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ABSTRACT

THE IDENTIFICATION, CHARACTERIZATION, AND EXPRESSION OF 

TRUNCATED HEMOGLOBIN GENES IN THE NITROGEN-FIXING 

ACTINORHIZAL SYMBIONT FRANKIA 

by

James Michael Niemann

University of New Hampshire, December, 2007 

Using a molecular approach (PCR), a group II truncated hemoglobin 

(trHb) gene was identified in several diverse isolates of Frankia. An analysis of 

three draft genome sequences for Frankia isolates EANIpec, Ccl3, and ACN14a 

also revealed the presence of second trHb, homologous to group I trHbs. 

Phylogenetic analysis suggested that the Frankia trHb genes were grouped 

based on their respective genotype and clustered closest to Mycobacterium trHb 

genes.

Frankia strain Ccl3 was grown under a variety of environmental stimuli to 

evaluate the expression of trHbN and trHbO genes. Nitrogen status did not 

affect expression of either gene, while oxidative stress caused a decrease in 

expression levels for both genes. The expression of trHbO increased under low 

oxygen environments, suggesting a role in increasing respiration rates. The 

expression of trHbN increased in response to spontaneously generated nitric 

oxide, suggesting a role in the protection from reactive nitrogen species.

x
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CHAPTER I

INTRODUCTION 

General Overview of Frankia

Frankia, a member of the order Actinomycetales, is the nitrogen-fixing 

bacterial partner of actinorhizal symbiosis. This gram positive, filamentous 

microbe is capable of fixing nitrogen in association with over 200 species of 

woody, dicotyledonous shrubs and trees comprising 25 genera of 8 plant 

families. There are several reviews that describe this plant-microbe interaction in 

much greater detail (Benson & Sylvester, 1993; Huss-Danell, 1997; Wall, 2000; 

Schwencke & Caru, 2001; Vessey et al., 2005).

As a contributor to the global biological nitrogen budget, the Frankia- 

actinorhizal symbiosis rivals the Rhizobium-\egume symbiosis and is responsible 

for ~50% of the terrestrially fixed nitrogen. Unlike Rhizobium, which are 

dependent on its host to fix nitrogen or require reduced partial pressures of 

oxygen, Frankia species are capable of fixing nitrogen in a free-living state under 

atmosphic partial pressures of oxygen. Another point of contrast is that most 

Frankia sp. have broad host-recognition specificity whereas Rhizobium sp. have 

a more narrow host-recognition specificity. In fact, some Frankia strains are 

capable of infecting a variety of plants from different families (Benson & 

Sylvester, 1993; Huss-Danell, 1997; Wall, 2000; Schwencke & Caru, 2001;

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Vessey et al., 2005). In either case, the nature of the relationship is the same: 

the microbe provides the plant with a source of fixed nitrogen and the plant 

provides a source of a carbon and energy.

The ecological range of actinorhizal plants is quite vast and they can be 

found on every continent with exception to Antarctica. These perennial, 

dicotyledonous angiosperms can be found inhabiting arctic tundra, glacial tills, 

alpines, temperate forests, wetlands, riparian zones, dry chaparral and xeric 

shrub lands, coastal dunes, and the tropics. The ecological and economical 

benefits of these important trees and shrubs are: soil restoration and land 

reclamation, biomass for pulp and timber, windbreaks, nurse cropping, fuelwood, 

use as ornamental and horticultural plants, and in some cases as a food source 

(Benson & Sylvester, 1993; Huss-Danell, 1997; Wall, 2000; Schwencke & Caru, 

2001; Richards et al., 2002; Vessey et al., 2005). Recently, the genomes of three 

phylogenetically distinct Frankia strains (Ccl3, ACN14a, and EANIpec) were 

sequenced (Normand et al., 2007ab). These genome sequence databases have 

generated a pipeline of information about this symbiosis, and raised many more 

questions about Frankia sp. and their relationship with actinorhizal plants.

Frankia is capable of developing two unique morphological characteristics: 

spores and vesicles (Benson & Sylvester, 1993; Huss-Danell, 1997; Wall, 2000; 

Schwencke & Caru, 2001; Vessey et al., 2005). Spores are produced in 

mulitlocular sporangia that stem from the hyphae terminally or intercalary. Each 

sporangium may contain hundreds of spores. Upon their release from the 

sporangia the spores may germinate when environmental conditions are

2
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favorable. Vesicles are expressed during nitrogen limiting conditions and are 

functionally analogous to heterocysts formed by nitrogen-fixing cyanobacteria. 

These specialized structures function to compartmentalize nitrogenase, the 

enzyme responsible for nitrogen fixation, and serve as the localized site of 

nitrogen fixation. Several lines of evidence indicate that the laminate layer of 

hopanoid lipids surrounding the vesicle structure prevents the diffusion of 

oxygen, protecting the oxygen-labile enzyme. As oxygen levels increase, the 

layers of lipid have been shown to proportionally thicken as to restrict further 

diffusion of oxygen (Berry et al., 2003).

General Overview of Truncated Hemoglobins

Truncated hemoglobins (trHbs) are small heme proteins within the 

hemoglobin (Hb) superfamily that includes bacterial flavohemoglobin, Vitreoscilla 

hemoglobin, (non-) vertebrate hemoglobin and myoglobin (Mb), and plant (non-) 

symbiotic hemoglobin (Pesce et al., 2000; Milani et al., 2001a; Wittenberg et al., 

2002; Sarma et al., 2005). TrHbs are distributed among eubacteria, 

cyanobacteria, protozoans, and higher plants. As of yet, there have been no 

trHbs discovered in archaea or metazoa. A number of trHbs have been identified 

and studied in various organisms including the following: the actinobacteria 

Mycobacterium sp. (Couture et al., 1999a; Milani et al., 2001ab; Ouellet, et al., 

2002; Pathania et al., 2002ab; Milani et al., 2003; Liu et al., 2004; Milani et al.,

2004), and Thermobifida fusca (Bonamore et al., 2005); the eubacteria Bacillus 

subtilis (Choudhary et al., 2005), Campylobacter jejuni (Wainwright et al., 2005),

3
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Nostoc sp. (Hill et al., 1996), and Synechocystis sp. (Couture et al., 2000; Scott & 

Lecomte, 2000); the unicellular eukaryotes Paramecium caudatum (Das et al., 

2001), Tetrahymena pyriformis (Korenaga et al., 2000) and Chlamydomonas 

eugametos (Couture et al., 1999b), and in the plants Arabidopsis thaliana (Watts 

et al., 2001), and Medicago truncatula (Vieweg et al., 2005). An analysis of 

sequenced genomes has also revealed the presence of these proteins in several 

other organisms (Wittenberg et al., 2002; Vuletich & Lecomte, 2006).

These trHbs have very little homology with other Hbs in the superfamily. 

The genes have undergone severe deletions resulting in a protein that is typically 

20-40 amino acids shorter than other globins (Pesce et al., 2000; Milani et al., 

2001a; Wittenberg et al., 2002; Sarma et al., 2005; Vuletich & Lecomte, 2006). 

Unlike the traditional three-on-three alpha helical configuration, trHbs display a 

novel two-on-two alpha helical sandwich that still conserves the classical globin 

fold (Figure 1). This two-on-two arrangement is composed of four main helices 

(B, E, G, and H) that form two anti-parallel helix pairs (B/E and G/H). The 

terminal end of the A helix is almost completely deleted, the CD-D region of the 

protein has been reduced to three residues, and the C-terminal H helix has lost 

about 10 amino acids. The F helix has been replaced with a “Pre-F extended 

loop” containing a single turn that houses the heme-coordinating F8 histidine that 

is conserved in all known hemoglobin.

In order to maintain the traditional globin fold in trHbs, three conserved 

glycine motifs are present to overcome the steric hindrance introduced from 

these extreme amino acid deletions. These glycine residues are located at the

4
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Figure 1. (A) A ribbon stereo view of Paramecium caudatum trHb tertiary 
structure, including the heme group. (B) A stereo view of the structural overlay of 
Chlamydomonas eugametos trHb (green) and sperm whale Mb (red). Images 
taken from Pesce et al., 2000.

5
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interhelical regions of the AB and EF helices and before the single turn in the 

Pre-F loop. Another residue almost completely conserved among all trHbs is a 

B10 tyrosine that aids in the stabilization of heme-bound ligand (Pesce et al., 

2000; Milani et al., 2001a; Wittenberg et al., 2002; Sarma et al., 2005; Vuletich & 

Lecomte, 2006). Together with B10 residue, the distal residues CD1, E7, E11, 

E15, and G8 are instrumental in the stabilization of heme interactions with ligand. 

Although the residues in these positions are not as conserved as the nearly 

universal B10Y, their distinct arrangements have evolved in certain bacterial 

groups, suggesting functional adaptation (Wittenberg et al., 2002; Milani et al.,

2005).

There are three distinct groups of truncated hemoglobins that have been 

designated group I (trHbN), group II (trHbO), and group III (trHbP). Within the 

group I trHbs are two distinct subgroups that branch phylogentically. Amino acid 

homology among trHb paralogs within the same species tends to be low, 

whereas the homology among trHb orthologs in different species is rather high. 

Many of the organisms studied thus far have been found to contain different 

numbers of trHb paralogs. For example, the actinobacteria of the Mycobacterium 

genus display several layers of complexity. Mycobacterium avium, an

opportunistic pathogen, possesses all three trHb types (N, O, & P); 

Mycobacterium tuberculosis, a facultative pathogen, has only two trHb types (N & 

O); and the obligate intracellular pathogen, Mycobacterium leprae, has only one 

trHb group (O) present in its genome (Wittenberg et al., 2002; Milani et al., 2005; 

Sarma et al., 2005). This trimming of paralog numbers and types within this

6
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genus correlates with their respective genome sizes, and is evidence for an 

effect of reductive evolution. The presence of gene paralogs suggests potential 

separate function for each trHb. Phylogenetic analysis of 111 trHb genes 

suggests that trHbO was the original gene present in the last common ancestor 

of actinobacteria and proteobacteria and that trHbN and trHbP genes arose 

through gene duplications and horizontal transfer events (Vuletich & Lecomte, 

2006). This hypothesis would also explain the presence of trHbO in every 

Mycobacterium genome and other organisms possessing trHb genes. 

Interestingly, Vuletich & Lecomte (2006) proposed that the trHb globin fold 

existed prior to the vertebrate globin fold.

Group I trHbs (trHbN) share the least amount of homology within their 

respective subgroup compared to trHbO and trHbP. Unlike the other trHbs 

groups, group I trHbs share a unique structural feature. The four main helices of 

these hemoglobin proteins create a protein tunnel lined with hydrophobic 

residues. This tunnel connects the molecular surface of the protein with the 

heme distal site to essentially create a path for ligand diffusion, storage, and/or 

multi-ligand reactions (Pesce et al., 2000; Milani et al., 2001ab; Wittenberg et al., 

2002; Milani et al., 2005; Vuletich & Lecomte, 2006). This structure has not been 

observed before in (non-) vertebrate Hbs.

Most research on trHbN has focused on the Mycobacterium sp. (Couture 

et al., 1999; Milani et al., 2001; Ouellett et al., 2002; Pathania et al., 2002b; and 

Milani et al., 2004). The Mycobacterium sp. glbN gene product (HbN) has been 

proposed to have catalytic function role as a oxygen-dependent nitric oxide (NO)

7
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dioxygenase to protect the microbe from reactive NO. During the intracellular 

infection of macrophages by Mycobacterium tuberculosis in lung tissue, the 

infected cells are surrounded by other macrophages and bombarded with 

reactive nitric oxide to kill the microbe. The heme of HbN stores an oxygen 

molecule, which reacts with nitric oxide (NO) to form harmless nitrate (Ouellett et 

al., 2002; and Pathania et al., 2002b).

In Nostoc sp., trHbN is postulated to function differently and may be 

involved in the process of nitrogen fixation (Hill et al., 1996). This hypothesis is 

supported by two lines of evidence: up-regulation of the gene when Nostoc is 

grown without a combined nitrogen source, and the location of glbN within the 

intergenic region of two nitrogen fixing genes, nifU and nifH. Other trHbN 

hemoglobins from organisms such as Tetrahymena (Korenaga et al., 2000), and 

Synechocystis (Couture et al., 2000; Scott & Lecomte, 2000) have been 

evaluated, but only for structural studies. Their functions remain to be 

determined or predicted.

Group II trHbs (trHbO) share more homology within their subgroup 

compared to their group I orthologs. These trHb proteins lack the hydrophobic 

ligand tunnel present in trHbN, but possess a shallow depression on the proximal 

side of the heme that is believed to act as a docking site for a ligand or the 

reaction of multi-ligands (Milani et al., 2005; Vuletich & Lecomte, 2006).

Similar to the trHbN paralogs, group II trHbs have also been extensively 

studied in Mycobacterium sp. (Pathania et al., 2002a; Milani et al., 2003; Liu et 

al., 2004, Visca et al., 2002ab; and Ascenzi et al., 2006). The trHbO protein is

8
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postulated to help increase M. tuberculosis respiration rates under hypoxic 

intracellular environments aiding its persistence in the lung where the microbe 

competes with lung tissue cells for oxygen. TrHbO is hypothesized to increase 

respiration by delivering oxygen to terminal cytochrome oxidases. This 

hypothesis is supported by the observation that these hemoglobins are localized 

at the cell membrane where oxygen delivery to these respiratory enzymes would 

be expected (Pathania et al., 2002a). The proposed function of M. leprae trHbO 

is analogous to that of M. tuberculosis trHbN to help protect the microbe from 

reactive nitrogen species produced from the host. In contrast with trHbN that 

acts as a catalyst to react oxygen with NO, the oxygenated form of trHbO is 

speculated to react directly with peroxinitrite (ONOO'), the toxic intermediate of 

NO reactions with superoxide radicals (Visca et al., 2002ab; and Ascenzi et al.,

2006). Other trHbO hemoglobins from organisms including plants (Watts et al., 

2001), Thermobifida fusca (Bonamore et al., 2005), Bacillus subtilis (Choudhary 

et al., 2005), and Campylobacter jejuni (Wainwright et al., 2005) have been 

evaluated primarily for structural characterization studies.

Among the subgroups, group III trHbs (trHbP) are the most highly 

conserved. Phylogenetically, these trHbs resemble the group II trHbs more 

closely than group I (Vuletich & Lecomte, 2006). Unlike their paralogs, trHbP 

lack the conserved glycine motifs important for maintaining the globin fold. 

Instead it is believed that they maintain their structural integrity through other 

interhelical interactions. Since no members of the group III trHbs have been 

characterized to date, little is known about their function.

9
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Hemoglobin in Frankia

Hemoglobin has been identified and/or isolated previously from the root 

nodules of various actinorhizal plants (Tjepkema, 1982; Tjepkema & Asa, 1987; 

Kortt et al., 1988; Jacobsen-Lyon et al., 1995; Pathirana & Tjepkema, 1995; 

Suharjo & Tjepkema, 1995; Sasakura et al., 2006). However, there had been 

speculation as to whether or not the hemoglobin isolated was being produced by 

the microbial symbiont or the host plant. Hemoglobins of similar molecular 

weight to trHbs were found associated with nodule fractions of Alnus glutinosa 

(Suharjo et al., 1995) and Myrica gale (Pathirana & Tjepkema, 1995) that were 

infected with Frankia hyphae. Hemoglobin eluted from Myrica gale nodule 

fractions corresponded to a molecular mass of 38.5 kDa and a smaller amount of 

16.7 kDa (Pathirana & Tjepkema, 1995). It was thought that the larger elution 

was a Hb dimer produced by the host plant and the smaller of the two came from 

Frankia. This led to subsequent studies aimed at isolating Hb from growing 

cultures of Frankia.

The isolation of hemoglobin from in vitro cultures of several genetically 

diverse Frankia isolates indicated that the microbes were capable of producing 

hemogloblin (Tjepkema et al., 2002; Beckwith et al., 2002). Several lines of 

biochemical evidence support the hypothesis that Frankia hemoglobins are 

trHbs. First, the molecular mass of the hemoglobins isolated from strain Ccl3 

and EANIpec are 14.1 and 13.4 kDa, respectively, which is consistent with 

known molecular mass of trHbs. The oxygen dissociation rates for the Ccl3 and 

EANIpec hemoglobins are 56 s'1 and 131 s'1, respectively. These values are

10
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high when compared to other hemoglobins, suggesting a role well suited for 

diffusion of oxygen over short distances.

Initial studies to determine the function of Frankia Hb showed no 

significant differences in hemoglobin production for cells grown in media with or 

without a combined nitrogen source (Beckwith et al., 2002). This result suggests 

that Frankia hemoglobin does not function in nitrogen fixation. Schwintzer and 

Tjepkema (2005) evaluated the production of Frankia strain Arl3 hemoglobin with 

respect to hypoxic (1%), ambient (20%), and hyperoxic (40%) oxygen 

concentrations in growth media with (N+) or without (N-) a combined nitrogen 

source. For N+ cultures, hemoglobin production was the greatest under hypoxic 

conditions, suggesting a possible role as an oxygen shuttle to terminal oxidases 

during respiration. Hemoglobin production under each of the oxygen conditions 

is lower for N- grown cultures compared to N+ cultures. These data support the 

idea that Frankia hemoglobin does not act to protect oxygen-labile nitrogenase.

Research Goals

The overall purpose of this study was to identify and characterize 

truncated hemoglobin genes in Frankia and to evaluate their expression under 

various environmental stimuli. This thesis began before the completion of the 

Frankia genome sequence projects and was initially focused on the hypothesis of 

a single hemoglobin gene. The original goal was to clone and sequence this 

gene. During the course of this work, the completed Frankia genomes revealed 

the existence of two hemoglobin paralogs. The first section of this thesis covers

11
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the molecular approaches used to sequence trHbO genes in several genetically 

diverse Frankia strains. These data along with gene sequences from other 

genomes were used to access the phylogeny of Frankia trHbN and trHbO genes 

with known homologues of other actinomycetes. The analysis of promoter 

regions and organization of these genes in their respective genomes was also 

evaluated to further characterize trHbN and trHbO in Frankia. The last section of 

this thesis focused on the use of RT-PCR and Real-time RT-PCR to evaluate the 

relative expression of trHbN and trHbO under different growth conditions to 

assess functionality. I hypothesized that the Frankia trHbO gene (glbO) is 

expressed under hypoxic conditions and may act as an oxygen shuttle for 

terminal respiratory oxidases. This role would allow Frankia to persist in nodules 

or other environments where oxygen levels are lower than ambient oxygen. I 

also postulated that the Frankia trHbN gene (g/foN) plays a role in nitric oxide 

detoxification under nitrosative stress conditions. This function would be useful 

in protecting Frankia from nitric oxide produced during oxidative and nitrosative 

bursts by the host plant during infection. Based on previous data, I did not 

expect a role for either of these hemoglobins in nitrogen fixation.

12
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CHAPTER II

MATERIALS AND METHODS 

Bacterial Strains and Growth Conditions

All of the Frankia strains used in this study and their respective growth 

incubation conditions are listed in Table 1. Cultures were grown and maintained 

in basal medium under nitrogen-fixing repressed conditions with the addition of 5 

mM NH4 CI as a nitrogen source, as described previously (Tisa et al., 1999). The 

basal medium consisted of MOPS-phosphate buffer (50 mM MOPS, 10 mM 

K2 HPO4 , pH 6.8) containing Metals Mix and a carbon source. Metals Mix 

contained the following components: 1 mM Na2 Mo0 4 , 2 mM MgS0 4 , 20 î M 

FeCh with 100 [xM nitrilotriacetic acid (NTA), and modified trace salts solution 

(Tisa et al. 1983). Streptomyces coelicolor NRRL B-16638 and Escherichia coli

HB101 were grown in YEME (Hopwood et al., 1985) at 28°C and Luria-Bertani
%

Broth (1% tryptone, 0.5% yeast extract, and 1% NaCI) at 37°C, respectively.

Gene Sequences Used

The following trHb sequences (with their respective accession numbers) 

were used in this study: S. coelicolor trHbO (CAB71209); Streptomyces 

avertimilis trHbO (BAC73082); Mycobacterium bovis trHbN (CAD96236), trHbO 

(CAD97358); Mycobacterium tuberculosis trHbN (CAA98320), trHbO
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Table 1. Frankia strains used in this study.

Frankia Strains Host Plant Carbon 
Source Used

ACN1ag Alnus viridis ssp. crispa Succinate

C e ll.7 Colletia cruciata Propionate

Ccl3 Casuarina cunninghamiana Propionate

CN3 Coriaria nepalensis Succinate
Cp11 propionate 
variant Comptonia peregrina Propionate

EANIpec Elaeagnus augustifolia Fructose

EuMc Elaeagnus umbellata Glucose

EUN1f Elaeagnus umbellata Propionate

incubation Phylogenetic 
Temp. (°C) Group______

30 Group I

28 Group III

30 Group I

30 Atypical

30 Group I

25 Group III

30 Group III

30 Group III

Reference

Lalonde etal, 1981 

Meesters ef a/, 1985 

Zhang et al, 1984 

Mirza ef al, 1994
Callaham et al, 1978; Tisa etal, 
1983
Lalonde etal, 1981 

Baker et al, 1980 

Lalonde etal, 1981



(CAA16047); Mycobacterium avium subsp. paratuberculosis trHbN (AAS03570), 

trHbO (AAS04608), trHbP (AAS05726); Mycobacterium leprae trHbO 

(CAC31634); Corynebacterium glutamicum trHbO (CAF21110); Corynebacterium 

efficiens trHbO (BAC19155); Corynebacterium diptherae trHbO (CAE50330); 

Sperm whale (Physeter catodon) Mb (P02185). TrHbO sequences from 

Arthrobacter sp., Brevibacterium linens, Kinecoccus radiotolerans, Leifsonia xyli, 

Nocardia farcinica, and Thermobifia fusca were all obtained using the Integrated 

Microbial Genomes System from the Joint Genome Institute 

(http://img.jgi.doe.gov/cgi-bin/pub/main.cgi). Preliminary sequence data for 

Frankia strains EANIpec and Ccl3 trHbO and trHbN were obtained from D. 

Benson and L. Tisa. Preliminary sequence data for strain ACN14a trHbO and 

trHbN were obtained from P. Normand.

Polymerase Chain Reaction (PCR)

Genomic DNA (gDNA) from Frankia was isolated using the CTAB method 

(Wilson, 1989). All of the primer sets used in this study are listed in Table 2. A 

202 bp trHb amplicon was amplified by PCR with the primer set TrHb-F (51- 

GTCGGCGGGGAGGAGACCTTC-3') and TrHb-R (5'-CGTGCCGCATCCGC 

AGCCGCGG-3') and 250ng of template DNA. The PCR was performed in 50 pi 

reaction volumes with 0.5 pM of each primer using the Failsafe™ PCR System 

(Epicentre Tech.) according to the manufacturer's recommendations. The TrHb 

primers were designed from S. coelicolor (bp positions 61 to 81 and positions 

241 to 262) within conserved regions of the trHbO gene between S. coelicolor,
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Table 2. Primer sets used in this study for PCR, RT-PCR, and qRT-PCR.

Primer Primer Sequence Target Product Size Reference
TrHb-F

TrHb-R

5'-GTC GGC GGG GAG GAG ACC TTC-3' 

5-CGT GCC GCATCC GCA GCC GCG G-3'
HbO
gene 2 0 2  bp Niemann etal., 2005

HbNcci92
HbNcci219

5'-CAC CCC TCT TTG CCA ACC-3' 
5'-CCT CAC CGA CGC CCA CTT-3'

trHbN
mRNA 127 bp This study

HbOcci299
HbOcci375

5'-GGG ACG CCT GGC TGA AGA-3' 
5'-CCA GAG CTG CCT GTC GAG ATC-3'

trHbO
mRNA 76 bp This study

DB41
DB44

5'-TTC TTC ATC CAC GAC CCG-3' 
5'-GGC TTC GGC ATG AAG GT-3'

glnA
gene 477 bp Clawson et al., 2004



M. tuberculosis, M. leprae, and C. glutamicum identified using ClustalX cluster 

analysis software (Thompson et al., 1997). Thermocycling parameters were as 

follows: i) initial denaturation step at 95°C for 2 min; ii) 35 cycles of denaturization 

at 95°C for 1 min, primer annealing at 61 °C for 45 sec, and primer extension at 

72°C for 1 min; and iii) a final extension step at 72°C for 5 min. The amplicons 

were resolved using agarose gel electrophoresis in a submarine gel 

electrophoresis unit (Hoefer Scientific Instruments, San Francisco, CA) as 

described by Sambrook et al. (1989). The agarose gel was cast with 2% 

agarose in a 1X Tris-Borate-EDTA (TBE) electrophoresis buffer (89mM Tris 

base; 89mM Boric Acid; 50mM EDTA, pH 8.0) (Sambrook et al., 1989). The 

electrophoresis was performed in this same buffer.

DNA Sequencing and Phylogenetic Analyses

PCR products were purified with a Qiaquick® PCR Purification Kit 

(Qiagen), according to the manufacturer's recommendations, and used as a 

template for DNA sequencing reactions with a DYEnamic ET terminator cycle 

sequencing Kit (Amershan Pharmacia Biotech) in an ABI PRISM 377 sequencer 

(Perkin Elmer). Both the TrHb-F and TrHb-R primers were used for these 

sequencing reactions. Sequence analyses were performed using the SeqEd 

program version 1.0.3 (Applied Biosystems). The sequences were compared to 

those available from the GenBank and EMBL database using the BLAST 

program (Altschul et al., 1997). Partial sequences of the Frankia trHb amplicons 

have been deposited in GenBank under the following accession numbers:
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AY768545 (EUN1f), AY768546 (EANIpec), AY768547 (EuMc), and AY768548 

(CN3). Frameplot 2.3.2 (Ishikawa and Hotta, 1999) was used to establish an 

open reading frame for each sequence. Hemoglobin sequences were aligned 

using ClustalX (Thompson et al., 1997). For phylogenetic analysis, neighbor- 

joining trees were constructed from 1000 bootstrap replicates using PAUP 

4.0b10 (Swofford, 2003).

Sequence Analyses: Gene Neighborhoods and Promoter Analyses

The gene neighborhoods of Frankia trHbs and of known trHb genes in 

other actinomycetes were compared using the gene neighborhood program in 

the Integrated Microbial Genome database through the Joint Genome Institute 

(http://img.jgi.doe.gov/cgi-bin/pub/main.cgi). Putative promoters and ribosomal 

binding sites (RBS) of Frankia trHbs were identified by manually searching the 

upstream gene regions available from the preliminary sequence data from 

EANIpec, Ccl3, and ACN14a draft genomes.

RNA Extraction Methods

Prior to any RNA work, all reagents and glassware were directly treated 

with or prepared from 0.1% diethylpyrocarbonate (DEPC) water. Reagents were 

treated for at least 1 h followed by autoclaving to inactivate the DEPC.

Two methods of total RNA extraction, RNAwiz (Ambion, Foster City, CA), 

a commercially available reagent and the Triton X-100 boiling method (Sung et
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al., 2003), were tested and compared to evaluate which method would provide 

the highest quality and yield of RNA.

For these initial experiments, 400 mg of frozen EANIpec hyphae stored at 

-80° C were thawed in 1 mL of Tris-EDTA (TE) buffer (10 mM Tris-HCI, pH 7.4; 1 

mM EDTA, pH 8.0) and fragmented with a tissue homogenizer. The fragmented 

hyphae were collected by centrifugation at 12,000 x g for 15 min. After the 

supernatant was removed, the pellet was resuspended in 1ml of Tris-EDTA 

buffer. This wash step was repeated two more times. The final pellet was 

resuspended in 600uL of TE buffer and the cell suspension was aliquoted into 

two separate tubes of equal volume (300uL containing 200 mg of cell mass each) 

to be used for each RNA isolation method.

RNAwiz® extraction method. The manufacturer’s basic protocol was 

followed to extract total RNA from Frankia EANIpec, and an enzymatic digestion 

was utilized to aid in cell lysis. The cell suspension was incubated with lysozyme 

(Sigma) at 1 mg/mL (final concentration) at 37°C. After 15 min, 800 ul RNAwiz® 

reagent was added to the suspension, which was mixed with a vortex mixer. 

After 5 min incubation at room temperature, chloroform (0.2X starting volume) 

was added to the homogenate. The tube was repeatedly inverted for 20 sec and 

incubated at room temperature for 10 min. The tube was centrifuged at 10,000 x 

g for 15 min at 4°C to separate the phases. The aqueous phase was transferred 

to a fresh tube and 0.5 X starting volume of DEPC-treated water was added to it. 

After the tube was mixed well, one starting volume of isopropanol was added and 

mixed to precipitate the RNA. Following a 10 min incubation at room
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temperature, the tube was centrifuged at 1 0 , 0 0 0  x g in a microfuge for 15 min at 

4°C to recover the RNA. The RNA pellet was washed with 1ml of cold 75% 

ethanol. The RNA pellet was centrifuged at 10,000 x g for 15 min at 4°C. After 

the ethanol was decanted, the pellet was air dried for 15 min. The RNA pellet 

was resuspended in 200 ul of DEPC-treated water and stored at -80°C.

Triton X-100 Boiling Method. The TE-washed cells (200ug) were 

concentrated by centrifugation at 10,000 x g for 15 min and suspended in 1ml TE 

buffer (pH 7.5) containing 0.2% Triton X-100. The cell suspension was incubated 

for 10 min at 100°C. The tops of the microfuge tubes were taped down to 

prevent them from popping open. After the incubation, the tubes were 

transferred to an ice bath to cool. An equal volume of chloroform was added and 

the tubes were inverted several times. The tube was centrifuged at 13,000 rpm 

in a microfuge for 10 min at 4°C to separate the phases. The aqueous phase 

was transferred to a fresh microfuge tube and the chloroform extraction step was 

repeated two more times with the aqueous phase. The RNA from the aqueous 

phase was precipitated by adding 1/10th volume of 3 M sodium acetate (pH 5.2) 

and 2 volumes of absolute ethanol, and incubation at -20°C overnight. The RNA 

was recovered by centrifugation at 10,000 x g in a microfuge for 15 min at 4°C. 

The RNA pellet was washed twice with 1.5 mL of cold 75% ethanol by 

centrifugation at 10,000 x g in a microfuge for 15 min at 4°C, which was followed 

by a final wash with 1 mL of cold absolute ethanol. After centrifugation at 10,000 

x g for 15 min at 4°C, the ethanol was removed and pellet was air dried for 15
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min. The RNA was suspended in 200ul of DEPC-treated water and stored at - 

80°C.

For the initial RNA experiments, 50ul aliquots from each RNA sample 

were treated with DNasel using a DNA-free™ kit (Ambion), RNase A (Qiagen), or 

both. Five microliters of 10X DNase buffer was added to each tube. Two units of 

DNasel and/or 7 U of RNase A were added to the RNA samples and incubated 

at 37°C for 30 min. These RNA samples were used for the determination of the 

RNA quality and quantity (see below).

Determination of RNA Quality and Quantity

RNA was quantified by measuring the absorbance at 260 nm using a 

Beckman DU 640 spectrophotometer (Beckman Instruments, Inc.). The quality 

of RNA was tested by separating 1 ug RNA on a 1.2% (w/v) agarose gel in 

MOPS electrophoresis buffer (20 mM MOPS, 5 mM sodium acetate, 1 mM 

EDTA, pH 7.0) containing 0.66 M formaldehyde to denature the RNA. One 

microgram of RNA samples suspended in 6 X Loading buffer were used to load 

the gel. Gels were run in 1X MOPS buffer at 70V and stained in ethidium 

bromide to visualize strong 5S, 16S, and 23S rRNA bands.

Environmental Test Conditions

Unless otherwise mentioned, Frankia strain Ccl3 cultures were incubated 

under the following conditions to observe their effect on gene expression. For 

these experiments 1-2 week old static cultures grown at 28°C were used. The
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cells were washed three times with MOPS-phosphate buffer by centrifugation at 

10,000 x g prior to inoculation. To test the effect of combined nitrogen on TrHb 

production, Frankia strain Ccl3 cultures were incubated for 6  days at 28°C in 

propionate growth medium lacking a combined nitrogen source or in propionate 

growth medium containing NH4 CI as nitrogen source. To test the effect of 

oxygen, cultures were grown under aerated conditions and under static culture 

conditions for 7 days. For the aerated culture, a constant stream of sterile air was 

bubbled through the culture by the use of a sparger and an aquarium pump. For 

oxidative stress conditions, cultures were incubated for 4 days in propionate- 

NH4 CI growth medium containing 0.1 mM paraquat, 0.1 mM H2O2 , or no additions 

(control cultures). For nitrosive stress conditions, cultures were incubated for 3 h 

in propionate-NH4 CI growth medium containing either 400 p,M S-nitroso-N- 

acetylpenicillamine (SNAP) (Calbiochem), and/or 400 fxM carboxy PT10 

(Cayman). SNAP spontaneously generates NO and carboxyl PT10 is a NO 

chelator.

One-Step Reverse Transcriptase PCR (RT-PCR)

Total RNA was isolated from Frankia strains cultures under the test 

conditions using the Triton X-100 method described above. The final recovered 

RNA pellet was resuspended in 200 uL of DEPC treated water. DNA was 

removed from RNA samples with DNase treatment using RNase-free DNasel 

(New England Biolabs). RNA samples were mixed with 5 U of DNasel, 1 /10th 

volume of 10X DNase buffer, 200 U of RNaseOUT (Invitrogen) and the reaction
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mixture was brought to a final volume of 100 uL with DEPC-treated water. The 

samples were incubated at 37°C for 30 min. To stop the reaction, 1 uL of 0.5 M 

EDTA was added to each reaction and the nuclease was heat inactivated by 

incubating at 75°C for 10 min. RNA samples were stored at -80°C until they 

were used for RT-PCR reactions.

RT-PCR was performed using a Titan One-Tube RT-PCR System (Roche) 

according to the manufacturer's recommendations. The reactions were 

performed in 50 pi volumes with 200 ng of RNA template and 0.4 pM of each 

primer. For amplification of TrHbN mRNA, the primers, HbNcci92 (5'- 

CACCCCTCTTTGCCAACC-3') and HbNcci219 (5'-CCTCACCGACGCCCACTT- 

3') were used, while the primers HbOcci299 (5'-GGGACGCCTGGCTGAAGA-3') 

and HbOcci375 (5'-CCAGAGCTGCCTGTCGAGATC-3') were used for 

amplification of TrHbO mRNA. To avoid non-specific priming from their 

respective paralogs these trHb primers were chosen to bind to non-homologous 

regions of the TrHbN and TrHbO genes. These regions were identified using 

ClustalX cluster analysis software. For the amplification of glnA mRNA, the 

primers DB41 (5'-TTCTTCATCCACGACCCG-3') and DB44 (5'-GGCTTCGGCAT 

GAAGGT-3') were used (Clawson et al., 2004).

Thermocycling parameters for trHbN and trHbO were as follows: i) reverse 

transcription at 55°C for 30 min; ii) initial denaturing at 94°C for 2 min; iii) 9 cycles 

of denaturing at 94°C for 20 sec, primer annealing at 55°C for 30 sec, and primer 

extension at 6 8 °C for 45 sec; iv) 24 cycles of denaturing at 94°C for 20 sec, 

primer annealing at 55°C for 30 sec, and primer extension at 6 8 °C for 50 sec with
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an additional 5 sec added to each progressive cycle; and v) a final extension step 

at 6 8 °C for 4 min. Thermocycling parameters for GlnA were the same as 

described for trHbN and trHbO, except that the annealing temperature was 51 °C. 

The amplicons were resolved by gel electrophoresis in 2% agarose matrix in 1X 

Tris-Borate-EDTA (TBE) electrophoresis buffer (pH 8.0) according to Sambrook 

et al. (1989). The respective band intensities were quantified using Quantity 

One® software (BIORAD).

Preparation of cDNA for Real-Time RT-PCR

The Triton X100 method described above was used to isolate the total 

RNA from ~2 mg (dry weight) of Frankia strain Ccl3 grown under the test 

conditions described in the section above. DNA was removed from RNA 

samples with DNase treatment using RNase-free DNasel (New England 

Biolabs). RNA samples were mixed with 5U of Dnasel, 1/10th volume of 10X 

DNase buffer, 200U of RNaseOUT (Invitrogen) and brought to a final volume of 

100 uL with DEPC-treated water. The samples were incubated at 37°C for 

30min. To stop the reaction, 1 uL of 0.5 M EDTA was added to each reaction 

and the nuclease was heat inactivated by incubating at 75°C for 10 min. Three 

successive extraction steps with equal volumes of water-saturated phenol, 

phenol:chloroform (50:50), and chloroform were performed on the DNase-treated 

RNA to remove inactivated DNase and purify the RNA . The DNase-treated RNA 

was precipitated by the addition of a 1/10th volume of 3M sodium acetate (pH 5.2) 

and 2.5 volumes of ice-cold absolute ethanol followed by incubation at -80°C
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overnight. The precipitated RNA was collected by centrifugation 10,000 x g in a 

microfuge for 15 min at 4°C and washed with cold 80% ethanol. The washed 

pellet was air-dried and suspended in nuclease-free water and stored at -80°C 

until used for Real-Time PCR.

cDNA synthesis was performed using Superscript III Reverse 

Transcriptase (Invitrogen) according the manufacturer’s directions. Both trHbN 

and trHbO mRNA were reverse transcribed separately in 20 uL reaction volumes 

using the HbNcci219 and HbOcci375 gene-specific primers, respectively. Each 

reaction mixture contained 1uL 10 mM dNTP mix (Invitrogen), 1 uL of the gene- 

specific reverse primer (2 pmol), 1.5 ug RNA template and nuclease-free water to 

a final volume of 13 uL. The reaction mixture was incubated at 65°C for 5 min., 

and placed on ice for at least 1 min. To each tube, 4 uL 5X First-Strand buffer, 1 

uL 0.1M DTT, 1 uL of RNaseOUT (Invitrogen), and 1 uL of Superscript III RT 

(200 U) were added, and the mixture was incubated at 55°C for 50 min. The 

reactions were inactivated by incubating at 70°C for 15 min.

To remove the RNA from cDNA samples, 1 ul (2U) of Ribonuclease H 

(Invitrogen) and 69 ul of DEPC-treated H20  were added to each tube, and the 

samples were incubated at 37°C for 30 min. The addition of nuclease-free water 

prior to extraction was necessary to increase the sample volume for cDNA 

recovery. cDNA was extracted with the addition of an equal volume of 25:24:1 

phenol:chloroform:isoamyl alcohol (saturated with 10mM Tris-HCI, 1mM EDTA, 

pH 8.0). After the samples were mixed on a vortexer for 30 sec, they were 

centrifuged at 13,000 rpm for 2 min at 4°C and the aqueous phase was
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transferred to a fresh microfuge tube. cDNA was precipitated with the addition of 

1/10th volume of 7.5M ammonium acetate and 2.5 volumes of chilled absolute 

ethanol. The cDNA was recovered by centrifugation at 10,000 x g for 20 min. at 

4°C. After the supernatant was decanted, the pellet was washed with chilled 

80% ethanol, inverting the tube several times, and centrifugation at 1 0 , 0 0 0  x g for 

5 min. at 4°C. The pellet was suspended in 35ul nuclease-free water.

Real-Time RT-PCR

Gene transcripts were quantified by amplification of cDNA with Power 

SYBR® Green PCR Master Mix (Applied Biosystems) according to the 

manufacturer’s recommendations. The same primers specific to trHbN 

(HbNcci92 and HbNcci219) and trHbO (HbOcci299 and HbOcci375) that were 

used for the RT-PCR experiments were used for Real-time PCR. Prior to 

running experimental samples the primer concentrations were optimized to 

determine the minimum primer concentrations that gave the lowest threshold 

cycle (Ct) and maximized the magnitude of the signal while minimizing non

specific priming. One hundred nanograms of Frankia strain Ccl3 gDNA was 

used in a series of reactions that utilized various combinations of forward and 

reverse primer concentrations (i.e. 50, 300, and 900 mM). The exact protocol for 

primer optimization is outlined in the SYBR® Green PCR Master Mix product 

insert. For the experimental conditions, each reaction was performed in a 50 uL 

total volume with 10ul of cDNA (~1.5ug), 1 ul each of forward and reverse specific 

primers (10 pmoles each), 25ul of 2X Power SYBR® Green PCR Master Mix,
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and 13ul of nuclease-free water using MicroAmp® Optical reaction tubes and 

MicroAmp® Optical caps (Applied Biosystems). Triplicate amplication of all 

standards, unknowns and controls was performed in an ABI GeneAmp® 5700 

Sequence Detection System adapted on a 96-well GeneAmp® 9600 PCR 

System (Applied Biosystems). Thermocycling parameters were as follows: 

activation of enzyme at 95°C for 10 min; followed by 40 cycles of a two-step 

cycle denaturization at 95°C for 15 sec and primer annealing/extension at 63°C 

for 1 min. Data analysis was performed using the GeneAmp® 5700 Sequence 

Detection System Software (v. 1.3) (Applied Biosystems).

A standard curve was generated from a dilution series of Frankia gDNA (1 

ng to 1 ug gDNA) and also used to determine the efficiency of the primer sets. 

The standard curve and experimental reactions were also used to establish 

melting curves for each individual reaction. This determined the specificity of the 

primer sets and identified any nonspecific amplification that may have occurred. 

Upon completion of thermocycling process, each of the reactions were heated 

from 60°C to 90°C and the fluorescence was measured sequentially as the PCR 

amplicons melted apart. Upon plotting the derivative of the fluorescence vs. 

temperature, any non-specific priming could be identified as a peak observed 

separate from the peak of interest.

The threshold value for fluorescence of the reactions (samples and 

standard curves) was set manually. The number of reaction cycles in which the 

fluorescence of SYBR green in an individual reaction crossed the threshold was 

identified as the threshold cycle (Ct). The Ct of unknown cDNA samples was
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compared to the Ct values of the standard curve to determine the relative amount 

of mRNA that was present. The PCR efficiencies for each primer set were 

determined by plotting In (T) vs. Ct, where T is template concentration.
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CHAPTER III 

RESULTS

The Molecular Identification of Truncated Hemoglobin in Frankia

Identification of Frankia trHb amplicons.

An analysis of trHb amino acid sequences indicates that the 

actinomycetes form a single clade within the trHbO subgroup of truncated 

hemoglobins (Wittenberg et al., 2002). A PCR approach was used to identify 

truncated hemoglobin (trHb) genes in Frankia. Sequence alignment of trHbO 

genes from the actinomycetes S. coelicolor, M. leprae, M. tuberculosis, and C. 

glutamicum revealed conserved regions within the trHbO gene (HbO) that were 

potential candidates for primer design (Fig. 2). These aligned gene sequences 

were used to create the primers TrHb-F and TrHb-R corresponding to the base 

pair positions 61 to 81 and 241 to 262 of the S. coelicolor trHbO gene. The 

primer set was tested on 7 Frankia isolates representing phylogenetically distinct 

strains and yielded the expected 200bp amplicon (Fig. 3). A larger amplicon 

about 400bp was also observed with strain Cc1.17. As expected, S. coelicolor 

yielded a 200bp amplicon while E. coli, which is not known to produce a trHb 

(Wittenberg et al., 2002), failed to yield any PCR product.
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S. coelicolor ATGGACGGCGTGAATGAGATTCGGCGCGGCACGCTTCAGGAGCAGACCTTCTACGAGCAG 60
C. glutamicum ------------------------ATGACA-ACCTCAG----AAAATTTTTATGATTCT 30
M. leprae  ATGGATCAGGTGCAG---CAATCTTTCTACGACGCT 33
M. tuberculosis --------------------------------ATGCCG---AAGTCTTTCTACGACGCG 24

*  *  *  * *  * *  * *

S. coelicolor GTCGGCGGGGAGGAGACCTTCCGCCGGCTCGTCCACCGCTTCTACGAGGGGGTTGCCGAG 120 
C. glutamicum GTGGGCGGCGAGGAAACGTTTTCCCTCATCGTCCACCGTTTTTATGAACAGGTCCCCAAC 90 
M. leprae ATCGGCGGGGCCGAGACCTTCAAAGCGATTGTGTCACGCTTTTATGCGCAGGTTCCTGAA 93
M. tuberculosis GTCGGCGGCGCCAAAACCTTCGACGCGATCGTGTCGCGTTTCTATGCGCAGGTCGCCGAG 84

* * * * * * *  * * * * *  * * *  * * * * * * *  * * *  *  *

S. coelicolor GACCCGATCCTGCGGCCGATGTATCCCGAGGAGGACCTGGGTCCGGCCGAGGACCGCTTC 180 
C. glutamicum GACGATATTTTAGGCCCGATGTATCCGCCGGATGATTTTGAGGGCGCCGAGCAGCGTCTA 150 
M. leprae GATGAGATACTGCGTGAGTTGTATCCCGCAGACGACCTGGCCGGCGCCGAAGAACGATTG 153
M. tuberculosis GACGAAGTACTGCGGCGGGTGTACCCCGAAGATGACTTAGCCGGCGCCGAGGAACGATTG 14 4

* *  *  *  *  *  * * * *  * *  * *  * *  *  *  * * * * *  *  * *  *

S. coelicolor GCGCTGTTCCTCATGCAGTACTGGGGCGGCCCCACGACGTACAGCGACAACCGCGGCCAC 240 
C. glutamicum AAGATGTTCCTCAGCCAGTACTGGGGCGGCCCGAAGGATTATCAGGAGCAGCGTGGACAC 210 
M. leprae CGCATGTTCCTCGAGCAATACTGGGGTGGTCCGCGAACATACTCCAGTCAACGCGGCCAT 213
M. tuberculosis CGGATGTTCCTCGAGCAGTACTGGGGCGGCCCACGAACCTACTCGGAGCAGCGCGGCCAC 204

* * * * * * * *  * *  * * * * * * * *  * *  * *  * *  *  * *  * *  * *

S. coelicolor CCGCGGCTGCGGATGCGGCACGCCCCCTTCGCCGTCGACCGGGCCGCGCACGACGCCTGG 300 
C. glutamicum CCTCGTCTGCGCATGCGTCACGTCAATTACCCCATCGGCGTCACGGCAGCGGAGCGTTGG 27 0 
M. leprae CCGCGGTTGCGTATGCGTCACGCTCCTTTCCGGATCACTGCCATCGAGCGCGACGCTTGG 273
Af. tuberculosis CCCCGATTGCGGATGCGGCATGCCCCGTTTCGGATCTCGCTCATCGAACGCGACGCCTGG 2 64

* *  * *  * * * *  * * * * *  * *  *  *  * *  * *  * *  * * *

Figure 2. Cluster analysis of trHbO genes from actinomycetes used to design Frankia trHb primers. Regions used to 
design the forward (trHb-F) and reverse (trHb-R) primers are highlighted in blue and green, respectively. Conserved base 
pairs are denoted by asterisks (*).
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Figure 3. Agarose gel electrophoresis of trHb PCR products (202bp) amplified 
using TrHb-F and TrHb-R primers and DNA template from Frankia strains and 
controls. Lanes: (1 and 9) 100bp DNA ladder, (2) EANIpec, (3) EUN1f, (4) 
EuMc, (5) CN3, (6 ) Ccl.17, (7) ACNIag, (8 ) Cpl1-P, (10) S. coelicolor, positive 
control, (11) no template, negative control and (12) E. co li, negative control.
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Sequencing TrHbO Amplicons from Frankia.

From these samples, four (CN3, EANIpec, EuMc, arid EUN1f) were 

sequenced and compared to the trHbO gene sequence of Streptomyces 

coelicolor (Fig. 4). During the course of this study, three genome sequencing 

projects were initiated for Frankia strains EANIpec, Ccl3, and ACN14a, and the 

full trHbO genes for these isolates were identified from the draft sequences. The 

overall DNA similarities among the Frankia trHbO partial sequences ranged from 

75% for strains ACN14a and CN3 to 87% for strains CN3 and EuMc (Table 3). 

Similarities observed between S. coelicolor and the Frankia isolates ranged from 

69% (EUN1f, Ccl3) to 76% (EuMc). A database search using BLAST (Altschul et 

al., 1997) also showed high DNA similarities between these sequences and 

trHbO genes of other actinomycetes (Table 3).

Wittenberg et al. (2002) identified several important amino acid residues of 

trHbs in relation to heme coordination. Frameplot analysis (Ishikawa and Hotta, 

1999) of the Frankia trHbO partial sequences determined their predicted amino 

acid sequences. The alignment of six predicted full and partial amino acid 

sequences is shown in Figure 5. All six Frankia sequences contained residues 

(B9F, B10Y, CD1Y, E7A, and E14F) that were unique to the actinomycete trHbO 

subgroup. These data including their high DNA sequence similarity to other 

trHbO genes, supports the presence of a trHbO in Frankia.

Phylogenetic analysis of truncated Hb sequences.

An analysis of the draft genome sequences for the three Frankia strains

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R
eproduced 

with 
perm

ission 
of the 

copyright ow
ner. 

Further reproduction 
prohibited 

w
ithout perm

ission.

EANIpec ---------- CGCGCGTTGGTGGCCAGGTTCTACGAGGGGGTGGCCAGCGACCCGGTGCT 50
EUNlf ---------- c g g g c g c t g g t g g c a c g g t t c t a c g a g g g t g t g g c g a g c g a c c c t g t c c t 50
CN3 ---------- CGGCGGCTCGTGGCCCGATTCTACGAGGGGGTCGCCGCCGACCCGGTGCT 50
Eullc ---------- CGCCGACTGGTGGCGCGGTTCTACGAGGGCGTCGCCACCGACCCGGTCCT 50
S. coelicolor GGAGACCTTCCGCCGGCTCGTCCACCGCTTCTACGAGGGGGTTGCCGAGGACCCGATCCT 

** * ** * *********** ** ** ***** * **
120

EANIpec CCGGCCGCTCTACCCCGACGAGGATCTGGCGGCGGCCGAGGAGCGGCTGCGGCTGTTCCT 110
EUNlf GCGCCCGCTCTACCCGGACGAGGAGCTTGCCGAGGCCGAGGAGCGGCTGCGGATGTTCCT 110
CN3 GCGCCCGCTCTACCCGGAGGAGGACCTCGGCCCAGCCGAGGAGCGGCTGCGGCTCTTCCT 110
Eullc GCGGCCGCTCTACCCGGAGGAGGACCTCGGCCCGGCTGAGGAGCGCCTGCGGTTGTTCCT 110
S. coelicolor GCGGCCGATGTATCCCGAGGAGGACCTGGGTCCGGCCGAGGACCGCTTCGCGCTGTTCCT 

** *** * ★* ** ** ***** ** * ** ***** ** * * * *****
180

EANIpec CATCCAGTACTGGGGCGGGCCGACGACGTACAGCGAGCAGCGCGGCCAT----------- 159
EUNlf CATCCAGTACTGGGGTGGGCCGTCGACGTACAGCGAGCTGCGGGGGCAT----------- 159
CN3 GATCCAGTACTGGGGCGGGCCGACGACCTACCACGAGCGGCGTGGCCAT----------- 159
Eullc GATCCAGTACTGGGGCGGCCCGGCGACCTACCACAAGAAGCGCGGCCAT----------- 159
S. coelicolor CATGCAGTACTGGGGCGGCCCCACGACGTACAGCGACAACCGCGGCCACCCGCGGCTGCG 

** *********** ** ** **** *** * * ** ** **
240

Figure 4. Alignment of Frankia trHb amplicon sequences with the S. coelicolor trHbO gene sequence. Conserved base 
pairs are denoted by asterisks (*).
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Table 3: Percent identity of TrHb DNA sequences. Values on the bottom of the table are scores for partial trHb 
sequences. Values on the top of the table are scores for complete trHb gene sequences. Yellow (£ 70%), green 
(between 41 % and 69%), and blue (< 40%).
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--------------------- AAAAAA---BBBBBBBBBBBBBB--CCCCCC— EEEEEEE
EANIpec VAQNGPVNQPSPARP— RADFYEAVGGEATFRALVARFYEGVASDPVLRPLYPDEDLAAA 58
EUNlf ---------------------------------- RALVARFYEGVASDPVLRPLYPDEELAEA 29
CcI3 VPQNGRVNQSPPRTLP-ISSFYDAAGGEPTFRKLVARFYQGVANDPVLRPLYPEEDLTGA 59
ACN14a ------ VSQPPTPAQPTTTTFFDAVGGEPTFRRLVARFYQGVANDPVLRPLYPEDDLAGA 54
CN3--------------- ---------------------------------- RRLVARFYEGVAADPVLRPLYPEEDLGPA 2 9
Eullc----------------------------------------------- RRLVARFYEGVATDPVLRPLYPEEDLGPA 2 9
M. tuberculosis ---------------------------------- MP-KS-FYDAVGGAKTFDAIVSRFYAQVAEDEVLRRVYPEDDLAGA 4 4
S. coelicolor  MDGVNEIRRGTLQEQTFYEQVGGEETFRRLVHRFYEGVAEDPILRPMYPEEDLGPA 5 6

• ~k k  -k -k  -k  k  • k  k  • k  k  • • • k  k

EANIpec
EEEEEEEEEEEE----------- FFFFFFFF------ GGGGGGGGGGGGGGGG----
EERLRLFLIQYWGGPTTYSEQRGHPRLRMRHVPFAIGPAERDAWLRIMESAVDSLG- —  L 115

EUNlf EERLRMFLIQYWGGPSTYSELRGHPRLRMRH---------------------------- 60
CcI3 EERLRMFLIQYWGGPTDYQEQRGHPRLRRRHAPFAIGPTQRDAWLKIMRAAVDSLD- --L 116
ACN14a EDRLRLFLIQYWGGPSDYQELRGHPRLRMRHVPFAIGPAQRDAWLVVMRAAVDSLG- --L 111
CN3 EERLRLFLIQYWGGPTTYHERRGHPRLRMRH---------------------------- 60
Eullc EERLRLFLIQYWGGPATYHKKRGHPRLRMRH---------------------------- 60
M. tuberculosis EERLRMFLEQYWGGPRTYSEQRGHPRLRMRHAPFRISLIERDAWLRCMHTAVASIDSETL 104
S. coelicolor E DRFALFLMQYWGGPT T YS DNRGHPRLRMRHAP FAVDRAAHDAWLKHMRVAL DELG- — L 113

k  • k  • • ~k k  k  k  k  k  k  k  -k -k -k -k -k -k -k kc kr -k

-----HHHHHHHHHHHHHHHH---
EANIpec APEHRAQLWDYLLMAANSLQNRPG 13 9
EUNlf --------------------------
CcI3 PPDLDRQLWDYLSMAANSLQNRPD 14 0
ACN14a PPDQYKTLWDYLQMAANSLQNRAD 135
CN3 --------------------------
Eullc --------------------------
M. tuberculosis DDEHRRELLDYLEMAAHSLVNSPF 12 8
S. coelicolor SEEHEQTLWKYLTYAAASMINTPG 137

Figure 5. Alignment of the full and partial trHbO amino acid sequences from six Frankia strains with S. coelicolor and M. 
tuberculosis. Predicted amino acid sequences were obtained using Frameplot 2.3.2. The (3) conserved glycine motifs are 
denoted in green. Important amino acid residues in respect to heme coordination and ligand stabilization are denoted in 
blue. The conserved hydrophobic residues are denoted in red. The general globin fold topological positions (helices A-H) 
are shown above the alignments. The alignment was established using ClustalX program.
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 --------- AAAA-----BBBBBBBBBBBBBBB-CCCCCCC----EEEEEEEEEE
EANIpec ------------ MS IYDAIGGASAVQAAVDEFYVRVTADPELAPFFAGKDIPRLKAHQQA 4 8
CcI3  MSIYDTIGGATAVQAAVDDFYVRVTADPVLAPLFANRDLPRLKEHQRA 4 8
ACN14a  MSIYQDIGGAKAVKAAVDEFYVRVLADPDLVRFFEGRDLASLKASQRE 4 8
M. tuberculosis MGLLSRLRKREPISIYDKIGGHEAIEVWEDFYVRVLADDQLSAFFSGTNMSRLKGKQVE 60

; * * * ;  * * *  * *  *  ; *  * *  *

EEEEEE--------- FFFFFFFF----GGGGGGGGGGGGGGGG---HHHHHHHHHHHHHH
EANIpec FISAAIGGPEVYQGGAIASVHSGLRITDANFNAWDHLVSALSGLGVPAETTGQIGAALA 108
CcI3 FIAAVIGGPEVYRGRDMAAVHATLGLTDAHFDAVVDHLLAALTGLGVPTETTGQIGAALA 108
ACN14a FIGAALGGPEIYQGDAMSQVHASLGVGNAQFDGVVGHLLAAFASAGVPAEAAGQIAAVLG 108
M. tuberculosis FFAAALGGPEPYTGAPMKQVHQGRGITMHHFSLVAGHLADALTAAGVPSETITEILGVIA 12 0

*  * * * *  * * * •  *

COOS EANIpec
CcI3
ACN14a
M. tuberculosis

HHHH------------
PLRADIVTAK------118
PLRSDVVTISK 119
PLRGEIVTAP------118
PLAVDVTSGESTTAPV 13 6 
** . . .

Figure 6 . Alignment of the trHbN amino acid sequences from three Frankia strains with M. tuberculosis trHbN sequences. 
The (3) conserved glycine motifs are denoted in green. Important amino acid residues in respect to heme coordination 
and ligand stabilization are denoted in blue. The conserved hydrophobic residues of the ligand tunnel are denoted in red. 
The general globin fold topological positions (helices A-H) are shown above the alignments. The alignment was 
established using ClustalX program.



revealed the presence of a gene that was homologous to the Mycobacterium 

trHbN gene. Figure 6  shows the alignment of the predicted trHbN amino acid 

sequences from the annotated Frankia genomes with glbN of M. tuberculosis. 

The discovery of these homologous genes in the Frankia genome was surprising 

since the genus Mycobacterium was the only actinobacteria known to harbor 

trHb paralogues other than glbO. The complete trHb gene sequences of all 3 

subgroups of trHbs (trHbN, trHbO, and trHbP) from Frankia and other 

actinomycetes were aligned to create a neighbor-joining distance tree (Fig. 7). 

Although my sample size was small, three distinct clades were evident that 

corresponded to the respective trHb subgroups. All of the Frankia trHbs were 

closest to the Mycobacterium sp. A second tree was constructed utilizing the 

partial trHbO sequences (Fig. 8 ). Within the Frankia clusters, I observed a 

distinct separation of trHbs that reflects the current taxonomic system for Frankia 

that groups strains into (3) distinct phylogenetic groups (I, II, and III) (Benson & 

Clawson, 2000; Normand et al., 1996). The details of Frankia taxonomy and its 

relatedness to trHb phylogeny will be discussed later in the discussion.

Analysis of TrHb Gene Neighbors and Potential Promoter Regions.

The Integrated Microbial Genome database (http://img.jgi.doe.gov/cgi- 

bin/pub/main.cgi) from the Joint Genome Institute was utilized to compare the 

trHb gene neighborhoods among the three Frankia genomes and with several 

Mycobacterium genomes (Fig 9 and 10). TrHbN open reading frame (ORF) 

appears to be an isolated gene in Frankia genomes and does not appear to be
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Figure 7. Phylogenetic dendogram representing neighbor-joining analysis of the 
complete trHb gene sequences (HbP, HbO, HbN subgroups) from Frankia and 
other actinomycetes. Sperm whale (Physeter catodon) Mb was included as an 
outgroup. The scale bar indicates 0.05 substitutions per site. Bootstrap values 
(above 50%) are shown as a percentage of 1000 replicates.
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Figure 8 . Phylogenetic dendogram representing neighbor-joining analysis of the 
partial trHb gene sequences (HbP, HbO, HbN subgroups) from Frankia and other 
actinomycetes. Sperm whale (Physeter catodon) Mb was included as an 
outgroup. The scale bar indicates 0.05 substitutions per site. Bootstrap values 
(above 50%) are shown as a percentage of 1000 replicates.
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part of an operon. In contrast, the Mycobacterium sp. genomes have the trHbN 

gene adjacent to a predicted lipoprotein gene (Fig. 9). The shared synteny 

among the Mycobacterium trHbN gene neighborhoods suggests conserved 

functionality of this gene throughout that genus. There was no synteny among 

the Frankia trHbN gene neighborhoods or to Mycobacterium genomes. The 

conserved gene organization of the Mycobacterium chromosomes around glbN 

was not apparent in the Frankia trHbN gene neighborhoods.

The gene neighborhoods of the three Frankia trHbO genes are much 

more conserved (Fig. 10). Although gene organization was not highly conserved 

among the trHbO gene neighborhoods for the other actinomycete, each trHbO 

ORF was adjacent to a predicted alpha-glucosidase gene. Strikingly, this 

predicted gene was found upstream of Frankia trHbO genes, while it was located 

downstream of trHbO in other actinomycete genomes. It is not clear if the alpha- 

glucosidase and trHbO genes are co-regulated forming an operon.

I was interested in the identification of potential promoters for the Frankia 

trHb genes. Cournoyer and Normand (1994) analyzed potential Frankia 

promoter regions with -35 and -10 consensus sequences and identified a 

consensus sequence as TA(G/A)(G/A)T for the -10 promoter region and 

TTG(T/A)CG for the -35 region. These consensus sequences were not found 

upstream of the trHb genes in the three Frankia genomes (Fig. 11). However, 

conserved sequences were identified that may correspond to the -35 and -10 

promoter regions. Lavire and Cournoyer (2003) compiled a list of several
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Figure 9. Comparison of trHbN gene neighborhoods of Frankia and Mycobacterium sp. TrHbN ORF indicated by red 
arrow. Generated using the Integrated Microbial Database from the Joint Genome Institute.
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Figure 10. Comparison of trHbO gene neighborhoods of Frankia and Mycobacterium sp. TrHbO ORF indicated by red 
arrow, coupled with aglA ORF. Generated using the Integrated Microbial Database from the Joint Genome Institute.



CCI3 HbN
CTTCTGCCCACACGCGAGCGGAAGGAGCCGGACGGCCCGCGTTCGCCTGC
CATCTTTCTCTGCCGCGCGGACATTAGACTCTTTCAAGGAAATTGTGCCC
GTGGTTCAGTGAACCTGGCGGACGGGTACCAGTGCAGCCACGGTAACAAA
CATGGTCAACGACCTCCGGTCGGTCCTCTCCTGCGAAAGCGAGACCTCTG
ATGAGTATCTACGACACTATCGGCGGCGCGACGGCCGTACAGGCCGCGGT

ACNl4a HbN
TTCTCCTGACGCACCCGTGGAAGGAGCCAGGCGGCCTGTCCCGGCCTGCC
GTCCTTCTTCGCCGCGTGACCATCCGGCCCTGGGGCCGAACGATTCTCCT
GGGGTTCAGTGAACCCATCGGATCGTAAGCGGCGCAGCCATGCGGAAAAT
GGTGGTCACCGATCTCGCATCGGGCCACTCTTGCGAAAGGGAGATCTCTG
ATGAGTATCTACCAGGATATTGGTGGCGCGAAGGCCGTGAAGGCCGCGGT

EANlpec HbN
CGCCTGCTGATACGCGTGGCCGTGAGGAGCCGGGCGGCCCCCGACCGCGT
GCCGTCCGTCGCTCTCGCGTCGACATTCGGCTCTTTCGAACGCGTTACCT
GCGATTTAGTGGAAGTGTCGGAAATGTACCAATGCGGCCCATGGAAACGC
GCGTGGTCACCGACCTCGGCTGGGCCCATCCTGCGAAAGCGAGACCTCTG
ATGAGTATCTACGACGCTATCGGTGGTGCGAGCGCCGTGCAGGCCGCGGT

Ccl3 HbO
GCGACGATTCCGCTGCCCGGACGGCTGGTGCTCGCCAGCGGACCGGTGGG
GTACGACGGCGCGACCCTGACGCTGCCCCCCGACACGACGGCGTGGATCG
CACCCCGCGACGGCTGAGAACACCCGTCGCCCGGATCGGACCGCACCGTC
GTGCCGCAGAATGGACGGGTGAACCAGTCTCCTCCGCGCACTCTCCCGAT

ACNl4a HbO
GCGGCCGGCTGGTGCTTGCGAGCGGACCTGTGGCTTACGACGGCGCGACG
CTGACGCTGCCACCGGACACCACGGCGTGGGTCGCGCCCCGTGCGGGCTG
AGAGCGCAGCGGCGGGCCGGATGCGCGCCGATGTGACGCACAATGGAGGC
GTGAGCCAGCCCCCCACACCGGCCCAGCCCACCACCACGACCTTCTTCGA

EANlpec HbO
CCCGTTCGGGTTGACCCACCCGGCTACCGCCGCACGGCGGACGTCCACCG
CCCGTCGAACCGCTCACCTCGGAAGACCCGGCCACGACCACCACCGGGCC
GGACGTCCCGTCGATCGAGGCCGGGGCCGCGGCCGGGGAGCGGGCGGCCA
GTGGCGCAGAATGGACCCGTGAACCAACCGTCACCCGCGCGACCACGCGC

Figure 11. Analysis of potential upstream regulatory regions of the Frankia 
trHbN and trHbO genes. Bold italics denotes the start site of the gene, Bold 
shows RBS site, underline= putative -10 sites, and double underline = putative - 
35 sites.
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putative promoter regions that deviate from the above Frankia promoter 

consensus sequences.

Putative ribosomal binding sites (RBS) for each of the Frankia trHbs 

genes were identified (Fig. 11) and were similar to previously described Frankia 

RBS (Cournoyer and Normand, 1994; Lavire and Cournoyer, 2003). It is also 

interesting to note that each trHbO gene was predicted to initiate translation with 

GTG (valine) as a start codon in place of ATG (methionine). The use of this 

codon in Frankia is not unusual, since 32% of Streptomyces proteins are initiated 

with GTG (http://www.sanger.ac.uk/ Projects/S_coelicolor/).

The Effect of Environmental Stimuli on Truncated Hemoglobin Expression

The functions of truncated hemoglobins (trHbs) are unknown, but several 

potential roles have been hypothesized. For example, Mycobacterium 

tuberculosis, which produces two trHbs (trHbN and trHbO), has been 

hypothesized to use TrHbN (glbN) to detoxify nitric oxide produced by 

macrophages in tubercles (Ouellet et al 2002). M. tuberculosis trHbO (glbO) has 

been proposed to act as an oxygen delivery protein for terminal oxidases to aid in 

the stationary survival of this organism within hypoxic tubercles (Pathania et al. 

2002, Liu et al. 2004).

The exact function(s) of hemoglobin in Frankia is unknown. Analysis of the 

Frankia genome elucidated the presence of two trHb genes (trHbN and trHbO).
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Phylogenetic analysis grouped these Frankia trHbs closest to their respective 

Mycobacterium orthologs, suggesting potential analogous functions for the two 

Frankia hemoglobins (Niemann et al., 2005). Since both microbes are capable of 

intracellular growth during their life cycle, this hypothesis is not unreasonable. 

The following experiments were initiated to test several models by measuring, 

relative expression of both trHb genes under several environment conditions.

Optimizing RNA extraction from Frankia.

Prior to any measurements of relative trHb gene expression, two methods 

of RNA extraction were tested to evaluate which protocol would provide the 

highest quality and yield of Frankia RNA. The first method utilized RNAwiz™ 

(Ambion), a commercially available RNA isolation reagent, which was previously 

used by John et al. (2001) to isolate RNA from Frankia strain CpH. The second 

method of RNA isolation was the Triton X-100 boiling protocol (Sung et al., 2003) 

that has the advantage of enriching for mRNA over stable RNA. This method 

was used to isolate RNA from both Gram-positive and Gram-negative bacteria, 

including Mycobacterium vanbaalenii, another high G+C actinomycete.

To test these methods, RNA was extracted from 200mg of Frankia 

EANlpec cell mass. The Triton X-100 boiling method yielded twice the amount 

of RNA compared to RNAwiz™, and the purity of the RNA extracted, as 

determined by A2 6 0 /A2 8 0 ratios, was also improved (Table 4). Overall RNA quality 

of the samples was evaluated by visualization of the separated samples on an 

agarose gel. The Triton X-100 method proved to be superior producing a wider
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Table 4. Comparison of EANlpec RNA A260/A280 ratios and the RNA yield by different methods. 

RNA Extraction Method A260IA280 Yield (ug)f

RNAwiz® (Ambion) 1.68 14.7
Triton X-100 Boiling Method (Sung et al, 2003) 1.81 30.6
f RNA extracted from 200 mg of cells



RNAwiz Extraction Triton X-100 Extraction

DNase Treatment: + + - -  + +
RNase Treatment: + - + -  + - +

Figure 12. RNA analysis by agarose gel electrophoresis. Lanes: (1 and 10) 100 
bp ladder, (2-5) RNAwiz extracted RNA, (6-9) RNA extracted by the Triton X-100 
boiling method, (2 and 6 ) no treatment, (3-5 and 7-9) RNase and/or DNase 
treatment.
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range of visible transcripts on the gel and the absence of contaminating 16S and 

23S rRNA bands, which were present in the RNAwiz™ samples (Fig. 12). These 

preliminary experiments indicated that the Triton X-100 boiling method was the 

preferred protocol for RNA extraction from Frankia cultures. This RNA extraction 

method was used in all further experiments.

RT-PCR and Relative Expression of Frankia TrHbs.

For these experiments, mRNA levels measured by the use of Reverse 

Transcriptase PCR (RT-PCR) and Frankia trHb gene expression was compared 

to the level of glnA expression, which is constitutively expressed. Since both 

phylogenetically related HbN and HbO genes were present in the Frankia and 

Mycobacterium genomes, I predicted that their functions in Frankia might be 

analogous to their orthologues in mycobacteria.

The effect of nitrogen limitation on trHb expression. One hypothesis is 

that truncated hemoglobins function as oxygen scavengers, protecting the 

oxygen-labile nitrogenase complex during aerobic nitrogen fixation. Cyanoglobin 

(GlbN), a trHb present in Nostoc spp., is synthesized in the absence of combined 

nitrogen and the gene locus for glbN resides between two nif operons (Hill et al. 

1996). Frankia strain Ccl3 was grown in media with (+N) or without (-N) a 

combined nitrogen source (NH4 CI) to test the effect of nitrogen limitation on trHb 

expression. Under nitrogen-limiting conditions Frankia produces vesicles and 

reduces N2 to NH3 within the vesicle (Benson and Silvester 1993). Frankia Ccl3 

grown for 6  days in -N medium produced vesicles, while vesicles were not
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Figure 13. Photomicrographs of F rank ia  Ccl3 grown for 6  days in medium 
containing 5 mM NH4 CI (A) or medium containing N2 as a sole nitrogen source 
(B). The presence of vesicles are indicated by the symbol (V).
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NH4CI N2

Figure 14. Nitrogen status did not alter hemoglobin expression. Transcriptional 
analysis of HbN, HbO, and glnA was determined by RT-PCR as described in the 
methods. Frankia strain Ccl3 was incubated in growth media with and without 
5mM NH4 CI as a combined nitrogen source. After 6  days, total RNA was isolated 
as described in the Methods and used as the template in a reverse transcriptase 
reaction.
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produced in +N medium (Fig. 13). Under these conditions, the relative 

expression levels of the three genes were similar (Fig. 14). Analysis of the 

intensities of the bands for the three genes confirmed that the expression of both 

trHb genes relative to glnA expression were similar (data not shown) and suggest 

that neither of these genes may be directly involved in nitrogen fixation.

The effect of oxygen on trHb expression. Schwintzer et al. (2005) 

evaluated the effect of oxygen on hemoglobin production in Frankia strain Arl3 

and observed an increase in hemoglobin levels in cultures grown under 1 % 

oxygen atmosphere compared to cultures grown under 20% and 40% oxygen 

atmospheres. I hypothesized that Frankia trHbO may deliver oxygen to terminal 

oxidases to stimulate rates of respiration under hypoxic conditions. Consistent 

with this model, Tjepkema et al. (2002) observed rapid oxygen kinetics for 

Frankia hemoglobin in strain Ccl3 suggesting a role of oxygen transport over 

short distances. In M. tuberculosis, trHbO has been shown to function as an 

oxygen shuttle to respiratory enzymes (Pathania et al, 2002; Liu et al, 2004, 

Milani et al, 2003).

Frankia Ccl3 cultures were grown under oxic (cultures aerated with 

atmospheric oxygen) and hypoxic (static cultures) conditions for 7 days. Since 

high levels of hemoglobin production (Hb/protein ratio) were observed in Frankia 

strain Arl3 grown under 1% oxygen (Schwintzer & Tjepkema, 2005), RNA was 

extracted at 7 days. The results are shown in Figure 15. The relative expression 

of trHbO was greater in static cultures than aerated cultures, while trHbN 

expression was similar under both conditions. These results suggest that Frankia
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Figure 15. Hypoxic conditions increased expression of HbO. Transcriptional 
analysis of HbN, HbO, and glnA was determined by RT-PCR as described in the 
methods. Frankia strain Ccl3 cultures were grown in basal media supplemented 
with NH4 CI under hypoxic and oxic conditions by incubating the cultures either 
statically or with aeration. After 7 days, total RNA was isolated as described in 
the Methods and used as the template in a reverse transcriptase reaction.
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TrHbO may function under hypoxic conditions to shuttle oxygen to the respiratory 

chain, similar to the mycobacteria.

The effect of nitric oxide (NO) on trHb expression. During intracellular 

pathogenesis, mycobacteria are bombarded with toxic nitric oxide (NO) species 

generated by macrophages in tuberculosis granulomas. The trHbN protein 

functions as a protective molecule, catalytically reacting NO with oxygen to 

generate a harmless nitrate molecule (Couture et al, 1999; Milani et al, 2001; 

Pathania et al, 2002; Ouellet et al, 2002; Milani et al, 2004).

I predicted a similar protective function in Frankia. Similar to animals, 

plants also use NO as a defense mechanism against pathogens (Neill et al., 

2003). Frankia may use trHbs to detoxify NO during the initiation stages of the 

host plant infection process to establish a symbiosis. To test my hypothesis, the 

spontaneous NO donor, S-nitroso-N-acetylpenicillamine (SNAP), was added to 

Frankia Ccl3 cultures and the relative expression of trHbN and trHbO was 

evaluated. RNA samples were taken every hour for 4 hours incubation. As a 

control, the NO scavenger, carboxy PT10 (cPT10), was added to cultures 

containing SNAP. Figure 16 shows the RT-PCR results from these experiments. 

Relative trHbO expression was unchanged under all test conditions. However, 

the relative expression of trHbN increased through the first 3 hours of exposure 

to SNAP and the signal decreased after 4 hours. Preliminary work measuring 

expression of trHbN in Frankia strain EANlpec grown in 500uM SNAP cultures 

for 2 hours also produced a strong band with RT-PCR (data not shown). The 

addition of carboxy PT10 (cPT10), a NO scavenger, to cultures growing in the
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Figure 16. Nitric oxide (NO) release stimulates trHbN expression. Transcriptional analysis of trHbN, trHbO, and glnA was 
determined by RT-PCR as described in the methods. Cultures were incubated in growth medium in the presence of a 
spontaneous NO donor, SNAP. Total RNA was isolated every h and used as the template in a reverse transcriptase 
reaction as described in the Methods. (A) Control (no addition) (B) 400 \xM SNAP, and (C) 400 pM SNAP + 400 
carboxy-PT10 (a NO scavenger).



presence of SNAP decreased the level of trHbN expression. Control cultures in 

the absence of SNAP showed no change in the relative expression over the 

same time period. These results indicate that Frankia trHbN gene expression 

was stimulated by NO and suggests that Frankia trHbN may be involved in nitric 

oxide detoxification.

Real-Time RT-PCR and Expression of Frankia trHbs.

To support the results from my preliminary expression studies I utilized 

quantitative Reverse Transcriptase PCR (qRT-PCR) to measure trHb expression 

in Frankia strain Ccl3. In addition to repeating my previous experiments, H2 O2 

and paraquat were also added to Frankia cultures to evaluate trHb expression 

under oxidative stress conditions. However, it should be noted that I did hot 

repeat the oxygen studies with qRT-PCR since our research collaborators were 

performing these experiments. Figure 17 shows the results of these 

experiments. For each experimental condition, the expression levels of trHbN 

and trHbO transcripts are shown as a ratio that is relative to expression in the 

untreated control cultures.

The dissociation curves that were generated with the end products of each 

qRT-PCR reaction verified the specificity of each primer set. The presence of 

non-specific amplicons and/or primer-dimers were not detected in the melting 

curves (data not shown). The efficiency of each primer set was also determined 

using standard curves and proved that the RT-PCR conditions worked well. The
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400uM SNAP 400uM SNAP + 400uM 0.1mMH2O2 0.1 mM Paraquat NH4CI/N2
CPT10

Environmental Stimuli

Figure 17: Transcriptional analysis of Frankia Ccl3 trHbN and trHbO gene 
expression using qRT-PCR. The relative expression ratio reflects the expression 
of each gene under that environmental stimulus relative to the expression under 
control conditions (no stimulus).
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Figure 18: Standard curves generated for each trHb qRT-PCR primer set used 
with SYBR Green PCR Master Mix. Correlation coefficients (R2) and equations 
are provided within each plot. (A) trHbN and (B) trHbO.
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correlation coefficients (R2) for each primer set are included with their respective 

standard curve (Fig. 18).

The effect of nitrogen limitation on trHb expression. The semi-quantitative 

RT-PCR data of Frankia strain Ccl3 cultured under nitrogen limiting conditions 

supported the earlier RT-PCR results. There was no substantial difference in the 

gene expression level for either HbO or HbN under nitrogen-sufficient and - 

limiting conditions (Fig. 17). HbN expression was equivalent under both 

conditions, while HbO expression showed small increase under growth with 

NH4CI. These data, in addition to the previous RT-PCR results, suggests that 

these two hemoglobin genes were not be up-regulated during nitrogen fixation 

conditions.

The effect of nitric oxide (NO) on trHb expression. The effect of nitrosative 

stress on trHb expression was also quantified by qRT-PCR. Frankia Ccl3 

cultures were grown in media containing SNAP and/or cPT10 as described 

above. After 3 hours of exposure, RNA samples were extracted since this time 

point yielded the strongest band intensity in the RT-PCR experiments for HbN 

(Fig. 16). HbN gene expression increased nearly 10-fold in cells exposed to 

400uM SNAP compared to control (untreated) cells (Fig. 17). The addition of 

400uM cPT-10 reduced the effect of 400uM SNAP, causing only a 4-fold 

increase of HbN expression. This result indicates that cPT-10 was unable to 

scavenge all of the NO generated by SNAP under these conditions. HbO 

expression was reduced by 0.5-fold under these conditions. Since cPT-10 was
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unable to relieve this effect, this would suggest that this reduction was not a NO 

effect but may be due to a change of oxygen levels in the culture.

The effect of oxidative stress on trHb expression. The oxidative burst of 

reactive oxygen species (ROS) by plants is another common defense 

mechanism against invading pathogens (Tavares et al, 2007). One problem 

microbial symbionts face is that they may not be initially distinguished by the host 

as a “friend” but instead as a “foe”. Thus, a defense mechanism must be utilized 

to help establish this early stage of symbiosis. The use of catalases and 

superoxide dismutases in Frankia has been evaluated as a means to tolerate 

ROS from plant hosts (Hammad et al., 2001; Tavares et al., 2003; Santos et al., 

2007). I predicted that one of the trHbs from Frankia might be up- regulated 

during oxidative stress as another mechanism to protect against ROS.

Studies of oxidative stress often use both paraquat and hydrogen peroxide 

(H2 O2) so the effects of intracellular verses extracellular H2 O2 exposure can be 

evaluated. When paraquat is added to the culture medium it is metabolized to 

produce endogenous H2O2 . In this experiment, the addition of hydrogen 

peroxide to the media did not result in a noticeable change in HbN (< 1.5 fold) or 

HbO (< 2 fold) gene expression levels compared to the control culture (Fig. 17). 

Interestingly, the addition of paraquat decreased the expression of both trHbN 

and trHbO by nearly 10-fold. It is unclear whether or not this decrease in 

expression was due to the down-regulation of these genes or possibly due to 

cytotoxic effects of intracellular concentrations of H2 O2 .

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER IV

DISCUSSION

The research described in this thesis concentrated on the identification 

and expression of truncated hemoglobin genes in Frankia using molecular 

methods. Understanding the function(s) of trHbs in Frankia may give us better 

insight into Fran/c/a-actinorhizal symbiosis and will allow to efficiently exploit this 

relationship for its ecological and economical benefits. Studying trHbs and their 

role in the intracellular mutually beneficial symbiosis of Frankia may also allow a 

better understanding of the intracellular pathogenic symbiosis of the closely 

related actinomycetes of the Mycobacterium genus.

Upon its introduction into host lung tissue, Mycobacterium tuberculosis is 

met by the host immune system and it is able to infect and begin to multiply 

intracellularly in inactivated macrophages (Ouellett et al., 2002; Pathania et al., 

2002ab). These infected macrophages are then surrounded by other activated 

macrophages recruited to surround the infected tissue and subsequently form the 

characteristic granuloma. Upon their arrival the macrophages bombard the 

infected cells with nitric oxide (NO) to attempt to kill the pathogenic bacteria. The 

cytotoxic effects of NO stem from the ability of this compound to exert damage to 

DNA and to inhibit the activity of biologically important enzymes (Ouellett et al., 

2002; Pathania et al., 2002ab). This immune response in essence forces the
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microbe into a latent state which may last for several years and eventually 

become reactivated later in the infected individuals life.

The trHbs of M. tuberculosis are believed to aid in the long-term survival of 

the microbe in this dormant state. During long-term infection, the tubercle 

bacteria are competing with lung tissue for oxygen so they are essentially 

maintained in a low oxygen environment. The glbO gene product (HbO) is 

believed to act as a shuttle, to sequester and carry oxygen to terminal respiratory 

enzymes at the membrane in order to increase respiration rates (Pathania et al. 

2002a; Liu et al., 2004). The glbN gene product (HbN) of M. tuberculosis has 

been proven to function as an oxygen-dependent nitric oxide dioxygenase that 

reacts host NO with an oxygen molecule to convert the compound to harmless 

nitrate (Ouellett et al., 2002; Pathania et al., 2002b).

Though each of these microbes are involved in very different relationships 

these actinomycetes live very similar lifestyles. They both rely on intracellular 

infection of their respective hosts, both overcome host defense strategies either 

upon or during infection, and both are maintained in specialized structures/tissue 

produced by their host. In the case of Frankia, the microbe persists in root 

nodules while Mycobacterium sp. are contained in granulomas within lung tissue. 

It is not surprising that each of these bacteria possess multiple trHbs that 

potentially serve different functions to aid in their survival in various niches. After 

all, each microbe may also exist in a free-living state. This research was the first 

step in showing that Frankia trHbs have functions analogous to their orthologs in 

Mycobacterium sp.
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Molecular Identification of Truncated Hemoglobin in Frankia

Sequencing the TrHb Amplicons

Wittenberg et al. (2002) had previously performed phylogenetic analyses 

of truncated hemoglobin with a number of organisms. Three distinct groups 

(groups I, II, and III; or trHbN, trHbO, and trHbP, respectively) were apparent 

within the trHb family. Diversity of trHbs among the high G+C actinomycetes was 

restricted to trHbO where a distinct cluster of organisms (S. coelicolor, C. 

diptherae, M. smegmatis, M. tuberculosis, M. avium, and M. leprae) was formed 

within the trHbO group as a whole. However, the presence of trHbN or trHbP in 

any of the actinomycetes was strictly confined to Mycobacterium sp. It was 

assumed that if any trHb genes were present in Frankia, it would most likely be a 

group II (trHbO) hemoglobin. This would also be in agreement with the theory 

that all trHbs evolved from trHbO of a last common ancestor of actinomycetes 

and Proteobacteria and also explains the phenomenon that most bacteria 

possessing one or multiple trHbs have one trHb that is a group II trHb (Vuletich & 

Lecomte, 2006).

The sequencing of Frankia PCR products amplified from primers designed 

from conserved actinomycete trHbO regions confirmed the presence of this gene 

in a number of genetically diverse Frankia strains (Figure 4). Upon the 

evaluation of draft genome sequences of Frankia strains EANlpec, ACN14a, and 

Ccl3 the presence of a second trHb gene (trHbN) in Frankia was also confirmed. 

Having the sequenced genomes also allowed me to obtain the complete gene
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sequences for trHbO in these strains. The presence of trHbs in these various 

diverse strains suggests that these genes are likely conserved in most Frankia 

isolates. There are a number of important amino acid residues in respect to 

heme coordination and ligand stabilization that are conserved in the sequences 

of Frankia and other actinomycete trHbs (Figs. 5 and 6 ). Specifically, these 

residues are B9F, B10Y, CD1Y, E7A, and E14F for trHbO and B9F, B10Y, 

CD1F, E7L, and E14F for trHbN actinomycete sequences (Wittenberg et al., 

2002). The conservation of these residues has evolved differently in various 

bacterial groups and suggests specific functional adaptation for each trHb (Milani 

et al., 2005). There are also other important amino acid residues that are 

conserved in Frankia and Mycobacterium trHbs that have been shown in M. 

tuberculosis to be important in respect to structure and function. These residues 

in Frankia trHbs will be discussed later in greater detail with the various 

expression experiments to support my hypotheses.

The Phvloqenv of TrHbN and TrHbO in Frankia

The neighbor-joining distance trees that were created (Fig. 7 and 8 ) using 

Frankia and other known actinomycete trHb gene sequences revealed that of all 

the known actinomycetes, Frankia trHbs are more phylogenetically related to 

Mycobacterium trHbs. A high bootstrap value at each of these nodes strongly 

infers this relationship. This was the first evidence to support that trHbs in 

Frankia may have similar function to those in Mycobacterium.
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Three distinct phylogenetic groups (I, II, III) of Frankia have been identified 

based on 16S rRNA sequence studies (Benson and Clawson 2000; Normand et 

al., 1996). For the Group II representatives (Ccl3 and ACN14a), the HbO genes 

formed a distinct group that was separate from the other Frankia strains (Fig. 8 ). 

The three representative of Group III (EANlpec, EUN1f and Eulic) and 

representative (CN3) from a fourth group of related "Fran/r/'a-like" nodulation and 

fixation defective (Nod /Fix') actinomycetes formed separate subgroup of the 

Frankia strains. This clade branched out into the two groups: effective strains 

and defective strain. Strain Eulic forms nodules on its host plant, but generates 

ineffective nodules (Baker et al., 1980).

The Gene Neighborhoods of TrHbN and TrHbO in Frankia

The gene neighborhoods of trHbs in Frankia were examined using the 

Integrated Microbial Database from The Joint Genome Institute (Fig. 9 and 10). 

As observed in Figure 9, there is a lack of synteny in the gene neighborhoods 

surrounding the trHbN gene of Frankia as compared to Mycobacterium sp. The 

gene neighborhoods of Mycobacterium sp. surrounding glbN are highly 

conserved. Unlike the Frankia genomes, the location of the HbN gene in 

Mycobacterium sp. is directly adjacent to a predicted lipoprotein gene (IprI) (Fig. 

9). My first intuition was that this suggested co-transcription of these two genes 

in the pathogen. Co-transcription of these two genes might have also suggested 

a difference in regulation of glbN between Mycobacterium and Frankia. Studies 

performed by Ouellett et al. (2002) showed that these two genes are in fact co-
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transcribed in Mycobacterium bovis, the model organism for M. tuberculosis 

studies. However, the activity of HbN was proved to be independent of the 

predicted lipoprotein. Knockout mutants of HbN were unable to metabolize NO 

in comparison to wild-type M. bovis. Since these two genes are co-transcribed 

they wanted to show that the decrease in HbN activity was not also due to a lack 

of /prl expression from the knockout since they are co-transcribed. By 

introducing a plasmid (glbN*, /p/1") into the HbN mutant they were able to restore 

HbN activity without the expression of lipoprotein and NO metabolism was 

equivalent to that of the wild-type. Thus HbN function, though co-regulated with 

the /prl gene, is independent of the lipoprotein. This gave me further confidence 

in an analogous function of the trHbN gene in Frankia, which is not co

transcribed with /p/1 .

It should also be noted that the trHbN gene regions of the Ccl3 and 

ACN14a genomes have much fewer ORFs when compared to EANIpec (Fig. 9). 

This observation was not surprising when one compares the smaller 5.43 Mbp 

genome of Ccl3 (a narrow host range strain) and the 7.50 Mbp genome of 

ACN14a (a medium host range strain) to the more promiscuous 9.04 Mbp 

genome of EANIpec (a broad host strain) (Normand et al., 2007ab). It is 

frequently observed in nature that organisms occupying narrow niches undergo 

genome contractions to rid of unneeded genes, whereas diversification favors 

genome expansion (Normand et al., 2007ab). This example of reductive 

evolution can also be observed in the glbO gene neighborhood of M. leprae 

compared to the other Mycobacterium sp. genomes (Fig. 10). M. leprae is an
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obligate intracellular pathogen unlike the other mycobacteria represented which 

are facultative intracellular pathogens or opportunistic pathogens (Wittenberg et 

al., 2002). It is not clear if the difference observed in gene organization around 

trHbN of the three Frankia genomes reflects differences in functionality.

Unlike their trHbN paralogs, the gene neighborhoods of trHbO in the three 

Frankia strains were more highly conserved (Fig. 10). However, a similar 

conservation of synteny did not carry over to Mycobacterium sp. though within 

these genomes there was good conservation of gene organization within the 

genus. The major difference of the mycobacteria was observed in the gene 

neighborhood for M. leprae. This phenomenon could be a direct result of 

reductive evolution as mentioned previously, but can also explain why the 

function of HbO in this pathogen is believed to be different than the HbO 

orthologs of other Mycobacterium sp. Much like HbN of M. tuberculosis and M. 

bovis, HbO in M. leprae is believed to function in the protection from NO and not 

as a carrier of oxygen to increase rates of respiration (Visca et al., 2002; Ascenzi 

et al., 2006). Though the mechanism of NO detoxification is slightly different in 

this species. Here, the HbO protein is believed to react with peroxynitrite, a toxic 

intermediate of NO reactions with superoxide radicles. The function of trHbO in 

Frankia will most likely reflect the function of HbO in M. tuberculosis considering 

that Frankia, like the pathogen, possesses 2 trHb genes. It would be unlikely 

during the course of evolution for any microbe that 2  genes of similar function 

would be maintained. The varied function of HbO in M. leprae is most likely a 

direct result of reductive evolution.
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The other interesting characteristic of the M. leprae gene neighborhood 

surrounding HbO was that this member of the mycobacteria was the only one to 

not have the glbO gene grouped with a putative alpha-glucosidase gene (ag/A) 

(Fig. 10). The trHbO gene products of the 3 Frankia strains were also grouped 

adjacent to a putative alpha-glucosidase gene, however, the trHbO ORF was 

oriented downstream of ag/A. Unfortunately no work has been performed to 

determine whether or not glbO of Mycobacterium sp. is co-regulated with ag/A 

and subsequently dependent on its gene product to function.

Characterizing the Promoter Regions of TrHbN and TrHbO in Frankia

The potential -35 and -10 promoter regions that are highlighted in Figure 

10 are simply possible consensus sequences for the promoter of Frankia trHbs. 

These sequences were chosen solely on their conservation across Frankia trHb 

subgroups and relative distances from each other upstream of the start codon. 

There are 2 possible sets of conserved promoter regions present in the trHbN 

upstream regions. None of the sequences match the -35 and -10 consensus 

sequences TTG(T/A)CG and TA(G/A)(G/A)T, respectively, that have been 

described previously for Frankia genes (Cournoyer & Normand, 1994; Lavire & 

Cournoyer, 2003). Whether or not these sites are actual -35 and -10 promoter 

regions is still to be determined.

The putative ribosomal binding sites (RBS) that were identified upstream 

of the start codons for each of the trHbs were typical of RBS found previously in 

Frankia (Fig. 11) (Cournoyer & Normand, 1994; Lavire & Cournoyer, 2003). The
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sequences of the putative RBS shown in Figure 11 are mostly GAGA for the 

Frankia trHbs and are quite similar to the GGAG consensus sequence suggested 

previously for Frankia RBS (Rochefort & Benson, 1990). Without further 

experimentation I am unsure if these are true RBS for these genes.

The Effect of Environmental Stimuli on TrHb Expression

The basis of the expression studies I performed for trHbs in Frankia 

stemmed from preliminary biochemical work performed by our collaborators 

(Beckwith et al., 2002; Tjepkema et al., 2002; Schwintzer & Tjepkema, 2005). 

The majority of the research they performed relied on the extraction of total heme 

protein. At the time of their studies it was not known that Frankia expressed 2 

trHb genes. By evaluating total heme protein that was being isolated 

simultaneously from each of the two trHbs, the up-regulation or down-regulation 

of one trHb may have been potentially masked by the presence of the other (and 

vice versa). Any direct correlations between the observations I have noted and 

their results should be compared with caution.

The Triton X-100 Boiling RNA Extraction M ethod

The Triton X-100 Boiling Method described by Sung et al. (2003) proved 

to be a quick, efficient, and inexpensive method for extracting RNA from Frankia 

hyphae. The yield of total RNA extracted from frozen cells was nearly twice that
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of the commercially available method and was much cleaner (Table 4). Not only 

did this method yield better quality mRNA, but also extracted RNA that was free 

from contaminating 16S and 23S rRNA (Fig. 12). Typically, these stable RNA 

species make up 70% of an RNA prep when using older methods (Neidhardt & 

Umbarger, 1996). An RNA extraction method that provides a high yield of quality 

RNA is of great interest to future transcriptional analysis studies for Frankia. 

Being able to extract a large amount of mRNA can be useful for microarray 

studies. Until, a more superior protocol is discovered, this should be the method 

of choice for the extraction of mRNA from Frankia.

Nitrogen Limitation Does Not Affect TrHb Expression in Frankia

Both the RT-PCR and Real-time RT-PCR data support the conclusion that 

neither of these Hbs function in nitrogen fixation. The bands for trHbN and trHbO 

RT-PCR amplicons (Fig. 14) were equal in intensity and the transcription analysis 

(Fig. 17) revealed a nearly equal expression of trHbN and trHbO under each 

condition. This supports the earlier observations of Beckwith et al. (2002) who 

isolated comparable levels of hemoglobin from both N+ and N- cultures of 

EANIpec, Arl3, EUN1f, Cc1.17, and Ccl3 strains.

A role of Frankia trHbs in nitrogen fixation would not have been surprising. 

An initial instinct would be to assume the role of truncated hemoglobin in the 

Fran/c/a-Actinorhizal symbiosis to be analogous to the function of leghemoglobin 

to protect nitrogenase in Rhizobium-legume symbiosis by maintaining low 

oxygen tension within the legume nodule (Gallon et al., 1992). Frankia, however,
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has evolved to localize nitrogen fixation within vesicles. These specialized 

structures are multi-laminated with hopanoid lipids to restrict oxygen diffusion into 

the cell (Berry et al., 1993). In this sense, a role for trHbs in nitrogenase 

protection would be redundant. Interestingly, the cyanoglobin (GlbO) trHb of the 

nitrogen-fixing cyanobacterium Nostoc commune is believed to function in 

nitrogen fixation (Hill et al., 1996). Not only is this gene located within the 

intergenic region of two nitrogen-fixing genes (n/flJ and n/'flH), but hemoglobin 

synthesis increases when Nostoc is grown without a combined nitrogen source. 

Also, immediately upstream of glbN in Nostoc is a binding site for NtcA, a well- 

known transcription factor involved with other nitrogen-regulated genes. It should 

also be noted that no other nitrogen-fixing related genes were observed in either 

of the trHb gene neighborhoods for any of the Frankia strains.

Oxidative Stress Does Not Affect TrHb Expression in Frankia

Transcriptional analysis from Ccl3 cultures that were challenged with 

paraquat and H2 O2  revealed no significant up regulation of expression for either 

trHb in comparison to control cultures (Fig. 17). Cultures that were grown with 

hydrogen peroxide only exhibited a slight increase in expression for both trHbN 

and trHbO. This could simply be explained by a relative increase in trHb 

expression as the cells approached stationary phase. Schwintzer & Tjepkema 

(2005) had observed an increase in Hb production of Frankia at stationary phase. 

This complements earlier findings of HbN expression in Mycobacterium that 

reaches its maximum when cultures are growing in stationary phase (Ouellett et

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



al., 2002; Pathania et al., 2002). Why the genes for trHbN and trHbO in Frankia 

were down regulated by nearly a factor of 1 0  when paraquat was added to 

cultures is unknown. One explanation for this decrease in expression could be 

due to metabolism of paraquat that leads to intracellular cytotoxic levels of H2 O2 .

The host plants of the Fran/c/'a-actinorizal symbiosis not only use reactive 

oxygen species (ROS) and reactive oxygen intermediates (ROI) for defense 

against pathogenic microbes, but these molecules are also used for signal 

transduction, regulating developmental processes, and programmed cell death 

(Tavares et al., 2007). Thus, the bacterial partner of this symbiosis requires 

defense against ROS and ROI upon the initial infection of the host and also while 

persisting in the root nodule. ROS and ROI produced by the host plant are 

tolerated in Frankia by means of catalases and superoxide dismutases (Hammad 

et al., 2001; Tavares et al., 2003; Santos et al., 2007). The role of trHb in 

Frankia to protect the microbe from reactive oxygen species is not likely, nor do 

these genes seem to be globally regulated in response to oxidative stress.

TrHbO Expression in Frankia Increases Under Low O? Environments

Schwintzer et al. (2005) evaluated the effect of oxygen on hemoglobin 

concentrations in Frankia strain Arl3. They found an increase in hemoglobin 

concentration in cultures grown under 1 % oxygen in media with a combined 

nitrogen source, as compared to cultures grown under 20% and 40% oxygen. 

Previous studies by Beckwith et al. (2002) found a similar increase in hemoglobin 

production when cultures of EANIpec were grown in 2% oxygen in comparison

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



to 2 0 % oxygen; however, this was observed in cultures not supplemented with 

NH4 CI. It is unclear why this difference was observed between these two strains 

though in either case it was clear that a low oxygen environment caused an 

increase in oxygen expression. In my RT-PCR experiments, NH4 CI had been 

added to the media of both the aerated and static cultures. Amplification of 

trHbO transcripts from these cultures showed a relative increase of expression 

for this gene (Figure 15) in the static cultures where available oxygen was limited 

in comparison to the aerated cultures. Our findings were consistent with those of 

Schwintzer et al. (2005). These conditions had no effect on trHbN expression as 

observed in the band intensities that were relatively equal (Figure 15).

As described previously, this increase in trHbO expression in response to 

hypoxia has been reported in Mycobacterium sp. (Pathania et al. 2002a; Liu et 

al., 2004). Not only did these studies show that cultures of recombinant E. coli 

expressing the glbO gene from M. tuberculosis show greater oxygen uptake than 

control cultures, they also showed that the function of glbO in these recombinant 

cells was dependent on the delivery of oxygen to the membrane-associated 

terminal oxidase, cytochrome 0 . In other words, the hemoglobin acts as an 

oxygen shuttle to cytochromes to increase respiration rates, which is crucial in 

low oxygen environments. Consistent with this, Tjepkema et al. (2002) observed 

rapid oxygen kinetics for Frankia hemoglobin in strain Ccl3 suggesting a role of 

oxygen transport over short distances.

It is also believed that a series of hydrophobic residues present on the 

molecule surface of HbO is responsible for the interaction with acidic
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phospholipids at the cell membrane to allow for the delivery of oxygen to 

membrane-associated cytochromes (Pathania et al. 2002a; Liu et al., 2004). 

These same residues (mostly arginine) are conserved in the known actinomycete 

trHbO sequences and the Frankia trHbO sequences are no exception (Figure 5). 

The presence of these residues in Frankia would also support a similar function 

in oxygen delivery as described for Mycobacterium sp. This could be a useful for 

Frankia growing in any environment of low oxygen tension. Of particular interest 

is the strain that infects Myrica gale where zones of low oxygen in the nodules of 

this plant have been reported (Tjepkema, 1983). As stated prior, hemoglobin 

corresponding to the molecular weight of trHbs has been isolated from Myrica 

gale nodules (Pathirana & Tjepkema, 1995). This hemoglobin was most likely 

being produced by the bacterial partner.

TrHbN Expression in Frankia Increases Under Nitrosative Stress

For both the RT-PCR and Real-time RT-PCR experiments we observed 

an increase in the expression of trHbN from Ccl3 in response to a spontaneous 

nitric oxide donor being added to the culture medium (Figs. 16 and 17). The 

band intensity for the RT-PCR experiment showed the highest relative 

expression of trHbN at 3 hours after the addition 400uM SNAP to the medium. 

For the transcriptional analysis I observed a 10-fold induction of trHbN 

expression when 400uM SNAP was added in comparison to control cultures (Fig. 

17). A nitric oxide scavenger (400uM cPT-10) was also added along with the 

SNAP to show that the expression of trHbN would go down in comparison to
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SNAP alone cultures. The expression of trHbN was decreased with the addition 

cPT-10 + SNAP, however, there was still about a 4-fold induction of trHbN for 

these cultures in comparison to the controls (Fig. 17). This may have been due 

to inefficient NO scavenging by cPT-10. By using a higher concentration of this 

compound a reduction in trHbN transcript may have been observed in the cPT-10 

+ SNAP cultures. The expression of trHbO -in either of these cultures did not 

seem to be affected. A role for Frankia trHbN in the detoxification of nitric oxide 

is plausible.

The oxygenated form of HbN for M. tuberculosis is believed to aid in its 

defense from NO produced by macrophages in infected lung tissue (Couture et 

al., 1999; Milani et al., 2001b; Ouellett et al., 2002; Pathania et al., 2002b). The 

HbN hemoglobin functions as an oxygen-dependent nitric oxide dioxygenase 

using bound oxygen to react with a nitric oxide molecule to form nitrate. 

Pathania et al. (2002b) showed that oxygen was required for NO detoxification 

and recombinant E. coli possessing the HbN gene was able to grow in the 

presence of NO, where as the growth of control cultures was reduced. Similarly, 

HbN mutants of Mycobacterium bovis were unable to grow in the presence of NO 

in comparison to the wild-type (Ouellett et al., 2002).

The heme-ligand tunnel of Mycobacterium HbN proteins is lined with 

several hydrophobic residues that are well suited for the diffusion of oxygen and 

nitric oxide toward the heme distal pocket (Milani et al., 2001b; Ouellett et al., 

2002). This same tunnel may also function to store multiple nitric oxide 

molecules for more efficient catalytic activity. These hydrophobic residues are
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conserved in Frankia trHbN sequences compared to HbN of M. tuberculosis (Fig. 

6 ). From a structural standpoint, it would make sense that a similar role for 

Frankia trHbN might be conserved.

In addition to ROS, plants also use reactive nitrogen species (RNS) such 

as nitric oxide as key regulatory molecules (Neill et al., 2003; Tavares et al., 

2007). There are many biological processes such as signal transduction and the 

hypersensitivity response that are regulated by NO in plants. Thus, it is certain 

that this molecule is present in the infected actinorhizal nodule where a great 

deal of differentiation occurs for the plant. It can then be understood why Frankia 

would have evolved a means to cope with this cytotoxic compound. The plant 

hosts of Fran/c/a-actinorhizhal symbiosis also evolved a means by which to cope 

with cytotoxic levels of internal NO. The class I non-symbiotic hemoglobin 

(AfHbl) from Alnus firma is believed to function in the detoxification of nitric oxide 

in both symbiotic and non-symbiotic plant tissue (Sasakura et al., 2006).

Currently, there are more unpublished biochemical studies being 

performed by our collaborators that also confirm my findings (Tjepkema, 2007). 

Using chromatography they have been able to isolate and measure the amounts 

of the two truncated hemoglobins from Frankia cultures grown under various 

conditions. When cultures were grown in the presence of a nitric oxide donor 

they measured an increase in trHbN production. When cultures were grown in a 

reduced oxygen environment they measured an increase in trHbO production. 

An increase in hemoglobin protein in either of these examples is further support 

that more protein is being translated in response to their respective
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environmental stimulus. These recent studies by Tjepkema (2007) correlate well 

with my earlier observations.

The lack of reliable genetic transfer systems and mutagenesis protocols in 

Frankia research is a major drawback to genetic studies. Having a definitive 

method for developing knockout phenotypes for genes of interest is a must to 

prove causality in gene expression studies. Though Frankia genetics was once 

considered recently to be in its infancy, the sequencing of three Frankia genomes 

will reveal an enormous amount of information and the advent of more genetic 

tools will have this field well on its way to “adolescence”.
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