figure 31. The integral of these peaks increases with the 

heating time. We interpret this results as some of the itaconic acid changes to 

citraconic acid during heating, and the ratio between citraconic acid and itaconic acid 

increase with time at high temperature. The peaks around 1.95 and 5.75ppm 

respectively represent the proton on the =CH group and protons on methyl groups of 

citraconic acid. HMBC and HMQC show the structure of a mixture of IA and CA. 

HMQC spectrum in Figure 33 shows the hydrogen bearing carbons of citraconic acid, 

positioning the =CH and -CH3 groups. In C-NMR of Figure 34, the sharp peaks 

around 22 and 118ppm is the typical peaks for carbon of group -CH= and -CH3. 

HMBC spectrum in Figure 34 shows the long range correlation between hydrogen on 

-CH3 and carbons on =CH and -CH3 groups. 

In addition, the sharp peaks at 6.4ppm and 1.84ppm in NMR spectrum in 

1H-NMR for neutralized IA after heating, the signature of mesaconic acid. It always 

has a very low percentage out of the two isomers based on integral of peaks - less 

than 1%. 
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Figure 33, HMQC of itaconic acid after heating at 110 °C for five hours 
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Figure 34, HMBC of itaconic acid after heating at 110 °C for five hours 

The ratio of CA and IA can be calculated by ratio of integral of peaks at 5.75 

and 6.00 ppm. Figure 35 indicates the ratio of IA and the mixture of IA and its isomer 

in different heating time, we show the percentage changed with the heating time from 

100 at the beginning to 33 after three days. 

3.2.2 The effect of citraconic acid on polymerization process of itaconic 

acid 

Citraconic acid generated from itaconic acid during reaction is the reason for 

the fast consumption of the radicals. Citraconic acid is acting as an inhibitor for 
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polymerization of itaconic acid. To study and confirm this opinion, 6.2 mol/1 half 

neutralized itaconic acid in water solution was heated at 110°C in reaction calorimeter. 

20 40 60 

Time (Hrs) 
80 

Figure 35, Percentage of concentration itaconic acid remained and citraconic acid 
generated during the heating time at 110 °C 
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Figure 36, Polymerization curve of itaconic acid by reaction calorimeter after 
heating at 110 °C. 0.5 ml 70wt% tBHP water solution was injected into reactor at 100 

°C. 
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Figure 36, Polymerization curve of itaconic acid by reaction calorimeter after 

heating at 110 °C. 0.5 ml 70wt% tBHP water solution was injected into reactor at 100 

°C. In 40 minutes, no further heat flow is observed, indicating the end of reaction. The 

radicals are exhausted at that point. After 145 minutes, the final sample was taken out 

and analyzed by NMR. 'H-NMR shows that only 13% conversion of itaconic acid 

was obtained. The isomer-citraconic acid generated during the heating before starting 

the reaction has the effect of an inhibitor for the polymerization of IA. The active 

radical was transferred to isomer citraconic acid and formed non-reactive radical. This 

explains why we need a higher concentration of initiator for polymerization of 

itaconic acid than the initiator concentration in classic free radical polymerization. In 

order to avoid generating citraconic acid, it is better for the reaction to be done in a 

short time. 

Even though we will generate citraconic acid during heating, we still can get 

more than 100% conversion of itaconic acid in a short time. Within 2 hrs, itaconic 

acid can finish polymerizing. In the NMR spectrum for the reaction with 100% 

conversion in chapter II, the peaks of itaconic acid no longer present but sharp peaks 

remained around 5.85ppm and 1.95ppm. All the itaconic acid was polymerized, and 

only less than 0.5% monomer of the reactant remained in the form of citraconic acid. 
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Figure 37, IA/CA copolymerization kinetics was compared with IA 
polymerization kinetics with the reaction calorimetry CPA 300. MCI93 was the 

polymerization of IA. MC215 was the polymerization of IA/CA with ratio of 9:1. Ratio 
of IA/CA of MC218 was 19:1. Reactions were conducted at 100 °C. 0.5 ml 70wt% 

tBHP solution was added for all these reactions. 

MC218 

MC216 

^ * - « 

MC215 

- i — i — i — i — i — i — I — i — I 1 " i"" i — I — r | i i i i I i i i i I i i i i I i i i i I i r——l I I I I i i I r 

7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 

Figure 38, Polymerization of IAand CAmixture. MC215: IA/CA=9:1. MC216: 
IA/CA=4:1. MC218: IA/CA=19:1. 
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In order to further prove the existence of citraconic acid and its effect. We 

studied the polymerization of mixture of CA and IA. Citraconic acid and itaconic acid 

was mixed in aqueous solution. Sodium hydroxide was added to the mixture gradually 

with the cooling of an ice water bath to give half neutralization degree. The 

polymerization was done with a 6.2mol/l monomer concentration in the reaction 

calorimeter. 0.5 ml 70% tBHP solution was added at 100°C. The final sample was run 

in NMR with D2O as solvent to give the final conversion. Polymerization kinetics 

with 10% CA and 5% CA in the mixture are plotted in figure 37. The polymerization 

kinetics are compared with that of itaconic acid in the same condition. 

The effect of citraconic acid on polymerization rate is shown in Figure 37, heat 

flow for polymerization of CA/IA mixture ended in 40 minutes, indicating the end of 

the reaction. The polymerization of the mixtures reached lower conversions than the 

homo-polymerization of the itaconic acid alone. The conversion for the mixture with 

10%> CA reached 16% at the end of the reaction. The conversion is very close to that 

of Figure 36. The conversion for the mixture with 5% CA reached 14% at the end. 

Figure 38 shows the NMR for the polymerization of IA and CA mixture. The 

spectrum for the mixture in Figure 38 indicates the same peaks as that in Figure 31 

There is no bump around l.Oppm in Figure 38 for all the spectrum in different ratio of 

the mixture, indicating there is no methyl group in the polymers. There is no 

copolymer structure of citraconic acid and itaconic acid. The polymer we obtained 

from the reaction of the mixture was pure homopolyitaconic acid. 

During the polymerization, part of itaconic acid is changed to citraconic acid, 

the active radicals during polymerization process of IA were easily transferred to 

citraconic acid monomer. Radicals formed are very stable and non-reactive. The detail 

55 



of the product in this process needs further exploration. As a result, the CA generated 

during heating of IA is an inhibitor of polymerization of itaconic acid. 

500 1000 1500 

Time (min) 
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Figure 39 Fraction of Citraconic acid out of IA generated from heating at 80°C and 
100°C. 

Figure 39 shows the comparison of fraction of citraconic acid generated from 

heating at 80°C and 100°C. The reaction process is the same as the one we discussed 

at 110°C in this chapter. Obviously, the fraction of CA at 80°C is much less than that 

at 100°C. In four hours heating, only 1% of citraconic acid was generated at 80°C and 

5% of CA at 100°C, and 10% at 110 °C. The Arrhenius constant Ea for this reaction is 

88.1KJ/mol. 

It is reasonable that we could obtain a certain conversion with less initiator at 

lower temperature. In order to prove the assumption, 0.77mol half neutralized IA was 

dissolved in 50 ml water and heated to 80°C. 0.1ml 70% tBHP solution was added. 
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The polymerization curve is shown in Figure 40. 50% conversion can be reached in 2 

hours and 79.5% conversion can be reached in 18 hours polymerization. 

• [M]=6.2M 

[l]=0.0078M 
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Figure 40 polymerization curve of IA at 80°C with 0.1ml 70wt% tBHP. 
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CHAPTER IV 

SYNTHESIS AND CHARACTERIZATION OF ITACONIC SUPERABSORBENTS 

We disclose a novel superabsorbent made from renewable resources. This 

SAP is a low crosslink density polyitaconic acid. The advantage is that itaconic acid 

was obtained from renewable resources. The biosynthesis of itaconic acid by fungi 

from carbohydrates was first reported by Kinoshita (1932). [2]. Compared with other 

SAPs made from renewable resource such as starch SAP and cellulose SAP, the 

process for the itaconate SAP is much simplier. 

4.1 Commercial superabsorbent 

Nowadays, most commercial superabsorbents are made by crosslinked 

partially neutralized acrylic acid. The pollution caused by plastics or rubber products 

increasingly serious in the United States. The disposable use of diapers containing 

non-degradable polymeric parts, create a serious threat to the environment. 

Composting the acrylate superabsorbents [102] requires hundreds of years to degrade. 

A superabsorbent based on itaconate can provides a potential solution to solve these 

problems above. Itaconic acid can be regarded as an a-substituted acrylic acid, which 

has two carboxyl groups in one monomer. Itaconic acid may be considered as a 

potential monomer to make a novel superabsorbent. 

Nowadays, the price of itaconic acid is similar to the one of acrylic acid. And 

there is a large commercial supply of itaconic acid. These raw materials are used to 

make products based on the unreacted IA or an copolymers of itaconic acid with other 
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monomer. With the development of homopolymers of itaconic acid as we described in 

the previous chapter, it is expected that a large potential exist to further reduce the 

price of itaconic acid if the output of itaconic acid grows even larger. 

The polymerization and characterization of acrylate superabsorbents is well 

described in the literature. There are three ways to prepare superabsorbent: 1. polymer 

chains are crosslinked by multivalent cations [12, 103-106]. 2. Polyol [107-110] such 

as glycerol are used to esterify carboxyl groups before or after polymerization. 3. The 

most common way to prepare superabsorbent, to copolymerize the monomer with a 

multifunctional crosslinker. The swelling capacity and elasticity are two key 

properties for SAP to be considered, which depend in part on the degree of 

neutralization, crosslinking density and distribution. 

4.2 Crosslinked Gel by cation 

We successfully obtained crosslinked PIA with cation at room temperature. 15g 

linear PIA (PIA-1) was dissolved in 260 DI-water and calcium cation was added 

dropwise over two hours. Faster addition of cation resulted in non-reversible 

precipitation. The PIA solution was continuously stirred with magnetic stir bar for one 

day to obtain a homogenous hydrogel. The recipe is shown in table 4. 

Component 

PIA sample(wet) 

H20 

CaCl2 

Amount 

15g 

260ml 

2g 

25°C 

24 hr stir 

Table 4 The recipe of cation crosslinked polyitaconic acid 
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The positive charge on cation and negative charge on the carboxyl groups of 

polyitaconic acid form a salt linkage. Beside Ca used here, other multivalent cation 

can also crosslink the polyitaconic acid linear chains. 

Figure 41 mechanism of PIA crosslinking with multivalent cation 

The hydrogels were dried in vacuum for 24 hrs. The dried samples were tested 

for their swelling capacity in Dl-water. The swelling process is reversible. The 

swelling capacity can reach 20 times. However, this method is not suitable for 

industrial application because of the time and energy consumption involved in this 

process. 
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Figure 42 Ca2+ crosslinked poly(itaconic acid) gel swelled 20 times with water 

4.3 Itaconic superabsorbent prepared by copolymerization 

The most efficient way to prepare itaconate SAP is to copolymerize monomer 

with a crosslinker during polymerization. 

4.3.1 Experimental 

Materials 

All solvents and monomers were purchased from Aldrich. Itaconic acid (99+%), 

70% tert-Butyl hydroperoxide solution (tBHP), Tetra(ethylene glycol) 

diacrylate (tEGDA) were used without further purification, divinyl benzene (DVB), 

ethyleneglycol dimethacrylate (EGDMA) and ethyleneglycol diacrylate (EGDA) were 

purified by activated alumina to remove MEHQ. 
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4.3.2 Free-radical polymerization of itaconic superabsorbent in aqueous 

solution 

Different ratios of tEGDA and 0.77mol half neutralized itaconic acid were 

dissolved in 50 ml DI-H20. Polymerization was initiated by 0.5ml 70% tBHP at 100 

°C under a N2 environment. Crosslinked samples were obtained. Swelling capacity of 

crosslinked polymers was measured without further drying the sample. Since water 

and PIA form strong hydrogen bonds, it is very difficult to dry samples. 

The experiments have been repeated with 4 ml of tEGDA and with different 

neutralization degree of IA monomer at 70% and 90 %. Final samples are soluble in 

water. 

4.3.3 Swelling Properties measurements 

1 square inches heat-sealable tea bags [111, 112] were used to measure swelling 

capacity. 0.5 gram of the crosslinked polyitaconic acid powder was sealed into the bag, 

and then the bag was immersed into Dl-water or sodium salt aqueous solution at 

different concentration to absorb water for a given length of time. The swelling 

capacity and the absorption rate were measured at room temperature without 

additional stirring. The weight of swollen sample in tea bag was measured after 

removing the unabsorbed fluid with paper towels. The water absorption was 

calculated as a mass ratio of absorbed liquid over dry crosslinked polymer. [113-116] 

Q = (Ws-Wd)/Wd 

Where Q (g/g) is the liquid absorption, Ws is the weight of swollen sample and 

Wd is the weight of dry sample. The weight of dried sample was evaluated from the 

recipe of the reactants. The maximum swelling is considered to be at 10 hours 
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swelling. 

Crosslinker Concentration Initiator Concentration Max. Swellling 
Sample No. 

(mol/1) (mol/1) (g/g) 

cPIA-1 

cPIA-2 

cPIA-3 

cPIA-4 

cPIA-5 

cPIA-6 

cPIA-7 

0.148 

0.118 

0.0889 

0.0593 

0.118 

0.118 

0.118 

0.0313 

0.0313 

0.0313 

0.0313 

0.0626 

0.0939 

0.1252 

32.16 

40.81 

56.64 

Soluble in water 

98.34 

80.20 

50.17 

Table 5 Swelling ratio and fraction of soluble polymer as function of the 
concentration of crosslinker. The monomer concentration for the polymerizations was 

6.2 mol/1. All reactions were done in 100°C for 2 hours 

4.4 Result and discussion 

There are three important properties for superabsorbent: swelling 

capacities, absorbency rate and absorbency under pressure. Swelling 

capacities were primarily affected by crosslink density and neutralization 

degree. Crosslink density and particle size and morphology influence the 

absorbency rate. The absorbency under load has an exponential relation with 

crosslinking density. 

4.4.1 Free absorbency 

The water superabsorbent swells in water according to the following 

steps[117-119]: the charged groups of polymer form hydrogen bond with water from 

external surroundings. The electrostatic repulsion between charged groups gives more 
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room for water to come in. The driving forces for the liquid mobility are the 

Gibbs-Donnan effect and free energy of mixing of the solvent and polymer. The 

equilibrium is achieved when the ionic and mixing effect are balanced by the elastic 

response of the network. 

The chemical potential[120-122] is the combination of the three contribution 

11—Jtmix"r7tnet"r7tion 

The lower the crosslink density of superabsorbent is, the lower the absolute 

value of 7inet is. 7inet is the negative item in the equation. The chemical potential 

increases with the decrease of crosslink density, which allows the sample to absorb 

more liquid. 

4.4.2 Selection of Crosslinker 

The crosslinker is the most sensitive factor in the successful preparation of PIA 

superabsorbents. There are three major aspects of crosslinker: 1. The solubility of the 

crosslinker decides the effective concentration of crosslinker in the reaction. 2. the 

reactivity ratios of crosslinker and itaconic acid. The higher the reactivity ratio of the 

crosslinker is, the more tendency of the crosslinker to be depleted at the early stage of 

the reaction, which results in a larger soluble fraction in the product. For example, in 

preparation of acrylate superabsorbent, methylene bisacrylamide (MBA)[123-127] 

and trimethylol propane triacrylate (TMPTA) [128-131] are depleted in earlier stage 

of polymerization to produces more soluble polymer in the end.[58, 74, 132, 133] The 

relatively low reactivity of the first vinyl group of crosslinker ensures it can 

incorporate into the polymer networks at the end of the polymerization. However, 

reactivity ratio is difficult to be measured directly for crosslinked superabsorbent 
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polymers without dissolving it in any solvent. 3. The reactivity ratio of pendent vinyl 

group of crosslinker. In general, the crosslinker molecule contains two or more double 

bonds. After the first vinyl group is incorporated into polymer chain, the steric 

hindrance increases and mobility of the vinyl group is reduced. The reactivity ratio of 

the pendent vinyl group is much less than the first one. In order to be incorporated 

into polymer network, the reactivity of the second vinyl group must be high enough. 
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Figure 43 Structure of copolymer of tEGDA and IA. 

tEGDA is the crosslinker we selected for our polymerization process to yield 

itaconic superabsorbent. The swollen itaconic superabsorbent with tEGDA as a 

crosslinker is shown in figure 45. Two reasons gives this success: 1. tEGDA is 

miscible with water. 2. The reactivity ratio of pendent vinyl group of tEGDA is 

relatively high. tEGDA has the same acrylate residue in the molecule as TMPTA and 

EGDA, so the reactivity ratio of first vinyl group of crosslinker do not have large 

differences. But the reactivity ratio of pendent vinyl group is high compared to other 
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crosslinker (see below). The flexibility of tEGDA molecule provides relatively high 

mobility. It is a required feature of crosslinker in this system to copolymerize two 

vinyl groups with itaconic acid, giving an effective structure for networks as seen in 

Figure 43 shows. Figure 43 also indicated that the unreacted pendent vinyl groups do 

not contribute for the network formation. 

We failed at effectively crosslinking PIA with TMPTA, divinyl benzene (DVB), 

ethyleneglycol dimethacrylate (EGDMA), ethyleneglycol diacrylate (EGDA) as 

crosslinker using the same free-radical polymerization process as described above. 

These crosslinkers are slightly soluble in water. The solubility of these crosslinkers in 

water can satisfy the requirement for crosslinking polyacrylic acid, which requires 

less than 0.1% crosslinker out of all reactants. Since the Mn of itaconic acid is much 

less than that of polyacrylic acid, it requires higher crosslinker concentration to form a 

polymer chain network at the end of the reaction. The solubility of these crosslinkers 

is not satisfying for itaconic system. The low reactivity of remaining vinyl group 

might be the other reason for the failure. 

Figure 44 Swollen crosslinked polyitaconic acid 

4.4.3 Polymer-solvent interaction 

When water is added to SAP, there is a polymer-solvent interaction including 
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hydration and formation of hydrogen bonds. The polymer-water interaction 

parameter X takes account of the energy of dispersing the polymer molecules and 

the water. In order to evaluate the value of solvent-polymer interaction parameter, we 

assume that the crosslinker in the PIA network is the same as crosslinker fraction in 

the reactants, and Mn can be evaluated from the data for linear PIA with the same 

process except no crosslinker (Mn=7,930 g/mole). We can calculate the value of Mc 

and Mc/Mn. We calculated that % - the polymer-solvent interaction parameter for 

sodium itaconate SAP is 0.451. Compared with Flory-Huggins interaction parameter 

for sodium acrylate SAP: % = 0.469, [134] the values are similar. The interaction of 

itaconate SAP and water is as strong as that of acrylate SAP and water. 

4.4.4 Polymerization time 
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Figure 45 swelling capacities at various polymerization times. Crosslinker 
concentration of this sample is 0.118 mol/1. (Sample 5) 

Various samples were prepared at different polymerization time with 0.118 
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mol/1 crosslinker concentration. With the polymerization time, the swelling capacity 

increases until 2 and half hours of reaction time. More pendent vinyl groups from the 

crosslinker are incorporated into polymer chains. More and more polymer network 

forms with polymerization time. 

4.4.5 Ionic effect on swelling capacity 

>-
u 
c CD 

or
b 

i/> 

-Q 
< 
1 _ 

0) 
+J 
ro 

5 

60 

50 

40 

30 

A) 

10 

0 

4 
\ \ 

\ 

"1t>->-, 

1 

\ ; i \ 

'I '1 

" * -

- • -—Sample 1 

--»—Sample 2 

-•*• Sample 3 

• 
4 

1 1 

wt% of NaCI in water 

Figure 46 Water absorbency versus concentration of NaCI as a function of the 
different ratios of crosslinker to itaconic acid. 

It is necessary to measure the absorbency of superabsorbent in an ionic 

environment because most products application of superabsorbent are used for body 

liquid with 0.9 % ion concentration. The equilibrium swelling behavior of itaconic 

superabsorbent is shown in Figure 46. With the increase of concentration of ions in 

the environment, the chemical potential difference between the polymer gel and the 
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solvent decreases rapidly, resulting in dramatically reducing the absorbency rate and 

swelling ratio in equilibrium. The swelling ratio at equilibrium can be expressed by a 

function of ionic strength[78, 135-137]. 

Q5J3 = [{H2vuS
V2f +{\l2-Xx)lviy(yeIV()) 

Where ( l / 2 - j 1 ) / v 1 is the affinity between polymer and solution, and 

ve IV0 is the crosslink density, i I vu is the concentration of fixed charge, S is the ionic 

strength. 

In Figure 47, shows a linear relationship of Qm and 1/S. With this relation, 

the value of absorbency at any ionic concentration can be calculated. 
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Figure 47 linear relationship of Qm and 1/S 

4.4.6 The Effect of Degree of Neutralization on Swelling Capacity 

To study the effect of neutralization degree on the swelling rate of itaconate 

superabsorbent (Sample 2), certain amounts of sodium hydroxide were added into half 

neutralized PIA in 67wt% aqueous solution at 100°C with 400rpm mechanical stirring. 

The mixture was stirred for half an hour to give a clear solution and a specific 

neutralization degree. The final samples were taken out, cooled down and sealed into 
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tea bag and the swelling ratio was measured in Dl-water. We did not obtain 

homogeneous sodium itaconate hydrogel just by mixing sodium hydroxide and the 

initial hydrogel to reach certain neutralization degree at room temperature. Part of the 

sodium hydroxide stays outside of the hydrogel. 

The neutralization degree of itaconic acid definitely affects the water absorption. 

75% neutralization degree [48] for the acrylic superabsorbent was found to have the 

best swelling capacity. For itaconate superabsorbent, the maximum swelling capacity 

happens when 70 % neutralization is reacted. Lower neutralization degree decreases 

the ionic concentration in the polymer gel phase, so that the osmotic pressure 

decreases because of the lower chemical potentials between the network and the 

solution. When the neutralization degree goes higher than 70%, there are no available 

carboxylic groups on the polymer chain to be dissociated. The other 30% of 

carboxylic groups are buried in the polymer network and can not be reached by 

sodium cation. The extra salt we added is free in the solution, reducing the chemical 

potential of the sample in water environment instead of neutralizing carboxyl groups. 

The swelling capacity decreases. 
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Figure 48 Effect of the neutralization on swelling capacity of itaconate 
superabsorbent. (Sample 2) Neutralization degree of the sample was adjusted during ' 

mechanical stirring at 100°C. 
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4.4.7 Initiator Concentration 

The polymerization rate increases with the increase of initiator concentration, 

meanwhile, molecular weight in linear polyitaconic acid reaction decreases, which is 

commonly observed in free radical polymerization. For crosslinking polymerization 

of IA, the initiator concentration affects the crosslink density and fraction of soluble 

part. In table 5, the highest swelling capacity was obtained in sample 5 with initiator 

concentration at 0.0626mol/l. With the increase of initiator concentration, the 

molecular weight between crosslink decreases, so that the increase the crosslink 

density of the sample, results in the decrease of the swelling capacity. However, a 

smaller initiator concentration causes an increase of the fraction of soluble polymer. 

4.4.8 Absorbency under load (AUL) 

In practice, the external pressure must be considered when making 

superabsorbent as a product. 

In order to characterize the SAP to simulate applications to diapers, the swelling 

behavior of the SAP was measured under load. Three samples with different 

crosslinker concentration were ground, and the powder was screened with standard 

sieve (Fisher Science) to desired size. The sample with mesh size 25 to 32 was used 

for AUL testing. 0.3 gram of sample was sealed into tea bag. And then was replaced to 

a 250 ml beaker. Sample powder was spread as even as possible. Bottles with 1.2 

square inch bottom area and different weight were placed on the top of the tea bags to 

apply different pressures. Small amounts of Dl-water were added to the beakers. After 

10 hrs, the samples were taken out and the surfaces were blotted up with napkin and 

weighed. As Figure 49 shows, the absorbency under load decreases with the pressure 

as expected. The higher the crosslink density is, the more capability to keep liquid 
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under load is expected to be. 

0.4 0.8 1.2 1.6 

Applied Load (KPa) 

2.4 

Figure 49 Absorbency versus applied pressure for three different samples. Sample 
1, sample 2 and sample 3. All samples were swollen in DI-water 

Also, the crosslink density can be evaluated with the storage modulus of the 

network chain. The storage modulus can be calculated by the equation below, High 

storage modulus of network means high crosslink density. With the increase of 

crosslinker concentration added into the reaction, higher storage modulus were 

obtained. The storage modulus is 1.47+0.19 for samplel, 0.88+0.23 for sample 2, 

0.603+0.07 for sample 3. Highest crosslink density was observed for sample 1 with 

initial crosslinker concentration at 0.148mol/l. 

\0.44 
1.02(1+ P/Ge)° 

Where P is the applied load, Ge is the elastic modulus of the network, Q is the 

swelling capacity without load, Qe is the swelling capacity under load. [138, 139] 
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Applied Load (KPa) Storage Modulus (KPa) 

Sample 1 Sample 2 Sample 3 

08 1.675297 0.819935 0.540438 

1.2 1.430235 1.081222 0.670143 

1.6 1.530651 1.03529 0.658598 

2 1.223976 0.582845 0.545216 

Table 6. Storage modulus and fraction of swelling ratio under load were calculated 
for different samples. 0.8, 1.2, 1.6, 2KPa external pressure was applied on each 

sample. 

4.4.9 Swelling kinetics 

The absorbency rate is shown in Figure 50. The swelling process can be 

considered as a diffusion process [118, 140-142]. The swelling kinetics of 

superabsorbent without load can be expressed by Fick's second law of diffusion 

[143-145]: 

e(0=emax(i-e-fe) 

where Qmax and Q(t) are the maximum swelling capacity at equilibrium and 

swelling capacity at certain swelling time, k is the constant for swelling rate. The 

constant k is affected by the structural feature of the network such as crosslink density 

and distribution and particle size. 
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Time (min) 
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Figure 50 The swelling kinetics for PIA sample 1, 2 and 3. The line is the 
theoretical curve of the swelling rate for the Dl-water environment. Particle size is 

25-32 mesh. 

Sample No. Max. Swelling (g/g) K (min1) 

32.16 

40.81 

56.64 

0.08 

0.05 

0.045 

Table 7 constant for swelling rate for sample 1, 2 and 3. 

In order to plot a theoretical curve for best fitting of experimental data, the 

value of the constant k was adjusted. The maximum swelling ratios and values of K 

for different samples are shown in table 7. 
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Figure 51 swelling kinetics for sample 2 with different particle size. A: 25-32 
mesh, B: 35-60 mesh, C: 150-200 mesh. 

Figure 51 shows the swelling kinetics with different particle size. The sample 

with size at 150 - 200 mesh has the fastest initial absorbency rate and highest 

swelling ratio at 120minutes. 

4.4.10 Swollen gel under compression 

0.5 gram of sample was sealed into 1 square inch tea bag and immersed into 

Dl-water or salt solution until it reaches maximum swelling. Swollen samples in the 

tea bag were replaced in a 250 ml plastic beaker. The tea bags can cover the bottom of 

the beaker perfectly. 250 ml plastic bottles filled with water were replaced on the top 

of the sample to apply 1.6 KPa pressure. After 10 hrs, the samples were taken out and 

their surface was blotted dry with paper napkins and weighed. Figure 52 shows the 

swelling capacities after compression. The liquid comes out of the gel under the 

external pressure until a new equilibrium forms. The higher crosslinker concentration 

during polymerization, the more capability to keep liquid under load was observed. It 
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is also observed that the percentage of absorbency under compression do not change 

with the NaCl concentration for each sample. 
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Figure 52. Retained absorbency under load as a function of concentration of NaCl. 

4.5 HEA/IA and HEMA/IA Superabsorbent. 

We obtained superabsorbent by copolymerizing HEA with IA and HEMA and 

IA at different molar ratios. The advantage of these novel superabsorbents -

crosslinked poly(sodium itaconate-co-hydroxyethylmethacrylate) and crosslinked 

poly(sodium itaconate-co-hydroxyethylacrylate) is not required a crosslinker during 

the polymerization process. Some work for AA/HEA or AA/HEMA superabsorbent 

crosslinked with multivinyl crosslinker is reported, such as crosslinked poly(sodium 

acrylate-co-hydroxyethylmethacrylate) with N,N-methylene-bis-acrylamide (NMBA) 

as crosslinker. [146] 

4.5.1 Experimental 

Materials 

Itaconic Acid (IA); Tertiary Butyl Hydroperoxide; Dl-water were used without 
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further purification. 2-hydroxyethyl methacrylate (HEMA); 2-hydroxyethyl acrylate 

(HEA) was purified by activated alumina to remove MEHQ. All samples were 

purchased from Aldrich. 

4.5.2 Synthesis for PoMitaconic acid/2-hydroxyethyl acrylate) in 

aqueous solution 

100g (0.77 mol) of itaconic acid was half neutralized with 30.8g (0.77 mol) 

sodium hydroxide, and was dissolved in 50ml of deionized water into a flask, 

different amount of 2-hydroxyethyl acrylate or 2-hydroxyethyl methacrylate were 

added. The mixtures were heated to 100°C. Nitrogen was purged in the solution for 

lOminutes before heating, and 1ml tBHP (70wt% water solution) was added. 

Reactions were conducted for 2 hours. The swelling capacity of the products was 

measured without drying. 

Figure 53 Synthesis for Poly(itaconic acid/2-hydroxyethyl acrylate) in aqueous 
solution 
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4.5.3 Results and discussion 

Table 8 shows the composition and properties of the crosslinked hydrogels 

prepared. The swelling capacities are all above 100. Low crosslinking network 

densities were obtained. Ester bonds formed between the hydroxyl and carboxyl 

groups to provide the network structure. The key factor of the formation of ester 

bonds is the high concentration of reactant. The reaction was driven to the ester side 

by using as little water as possible. 

Sample No. 

Component 

Mole Ratio 

Reaction 
Time (hrs) 

Swelling 
Capacity 

(g/g) 

Absorbency 
in 0.9% 

NaCl (g/g) 

Fraction of 
Soluble Part 

Co-1 

IA/HEMA 

4/1 

1.5 

144.8 

34.9 

35.7 

Co-2 

IA/HEA 

3/2 

1.5 

165.7 

43.3 

-

Co-3 

IA/HEA 

4/1 

0.75 

138.9 

37.8 

5.3 

Co-4 

IA/HEA 

4/1 

1.5 

115.8 

35.3 

30.3 

Co-5 

IA/HEA 

9/1 

1.5 

-

-

100 

Co-6 

IA/HEA 

19/1 

1.5 

-

-

100 

Table 8 Copolymers of IA/HEMA or IA/HEA were prepared according to the 
ratios shown in the table. Swelling capacity was measured in heat-sealable tea bag 
without extraction of soluble part. Ultimate swelling capacity was assumed to be 

reached at 10 hours. The fraction of soluble polymer was obtained by drying the water 
phase in vacuum oven for 3 days under 120 °C. Monomer concentration is 6.2M. 
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In table 8, Co-2 and Co-3 with ratio of IA/HEA at 3/2 and 4/1 have the 

highest swelling capacities above 130. We can not obtain crosslinked polymer when 

ratio of IA/HEA is above 9/1. It means there is not enough ester bonds between 

carboxyl groups and hydroxyl groups formed to provide a network structure at that 

low fraction of HEA. Swelling capacity of IA/HEA SAP at 0.75 hrs reaction time 

(Co-3) was observed as similar as that of SAP at 1.5 hrs (Co-4). More soluble 

polymer were observed for Co-4 than Co-3. The ester bonds are reversible in the 

presence of water at high temperature. 

The hydroxyl group of HEA does not dissociate in water. With the increase 

ratio of HE A used, the total amount of dissociated ions in the hydrogel decreases. The 

lower absorbency is expected if other parameters are the same. However, absorbency 

of Co-2 is higher than Co-4. The reason might be that lower crosslink density or less 

soluble part are present in Co-2. This needs further exploration. 

Moreover, the swelling capacity of these SAPs was measured in 0.9% NaCl 

water solution. More than 70 % loss in absorbency in 0.9% salt water was observed. 

4.6 Morphologic feature of SAP particle 

Scanning electron microscopy were used to measure the surface details with a 

depth of field and high resolution. Morphologic features of SAP particles such as size 

distribution and porosity can be determined. A sample of the depth of field is shown in 

Figure 54. Particle size was determined by Microtrac. The particles were first 

suspended in air through a nozzle. The air velocity remains constant in the 

measurement region. As the particles pass through laser for measurement, the light is 

scattered and particle size is calculated. 
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Figure 54 Foam particle with porosity structure Surface detail with depth of field 
Ground fine powder with area average size MA = 21.18 micrometer 

•—Foam 
•—Powder 

Par t i c le 

10 100 1000 

Time (min) 

10000 

Figure 55 Fraction of Maximum swelling capacity as a function of swelling time 
with different morphologic feature of samples. Size of foam: l-3mm, particle: l-3mm, 

power: MA=0.021mm 

A foam sample was prepared with compression molding of 38% water content 

HEA/IA copolymer. Porosity structure and crack can be seen from the surface detail 

in the SEM image. The porosity structure of this SAP helps increase its swelling rate. 

SAP particle used in industrial products cover the range of particle diameters from 

100 to 850 micrometer. 
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4.7 Thermo-analysis of itaconic superabsorbent 

Table 9 shows itaconic acid and polyitaconic acid samples used for 

thermo-analysis. Thermogravimetry analysis were run in a TA 4000. Heating speed 

were 10 °C. The weight of each sample was about 20 mg. Samples were heated under 

protection of nitrogen flow. The nature of each Samples were is in the table below. 

Differential scanning calorimetry was run in a TA Q2000. Heating speed was 10 °C. 

Sample No. 

1 

2 

3 

4 

5 

Component 

Itaconic acid 

Half Neutralized Itaconic acid (36% water content) 

Acidified polyitaconic acid with 100% conversion 

Acidified crosslinked polyitaconic acid (mole ratio of IA/tEGDA: 42:1) 

Neutralized crosslinked polyitaconic acid (mole ratio of IA/tEGDA: 

42:1) 

Table 9 The samples of itaconic acid and polyitaconic acid used in thermoanalysis 

In Figure 56, over 90% weight loss was observed at 210 °C for itaconic acid. 

For neutralized polyitaconic acid (Sample 3), we observed two major changes in the 

curve; the first one is 12% weight loss was observed at 125 °C. It is the evaporation of 

water existing in the sample. Therotically, more than 30% water was remained in the 

sample, water form strong hydrogen bond with neutralized carboxyl groups so that 

prevent the loss of the rest of water. The other one around 270 °C is the formation of 

polyitaconic anhydride. 80% weight out of total weight remained in 400 °C. 
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4.7.1 Drying 

Moisture percentage in PIA sample is an important feature. PIA or crosslinked 

PIA with too much moisture may become sticky and difficult to grind, package and 

transport. 

Traditionally, the percentage of moisture in SAP was obtained after heating at 

105 °C for 3 hours, which was recommended by the Technical Association of the Pulp 

and Paper Industrial. [147] Significant moisture remains in neutralized PIA after 

heating 105 °C for 24 hours. Previsouly, PIAn was observed to form at acidified PIA 

after drying at 60 °C for 10 hours with vacuum. [148] 

Neutralized PIA solution was added extra amount of HC1 and precipitated in 5 

times acetone for three times. The precipitated acidified PIA was drying in the oven 

with vacuum at room temperature. Drying in room temperature instead of higher 

temperature is for avoiding formation of anhydride. Figure 56 shows only 0.74% 

weight loss for the dried acidified PIA at 140 °C. 

100 

80 

40 

20 

99.59% 
169.17X 

99.26% 
138.33X 

100 200 
Temperature (°C) 

400 

Figure 56 TGA data for dried itaconic acid and polyitaconic acid with vacuum 
oven in room temperature 
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Figure 57, Thermodegradation analysis and DSC of itaconic acid (sample-1) and 
half neutralized IA samples (sample 2). TGA and DSC was run from room temperature 

to 600 °C. 

Figure 57 shows the thermodegradation of half neutralized IA. There are two 

carboxyl groups in IA, one is neutralized and the other is in acid form. The 

neutralized carboxyl group forms much stronger hydrogen bond with each other. In 

the TGA data, the first 22% weight loss before 180 °C is for water evaporation. The 

second 18% weight loss at 230 °C is for anhydride formation of acid form carboxyl 

group. The third 18% weight loss around 400 °C is for dehydrate of the other 

neutralized carboxyl group. This temperature is the dehydrate point for sodium 

carbonate. Compared with acidified IA, there is no boiling point for neutralized IA. 

4.7.2 Glass transition temperature 

The glass transition occurs at micro-Brownian motion of the chain segments in 

the polymer chain backbone. [149] Figure 58 is the DSC data for dried acidified PIA 

(Sample DSC-3). Thermo-transition of the sample was clearly shown in the DSC 
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curve. Tg for dried acidified polyitaconic acid is 61 °C. 
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Figure 58 Tg of sample (DSC-3) 

Tg was found to be a function of water concentration for polyacrylate. 

[67]For a crosslinked homopolymer, Tg always increases with increasing moisture 

and crosslink density. [150] We expect the same situation for polyitaconic acid. 
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CHAPTERV 

BIODEGRADATION TESTING OF POLYITACONIC ACID AND ITACONATE 

SUPERABSORBENT 

In this chapter, we study the biodegradability of polyitaconic acid. 

5.1 Materials 

Compost (Kingman's Farm, Durham, NH), Sludge (Waste Water Treatment 

Center, Durham, NH), Potassium Hydroxide (Pellets, EM Science), Cellulose Powder 

(20 micrometer, Aldrich), Polyacrylate Superabsorbent (100-500 micrometer, 

Emerging Technologies Inc.), Polyitaconic acid (Sample with 100% conversion, 

Mw=10,180 g/mole, Mn= 3,920 g/mole), Crosslinked Polyitaconic acid (Sample 1 in 

Chapter IV) 

5.2 Biodegradation Testing in Compost 

30 35 

Figure 59 biodegradation of polyitaconic acid superabsorbent in compost. 

Compost was taken from the Kingman's farm at the University of New 

Hampshire in Durham, NH. Before we bury the samples into compost, crosslinked 

PIA sample (MCI72) was sealed into a tea bag and rinsed with DI-water five times, in 

85 



order to make sure we remove all the soluble parts. Samples were then buried into the 

compost for a certain period of time. Tea bags were cleaned, and the samples were 

dried in a vacuum oven. The dried samples were weighted and a percentage of sample 

left was calculated. Unfortunately, most of the tea bags were broken during 

composting and only two data point were obtained. The other disadvantage of the 

method is the uncertainty of the degradation product. Most likely, crosslinked 

polyitaconic acid is degraded into small molecule or linear polymer which can be 

extracted from the tea bag. We decided to pursue another more efficient and reliable 

method. 

5.3 Biodegradtion testing by sludge 

During the past 10 years, some unsuitable biodegradation 

standardizations [88] were used for biodegradation testing. As a result, starch blended 

with polyethylene was accepted to be biodegradable, in which the polyethylene part 

still remains non-degraded for 500 years. These methods are no longer accepted. For 

example, polyethylene and starch blend was proved to be biodegradable because of 

same proof of structural change during the degradation time. However, only the starch 

part of the sample was degraded and the polyethylene part was simply dispersed. We 

believe that the loss of mechanical properties or the oxidation of plastic samples can 

not prove biodegradability. 

Biodegradation Testing of polyitaconic acid was done by following ASTM D 

5271: Standard Test Method for Determining the Aerobic Biodegradation of Plastic 

Materials in an Activated Sludge-Wastewater-Treatment System.[87, 88, 151-154] 

Activated sludge was used as the bacteria source. PIA samples and sludge were mixed 

in sealed erlen myers. These sealed bottles were connected with a rubber tubing to 
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another erlen myer containing a solution of potassium hydroxide inside. The PIA 

solutions were stirred by magnetic stirrer. Bacteria and other microorganisms digest 

the polymers. Oxygen is consumed during the process of biodegradation; meanwhile, 

carbon dioxide is generated as a product which is absorbed by potassium hydroxide. 

The pressure decreases since the total amount of gas in the bottle is reduced. The 

change of the pressure can be measured by gas pressure sensors (Vernier Software & 

Technology) to evaluate the O2 consumption. 

BOD testing is measured with industrial waste. Sludge samples were taken 

from municipal Waste Water Treatment Center, Durham, NH. Samples were bubbled 

with air pump in a 3L container for hours at room temperature before use. 

Concentration of upper layer of sludge is 6g/l. 

Biodegradation in Activated Sludge ^ Temperature Control 

1 - 1 i- ~\ 11 ipn . . . W ' I I T I ' M ^ H iMs.-f-slfr' 

Y 
Magnetic Stir 

Gas Pressure Sensor 

PIA in Flask 

Cellulose in Flask 
KOH in Flask 

Figure 60 Biodegradation set up with temperature control, gas pressure sensor, and 
magnetic stirring. 

The testing is called Biological Oxygen Demanding Testing (BODT).[155, 156] 
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The equipment is shown in Figure 60 above. About 400ml of 200mg/l solid sludge 

was mixed with polyitaconic acid samples. Cellulose and sludge alone were used as 

reference. 1ml 36.4g/l calcium chloride aqueous solution, 1ml 22.5g/l MgSCWFhO 

aqueous solution, 1ml 0.25g/l FeCb^tbO aqueous solution were added to the 

solution of samples.The concentration of polyitaconic acid in the test samples was 

kept to be around 200mg/l. The PH value of the mixtures was adjusted to 7 with a 

PBS buffer. The temperature in the experiments was set at 23+ 1 °C. With the set-up 

in Figure 60, All the vessels were kept in dark. Sludge itself was prepared in one 

set-up for reference control. 

5.3.1 The calculation of deqradability 

BODT is the biological oxygen demand calculated by the gas pressure reduction. 

TBOD is the theoretical biological oxygen demand of the test sample. Control is the 

oxygen demand of the sludge itself. 

BODT-Control 
TBOD 
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Figure 61 Biodegradation curve for polyitaconic acid (Sample PIA-1 and cPIA-2) 
with cellulose as reference 

In Figure 61, the biodegradation curve of polyitaconic acid was compared with 

the curve of cellulose as reference. We found that polyitaconic acid samples were 

degraded faster than cellulose at the beginning. The reason is because polyitaconic 

acid is soluble in water and can be transported directly though the membrane of the 

bacteria cells. 97% biodegradation can be reached for cellulose, 78% biodegradation 

can be reached for linear polyitaconic acid (PIA-1), and 74% biodegradability of 

crosslinked polyitaconic acid (cPIA-1) can be reached in 26 days, which proved that 

polyitaconic acid is biodegradable. The degradation rate in nature would be much 

slower than that in laboratory condition, but this ASTM test is the accepted method to 

quantify biodegradability. 
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CONCLUSION 

Currently, the application of itaconic acid is limited to its monomer and 

copolymers because of the difficulty to homopolymerize it. Three major problems for 

the existing processes limited the application of polyitaconic acid: low conversion 

ratio, low molecular weight and long polymerization times. In this work, we 

successfully synthesized poly(itaconic acid) in aqueous solution, and the structure of 

PIA was confirmed by 'H-NMR, 13C-NMR. 100% conversion can be reached at 

100°C in two and half hours. A high temperature dissociation initiator such a tBHP is 

the key factor for the success polymerization of itaconic acid. The degree of 

neutralization of the two acid functions is critical, and only one of the two acids 

should be neutralized to give fastest polymerization rate. Molecular weights of 

polyitaconic acid with different conversion were measured. Molecular weight of 

polyitaconic acid can reach Mn=10,000g/mol. The constant fKd = 3xl0"4 and 

Kp/(kt)1/2 in the range of 0.07 to 0.1 were determined. The molecular structure change 

of the itaconic acid during polymerization and the effect on polymerization rate was 

investigated. Itaconic acid was proved to partially change to citraconic acid which is 

an inhibitor of polymerization of itaconic acid. 

Superabsorbent were successfully synthesized based on the polyitaconic acid 

process, tEGDA was used as the crosslinker. The swelling capacity of the sample was 

measured in sealed tea bags and the absorption capability in water can reach 160 

times. The effect of neutralization degree and crosslinker concentration on swelling 

capacity of itaconate SAPs were studied. The maximum swelling rate was found at 

70% neutralization. Swelling capacity in ionic solution and under external pressure 

was investigated. Absorbency capability and rate were both found to drop 
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dramatically with the salt concentration of environment. Models for evaluation 

absorbency rate and salt concentration effect on absorbency were compared with the 

experimental data. Highest elastic modulus of the network was found at highest 

crosslinker concentration incorporated during reaction. The biodegradation rate of 

polyitaconic acid was found to be as fast as that of cellulose. 
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RECOMMENDATION ON FUTURE WORK 

With this novel simple polymerization process, high conversion can be 

reached in short times. Molecular weights are higher than the previous processes in 

patents and papers. However, the molecular weights are still not high enough for the 

preparation of superabsorbent with swelling capacity up to 1000 times. To reduce the 

crosslink density of itaconic superabsorbent, the polymerization process needs to be 

improved to increase the molecular weight of linear PIA by adjusting the parameters: 

temperature, concentration, time, etc. 

The discovery of the superabsorbent made from the copolymerization of 

IA/HEA is worth further exploration. Their absorbency has high potential. In future 

work, a lower crosslinker density can be obtained by adjusting the concentration of 

reactant, ratio of HEA and IA, and reaction temperature. 

tEGDA is most likely non-biodegradable. We may need to replace this 

crosslinker with a biodegradable alternative. It should be noticed that the solubility in 

water and molecular flexibility of the crosslinker are key factors for choosing the right 

crosslinker. 

92 



LIST OF ABREVIATIONS 

AIBN: 2,2'-azo-bis(isobutyronitrile) 

D2O: Deuterium Oxide 

CA: citraconic acid 

EGDA: ethylene glycol diacrylate 

EGDMA: ethyleneglycol dimethacrylate 

MA: mesaconic acid 

Mw: weight average molecular weight 

Mn: number average molecular weight 

LA: itaconic acid 

PBS: Phosphate Buffered Saline 

PKa: acid dissociation constant 

PAA: poly(acrylic acid) 

PIA: polyitaconic acid 

PIAn: polyitaconic anhydride 

SAP: superabsorbent 

tBHP: tert-Butyl Hydroperoxide 

tEGDA: tetra(ethylene glycol) diacrylate 

TMPTA: Trimethylolpropane triacrylate 
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APPENDIX A: Polymerization of itaconic acid with large quantity of initiator 

Materials 
Itaconic Acid; 2,2'-azodiisobytyronitrile(AIBN); hydrogen peroxide; Tertiary 

Butyl Hydroperoxide; ferric ammonium sulfate; toluene; Span 80; hydrochloric acid 
were used without further purification. 

Synthesis A for Poly(itaconic acid) in aqueous solution (PIA A) 
50g (0.385 mol) of itaconic acid was half neutralized with 15.4g (0.385 mol) 

sodium hydroxide, and was dissolved in 25ml deionized water into a flask, and 8 mg 
ferric ammonium sulfate was added. The mixture was heated to 80°C and 25ml tBHP 
(70wt% in water); 50ml H2O2 (35wt% in water) were fed by syringe pump for 2 hours, 
and heat was maintained for an additional 4 hours. The product was dried at 25°C 
under vacuum for 10 hours. Conversion is 100% 

Synthesis B for poly(itaconic acid) by inverse emulsion polymerization (PIA B) 
Mixture of lOg of itaconic acid, 40ml of deionized water, 0.0146g hydrochloric 

acid was placed in 500ml reactor, and then 2.5 g of Span 80 and 250ml toluene were 
added. The mixture was heated to 90°C to give a clear solution. 0.5g AIBN in 15ml 
acetone was fed by syringe pump over 24 hours. A sample was precipitated in acetone 
twice and dried for lOh at 25°C under vacuum. Conversion is 33% 

No remaining 
monomer 

2 i ' 1 S I 1 !).•> 5 -.0-L-B5 ....6;0..:.:5:S. . 5(ir. ..15. ^mBBOBBBki 2 
Chemical shift/ppm 

Figure 62 400-MHz 'H NMR spectra of poly(itaconic acid) of D20 solution(synthesis 
A). 
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Figure 63 400-MHz !H NMR spectra of poly(itaconic acid) of 
D2O solution(synthesis B). 

Synthesis C: for Poly(itaconic acid) in aqueous solution 
50g (0.385 mol) of itaconic acid was half neutralized with 15.4g (0.385 mol) 

sodium hydroxide, and was dissolved in 25ml deionized water into a flask, and 8 mg 
ferric ammonium sulfate was added. The mixture was heated to 80°C and 25ml tBHP 
(70wt% in water) were fed by syringe pump for 2 hours, and heat was maintained for 
additional 2 hours. The product was dried at 25°C under vacuum for 10 hours. 
Conversion is 78%. 

Synthesis D for poly(itaconic acid) by inverse emulsion polymerization 
lOg of Itaconic acid was half neutralized. Mixture of half neutralized itaconic acid, 

40ml of deionized water and 2 mg ferric ammonium sulfate was placed in 500ml 
reactor, and then 2 g of Span 80 and 250ml toluene were added. The mixture was 
heated to 80°C to give a clear solution. 4g of tBHP in 8.54ml toluene solution was fed 
by syringe pump over 2 hours and heat was maintained for additional 2 hours. A 
sample was precipitated in acetone twice and dried for lOh at 25°C under vacuum. 
Conversion is 65% 

Synthesis E for poly(itaconic acid) in aqueous solution 

Itaconic acid was half neutralized with NaOH in Dl-water with cooling by ice 
water, forming a concentrated solution, which was deoxygenized by purging with N2, 
4 mg ferric ammonium sulfate was added and then heated to the 100°C. 1ml 70wt% 
tBHP water solution was fed for 2 hrs and heat was maintained for additional 2 hrs. 
The final products were dried at 40 °C under vacuum (5mm Hg) for 10 hours. Yield is 
58.2%. 
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APPENDIX B: Low conversion reaction for polyitaconic acid 
1. Inverse emulsion polymerization 

Mixture of 100ml toluene, 17.4g IA, 5ml water, 3.48ml 0.5g/mol water solution 
and 5.35g NaOH was placed into 250ml reactor, lg of span80 was added. The mixture 
was heated to 60°C for 6hrs. 0% conversion was obtained. 

2. Solution polymerization 
Mixture of 50g IA and 250ml DI-water, 210microliter HC1 was placed into 500ml 

reactor equipped with nitrogen feed and condenser. Redox initiator: 2.5g KPS and 
1.7g Na2S205 was added at 90°C for 2 hrs. 0% conversion was obtained. 

3. Solution polymerization 
lOOg itaconic acid was totally neutralized with NaOH in DI-water with cooling by 

ice water. Solution was purged by nitrogen gas for 10 minutes and placed to 250 ml 3 
neck reactor equipped with nitrogen feed and condenser. Then the mixture was heated 
to 100°C. 1ml tBHP was fed in 2 hours and 1 hour additional heat was applied. The 
conversion for final sample is 42.3%. 
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APPENDIX C: Elementary Analysis 

Elementary analysis was preformed in Perkin Elmer 2400 to analyze carbon, 
hydrogen and oxygen percentage. 

Sample No. 

PIA-5 

PIA-3 

PIA-7 

Perfect PIA 

%C 

37.69 

36.96 

38.42 

39.47 

%H 

4.33 

5.05 

4.72 

3.29 

Table 10 Elementary analysis of PIA 

111 



APPENDIX D: Structure of Diaper 
Above 90% of SAPs was applied in disposable diapers. Superabsorbent can be 

added into baby diaper with two methods[157-160]: layered and blended. As the 
figure shows, the superabsorbent beads are scattered in the fluff pulp. Fluff pulp was 
used to overcome the problem of slow absorbency generally for every kind of 
superabsorbents. Two layers of non-woven covered the top and bottom. Also, 
superabsorbent can be blended homogeneously with the fluff pulp. [147, 161] 

Wy*yh«»(lx«w> iho«0^%^^' 

Figure 64 structure of commercial diapers 

For the early baby diaper in 1980s, the SAP used in diaper was about 1-2 gram. 
Now, the amount of superabsorbent is 10-15 grams in each diaper. The bigger amount 
of superabsorbent is a compensate for thinner fluff pulp. The cost percentage of the 
SAP among diaper materials is about 30%. 
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