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ABSTRACT 24 

Oysters naturally harbor the human gastric pathogen Vibrio parahaemolyticus, but the nature of 25 

this association is unknown. Because microbial interactions could influence the accumulation of 26 

V. parahaemolyticus in oysters, we investigated the composition of the microbiome in water and 27 

oysters at two ecologically unique sites in the Great Bay Estuary, New Hampshire using 16s 28 

rRNA profiling. We then evaluated correlations between bacteria inhabiting the oyster with V. 29 

parahaemolyticus abundance quantified using a most probable number (MPN) analysis. Even 30 

though oysters filter-feed, their microbiomes were not a direct snapshot of the bacterial 31 

community in overlaying water, suggesting they selectively accumulate some bacterial phyla. 32 

The microbiome of individual oysters harvested more centrally in the bay were relatively more 33 

similar to each other and had fewer unique phylotypes, but overall more taxonomic and 34 

metabolic diversity, than the microbiomes from tributary-harvested oysters that were 35 

individually more variable with lower taxonomic and metabolic diversity. Oysters harvested 36 

from the same location varied in V. parahaemolyticus abundance, with the highest abundance 37 

oysters collected from one location. This study, which to our knowledge is the first of its kind to 38 

evaluate associations of V. parahaemolyticus abundance with members of individual oyster 39 

microbiomes, implies that sufficient sampling and depth of sequencing may reveal microbiome 40 

members that could impact V. parahaemolyticus abundance.  41 

 42 

KEYWORDS: Vibrio parahaemolyticus; oysters; microbiome; 16s rRNA  43 

1. Introduction 44 

 Shellfish, including the eastern oyster (Crassostrea virginica), are common vectors for 45 

human pathogens.  This includes the bacterium Vibrio parahaemolyticus, the leading causative 46 

agent of bacterial seafood-borne gastroenteritis worldwide and an emergent pathogen in the 47 
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United States (US) (1). Oysters concentrate V. parahaemolyticus from overlaying water, which 48 

can lead to a naturally higher abundance than the < 10,000 Most Probable Number (MPN)/g that 49 

is currently recommend in the US as a limit to ensure shellfish is safe for consumption (2, 3).  To 50 

increase shellfish safety, fisheries employ strategies intended to reduce pathogen levels in live 51 

product, including depuration in UV sterilized water or relay/transplantation of oysters to a 52 

location where V. parahaemolyticus is of low abundance, often correlating with high salinity (4, 53 

5, 6). But reported correlations of salinity with V. parahaemolyticus abundance from 54 

environmental studies are mixed (3) suggesting factors other than salinity likely mediate a 55 

reduction in V. parahaemolyticus concentrations. Furthermore, relay of oysters into non-56 

sterilized water more effectively reduces V. parahaemolyticus contamination than depuration in 57 

sterile water (6).  Therefore, antagonistic relationships among community members coupled with 58 

less than favorable salinity conditions could explain the greater reduction of V. parahaemolyticus 59 

in the oyster microbiome during relay (7, 8). 60 

 Ecological studies reveal a few biotic factors correlate with V. parahaemolyticus 61 

abundance both in water and in oysters (3). Zooplankton can positively correlate with V. 62 

parahaemolyticus abundance when they serve either as a nutrient resource or a mechanism of 63 

dispersal (3, 9). V. parahaemolyticus abundance also positively correlates with chlorophyll a, 64 

suggesting a general interaction with phytoplankton (3, 8). Oysters could passively accumulate 65 

planktonic and particle-associated Vibrios by filter-feeding (3). Even so, the overall oyster 66 

microbiome is more diverse than the overlying water microbiome, suggesting potential selective 67 

accumulation and culturing of some microorganisms, including Vibrios, by the oyster (10-14). in 68 

vitro bacterial-Vibrio competitions illustrate several types of marine bacteria influence Vibrio 69 

abundance, suggesting in situ interactions could influence accumulation in oysters (15-17). 70 
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Although a growing number of studies have profiled the oyster and overlying water microbiome 71 

(18-23), none have yet attempted to correlate presence or abundance of species or community 72 

composition profiles to the relative abundance of V. parahaemolyticus.   73 

 To identify the core and variable microbiome among individual oysters, and correlate 74 

differences in Vibrio parahaemolyticus abundance with microbiome composition, we profiled 75 

the microbiome of individual oysters and overlying water from two naturally occurring, 76 

ecologically-distinct oyster beds. We employed 454 pyrosequencing of 16s RNA variable region 77 

(V2-V3) amplicons, and in parallel quantified V. parahaemolyticus abundance. We determined 78 

that oysters harbor a microbiome that is distinct from overlying water, and species composition 79 

and relative abundance is influenced by location of the oyster bed, potentially reflective of 80 

unique ecology. The abundance of V. parahaemolyticus varied between oysters and correlated 81 

with only a few rare phyla, which were linked to location. The study suggested increased 82 

sampling and microbial community sequencing depth could reveal meaningful patterns of 83 

association both with ecology and potentially V. parahaemolyticus abundance.   84 

 85 

2. Results and Discussion 86 

2.1 Sequencing the oyster microbiome  87 

 To assess the composition of and variation in oyster associated microbiota, native oysters 88 

were collected from two ecologically distinct sites, less than five miles apart in the Great Bay 89 

Estuary (GBE) of New Hampshire. The Oyster River (OR) oyster bed is located within one of 90 

the seven tributaries of this estuary where harvesting is prohibited due to its proximity to the 91 

outflow of a municipal wastewater treatment facility (WWTF), whereas the Nannie Island (NI) 92 

oyster bed is centrally located within the estuary and is classified as approved for recreational 93 
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harvesting (8). Thus, these two sites may reveal how the different associated ecological and 94 

sewage discharge-related factors pertaining to each site influence the microbial community 95 

composition. We generated and sequenced 16s rRNA gene amplicons from total bacterial DNA 96 

isolated from ten individual oyster homogenates and one overlying water sample from each 97 

collection site. From the generated ~1.5 million reads, only ~1/3 (512,220) with 100% identity to 98 

the forward primer and mid-tag were included in the analysis. Quality filtering with FlowClus 99 

removed an additional 6,995 reads, producing an average of 18,087 reads per NI oyster (10,338-100 

31,788; n=10), and 29,391 reads per OR oysters (ranging from 9,670-47,231; n=10) for analysis. 101 

A lower number of reads were obtained from water – 6495 and 397 from NI and OR, 102 

respectively (Supplemental Table 1).  Because we seek to determine correlations of identifiable 103 

phylotypes with estuarine conditions and V. parahaemolyticus abundance, we evaluated in 104 

parallel two common pipelines, QIIME and mothur, that use different clustering algorithms, and 105 

determined mothur maximized assignment of OTUs at the species level of classification and also 106 

resulted in no unclassified reads (Table 1). Therefore, analysis continued with the mothur-107 

generated classified dataset.   108 

 The rarified phylogenetic distance (PD) whole tree alpha diversity index was applied to 109 

illustrate within-sample diversity and evaluate sufficiency in depth of sequencing. Overall higher 110 

index values in NI samples indicated higher alpha diversity than OR samples (Fig. 1).  However, 111 

he plotted rarefactions demonstrated that total phylogenetic distances between all OTUs at each 112 

subsampling step continued to increase with higher sampling, indicating that all interpretations 113 

should consider that the data did not capture total diversity (Fig. l).  114 

 115 

2.2 Comparison of the distribution of phylotypes by site and substrate 116 
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 Comparisons of the distribution of OTUs in individual oysters and overlying water can 117 

reveal the extent to which the microbiome of individual oysters reflects the microbes in 118 

overlying water. Since relatively fewer reads were available from the water samples, it is 119 

unsurprising that oysters from both sites harbor OTUs absent in the respective overlying water, 120 

(Fig. 2A). Even so, some OTUs from the water samples (1.35% and 0.19% from NI and OR, 121 

respectively) were not detected in any oyster, suggesting the potential for some selectivity in the 122 

microbiome accumulated from water, which is in agreement with other oyster microbiome 123 

studies (18, 25).   124 

Comparisons of individual oysters to each other also provided insight into the shared and 125 

variable microbiome. Less than 1% of the OTUs identified in any oyster were present in every 126 

one of the 20 oysters. However, the shared microbiome from oysters harvested from the same 127 

location was slightly larger, with 2.29% OTUs shared between every oyster from NI, and 1.25% 128 

shared from OR (Fig. 2B).  In addition, 82% of the OTUs shared between every NI oyster were 129 

also present in overlying water (1.63% of total OTUs present in any NI oyster), indicating these 130 

consistently detected microbiome members at this site are substantially present in and likely 131 

influenced by the water column. Because the OR water sample yielded so few sequences for 132 

analysis, meaningful comparisons in this case were deemed not possible.   133 

 Next, we evaluated whether there were informative patterns in the abundance and 134 

distribution of phyla-level classifications by dual hierarchical cluster analysis, representing broad 135 

scale differences between the microbiome of both sampling sites. Most of the variation between 136 

sample type, sites, and even individual oysters was explained by not the high abundance, but the 137 

mid- and low abundance phyla (Fig. 3A), and rarifying the sequences to remove the lowest-138 

abundant OTUs, which is a common practice to remove erroneous OTUs (e.g., 20), would have 139 
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removed most of this potentially informative variation. Phylum-level analysis clearly 140 

demonstrated differences between the overlying water and oysters. This analysis also revealed 141 

delineation between the microbial communities of oysters by site, when considering both 142 

standardized and unstandardized clustering, with only a few exceptions (Fig. 3A-B).  143 

 The most abundant phyla were consistent with other oyster microbiome studies, even 144 

though these were from relatively warmer climates. The major Crassostrea sp.-associated phyla 145 

include Cyanobacteria, Chloroflexi, Firmicutes, Proteobacteria, Planctomyces, and Bacteriodetes 146 

(18, 20, 21). The digestive gland of Sydney rock oysters contains many of these same phyla, and 147 

also is dominated by Spirochaetes (23). Cyanobacteria were in higher abundance at NI (33.8%, 148 

ranging from 1 to 69%) than OR (7.7%, ranging from 0.8 to 43.0%; Fig. 3B). Whereas some 149 

oyster microbiome studies have discarded Cyanobacteria reads to eliminate sequenced 150 

chloroplasts from algal matter (20, 21), oysters will ingest Cyanobacteria as a food source (26) 151 

and accumulate Cyanobacteria in greater numbers than the surrounding water column (18), 152 

justifying retention of these reads as part of the microbiome. Cyanobacteria may even influence 153 

the abundance of other members of the oyster microbiome. For instance, Proteobacteria, 154 

Bacteriodetes, and Firmicutes have all been isolated from cyanobacterial blooms (27). Therefore, 155 

it is possible that differences in microbial community composition between NI and OR were 156 

influenced, at least in part, by the overall higher abundance of Cyanobacteria at NI.    157 

 Whereas differential abundances in broad phyla-level classifications reveal general 158 

patterns, considering all taxonomic levels with Unifrac uncovered more specific relationships 159 

between samples (Fig. 4). Unifrac delineated between sampling sites, with only a few 160 

exceptions. NI oysters clustered together, whereas OR oysters were dispersed among several 161 

branches, indicating NI oyster microbiomes, which had overall fewer unique phylotypes than 162 
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OR, are overall more similar to each other than are OR oyster microbiomes. Unifrac analysis 163 

revealed variance (see NI.7) that was not apparent in the dual-hierarchical clustering which 164 

resulted from a classification level deeper than phylum. The OR water sample, which had the 165 

lowest read coverage, was quite distant from most samples in both clustering analyses, with a 166 

proportionally high number of reads assigned to the genus Octadecabacter (43.3%, compared to 167 

the average of 0.2% for all other samples, ranging from 0.05% to 0.5%) and the Mamiellaceae 168 

family (40.8%, compared to the average of 0.1% for all other samples, ranging from 0.002 to 169 

0.5%).  170 

 The apparent differences in the oyster microbiome between the two sampling sites were 171 

further interrogated by employing LEfSe to identify phylotypes that significantly differ by site. 172 

The proportions of four phylotypes were significantly higher in OR oysters than NI oysters 173 

including Finegoldia, Bradyrhizobium, Roseateles depolymerans, and Brevundimonas 174 

intermedia (Fig. 5). In contrast, the proportions of eight phylotypes were significantly higher in 175 

NI oysters compared to OR including Propionigenium, M2PT2_76, Reinekea, Pseudomonas 176 

viridiflava, Clostridium sticklandii, Vibrio fortis, Halobacillus yeomjeoni, and 177 

Endozoicimonaceae. Finegoldia is typical of the human gastrointestinal tract (28) and 178 

Bradyrhizobium is a soil-dwelling, root nodule organism (29), so these associations with OR are 179 

consistent with site being a narrow tidal tributary where the oyster bed is in close proximity to 180 

the terrestrial environment and a WWTF outfall. Conclusions on associations by site of the other 181 

organisms are not possible due to absence of relevant information in published studies.     182 

 183 

2.3 Differences in predicted functional profiles between sites 184 
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 In addition to defining the members of the oyster microbiome, we investigated potential 185 

functional differences inferred from phylotype composition between the sampling sites, which 186 

may be driven by their unique ecological and environmental associations. For this we used the 187 

bioinformatics tool PICRUSt that draws upon previously sequenced genomes and annotations 188 

(30). A total of 887 predicted gene functions significantly differed between NI and OR oyster 189 

microbiomes (p < 0.05).  Further examination of the functional differences of the 11 functions at 190 

p < 0.0005 reveals two distinct classes (Fig. 6). OR oyster microbiomes had a higher number of 191 

functions generally involved in cell growth, including nucleotide metabolism, tRNA synthesis 192 

and associated elongation factors, amino acid biosynthesis, and oxidative phosphorylation. NI 193 

oyster microbiomes had a higher number of diverse metabolic functions (sugar, chlorophyll, 194 

carbon, and sulfur metabolism) as well as higher number of chaperone-associated proteins. The 195 

more diverse photosynthesis related metabolic capacity logically related to the prevalence of 16s 196 

sequences identified as Cyanobacteria at NI, as compared to OR. Overall, the variations between 197 

microbiomes and their respective predicted functions at each site could relate to nutrient 198 

conditions that support different types of organisms. The OR oyster bed not only is impacted by 199 

a nearby municipal WWTF discharge, which could explain the slightly higher levels of dissolved 200 

nutrients associated with WWTF effluent (orthophosphate, nitrate), but also more directly 201 

influenced by rainfall/runoff events and nonpoint source pollution (Table 2). OR has higher 202 

chlorophyll a, water temperature, and turbidity with lower salinity and dissolved oxygen 203 

compared to NI (Table 2A&B). NI is also a much larger oyster bed with abundant oyster cultch 204 

on coarser textured sediment compared to OR. The chronic loading of readily available nutrients 205 

at OR may support more rapid total growth of a less diverse bacterial population, whereas the 206 

lower, potentially limiting nutrient concentrations available at NI may support a more diverse 207 
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bacterial population, in agreement with the measures of alpha diversity (Fig. 1). This pattern of 208 

overall lower taxonomic and function diversity in OR is in agreement with other studies that 209 

indicate wastewater effluent decreases microbial diversity (31, 32). 210 

 211 

2.4 Abundance of V. parahaemolyticus in individual oysters and correlations with 212 

microbiome 213 

 To evaluate potential correlations of microbiome with V. parahaemolyticus, we applied a 214 

quantitative qPCR-based MPN enumeration method of V. parahaemolyticus to individual oysters 215 

(see methods), which allowed evaluation of correlations between relative abundance of V. 216 

parahaemolyticus and phylotypes in individual oyster microbiomes.  This approach revealed that 217 

individual oysters, even from the same site, differed dramatically in abundance of V. 218 

parahaemolyticus (Table 3) as reported by two other individual oyster studies (32, 34). Oysters 219 

were subsequently categorized and grouped based on log10 MPN/g abundance level, where the 220 

means of each group significantly differed from the other groups (Low: 0.48, Medium: 1.16, 221 

High: 2.51; p < 0.0001).  V. parahaemolyticus was only captured via 16s sequencing in the 222 

medium and high abundance level oysters from NI (Table 3), being an overall rare component of 223 

the sequenced oyster microbiome. Whereas the estimated relative (16s) and absolute (MPN) V. 224 

parahaemolyticus abundance did not match, there was agreement in the general pattern of 225 

detection of V. parahaemolyticus 16s rRNA and abundance by enrichment-based MPN. 226 

 
NI harbored the only oysters with high abundance level of V. parahaemolyticus, and also 227 

harbored oysters with medium and low abundance level. In contrast, OR contained oysters with 228 

only medium and low abundance level V. parahaemolyticus. Due to these differences in 229 

distribution of V. parahaemolyticus abundance, we queried whether differences in ecology 230 
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between these sites could impact microbial communities including Vibrios. There are some 231 

differences in long-term nutrient conditions (Table 2; 35) between the two sites. The 232 

combination of higher chlorophyll a, turbidity, nutrients (Table 2) and temperature, with lower 233 

salinity and dissolved oxygen levels (representing short-term environmental conditions averaged 234 

over the 12 hours prior to oyster harvest) at OR are consistent with it being a tributary and other 235 

distinctions between the two sites (Table 2A&B).  Interestingly, although chlorophyll a 236 

positively correlates with V. parahaemolyticus presence even in the GBE (3, 8), it was higher at 237 

OR. It is not clearly apparent that any of these measured abiotic parameters drove higher levels 238 

of V. parahaemolyticus at NI in a subset of oysters, or comparatively lower levels of V. 239 

parahaemolyticus at OR, but it is further evidence supporting site differences as a likely 240 

contributing factor in oyster microbial community variation. 241 

 To investigate whether microbial community members correlated with V. 242 

parahaemolyticus abundance, microbiome data for individual oysters were analyzed with 243 

Unifrac distance trees to determine similarity of the microbiome of oysters in the same MPN 244 

abundance level group, separated by site.  Branching patterns did not correspond with V. 245 

parahaemolyticus abundance level, indicating there is no overall similarity in the microbial 246 

community in V. parahaemolyticus high abundance level oysters. Despite a lack of clustering of 247 

samples by V. parahaemolyticus abundance level, there were 24 phylotypes significantly higher 248 

in number in high abundance level oysters, one phylotype in medium abundance level oysters, 249 

and three in low abundance level oysters (Fig. 7). However, a caveat to this data and its 250 

interpretation is that these were all rare phylotypes of which the proportion could be influenced 251 

by depth of sequencing of the microbiome (Fig. 1), in addition to the relationships potentially 252 

being confounded by site-specific differences.  Specifically, the 19 phylotypes that were 253 
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exclusive to high abundance level oysters (and by default present in significantly higher 254 

proportions) could be an artifact of oyster location in the estuary. As such, the influence of 255 

estuary location on differences in the microbiome was most apparent from this study, and 256 

correlations of microbiome with V. parahaemolyticus abundance await a more robust sample 257 

size and greater microbiome sequencing depth. 258 

 259 

3. Conclusions 260 

 Microbial community profiling of the microbiome and quantification of Vibrio 261 

parahaemolyticus abundance of oysters and overlaying water from two naturally occurring 262 

oyster beds revealed individual oysters and sites have different taxonomic and functional 263 

microbiome profiles. These differences, likely influenced by distinctive ecology, is in general 264 

agreement with other studies that conclude the microbiomes of marine animals are highly 265 

specific based on individuals’ surrounding habitat (23, 25) and diet (36). Even so, that the 266 

microbiome composition and Vibrio abundance were so variable between individuals from the 267 

same site allude to the potential that community-level interactions within an oyster impact the 268 

risk of Vibrio parahaemolyticus achieving an infective population size. A better understanding of 269 

these interactions could open new avenues for disease prevention.  270 

 Both culture-based and culture independent methods revealed V. parahaemolyticus did 271 

not equally accumulate in individual oysters, despite the oyster's exposure to the same general 272 

environmental conditions at each site. Therefore, the measured environmental conditions cannot 273 

explain differences in V. parahaemolyticus levels between individual oysters. Bivalves actively 274 

filter water based upon particle size (37), bacterial species (38), strains within the same species 275 

with known or introduced (i.e., mutations) genetic variation (39-41), and even differentiate 276 
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between viral particles (42).  The V. parahaemolyticus strains themselves may contain genetic 277 

factors or phenotypic traits influencing uptake and/or depuration and it is possible different 278 

strains are accumulated at different rates, much like Vibrio vulnificus (43). Through differential 279 

killing of strains or variants, oyster hemocytes may also reduce the accumulation of certain V. 280 

parahaemolyticus strains (44, 14). 281 

 The higher abundance of Cyanobacteria at NI may influence the abundance of other 282 

phyla at this site (27).  It may also explain the higher abundance of V. parahaemolyticus at NI. 283 

Cyanobacteria and V. cholerae will associate (3), and Vibrio spp. make up as much as 6% of all 284 

cultivable heterotrophic bacteria isolated from cyanobacterial blooms (27). In addition, 285 

cyanobacterial-derived organic matter increases Vibrio abundance (3). This study indicates the 286 

general approach of microbiome profiling may reveal phylotypes and functional differences 287 

associated with V. parahaemolyticus abundance with deeper sampling.   288 

   289 

 290 

4. Methods 291 

4.1 Oyster Collection and Processing 292 

 One water and ten oyster samples were collected at low tide on September 1
st
, 2009 from 293 

two distinct naturally-occurring oyster beds in the New Hampshire Great Bay Estuary (GBE).  294 

Oysters were collected using oyster tongs whereas water samples were collected by submerging 295 

capped sterile bottles ~0.5m below the water surface and uncapping to fill.  Samples were 296 

immediately stored on ice packs in coolers until laboratory processing. Individual oysters were 297 

cleaned, aseptically shucked, and thoroughly homogenized with a surface disinfected (using 90% 298 

ethanol and filter sterilized water) Tissue Tearor (Biospec Products, Bartlesville, OK). Most 299 

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/156851doi: bioRxiv preprint first posted online Jun. 28, 2017; 

http://dx.doi.org/10.1101/156851
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Probable Number (MPN) analyses were performed on individual oyster homogenate and water 300 

samples as described in Schuster et al. (45).  In brief, samples were serially diluted tenfold into 301 

Alkaline Peptone Water (APW) and incubated at 37°C for 16 hours, and the tubes scored by 302 

turbidity. To positively identify the presence of V. parahaemolyticus, 1.0mL of each turbid 303 

dilution was pelleted, and the DNA obtained by organic extraction (46). The DNA was subjected 304 

to a quantitative q-PCR based MPN as described below, to determine whether each turbid 305 

dilution was positive for V. parahaemolyticus.  The microbiome was recovered from water 306 

samples following centrifugation in a 5810R centrifuge (Eppendorf, Hamburg, Germany) at 307 

4,000 rpm and the supernatant discarded. The water bacterioplankton pellet and un-enriched 308 

oyster homogenate not immediately used for MPN analysis were frozen at -80°C.   309 

 310 

4.2 MPN/g enumeration 311 

 MPN tubes were scored as positive for V. parahaemolyticus by detection of the 312 

thermolabile hemolysin gene (tlh) with q-PCR (47).  The reaction contained 1x iQ Supermix 313 

SYBR Green I (Bio-Rad, Hercules, CA) and 2µL of the DNA template in a final volume of 25µl. 314 

An iCycler with the MyiQ Single Color Real-Time PCR Detection system with included 315 

software (Bio-Rad, Hercules, CA, USA) was used with the published cycling parameters (48).  A 316 

melting curve was performed to ensure positive detection of the correct amplicon compared to a 317 

control DNA sample (V. parahaemolyticus F11-3A). MPN tubes were scored as positive or 318 

negative based on whether q-PCR starting quality values were below (negative) or above 319 

(positive) the threshold value determined by the standard curve using purified F11-3A and water 320 

blank with iCycler software. The V. parahaemolyticus MPN/g was calculated for each oyster 321 

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/156851doi: bioRxiv preprint first posted online Jun. 28, 2017; 

http://dx.doi.org/10.1101/156851
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

according the FDA BAM (24) and grouped by high, medium, or low abundance level based on 322 

10-fold differences in MPN/g.   323 

 324 

4.3 16s rDNA marker preparation 325 

 DNA was isolated from archived oyster homogenates.  The homogenates were thawed on 326 

ice for 10 minutes, the top ~1cm was aseptically removed and discarded, and 1.0g of each oyster 327 

homogenate was aseptically collected.  The entire bacterioplankton pellet was used for the water 328 

samples.  The total bacterial DNA was extracted using the E.Z.N.A. Soil DNA Kit (Omega Bio-329 

Tek, Norcross, GA, USA) following standard protocols for Gram-negative and -positive bacterial 330 

isolation.  331 

 The V2 to V3 region of 16s rRNA gene (250bp) was amplified from each individual 332 

sample in triplicate using PCR with standard 16s F8 (5’ – AGTTTGATCCTGGCTCAG – 3’) 333 

with GS FLX Titanium Primer A (5’ – CGTATCGCCTCCCTCGCGCCATCAG – 3’) and R357 334 

(5’ – CTGCTGCCTYCCGTA – 3’) with Primer B (5’ – 335 

CTATGCGCCTTGCCAGCCCGCTCAG – 3’), with each pair of corresponding forward and 336 

reverse primer sets having a unique 6bp MID tag (48).  The PCR reaction containing 45µL 337 

Platinum PCR Supermix (Invitrogen, Carlsbad, CA, USA), 3µL of sample DNA, and 2µL 338 

molecular grade water, was ran in an iCycler thermocycler (Bio-Rad, Hercules, CA, USA) at the 339 

following conditions:  94°C for 90 seconds; 30 cycles of 94°C for 30 seconds, 50.7°C for 45 340 

seconds, 72°C for 30 seconds; and 72°C for 3 minutes.  The triplicate samples were combined 341 

and then purified using the MinElute PCR Purification Kit (Qiagen, Valencia, CA, USA) 342 

following standard protocols.  Each purified sample was visualized on a 1.2% agarose gel to 343 

ensure purity and quality including expected amplicon size. 344 
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 A 10ng/mL multiplexed sample was prepared for the Roche Genome Sequencer FLX 345 

System using Titanium Chemistry (454 Life Sciences, Branford, CT, USA). The DNA 346 

concentration for each sample was quantified using a NanoDrop 2000c (Thermo Scientific, 347 

Wilmington, DE, USA) and pooled with equal proportions of the twenty oyster and two water 348 

samples.  The pooled mixture was purified using the AMPure XP Purification Kit (Beckman 349 

Coulter Genomics, Danvers, MA, USA) by manufacturers protocols, with the final samples 350 

suspended in 20uL elution buffer EB from the MinElute PCR Purification Kit (Qiagen, Valencia, 351 

CA, USA).  The pooled tagged single-stranded pyrosequencing library underwent fusion PCR 352 

and pyrosequencing using a Roche 454 FLX Pyrosequencer (454 Life Sciences, Branford, CT, 353 

USA) according to the manufacturer instructions at the University of Illinois W.M. Keck Center 354 

High-Throughout DNA Sequencing Center.   355 

 356 

4.4 Community analysis 357 

 The forward 454 pyrosequencing reads were quality filtered and denoised to reduce 358 

erroneous PCR and sequencing errors using FlowClus, setting zero primer and barcode 359 

mismatches, a minimum sequence length of 200, zero ambiguous bases and seven 360 

homopolymers allowed before truncation, a minimum average quality score of 25, and k=5 for 361 

the flow value multiple (49).  These sequences were then further filtered and clustered with 362 

mothur 1.22.0 (50). The mothur workflow followed the 454 SOP accessed September 2014 (50) 363 

with some modifications.  The pre-clustering step was performed permitting one difference.  364 

Chloroplasts were retained, as cyanobacteria have previously been identified as part of the oyster 365 

microbiome (18, 23). The Greengenes 13.8 (51) reference database was used to assign taxonomy 366 

to OTUs.  After removing singleton OTUs, mothur 1.33.0 (50) was used to generate a distance 367 
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matrix, pick representative OTUs, and create a phylogenetic tree using clear-cut 1.0.9 (52) for 368 

determining alpha diversity. 369 

 Rarified alpha diversity measurements were calculated with QIIME 1.8 (53) to determine 370 

both the within-sample diversity and sequencing depth using whole-tree phylogenetic diversity 371 

(PD) calculated with ten iterations of 100 reads added at each rarefaction step, up to 75% of the 372 

sample with the highest number of reads (Supplemental Table 1).  The distribution of OTUs 373 

between sampling sites and substrates was determined with Venny 1.0 (54).  Patterns in 374 

abundance in phyla-level classifications in all samples were revealed with a dual-hierarchical 375 

clustering performed with JMP 12 (SAS Institute Inc., Cary, North Carolina, USA) for log-376 

transformed percent abundance using both standardized and unstandardized average linkage.  377 

Weighted and normalized Fast Unifrac (55), which uses all levels of taxonomic assignment to 378 

create a distance matrix and groups samples based on similarity, was used to perform beta 379 

diversity clustering and jackknife analyses for samples, jackknifing at 1000 permutations at 75% 380 

of the sample with the lowest number of reads.  LEfSe (56), PICRUSt (30) and STAMP (57) 381 

were all used at default settings, to determine taxonomic and profile similarities between sample 382 

groups, and calculate statistical significance, respectively, pre-normalizing samples to 1M in 383 

LEfSe. 384 

 To compare the sequenced-based abundance of V. parahaemolyticus to abundance 385 

quantified with the culture-based MPN method, all quality-filtered, de-noised reads were aligned 386 

to the region of V. parahaemolyticus strain RIMD 2210633 (GCA_000196095.1) that would be 387 

amplified by the F8-R357 primer pair at 99.0% with PyNast (58) through QIIME 1.8 (54).  The 388 

identity of matching sequences was confirmed with BLAST (59). 389 
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Environmental and nutrient conditions per each site were assessed from the NOAA National 390 

Estuarine Research Reserve System (http://nerrs.noaa.gov/) that measures conditions every 15 391 

minutes.  392 

 Environmental data used in the statistical analyses were collected as part of this study and the 393 

Great Bay National Estuarine Research Reserve (GBNERR) System Wide Monitoring Program 394 

(SWMP). Water temperature, salinity, dissolved oxygen, pH, and turbidity were measured and 395 

downloaded from YSI datasondes deployed at the study sites from April-December with 15-396 

minute readings. In addition, grab samples collected monthly by GBNERR SWMP were 397 

analyzed for chlorophyll a, orthophosphate, ammonium, nitrate-nitrite and total dissolved 398 

nitrogen (http://cdmo.baruch.sc.edu/get/export.cfm) Short-term environmental conditions, 399 

including temperature, salinity, dissolved oxygen, pH, and turbidity were averaged for the 12 400 

hours prior to sampling. Long-term nutrient patterns were assessed by averaging all nutrient 401 

analysis data from 2007-2013. The fieldwork performed in this study did not involve endangered 402 

or protected species. 403 
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Figure Captions: 633 

 634 

Figure 1. Rarified alpha diversity assessment. Phylogenetic Distance (PD) whole tree index for 635 

individual oyster and overlying water samples were generated where each sample is represented 636 

by a unique color. 637 

 638 
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Figure 2.  Relationships between OTUs identified in oysters and overlying water from two 639 

estuarine locations. (A) Distribution of all OTUs in water and in any oyster sample and (B) 640 

distribution of all OTUs in water and in every oyster sample by site (OR or NI), representing the 641 

site-specific and overall core microbiome. 642 

 643 

Figure 3. Dual hierarchical analysis of phyla-level classification. The log-transformed percent 644 

abundance of each phylum is indicated by a color scale.  Samples and phyla are clustered based 645 

on (A) unstandardized and (B) standardized average linkage.  In unstandardized linkage, the 646 

abundance of each phylum in a given sample is colored based on relative abundance of all phyla, 647 

whereas in standardized the abundance of each phylum is colored based on the relative 648 

abundance of that phylum across all samples. 649 

 650 

Figure 4.  Unifrac phylogenetic distance analysis. Phylogenetic distance of all taxonomic levels 651 

for each pair of samples was calculated by the total branch length of unique phylotypes and 652 

divided by total branch length of all phylotypes. 653 

 654 

Figure 5.  Effect size of phylotypes in oysters at significantly different proportions at each 655 

collection site determined by LEfSe. LEfSe employs the non-parametric factorial Kruskal-Wallis 656 

sum-rank, Wilcoxon rank-sum, and Linear Discriminant Analysis tests to determine the effect 657 

size of significantly different phylotypes (56). 658 

 659 
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Figure 6. Distribution of Annotated functions at each site. (A) PICRUSt-derived KEGG 660 

orthology IDs at significant different (p < 0.0005) numbers at each site, and (B) the pathways 661 

associated with each ID. 662 

 663 

Figure 7.  PICRUSt-derived phylotypes in oysters at different proportions by V. 664 

parahaemolyticus abundance class.  Phylotypes followed by an * were only present in high 665 

abundance oysters. 666 

 667 

Table 1.  OTU assignment to level of taxonomic classification following processing. 668 

 669 

 OTUs classified at each 

taxonomic level (% of total) 

 QIIME mothur 

Unclassified 1524 (26.4) 0 (0) 

Kingdom 4240 (73.6) 5756 (100) 

Phylum 4227 (73.3) 5446 (94.6) 

Class 4173 (72.4) 5411 (94.0) 

Order 3676 (63.8) 4987 (86.6) 

Family 2666 (46.3) 4363 (75.8) 

Genus 863 (15.0) 3155 (54.8) 

Species 74 (1.3) 2059 (35.8) 

 670 

 671 

 672 
 673 
 674 
 675 
 676 

 677 
 678 

 679 
 680 
 681 
 682 
 683 
 684 
 685 

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/156851doi: bioRxiv preprint first posted online Jun. 28, 2017; 

http://dx.doi.org/10.1101/156851
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Table 2. Environmental conditions associated with collection sites 686 

       A. Average datasonde
1
 measures during 12 hours prior to sampling on 8/31 to 9/1/09. 

   Water Salinity Dissolved O2 O2 Turbidity pH 

 

Temperature 

 

Saturation Concentration 

 

  

SITE °C ppt % mg/L NTU/L   

OR 20.7 20.4 88.5 7.0 29.7 7.5 

NI 19.9 23.2 95.3 7.6 6.4 7.5 

       B. Average concentrations in grab samples collected during July-August during 2007-2009. 

   Orthophosphate Ammonium Nitrate/nitrite Total dissolved N Chlorophyll a 

 SITE mg/L mg/L mg/L mg/L µg/L 

 OR 0.041 0.075 0.103 0.171 9.4 

 NI 0.031 0.067 0.032 0.096 5.7 

   687 
1
Data derived from a YSI datasonde deployed at each site with readings taken at 15 min 688 

intervals. Ppt: parts per thousand; NTU: Nephelometric Turbidity Unit. 689 

 690 

 691 

 692 

 693 

 694 

 695 

 696 

 697 
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Table 3.  Distribution of Vibrio parahaemolyticus in oysters as determined by MPN and 16s 698 

sequencing
1
.   699 

Oyster Log10 MPN/g Abundance Level 16s Reads 

NI.10 0.52 Low - 

NI.5 0.72 Low - 

NI.7 1.01 Medium - 

NI.8 1.01 Medium 2 (0.011) 

NI.1 1.34 Medium 3 (0.020) 

NI.6 1.34 Medium - 

NI.2 2.38 High - 

NI.3 2.38 High 2 (0.011) 

NI.4 2.38 High 1 (0.003) 

NI.9 2.88 High 1 (0.009) 

OR.10 0.13 Low - 

OR.4 0.28 Low - 

OR.6 0.28 Low - 

OR.2 0.49 Low - 

OR.8 0.52 Low - 

OR.5 0.93 Low - 

OR.1 1.01 Medium - 

OR.3 1.01 Medium - 

OR.7 1.20 Medium - 

OR.9 1.34 Medium - 
 700 
1
Oysters from Nannie Island (NI.1-10), and Oyster River (OR.1-10) are ordered by site and 701 

within site by increasing V. parahaemolyticus abundance level as determined by MPN. 16s reads 702 
represents the number of V. parahaemolyticus sequences and relative percent abundance in 703 
parentheses 704 

 705 
 706 

 707 

 708 

 709 

 710 

 711 

 712 
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Supplemental Table 1.  Reads available for analysis following quality filtering. 713 

 714 

Oyster NI OR 

1 14786 34420 

2 17900 25737 

3 17478 36390 

4 31802 25115 

5 12500 47231 

6 10390 33229 

7 21227 24765 

8 17670 34639 

9 21719 9672 

10 15468 22802 

Water 6495 397 

 715 

 716 

 717 
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