Permanent draft genome sequences for two variants of Frankia sp. strain CpI1, the first Frankia strain isolated from root nodules of Comptonia peregrina

Rediet Oshone  
*University of New Hampshire, Durham*

Sheldon G. Hurst IV  
*University of New Hampshire, Durham*

Feseha Abebe-Akele  
*University of New Hampshire, Durham*

Stephen D. Simpson  
*University of New Hampshire, Durham, Stephen.Simpson@unh.edu*

Krystalynne Morris  
*University of New Hampshire, Durham, Krystalynne.Morris@unh.edu*

*See next page for additional authors*

**Follow this and additional works at:** [https://scholars.unh.edu/nhaes](https://scholars.unh.edu/nhaes)

**Recommended Citation**

Authors

This article is available at University of New Hampshire Scholars' Repository: https://scholars.unh.edu/nhaes/372
Permanent Draft Genome Sequences for Two Variants of *Frankia* sp. Strain CpI1, the First *Frankia* Strain Isolated from Root Nodules of *Comptonia peregrina*


University of New Hampshire, Durham, New Hampshire, USA

*Frankia* stains CpI1-S and CpI1-P are members of *Frankia* lineage Ia that are able to reinfect plants of the *Betulaceae* and *Myricaceae* families. Here, we report two 7.6-Mbp draft genome sequences with 6,396 and 6,373 candidate protein-coding genes for CpI1-S and CpI1-P, respectively.

© 2016 Oshone et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license.

**Permanent draft genome sequences for two variants of *Frankia* sp. strain CpI1, the first *Frankia* strain isolated from root nodules of *Comptonia peregrina*.**

**Genome Announcements** January/February 2016 Volume 4 Issue 1 e01588-15 genomea.asm.org

**Abstract**

Acinorhizal symbiosis is the association between an actinobacterium from the genus *Frankia* and a wide variety of dicotyledonous plants representing 8 different families of angiosperms, resulting in the formation of root nodule structure (1–3). The symbiosis allows these ecologically important pioneer plants to colonize harsh environments that are found worldwide (4). Molecular phylogenetic approaches have identified four major *Frankia* lineages (5–8). Cluster I contains two subclusters: one subcluster (cluster 1a) represents *Frankia* strains with the ability to infect a wider range of host plants, including members of the *Betulaceae* and *Myricaceae* families, and the other subcluster (cluster 1b) contains strains limited to *Casuarina* and *Allocasuarina* host plants. Members of cluster II infect host plants of the subfamily *Dryadoideae* (Rosaceae), *Coriariaceae*, and *Datiscaceae*, and of the genus *Ceanothus* (Rhamnaceae). The members of cluster III are the most promiscuous and infect *Elaeagnaceae*, *Rhamnaceae*, *Myricaceae*, *Gymnostoma* (*Casuarinaceae*), and occasionally *Alnus* species. The fourth *Frankia* lineage consists of the atypical strains, which are unable to reinf ect acinorhizal host plants or form ineffective root nodule structures that are unable to fix nitrogen. The genomes for representatives from each cluster have been sequenced (9–24).

In 1978, the first *Frankia* isolate, CpI1, was obtained from root nodules of *Comptonia peregrina* and fulfilled Koch’s postulates (25). Following this initial success, many other strains from different host plants have been isolated, including the recent isolation of a member of cluster II (20). Two variants of *Frankia* sp. strain CpI1 were identified that had different carbon source requirements for growth. The *Frankia* sp. strain CpI1 succinate variant (CpI1-S) will use succinate and other dicarboxylic acids for growth, while the *Frankia* sp. strain CpI1 propionate variant (CpI1-P) will not (26). These two variants also show differences in their heavy metal tolerances and antibiotic resistance patterns (27, 28). *Frankia* sp. strains CpI1-S and CpI1-P were chosen for sequencing to provide more information on the differences between these two variants.

The draft genome sequences of *Frankia* sp. strains CpI1-S and CpI1-P were generated at the Hubbard Genome Center (University of New Hampshire, Durham, NH) using Illumina technology techniques (29). A standard Illumina shotgun library was constructed and sequenced using the Illumina HiSeq 2000 platform, which generated 10,867,000 reads (260-bp insert size) totaling 1,628.6 Mbp for CpI1-S and 20,978,588 reads (260-bp insert size) totaling 3,146.7 Mbp for CpI1-P. The Illumina sequence data were assembled using CLC Genomics Workbench (version 8.0.1) and AllPaths-LG (version r41043) (30). The final draft assembly for *Frankia* sp. CpI1-S consisted of 153 contigs containing a total sequence of 7,614,630 bp, with an N\textsubscript{50} contig size of 99.4 kb and 206.3× coverage of the genome. For *Frankia* sp. CpI1-P, the final draft assembly consisted of 181 contigs containing 7,593,325 bp, with an N\textsubscript{50} contig size of 98.1 kb and 287× coverage of the genome.

The assembled *Frankia* sp. CpI1-S and CpI1-P genomes were annotated via the Integrated Microbial Genomes (IMG) platform developed by the Joint Genome Institute, Walnut Creek, CA, USA (31, 32), and resulted in 6,396 and 6,373 candidate protein-coding genes for strains CpI1-S and CpI1-P, respectively.

**Nucleotide sequence accession numbers.** This whole-genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession numbers JYFN00000000 (CpI1-S) and LJJX00000000 (CpI1-P). The versions described in this paper are versions JYFN01000000 and LJJX01000000, respectively.

**Acknowledgments**

Partial funding was provided by the New Hampshire Agricultural Experiment Station. This is Scientific Contribution no. 2641. This work was supported by the USDA National Institute of Food and Agriculture Hatch 022821 (to L.S.T.), Agriculture and Food Research Initiative grant 2015-67014-22849 from the USDA National Institute of Food and Agriculture (to L.S.T.), and the College of Life Science and Agriculture at the University of New Hampshire-Durham. Sequencing was performed on an Illumina HiSeq 2500 purchased with an NSF MRI grant DBI-1229361 to W.K.T.
REFERENCES


Downloaded from http://genomes.org on January 26, 2016 by UNIV OF NEW HAMPSHIRE LIBRARY


