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ABSTRACT 

DISTRIBUTION AND FEEDING BEHAVIOR OF EARLY LIFE STAGES OF THE 
NORTHERN SHRIMP, PADALUS BOREALIS, IN RELATION TO THE SPRING 

PHYTOPLANKTON BLOOM IN THE WESTERN GULF OF MAINE 

by 

Erin B. Hobbs 

University of New Hampshire, May, 2008 

The northern shrimp Pandalus borealis is a commercially important crustacean 

found in the deep waters of western Gulf of Maine. In order to develop better 

fisheries management practices, it is essential to understand variability in P. 

borealis recruitment. Analysis of samples collected along a coastal transect 

(during 2005 and 2006), indicate cross-shore distribution of early planktonic 

larval stages is consistent with observed benthic distribution of ovigerous 

females. Timing of larval occurrence in relation to the spring phytoplankton bloom 

suggests that a match/mismatch with abundance of phytoplankton and 

zooplankton prey may be a primary determinant of recruitment success. Among 

the potential zooplankton prey, Balanus sp. larvae are predominant during the 

residence time of P.borealis larvae. Laboratory feeding experiments revealed 

stage III larvae have higher feeding rates on the diatom Thalassiosira 

nordenskioeldii than stage I. These results support efforts for coupled physical 

biological models that will allow testing of recruitment hypotheses. 
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INTRODUCTION 

The Gulf of Maine is the southern limit of distribution for the northern shrimp, 

Pandalus borealis, in coastal waters of the northwest Atlantic Ocean. The fishery 

for P. borealis in the western Gulf of Maine began in 1938 and has since 

contributed to the local economy in Maine, Massachusetts and New Hampshire. 

The fishery, targeting females while they are inshore, has experienced drastic 

fluctuations in catch size. In 1954 landings decreased to zero and fishing ceased 

(Figure 1). Fishing resumed in 1958 and increased steadily until it peaked from 

1969 to 1972. Landings then declined drastically into the late 1970s, and the 

fishery closed again. Biomass stock assessments and regulation began in 1974 

but fluctuations in landings continue. In the late 1980s, management initiated use 

of analytical models for stock analysis, but without incorporation of biotic or 

abiotic influences. The importance of spatial dynamics of a stock structure and 

fishing processes has been well acknowledged, but in the past often ignored 

(Clark et at. 2000). In May 2004, the Interstate Fisheries Management Program 

approved an amendment to the Fisheries Management Plan requiring those 

involved "to manage the northern shrimp fishery in a manner that is biologically, 

economically, and socially sound, while protecting the resource, its users, and 

opportunities for participation by all stakeholders (Idoine 2006)." 
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Figure 1. Commercial and recreation landings of the Northern Pink Shrimp, Pandalus 
borealis, (metric tons) from 1938 to 2006 (Idoine 2006). 

Understanding the processes that influence the abundance and structure of the 

P. borealis stock, is of utmost importance to the management and success of the 

fishery. In the Gulf of Maine, the species can be found year-round offshore in 

water depths ranging from tens of meters to several hundred meters depending 

on the life stage. Adults prefer soft mud bottom offshore and cooler waters 

ranging in temperatures from 1-5°C. During winter, ovigerous females migrate 

from their offshore habitat to the nearshore in order to release their young. In 

addition, adults demonstrate negative phototaxis in their diel vertical migration, 

although, ovigerous females do not rise in the water (Shumway et al. 1985). 

J 
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The reproductive cycle of northern shrimp in the western Gulf of Maine 

commences with extrusion and fertilization of eggs in late summer. Females 

remain offshore carrying their fertilized eggs on pleopods, where they develop at 

a rate that depends on ambient bottom water temperature. After the release of 

their larvae in the shallow waters inshore, females return immediately offshore. 

The planktonic larvae go through six zoeal stages in approximately 90 days 

(Shumway et al. 1985). Larvae remain in the water column (Ouellet and Allard 

2006) until they settle to the bottom as juveniles. Larvae are born males and 

remain males for approximately three years. During year three, males transition 

into females, after which they have one or two spawning seasons (Ouellet and 

Allard 2006; Shumway et al. 1985). 

A major factor controlling stock abundance is the annual recruitment into the 

adult population. Recruitment is determined by processes in the larval and 

juvenile life stages, although evidence from larval fish studies suggest that first 

order control generally occurs in the larval phase (Myers and Cadigan 1993). 

Since the larval phase is of prime importance in determining variability and 

regulation of fisheries; recruitment research needs to include the study of 

planktonic stages (Horwood et al. 2000). Primary determinants of success in the 

planktonic larval phase of fish and invertebrate stocks are thought to be physical 

processes (e.g., wind and circulation) leading to successful transport to juvenile 

nursery areas (Sinclair 1988 ) and physical and biological processes leading to 
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rapid growth and survival during the planktonic larval phase (Leggett and Deblois 

1994). 

A key hypothesis for successful growth and survival of the early life stages is the 

concept of the match of food availability during the high mortality planktonic 

phase. The Cushing match/mismatch hypothesis states that a first order 

determinant of the strength and success of a fish year-class is the availability of 

food during the critical period of larval development, controlled by the timing of 

the spring phytoplankton bloom in relationship to the timing of spawning (Cushing 

1990). A recent study of haddock recruitment is consistent with a link between 

spring bloom timing and larval survival on the Scotian Shelf (Piatt et al. 2003). In 

addition, freshly hatched P. borealis larvae have been observed surviving only 

six days without feeding (Wienberg 1982) and if larvae do not ingest at least 

some food within the first 30 hours death is inevitable even if food is obtained 

thereafter (Shumway 1985). I propose here that a similar relationship exists 

between the timing of P. borealis larval release, the timing of the spring 

phytoplankton bloom and the magnitude and type of plankton available in the 

western Gulf of Maine. 

Stickney and Perkins (Stickney and Perkins 1981) suggested temperature and 

food availability may affect the survival and recruitment of P. borealis. However, 

recent observations indicate that larvae are well adapted to survive at low 

temperatures and food type and availability may have a stronger influence on 
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larval success (Ouellet and Chabot 2005). The spring phytoplankton bloom 

conditions and spatial distribution of larval release may therefore be very 

important for high recruitment. Stickney (1983) observed synchrony between 

peak P. borealis larval abundance and the late winter phytoplankton bloom. The 

extent and importance of this relationship is unclear due to a lack of 

observational data. In general, the relationship between the spring bloom and 

higher trophic levels such as larval fish and P. borealis requires further 

investigation (Biktashev et al. 2003). 

The feeding behaviors on phytoplankton and its role in the diet of P. borealis 

larvae are not completely understood. Digestive tract examination of field-caught 

larvae done by Stickney and Perkins (1981) supports that early stage P. borealis 

larvae consume diatoms. Recent research on early larval stages of Penaeids 

suggests that some substances in phytoplankton trigger digestive enzyme 

production and increases growth and survival (Kumlu et al. 1992). 

However, phytoplankton as a sole food is not sufficient for successful 

development and growth (Harms et al. 1991). Rasmussen (2000) reported stage 

I and II larvae had high clearance rates for algae over other foods items offered, 

while stage III "loses interest" in planktonic algae. Several feeding experiments 

with Pandalus borealis larvae have included Artemia sp. nauplii as a main food 

source (Harvey and Morrier 2003; Haynes 1979; Stickney and Perkins 1981; 

Wienberg 1982). Artemia sp. is not a natural food source for P. borealis larvae, 
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although it is used in laboratory studies. Stickney and Perkins (1981) observed 

sustainable survival of stage II larvae when the combination of zooplankton and 

phytoplankton reached their maximum levels. They also concluded the 

concentration of both zooplankton and phytoplankton at the timing of larval 

release is important to larval survival. 

Detailed information on the feeding characteristics (ingestion rate and food 

selectivity in relation to changes in environmental conditions, food availability, 

developmental stage) is needed for predictions of survival probability of larvae 

during the first year (Harvey and Morrier 2003). It has been suggested by Ouellet 

(2005) that a combination of diet and temperature influence larval survival and 

therefore that food type and availability during the time of larval development is a 

major contributing factor to larval survival. I provide evidence here that 

interannual variation in the timing of larval release (controlled primarily by bottom 

temperature in the female habitat) and the timing and composition of the spring 

bloom (controlled primarily by the wind) will have an impact on survivability of 

larvae and their recruitment to the adult population. 

Ultimately, the successful application of the match/mismatch concept to the 

management of the northern shrimp fishery will involve the integration with other 

determinants of recruitment success, such as larval transport. This integration is 

now feasible with the development of coupled physical biological models (Bates 

2007; Cushing 1996; De Younge et al. 2004; Runge et al. 2004). By merging 
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simulation of physical forcing (circulation and mixing) with biological simulation 

(processes controlling food availability, feeding and growth of the planktonic 

larval stages) in computer models, the potential exists for mechanistic forecasting 

of environmental conditions for recruitment success at time scales useful for 

management decisions. 

In this research, I investigated processes that contribute to the successful 

survival of P. borealis larvae in the Gulf of Maine. I observed the spatial 

distribution of larvae in western Gulf of Maine to provide data needed by physical 

transport models. I investigated the connection between spatial and temporal 

distribution of larval stages and the availability of phytoplankton and zooplankton 

in the water column. I conducted laboratory experiments to understand feeding 

behavior of the early planktonic stages. This research contributes to the overall 

effort of formulating and parameterizing feeding and growth of larval shrimp for 

incorporation into coupled models. These models can be used to quantify the 

match/mismatch hypothesis, leading to predictions that can be tested against 

field data. 
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CHAPTER I 

FIELD TRANSECT 

Introduction 

Variability in survival of the early planktonic life stages of marine fish and 

invertebrates may be of first order importance in setting recruitment into the 

shrimp fisheries (Horwood et al. 2000). In populations of the northern shrimp, 

Pandalus borealis, primary determinants of success in the planktonic larval 

phase are thought to be physical processes (e.g., wind and circulation) leading to 

successful transport to juvenile nursery areas (Sinclair 1988 ) and biological 

processes influencing larval survival and growth (Ouellet et. al. 2007). Bates 

(2007) assumed a cross shelf distribution of northern shrimp larvae based on 

published and unpublished data on the distribution ovigerous females on the 

inner shelf of the western Gulf of Maine in winter. He concluded that variation in 

larval transport success due to interannual variability in winds affecting circulation 

could not explain the observed recruitment fluctuations in Gulf of Maine northern 

shrimp, implying that biological processes were the controlling factors. Ouellet et. 

al. (2007) hypothesized that food type and food availability have a greater 

influence on larval survival through the match and mismatch of larval feeding and 

growth with their prey (Cushing 1990). The spring phytoplankton and 

zooplankton concentrations in relation to the spatial and temporal distribution of 

larvae may therefore be of primary importance for recruitment success. 
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In order to test the hypotheses about control of recruitment variability in the P. 

borealis population in the western Gulf of Maine, there is a need for fundamental 

observations about the spatial and temporal distribution of planktonic larval 

stages, as well as the timing and composition of potential phytoplankton and 

zooplankton prey. I conducted a series of cross shore transects over two years in 

the western Gulf of Maine to investigate processes that contribute to the 

successful survival of P. borealis larvae. Here I report on observations of the 

timing, duration and spatial distribution of larvae and the salinity and temperature 

characteristics of the water in which the planktonic stages reside. I examine the 

assumption that the distribution of first stage larvae (30 - 100 m: Bates 2007) is 

similar to the distribution of ovigerous females (Lewis Incze, personal 

communication). I investigate the connection between spatial and temporal 

distribution of larval stages and the availability of phytoplankton and zooplankton 

in the water column. This research contributes to the overall effort needed to 

formulate and parameterize the early life history of northern shrimp for 

incorporation into coupled physical-biological models. These models can be used 

to quantify the match/mismatch hypothesis, leading to predictions that can be 

tested against field data. 

Methods 

A transect of 7 to 8 stations was established in the western Gulf of Maine. The 

transect started with an inshore station near Portsmouth and extended past the 
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Isles of Shoals, spanning a distance of over 30 km (Figure 2). Station depths 

ranged from 30 m to 115 m (Table 1). The transect was sampled semimonthly 

between February and May in 2005 and 2006. In 2006, difficult weather 

conditions prevented a complete sampling of all stations along transects from 

February to March, and only one transect was completed in April, due to limited 

ship availability. 

Larval P. borealis abundance was estimated at each transect station from 

samples taken with a 65 cm bongo net with a mesh size of 333 |im or 500 u.m (to 

reduce clogging and subsequent larval avoidance in high phytoplankton 

concentrations). The bongo net was towed obliquely at two knots from 5m off the 

bottom to the surface. Volume samples were determined with a General 

Oceanics flowmeter centered in each net. Larval shrimp were sorted immediately 

from one of the two bongo samples, frozen in liquid nitrogen and later stored at -

80°C. The remaining samples were preserved in 4% formaldehyde. In the 

laboratory, all P. borealis larvae were sorted from the bongo samples and 

identified to developmental stages using criteria established by Haynes (1979). 

Carapace lengths (measured from the base of the rostrum to the back of the 

carapace) of 20 larvae were measured for each stage within every bongo sample 

during 2005. Carbon content of larvae was determined using a Perkin Elmer 

2400 Series II CHNS/O analyzer. Prior to analysis, frozen larvae were staged 

and their carapace lengths measured. Twenty-five larvae were available for 
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carbon analysis (seven stage I, eight stage II, five stage III, two stage IV and 

three stage V). 

Figure 2. Pandalus borealis research transect showing sampling locations for larval 
abundance, zooplankton abundance and hydrographic data. 

Table 1. Pandalus borealis research station location, station depth, distance offshore 
and sampling methods comp 

Station 

1 

2 

3 

4 

5 

6 

7 

8* 

Latitude and 
Longitude 

4302.945.N 
7039.174, W 
4302.463.N 
7037.823, W 
4301.825.N 
7035.779.W 
4300.971,N 
7033.019,W 
4300.144.N 
7030.552.W 
4259.316.N 
7027.662.W 
4358.488,N 
7024.184.W 
4357.621,N 
7020.724,W 

Station 
Depth 

(m) 

30 

35 

45 

70 

85 

100 

115 

115 

eted. 
Distance 
off-shore 

(km) 

3.84 

5.82 

8.87 

12.9 

16.6 

20.8 

25.8 

30.2 

Bongo 
Net 

X 

X 

X 

X 

X 

X 

X 

X 

Ring 
Net 

X 

X 

X 

X 

Nisken 
Bottles 

X 

X 

X 

X 

CTD 

X 

X 

X 

X 

Note*: Station eight was eliminated in April of 2005 
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Samples for zooplankton abundance and composition were collected at Stations 

1, 4 and 7 (Table 1). Duplicate vertical tows with a 65 cm 200 |im mesh ring net 

were made from 5 m off the sea floor to the surface. Volume sampled was 

estimated with a General Oceanics flow meter centered in the mouth of the ring. 

The catch was preserved in 4% formaldehyde. In the laboratory, the samples 

were split in half using a Folsom plankton splitter. One split was passed through 

a 200 |im mesh screen and placed in a drying oven at 64°C for 24 hours for 

estimation of zooplankton dry weight. A 5 ml subsample was removed from the 

other split with a Stemple pipette and counted using a dissecting microscope for 

estimation of species composition and abundance. 

Additional plankton and hydrographic sampling was conducted at stations 1, 4 

and 7 (Table 1). A SEA BIRD 19+ CTD was deployed from 5 m off the bottom to 

the surface, providing a vertical profile of conductivity, temperature and density. 

Phytoplankton samples were collected with 5 I Nisken bottles at depths of 0, 10, 

20, 30, 40 and 50 m. From each bottle, a 100 ml subsample was collected and 

then filtered onto a 1 jim glass microfiber filter (GF/F). The filters were frozen 

immediately in liquid nitrogen and stored at -80°C until processing. In the 

laboratory, the GF/F filters were vigorously stirred with a vortex and then cold 

extracted in 10 ml of 90% acetone in the dark for 24hrs. Chlorophyll a and 

pheopigment concentrations were estimated using a Turner Designs (Model 10-

AU) fluorometer and calculations described below (Trees et al. 2003). 
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The concentration of chlorophyll (Chi: jig L"1): 

Chi = (Fb -Fa- Blkb +Blka)_r_ FR Vga 
T-1 VFILT 

The concentration of pheopigments (Pheo: jig L"1): 

Pheo = ((Fa - Blka) T- (Fb - Blkb)) _L_FR YEXI 

T- 1 VFILT 

Where: Fa: Acidified fluorescence signal 

Fb: Standard fluorescence signal 

Blka: Acidified acetone blank 

Blkb: Non-acidified blank 

x: Fluorometer's sensitivity to pheopigments 

FR: Fluorometer's response factor (^g L"1 per fluorescence signal) 

VEXT: Volume extracted 

VFILT: Volume filtered 

Frozen larvae were processed for gut pigment analysis using high performance 

liquid chromatography (HPLC). Larvae were staged and separated under 

semidark conditions and placed into groups of 5 - 15 for analysis. Pigments were 

extracted by homogenizing the larvae in 90% acetone. The samples were then 

analyzed with a Perkin Elmer Series 200 HPLC system using methods described 

by Van Heukelem (2001) to determine concentrations of pigments and their 
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associated phytoplankton functional groups (Jeffrey Runge personal 

communication, (Moore and Campbell 2008 ). 

Results 

Larval P. borealis abundance and distribution - Stage I P. borealis larvae were 

observed in temperatures ranging from 1.1 to 4.2 °C and salinities ranging from 

30.8 to 32.5 psu (Figure 3a). All stages of P. borealis larvae were observed in 

temperatures ranging from 1.1 to 7.2 °C and salinities ranging from 23.8 to 32.5 

psu (Figure 3b). 

In 2005, stage I larval abundance appeared to have peaked by year day 66 

(March 7, Figure 4a). The average temperature and salinity of the mixed layer 

(Station 1, 4, 7 and 8) during this time varied between 2 to 3 °C and 

approximately 32 psu, respectively (Figure 5). The later larval stages appeared 

successively after the stage I peak. The highest stage II and stage III abundance 

was observed on year day 82 (March 23) and year day 104 (April 14), 

respectively. 
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Figure 3. Relationship between temperature and salinity sampled at Stations 1, 4, 7 and 
8 during 2005 and 2006. Plots show (a) stage I larval abundance and (b) total 
larval abundance. 
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In 2006, the highest stage I larval abundance peak was found on year day 39 

(February 8, Figure 4b), although it was lower (5 larvae m"2) than the maximum in 

the previous year. The mixed layer temperature was 5°C (Figure 5) and stage I, II 

(1.4 larvae nrf2) and III (< 1 larvae m"2) were also present (Figure 4b). The stage 

II larval abundance peak (6 larvae m"2) and stage III abundance peak (14 larvae 

m"2) both occurred on year day 68 (March 8). The highest chlorophyll a 

concentration was observed on year day 116 (April 27). During April 2006, the 

R.V. Gulf Challenger was unavailable. As a consequence, there was no sampling 

during a three week period and it is possible the peak phytoplankton bloom arose 

earlier and may have reached a higher peak than was evident from Figure 4b. 
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To determine the cross-shore distribution of P. borealis stage I larvae, the larval 

abundance at each transect station and date was converted to a percent, where 

the total stage I larvae observed on that sampling date equaled 100% (Table 1 

and Figure 6). Locations along the transect are represented by station depths. A 

Kruskal-Wallis One-Way ANOVA based on ranks revealed a statistically 

significant difference between average larval abundance at sampling stations 

(Table 2: p < 0.001). The highest stage I abundance occurred at Station 4 (70 m), 

followed by Station 3 (45 m), which together accounted for about 60% of all 

larvae captured. More than 90% of the larvae were found inshore of the 90m 

isobaths. 

60 80 

Depth (meters) 

120 

Figure 6. Relative stage I Pandalus borealis abundance arranged by cross-shelf station 
depths. Mean percent and standard errors of total larval abundance occurring at 
each station during each transect for all transects during 2005 and 2006 
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Table 2. An all pairwise multiple comparison procedures (Tukey Test) was used to 
determine significant differences (p < 0.05 and n = 10 for each depth) in stage I 
P. borealis larval abundance between stations with varying depths. 

Station 1 
30 m 

Station 2 
35 m 

Station 3 
45 m 

Station 4 
70 m 

Station 5 
85 m 

Station 6 
100 m 

Station 2 
35 m 

No 

Station 3 
45 m 

Yes 

No 

Station 4 
70 m 

No 

No 

No 

Station 5 
85 m 

No 

No 

No 

No 

Station 6 
100 m 

No 

No 

Yes 

No 

No 

Station 7 
115m 

No 

No 

Yes 

Yes 

No 

No 

The mean carapace lengths (CL) for P. borealis larval stages ranged from 1.36 

mm (+ 0.0037) for stage I to 2.58 mm (+ 0.027) for stage IV (Figure 7). A One-

Way ANOVA revealed the mean CL differed statistically between stages (p = 

<0.001). The carbon mass (uxf C individual"1) of P. borealis larval stages (Figure 

8) ranged from 123.2 u,g C (+10.33) for stage I to 817.4 \ig C (+180.0) for stage 

V. The relationship between stage carbon content was fit with a logarithmic linear 

regression (adjusted r2 = 0.982 and p < 0.001). The relationship between P. 

borealis larval stage mean carbon content and their mean carapace length was 

graphed and fitted with a nonlinear regression (Figure 9: adjusted r2 = 0.988 and 

p = 0.006). 
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Figure 7. Pandalus borealis larval stage (n = 240 stage I individuals, 241 stage II 
individuals, 147 stage III individuals, and 34 stage IV individuals) mean 
carapace length. Mean carapace length between stages are statistically different 
(p = <0.001). 
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Figure 8. Carbon content (^g C inidvidual"1) for Pandalus borealis larval stages was 
measured. This relationship was fit with a nonlinear regression (y = 124.5 + 
3.42e106x). 
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Figure 9. Logarithmic relationship between Pandalus borealis larval stage mean 
carapace length (CL: mm) and mean carbon content (C: u,g C individuar1).The 
linear relationship was significant with a p value <0.001 (Log C = 1.763 + (2.239 
x Log CL). 

Phytoplankton and Zooplankton Prey Fields - The phytoplankton resource 

available for zooplankton and P. borealis larvae was estimated from the 

integrated chlorophyll a concentration, shown in Figure 4 as the average across 

Station 1,4,7 and 8 of the surface layer (30m). Chlorophyll standing stocks were 

>1.5 uxj Chi a m"3, suggesting bloom conditions, on three dates in 2005 (Figure 

4a). Ring nets were consistently filled with an unidentified chain-forming diatom. 

In contrast, in 2006 chlorophyll a standing stocks never exceeded 1 jxg Chi a m"3 

(Figure 4b), indicating much lower phytoplankton availability and the absence of 

a substantial phytoplankton bloom in February to March of that year. 
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In order to examine P. borealis larval feeding on phytoplankton, high 

performance liquid chromatography (HPLC) gut pigment analysis was performed 

on 172 individuals at stage 1,157 individuals at stage II, 162 individuals at stage 

III and 32 individuals at stage IV from all stations in 2006. The major pigments 

observed in larval guts were fucoxanthin and chlorophyll a and equivalents 

(pheophorbide and pheophytin). The presence of fucoxanthin suggests 

preferential grazing on diatoms. Concentrations of chlorophyll a and equivalents 

found in stages II, III and IV were significantly greater than stage I (p < 0.001) 

(Figure 10). No significant differences of fucoxanthin concentrations were 

observed between larval stages (p = 0.350). 

^ 6 
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to 
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chl a and equivalents (p < 0.001) 
fucoxanthin (p = 0.350) 

i 
2 3 

Pandalus borealis larval stage 

Figure 10. From HPLC analysis, concentration of fucoxanthin and chlorophyll a and 
equivalents (ng larvae"1) in the gut of Pandalus borealis larval stages I through IV 
(Chlorophyll n = 18 stage 1,16 stage II, 16 stage III, 4 stage IV and fucoxanthin n 
= 18 stage I, 16 stage II, 16 stage III, 4 stage IV). 
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The availability of zooplankton prey for P. borealis larvae in the water column 

was evaluated from the ring net samples. The following Phyla were represented 

in the ring net samples: Cnidaria, Chaetognatha, Mollusca, Annelida, Arthropoda 

(Balanus sp. Copepoda, Euphausiid, P. borealis), Echinodermata, and Chordata 

(Oikopleura sp. and Icthyoplankton). Dominant potential zooplankton prey 

included Acartia sp., Balanus sp., Calanus finmarchicus, invertebrates (eggs and 

nauplii), Metridia sp., Microcalanus pusillus,, Oithona similis, Pseudocalanus sp. 

and Temora longicornus (Figure 11). During the period of larval shrimp presence 

(February - April) in both years, the plankton larval stages of Balanus sp. 

(barnacles) dominated the plankton community at Stations 1 and 4 during 2005 

(Figure 11a and 11c) and 2006 (Figure 11b and 11d). It is not known whether 

Balanus larvae can be captured by larval shrimp, but, given the magnitude of 

their dominance, I will consider Balanus larvae as potential zooplankton prey for 

the northern shrimp early life stages. 

Although similar possible prey species were observed in both years, there was a 

marked difference in zooplankton abundance. Total abundances in 2005 were 

typically an order of magnitude higher than in 2006 (Figure 11). A tenfold 

difference in zooplankton dry weight between 2005 and 2006 was also measured 

(Figure 12). 
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Figure 11. Zooplankton abundance m"2 of possible Pandalus borealis larval prey 
collected during 2005 at Stations 1 (a), 4 (c), 7 and 8 (e) and during 2006 at 
Stations 1 (b), 4 (d) and 7 (f). A 65 cm ring net with a 200nm mesh was used to 
collect the vertical profile of zooplankton. Note: abundance scaling differs 
between panels. 
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Figure 12. Zooplankton biomass (gm ) and water column Chlorophyll a (mg m ) 
standing stock sampled at Stations 1, 4, 7 and 8 during (a) 2005 and (b) 2006. 
Chlorophyll standing stock integrated from bottle samples over 20m at station 1 
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Figure 13. Female copepod abundance (m"2) collected during 2005 at Stations 1 (a), 4 
(c), 7 and 8 (e) and during 2006 at Stations 1 (b), 4 (d) and 7 (f). A 65 cm ring net 
with a 200n.m mesh was used to collect the vertical profile of zooplankton. Note: 
abundance scaling differs among panels. 
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At all stations during 2005 and 2006, Calanus finmarchicus, M. pusillus, O. 

similus and Pseudocalanus sp. dominated the copepod community (Figure 13). 

Females of these species were likely producing eggs hatching into nauplii, 

potential prey for shrimp larvae. These components of the P. borealis larval prey 

field would have been ineffectively captured by the 200 jxm mesh of the ring nets. 

In order to estimate availability of copepod eggs and nauplii, I calculated egg 

production rates from the abundance of females and estimates of the female-

specific egg production rate. The greatest abundance of female copepods in 

2005 (Figure 13a, 13c and 13e), exceeded 30,000 copepods m"2 during peak 

abundance. In 2006, the female copepod abundance (Figure 13b, 13d and 13f) 

never exceeded 7,000 copepods m"2. During both 2005 and 2006, female M. 

pusillus and O. similis were both dominant and Pseudocalanus sp. was 

consistently present. Female C. finmarchicus were more abundant in 2005 than 

in 2006. The daily production of carbon mass of copepod eggs (Figure 14) was 

calculated assuming a female specific egg production rate and egg carbon 

content for C. finmarchicus (25 eggs female"1 day"1 and 0.23 u,g C egg"1), M. 

pusillus (30 eggs female"1 day"1 and 0.04 jig C egg"1), O. similis (2 eggs female"1 

day"1 and 0.045 \ig C egg"1)and Pseudocalanus sp. (5 eggs female"1 day"1 and 

0.14 ug C egg"1) (Ohman 1994; Ringuette et al. 2002)(Jeffrey Runge personal 

communication). The total carbon production from copepod eggs is shown along 

with chlorophyll a concentration (fig C L"1) and Balanus sp. abundance for both 

2005 (Figure 15a) and 2006 (Figure 15b). Mean chlorophyll a concentrations 
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(Figure 4) were converted to \ig C L"1 using a Carbon:Chlorophyll a ratio of 50:1 

(Runge personal communication). In 2005, chlorophyll a concentration peaks 

coincided with peak copepod eggs, but this correlation was not observed in 2006. 

Both chlorophyll a concentration and egg production were ten times greater in 

2005 than 2006. 

The relationship between the timing of the spring phytoplankton bloom, potential 

zooplankton prey abundance and the northern shrimp planktonic phase was 

examined by comparing P. borealis larval abundance to chlorophyll a 

concentration, the abundance of Balanus larvae and the egg production rate of 

dominant copepods over time (Figure 15). During 2005, the chlorophyll a 

standing stock was at approximately the half saturation chlorophyll concentration 

for copepod growth and reproduction (Runge et al. 2006) except for two 

occasions (year day 95 and year day 154) when it was >100 mg m"2 (Figure 

12a). The peak stage I larval abundance, on year day 66 (March 7) proceeded 

this peak in chlorophyll standing stock and corresponding copepod egg 

production rate (Figures 12a and 15a). Apart from this peak in chlorophyll and 

copepod egg production, Balanus larvae were abundant throughout March and 

April and, if consumed by shrimp larvae, would have been their dominant 

zooplankton prey. Stage II and stage III larvae appeared just before and during 

the maximum in phytoplankton abundance as well as high copepod egg 

production and Balanus larval abundance at Stations 1 and 4. 
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Figure 14. Copepod egg production rate in terms of carbon mass (1000 fig C m"2 day"1) 
for Calanus finmarchicus, Microcalanus pusillus, Oithona si mil is and 
Psuedocalanus sp. during 2005 at Stations 1 (a), 4 (c), 7 and 8 (e) and during 
2006 at Stations 1 (b), 4 (d) and 7 (f). Note: abundance scaling differs between 
panels. 
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Figure 15. Total mean prey availability estimated at Stations 1 and 4, from daily copepod 
egg production (̂ ig C L"1 day"1: Calanus finmarchicus, Microcalanus pusillus, 
Oithona similis and Psuedocalanus sp.), Balanus sp. abundance (1000 m"3) and 
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During 2006, chlorophyll a standing stock was considerably lower than values 

observed in the previous year. The peak stage I larval abundance was observed 

on year day 39 (February 8, Figure 4b). At this time, chlorophyll standing stocks 

(<25 mg chl a m"2) and copepod egg production rates were extremely limited 

(Figure 15b). Stage II and stage III larval abundance peaks were both observed 

on year day 68 (March 8) when Balanus larvae were present but phytoplankton 

concentrations and copepod egg production were very low. Increased chlorophyll 

standing stocks were not observed until year day 116 (April 27). 

Discussion 

Phytoplankton and Zooplankton Prey Fields - The importance of algae in the diet 

of P. borealis larvae has long been a subject of interest. Despite synchronistic 

occurrence between the peak P. borealis larval abundance and late winter 

phytoplankton bloom (Stickney 1983), the extent and importance of this 

relationship is not completely understood. HPLC gut content analysis is a 

possible method for identifying the functional groups of algae consumed by 

larvae. The presence of fucoxanthin (a pigment found in diatoms) suggests larval 

stages I, II, III and IV consume algae, and more specifically, diatoms (Figure 10). 

These results support earlier examination on digestive tracks of field-caught 

larvae (Stickney and Perkins 1981). In addition, it was believed later stage 

larvae "loses interest" in planktonic algae (Rasmussen et al. 2000)..The 

concentrations of chlorophyll a equivalent pigments and fucoxanthin are 

significantly greater in stages II, III and IV than in stage I larvae. In addition, 
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concentrations of fucoxanthin, were not significantly different among stages. 

Therefore, these results suggest the guts of later stage larvae found in the field 

contain similar concentrations of diatoms as earlier stages. 

While use of HPLC as a means of analyzing larval feeding preference is 

promising, it needs further analysis and refinement. HPLC chromatograms for 

zooplankton are known to alter pigment marker results, making it difficult to 

determine accessory pigment concentrations (Quiblierlloberas et al. 1996). It is 

very possible larvae consumed other species of phytoplankton, but pigment 

signals were missed due to either breakdown of pigments in the digestive tract or 

low pigment concentrations. In future investigation, increased numbers of larvae 

in sample groups is suggested. This would allow pigments to concentrate for a 

stronger HPLC chromatogram signal. 

Past gut content analysis of P. borealis has revealed that larvae eat a variety of 

zooplankton prey in addition to diatoms, including Polychaetes, Copepod (adults, 

copepodites, nauplii, and eggs), other invertebrate larvae (Harvey and Morrier 

2003; Stickney and Perkins 1981). Laboratory experiments (Harvey and Morrier 

2003) indicate that the majority of earlier stage larval prey is small (copepod 

nauplii, invertebrate eggs and nauplii), whereas prey eaten by later stages 

includes both small and large prey (Calanus finmarchicus copepodid stages). In 

the western Gulf of Maine, many of these prey types were available during 2005 

and 2006 (Figure 11). In addition, during both 2005 and 2006, larval Balanus sp. 
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were very abundant in the water column when shrimp larvae were present. 

Balanus sp. dominates the zooplankton community at Stations 1 and 4 during a 

time of high P. borealis larval abundance (Figure 4). The coincidence of larval P. 

borealis emergence and abundance of Balanus sp. needs to be investigated 

further as a major prey source for larvae in the western Gulf of Maine. 

Larval P. borealis abundance and distribution - The spatial distribution of stage I 

larvae in the western Gulf of Maine compares well with the location of adult 

ovigerous female P. borealis. High catch rates of adult female P. borealis have 

been observed between 60 and 90 m (Lewis Incze, personal communication). 

Correspondingly, the majority of Stage I larvae were found at depths between 30 

and 85 m. Very few larvae were in depths greater than 100 m and most larvae 

were found within 26 km of shore. Shore proximity may be important for 

successful transport to nursery areas (Bates 2007). 

Pandalus borealis larvae are not present south of Cape Cod. Larvae need to 

remain inshore to avoid advection into southern warmer waters by physical 

forces (currents and wind). A computer model for P. borealis larval transport 

done by Bates (2007) suggests favorable conditions (mild wind conditions or a 

southwesterly wind direction) influence an onshore advection keeping larvae 

close to shore. Unfavorable conditions (northeasterly wind direction) push water 

masses offshore, forcing larvae into southbound currents moving around Cape 

Cod. The observations made during this study provide evidence in support of the 
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model assumption that stage I larval shrimp distribution coincides with adult 

female distribution. 

Weather conditions in 2005 were mild in comparison to the severe weather 

patterns observed in 2006. In 2005, larvae were present throughout the sampling 

season (Figure 4a). At the beginning of February in 2006, larvae were present. 

Two weeks later, larval abundance decreased and few larvae were observed 

(Figure 4b). Following a severe storm, March 1 sampling found a high 

abundance of stage III larvae. By the end of March, larval abundance was very 

low. This suggests unfavorable weather patterns transported stage III larval from 

northern waters into the sampling transect and eventually further south. 

Previous laboratory research suggested optimal salinity conditions for P. borealis 

larvae are between 31.0 to 32.6 psu and mortality greatly increases with salinity 

lower than 28.0 psu (Wienberg 1982). The results from this field research 

indicate that stage I larvae occur within a salinity range (30.8 to 32.5 psu) found 

in previous laboratory experiments (Figure 3a). Later stage larvae (II, III and IV) 

were found in salinity conditions as low as 23.8 psu (Figure 3b) in 2005. Salinity 

flux in the later half of the 2005 season likely had a limited impact on successful 

survival because later stages have a higher tolerance for lower salinity levels 

(Wienberg 1982). 
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Several studies have shown temperature changes within the water column 

greatly influence larval growth and ultimately survival to recruitment. The exact 

time of P. borealis hatching can be directly related to temperature, with warmer 

water resulting in earlier larval hatching. A 1 or 2°C difference in mean winter 

water temperature could accelerate or slow down eggs hatching by 2 to 3 weeks 

(Shumway et al. 1985). The near 2°C temperature difference between seasons 

may have resulted in an earlier egg hatching time in 2006 (Figures 4 and 5). In 

addition to timing, increased temperatures increase molting frequency and 

growth. As a result, larvae have higher metabolic requirements; therefore more 

food is required for survival (Shumway et al. 1985). 

In order to formulate and parameterize feeding and growth of larval shrimp, it 

was necessary to determine carapace length and the carbon content of P. 

borealis larvae. To my knowledge, measurements of carbon content of northern 

shrimp larvae are not available in the literature. Knowledge of the carbon content 

of prey and the carbon content of larvae was needed for comparison of larval 

feeding between developmental stages. This eliminated variations of energy 

requirements and usage between stages. These results revealed a difference in 

carapace lengths between stages (Figure 7) and exponential relationship in 

carbon content of larval stages I through V (Figure 8). In addition, a power 

relationship between carapace length and carbon content was observed (Figure 

9)-
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Timing of larval shrimp appearance with the spring bloom - This study 

demonstrates the potential for interannual variation in the timing of larval release 

and the spring plankton bloom on larval survival and their availability of 

zooplankton. The correlation between hatching time due to temperature and the 

type and abundance of food is critical for larval growth and development, which 

may exert primary control on the strength and success of a year-class. Early 

larval hatching, as apparently occurred in 2006, may have resulted in larvae with 

inadequate food to achieve high growth rate or even facing starvation. Stage I 

larvae need to ingest at least some food within 30hrs after hatching or death 

even with food available is inevitable (Shumway et al. 1985). Suboptimal growth 

rates lead to longer duration in the high mortality planktonic phase and perhaps 

higher susceptibility to predation, resulting in lower survival (Cushing and 

Horwood 1994; Houde 1987). Both algae and zooplankton are components of 

the larvae's prey field. Though similar prey types were present between 2005 

and 2006, the differences in timing and abundance of phytoplankton and 

zooplankton prey were dramatic. The zooplankton biomass prey in 2005 was ten 

times greater (Figure 12a) than 2006 (Figure 12b). 

The timing of larval appearance in 2005 coincided with a greater abundance of 

both phytoplankton and zooplankton prey, much more of a successful "match" 

than 2006. Stage I larval abundance peaked in 2005 on March 7 immediately 

following an increase in phytoplankton standing stock (Figure 4a). While 

zooplankton biomass was lower at this time in comparison to the rest of the 
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season (Figure 12a), the maximum zooplankton biomass prey and chlorophyll a 

in mid April occurred in early to mid April when larval stages II and III dominated 

the water column. 

It is possible that warmer winter waters in 2006 resulted in an earlier larval 

release (Figure 5), as initial sampling in the first week of February revealed the 

presence of stages I, II and III. Both zooplankton and phytoplankton prey 

availability was limited throughout February and March compared to 2005 (Figure 

7 and 12). By the end of March zooplankton biomass was extremely low and P. 

borealis larvae were almost completely absent from the water column (Figure 

4b). Reduced plankton prey and severe weather conditions at the time of larval 

emergence would likely drastically hinder survival, and I hypothesize that 2006 

was a "mismatch" year. 
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CHAPTER II 

LABORATORY OBSERVATIONS 

Introduction 

Understanding feeding behavior of the early planktonic stages of the northern 

shrimp, Pandalus borealis, is necessary for the overall effort of formulating and 

parameterizing its feeding and growth rates. This chapter discusses laboratory 

feeding experiments conducted to determine feeding rates and prey selectivity of 

young (stage I) and older (stage III) planktonic larvae. Knowledge of larval shrimp 

feeding behavior is limited. Larvae have been observed consuming diatoms in 

the laboratory and in the field (Stickney and Perkins 1981). While it is presumed 

that stage I larvae have a higher clearance rate of algal prey than other prey 

items offered (Artemia sp : (Rasmussen et al. 2000), algae alone is believed to 

be insufficient for successful development and growth (Harms et al. 1991). It has 

also assumed that later stage (older than stage III) become carnivorous and "lose 

interest" in phytoplankton prey (Rasmussen et al. 2000). Several feeding 

experiments with Pandalus borealis larvae have included Artemia sp. nauplii as a 

main food source (Harvey and Morrier 2003; Haynes 1979; Stickney and Perkins 

1981; Wienberg 1982). No study of larval shrimp feeding behavior so far has 

established the critical concentrations of food (either algae or zooplankton prey) 

at which ingestion rate (hence growth rate) becomes food limited. 
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Here I conduct a series of experiments to observe feeding on phytoplankton and 

Artemia sp. I tested the hypothesis that early life stages feed more on 

phytoplankton than later stages and that larvae ingest greater quantities of 

diatoms than other algae in mixtures. I determine the critical concentration of 

food at which ingestion rate becomes food limited. Finally, I observe feeding on 

Artemia sp. nauplii and investigate differences between younger and older 

stages in their feeding rates and selectivity for phytoplankton and zooplankton 

prey. 

Laboratory Methods 

Larval Collection and Maintenance - Approximately 75 adult, egg bearing female 

P. borealis were collected by fishermen off Boothbay Harbor, Maine using both 

trawl and trap methods. Adults and hatched larvae were maintained at UNH's, 

Coastal Marine Laboratory in New Castle, New Hampshire. During larval release, 

adult shrimp were held in two hatching tanks (Figure 15). Larvae were removed 

daily from the collection containers and held in three-foot flow through tanks. 

Seawater in tanks underwent UV and particle filtration (0.5 (im), temperatures 

ranged from 1.2 to 5.3 °C and salinity ranged from 25 to 33 psu. Larvae were fed 

a diet of algae (a common diatom, Thalassiosira nordenskioeldii and a common 

flagellate used in culture, Isochrysis galbana) and INVE tm Artemia sp. nauplii 

enriched with INVEtm DC DHA SELCO. Larvae were later transferred to a cold 

room located at University of New Hampshire, Durham campus for experiments. 
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Figure 16. Pandalus borealis larval hatching tanks maintained at the University of New 
Hampshire's Marine Coastal Laboratory in New Castle, NH. 

Standard for all experiments - Phytoplankton species were obtained from the 

Bigelow Laboratory for Ocean Sciences (CCMP 993, 762, and 1323) and 

cultured in the laboratory. Large volumes of algae were cultured in both 20 I 

glass carboys (UNH laboratory) and 100 I fiberglass cylinders (UNH Coastal 

Marine Laboratory). Prior to an experiment, phytoplankton cell concentrations in 

stock cultures were determined and then diluted to experimental concentrations 

with filtered (0.2 fim) sea water. Phytoplankton cell concentrations were 

measured with a ZBI Coulter Counter or by counting under a Leica compound 

microscope with a 1 ml gridded Sedwick Rafter. Samples for the ZBI Coulter 

Counter were collected before and after experiments from all bottles containing 

phytoplankton, kept on ice and counted immediately. Microscope counts were 

made on two 20 ml sub-samples preserved in acid Lugol's solution. 
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All experiments were conducted with stage I and stage III larvae. Larvae were 

staged under a dissecting microscope using developmental descriptions by 

Haynes (1979). Experimental bottles were placed on a plankton wheel rotating at 

a speed of 1 rpm for 24 hours (Figure 16) at temperatures between 3-5 °C. At the 

end of an experiment, larvae were removed from experimental container. For 

experiments 1 and 2, described below, the experimental larvae were immediately 

frozen in liquid nitrogen, stored at -80°C and analyzed for pigment composition. 

The pigment extractions methods used for HPLG analysis were established by 

Moore and Campbell (2008 ). Analysis involved homogenizing larvae and then 

cold extracting pigments in 10 ml of 90% acetone in the dark for 24hrs. Samples 

were processed with a PerkinElmer HPLC system. 

Figure 17. Experimental plankton wheel, rotating at a speed of 1 rpm with 2.2 I 
experimental bottles attached. 
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Experiment 1: Functional Response to Algal Prey Concentration - The functional 

response of P. borealis stage I and III larvae to algal prey was investigated using 

various cell concentrations of T. nordenskioeldii. The initial stage I experiment 

included two duplicate 2.2 L bottles containing control concentrations (1 000, 3 

000, and 6 000 cell ml"1) and 10 experimental concentrations (500, 1 000, 1 500, 

2 000, 3 000, 4 000, 5 500, 7 000, 8 500, 10 000 cell ml"1). Five larvae were 

selected from stock and added to each experimental bottle. The first trial of the 

experiment did not reach a critical concentration, therefore experimental cell 

concentrations were increased in the control concentrations (3 000, 6 000, and 

10 000 cell ml"1) and experimental concentrations (2 000, 3 000, 4 000, 6 000, 8 

000, 10 000, 13 000, 16 000, 20 000, 25 000 cell ml"1). 

Experiment 2: Selection of Algal Prey in Mixtures - Selectivity of shrimp larvae in 

mixtures of algal prey was investigated using three algal species, T. 

nordenskioeldii, Rhodomonas sp., and /. galbana (Table 3). Using 2.2 L bottles, 

the experiment included two control and four experimental bottles, all containing 

500 \ig C I"1 of each algal species. Cellular carbon content of each algal species 

was determined using the Carbon:Volume regression equation established by 

(Menden-Deuer and Lessard 2000). Five larvae were added to each 

experimental bottle. Algal concentration were counted using methods previously 

described. 
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Table 3. The cell volume (mm3) and carbon content (in pgC cell-1 and mgC cell-1) for T. 
nordenskioeldii, Rhodomonas sp. and /. galbana. 

Algae 

Rhodomonas sp. 

1. galbana 

T. nordenskioeldii 

Cell Volume 
(Hm3) 
525.5 

50.32 

2066 

pgC cell"1 

57.10 

7.724 

140.5 

ugC cell"1 

0.00005710 

0.00000772 

0.0001405 

Experiment 3: Functional Response to Zooplankton Prey - The ingestion rates of 

P. borealis stage I and later stage III larvae on Artemia sp. nauplii was measured. 

The experiment used Artemia hatched for 24 hrs. Using 1.1 L bottles, each 

experimental concentration (6, 12, 24, 48, 96, 150, 300 and 500 Artemia prey L"1) 

had two replicates. In addition, two control bottles contained 50 prey L"1. Three 

larvae were added to each experimental bottle. Upon completion, larvae and 

remaining nauplii were removed and preserved in a 4% formaldehyde solution 

and later counted using a dissecting microscope. 

Experiment Four: Selection of Algal and Zooplankton Prey in Mixtures- Feeding 

behaviors of P. borealis stage I and III larvae were examined by providing larvae 

with a selection of algal prey (7. nordenskioeldii, Rhodomonas sp., I. galbana), 

and newly hatched Artemia sp. nauplii. Using 1.1 I bottles, the experiment 

included four controls and four experimental bottles all containing 500 \ig C L"1 of 

each algal species. Two of the controls contained just algae. The remaining two 

controls and four experimental bottles, contained algae and 500 u,g C L"1 of 

Artemia sp. nauplii. Mean Artemia dry weight is 2.3 jxg individual"1 and carbon 
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mass of newly hatched Artemia varies between 40.1 to 45.5% (Evjemo and 

Olsen 1999). Three shrimp larvae were added to each experimental bottle. Upon 

completion, the larvae and naupiii were removed and preserved in 4% 

formaldehyde and later counted using a dissecting microscope. 

Statistical Analyses - Ingestion and clearance rates were calculated using 

equations established by Frost (1972). Clearance rate (F) is defined as F = Vg/N 

(ml individual"1 hr"1) where V is the volume (ml) of the bottle, N is the number of 

shrimp larvae and g is the grazing coefficient. Ingestion rate (I) is defined as I = C 

x F (cells eaten individual"1 hr"1) where C is the average cell concentration and F 

is the clearance rate. 

Ingestion rates for Experiments One and Four were fitted with a nonlinear 

regression using the Ivlev equation (y = a(1 - e"bx) (Ivlev 1961) and tested using 

an Analysis of Variance (ANOVA) using Sigma Plot 9.0 and Sigma Stat 3.1. 

Clearance rates and carbon ingestion rates for Experiments 1 and 3 were fitted 

with a rectilinear regression. Clearance rates measured in Experiments 2 were 

compared with a One-Way ANOVA using the Holm-Sidak method. Clearance 

rates for Experiment 4 were compared with a One-Way ANOVA based on ranks 

using the Tukey method and students t-test. 
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Laboratory Results 

Functional Response to Algal Prey Concentration -The ingestion rates of stage I 

P. borealis on T. nordenskioeldii increased as cell concentrations increased, 

reaching a maximum and then remaining relatively constant (Figure 18a). An 

Ivlev nonlinear regression analysis produced an adjusted r2 value of 0.657 and a 

p value 0.0001 (Table 4). The maximum ingestion rate observed for stage I 

larvae was 21 227 cells individual"1 hr"1. 

Table 4. Equations for Experiments (Exp.) 1 and 3 for Figures 18 and 21, respectfully. 

Exp 
Equation 

18a 

18b 

18c 

18d 

18e 

18f 

NL: I cells indivual"1 hr"1= 

17977 (1-e- 0 0 0 0 1 3 P ) 
RL: I cells indivuar1 hr"1 = 

-343.6 +(1.6 xP) 
Max I mean = 16023 

NL: I cells indivual"1 hr"1 = 
64166 (1-e-0 0 0 0 0 9 6 P ) 
L: I cells indivual"1 hr"1 = 

14378+ (1.8 xP) 

F ml individual"1 hr"1 = 2.48 e - ° 0 0 0 0 5 4 p 

Max F mean = 1.603 

F ml individual"1 hr"1 = 6.34e -°°°°046P 

Max F mean = 5.950 

NL: IC u.gC Ingested u.gC individual"1 

day"1 = 0.492 + (0.0009 x PC) 
RL: IC ugC Ingested u,gC individual"1 

day"1 = -0.0094 + (0.00031 x PC) 
Max IC mean = 0.438 

NL: IC uxjC Ingested u.gC individual"1 

day"1 = 48.5 + (0.043 x PC) 
L: IC u.gC Ingested u.gC individual"1 day" 

^=0.8111 ( i -e-°-0 0 0 7 P C ) 

Exp 
Equation 

21a 

21b 

21c 

21d 

21e 

21f 

NL: I Artemia nauplii individual"1 hr"1 = 
0.8261 (1 -e - 0 0 1 2 9 P ) 

RL: I Artemia nauplii individual"1 hr"1 = 
0.0752 + (0.00491 x P) 

Max I mean = 0.796 
NL: I Artemia nauplii individual"1 hr"1 = 

2.187(1-e-00026P) 
L: I Artemia nauplii individual"1 hr"1 = 

0.106 + (0.00317 xP) 

F ml individual"1 hr"1= 21.2 e - ° 0 0 6 2 P 

F ml individual"1 hr"1= 9.15 e - ° 0 0 1 5 P 

NL: IC p.gC Ingested jxgC individual"1 

day"1 = 0.1572 + (0.0150 x PC) 
RL: IC u.gC Ingested u.gC individual"1 

day"1 = 0.0740 + (0.00555 x PC) 
Max IC mean = 0.153 

NL: IC |igC Ingested ^igC individual"1 

day" =0.105+ (0.0031 PC) 
L: IC ugC Ingested ugC individual"1 day"1 

= 0.1939(1-e-00029PC) 
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Results of two separate experiments with stage III larvae showed high variability 

with zero values (Figure 19). HPLC analysis of stomach contents of the shrimp 

larvae revealed the presence of pigments (19' butanoyloxyfucoxanthin) produced 

by cryptophytes. This suggests certain batches of T. nordenskioeldii did not 

contain a monoculture and may have been contaminated with another alga (such 

as /. galbana). The first run of this experiment used algal cultures from both 

laboratory carboys and UNH Coastal Marine Laboratory cultures. Therefore, all 

experimental containers having this pigment within the larval gut were removed 

from the remaining results for stage III larvae. The adjusted ingestion rates were 

fitted with an Ivlev nonlinear regression for stage III larvae had an adjusted r2 

value of 0.695 and p <0.0001 (Figure 18b). The maximum ingestion rate 

observed for stage III larvae was 77 245 cells individual"1 hr"1. 

Clearance rates are used to asses the maximal rate at which larvae can process 

a particle of food such as the diatom T. nordenskioeldii. The mean maximum 

clearance rate for stage I P. borealis was 1.6 ml individual"1 hr"1 (Figure 18c). 

Stage III maximum mean clearance rates was 6.0 ml individual"1 hr"1, about three 

times greater than stage I clearance rate (Figure 18d). 

For comparison among stages and between zooplankton taxa, the rate of 

ingestion is more clearly expressed in carbon mass equivalents (Frost 1972). 

The carbon content of stage I larvae is 123 + 10.3 (xg C. Using a rectilinear 

regression, stage I larvae ingestion increased and reached a mean maximum of 
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54 figC prey figC individual"1 day"1 (Figure 18e) implying that stage I larvae were 

consuming a maximum of 44% of their body carbon a day when feeding on T. 

nordenskioeldii. Stage III larvae do not appear to reach a maximum ingestion 

rate, but their maximum ingestion observed is 234 \igC prey figC individual"1day" 

(Figure 18). With a carbon mass of 267 fig + 2.9, stage III larvae are consuming 

88% of their body carbon per day. 

Selection of Algal Prey in Mixture - Clearance rates of stage I and III P. borealis 

feeding in a mixture of three algal species (T. nordenskioeldii, Rhodomonas sp., 

I. galbana) were compared. Stage I larvae removed /. galbana and T. 

nordenskioeldii from the experimental container. Little or no clearance was 

observed of the more mobile flagellate Rhodomonas sp (Figure 20). Stage III 

larvae cleared a significantly greater (p = 0.000116 with a critical level of 0.004) 

concentration of Rhodomonas sp. than stage I (Table 5). Stage III larvae mean 

clearance rate of T. nordenskioeldii (mean = 2.5 + 0.8 ml individual "1 hr"1) was 

greater than that of stage I (mean = 1.1+ 0.69 ml individual "1 hr"1), although not 

significant (p = 0.125 with a critical level of 0.006). No additional significant 

differences in clearance rate among algal prey within stage was observed for 

either stage I or stage III larvae. 
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Figure 18. Ingestion rates (I: cells indivual"1 hr"1) of P. borealis stage I larvae (a) and 
stage III larvae (b) on T. nordenskioeldii (P: cells ml"1), fit with a nonlinear 
regression (NL), rectilinear regression (RL) and or linear (L). Clearance rates (F: 
ml individual"1 hr"1) of P. borealis stage I larvae (c) and stage III larvae (d) at 
various cell concentration, fit with rectilinear regression. Ingestion rates (IC: Lig C 
Ingested Ltg C individual"1 day"1) of P. borealis stage I larvae (e) and stage III 
larvae (f) in relation to prey carbon concentrations available (PC: Lig C L"1), fit 
with a nonlinear regression (NL), rectilinear regression (RL) and or linear (L). 
Note: scales vary between figures 
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Figure 19. Ingestion rate (I: cells individual"1 hr"1) of stage III P. borealis on Algal prey 
concentration (P: cells ml"1) prior to the removal of data points believed to be 
errors based on results from HPLC analysis (I = 8093 + (1.266 x P)). 

Table 5. Experiment 2: Unadjusted P values from an ANOVA Comparing Stage I (St1) 
and stage III (St III) P. borealis clearance rates of algal prey (T. nordenskioeldii, 
Rhodomonas sp., I. galbana). Significant values (*) and significant critical levels 
(CI) are represented. Stage I n values = 8 and stage III values = 8. 

T. nordenskioeldii 
St l 

Rhodomonas sp. 
St l 

/. galbana 
St l 

T. nordenskioeldii 
Sti l l 

Rhodomonas sp. 
St III 

Rhodomonas 
sp. S t l 

0.00822 
CI 0.004 

/. galbana 
St l 

0.976 
CI 0.05 

0.00934 

CI 0.005 

T. 
nordenskioeldii 

Sti l l 

0.125 
CI 0.006 

0.0000874* 

CI 0.003 

0.113 
CI 0.005 

Rhodomonas 
sp. St III 

0.147 
CI 0.009 

0.000116* 

CI 0.004 

0.135 
CI 0.007 

0.928 
CI 0.013 

/. galbana 
Sti l l 

0.961 
CI 0.025 

0.0076 

CI 0.004 

0.937 
CI 0.017 

0.132 
CI 0.006 

0.156 
CI 0.01 
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Effects of Nauplii Prey Concentration - Ingestion rates of P. borealis larvae 

feeding at various concentrations of Artemia nauplii were measured. Similar to its 

feeding rates on algae, the ingestion rates of stage I P. borealis also increase 

asymptotically as nauplii prey concentrations increases (Figure 21a). An Ivlev 

nonlinear regression analysis (Table 4) yielded an adjusted r2 value of 0.590 (p 

<0.0001). The maximum ingestion rate observed for stage I larvae was 1.2 

Artemia nauplii individual"1 hr"1. Stage III ingestion rates did not reach a constant 

maximum (Figure 21b). The maximum ingestion observed was 2.6 Artemia. 

nauplii individual"1 hr"1. An Ivlev nonlinear regression (Table 4) yielded an 

adjusted r2 of 0.606 (p <0.0001). 
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Pandalus borealis larval stage 

Figure 20. P. borealis stage I and stage 111 larvae prey selection experiment Clearance 
rates (ml individual"1 hr"1) for prey species including T. nordenskioeldii, 
Rhodomonas sp., and /. galbana. Significant differences exist between stage I 
and stage III larvae preying on Rhodomonas sp.(p = 0.000116 with a critical level 
of 0.004). 
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Clearance rates of larvae on Artemia were fitted with a nonlinear regression. 

Maximum clearance rates observed for stage I larvae were 50.0 ml individuals"1 

hr"1 and the regression (Table 4) yielded an adjusted r2 of 0.346 (p O.0002) 

(Figure 21c). Maximum clearance rates observed for stage III larvae were 28.0 

ml individual"1 hr"1 and the regression (Table 4) yielded an adjusted r2 of 0.025 (p 

<0.1890)-(Figure 21 d). 

Stage I larvae ingestion increased and reached a mean maximum of 0.15 \ig C 

prey |j,g C individual"1 day"1. The rectilinear regression (Table 3) had an adjusted 

r2 of 0.731 (p =0.001) (Figure 21e). Stage I larvae consumed a mean maximum 

of 15% of their body carbon a day when feeding on Artemia. The mean maximum 

observed ingestion rate of stage III shrimp larvae was 0.15 \ig C prey jig C 

individual"1 day"1 (Figure 21f) corresponding to 23% of their body carbon per day. 

The linear regression (Table 4) yielded an adjusted r2 of 0.594 (p = 0.001). 

Selection of Algal and Zooplankton Prey in Mixture- Stage I and III P. borealis 

clearance rates on algal species (T. nordenskioeldii, Rhodomonas sp., I. 

galbana) were compared to clearance rates of Artemia nauplii during a selection 

experiment (Figure 22). A student's t-test revealed stage I larvae 

had a significantly greater (p = 0.007) clearance rate on T. nordenskioeldii than 

stage III and stage III larvae had a significantly greater (p = 0.013) 
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Figure 21. Ingestion rates (I: Artemia nauplii individual"1 hr"1) of P. borealis stage I 
larvae (a) and stage III larvae (b) on Artemia nauplii (P: nauplii I"1), fit fit with a 
nonlinear regression (NL), rectilinear regression (RL) and or linear (L). 
Clearance rates (F: ml individual"1 hr"1) of P. borealis stage I larvae (c) and 
stage III larvae (d). Ingestion rates (IC: Artemia nauplii Lig C individual"1 day"1) 
of P. borealis stage I.larvae (e) and stage III larvae (f) in relation to prey 
carbon available (PC: Lig C L"1), fit with a nonlinear regression (NL), 
rectilinear regression (RL) and or linear (L). Note: scales are different 
between figures. 
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clearance rate on Artemia sp. nauplii. Little or no feeding on Rhodomonas sp. 

and /. galbana was observed by either stage I or III larvae (Figure 22). 

A One-Way ANOVA based on ranks showed that stage I clearance rates on 

Artemia and /. galbana were significantly different. Stage III clearance rates 

on Artemia. and /. galbana and also Artemia. and T. nordenskioedii were 

significantly different. 
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Figure 22. P. borealis stage I and stage III larvae prey selection experiment 
Clearance rates (ml individual"1 hr"1) for prey species including T. 
nordenskioeldii, Rhodomonas sp., I. galbana and Artemia nauplii. Significant 
differences exist between stage I and stage III larvae preying on T. 
nordenskioeldii (p = 0.007) and Artemia (p = 0.013). Stage I n value = 8 and 
stage III n values = 8. 
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Discussion 

The critical concentration of T. nordenskioeldii at which ingestion rate of stage 

I P. borealis larvae is approximately 15 000 cells individual"1 hr"1. The 

maximum ingestion rate of T. nordenskioeldii for stage III larvae (slight 

plateau at 65 000 cells individual"1 hr"1) was three times greater than stage I 

larvae (Figure 18a and 18b). In addition, the clearance rate of stage III on the 

diatom T. nordenskioeldii was much higher than stage I (Figure 18c and 18d). 

Considering that stage III larvae have a higher metabolic requirement than 

stage I, the carbon content of T. nordenskioeldii consumed was compared to 

the larval carbon content (|ig C individual"1). Stage III consumed a maximum 

88% of their body carbon in algae a day and stage I larvae consumed a 

maximum of 44% of their body carbon (Figure 18e and 18f). These results 

indicate that later stage larvae do consume algal prey. However, the 

concentrations used in this experiment were thought to far exceed 

concentrations observed in the natural environment; therefore it would be 

likely that phytoplankton alone are not adequate food to support larval 

survival in the field (Stickney and Perkins 1981). This proved true when 

examining phytoplankton availability in the field. Chlorophyll concentrations 

during 2005 field sampling showed maximum concentrations of 175 jig C L"1 

day "1 and during 2006 concentrations never exceeded 50 fxg C L"1 day"1 

(Figure 15). 
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The results suggest that algal size was not a factor for selection of algal prey 

by stage I or stage III larvae, as no significant difference in clearance rates 

was observed between the largest algal prey (7. nordenskioeldii) and the 

smallest (/. galbana) (Figure 21). Stage I larvae did not consume the medium 

size algal prey (Rhodomonas sp.) while stage III did. Laboratory observation 

revealed Rhodomonas sp. to be a very mobile alga in comparison to /. 

galbana and the non-flagellated T. nordenskioeldii. It is very possible 

Rhodomonas sp. was able to avoid the feeding current created by stage I 

larvae but not that of stage III. However, it is possible that since larvae were 

reared on T. nordenskioeldii and /. galbana, they may not have been adapted 

to feeding on Rhodomonas sp. In this experiment, this is the only difference in 

prey selectivity observed between younger and older stages when offered an 

alga mixture. 

Several P. borealis larvae feeding experiments have included Artemia sp. 

nauplii as a main food source (Harvey and Morrier 2003; Haynes 1979; 

Stickney and Perkins 1981; Wienberg 1982). Results from this experiment 

showed later stage larvae consume more zooplankton prey than earlier 

stages. The maximum ingestion rates observed for stage I and stage III 

larvae in prey concentrations of 500 L"1 was 1.21 Artemia nauplii individual"1 

hr"1 and 2.57 Artemia individual"1 hr"1, respectively (Figure 21a and 21b). 

However, the carbon weight specific ingestion rates were similar between the 

two stages. Both stage I and stage III larvae consumed a mean maximum of 
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15% of their body carbon a day (Figure 21 e and 21f). These results also 

suggest stage I larvae begin to reach a critical prey concentration at 150 

Artemia L"1(150 jj,g C L"1). An ingestion rate plateau was not found for stage 

III larvae. 

The presence of Artemia nauplii prey in the algal mixture experiment 

changed the selectivity of algae compared to the experiment using algal 

mixtures alone. Little or no clearance of Rhodomonas sp. and /. galbana was 

observed by either stage I or III larvae (Figure 22). More importantly, stage I 

larvae had a significantly greater clearance rate of the diatom, T. 

nordenskioeldii, than stage III and stage III larvae had a significantly greater 

clearance rate of Artemia sp. nauplii. 

The results from this selection experiment suggest younger and older stages 

differ in their selectivity for phytoplankton and zooplankton prey. When 

presented with both algal and nauplius prey, stage I larvae selectively preyed 

on both the larger algal prey (diatoms) and Artemia nauplii. Stage III, on the 

other hand, selectively preyed upon only Artemia sp. and not the algal prey. 
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CHAPTER III 

SUMMARY AND CONCLUSIONS 

This research investigated processes that contribute to the growth and survival of 

P. borealis larvae. A combination of physical variables (winds and temperature) 

and food availability led to a dramatically different set of conditions for P. borealis 

larvae during two successive years. In 2005, calm weather likely favored 

retention of larvae close to shore. Both phytoplankton and zooplankton prey were 

substantially more abundant in 2005 than in 2006 during the northern shrimp 

planktonic phase. Severe storms in 2006 likely affected larval transport and the 

limited prey availability during the larval period may have resulted in starvation or 

low growth rates contributing to high larval mortality. I predict very different levels 

in recruits per spawning female between the two years. 

In the future, larval distribution in relation to winds needs to be examined using a 

series of parallel transects. The North to South larval transport can then be 

tracked over space and time and variations in cross-shelf larval distribution can 

be examined. Ideally, the result that stage I larvae occur in similar depth as adult 

females observed by Inze et. al. (2007), should be confirmed by comparing 

contemporaneous measurements of distribution of ovigerous females and stage I 

larvae. 
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Results from both the laboratory feeding experiments and HPLC gut content 

analysis of wild-caught larvae identify diatoms and possibly other algae important 

components of the larval prey field, especially to stage I larvae. The transect 

survey results also implicate Balanus sp. larvae as a potentially important prey 

source for P. borealis larval growth and survival. The overwhelming abundance 

of Balanus sp. during the planktonic phase of northern shrimp and the 

confirmation with laboratory experiments of the ability of P. borealis larvae to 

consume a variety of prey types suggests that Balanus sp. may be an 

unidentified key contributor to larval success in the western Gulf of Maine. There 

is a need for future investigation on the importance of Balanus sp. nauplii as a 

prey item for P. borealis larvae. 

This research also provided detailed information about the feeding characteristics 

of P. borealis stage I and III larvae. This information can be applied in integrative 

models predicting survival probability of larvae during their first year. In laboratory 

experiments, earlier stage larvae preyed upon both diatoms and zooplankton, 

while later stages selectively preyed upon zooplankton. However, in the absence 

of available zooplankton prey, both larval stages consumed a variety of algal 

prey in order to survive. In future investigation, identifying and using natural 

zooplankton prey in larval feeding experiments would strengthen the relationship 

between field and laboratory studies. A detailed description of feeding mechanics 

for various larval stages is also necessary. 
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The ability to monitor variability of phytoplankton and zooplankton prey in the 

coastal zone and to quantify the match/mismatch hypothesis using models is 

necessary for prediction of climate forced environmental change on recruitment 

into the Gulf of Maine northern shrimp fisheries. This research is only one 

contribution to the overall effort needed for formulating and parameterizing 

feeding and growth of larval shrimp for incorporation into coupled models. 

Further fine-scale analysis of the spatial distribution and physical factors 

influencing larval transport is necessary. 
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APPENDIX A 

CHLOROPHYLL MEASUREMENTS 2005 

Chlorophyll a (jig L~1) concentrations sampled from various depths (m) at field 
transect stations 1, 4, 7 and 8 during 2005. 

Station 

1 

1 

1 

4 

4 

4 

4 

4 

4 

7or8 

7or8 

7or8 

7or8 

7or8 

7or8 

Depth (m) 

0 

10 

20 

0 

10 

20 

30 

40 

50 

0 

10 

20 

30 

40 

50 

02/09/05 

2.01 

1.21 

-
1.12 

0.81 

0.54 

0.49 

0.40 

0.37 

0.43 

0.40 

0.40 

0.33 

0.32 

0.30 

02/28/05 

5.11 

5.34 

-
2.77 

2.77 

2.70 

2.45 

2.03 

1.25 

0.38 

0.36 

0.41 

0.37 

0.44 

0.41 

03/07/05 

-
1.62 

1.61 

1.47 

1.63 

1.86 

-
0.67 

0.37 

0.63 

0.43 

0.45 

0.40 

0.40 

0.39 

03/23/05 

1.10 

1.48 

-
1.91 

2.33 

2.76 

1.79 

1.55 

0.91 

0.70 

0.72 

0.85 

0.54 

0.28 

0.20 

04/05/05 

3.06 

2.99 

2.24 

1.67 

8.05 

6.99 

6.25 

4.42 

1.91 

3.49 

5.43 

3.25 

0.74 

0.28 

0.32 

04/14/05 

1.14 

0.56 

-
1.41 

0.86 

1.55 

1.55 

0.72 

0.57 

1.43 

1.17 

0.36 

0.51 

0.40 

0.40 

05/04/05 

0.62 

0.58 

-
0.86 

1.37 

2.12 

3.65 

0.64 

0.56 

0.70 

1.63 

6.61 

1.72 

0.14 

0.12 

05/16/05 

4.07 

3.32 

2.15 

5.73 

3.03 

1.61 

1.64 

0.59 

0.38 

2.29 

2.47 

1.59 

0.56 

0.62 

0.64 

06/03/05 

3.75 

13.86 

3.07 

2.58 

6.43 

1.59 

0.78 

0.51 

0.33 

2.30 

0.72 

0.39 

0.31 

0.42 

0.33 
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APPENDIX B 

CHLOROPHYLL MEASUREMENTS 2006 

Chlorophyll a (jig L"1) concentrations sampled from various depths (m) at field 
transect stations 1, 4 and 7 during 2006. 

Station 
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1 
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4 

4 

4 
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7 

7 

7 

7 

7 
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0 
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40 
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20 

30 

40 
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0.20 

0.29 

0.22 
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0.16 

-

0.31 

0.30 

0.21 

0.22 

0.18 

0.11 

02/16/06 

0.30 

0.34 

0.28 

0.14 

0.15 

0.20 

0.27 

0.19 

0.11 

0.22 

0.40 

0.41 

0.34 

0.25 

0.09 

03/01/06 

0.40 

0.38 

0.30 

0.37 

0.56 

0.54 

0.49 

-

0.36 

-

-

-

--

-

-

03/08/06 

0.40 

0.47 

0.25 

0.53 

0.52 

0.46 

0.52 

-

0.47 

0.41 

0.41 

0.40 

0.44 

-

0.35 

03/29/06 

0.55 

0.44 

. 0.37 

0.29 

0.46 

0.39 

0.21 

0.22 

-

0.17 

0.35 

0.19 

0.13 

0.07 

-

04/27/06 

0.74 

1.35 

0.68 

0.55 

1.02 

0.64 

0.56 

0.37 

0.40 

-

-

-

-

-

-
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