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Abstract 
The expansion of local agriculture in the New England region is putting increased pressure on 

farmers to expand their arable land base.  While clear-cutting is a traditional method of 

converting forested land to agriculture, it is known for having adverse ecological impacts.  To 

minimize these impacts, farmers can create a silvopasture which incorporates a portion of the 

original forest canopy into pastures or crop fields.  This study evaluates the impact of land-use 

changes for agriculture on soil nitrogen (N) retention.  In particular, this study investigates the 

differences in soil N turnover, gaseous loss, and aqueous loss among an established forest, 

established pasture, clear-cut converted pasture, and converted silvopasture systems over a 30-

day incubation period.  We found significant differences in N mineralization, immobilization, 

and denitrification among treatments, with evidence that a forest-to-silvopasture conversion can 

successfully support soil N retention within the first two years of implementation.  This may 

have been due to the presence of coarse woody debris inputs from forest cutting and its effect on 

the soil carbon (C) to N ratio.  Nitrogen retention in silvopastures may also result from partial 

preservation of the forest canopy.  Our results suggest that farmers looking to expand their 

agricultural land base through forest clearing may be able to use silvopastures for as a way of 

retaining soil nutrients while at the same time putting land into production.   

  



 
 

1. Introduction 

 
As of 2014, only 5% of land in New England was used for agriculture, and approximately 90% 

of the food supply came from outside the region (Donahue et al., 2014).  Initiatives such as A 

New England Food Vision aim to change this and have 50% of food products consumed in New 

England sourced within the area by 2060.  Movements like this would support local farmers, 

promote a more sustainable, self-reliant food supply, and provide more nutritious options for 

local shoppers (Donohue et al., 2014).  However, since much of New England is forested, a 

current solution for farmers to relieve this growing pressure is to transform forested areas of their 

properties into new fields or pastures (Martinez et al. 2010; Timmons et al. 2008).  Traditionally, 

this land-use change would be accomplished through clear-cutting techniques.  While clear-

cutting maximizes the available space for agricultural production, it carries ecological 

consequences, particularly for ecosystem nitrogen (N) retention.  

 

The disruption of ecosystem services due to land-use changes is especially visible in soil nutrient 

transformations.  In the soil, nutrients are held by soil particles and decomposing litter, and 

stabilized in soil organic matter.  Nitrogen is of particular importance to farmers since it is a 

macronutrient which acts as a limiting factor to forage and crop growth.  Clear-cutting forests 

may liberate N in the soil, as well as remove vegetation which usually takes it up.  The processes 

determining when and in what form N exits the soil is regulated by a variety of physical, 

chemical, and biological characteristics of the surrounding environment.  These include soil 

temperature, moisture content, pH, the presence or absence of specific microbial communities, 

and vegetative ground cover, which all vary among land-uses.  In aquatic ecosystems, the 

clearing of land can decrease pH and increase sediment load, temperature, and N concentrations 

(Holmes and Zak 1999; Pardo et al., 1995).  Following a clear-cut experiment at Hubbard Brook 

Experimental forest in Woodstock, NH, it was estimated that the amount of N lost from the 

system in the first year was equal to the amount of N turned over in an undisturbed ecosystem, 

taking the ecosystem from a net gain of 4.5 kg/ha of N to a net loss of 52.8 kg/ha of N.  This 

influx of N was noted particularly in surrounding streams suffering from elevated ammonium 

(NH4
+) and nitrate (NO3

-) concentrations (Bormann et al., 1968).  Land-use conversion can also 

increase production of greenhouse gasses due to changes in physical and chemical soil 

characteristics such as redox potential (Bowden and Bormann, 1986).  In more reduced 

environments, the complete denitrification of aqueous NO3
- to di-nitrogen gas (N2) is not 

thermodynamically favorable, causing more NO3
- to exit the soil as nitric oxide (NO) or nitrous 

oxide (N2O) gases.   

 

In an effort to mitigate these negative impacts, farmers may turn to alternatives such as the 

creation of silvopastures.  A silvopasture is an agroforestry technique which incorporates 35-

50% of the original forest canopy with livestock pasture or forage crop production beneath 

(NRCS 2011).  This practice has the potential to be both economically and environmentally 

advantageous.  The presence of trees allows for the production of multiple products to support 

local economies, while providing environmental services that are not associated with traditional 

clear-cut ecosystems.  These services may include increased C sequestration, improved soil 

nutrient retention, improved water quality, minimized temperature increases, reduced erosion 

potential, as well as providing habitat for wildlife (NRCS 2011). 



 
 

In converted pasture and silvopasture areas, it is normal to see the addition of coarse woody 

debris to the land surface following forest removal (Orefice et al., 2016).  Due to the limiting 

nature of N in microbial decomposition dynamics, this influx of C-rich debris may increase the 

soil C:N ratio and spur the microbial immobilization of N.  In past studies, the application of 

woody debris has been found to decrease soil NO3
- concentrations by up to 30% and NH4

+ 

concentrations by 36%.  These results were accompanied by 93% NH4
+ retention in extraction 

studies (Homyak et al., 2008).  In forested soils, concentrations of leached nitrate have been 

negatively correlated with C:N ratios (Gundersen et al., 1998).  Although land-use changes are 

associated with high levels of nutrient loss, the application of woody debris may support N 

retention.  The effect of wood-chip addition on soil C:N ratio or greenhouse gas production has 

not been directly assessed in the past, and could have an influence on the production of 

greenhouse gases from soils in clear-cut or silvopasture areas.   

 

In order to understand how soil N retention dynamics differ among forest-to-pasture conversion 

strategies, we compared potential soil N transformations and losses at sites undergoing land-use 

conversion from forest to pasture or forest to silvopasture at the University of New Hampshire 

Organic Dairy Research Farm (UNH ODRF).  Through this study, we aimed to answer three 

main questions: 1) How do soil N mineralization and immobilization processes differ among 

land uses? 2) Which land use will demonstrate the highest degree of N retention? and, 3) Within 

each land use, will N exit the environment in an aqueous phase, gaseous phase, or both?  Based 

on the results of this study we will gain insight into the potential for silvopastures to sustainably 

extend New England’s arable land base as compared to traditional land-clearing techniques.        

 

2. Methods 
 

2.1 Site Description 

 

The UNH ODRF is located in Lee, New Hampshire, USA.  The farm consists of 48 ha of 

forested land and 40 ha of certified organic pastures divided into 14 fields.  Two of these 

pastures are managed for intensive rotational grazing of Jersey cows and the rest are used for hay 

production.  The soils in this area belong to the Hollis-Charlton series, characterized as marine 

terraces with glacial till parent material and a loamy sand to silt loam texture.  The established 

forest on this site is mainly composed of red oak (Quercus rubra), red maple (Acer rubrum), 

white pine (Pinus strobus), eastern hemlock (Tsuga canadensis), and American beech (Fagus 

grandifolia).   

 

The four treatments for this project consisted of one established forest, one established pasture, 

one converted, clear-cut pasture, and one converted silvopasture.  Each treatment included a one 

hectare area with three sampling locations.  The converted pasture and converted silvopasture 

were established in January and February of 2015.  The silvopasture area was thinned to ~30% 

of the original canopy cover.  Trees were removed in both the clear-cut and silvopasture, and the 

remaining slash was mulched and spread across the site using a FECON wood chipper.      

 

  



 
 

2.2 Sample Collection 

 

Soil samples were collected on 7 June 2016 at the UNH ODRF where soils were sampled from 

the four, 1 hectare treatments.  Each treatment area contained three sampling sites, with sites 

placed at decreasing elevation (Figure 1).  Six soil samples were collected at each site for a total 

of 72 samples.  For sampling, the litter layer was brushed aside and soils were sampled to a depth 

of 10 cm using a tulip bulb corer.  Individual samples were placed in Ziploc bags inside a cooler, 

transported to the University of New Hampshire, and kept at 4°C pending analysis. 

 
 
 
 

 
 
 
 

 
 
 

 
 
 

Figure 1: Schematic representation of the four treatment plots and permanent sampling sites and the UNH ODRF. 

 

2.3 Soil Processing 

 

Each individual sample was processed through a 2 mm sieve to remove rocks and debris.  After 

sieving, the individually collected samples were bulked by sampling site to produce 12 working 

samples.  After bulking was completed, field moisture capacity (FMC) was determined for each 

working sample as described in Saxton and Rawls (2006).  Subsamples were then adjusted to 

FMC to be used in the 30-day incubation study.   

 

2.4 Initial Soil Characteristics 

 

Initial soil pH was determined with a Mettler Toledo AG 8603 pH meter and InLab Expert Pro 

ISMIP67 probe (Mettler Toledo, Columbus, OH, USA) following the Kellogg Biological Station 

soil pH protocol using a 1:2 soil to water ratio.  Initial soil total C, total N, and C:N ratio were 

determined using a Costech ECS 4010 CHNS-O elemental analyzer based on an Atropine 

standard curve (Costech Analytical Technologies, Valencia, CA, USA).  Initial average soil pH, 

total C, total N, C:N ratio, and moisture content are presented in Table 1. 

  

Converted 
Silvopasture 

Converted, 

Clear-Cut 

Pasture 

Established 

Forest 

Established 

Pasture 



 
 

Table 1: Average initial soil characteristics with 95% confidence intervals including soil pH, total C, total N, C:N ratio, and 

gravimetric moisture content. 

Treatment pH Total C 

(%) 

Total N 

(%) 

C:N Ratio Moisture (g 

H2O/g dry soil) 

Forest 4.65 (0.20) 178.58 (30.60) 6.22 (1.18) 28.37 (7.70) 0.47 (0.25) 

Silvopasture 4.63 (0.11) 258.48 (10.99) 8.61(0.69) 30.70 (4.30) 0.43 (0.08) 

Clear-Cut 3.81 (0.05) 196.25 (63.98) 8.00 (2.00) 24.63 (0.20) 0.44 (0.17) 

Pasture 5.89 (0.03)   102.18 (1.06) 7.36 (0.37) 13.87 (0.60) 0.33 (0.02) 

      

2.5 Incubation Experiment 

 

A 30-day incubation experiment was used to determine rates of mineralization, immobilization, 

and CO2 and N2O production among treatments.  For this incubation, 10 g of soil was placed in a 

16-ounce mason jar fitted with rubber septum, with six analytical replicates for each sample.  

Jars were kept in a climate controlled environment at 25°C at FMC.  Field moisture capacity was 

maintained during the incubation by recording the initial mass of the jar plus soil at FMC.  Jars 

were weighed weekly and any decrease in mass was replaced with deionized water.  Samples 

were covered with parafilm and allowed to equilibrate with the controlled environment for 5 

days prior to the first headspace measurement. Samples were allowed to incubate for 24 hours 

between measurements and flushed to ambient conditions before being sealed for the next 

incubation period.  Carbon dioxide flux measurements were taken daily using a syringe and 

analyzed using a LI-COR LI-6252 infrared gas analyzer (LI-COR Biosciences, Lincoln, NB, 

USA).  Flux rates were calculated on a daily basis, and then summed to calculate cumulative flux 

over the entire incubation period.      

 

Nitrous oxide was measured following the CO2 analysis protocol and sampled every 2-3 days.  

Measurements were collected using a syringe and analyzed using a Shimadzu GC-8A gas 

chromatograph with electron capture detection (Shimadzu Scientific, Kyoto, Japan).  Nitrous 

oxide flux rates were calculated for each collection period, and then summed to calculate 

cumulative flux over the entire incubation period.  Since N2O production was not measured 

daily, values were linearly interpolated between collection periods.   

 

Nitrogen mineralization and immobilization were determined by measuring NH4
+ and NO3

- 

concentrations in soils at the start and end of the 30-day incubation.  Both forms of N were 

measured using potassium chloride (KCl) extraction techniques to quantify total species present 

in both the soil solution and on exchange sites.  A water extraction process based on this protocol 

was used to quantify the N forms present in the soil solution only, as a proxy for potential 

aqueous loss.  Ammonium was quantified using the indophenol-blue method adapted for 

microtiter plates (Sims et al. 1995).  Nitrate was quantified by the vanadium (III) reduction 

reaction (Braman and Hendrix 1989) modified for microplate analysis (Miranda et al., 2001).  

Both sets of extraction solutions were frozen at -20°C until analysis using a BioTek Synergy HT 

microplate reader (BioTek Instruments, Winooski, Vermont, USA).  

 

2.6 Data Analysis 

 

All statistical analysis was performed in JMP 2016 statistical analysis software based on non-

parametric statistical methods due to the non-normal distribution of variables (SAS Institute, 

Cary, NC, USA).  Significant differences in moisture content, pH, total C, total N, C:N ratio, 



 
 

KCl and H2O-derived ammonification, KCl and H2O-nitrification, KCl and H2O-derived 

mineralization, and CO2 and N2O production among treatments were determined using a one-

way, ANOVA analysis.  Statistical tests were performed with treatment as the independent 

variable using Wilcoxon/Kruskal-Wallis test statistics to determine significant differences among 

means, and the Wilcoxon Each Pair test to determine significant pairwise differences.  To 

determine how gaseous losses related to physical and chemical soil characteristics, we performed 

multivariate regressions with CO2 and N2O production as the dependent variables.  The 

relationships between CO2 and N2O production and moisture content were analyzed using 

quadratic polynomial and three-parameter exponential regression analyses, respectively.  The 

relationship between N2O production and KCl-derived nitrification was analyzed in the same 

manner using a three-parameter exponential regression.  

 

3. Results 
 

3a. Initial Soil Characteristics 

 

Initial soil characteristics varied significantly for pH, total C, total N, C:N ratio, and moisture 

content among treatments (Tables 1 and 2).  Soil pH varied significantly, with the pasture and 

clear-cut treatments differing from all other treatments. Total soil C varied, with the silvopasture 

and pasture differing from all other treatments.  Total soil N also varied significantly, with the 

silvopasture differing from the forest and pasture treatments, and the forest differing from the 

silvopasture and clear-cut treatments.  The initial carbon to nitrogen ratio varied significantly 

among treatments, where the forest and silvopasture differed from the clear-cut and pasture 

treatments.  Here, the clear-cut also differed from the pasture.  Soil FMC varied significantly, 

with the forest and silvopasture differing from the pasture.  

 
Table 2. Wilcoxon/Kruskal-Wallis test statistics for all treatments.  An asterisk (*) denotes a significant difference among 

treatment means. 

 

 

 

 

 

 

 

 

3b. Incubation Study 

 

Soil nitrogen cycling differed significantly among land-use treatments during the 30-day 

incubation period.  However, the magnitude of these impacts differed among treatments (Table 

3). 

  

Variable P-value ChiSquare 

pH <0.0001* 60.41 

Total C (%) <0.0001* 41.54 

Total N (%)   0.0005* 17.71 

C:N Ratio <0.0001* 54.64 

Moisture Content (g H20/g dry soil) 0.0078* 11.87 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ammonification for both KCl and H2O showed significant differences among treatments.  The 

forest and silvopasture treatments, where trees were present, demonstrated the highest rates of 

KCl-derived ammonification (Figure 2A).  These treatments, with the addition of the clear-cut 

treatment, also demonstrated the highest rates of H2O-derived ammonification (Figure 2B).   

Like ammonification, both KCl and H2O-derived nitrification rates varied significantly between 

treatments.  The pasture treatment had significantly higher KCl-derived nitrification rates 

compared to all other treatments (Figure 2C).  Treatments without trees, the pasture and clear-

cut, also produced the highest H2O-derived nitrification rates (Figure 2D).  These nitrification 

results were similar to rates of net N-mineralization among treatments.   

 

As with ammonification and nitrification, net N-mineralization rates were significantly different 

among treatments for both KCl and H2O.  Like nitrification, the highest rates of KCl-derived N-

mineralization occurred in the pasture treatment, while the highest rates of H2O-derived N-

mineralization occurred in the clear-cut and the pasture treatments where trees were absent 

(Figures 2E and 2F).   

 

Table 3. Wilcoxon/Kruskal-Wallis test statistics for all treatments. An asterisk (*) denotes a significant difference 

among treatment means. 

Variable P-value ChiSquare 

Cumulative CO2 Production < 0.0001* 41.02 

Cumulative N2O Production    0.10   6.36 

Moisture Content    0.01* 11.87 

KCl Ammonification < 0.0001* 51.32 

H2O Ammonification < 0.0001* 30.49 

KCl Nitrification < 0.0001* 43.30 

H2O Nitrification < 0.0001* 57.97 

KCl Net Mineralization < 0.0001* 42.74 

H2O Net Mineralization < 0.0001* 26.44 



 
 

Significant differences were not only noted in soil N turnover, but also in gaseous losses such as 

N2O.  A significant difference was not found for N2O production among all treatments, but pair-

wise differences were found between the clear-cut and pasture treatments as well as the clear-cut 

and silvopasture treatments where production was highest in the clear-cut treatment (Figure 3A).  

Nitrous oxide production was the most highly variable within the clear-cut treatment, while the 

other three treatments shared a similar degree of variability.     

 

Carbon dioxide production also showed a significant difference among all treatments, as well as 

pairwise differences between treatments (Figure 3B).  Treatments that contained trees, the forest 

Figure 2: Average rates of KCl ammonification (A), nitrification (B), net mineralization (C), and H2O ammonification (D), 

nitrification (E), and net mineralization (F) among all treatment sites.  Letters above boxes indicate pairwise differences 

between treatment means. 
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and the silvopasture, exhibited the highest rates of CO2 production.  While CO2 and N2O 

production rates differed among treatments, comparisons of these rates with physical soil 

properties identified soil moisture content as a key factor affecting both sets of production rates.  

 
 

 
 

Figure 3: Cumulative production of N2O (A) and CO2 (B) among all treatment sites.  Letters above the boxes are as in Figure 2.  
 

A three-parameter exponential model described the relationship between N2O and soil moisture, 

such that N2O production increased exponentially with higher moisture (Figure 4A).  This 

relationship is clearly exemplified by the clear-cut treatment, which had higher N2O fluxes at the 

high end of the moisture spectrum and lower emissions where moisture was more limiting.  A 

quadratic polynomial model described the relationship between CO2 production and soil 

moisture content with the lowest levels of production at the high and low ends of the moisture 

content range (Figure 4B).          

                                                                                                            

 
Figure 4: Cumulative N2O (A) and CO2 production (B) as a function of soil moisture content. 

 

In addition to soil moisture content, N2O production rates were also significantly related to KCl-

derived nitrification rates.  A three-parameter, negative exponential model described this 

relationship, where N2O production was highest when net nitrification rates were lowest (Figure 

4). 
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4. Discussion 
 

The results of our 30-day incubation indicate that the forest retained the most N, followed by the 

silvopasture, the pasture, and finally by the clear-cut treatment based on aqueous and gaseous N 

losses.  The forest and silvopasture indicated minimal aqueous and gaseous N losses, while the 

pasture and clear-cut indicated major aqueous N losses with elevated gaseous N losses in the 

clear-cut treatment.  Low N-retention in the clear-cut suggested the potential for substantial N 

loss following forest clear cutting for agriculture as well as the need for site-specific 

management practices to mitigate these losses.    

 

4a. Forest 

 

In the forest treatment, all rates of ammonification, nitrification, and mineralization as well as 

N2O production indicated minimal disruption to forest N-cycling processes and therefore the 

highest degree of soil N-retention.  The forest displayed characteristically high rates of both KCl 

and H2O-derived ammonification due to the decomposition of soil organic matter (SOM) from 

litter inputs.  While high concentrations of H2O-derived ammonium would indicate a potential 

pathway for N-loss via leaching, trees present in the field would likely take up the ammonium 

and prevent major losses.  This assumption was confirmed by low H2O-derived ammonium 

concentrations initially present in the soil as well as low nitrification rates.  In forest soils, such 

low nitrification rates are typically indicative of a C:N ratio sufficient to prevent NO3
- leaching 

with leaching rates increasing dramatically as the ratio approaches the range of  27-24 

(Gundersen et al., 1998).  Since the C:N ratio in the forest treatment, 28.4, was just above this 

threshold, it likely prevented significant aqueous N loss.  Despite low nitrification rates, soils 

from the forest treatment also had moderate rates of mineralization resulting from NH4
+ turnover, 

indicating SOM decomposition.  However, the highest amounts of mineralization occurred in the 

KCl-derived fraction, indicating that inorganic N was located mainly on the soil exchange sites 

and not readily available to be leached in solution.  Finally, forest soils had low levels of N2O 

Figure 4: Cumulative N2O production over a 30-day 

incubation period at 25°C as a function of KCl nitrification 

rates among all treatment sites 

KCl Nitrification (µg NO3-N/g dry soil) 
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production. This is likely due to a combination of low initial NO3
- concentrations and therefore 

low nitrification rates.   

 

4b. Silvopasture 

  

Soils from the silvopasture treatment indicated some N-retention and some N loss, and thus fell 

between the forest site and the clear-cut site in terms of N-cycling.  We observed moderate KCl 

and H2O-derived ammonification rates, which were likely due to the addition of high C-content 

slash to the site during forest conversion.  High C-content wood chips have been shown to lower 

NH4
+ concentrations in soils by as much as 42%, which would substantially decrease 

ammonification rates (Homyak et al., 2008).  Wood chip additions may help to explain very low 

KCl and H2O nitrification rates in silvopasture soils.  Canopy removal typically increases 

nutrient losses through leaching in temperate forest ecosystems (Bormann et al., 1968).  

However, the application of wood-chips to a disturbed area decreases nitrification losses by 

limiting NH4
+ availability (Homyak et al., 2008), which is consistent with the findings from our 

incubation.  Analyzing ammonification and nitrification rates together through net N-

mineralization rates, the silvopasture, like the forest, experienced the lowest rates of N-turnover, 

suggesting overall N-retention with minimal potential losses.  Strong potential N retention in the 

silvopasture is further supported by low rates of N2O production, which were not significantly 

different than the forest due to low concentrations of NO3
- available for denitrification. 

 

Although the silvopasture treatment did not show high potential N losses, it exhibited the highest 

CO2 production rates.  This may have been due to C availability in wood chips that provided a C-

rich substrate for decomposition (Raich and Schlesinger, 1992).  Moisture may also have played 

a role as the gravimetric moisture of the silvopasture soils appeared to be at ideal levels to 

maximize CO2 production (Raich and Tufekciogul, 2000) according to our polynomial 

regression model.   

 

4c. Clear-Cut 

 

Relative to the forest and silvopasture, the clear-cut experienced a lower level of N-retention 

with notable losses due to potential leaching and N2O production.  Soils from the clear-cut 

treatment had moderate rates of H2O-derived nitrification similar to those of the silvopasture and 

lower rates of KCl-derived ammonification, possibly due to the presence of slash.  Similar results 

were observed for rates of ammonium leaching in Holmes and Zak (1999) which remained low 

following a clear-cut in a northern hardwood.   

 

Although wood-chips were applied to the clear-cut site which has the potential to reduce the 

leaching of ammonium and nitrate, the clear-cut still experienced higher rates of nitrification, 

especially in the H2O-derived fraction.  This indicates that the nitrified species are potentially 

more readily available to be removed from the system since they were located in the soil solution 

rather than on the soil exchange complex.  This result is not uncommon and has been well-

documented in temperate forest ecosystems across the northeastern United States.  Intensive 

harvesting methods such as clear-cuts cause changes in both soil and aquatic ecosystems with the 

most pronounced biogeochemical impacts manifesting as increased nitrate concentrations, 

decreased pH, and increased concentrations of base cations in the soil occurring in the first two 



 
 

years after harvesting (Homyak et al., 2008).  As a result of moderate ammonification rates and 

elevated nitrification, net N-mineralization rates were the highest among all four treatments. 

 

Soils from the clear-cut treatment also had the highest rates of cumulative N2O production.  This 

result is also typical of clear-cut areas, as nitrification rates stimulate an influx of nitrate to be 

denitrified.  At the clear-cut treatments at Hubbard Brook, whole-tree removal increased 

dissolved N2O concentrations in the soil water by two orders of magnitude as compared to 

expected values based on atmospheric equilibrium starting approximately six months after 

harvest (Bowden and Bormann 1986).  The clear-cut site at the UNH ODRF also experienced a 

higher moisture content which may have further supported elevated rates of N2O production.          

 

4d. Pasture  

  

Similar to the clear-cut, the pasture treatment experienced notable potential N losses and 

relatively lower N-retention.  Unlike the clear-cut where N2O production may have accounted for 

a portion of potential N loss, the majority of N-losses in the pasture may occur through leaching.  

Both KCl and H2O ammonification rates were low, typical of agricultural systems since NH4
+ 

can usually be readily converted to NO3
- (Di and Cameron, 2002).  Because ammonium is 

readily converted, nitrification rates tend to be elevated as they were in the pasture treatment.  

Nitrification processes may be further enhanced in the pasture treatment due to significant 

belowground SOM and root litter inputs from grasses as well as additional nitrogen loading in 

the pasture from the manure of grazing cows.  Grazing pastures leach significantly more nitrate 

than mowed pastures since grazing animals return 60-90% of ingested N back into the 

environment as either urine or manure (Di and Cameron, 2002).  As a result, moderate to high 

rates of net N-mineralization may have occurred in pasture soils as organic inputs were 

converted to inorganic forms.  An important distinction between the clear-cut and pasture sites is 

the rate of N2O production as compared to rates of nitrification.  In clear-cut soils, nitrification 

rates were elevated, as were rates of N2O production.  However, in pasture soils, high rates of 

nitrification were not accompanied by similarly high rates of N2O production.  This difference 

highlights a notable area of potential N losses via leaching.  This difference between treatments 

may be due to the lower moisture content of the soils in the pasture which would support soil 

conditions conducive to the complete denitrification of NO3
-.   

 

5. Conclusion  
 

Our results suggest that a forest-to-silvopasture conversion can be successfully implemented to 

reduce N losses in the first two years following conversion at the UNH ODRF.   

 

Particular factors which may have supported N retention in the silvopasture treatment were the 

partial preservation of forest canopy to take up mobilized nutrients and the addition of some 

woody debris to: 1) increase the C:N ratio; 2) decrease rates of nitrification; and 3) retain 

moisture while not creating saturated conditions conducive to significant N2O production.     

 

Suggestions for land managers seeking to increase N retention during land-use conversions 

include the preservation of trees, application of carbon-rich organic matter, and soil moisture 

regulation.  In a grazing pasture setting, moisture may be regulated by implementing specific 



 
 

grazing techniques such as the rotation of day and night feeds, block grazing rather than strip 

grazing, ensuring sufficient pasture coverage, shifting fencing multiple times per day, or planting 

of longer grass species (Mickan, 2011). 

 

Continued studies of the impacts of land-use changes on soil nutrient retention are necessary to 

understand the long-term implications of alternative management techniques on soil and greater 

ecosystem health.  Future research projects should focus on monitoring nutrient cycling 

processes on a multi-year timescale, expanding to other alternative agroforestry techniques, and 

the future yield of these systems to better inform agricultural management techniques.     
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