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ABSTRACT

THE EFFECT OF CYANOBACTERIA AND THEIR CHEMICAL CUES ON THE
SURFACE AREA OF THE THIRD THORACIC LIMB OF DAPHNIA

by

W. Travis Godkin 

University of New Hampshire, December 2007

Changes in the filter appendage surface area (FSA) of Daphnia in 

response to cyanobacteria were examined in an effort to learn more about the 

relationship between Daphnia and extracellular cues exuded by cyanobacteria. 

The filtering appendage areas of two strains of D. pulex were measured after 

feeding on high and low concentrations of a mixture of Nanochloropsis spp. and 

toxic Microcystis aeruginosa for one generation. Daphnia were also raised in a 

filtrate of this same M. aeruginosa and given high and low concentrations of food 

to determine the cause of increased FSA in the presence of cyanobacteria: low 

amounts of nutritious phytoplankton or response to chemical cues produced by 

the cyanobacteria. I observed an increased FSA in response to increased 

proportions of M. aeruginosa. However, there was no change in FSA as the 

amount of M. aeruginosa filtrate increased and food levels remained constant, 

thus suggesting that the lack of nutritious food is the most proximate cause of 

increased FSA.

Patterns consistent with laboratory experiments were observed in Daphnia 

from eight lakes of varying trophic status. The Daphnia from the most

x
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oligotrophic lakes had the largest FSA and Daphnia from eutrophic systems with 

an abundance of cyanobacteria had a greater FSA than more mesotrophic 

systems.
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CHAPTER I

INTRODUCTION

Background

Phytoplankton and zooplankton grazers are important components of lake 

ecosystems. Understanding of the interactions between these two trophic levels, 

in particular the phenotypic plasticity exhibited in zooplankton, is essential. 

Daphnia (Order: Cladocera) are small (~0.5-3 mm) crustaceans that often make 

up a considerable proportion of a lake’s zooplankton community. Examining 

Daphnia’s phenotypic responses to seasonal changes in phytoplankton, and 

specifically toxin-producing cyanobacteria, enables us to understand one of the 

mechanisms by which they adapt to and survive in a fluctuating environment 

(Fulton and Paerl 1987; Haney et al. 1994; Trubetskova and Haney 2006). 

Several studies have demonstrated that the surface area of the primary filtering 

appendages of Daphnia (Fig. 1) increase when concentrations of edible grazing 

material are low (Geller and Muller 1981; Repka et al. 1999). Ghadouani and 

Pinel-Alloul (2002) examined the effects of natural assemblages of cyanobacteria 

on the surface area of the filtering appendages, finding increased surface area 

when exposed to toxin-producing cyanobacteria. However, the relationship 

between surface area changes and food type are not yet fully understood. 

Unanswered is the question: is this plastic response induced by a lack of food or

1
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by chemicals produced by the cyanobacteria? This study was designed to 

address this question.

Koza and Korinek (1985) and Lampert (1994) reported that the total 

surface area of the filtering appendages increased when Daphnia were reared in 

low concentrations of phytoplankton. As the filtering rate is primarily dependant 

on the filter screen area (FSA), an increase enhances filtering efficiency without 

increasing thoracic limb beat frequency, thus allowing the Daphnia to increase 

phytoplankton consumption (Egloff and Palmer 1971). Furthermore, there may 

be an associated increase in feeding capacity too, as Lampert (1994) observed 

increases in ingestion rate. Additionally, a decreased amount of digestible 

material is a prominent trigger for the increase in FSA. When Repka et al. (1999) 

increased total particle concentration with inert clay particles, while maintaining 

low phytoplankton levels, Daphnia still showed an increase in FSA .

Daphnia exposed to a natural phytoplankton assemblage containing 

increased amounts of non-ingestible filamentous and colonial cyanobacteria 

responded as it does to low food concentrations: FSA increased along with filter 

mesh size (Ghadouani and Pinel-Alloul 2002). Though the quantity of 

phytoplankton present was large, it was mostly inedible and possibly toxic. 

Daphnia feeding upon cultures of Microcystis have exhibited increased mortality, 

decreased growth, delayed maturation, and decreased offspring production 

(Trubetskova and Haney 2000). The increase in FSA observed by Ghadouani 

and Pinel-Alloul (2002), which resulted in the increase in filtering capacity, is 

presumably an adaptation to capture and consume more edible material. The

2
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greater mesh size may be due to the increased size of seston, as daphnids from 

environments dominated by smaller diameter seston feed more effectively with a 

finer filtering screen (Geller and Muller 1981). The change may also be caused, 

in part, by the detection of the dissolved chemical, which would accompany the 

dominant cyanobacteria. These studies suggest that, in nature, the relative size 

of the Daphnia filtering area may shift in response to changes in the 

phytoplankton size and abundance, such as might occur in lakes with a range of 

trophic conditions.

Hypotheses

The present study examines the relationship between concentration and 

composition of phytoplankton and the FSA of Daphnia based on field data and 

laboratory experiments. Specifically, I hypothesize:

1. The filter screen area (FSA) of laboratory cultured Daphnia pulex 

collected from an oligotrophic lake (Russell Pond) as well as a 

eutrophic lake (Old Durham Reservoir) will increase when reared in 

low concentrations of the highly edible phytoplankton 

Nanochloropsis spp. as well as when exposed to a unicellular form 

of toxin-producing Microcystis aeruginosa.

2. There will be an increase in the FSA of both of these strains of 

Daphnia when exposed to a filtrate of M. aeruginosa, but the 

increase will be greater in the Daphnia from the eutrophic Old 

Durham Reservoir.
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3. FSA will be larger in Daphnia collected from oligotrophic and 

eutrophic lakes, environments with little edible phytoplankton, while 

those collected from mesotrophic environments with sufficient 

amounts of edible phytoplankton, will have a relatively smaller FSA.

Rationale and Assumptions 

Hypothesis 1: Low concentrations of edible phytoplankton are 

encountered in lakes that are oligotrophic, as well as in eutrophic environments 

dominated by inedible filamentous and colonial cyanobacteria (Ghadouani and 

Pinel-Alloul 2002). These two scenarios are typical of the environments 

encountered by the Russell Pond (Haney and Ikawa 2000) and Old Durham 

Reservoir (Personal Obs.) strains of Daphnia, respectively. Increased FSA 

would permit the Daphnia to filter a larger volume of water, thus increasing the 

probability of ingesting more edible material. Previous studies have shown that 

FSA will increase with exposure to colonial or filamentous forms of cyanobacteria 

(Ghadouani and Pinel-Alloul 2002). However, it is still unclear if the changes in 

FSA are a response to the physical or chemical inhibition created by these forms 

of cyanobacteria. By using a microcystin-producing strain of M. aemginosa that 

is unicellular and therefore ingestible by Daphnia, an increase in FSA should not 

be due to starvation caused by physical inhibition, but some other factor 

associated with the M. aeruginosa.

Hypothesis 2: I expect the Daphnia exposed to the M. aeruginosa filtrate 

will increase their FSA in response to effects produced by extra cellular chemical

4
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cues present in the filtrate. Exposure to cyanobacteria filtrate alone causes 

decreases in thoracic limb beat frequency, increased postabdominal rejection of 

food collected, and decreased filtration rates (Forsyth et al. 1992; Haney et al. 

1994; Haney et al. 1995); these behavioral responses may extend to phenotypic 

changes as well. The cue present in the filtrate has not been identified and could 

be a number of chemicals produced by cyanobacteria. In addition to microcystin 

(Bishop et al. 1959), Microcystis has been shown to produce anatoxin, a 

neurotoxin (Namikoshi and Rinehart 1996), aeruginosin, a serine protease 

inhibitor (Murakami et al. 1995), and microviridin, a depsipeptide (Okino et al, 

1995; See also: Ikawa and Sasner, 1990 and Namikoshi and Rinehart, 1996). 

Furthermore, Daphnia life history traits vary in response to stress (Boersma et al. 

1999), there are intraspecies differences in tolerance of cyanobacteria (Sarnelle 

and Wilson 2005), and Daphnia may become tolerant to cyanobacteria 

(Gustafsson and Hansson 2004). Therefore, I expect the change in FSA in 

response to chemical cues to be greater in the Old Durham Reservoir Daphnia 

because as they have adapted to exposure to M. aeruginosa and are more likely 

to recognize this chemical cue when re-exposed.

Hypothesis 3: I expect the relationship of increased FSA in the presence 

of decreased phytoplankton will be observed in Daphnia collected from both 

oligotrophic and eutrophic lakes. Oligotrophic lakes typically have low food 

levels. Eutrophic lakes tend to have greater amounts of phytoplankton, 

particularly a higher percentage of large (> 50 |am) phytoplankton or colonial and 

filamentous cyanobacteria (Sommer etal. 1986; Paerl 1988). Thus, decreased

5
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levels of edible grazing material in these lakes, indicated by the relative amounts 

of cyanobacteria, should require greater efficiency in food collection, which can 

be accomplished through an increase in FSA.

6
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CHAPTER II

METHODS

Laboratory Experiments 

Experimental Daphnia consist of two strains of D. pulex from different 

environments: Old Durham Reservoir (ODR) and Russell Pond (RP). Old 

Durham Reservoir (Durham, NH) is a eutrophic lake, which often contains an 

abundance of cyanobacteria, including M. aeruginosa and Anabaena sp. Russell 

Pond (Woodstock, NH), in contrast, is an oligotrophic lake which contains a low 

density and relative abundance of cyanobacteria, and almost no M. aeruginosa. 

Daphnia from each lake were collected with an 80 pm plankton net and had been 

in culture at UNH’s Center for Freshwater Biology for approximately 1 year prior 

to this study.

Feeding effects

The Daphnia were cultured in aerated well water and fed Nanochloropsis 

spp. for at least one month prior to the beginning of the experiment. Neonates (< 

16 h old) were harvested, using 500 pm and 250 pm sieves, and transferred to 

the experimental vessels, which contained 10 Daphnia each in 60 mL of aerated 

well water. To test the effect of M. aeruginosa on FSA, Daphnia were exposed to 

high (1.0 mg C L"1) and low (0.25 mg C L"1) food concentrations of a 0% (control), 

25%, 50%, 75%, and 100% M. aeruginosa content mixture of M. aeruginosa

7
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(UTEX 2385; cultured in ASM-1 medium at the UNH Center for Freshwater 

Biology) and Nanochloropsis spp. (Instant Algae Nanno 3600, Reed Mariculture) 

in 60 experimental vessels. Carbon content was assumed to be 50% dry weight 

of the phytoplankton cells. Each treatment consisted of three replicates. The 

entire water volume was replaced and re-inoculated with the appropriate mixture 

and concentration of algae every 24 h.

These concentrations of phytoplankton, determined by cell counts using a 

hemacytometer, have been shown to be well above and below the incipient 

limiting concentration (Rigler 1961) as well as the concentration limiting growth in 

Daphnia (Lampert 1977, 1978). Nanochloropsis spp. was chosen for three 

principle reasons: it is a good source of nutrition for Daphnia, it is similar in size 

and shape to M. aeruginosa (both are spherical and are similar in size, 

approximately 5 pm in diameter) and, like M. aeruginosa, sinks slowly and allows 

for relatively constant algal concentrations throughout the experimental vessel at 

all times.

Clearance Rates- Clearance rates were measured in each container by 

monitoring the initial and final concentrations of algae during the final 2-4 h of 

each treatment (depending on the number of surviving individuals and food 

concentration). Clearance rate (CR; ml h'1 ind.-1) was calculated according to 

Downing and Rigler (1984) as follows:

CR = (In (Cn+cell qrowth)-ln Ct)*V 
find.

8
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where V is the volume of water in the container, Co is the initial food 

concentration and Ct is the food concentration at time t (hours). Cell growth was 

determined using a control consisting of aerated well water inoculated with the 

appropriate concentration and mixture of algae. Clearance rates were then 

adjusted to a standard body length for Daphnia of 1.5 mm using the average 

body length in each replicate and correcting with the regression equation for 

body length and filtering rate from Burns (1969).

Filter Screen Measurement- Daphnia were removed from the experimental 

vessels when they had reached their maximum body length and shown visible 

signs of egg production. The age of full grown Daphnia varied between 

treatments as those in the high algal concentration grew at a faster rate than in 

the low algal concentration. Upon removal, the Daphnia were preserved in 

sucrose formalin (Haney and Hall 1972). This preservation technique does not 

affect body length or appendage size as all measured parts are made of chitin 

(Campbell and Chow-Fraser 1995).

The average filter screen area (FSA) for the third feeding appendage was 

measured and related to the body length of the individual. Body length (top of 

head to the base of the tail spine) and body width of each daphnid was measured 

and the thoracic filtering appendages were removed from the animal. The 

screens were mounted on a slide using glycerin and a coverslip and sealed after 

24 h with clear nail polish. A digital image of the magnified (100-400x) filter was

9
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captured and the FSA was measured using the polygon tool combined with the 

area measurement feature in NIH Image J (version 1.28u).

Each treatment was compared using ANCOVA (Systat 10.0), regression 

analysis and ANOVA (Sigma Plot 9.0). In all cases a  = 0.05 and all reported r2 

values are adjusted for the number of independent variables (degrees of 

freedom). Body length values used in ANCOVA analysis were transformed by 

raising the value to the power of 2.22 (Egloff and Palmer 1971), thus improving 

the linear relationship. Additionally, the Relative Filter Surface Area was 

calculated using the following equation:

RFSA= FSA/Body Length2 22 

Data were additionally transformed using the natural logarithm in instances of 

non-normal distribution.

Chemical Cue

The methods used to measure the response to Nanochloropsis spp. in 

cyanobacteria filtrate were also as described in the feeding effects experiments. 

Daphnia were fed a high (1.0 mg C L'1) and low (0.25 mg C L'1) concentration of 

Nanochloropsis spp. as noted above; however, the phytoplankton cells were 

suspended in a filtrate of M. aeruginosa. This filtrate was created by filtering 

(Whatman GF/C, 47 mm) a volume of cyanobacterial suspension adjusted to the 

same high concentration as above. Filtered, aerated well water was combined 

with the filtrate to make 0% (control), 25, 50, 75 and 100% M. aeruginosa filtrate 

suspensions. Microcystin content was analyzed using concentrated water

10
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samples and ELISA (Envirologix QuantiPlate kit for microcystins, EP 022) (Haney 

and Ikawa 2000). The high and low concentrations (1.0 and 0.25 mg C L"1, 

respectively) of Nanochloropsis spp. cells were added to this filtrate to create 

treatments of high and low concentrations of Nanochloropsis spp. in high M. 

aeruginosa concentration filtrate. Again, all methods for rearing, calculating 

feeding rates, harvesting, and measurements of FSA were the same as above.

As all treatments were not performed concurrently the dates and duration of each 

experimental treatment are provided in Appendix A (Table A-1).

Natural Populations 

In addition to the controlled laboratory experiments, I also examined field 

populations of Daphnia in order to determine the overall effect of trophic status 

on the FSA. Plankton samples were collected via vertical tows through the entire 

water column and preserved in 4% sucrose formalin as part of the 50 lakes study 

conducted by Haney and Ikawa (2000) as well as lakes visited by the 2003 Field 

Limnology Class (UNH). The trophic status of each lake was determined by 

chlorophyll a concentrations measured at the time of collection and the trophic 

classification scheme of Forsberg and Ryding (1980).

Eight different lakes were used to obtain a variety of trophic conditions. 

These lakes include: York Pond, Otternic Pond, Horseshoe Pond (eutrophic), 

Barbadoes Pond, Swains Lake, Bow Lake, (mesotrophic), Christine Lake, and 

Russell Pond (oligotrophic). York Pond and Christine Lake data were from the 

University of New Hampshire Field Limnology class and the remaining lakes from 

the 50 lakes study (Haney and Ikawa 2000)(Table 1).

11
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Data Collection- Daphnia from each lake were individually identified (An Image- 

Based Key To The Zooplankton Of The Northeast (USA), Version 2.0), measured 

(body length and width), and digitally photographed. The third filtering 

appendages were removed, mounted, and measured as above. FSA 

measurements were made from 9 to 16 individuals from each lake, covering the 

maximum in Daphnia body length present in the lake. These body length 

measurements were transformed and all data were analyzed as outlined above.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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CHAPTER III

RESULTS 

Laboratory Results

Feeding effects

There was a significant difference in mortality between Russell Pond and 

Old Durham Reservoir strains at the same, as well as at differing, food levels 

(ANOVA; p < 0.001; Holm-Sidak pairwise comparisons). Russell Pond Daphnia 

experienced greater overall mortality than Old Durham Reservoir Daphnia. 

Additionally, Russell Pond Daphnia mortality increased with increased exposure 

to M. aeruginosa in high food concentrations suggesting that the individual 

Daphnia were subjected to food related stress (Fig. 2).

There were significant differences in the relationship between body length 

and FSA in all treatments of the feeding response (ANCOVA; Table 2). The 

differences between treatments were best elucidated by examining the Relative 

Filter Surface Area (RFSA), which removes much of the variation due to body 

length differences (Fig. 3). In 10 of 17 of treatments, higher percentages of M. 

aeruginosa led to greater RFSA. In the Russell Pond high food treatments (Fig 

4a), exposure to greater amounts of M. aeruginosa, as in the 100% M. 

aeruginosa treatment, produced greater RFSA values compared to treatments 

with less M. aeruginosa (Table 2). Russell Pond Daphnia in the low food (Fig 4c) 

did not survive in the 50, 75, and 100% M. aeruginosa treatments and the RFSA

13
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for the 25% M. aeruginosa was greater than the 0% M. aeruginosa, though this 

difference was not significant (Table 2).

Similar trends were found for the Old Durham Reservoir Daphnia. In the 

high food treatment (Fig 4b), RFSA values were greatest in high concentrations 

of M. aeruginosa (Table 2). In the low food treatment (Fig. 4d), the average 

RFSA for the Daphnia fed the most M. aeruginosa was larger than all other 

treatments, although only significantly different from the 0% M. aeruginosa 

control and 25% M. aeruginosa (Table 2).

There were significant differences in RFSA between high and low food 

concentrations within Daphnia strains as well. The Old Durham Reservoir 

Daphnia consistently exhibited larger RFSA values when fed a lower amount of 

food (Fig 5); these differences were significant in all but the 25% M. aeruginosa 

treatment (Table 2). Additionally, the average clearance rate for Old Durham 

Reservoir Daphnia raised on low amounts of food was greater than the other 

treatments, though not significantly, and decreased with increasing proportions of 

M. aeruginosa (Fig. 6). Russell Pond Daphnia RFSA did not differ significantly in 

the high and low food in either of the surviving treatments (Table 2), and there 

was no change in clearance rate (Fig. 6).

Chemical Cue

Russell Pond and Old Durham Reservoir Daphnia exposed to M. 

aeruginosa filtrate instead of M. aeruginosa cells did not exhibit the same trends 

seen in the feeding effects experiments. Though mortality patterns were similar,
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with greater mortality in the low food treatments (Fig 7; ANOVA, p< 0.001), there 

was no significant difference in FSA or RFSA (which was again used to reduce 

the effects of body length on FSA; Fig. 8) as the concentration of M. aeruginosa 

filtrate increased (ANCOVA, fig. 9 and ANOVA fig. 10, respectively; Table 3). 

Similarly, there was no significant difference in mean clearance rate between 

treatments (Fig 11). Additionally, there was no difference in Russell Pond 

Daphnia RFSA between high and low food treatments and very little difference in 

Old Durham Reservoir Daphnia RFSA value (Fig. 12).

Natural Populations 

When Daphnia from all natural populations sampled were pooled together, 

the filter surface area (FSA) of the third feeding appendage was positively 

correlated with body length (r2 = 0.81, p < 0.001; Fig. 13). Data were 

transformed by raising the body length to the exponent of 2.22, increasing the r2 

values for four of the lakes (Christine Lake, York Pond, Swains Lake, and Russell 

Pond; Table 4). The highly correlated relationship between FSA and body length 

was seen in each of the individual lakes as well, with the strongest correlation 

found in Swains Lake and the weakest significant correlation in Otternic Pond 

(Table 5; Figs. 14 and 15, respectively). Although D. catawba generally had 

greater FSA values than D. dubia in Horseshoe Pond, there was no significant 

difference in FSA of the 3rd limb between the two Daphnia species (Figure 16, 

ANCOVA, p = 0.566) so they have been grouped together and presented as 

Horseshoe Pond Daphnia. Individual regressions between body length and FSA
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for Christine Lake, York Pond, Barbados Pond, Bow Lake, and Russell Pond can 

be found in Appendix A (Figures A-1 through five, respectively).

The largest of the Daphnia from Christine Lake, Otternic Pond, Russell 

Pond, Swains Lake, and York Pond had a greater FSA than Daphnia from the 

others lakes (Fig. 17). The relationship between FSA and body length for these 

five lakes was significantly different from those of Barbadoes Pond, Bow Lake, 

and Horseshoe Pond (Fig. 17; ANCOVA; p = 0.000), but not from each other 

(Fig. 17; ANCOVA, p = 0.247). Similarly, there was no significant difference in 

this relationship between Barbadoes Pond, Bow Lake, and Horseshoe Pond (Fig. 

17; ANCOVA; p = 0.419).

The RFSA was again used to examine differences between lakes. The 

regression of average body length for each lake with the average RFSA indicated 

that this method successfully reduces the effect of body length on RFSA (Fig. 18; 

p = 0.985; r2 = 0). However, when individual body lengths for all Daphnia in the 

study were regressed by their RFSA, there was a significant relationship with a 

very low revalue of 0.089 (Fig. 19; p = 0.001) indicating considerable interlake 

variability.

The RFSA of Russell Pond Daphnia was significantly greater than all other 

lakes (Fig. 20; ANOVA, p < 0.001; Holm-Sidak pairwise comparison). This 

pattern was not seen in results obtained using ANCOVA, in which Russell Pond 

was significantly different from only Barbadoes Pond, Bow Lake, and Horseshoe 

Pond.
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The relationships between chlorophyll a concentration and the area of the 

filtering appendages of Daphnia were examined to elucidate some of the factors 

influencing the differences between each of the lakes. The RFSA of Daphnia 

from more oligotrophic lakes, especially Russell Pond, were greater than more 

eutrophic lakes such as Horseshoe Pond (Fig. 20). There was an increase in the 

RFSA of the most eutrophic lake: York Pond. There was no significant linear 

relationship between RFSA and chlorophyll a concentration. However, 

regression analysis using exponential models (RFSA = 0.026 + o.05T0658*Chla 

(ng/L)+ 0.0003 * Chi a (|iig L"1) revealed a significant relationship (Figure 21; p = 

0.01, r2 = 0.712).

Similarly, level of microcystins present in each of the lakes was not linearly 

correlated with the RFSA (Fig. 22; p = 0.105, r2 = 0.274), even when Russell 

Pond, which appeared to be an outlier, was removed. The relationship between 

microcystin and RFSA fits an exponential pattern (RFSA= 0.037+ 0.240 '° 687* 

w l w M icrocystin (pg/mi)^ s i m j|a r  to the chlorophyll a concentration and RFSA

relationship (Fig. 22, p = 0.013, r2 = 0.752).
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CHAPTER IV

DISCUSSION 

Laboratory Studies

Feeding effects

Mortality rates differed greatly between treatments, but also within 

replicates (Fig. 2) within the feeding effects study. Increased concentrations of 

M. aeruginosa did not significantly increase the mortality in the feeding effects or 

chemical cue experiments (ANOVA, interaction term p-value = 0.169 and 0.166, 

respectively). This was unexpected, as numerous researchers have reported 

increased mortality with increased cyanobacteria exposure (Forsyth et al. 1992; 

Reinikainen et al. 1994; Hietala et al. 1997), and could be due to the low sample 

size used in this study. Larger sample sizes may have permitted the detection of 

statistical differences, but would have also hindered the experimental progress.

Daphnia exposed to greater amounts of M. aeruginosa had greater FSA 

and RFSA values (Figs. 9 and 4, respectively). Old Durham Reservoir Daphnia 

exposed to high amounts of food had greater filtering areas at all concentrations 

of M. aeruginosa compared to the control with no M. aeruginosa, although this 

effect was only significant at 75% M. aeruginosa (Fig. 4b). Similar trends were 

seen in the low food concentration. All treatments, except 25% M. aeruginosa, 

were greater than the control, although none were significantly different (Fig. 4d). 

As expected, this increase in RFSA was greater in the lower food concentrations
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as the actual amount of edible food was greatly reduced, especially in the 75% 

and 100% M. aeruginosa treatments (Fig 5; Table 2). Increases in FSA coupled 

with decreasing food levels have been reported in numerous studies, and was 

therefore an expected outcome (Lampert 1994). Conversely, clearance rate 

decreased as the proportion of M. aeruginosa increased in the Old Durham 

Reservoir low food treatments, which shows that these Daphnia were consuming 

less food. This decrease in clearance rate is typical of exposure to 

cyanobacteria and not low food levels, as clearance rate is expected to increase 

in the latter case. This may indicate that poor nutrition, resulting from decreased 

consumption and not only decreased Nanochloropsis spp. availability, was the 

cause of the increase in FSA in these treatments.

Russell Pond Daphnia exhibited similar trends: in the high food 

experiment, the 50, 75 and 100% M. aeruginosa treatments had greater RFSA 

values relative to the control, though the difference was not significant (Fig. 4a).

In the low food concentration, mortality prevented similar comparisons. The 

mean RFSA in the 25% M. aeruginosa treatment is greater than the control, but 

not significantly. No Russell Pond Daphnia survived in the 50, 75 or 100% M. 

aeruginosa treatments (Fig. 4c) indicating this strain of D. pulex was probably 

less well adapted to exposure to toxin-producing M. aeruginosa. Furthermore, 

the clearance rate in the 25% M. aeruginosa low food treatment was greater than 

in the control, which is typical of a low food response and the opposite of 

documented responses to cyanobacteria (Forsyth et al. 1992; Haney et al. 1994; 

Haney et al. 1995). Additionally, the clearance rate in the 0% M. aeruginosa
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control is the same in the high and low food levels, indicating that these Daphnia 

are filtering at an elevated capacity even when food is plentiful. This absence of 

response to the M. aeruginosa is to be expected as Russell Pond does not have 

high levels of microcystins or M. aeruginosa (Haney and Ikawa 2000) while Old 

Durham Reservoir often has blooms of toxin-producing cyanobacteria, including 

M. aeruginosa (Personal Obs.). In a similar situation, Sarnelle and Wilson (2005) 

examined clones of Daphnia pulicaria from environments with and without high 

levels of cyanobacteria. They found that the clones from lakes with abundant 

cyanobacteria grew faster and were less inhibited by a diet of 100% M. 

aeruginosa than clones from more oligotrophic systems. Additionally, Hairston et 

al. (2001) compared Daphnia hatched from pre- and post-eutrophication 

sediments and found that modern Daphnia had evolved a phenotypically plastic 

response to the cyanobacteria that had become prevalent in the lake.

RFSA of the Russell Pond D. pulex did not differ significantly between 

high and low food treatments (Fig. 5, Table 3). However, this result was likely 

due to the high mortality rate in treatments with 50% or more M. aeruginosa, 

which is where differences between high and low food RFSA were most often 

found. Perhaps it was a lack of change in FSA that led to the increased mortality 

in the treatments with less Nanochloropsis spp. If there had been an increase in 

FSA, filtering rates would have likely increased and these Daphnia would have 

been able to ingest more Nanochloropsis spp. (Lampert 1994).

These results presented above support hypothesis one that Daphnia FSA 

increases in conditions of decreased food abundance. I expected the greater
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concentrations of M. aeruginosa to produce higher FSA values than the 0% M. 

aeruginosa treatment, and this is largely what occurred. When the total amount 

of phytoplankton was high, but the amount of nutritious material was low, as in 

the 75 and 100% M. aeruginosa treatments, there was an increase in RFSA. 

Ghadouani and Pinel-Alloul (2002) advanced the “reaction norm” hypothesis 

(Stearns 1989) that changes in filter area could be a function of food scarcity, 

speculating that this response could be similar to cyclomorphic predator induced 

changes (Dodson 1974; Dodson 1989; Tollrian 1990,1993). My results, given 

the gradient in levels of Nanochloropsis spp., support this hypothesis. 

Additionally, changes in clearance rate suggest that a decrease in consumption 

is causing the increase in FSA. However, it may have been the ingestion of the 

M. aeruginosa that may be causing the increase in FSA, not the depleted 

amounts of Nanochloropsis spp.

Chemical Cue

Daphnia exposed to M. aeruginosa filtrate did not respond to the same 

extent as those exposed to the whole cells. It appears as if the amount of M. 

aeruginosa filtrate had no effect on the FSA of either strain of Daphnia, unlike in 

the feeding effects experiments; there was no increase in RFSA coupled with the 

increase in M. aeruginosa filtrate (Fig. 10). In the feeding effects experiments, as 

the percentage of M. aeruginosa increased, the percentage of Nanochloropsis 

spp. decreased. In the chemical cue experiments, however, the only variable 

between treatments was the proportion of M. aeruginosa filtrate and the amount
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of Nanochloropsis spp. remained constant across treatments. The consistent 

RFSA, in conjunction with the static clearance rate, suggests that FSA was not 

influenced by the detection of extra cellular chemicals produced by this strain of 

M. aeruginosa but by the levels of edible food present.

Other researches, though, have reported effects of cyanobacteria filtrate 

on feeding in Daphnia. Forsyth et al. (1992) reported decreases in the thoracic 

limb beat frequency of Daphnia carinata when exposed to cyanobacteria filtrate. 

Both of these studies, however, used naturally occurring populations and 

densities (15-20 mg dw L'1) of Anabeana minutissima (Forsyth et al. 1992) or M. 

aeruginosa (Haney et al. 1995). Perhaps the Daphnia in these experiments were 

responding to cues that were not produced by my laboratory reared strain of M. 

aeruginosa, or perhaps the greater density of cyanobacteria (my experiments 

used 2 mg dw L"1 of M. aeruginosa to create the filtrate) produced enough of 

these cues to surpass a threshold of stimulation. Conversely, the lack of 

response to the filtrate could also indicate that ingestion of the M. aeruginosa 

cells is necessary for response. Daphnia reared in water containing purified 

microcystin-LR have shown either no response or response only to amounts 

much greater than those found naturally (Lurling and Van Der Grinten 2004).

Additionally, there were no significant differences between high and low 

food concentrations within Daphnia strains (Fig. 12). Old Durham Reservoir 

Daphnia produced greater RFSA at the low food treatments than at the high food 

treatments, but the difference was significant only in the 0% M. aeruginosa 

control and 100% M. aeruginosa filtrate treatments. The differences were even
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more subtle in the Russell Pond Daphnia, as none of the low food treatments 

yielded significantly greater RFSA values than the control.

One explanation for this result is that Old Durham Reservoir Daphnia from 

the feeding effects experiments, as previously stated, exhibited an increase in 

RFSA as the percentage of M. aeruginosa increased while the percentage of 

Nanochloropsis spp. decreased. In the chemical cue experiments, though, the 

food level remained constant and the control exhibited a significantly greater 

increase in RFSA in the low food treatment. The remaining chemical cue 

treatments did not see a continuously greater disparity in RFSA between high 

and low food levels because there was not a continuous change in actual food 

level. The same is true for Russell Pond Daphnia: there was no significant 

difference in RFSA between high and low food levels in the feeding effects 

control so it should not be surprising that there was no difference in the chemical 

cue control, and therefore the remaining treatments as well. In fact, Russell 

Pond Daphnia may have actually received more food in the low food treatments 

than they would encounter in their natural habitat.

Natural Populations 

Filter screen area was correlated with body length, with only one instance 

of non-correlation: D. catawba from Horseshoe Pond. When the two Horseshoe 

Pond species were combined, though, the relationship was significant (Fig 16). 

Additionally, the larger Daphnia from Christine Lake, Swains Pond, Otternic 

Pond, York Pond, and especially Russell Pond had proportionally larger filter
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screens (Fig. 17). The observed difference may be due to larger Daphnia, in 

general, in these lakes (i.e.: the other lakes not included in this group did not 

have Daphnia in the same size range). However, the difference in body size 

should have been accounted for in the ANCOVA analysis, which indicates that 

these lakes had a greater FSA. This suggests that some factor, probably 

predation, was limiting the size of Daphnia in Barbadoes Pond, Bow Lake, and 

Horseshoe Pond (Brooks and Dodson 1965). The only detectable factor that 

grouped these lakes was, however, body length. The body length of Christine 

Lake Daphnia was significantly greater than all lakes excluding Swains Lake and 

York Pond, and Swains Lake Daphnia were larger than all of the other lakes. 

Otternic Pond Daphnia were the smallest, significantly smaller than Christine 

Lake and Swains Lake (Fig. 23; ANOVA, p < 0.001, Holm- Sidak pairwise 

comparison). Russell Pond Daphnia had an intermediate average body length 

and was not significantly different from any of the other lakes. Otternic Pond 

Daphnia may be grouped with these larger Daphnia due to lake effects. The 

proportion of net cyanobacteria (>50pm) in this lake was high (80%), with the 

next greatest percentage found in York Pond (42%; Fig. 24). In this case, the 

smallest Daphnia seem to have a proportionally large FSA, which supports my 

hypothesis that large amounts of cyanobacteria results in a greater FSA, despite 

the high concentrations of chlorophyll a (a surrogate for general phytoplankton 

only). This same response was seen by Ghadouani and Pinel-Alloul (2002) 

where the highest nutrient enclosure had a peak chlorophyll a level of 112 pg L"1 

but approximately 30 times more inedible than edible phytoplankton, which
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resulted in an increase of FSA. Similar studies have looked at life history 

responses to increased concentrations of M. aeruginosa and have also found 

increased negative affects with increased proportions of M. aeruginosa 

(Reinikainen et al. 1994; Lurling and Van Der Grinten 2004).

Additionally, Horseshoe Pond and Barbadoes Pond Daphnia may have 

had smaller FSA values due to the levels of microcystin, which is known to retard 

somatic growth in Daphnia (Hietala et al. 1995; Hietala et al. 1997; Lurling 2003), 

found in those lakes (Fig. 22 and 25). These two lakes had the highest amount 

of whole lake water microcystin, respectively, of every lake in this study. 

Additionally, Bow Lake had the greatest amount of microcystin relative to the 

amount of cyanobacteria present (Fig 26), suggesting that the relatively high 

levels of microcystin could be affecting Daphnia growth in this lake. York Pond 

and Otternic Pond, in contrast, have some of the lowest levels of microcystin 

relative to the amount of cyanobacteria.

As in the laboratory experiments, additional analysis was performed using 

the RFSA, which removed the effect of body length. When the average RFSA of 

Daphnia from each lake was regressed against each lake’s average body length, 

there was no significant correlation (Fig. 18; p = 0.985; adjusted r2 = 0). When 

each individual RFSA measurement, irrespective of the lake of origin, is 

regressed against the corresponding body length, there was a significant 

relationship (Fig 19). This relationship, though, was very weak, as only about 9% 

(r2 = 0.089) of the variation in RFSA was caused by body length, further 

indicating that this analysis greatly reduced the effect of body length.
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The relationships indicated by the ANOVA analysis, however, differ from 

those suggested by ANCOVA (Figs. 20 & 17, respectively). Analysis using the 

relative surface area, which satisfactorily reduced the effect of body size, 

indicated interesting patterns with Russell Pond, Bow Lake, and York Pond. 

Russell Pond had the greatest mean RFSA, which could be explained by the fact 

that it has the lowest concentration of chlorophyll a of all of the lakes as well as 

the lowest amount of cyanobacteria and microcystins. Russell Pond was 

different from most of the other lakes, with the greatest mean RFSA per unit of 

chlorophyll a (Fig. 27). Additionally, the mean RFSA for York Pond was greater 

than the RFSA for some of the lakes with lower levels of chlorophyll a (Fig. 28; 

Table 1). Bow Lake, too, had a greater mean RFSA than other lakes with similar 

chlorophyll levels and the Otternic Pond Daphnia’s RFSA was greater than those 

of Horseshoe Pond, even though there was a greater concentration of chlorophyll 

a (Fig. 27). This is unexpected when considering the hypothesis that RFSA 

decreases with increasing concentrations of chlorophyll a. However, this pattern 

would be expected under my hypothesis that RFSA increases with a decrease in 

edible phytoplankton; as the percentage of cyanobacteria increases, the relative 

amount of edible, nutritious phytoplankton decreases. Even though York Pond 

had a high level of chlorophyll a (Fig. 28, Table 1), a large proportion of that was 

composed of inedible, less nutritious cyanobacteria (Fig. 24). A similar situation 

existed in Otternic Pond, which also had a large concentration of chlorophyll a 

(Fig. 28, Table 1) and the highest percentage of cyanobacteria (Fig 24). Again, 

this is consistent with Ghadouani and Pinel-Alloul’s (2002) enclosure
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experiments (high chlorophyll a levels but also high proportions of 

cyanobacteria), yet these results were from a natural system.
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CHAPTER V

CONCLUSION

I hypothesized that the filter surface area of Daphnia exposed to 

decreased amounts of edible food would increase. This hypothesis was 

supported: when fed decreased amounts of nutritious phytoplankton, Old 

Durham Reservoir Daphnia showed an increase in FSA in all treatments.

Russell Pond Daphnia did not survive exposure to concentrations of M. 

aeruginosa greater than 50% when coupled with low amounts of Nanochloropsis 

spp. There was, though, an increase in RFSA of the low compared to the high 

food treatment Daphnia in the 25% M. aeruginosa treatment, suggesting that 

surviving individuals may have experienced the same increase in greater 

proportions of M. aeruginosa. Alternatively, the similarity in RFSA between the 

high and low food control could indicate that these Daphnia were already 

producing the largest FSA possible, as these Daphnia are accustomed to living in 

oligotrophic systems. Moreover, both strains of Daphnia exhibited an increase in 

FSA when exposed to greater proportions of M. aeruginosa in both the high and 

low food experiments. While these differences were not consistently significant, 

the trend still exists.

My second hypothesis, which stated that FSA would also increase with 

exposure to M. aeruginosa filtrate alone, and that this increase would be greater 

in the Daphnia from Old Durham Reservoir, was not supported. Exposure to
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filtrate containing greater amounts of the chemical cues produced by M. 

aeruginosa did not affect FSA in either high or low food experiments. However, 

there were interesting differences in the responses of the two strains of Daphnia, 

even though they were observed in the feeding effects experiment. Old Durham 

Reservoir Daphnia exhibited a decrease in clearance rate coupled with an 

increase in FSA. The change in clearance rate is a typical response to the 

presence of cyanobacteria and may have lead to increased starvation, thus 

triggering the increase in FSA. An increase in FSA, though, should also increase 

the amount of cyanobacteria ingested. This outcome may be avoided by limiting 

the gape of the carapace in response to the normally colonial cyanobacteria 

(Young et al. 1997). The Russell Pond Daphnia, however, showed an increase 

in clearance rate. This response indicates that these Daphnia were responding 

primarily to the decrease in Nanochlopsis spp. by increasing instead of 

decreasing filtration to limit ingestion of the M. aeruginosa. It may have been this 

increase in M. aeruginosa consumption that led to the high mortality in these 

treatments. These clearance rate results, combined with the changes in FSA, 

suggest that the increases seen in the Daphnia feeding experiments was largely 

the result of decreased amounts of the nutritious Nanochloropsis spp. and not 

induced as a response to the chemicals exuded M. aeruginosa and that the Old 

Durham Reservoir Daphnia are better equipped to survive exposure to M. 

aeruginosa.

My final hypothesis, that Daphnia from oligotrophic and eutrophic lakes 

would have a greater FSA that Daphnia from mesotrophic lakes, was also
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supported. The Daphnia from the most oligotrophic lake, Russell Pond, had the 

greatest FSA values and there was an increase in the FSA of York Pond 

Daphnia over those from less oligotrophic lakes. Additionally, Otternic Pond 

Daphnia had a large RFSA value coupled with the second greatest chlorophyll a 

level and the greatest proportion of cyanobacteria in the study, providing further 

supporting evidence in support of this hypothesis.

Each of these studies provides evidence supporting the hypothesis that it 

is the lack of edible food that stimulates an increase in the filter surface area of 

Daphnia feeding appendages and not chemical cues produced by cyanobacteria. 

Specifically, the laboratory studies have shown that chemical cues contained in 

filtrate of the UTEX 2385 strain of M. aeruginosa do not affect the FSA of 

Daphnia that did show a response to the whole cell form of this strain of M. 

aeruginosa. Furthermore, my study of eight natural ecosystems supports the 

hypothesis that the level of nutritious food affects FSA and that changes in FSA 

may be linked to amounts of phytoplankton in proportion to cyanobacteria as a 

whole, and not just the strain of M. aeruginosa used in this study. This 

conclusion, though, could be bolstered by incorporating more lakes to obtain a 

greater variety of trophic status.

This experiment does not definitively rule out cyanobacterial cues as a 

trigger for the increase in FSA. Future studies should expand upon these 

conclusions by incorporating different varieties of cyanobacteria. Cyanobacteria 

filtrate made from high densities of naturally occurring cyanobacteria elicited 

behavioral responses, and may also affect FSA more than the filtrate used in my
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experiment. Furthermore, changes in FSA could still be triggered by the 

ingestion of cyanobacteria. This scenario could be investigated through similar 

experiments using treatments composed entirely of decreasing concentrations of 

Nanochlorosis spp. or M. aeruginosa. Finally, it would be interesting to see if 

other zooplankton, such as Bosmina or calanoid copepods, possess the ability to 

alter the size of their feeding appendages.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31



R
eproduced 

with 
perm

ission 
of 

the 
copyright 

ow
ner. 

Further 
reproduction 

prohibited 
w

ithout 
perm

ission.

TABLES

Table 1: Physical and chemical data on lakes sampled in the Natural Populations analysis. Values in parentheses
indicate standard error of the mean, N=3.

Max Total
Collection Location Depth Phosphorus Total Nitrogen Chlorophyll a Mean SDD

Lake Date (Town, NH) (m) (^9 L'1) (ng l-1) (M  L'1) (m)
Christine 26-Sep-2003 Stark 19.50 4.07 (0.09) 203.00 (11.02) 1.57 (0.09) 7.35 (0.0)
York 25-Sep-2003 Berlin 5.20 46.3 (0.67) 843.33 (18.48) 39.43 (1.04) 0.85 (0.0)
Russell Pond 28-Jun-1999 Woodstock 23.7 3.66 (0.56) 174.66 (5.67) 1.09 (0.12) 13.97 (0.07)
Swains Lake 13-Jul-1999 Barrington 8.8 10.6 (0.67) 294.66 (12.81) 3.18(0.06) 3.63 (0.15)
Barbadoes 19-Jul-1999 Madbury 14.6 11.1 (0.36) 469.0 (50.09) 1.93 (0.06) 3.92 (0.17)
Horseshoe Pond 10-Aug-1999 Merrimack 6.1 19.9 (0.67) 410(17.62) 18.4 (0.52) 2.60 (0.03)
Otternic Pond 10-Aug-1999 Hudson 4.8 52.9 (3.16) 734 (46.46) 22.17 (0.19) 1.88 (0.17)
Bow Lake 21-Jul-2000 Strafford 28.3 12.03 (0.27) 164.66 (13.22) 2.7 (0.58) 4.83 (0.03)
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Table 2: ANCOVA and ANOVA results for all significant relationships in 
the feeding effects experiments using Old Durham Reservoir (ODR) and 
Russell Pond (RP) Daphnia. (*) indicates the data were Ln transformed.
Treatment p-value, ANCOVA p-value, ANOVA
ODR, High Food 0.001 0.004*
ODR, Low Food 0.023 0.025*
RP, High Food < 0.001 0.011
RP, Low Food < 0.001 0.242 (t-test)
ODR, High vs. Low Food — < 0.001*
RP, High vs. Low Food — 0.176
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Table 3: ANCOVA and ANOVA results for all significant relationships in 
the chemical cue experiments using Old Durham Reservoir (ODR) and 
Russell Pond (RP) Daphnia.__________________________________
T reatment p-value, ANCOVA p-value, ANOVA
ODR, High Food 0.483 0.905
ODR, Low Food 0.766 0.671
RP, High Food 0.407 0.441
RP, Low Food 0.180 0.679
ODR, High vs. Low Food — 0.018
RP, High vs. Low Food — 0.633
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Table 4: Change in adjusted r2 values when transforming 
body length. _________________________________

Lake Original r2 value Transformed r2 value
Barbados Pond 0.717 0.616
Bow Lake 0.975 0.953
Horseshoe Pond 0.752 0.717
Russell Pond 0.09 0.934
Christine Lake 0.876 0.891
Otternic Pond 0.868 0.854
York Pond 0.782 0.789
Swains Lake 0.907 0.958
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Table 5: Adjusted r2 values obtained through regression analysis of 
body length (mm2 22 and filter surface area (FSA; mm2) of Daphnia 
collected from eight NH lakes.______________________________
Lake Species Abbreviation Adjusted r2 value
Russell Pond D. pulex RP 0.935
Christine Lake D. laevis CL 0.892
Barbadoes Pond D. rosea BP 0.647
Bow Lake D. catawba BL 0.954
Swains Lake D. schpdleri SL 0.958
Horseshoe Pond D. catawba --- 0.596
Horseshoe Pond D. dubia --- 0.875
Horseshoe Pond All HP 0.717
Otternic Pond D. catawba OP 0.855
York Pond D. catawba YP 0.779
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FIGURES

Figure 1: Images of a Daphnia with the 3rd filtering appendage clearly 
visible (A) (from An Image-Based Key To The Zooplankton Of The 
Northeast (USA) Version 2.0); a diagram of thoracic appendages two 
through five (B); from Lampert 1987, and a dissected and mounted filter 
screen from the third feeding appendage with the measured surface 
area indicated (C).
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Figure 2: Average mortality (±1 SE) after five days in each feeding effects treatment for Old Durham 
Reservoir (ODR; left) high food (1 mg C L'1; adj. r2 = 0.00, p = 0.67) and low food (0.25 mg C L"1; adj. r2 = 
0.61, p = 0.07) and Russell Pond (RP) high (adj. r2 = 0.50, p = 0.11) and low (adj. r2 = 0.78, p = 0.03) food 
Daphnia pulex. Concentrations of Microcystis range left to right from 0-100%, n=3 in all cases.
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Figure 3: Body length vs. Filter Screen Area (FSA; left, adjusted r2 = 0.885, p<0.001, n = 197) and Relative Filter 
Surface Area (RFSA; right, adjusted r2 = 0.388, p<0.001, n = 197), RFSA (FSA/body length mm2 22) used to 
reduce the effect of body length in the feeding effect experiments.
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Figure 4: Mean Relative Filter Surface Area (RFSA; +1 SE) for each food treatment 
in the feeding effect experiment for Russell Pond (RP; a) High (1.0 mg C L'1) food 
and c) Low (0.25 mg C L"1) food) and Old Durham Reservoir (ODR; b) High food 
and d) Low food) Daphnia. Different letters signify significant difference (p < 0.05, 
ANOVA), no letters indicates no significant difference exists. Concentrations of 
Microcystis range left to right from 0-100%.
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Figure 5: Comparison of mean Relative Filter Surface Area (RFSA; ±1 SE) in high (1.0 mg C L'1) and low 
food (0.25 mg C L'1) treatments for Old Durham Reservoir (ODR; left) and Russell Pond (RP; right) 
Daphnia pulex in the feeding effects experiments. (*) indicates significant difference between high and 
low food RFSA in that treatment (ANOVA, p < 0.001). Concentrations of Microcystis range left to right 
from 0-100%. Regression statistics are as follows: ODR High: adj. r2 = 0.00, p = 0.87, f= 0.042 + 4.98x10' 
6 * % M. aeruginosa; ODR Low: adj. r2 = 0.69, p = 0.05, f= 0.046 + 1.17x1 O'3 * % M. aeruginosa; RP High: 
adj. r2 = 0.79, p = 0.03, f= 0.039 + 4.56x10"5 * % M. aeruginosa.
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Figure 6: Average clearance rate (±1 SE) adjusted to a body length of 1.5 mm in each feeding effects 
treatment for Old Durham Reservoir (ODR; left) high food (1 mg C L'1; adj. r2 = 0.39, p = 0.16) and low food 
(0.25 mg C L'1; adj. r2 = 0.16, p = 0.28) and Russell Pond (RP) high (adj. r2 = 0.00, p = 0.94) and low food 
Daphnia pulex. Concentrations of Microcystis range left to right from 0-100%, n=3 in all cases.
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Figure 7: Average mortality (±1 SE) at day five for Daphnia pulex from Old Durham Reservoir (ODR; left) 
high food (1 mg C L'1; adj. r2 = 0.10, p = 0.32) and low food (0.25 mg C L'1; adj. r2 = 0.10, p = 0.32) and 
from Russell Pond (RP) high (adj. r2 = 0.00, p = 0.74) and low (adj. r  = 0.57, p = 0.09) food. 
Concentrations of Microcystis range left to right from 0-100%, n=3 in each case.
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Figure 8: Body length vs. Filter Screen Area (FSA; left, adj. r2 = 0.913, p<0.001, n=158) and body length 
versus the Relative Filter Surface Area (RFSA = FSA / body length2 22; right, adj. r2 = 0.441, p<0.001, 
n=158) in the chemical cue experiments.
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Figure 9: Corrected body length vs. Filter Surface Area (FSA) for Daphnia pulex 
from (left; A) Russell Pond high (1.0 mg C L"1) food, B) Russell Pond low (0.25 
mg C L'1) food, C) Old Durham Reservoir high food, D) Old Durham Reservoir 
low food) and chemical cue (right; E) Russell Pond high (1.0 mg C L'1) food, F) 
Russell Pond low (0.25 mg C L'1) food, G) Old Durham Reservoir high food, H) 
Old Durham Reservoir low food) experiments.
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Figure 10: Mean Relative Filter Surface Area (RFSA; +1 SE) for each food 
treatment in the chemical cue experiment for Russell Pond (RP; a) High (1.0 mg 
C L'1) food and c) Low (0.25 mg C L"1) food) and Old Durham Reservoir (ODR; 
b) High food and d) Low food) Daphnia pulex. p > 0.05 in all experiments 
(ANOVA), concentrations of Microcystis range left to right from 0-100%
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Figure 11: Average clearance rate (+1 SE) adjusted to a body length of 1.5 mm in each chemical cue effects 
treatment for Old Durham Reservoir (ODR; left) high food (1 mg C L"1; adj. r2 = 0.00 p = 0.76) and low food (0.25 
mg C L'1; adj. r2 = 0.02, p = 0.37) and Russell Pond (RP) high (adj. r2 = 0.00, p = 0.91) and low (adj. r2 = 0.00, p 
= 0.64) food Daphnia pulex. Concentrations of Microcystis range left to right from 0-100%, n=3 in each case.
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Figure: 12: Comparison of mean Relative Filter Surface Area (RFSA; ±1 SE) in high (1.0 mg C L"1) and low food 
(0.25 mg C L"1) treatments for Old Durham Reservoir (ODR; left) and Russell Pond (RP; right) Daphnia pulex in 
the chemical cue experiments. (*) indicates significant difference between high and low food RFSA in that 
treatment (ANOVA, p < 0.001). Regression statistics are as follows: ODR High: adj. r2 = 0.00, p = 0.99, f= 0.041 
+ 7.67x10 * % M. aeruginosa ; ODR Low: adj. r2 = 0.00, p = 0.92, f= 0.046 -  2.12x1 O'6 * % M. aeruginosa; RP 
High: adj. r2 = 0.00, p = 0.77, f= 0.042 -  4.92x10"6 * % M. aeruginosa; RP Low: adj. r2 = 0.07, p = 0.34, f= 0.040 + 
1.77x10"5 * % M. aeruginosa. Concentrations of Microcystis range left to right from 0-100%.
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Figure 13: Corrected body length vs. Filter Surface Area (FSA) for 
all Daphnia spp. in the natural populations analysis (adj. r  = 0.82, 
p < 0.001, n=99).
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Figure 14: Corrected body length vs. Filter Surface Area (FSA) for 
Swains Lake Daphnia schpdleri used in the natural populations 
analysis (adj. r2 = 0.96, p < 0.001, n=14).
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Figure 15: Corrected body length vs. Filter Surface Area (FSA) for 
Otternic Pond Daphnia catawba used in the natural populations 
analysis (adj. r2 = 0.85, p < 0.001, n=11).
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Figure 16: Body length vs. Filter Surface Area (FSA) for each 
Horseshoe Pond species of Daphnia: D. catawba (black circles, 
black line, n=8) and D. dubia (grey triangles, grey line, n=8). 
The dashed line represents the combined Daphnia (adj. r2 = 
0.72, p< 0.001, n=16).
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Figure 17: Corrected body length vs. Filter Screen Area (FSA) for all 
Daphnia spp. used in the natural populations analysis, grouped by 
lake.
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Figure 19: Body length vs. Relative Filter Surface Area (RFSA) for 
all Daphnia spp. included in the natural populations analysis (adj. r2 
= 0.089, p = 0.009, n=99).
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Figure 20: Mean Daphnia Relative Filter Surface Area (RFSA; +1 
SE) values for each lake included in the natural populations 
analysis. Different letters indicate significant difference (ANOVA,
p < 0.001).
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Figure 21: Relationship between Chlorophyll a and the mean 
Relative Filter Surface Area (RFSA) of each lake in the natural 
populations analysis using an exponential model (adj. r2 = 0.88, p = 
0.034; f = 0.026 + 0.051‘° 658 *Chla+ 0.0003*Chl. a).
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Figure 22: Linear (left; adj. r2 = 0.274, p = 0.105, f = 0.048 + 0.0004 * WLW microcystin) and exponential 
(right; adj. r2 = 0.752, p = 0.013; f = o.037+0.240'0 6 8 7 * W L W m ic ro cys tin  ) relationship between whole lake water 
microcystin levels and mean Relative Filter Surface Area (RFSA) for each lake in the natural populations 
analysis.
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Figure 23: Mean body length of Daphnia (+1 SE) from each lake 
included in the natural populations analysis. Different letters 
signify significant difference (ANOVA, p < 0.05).
* The mean body length for all lakes was not included in the 
ANOVA.
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Figure 24: Relative abundance of cyanobacteria in the net 
phytoplankton (>50|am) in each lake included in the natural 
populations analysis.
* data for this lake were from a collection date one month earlier 
in the previous year.
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Figure 25: Mean concentration of whole lake water (WLW) 
microcystins (+1 SE) in each lake included in the natural populations 
analysis. n=3 in each case
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Figure 26: Concentration of whole lake water (WLW) microcystins 
relative to the proportion of cyanobacteria in the net phytoplankton 
(<50pm) in each lake.
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Rarbadoes Pond 
Christine Lake

Swains Lake

<  0.040(O York Pond

u.
O ' Otternic Poni0.035c<00)
S 0.030 Horseshoe Pond

0.025
0 10 20 30 40 50

Chlorophyll a (pg L'1)

Figure 27: Concentration of chlorophyll a vs. mean Relative Filter 
Surface Area (RFSA) for all lakes included in the natural populations 
analysis (adj. r2 = 0.00, p = 0.45).
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Figure 28: Mean chlorophyll a concentration (+1 SE) for each lake 
included in the natural populations analysis. n=3 in each case.
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APPENDIX

Additional Tables and Figures

Table A 1 : Dates and duration of experim ental treatments.

Experiment Treatm ent Start Date End Date
Part 1: Microcystis ODR: High Food 7-D ec-2006 17-D ec-2006
Part 1: Microcystis ODR: Low Food 31-Jan-2007 18-D ec-2007
Part 1: Microcystis RP: High Food 5-Feb-2007 17-Feb-2007
Part 1: Microcystis RP: Low Food 1-M ar-2007 19-M ar-2007
Part 2: Microcystis Filtrate ODR: High Food 11-A pr-2007 23-A pr-2007
Part 2: Microcystis Filtrate ODR: Low Food 25-A pr-2007 9-M ay-2007
Part 2: Microcystis Filtrate RP: High Food 28-A pr-2007 9-M ay-2007
Part 2: Microcystis Filtrate RP: Low Food 7-Apr-2007 23-A pr-2007
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Figure A1: Corrected body length vs. Filter Surface Area (FSA) for 
Christine Lake Daphnia laevis used in the natural populations 
analysis (adj. r2 = 0.89, p < 0.0001, n=14).
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Figure A2: Corrected body length vs. Filter Surface Area (FSA) for 
York Pond Daphnia catawba used in the natural populations 
analysis (adj. r2 = 0.78, p < 0.001, n=9).
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Figure A3: Corrected body length vs. Filter Surface Area (FSA) for 
Barbadoes Pond Daphnia rosea used in the natural populations 
study (adj. r2 = 0.65, p < 0.001, n=13).
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Figure A4: Corrected body length vs. Filter Surface Area (FSA) for 
Bow Lake Daphnia catawba used in the natural populations study 
(adj. r2 = 0.95, p < 0.0001, n=10).
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Figure A5: Corrected body length vs. Filter Surface Area (FSA) for 
Russell Pond Daphnia pulex used in the natural populations study 
(adj. r2 = 0.94, p < 0.0001, n=12).
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