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ABSTRACT

DEVELOPING A KALMAN FILTER APPROACH TO 
HOME RANGE ESTIMATION:

APPLIED TO THE ATLANTIC BLUEFIN TUNA (THUNNUS THYNNUS)

by

Daniel Badger 

University of New Hampshire, December, 2007

Accurate estimation of an animal’s home range, or utilization distribution, 

is of great importance to understanding the animal’s role in the ecosystem, and 

for effective population management. Current methods for home range 

estimation often do not incorporate uncertainty in the observations of monitored 

animals. Given days without observations, they also have the potential to omit 

migration corridors when describing important habitat. Here the Extended 

Kalman filter is modified to return daily predicted geolocations, creating a most 

probable estimation of the true path the observed animal followed. Markov Chain 

Monte Carlo methods were used to map the uncertainty in this path to create a 

probability of use distribution, representing the animal’s utilization distribution.

The modified method was applied to Atlantic bluefin tuna ( Thunnus thynnus) 

observed using pop-off satellite archival tags with light-based geolocation. The 

home range estimation technique developed can be used for any animal with a 

time-series of locations.

xi
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CHAPTER 1

INTRODUCTION

Throughout the development of fishery science, managers and scientists 

have been faced with an increasing need for detailed knowledge of the ocean’s 

resources (Smith 1994). Current terminology refers to the description of where an 

animal is, or is likely to be, during a given time as its utilization distribution (UD), 

alternatively referred to by the more general concept of “home range” (Seaman 

and Powell 1996). Specifically, the home range is defined by Burt (1943) as 

“ ...that area traversed by the individual in its normal activities of food gathering, 

mating, and caring for young. Occasional sallies outside the area, perhaps 

exploratory in nature, should not be considered as in part of the home range.” 

Therefore the rare excursion should not be included in the home range definition, 

and the home range is not the area in which you could potentially find an animal 

at all times. Rather, a home range is where there is a given probability (often set 

at 0.95; Anderson 1982, Worton 1989) that an animal will utilize the area during 

the time in question (Jennrich and Turner 1969). The 0.95 that is often used for 

definition of the home range refers to the contour inside which the animal spends 

95% of its time, hereafter referred to as the ‘95% home range.’ This can then be 

expanded to ask how the animal distributes its time throughout the home range, 

by calculating the UD. The utilization distribution is the continuous, probabilistic

1
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depiction of an animal’s spatial use of an area, visualized by contour lines 

encompassing various levels of use.

Animal movements have been the focus of many population studies, with 

several techniques developed in an attempt to best describe an animal’s spatial 

use of its environment in probabilistic terms (Burt 1943, Jennrich and Turner 

1969, Anderson 1982, Worton 1989). In the terrestrial environment, the 

description of an animal’s UD is often defined using stationary features of the 

landscape that can be consistently located from year to year (e.g. landmarks; 

Bethke etal. 1996). In the oceanic environment, direct and completely accurate 

observation of animals can be difficult. The fluctuating structure in which pelagic 

fishes reside and this difficulty in observing movements of fishes make a strictly 

landmark/coordinate-based definition of UD inappropriate. Those fluctuations in 

the environment (e.g. temperature) can greatly influence where the animal 

spends its time (Kitagawa etal. 2000, Itoh etal. 2003). With the corresponding 

fluctuation in UD through time, it is particularly important to have a realistic and 

accurate estimate of the UD in order to relate it to the movements of prey, 

temperature fields, and more. Current approaches for estimating UD are 

insufficient as they are derived from periodically locating an individual and 

estimating its UD without accounting for the temporal correlation of the 

monitoring structure, the biological capabilities of the animal (e.g. how far it can 

travel in a day), or the accuracy of the observations. An accurate approach for 

defining home range, sensitive to the specific organism being studied, is 

necessary in order to understand the behavior and adequately manage aquatic

2
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species. Such an approach will also serve to illuminate the influences that 

environmental characteristics have on a fish’s spatial use {e.g. sea surface 

temperature fronts and prey distributions) (Brill etal. 2002, Gutenkunst etal. 

2007).

Many benefits can be gained from knowing the probable location of a 

species, and predictability in the fish’s movements would prove invaluable to 

scientific study and management plans. Adaptive management of a species can 

be quite difficult without knowing the environmental characteristics that can be 

used to locate that species, or how it interacts spatially with other species. 

Defining the UD for commercially important species like the Atlantic bluefin tuna 

( Thunnus thynnus) can aid in the identification of the relationships with 

environmental and biotic factors that influence the structure of the UD, eventually 

enabling the prediction of tuna locations.

This thesis provides a proof of concept for an approach to UD estimation 

that is more biologically appropriate and potentially accurate than current 

approaches. The state-space Extended Kalman Filter model was modified and 

applied to geolocation records of tagged Atlantic bluefin tuna, T. thynnus, in the 

Gulf of Maine. This new technique lays the building blocks for improved 

correlation of the tuna’s UD with that of their prey, competitors, and predators for 

which time-series of location data also exists. Sea surface temperatures and 

other physical features of the ocean can also be correlated to tuna locations 

(Humston eta l. 2000, Schick etal. 2004). The validity of such correlations, 

however, depends on using as realistic an estimate of home range as possible.

3
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The developed technique will be useful for UD, and thus home range, estimation 

of any species for which time-series of location data exists, both in the marine 

and the terrestrial environments.

1.1 The Importance of Utilization Distribution Estimation

An animal’s UD may depend on the time of year, the location of other 

animals with which it may interact, and highly variable environmental conditions, 

which may shift from day to day and year to year. If a correlation of these 

environmental factors with an animal’s UD can be identified and analyzed 

(McLoughlin and Ferguson 2000, Adams 2001), it could lead to improved 

predictability of where the animal is likely to be under particular conditions 

(Hinton and Nakano 1996, Schaefer and Fuller 2002). Realistic and accurate 

estimates of the UD are a necessary step towards application of environmental 

factors to predict the tuna’s spatial use of an area (Brill and Lutcavage 2001, 

Macdonald and Rushton 2003, Newlands et al. 2004) as well as estimating 

resource use patterns (Millspaugh eta l. 2006).

1.2 Gap in knowledge of Thunnus thvnnus

There is a pressing need for a model capable of predicting the location 

and identifying the distribution of Atlantic bluefin tuna, which appears to have 

high inter-annual and geographic variability (Powers and Porch 2003, Fromentin 

and Kell 2007). Estimates of the spawning biomass for Atlantic bluefin tuna

4
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remain controversial (Butterworth and Punt 1993, Restrepo eta l. 1994, Restrepo 

1996, Fromentin and Powers 2005), though conservative estimates predict that 

the current population size is one-eighth of that needed to produce maximum 

sustainable yields (Sissenwine etal. 1998). Current catches have been 

depressed compared to previous years, inhibiting both industry and management 

(Lutcavage 2004) and it remains unknown if the fishery has overexploited the 

stock (as suspected by: ICCAT 2003), which could have led to a seemingly 

sudden collapse, or if the fish are simply residing somewhere not yet known.

1.3 Importance of an improved Utilization Distribution

Describing the utilization distribution of T. thynnus and relating it to 

environmental factors could greatly improve stock assessment and management. 

Unfortunately, techniques for the estimation of utilization distributions have some 

major dilemmas to their effective use. The need for an effective and applicable 

method extends beyond this tuna species. Indeed, it extends into all of fisheries 

management, and further, for the study of any animal or population often needs 

information on the spatial distribution and movement patterns of the animal in 

question.

Recently, fishery management theory has sought to expand beyond 

managing single-species and move away from the assumption that these species 

are independent from other factors. Instead, efforts are now underway to conduct 

ecosystem-based management (as called for by, for example: Pew Oceans 

Commission 2003, U.S. Commission on Ocean Policy 2004). This has posed

5
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substantial challenges for managers attempting to shift their methods 

appropriately (Hanna 1999). The shift in approach may require substantial 

improvements in the understanding of how various members in the ecosystem 

interact (Molsa etal. 1999, Hill etal. 2006). An effective method that accurately 

defines an animal’s UD could improve identification of environmental and 

ecosystem dynamics that influence the animal’s probable location. If such a 

method is developed, it would provide enhanced analyses of how decisions 

made for one species will impact the entire ecosystem.

One such advantage that is gained by an understanding of where an 

animal like tuna spends its time is the ability to correlate the tuna’s UD with that 

of prey species like herring (Clupea Harengus), a known bluefin tuna prey 

species (Crane 1936, Bigelow and Schroeder 1953, Chase 2002, Estrada et at. 

2005, Golet et at. 2007). This can provide insight into the role that tuna play 

within the ecosystem, as well as some detail regarding the factors that influence 

where the tuna travel. Previously developed UD estimation techniques do not 

always operate under completely realistic assumptions, potentially hindering 

these kinds of efforts. While each technique has distinct advantages and 

disadvantages, they typically all share at least one of a few shortfalls to be 

discussed in Section 3.0. A UD estimation approach is needed that utilizes 

information regarding the temporal proximity of observations, is sensitive to the 

distance the animal in question could have traveled during the time elapsed 

between observations, and accounts for the uncertainty in the observations.
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CHAPTER 2

HOME RANGE AND UD ESTIMATION TECHNIQUES

The best method for estimating home range remains disputed (Adams 

2001, Jonsen etal. 2003, Horne and Garton 2006), but most involve defining the 

home range, or the UD, with a frequency distribution. Most methods currently 

used for home range estimation tend not to account for serial correlation between 

observations of an animal or temporal gaps in observations, and assume the 

observed locations are exact. Typically, home range estimation falls into the 

category of non-parametric techniques (meaning that there are no assumptions 

that the distribution pattern follows a prescribed pattern, such as a circle) and are 

based on density estimation. Although examples of parametric-like home ranges 

that are circular, elliptical, and, occasionally, linear parametric shaped home 

ranges have been observed (Fitch 1958, Calhoun and Casby 1958, Stumpf and 

Mohr 1962), these situations are not common. A brief review of some prominent 

home range and UD estimation techniques follows.

2.1 Minimum Convex Polygon Method (Mohr 1947)

The minimum convex polygon (MCP) method estimates the minimum area 

that all observed locations of an animal represent by enclosing the locations by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



imaginary lines connecting the outermost positions of the animal in the smallest 

possible convex polygon. For example, suppose a hypothetical tuna is located in 

the positions displayed in Figure 1 A. The MCP would define the area of the home 

range as that shown in Figure 1B, encompassed by the gray lines. For this 

example where the locations are densely and uniformly packed, this method may 

be useful. However, it encounters problems when faced with locations that do not 

have as compact of a structure, as in Figure 2 where a land mass makes the true 

use pattern concave.

ft
ft

ft ft

Figure 1 -  Minimum Convex 
Polygon Method. Positions of a 
hypothetical tuna. The gray 
lines in B show the area that the 
minimum convex method would 
estimate to be the 100% home 
range of the tuna.

8
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Figure 2 -  Overestimation by Minimum Convex Polygon Method. A pitfall 
of the minimum convex polygon method. (A) Hypothetical locations of a 
tuna. (B) The area that the MCP method would classify as the home 
range (encompassed by the gray line). (C) Striped area represents a 
landmass that the tuna cannot traverse, and thus its home range could 
not include this area as is assumed in B. The displayed gray lines 
outlining the home range in C is not consistent with the MCP method, as 
it creates a concave polygon.

It may be argued that in such a case, one could dictate that the area of the 

land mass would be omitted from the home range estimate. However, features 

that restrict or dramatically influence animal movements are not always so easily 

identified. A further drawback to the minimum convex polygon method is that the 

home range area estimated is dependent on the sample size, with an increasing 

sample size resulting in an increased estimated home range area without a 

decrease in estimated variance (Jennrich and Turner 1969, Anderson 1982). In 

addition, if the home range is not convex, the MCP tends to overestimate the 

home range.

Finally, this approach estimates the home range that encompasses all the 

observations (the 100% home range). It does not produce a UD, which makes 

correlation between environmental factors and spatial use difficult. The MCP

9
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assumes that observations are known without error, are independent, and 

ignores temporal distance between observations.

2.2 Bivariate Normal (Jennrich and Turner 1969)

The bivariate normal approach operates with the assumption that the 

home range of an animal can be described by probability ellipses surrounding a 

center of activity, otherwise described as a bivariate normal distribution. This 

method can be quite effective in encompassing the entire range of the observed 

animal, but often includes areas that are not at all utilized by the animal, 

therefore inflating the estimated area utilized. The approach can be effective for 

many animals that may sleep in a consistent location (i.e. a den) and radiate their 

activity out from that location. If the animal is free-ranging, however, and does 

not distribute its activity in an easily describable geometric shape, parametric 

approaches to home range such as this are not appropriate.

Like the MCP, the bivariate normal approach assumes all the observed 

locations are known without error. This may not be an issue for some animals, 

but for animals such as tuna where accurate observations are unusual, the 

bivariate normal home range estimate would not be appropriate. However, the 

bivariate normal can produce utilization distributions, which is a distinct 

advantage over the MCP. It cannot incorporate available information such as the 

temporal sequence, distance between the observations, or the movement rates 

of the animal.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.3 Harmonic Mean (Dixon and Chapman 1980)

Dixon and Chapman (1980) commented on the inadequacy of using the 

arithmetic mean of locations around which to center an estimated home range, 

as was done in the bivariate normal approach. They argued that the arithmetic 

mean of locations could fall in an area that 

was never used by the animal if, for 

example, the animal spent its time in 

multiple, spatially separated areas of high 

utilization. In Figure 3 it is shown that the 

approach of Jennrich and Turner (1969) 

produces an ellipse that effectively captures 

the area of use, but also includes large 

areas where there was little or no observed 

utilization by the animal. Meanwhile, the 

harmonic mean approach produces an area 

describing the home range that 

encompasses 95% of the observations, and 

with further distinction describing the areas of intensive use.

This approach is based on calculating the areal moment such that the nth 

moment at a location j, is

M ' n a t j  = ^ -

11

/
/

/

Figure 3 -  Harmonic Mean Method. 
Adapted from Dixon and Chapman 
(1980), observed locations of an animal 
are plotted as the points. The dashed line 
represents the probability ellipse as what 
would be estimated by the bivariate 
normal approach. The outer solid line 
indicates the area defined by the 
harmonic mean approach as the area 
containing 95% of the loci, while the 
inner solid lines surround the “area of 
greater activity intensity.”
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where P is the number of observed locations in the data, and rJX is the distance 

between j  and the observed location x. The harmonic mean center is the 

minimum value of calculated as the minimum of

1

Essentially, this finds the point at which the summed inverse distance from 

all the observed locations is minimized. Thus, if there are the occasional points 

outside the area of heavy use, it will not drastically impact the location of the 

harmonic mean. Dixon and Chapman (1980) applied this approach to time series 

data by a moving 11 -observation portion of the data so that the harmonic mean 

was updated with changing hubs of activity, allowing for the distinction between 

multiple areas of high use throughout the observation's time frame. The areas 

between the hubs of activity are given some importance as being used by the 

animal but with a lower frequency not identified by the high intensity contour line. 

This ability is important because managers often need to know the area an 

animal traverses in order to go from one area of high activity to another 

(Eggleston and Dahlgren 2001, Mumby 2006, Rouget eta l. 2006). However, like 

many other UD estimators, the accuracy depends somewhat on the size of grid 

used to define the j  points. The harmonic mean approach, like the MCP and 

bivariate normal, assumes that the observations are known without error. This 

assumption is often violated when dealing with oceanic animals of which direct 

observations are difficult.

12
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2.4 Fourier Transform Method (Anderson 1982)

The Fourier method is similar to estimating a probability density function 

by using a histogram of observation frequency within a given square of a grid 

placed over the observation area. However, such a histogram has a severe 

limitation due to its dependency on the resolution of the grid used (Anderson 

1982). The Fourier transform method avoids this issue by placing infinitesimally 

thin but tall columns upon each observation location. The sharp change in height 

from these tall cylinders to adjacent areas with no observations of the animal can 

then be smoothed to create a probability of observation density surface similar to 

the kernel density approach (Section 2.5). From this, contour lines of the 

probability of use are created, delineating the UD. While this method works 

generally well for modeling where the animal was observed, like the other home 

range estimators it does not account for where the animal was between 

observations in a biologically meaningful sense {i.e. the dispersal of the animal 

from the observation point is not modeled, and therefore is not sensitive to the 

study animal’s biology). It assumes observations are independent and known 

without error. The UD may then be underestimated. The density estimates 

produced can also be negative values (Worton 1989), which is not a realistic 

situation.
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2.5 Kernel Density

At present, the most accepted utilization distribution estimation techniques 

are the kernel density estimators (Seaman and Powell 1996), first introduced to 

ecologists as a home range estimator by Worton (1989). In this approach, a 

kernel consisting of a probability density, visualized by concentric rings that 

represent lower probability as the distance from the observation point grows, is 

placed over each observation point in the sample. A grid is then superimposed 

on the data, and within each cell the densities from all kernels that overlap that 

cell are summed. Observations nearer to a point of evaluation will contribute 

more to the summed density than an observation far from it, thus the density 

estimate will be relatively higher in areas with many observations. An example of 

such a kernel is the bivariate normal density kernel of f(x), which can be defined 

as

where the kernel K ( ) is a unimodal symmetrical bivariate probability density 

function and h is a smoothing parameter that can be varied by the modeler. f(x) is 

the probability density function of an unknown utilization distribution where X, is a 

random sample of n independent points. The form of the kernel Kean be defined 

by various shapes. For instance, the biweight kernel K2 (Silverman 1986:76) 

defined as

(3)

x' x > 1
2.1
2.2

(4)
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where x ’x  is the distance from the evaluation point to the observation point 

divided by the smoothing parameter, h. This particular member of the kernel 

family would place a probability density upon each observation like that shown in 

Figure 4.

Figure 4 -  Biweight kernel K2

This method utilizes information on animal locations and analyzes the 

densities of those locations over space, creating a surface plot of the probability 

of finding the animal in any given region. The kernel density estimator has many 

positive characteristics such as being uninfluenced by effects of grid size and 

placement (Seaman and Powell 1996). Particularly, it is nonparametric, allowing 

it to estimate densities of any shape, as is appropriate when dealing with animal 

home ranges. However, there are drawbacks of the kernel density approach. As 

can be noted in equations 3 and 4, there is no variable in the kernel density 

approach that accounts for the elapsed time between observations, ignoring the 

serial correlation of observations. Indeed, in order to remove autocorrelation, 

previous studies using this home range estimator intentionally gather less data

15
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(Kernohan e ta l.1998), loosing potentially valuable information. There is also little 

consideration of the movement rates that the animal in question typically 

undertakes. Movement rates can be somewhat accounted for by selecting 

among the various kernel types and smoothing parameter, but not in a direct, 

biologically meaningful way. Because of this omission, should the kernel density 

approach be fed identical locations and timings of observations for a fast- 

swimming animal like a tuna and for a slower-swimming animal like a loggerhead 

turtle (Caretta caretta), the resultant home range estimations would be identical 

for both species. However, the home range of a tuna has the potential to be 

larger than that of the turtle, as the tuna tends to travel farther on a daily basis 

(Papi etal. 1997, Wilson etal. 2005). Furthermore, if the distance between 

observations is large enough, then without making the kernels un-informatively 

massive, the modeled area that the animal used may have gaps between kernels 

in areas that the animal must have traversed to move from the location of one 

observation to another. Finally, as with the other techniques discussed, 

observations are assumed to be known without error. Because of these 

assumptions made by the currently used UD estimators that are often violated, a 

new approach appears warranted.

2.6 Kalman Filter Home Range Estimator: A New Approach

To address the need for an improved, more realistic method of defining an 

animal’s utilization distribution, a modification to the Kalman filter (Harvey 1989)

16
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application in the software AD-Model Builder (Otter Research Ltd) is proposed. 

The Kalman filter is a set of recursive state-space equations that Sibert and 

Fournier (2001) were among the first to apply to tracking data. The filter analyzes 

position estimates to estimate a ‘most probable track,’ tag geolocation errors, and 

relevant parameters of a biased random walk model that simulates an 

individual’s likely movements. Sibert etal. (2003) later applied the Kalman filter to 

position estimates of bigeye tuna, Thunnus obesus, derived from archival tags to 

estimate the horizontal movements of the individual tagged tuna. These methods 

were applied by Wilson et al. (2005) to pop-up satellite archival tag data (PSAT) 

of Atlantic bluefin tuna (Thunnus thynnus) in the Gulf of Maine to produce most 

probable tracks of tuna in that region. In these publications, utilization 

distributions were estimated using the fixed kernel approach upon the 

geolocations of the most probable track.

Using the data gathered by Wilson etal. (2005), all possible tracks of a 

single fish with associated likelihoods are estimated with the Kalman filter, and 

from these estimates a utilization distribution is created which accounts for the 

data’s biological and temporal specifics. The available data has locations derived 

on a daily time-scale. Traditional applications of the Kalman filter estimate the 

underlying, true movements of the animal on a time scale identical to that of the 

observations, mirroring any gaps in those observations. Instead, by adjusting the 

modeling program to update the process model’s estimated location to regular 

and adjustable time intervals, locations can be estimated for time steps without 

observations. A grid will be placed over these possible tracks, and a histogram of
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use for a given location will be produced. The resulting density field will represent 

the probability of use for a given location by the individual, creating a surface plot 

of the area where the tuna was likely to have been during the time period in 

question.

A modified approach to estimating a tracked animal’s UD with this 

application will be developed that addresses the assumptions the previously 

discussed methods often violate. The result will be an improved approach for 

utilization distribution estimation that produces more realistic results than current 

approaches, which can lead to improved correlation with environmental 

variables.
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CHAPTER 3

METHODS

3.1 Data Collection

This thesis uses the data gathered by Wilson et al. (2005) on bluefin tuna 

in the southern Gulf of Maine (N=66 in 2002, N=61 in 2003). Bluefin tuna were 

tagged with pop-up satellite archival tags (PSAT, model PTT-100, Microwave 

Telemetry, Inc., Columbia, MD) as part of a study to ascertain bluefin tuna 

movement, behavior and their interaction with the environment in the north 

Atlantic.

PSATs were attached to a fish’s dorsal musculature using metal or plastic 

darts (Lutcavage eta l. 1999, Graves etal. 2002, Wilson eta l. 2005). After 500 

days of collecting data while attached to the fish, the tags were programmed to 

send an electrical charge to the nose-cone to initiate a reaction with the saltwater 

that corrodes the attachment wire. The tag then floated to the surface and 

transmitted its data through the Argos satellite system. If the tag remained at a 

constant depth for more than four days, the tag was programmed to initiate a 

release under the assumption that such behavior indicated the animal had died 

or that the tag had been shed (Sibert etal. 2003, Wilson eta l. 2005).

The tags carried an internal clock, sensors to measure light level, ambient 

temperature and pressure; and a battery voltage meter. The position of the tag
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upon the Earth, termed its geolocation, was calculated using the readings of the 

light levels and time of day. Geolocation of the tag was derived via a proprietary 

algorithm of Microwave Telemetry, although the theory underlying this algorithm 

is well understood (Hill 1994, Hill and Braun 2001, Ekstrom 2004). Longitude was 

estimated by measuring the time of local noon for a given day (when the sun 

reaches its zenith), relative to Greenwich Mean Time. The times of sunrise and 

sunset, characterized by the maximum rates of change in light levels for the day, 

and the associated day length yielded an estimate for latitude. The accuracy of 

the latitude estimate is highly affected by time of year, along with other sources 

of error, and this error should be corrected before use in movement studies.

3.2 Geolocation correction

Light-based geolocation estimates are often characterized by substantial 

error (Metcalfe 2001, Shaffer etal. 2005, Nielsen etal. 2006). As described in 

section 3.1, the PSATs used in this study carry a sensor to detect the time of 

local noon and the times at which the ambient light level is changing at its 

maximum rate indicating dawn or dusk. Accuracy of geolocation estimates can 

be affected by several factors including drift of the tag’s internal clock, algal 

biofouling of the light-sensor housing, movement of the fish between dawn and 

dusk, or variability in the attenuation of light at depth (Welch and Eveson 1999).

The diving behavior of the tagged animal can also affect the accuracy of 

geolocation estimates. As the location is based on documenting the time of dawn 

and dusk, the tuna would need to be near the surface at those times in order to
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record the changing daylight. Bluefin tuna are an ideal fish for these tags 

because they have been known to spend the majority of their time in the 

uppermost 30m of the water column (Lutcavage eta l. 2000, Wilson eta l. 2005), 

although Lutcavage et al. (2000) did suggest that bluefin tuna may dive at times 

of light transition to feed on sandlance, a shallow-water species, rising off the 

bottom. If the tagged fish dive deep for too great a time at the beginning or end of 

the day, a reading of day length can not be attained for that day, creating gaps of 

observation data. This is not a likely problem with bluefin tuna in general, 

because the study that showed diving behavior at dawn and dusk was specific to 

an inshore location in the Gulf of Maine.

The estimate of latitude is particularly sensitive to errors in light 

measurements. Latitude errors exhibit fluctuating patterns of magnitude 

correlated with the time of year and its proximity to an equinox. Whereas error in 

longitude does not change throughout the year (Hill 1994, Hill and Braun 2001, 

Musyl eta l. 2001), day lengths are essentially 12 hours at all latitudes during the 

summer and winter equinoxes. This makes day-length associated latitudes 

indistinguishable and their accurate estimation more difficult. For example, at a 

latitude of 50°N and five days away from the equinox, if the day length estimate 

was off by just one minute, there will an error of about 1.5° (over 150 km) in 

estimated latitude (Welch and Eveson 1999). Under optimal conditions, Hill and 

Braun (2001) suggest it is possible to estimate longitude and latitude with 

standard errors of 0.32° and 0.7°, respectively. These errors can be substantially 

inflated under field conditions near the tropics with upwards of 5.5° error in
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latitude (Musyl eta l. 2001). These erroneous geolocation estimates can result in 

the tags reporting that a fish traveled hundreds of miles on land. Thus, it is 

important to filter out this error when basing a UD estimate on these 

geolocations.

Kalman (1960) developed a method useful for minimizing these 

uncertainties. Originally described for the engineering field, the Kalman filter has 

recently been adapted to apply to tracked animal positions to produce a ‘most 

probable path’ that the animal traveled while tracked (Anderson-Sprecher and 

Ledolter 1991, Sibert and Fournier 2001, Sibert etal. 2003, Nielsen 2004).

3.2.1 The Kalman Filter

The Kalman filter is a state-space statistical model comprised of: recursive 

equations describing the transition of a system from one state to the next (i.e. 

progression of time-steps); equations describing the observation model with 

errors in measurement of the state of the system; and a set of recursive 

relationships that, based on the observation model, updates the estimated state 

of the system and the components of variance at each step (the state model) 

(Sibert et al. 2003). The Kalman filter can also include equations for adjusting 

errors to the geolocation estimates derived from the archival tags based on 

proximity to the solstice. To represent the observation model, let yybe a two 

dimensional vector in terms of latitude and longitude, of the estimated sequential 

position of the tagged fish at observation moment /', and let

y i ^ Z ia t + d i + e i , i=  1 ,...,T  (5)
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where or. is its true position (described later in equation (8)), Z-, transforms from

coordinates of the plane expressed in nautical miles (nm) to coordinates on the 

sphere expressed in degrees of longitude and latitude, and is defined in equation 

13, di is a two dimensional vector of the bias in observing the position, T is the 

number of measurements in the time series, and e,. is a serially uncorrelated 2- 

dimensional random vector with mean 0 and 2 X 2  covariance matrix, Hf.

( V fa?
di =

X
and H .= X

i

A ,
i 0 a 1 .\  y‘J

where o \  and a 2yi are the mean-squared errors in estimating longitude and

latitude, respectively. bx and by can be interpreted as the mean ‘raw’ error bias, 

while a x and cryi are the standard deviation of the ‘raw’ error (Musyl eta l.(2001).

Longitude estimation is determined by observing the time at local noon. Latitude 

estimation is determined by the length of day, and so accuracy diminishes greatly 

during the equinoxes when the day length is constant for all latitudes. Errors in 

latitude can be modeled in several ways (Sibert etal. 2003), but for the purposes 

of this study a location error variance model will be adopted in which 

observations near an equinox are considered highly uncertain while the 

uncertainty is lowest around the solstice (Nielsen 2004).

The latitude error structure is modeled as:

0 .2  _  ___________________ yo__________________  /y \

* (cos2 (2^(7, + b0)/ 365.25) + a0)
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where a 2y<j is the average latitude geolocation error, J,- is the number of days

since the first solstice prior to the start of the track, bo is a parameter to be 

estimated expressing the number of days before the equinox at which the latitude 

error variance is at its maximum and ao is a non-negative, dimensionless model 

parameter inversely affecting the general magnitude of the variance fluctuation.

Variability in day length has less impact on longitude estimation. Thus o x 

is assumed to be constant over time, as are the biases, bx and by.

Using the observed locations, the movement of a fish along a time series 

is assumed to be a biased random walk on a plane, described by the transition 

equation,

at = a i_,+ci + rji , i = l,...,T (8)

where a,• is a two-dimensional vector describing the position of the fish at time /', c-, 

is a 2-dimensional vector representing the bias of the random walk, and rji is a 2-

dimensional vector of serially uncorrelated random variables with mean 0 and 2 

X 2 covariance matrix, Q,.

This application of the Kalman filter assumes that a fish’s movements can 

be modeled as a biased random walk. The advection-diffusion equation is the 

continuous case of a biased random walk (Okubo 1980), and therefore the 

parameters of the biased random walk can be described by the advection-
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diffusion equation. Animals dispersing according to an advection-diffusion 

process distribute in such a way that the probability of observing an animal at 

point x  at time t has been shown by Feller (1966,1968) to be a normal probability 

density function,

,  i h 5̂ s r  (9)p( t ,x)  = - = = = =  eK J.
■yJ4nDAt

After an amount of time at large, t, the mean position of the 

animal will be ut and the variance 2Dt, where u is the mean rate of movement 

and D is the rate at which the uncertainty of the position increases over time. It is 

the incorporation of these latter two variables that allows the Kalman filter to be 

sensitive to the biological tendencies of the animal in question (i.e. at what rate 

can it move) and to the temporal characteristics of the sampling design (i.e. 

increasing uncertainty of the position as the time between observations 

increases).

The parameters of the transition equation (8) are as follows

c, =
uAt  ̂ f  2D  At 0

and Q; =
' ^ 0 2DAtyVA t j

(10)

where the change in time (A t) is f, -  thi and u and vare mean longitudinal and 

latitudinal biases of the fish’s random movements, respectively. D, u and vare 

from the advection-diffusion model (Equation 9). Note that u and vare to be 

interchangeable in Equation 9.

The Kalman filter is then comprised of a set of recursive relations that 

update the estimated position and the components of its variance at each time
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step (Harvey 1989, Sibert etal. 2003), such that for /'= 1, 2,..., T the true 

position of the tagged fish is estimated from the random walk,

V > = a '->+c ‘ (11)

where a.|M is an estimate of the ‘true’ position of the tagged fish.

Pili-l =Pi-l +Q i (12)

updates the variance of that position. The total variance is then computed by 

combining the variance from the random walk, Q., with the variance of the

observation, H n via:

Fi = Z iPili_lZ'i + H i . (13)

The position is updated by the tag following equation (5),

yi = Z ia i + d i (14)

where Z-, is a 2 X 2 matrix which converts between coordinates on the plane 

expressed in nautical miles (nm) and coordinates on the sphere expressed in 

degrees of longitude and latitude. Let a^_x denote the optimal estimator of a i

conditioned on all observations up to and including y,.i such that

z .:1 =
60cos(a.|M2 /60) 0

0 60
(15)
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where a^_l 2 is the estimated latitude position of the tag north of the equator in nm

at the beginning of time step /', and 60 is the number of nm per degree of latitude 

and per degree of longitude at the equator.

The residual between the location estimated by the tag and that by the 

biased random walk is calculated as,

w, = y , - y r  (16)

The most probable position’s parameters for the time step is then 

calculated as

al =a,v.1+Pill_iZ'iF r lwi (17)

and

P =p, .  . -  P., XZ F 7 XZ,PV (181I  i j l - 1  f | / - l  l  I  l  j | j - l  V -1 0 ^

Equation (17) computes the most probable position, and equation (18) 

estimates its variance, as a tradeoff between the random walk position and the 

position estimated by the tag based on the relative variance of the two estimates, 

creating the ‘most probable’ track through the sequence of points a,. = 1,2,...,T

with an estimated level of uncertainty around that track. The parameters 

describing the fish’s movements to be estimated are the values of u, v, D, bx, by, 

<j2x , <7zy0, and a0, that maximize the log-likelihood function,

InL  = - T In2n - 0.5jrln |F ,.| - 0 .5 ^ wiP ; xwi . (19)
i= l  i= l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The Kalman filter takes noisy geolocations and returns the most likely 

position of the animal at the time of observation, given the observed geolocations 

and the estimated uncertainty in those observations. Sequenced together, they 

describe the ‘most probable track’ that the animal traveled during the time it was 

tagged. The ‘kftracK package (Sibert etal. 2003, Sibert and Nielsen 2004) 

written for the statistical language program R (lhaka and Gentleman 1996) 

provides easy application of the Kalman filter.

The program’s example is for a bigeye tuna (Thunnus obesus) near 

Hawaii. The program produces a predicted track based solely on the previously 

observed positions, and a most probable track that is based on all observations. 

As shown in Figure 5, both the predicted track (solid grey line) and the most 

probable track (black line) are far less variable than the raw observations.

As written, however, kftrack predicts a location only on days for which an 

observation exists. Unfortunately, PSATs often do not report geolocations for 

100% of the days. Once a tag comes off the fish and floats to the surface, it can 

take several days for the data to upload through the Argos satellites during which 

the upload can be interrupted by factors such as heavy seas sending the 

antennae below the water (Lutcavage et al. 1999, Galuardi 2006). On any given 

day, the tag may be unable to make a geolocation observation for a variety of 

reasons. For instance, the tag may have sustained damage from interactions 

with other animals (NMFS 2004) or other causes discussed in Section 3.2. These 

limitations can lead to as many as 79% of the days not having observations (De 

Metrio etal. 2003). Because the Kalman filter predicts locations based on the
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information from all the observations, locations between observations can easily 

be interpolated with slight modifications to the Kalman filter approach, as 

recommended by Galuardi (2006: 52).

a

;x
OT”

o

200 2 0 8 212

Longitude

Figure 5 -  Example kftrack Most Probable Track. X’s indicate 
observed locations. The dashed grey line indicates the temporal 
progression from point to point. The solid grey line indicates 
the predicted track, with each position estimate based solely on 
the previous locations, while the black line is the ‘most 
probable track’ that is smoothed using all observations.

3.2.2 Why the random walk?

The approach presented in this thesis models bluefin tuna’s movements 

as a random walk. Any movement model that describes an animal’s movement 

patterns may be applied to the Kalman filter home range approach. An unbiased 

random walk was used for this thesis in part because it is general, easily 

incorporated into the Kalman filter, and has previously been incorporated into the
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Kalman filter (Sibert etal. 2003, Nielsen 2004, Galuardi 2006). Most of the 

previous applications of the Kalman filter used the biased random walk for its 

movement model. However, combining the bias of the random walk with the 

MCMC procedures to be described in Section 5.4 resulted in instability in the 

model results. More complex movement models can be used and should be 

explored in the future (i.e. Moorcroft etal. 1999), as should implementation of a 

bias to the random walk to improve the biological validity of the movement 

structure.

3.3 Analyzing Effects of Observation and Prediction Frequencies

3.3.1 Predicting all days

The code for kftrack (Sibert and Nielsen 2004) was written using AD 

Model Builder (ADMB - Otter Research Ltd), utilizing R as a user-friendly 

interface. For this thesis the code was modified within ADMB (Appendix A) to 

predict geolocations of the tagged fish at times for which no observation exists. 

This modified code was written for the purposes of the Kalman filter utilization 

distribution estimation method, and will be referred to as kfud. K fud forms a 

matrix with as many rows as time steps, where time steps are equal increments 

(i.e. one day) between the release date and end date of the track. The rows of 

this matrix were then populated with the observed positions. Rows of time steps 

for which observations do not exist were filled with zeros. The Kalman filter is an 

application to smooth observations. The parameters of the observation model 

were therefore not updated for time steps without observations. For these time
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steps, only those parameters associated with the process model were updated. 

Similarly, the likelihood function is only affected by the deviation of the observed 

location at a given time step, and the corresponding predicted location.

The interpolated positions predicted for time steps between observations 

serve to delineate where the animal may have gone while we could not observe 

it, as well as provide information about the uncertainty surrounding the most 

probable track. The kftrack package reports the uncertainty of its most probable 

track via a covariance matrix around each position. With no observations on 

unobserved days, kftrack does not address the uncertainty about the track 

between observations. Regular temporal spacing of estimated positions via kfud 

provides a more complete picture of the area that a tagged animal likely traveled, 

with the associated uncertainty.

3.3.2 Thinning Data

Observation rates can vary drastically with the animal being tracked based 

on the habitat, animal’s behavior, and tracking technique (NMFS 2004, Nielsen et 

al. 2006), as can the accuracy of the observations. To assess how a decreased 

observation rate may affect the estimate of home range, the original observations 

were sub-sampled. In one scenario, every other day was assumed to have no 

observation, thus cutting the reporting rate in half. Another track was made with 

the same reporting rate by shifting the omitted observations. The first scenario 

had every other observation omitted beginning with the 2nd observation. The next 

scenario started the omissions with the 3rd observation. The 1st observation was
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kept either way, as that was the release point, and is assumed known without 

error. To more drastically thin the data, another scenario was explored in which 5 

of every 6 observations were assumed void, cutting the reporting rate to 17% of 

the original observations.

3.3.3 Multiple Predictions a Dav

kfud was designed to allow predictions of locations as frequently as once 

an hour, if desired. To review the effect that an increased prediction to 

observation rate might have on the resulting most probable track and UD, 

estimates were performed with 2 and 6 predictions a day, spaced 12 and 4 hours 

apart, respectively. Geolocation observations were assumed to be at noon 

(1200h). This is because the longitude estimated using light-based geolocation is 

based on time of local noon. To estimate latitude, an entire day’s duration of 

sunlight is needed, and is therefore not associated with a particular time of day.

3.3.4 Altering the Animal’s Mobility: Changing D

The home range of an animal whose mobility is more restricted than a 

tuna is expected to utilize a smaller home range. Similarly, by increasing the 

distance we assume the animal tends to have traveled each day, we would 

expect the uncertainty around the most probable path to increase, and create a 

larger home range estimate. To observe how the approach could be applied to
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animals with varying degrees of mobility, 95% home range estimates were 

produced with D declared as 50 and as 500 or 1000 nm2/day.

3.4 Home Range

Part of the kftrack results is a covariance matrix for each predicted 

geolocation, which can be used to create 95% confidence ellipses around those 

positions using the ellipse package (Murdoch and Chow 1996) in R (Figure 6). 

While the ellipses can give a general idea of where the bluefin tuna was at the 

time of observation with 95% certainty, it does not produce either a utilization 

distribution or a representation of the home range as a single polygon. 

Furthermore, the ellipses only represent the uncertainty around the locations, 

rather than the uncertainty around the track.

95% Cl Ellipses

3

195 200 205 210

Longitude

Figure 6 -  kftrack Confidence Interval EllipsesMost 
probable track (black line) of kftractf s example bigeye 
tuna, with predicted geolocations (black circles) 
everyday. The grey ellipses are the 95% confidence 
intervals. Note that there is substantially more 
uncertainty in the latitudinal direction than longitudinally.
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3.4.1 UD Estimation and Representation

One challenge to using utilization distributions is in establishing the proper 

method of visually representing the animal’s probabilistic use of an area. A 

number of methods exist within R to display utilization distributions through 

binning and smoothing functions, such as the function bkde2D (referred to here 

as the 2D Kernel Density method) of the KernSmooth package (Wand 1994, 

Wand and Jones 1995) and the kernelUD function of the adehabitat package 

(Silverman 1986, Worton 1989, Bullard 1991, Worton 1995, Seaman and Powell 

1998). This study presents 95% home range estimates using both of these 

methods showing the similarity of the pictures they produce of the home range. 

These methods place bivariate distributions (typically Gaussian) upon each 

position as discussed in Section 2.5 to create a smoothed picture of the home 

range. They then place a grid over the area and bin overlapping probabilities of 

the animal’s presence in each grid cell. Another package in R, hist2d, written by 

Gregory Warnes in the gplots package creates a simple 2-dimensional 

histogram, using a grid over the study area and binning up the frequency of 

occurrence in each cell with no smoothing (simple binning). To utilize this 

method, high densities of positions are necessary, and cannot be effectively 

performed on the single, most probable track.

The key to estimating a realistic UD is to directly illustrate the probability of 

all possible paths, identifying areas that the tuna likely utilized. The three UD 

estimators mentioned above cannot provide a representative assessment of 

space use if only given the locations of the most probable path, as that would
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ignore the many other possible paths. Uncertainty was thus estimated through 

application of a Markov Chain Monte Carlo (MCMC) approach. A 100,000 run 

MCMC was applied to each scenario with a burn-in period of 2,000. Every 50th 

run was extracted, producing 2,000 possible tracks based on the variance of the 

model’s parameter estimates and the uncertainty in the observations. This 

produced geolocations of all possible tracks, the density of which represented the 

probabilistic use of a given area. The kernel density estimators and the simple 

binning approach introduced above were then applied to the MCMC results, 

illustrating a UD based on all possible tracks derived from the model’s 

uncertainty. The 2D Kernel Density approach was found to be substantially faster 

and robust, and produced a UD image similar to the other visualization methods. 

It therefore was used for analysis of most of the scenarios explored in this thesis.

3.5 Selection of Tracks

The Kalman filter home range approach was applied to tag tracks with 

patterns typical of bluefin tuna. Tag 37008 (Figure 7) exhibits a typical track for a 

tagged bluefin tuna which had several, separate areas of localized movement 

connected by periods of apparent directed travel. Tag 37011 (Figure 8) provides 

an example where the bluefin tuna doesn’t appear to spend large amounts of 

time in any one area, but also doesn’t seem to have a general trend in movement 

bias. Tag 3817 (Figure 9) provides a final test track in which the observations 

were made with very little uncertainty. This track is the observed track of the tag 

after it released from the tuna, which was determined by Doppler positioning, and
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can be accurately located within 150 meters (Argos 1996). The positions are 

found at least once a day. For this analysis, the observation nearest to noon of a 

given day was used as the daily position, and no days were missing. This track 

has small measurement error, a distinct bias in travel direction, and a daily 

observation record absent of gaps. It is therefore indicative of a tagging study for 

an ‘animal’ who’s tracking does not have the typical complications that tuna 

tracking experiences.

Map for Tag 37008

75 60 45

August 1, 2002

February 16, 2003
40 June 8; 2003“

September 7, 2002
May 14, 2003

25

Figure 7 -  Kftrack corrected observed positions (black points) 
and most probable track (black line) of a bluefin tuna with tag # 
37008, released August 1, 2002 at the open black circle.
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Map for Tag 37011

85 70 55

45

August 1,2002 .February 6,2003O

30

Figure 8 -  Kftrack of bluefin tuna with tag # 37011, released 
August 1, 2002.

Map for Tag 3817 
Positions Determined by Argos Satellite

80 65 50

.....A  <yi

? C , ---------- ------

,  A .

j y '
i  / /

...

January 2 ,2004

February 1, 2004

4

Figure 9 -  Observed geolocations, obtained through a link with the Argos Satellite. 
The track is ideal for estimating a home range for a straight track measured with very 
little error.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4

RESULTS

4.1 Extension to “kftrack”

Modifications made to the kftrack code 

to predict locations for days without 

observations were found to produce 

identical results to the kftrack estimates 

of bigeye tuna Track 241 when no 

unobserved days’ positions were 

predicted (Figure 10). This indicates that 

the new code effectively performs the 

function of the previous without altering 

the estimates.

4.2 Application to bluefin tuna data -  Tag 37008

4.2.1 Original Observations

Figure 11 shows the Kalman filter-corrected points of the bluefin tuna 

tagged with Tag 37008 as produced by kftrack (with predicted locations only for 

days with observations). Ellipses based on the covariance around each location 

represent the uncertainty in the track’s individual geolocations. Note that the
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Longitude

Figure 10 -  Comparing most probable track 
of kftrack (thick black line) and kfud (grey 
line).
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covariance ellipses suggest there is little likelihood that the tuna traversed the 

area between the clusters of observed locations. Applying the kernelUD function 

in the statistical program R to the track to estimate the 95% home range has a 

similar result (Figure 12). Though the estimated home range encompasses more 

area around areas densely-packed, the area in the middle is still considered 

unlikely to be an area in which to find the tuna. This gap in the estimated home 

range still exists when extracting the tracks from the MCMC of kftrack (Figure 

13).

Tag 37008 - Most Probable Track

o■oa
o

3

-80 -75 -70 -65 -60 -55 -50

Longitude

Figure 11 -  Tag 37008 kftrack confidence 
interval ellipses of the most probable track 
(black dotted line) of biuefin tuna tag 37008. 
Grey ellipses show the 95% confidence 
intervals around each observed 
geolocation.
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Tag 37008 - 95%CI Ellipse 
and

Kernel Density Home Range Estimate

80 75 70 65 60 55 50

Longitude - W

Figure 12 -  95% confidence intervals (grey ellipses) 
around each location and 95% Home Range (black 
outline) estimated by kernelUD, based only on the 
observed geolocations.

Tag 37008 - 95% kernelUD Home Range 
and

MCMC Runs of Probable Track Geolocations

80 70 60 50

Longitude - W

Figure 13 -  kernelUD estimate of 95% home range 
(black outlines) and geolocations from MCMC runs 
of kftrack (grey points). Dashed line is the most 
probable track.
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4.2.2 Prediction Every Dav

Predicting a location every day for Tag 37008, as expected, placed 

estimated geolocations between observations for days without observations -  

one geolocation for every missing day (Figure 14). Note that compared to kftrack, 

the kfud track is altered slightly because of the increased smoothing effect of 

making predictions everyday. The effect of predicting every day’s geolocation is 

evident in Figure 15 where the home range estimate by kfud bridges the gap 

between the hubs that the kftrack does not include.

Tag 37008 - Most Probable Track 
Predictions Everyday vs. kftrack

CD"O

CD
VO ~

COro ~

*cr _

-80 -70 -60 -50

Longitude

Figure 14 -  Most probable track for kftrack (grey line, black 
triangles) and for kfud with predictions every day (black points).
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Tag 37008 - 95% kernelUD Home Range Estimates

-80 -75 -70 -65 -60 -55 -50

Longitude
Figure 15 -  kernelUD estimate of 95% home range for kftrack (grey 
outlines) and for kfud (black outline) surrounding the most probable 
track (dashed line)

Note that the kernelUD application was used to visualize this home range 

because the other two methods for binning and smoothing the data require a 

greater density of points (i.e. from an MCMC) in order to effective. Though the 

gap is bridged with kfud, the home range estimate is still assuming observed 

locations are known exactly, and it does not represent the tuna’s potential area of 

use due to its species-specific ability to move particular distances in a day. To
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make this home range estimate more realistic, uncertainty can be mapped using 

an MCMC.

4.2.3 Home Range from MCMC Methods -  Daily Predictions

Applying the home range estimation techniques to the estimated tracks 

produced by an MCMC yielded similar estimates for home range (Figure 16 and 

Figure 17) with no gaps in the 95% home range. The estimated 95% home range 

based solely on the geolocations of the most probable track did produce a 

noticeable, qualitative difference compared to the produced home range estimate 

based on the MCMC positions (Figure 17). For this track, traditional kernel 

density UD estimators applied only to the observed positions would have 

overestimated the tuna’s home range. This is probably because the tuna’s 

maximum daily movements it is capable of are not incorporated when not using 

the MCMC positions.
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Tag 37008 - Kfud 95% Home Range Estimates
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Figure 16 -  95% Home range estimates from three methods available in 
the R program. Here, the kernelUD method is based solely on the most 
probable track while the 2D Histogram and the 2D Kernel Density 
methods are based on the MCMC geolocations.

+  MCMC Geoloestions 
— ■ kernelUD 
—  2D Histogram 
  2D Kernel Density

Most Probable Track
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Tag 37008 - kfud 95% Home Range Estimates
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Figure 1 7 -  kfud 95% Home range estimates based on MCMC. The 
thick line is the kernelUD estimate when based solely on the most 
probable path, while the thin line is the kernelUD estimate based on 
all the MCMC geolocations. The 2D Kernel Density estimate is also 
based on all MCMC geolocations.

4.2.4 Thinned Data

Thinning the original data by removing every other observation provides a

demonstration of the sensitivity that the home range estimate has to infrequent

data. It was found that lower reporting rates results in substantial shifts in home

45

t  MCMC Geolocations 
“  kernel UD from Single Track 

" ■  kernel UD from MCMC
—  2D Kernel Density
—  Most Probable Track
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range estimate (Figure 18), and the nature of that impact can change depending 

on which observations were removed. The changes, however, do appear to keep 

the different estimated home ranges within the same general region. This 

thinning of the data increases the influence that each particular observation has 

over the estimated track and thus outliers can cause the substantial shifts in the 

home range estimates observed. Parameter estimation is also susceptible to 

thinned data, as evidenced by the substantial change in the D parameter 

estimates for the different scenarios of Figure 18. Further thinning of the data, by 

removing five of every six original days of observations, expectantly inflates the 

potential for a shifted home range (Figure 19).

Tag 37008 - Observations Thinned to 
Every Other Day

2D Kernel Density • no obs removed: D = 409 nm"2/day 
”  2D Kernel Density ■ every other obs removed: D *  437 nm"2/day 

“  Most Probable Track utith every other obs removed
  20 Kernel Density - every other obs removed, shifted 1: D = 12D0 nm'S/day
—  Most Probable Track with every other obs removed, shifted 1

OID ~

O _r̂

in
CO

-80 -70 -60 -50

Longitude

Figure 18 -  95% Home range estimates for tuna tag 
37008. Every other observation was omitted, to see 
the effect of lower reporting rate.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Tag 37008 ■ 5 of Every 6th Observations Removed
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9 Raw Observations - No Observations Removed
~ ~  85% Home Range - No Observations Removed

Raw Observations A fter 5 of Every 6 Original Observations Removed 
  85% Home Range After 5 of Every 6 Original Observations Removed

-80 -70 -60 -50

Longitude
Figure 19 -  95% home range estimate comparison between when all 
observations are used (black dashed line) and when 5 of every 6 
observations are removed (black solid line).

4.2.5 Predicting Multiple Times a Dav

Increasing the frequency of geolocation prediction did affect the home 

range estimate. The 95% home range estimated from two predictions a day 

(Figure 20) is slightly smaller than the home range estimate based on the same 

data with 6 geolocation predictions made a day (Figure 21).

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



La
tit

ud
e

Tag 37008 - 2 Geolocation Predication a Day

kfud - 1 Predicted Geolocations a Day, Ivtost Probable Track 
kfud ■ 2 Predicted Geolocations a Gay, Mast Probable Track 
95% Home Range ■ 1 Predicted Geolocation a Day 
95% Home Range - 2 Predicted Geolocations a Day

LO _’ST

-80 -70 60 50

Longitude

Figure 20 -  Home range estimate comparison between when the 
tuna’s position is predicted 2 times a day (solid black line) rather than 
once a day (dashed black line).
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Tag 37008 - 6 Geolocation Predication a Day

kfud ■ 1 Predicted Geolocations a Day, Mast Probable Track 
kfud ■ 6 Predicted Geolocations a Day, Wtost Probable Track 

- -  951 Home Range ■ 1 Predicted Geolocation a Day 
951 Home Range ■ 6 Predicted Geolocations a Day

O _

-80 -70 -60 -50

Longitude
Figure 21 - Home range estimate comparison between when the 
tuna’s position is predicted 6 times a day (solid black line) rather than 
once a day (dashed black line).

Making more predictions of geolocation per day, decreasing the 

observation to prediction rate, appears to allow the random walk more time to 

expand the estimated home range. For data that is rarified to 17% of its original 

number of observations, predicting geolocations four times a day does not 

appear to result in any appreciable change in the estimate (Figure 22).
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Tag 37008 - 5 of Every 6th Observations Removed 
Four Predictions a Day

95% Home Range - No Observations Removed
95% Home Range - 5 o f Every 0 Dobservation Removed

—  Most Probable Track - 5 of Every 8 Observations Removed
— 05% Home Range - 5 of Every 8 Observations Removed - 4  Pred/Day
  Most Probable Track - 5 o f 8 Removed, 4 Predictions a Day
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Figure 22 -  95% Home range estimates for thinned data when using 
daily and quarter-daily predictions.

4.2.6 Fixing D

To assess the affect of how this technique might apply if it were being 

applied to animals of different capacity for travel, D was fixed at a high and a low 

value, relative to the most likely D estimated from kfud. As expected, if the model 

is given an absolute prior for D that is smaller than what it found to be most likely
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given the observations, the resulting home range was smaller (Figure 23). 

Likewise, a larger D resulted in a larger home range.

Tag 37008 - Effect of Changing D

o 2D Kernel Density ■ D Unconstrained: D = 409 nm"2/day 
2D Kernel Density - D Set at 50 nm"2/day 
Most Probable Path - □ Set at 60 nm"2/day 
2D Kernel Density - D Set at 1D0D nm ^/day 
lubst Probable Path ■ D Set at 1000 nm 'I/day
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Longitude

Figure 23 -  Effect of D upon 95% home range estimates. ‘D 
unconstrained’ indicates that for that track the model estimated the D 
most appropriate for the data. D was arbitrarily set for the other two 
scenarios.
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4.3 Application to Bluefin Tuna Data -  Tag 37011

4.3.1 Prediction Every Dav

The observed locations of Tag 37011 provide an opportunity to observe 

kfucfs performance on a track that is relatively centralized, meaning that while 

tagged, the tuna did not travel great distances between areas of high use. As 

with Tag 37008, producing geolocation estimates everyday for Tag 37011 

through the kfud code does alter the overall path from the results of kftrack 

(Figure 24). However, because the observed locations are all within a relatively 

tight cluster, there are no gaps between hubs of observations. This results in 

home range estimates that are similar whether the 2D KernelUD smoothing 

function was applied to the most probable track of kfud or kftrack (Figure 25).

It is noticeable that again with Tag 37011, as with the previously analyzed 

track, the specific technique for binning and smoothing the home range based on 

the MCMC locations does not greatly influence the resulting home range 

estimate. Figure 27 shows that each of the methods used showed home range 

estimates that are roughly the same.
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Tag 37011 - Most Probable Track 
Predictions Everyday vx. kftrack
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Figure 24 -  Tag 37011 kftrack (grey line) vs kfud (black line) predicted 
most probable tracks.
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Tag 37011 - 95% Home Range Estimates

kfud 20 Kamel Density Hama Range Estimate 
kfud Mast Probable Trask

  kftrack 20 Kernel Density Home Range Estimate
kftrack Mast Pnabable Track
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Figure 25 -  95% Home range estimates based on MCMC runs of the 
most probable track positions of kftrack and kfud.
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Tag 37011 - kfud 05% Home Range Estimates
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“ “  kernel UD Home Range 
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Figure 26 -  95% home range estimates from the three R functions. 
Note that all represent very similar home ranges.

4.3.2 Thinned Data

Removing every other observation from the track of Tag 37011 (Figure 27) 

produced a change to the home range compared to the estimates from a 

complete data set, similar to what was seen for the previously analyzed track 

(Tag 37008, Figure 18). For this track, the home ranges estimated in both
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scenarios were altered in slightly different ways, extending the home range in 

different directions.

Tag 37011 ■ Observations Thinned to 
Every Other Day

. . .  20 Kamel Density - no obs removed: □ = 315 nm*2/day
2D Kernel Density - every other obs removed: D = 288 nm"2/day

— Mtost Probable Track with every other obs removed
  2D Kernel Density - every other obs removed, shifted 1: □ = 175 nm"2/day
—  Most Probable Track with every other obs removed, shifted 1
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Longitude
Figure 27 -  95% Home range estimates when every day’s observed 
location is removed. “Shifted 1” refers to using the observations for 
the days that the other scenario had removed, thus shifting the 
observed days by one.
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4.3.3 Predicting Multiple Times a Dav

Estimating the location multiple times did have an effect on the estimated 

home range for Tag 37011 (Figure 28). As more interpolation each day was done 

(2 times a day vs. 6 times a day), the estimated home range increased in size. 

This may have something to do with the random walk having more occasions 

with which to randomly wander away from the most probable path.

Tag 37011 - Multiple Geolocation Predications a Day

05% Home Range - 1 Predicted Geolocation a Day 
Most Probable Track With 1 Predicted Geolcation a Gay
05% Home Range - 2 Predicted Geolocations a Day 
lutost Probable Track - 2 Predicted Geolocations a Day 
§51 Home Range - 6 Predicted Geolocations a Day 
Most Probable Track ■ S Predicted Geolocations a Day
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Figure 28 -  95% Home range estimates for Tag 37011 with multiple 
positions estimated each dav.
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Tag 37011 - Every Other Observation Removed 
Four Predictions a Day

95% Home Range - No Observations Removed
95% Home Range - Every Other Observation Removed
Mast Probable Track - Every Other Observation Removed
95% Home Range - Every Dther Observation Removed - 4  Pred/Day
Mast Probable Track ■ Every Other Removed, 4 Predictions a Day
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Figure 29 -  95% Home range estimates for Tag 37011 with the data 
thinned and geolocation estimates made four times a day.

4.3.4 Fixing D

Setting D at less than a sixth of what was estimated to be appropriate for 

D shrunk the home range estimate substantially, as is what would be expected 

(Figure 30). Like Tag 37008, a larger Ddid indeed translate into a larger home 

range. With an enlarging D, the model assumes the tuna can go farther than it
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estimated, and therefore the tuna can cover more area in a day. This ends up 

enlarging the home range estimate. With a small D, the model conditions more 

on D than the observations, operating under the assumption that the animal is so 

slow it would not be able to reach the next day’s observation as the observed 

geolocations were reported. This in effect shrinks the distance the animal can 

travel, and in turn shrinks the home range estimate. With a large D, the random 

walk is allowed to go a greater distance than it otherwise may have, but is not 

conditioned on doing so. Therefore the home range is only slightly larger than it 

is when D is not declared to be a certain value.

Tag 37011 - Effect of Changing D

2D Kernel Density - D Unconstrained: D = 315 nm ^/d a y  
2D Kernel Density - D Set at 50 nm^AJay 
Most Probable Path • D Set at 50 nm*2/day 
2D Kernel Density • D Set at 1000 nm*2/day 
Most Probable Path - O Set at 1000 nm'S/day
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Figure 30 -  95% Home range estimates for Tag 37011 when D 
is constrained to relatively large and small values.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.4 Application to a Track with Low Measurement Error -  Tag 3817

4.4.1 Prediction Every Dav

The Doppler derived geolocations (Tag 3817), with data successfully 

collected every day, have very low measurement error. This provides a relatively 

precise track on which to perform the developed UD analysis. The mean squared 

errors in estimating longitude and latitude were estimated to be 1.72 X 10'5 and 

6.87 X 10'6 degrees, respectively. For comparison, the estimated mean squared 

errors of longitude and latitude of Tag 37008 were 1.14 and 2.22 degrees, 

respectively. This low amount of uncertainty in the positions leads to a relatively 

small home range (Figure 31).

4.4.2 Thinned Data

Due to the precision of the positions of Tag 3817, and the relatively 

straight path it traveled during its observation, removing alternate portions of the 

data did not appear to substantially change the home range estimates (Figure 

32).
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Tag 3817 ■ Kfud 95% Home Range Estimates
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Figure 31 -  95% home range estimates of Tag 3817 after releasing from a 
tuna. Locations were observed via Doppler positioning, and have very 
little error.
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Tag 3817 - Observations Thinned to 
Every Other Day

2D Kernel Density - no obs removed: □ = 241 nm"2/day 
2D Kernel Density - every other obs removed: □ = 270 nm"2/day 

Most Probable Track with every other obs removed 
2D Kernel Density - every other obs removed, shitted 1: D = 215 nm"2/day 

Most Probable Track with every other obs removed, shifted 1
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Figure 32 -  95% home range estimates for Tag 3817 with every other 
observation omitted.

4.4.3 Fixing D

With the straight path and accurate measurements of Tag 3817, changing 

the D parameter also did not cause a great deal of change in the resulting home 

range estimates (Figure 33). However, some differences can be noted. The 

smaller D doesn’t allow the tag to be modeled as traveling as far as the 

observations indicated. The associated home range is thus forced to shorten
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longitudinally. This shows how prior knowledge about the mobility capabilities of 

the ‘animal’ can be used to influence the estimated home range.

Tag 3817 - Effect of Changing D

2D Kamel Density - no obs removed: D = 241 nm"2/day
  2D Kamel Density - D set at 5D nm"2/day
— Most Probable Track with D Set at 60 nm“2Jday
  2D Kamel Density - D Set at 500 nm*2/day

Mast Probable Track with D Set at 5DD nm"2/day
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Figure 33 -  95% home range estimates with changing the D parameter.

4.5 Utilization Distribution

It should be remembered that the 95% home range estimates used in 

these comparisons are only a portion of the power provided by a method that 

produces a UD. The contour plot of the UD for Tag 37008 and 37011 (Figure 34
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and Figure 35) clearly indicates areas that the tuna used frequently, and the 

floating Tag 3817 (Figure 36) shows increased precision in the estimate due to 

the increased precision in observations. Other areas that were likely only used 

for travel by the tuna can be noted in the less restricted contours of the UD such 

as the 95% and 99% contours, but are omitted from the more exclusive features 

of the plot. This detail of how the tuna uses its home range is necessary to 

insightfully correlate probabilistic space use to environmental factors.
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Tag 37008 - Utilization Distribution
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Figure 34 -  Utilization distribution (UD) of tuna 37008. Each contour label 
corresponds to the percent of the MCMC positions that reside inside the 
contour.
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Tag 37011 - Utilization Distribution
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Figure 35 -  Utilization distribution (UD) of tuna 37011. Each contour label 
corresponds to the percent of the MCMC positions that reside inside the 
contour.
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Tag 3817 - Utilization Distribution
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Figure 36 -  Utilization distribution (UD) of tuna 3817. Each contour label 
corresponds to the percent of the MCMC positions that reside inside the 
contour.
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CHAPTER 5

DISCUSSION

The developed UD estimator provides a marked advantage over current 

methods. With other methods, if there are spatial gaps in the observations, there 

can be gaps in the UD estimate (Figure 13). Gaps in the UD can be misleading, 

as they give the impression that the areas of these gaps, through which the 

animal must have traveled at some point, are unimportant habitat for the animal. 

The importance of corridors through which animals travel from one area of 

localized activity to another is well understood (Eggleston and Dahlgren 2001, 

Mumby 2006, Rouget etal. 2006) and should not be overlooked when analyzing 

habitat use. Furthermore, estimations of home ranges as those represented in 

Figure 13 can lead to the assumption that the area between the defined home 

ranges was only omitted from the estimate because the tuna traveled through it 

quickly, utilizing the area sparsely in both space and time. Yet when the large 

temporal gaps exist between subsequent observations such as those for Tag 

37008 (Figure 7), it is not adequate to view the gap in observations as indicative 

of a gap in actual use. The tuna may have traveled between the two areas with 

dense observations directly and rapidly, or it may have meandered using much of 

the space not included in the home range estimate. Also the temporal sequence 

of the observations is an important consideration. If a series of sequential 

observations alternate between the hubs of observations, then it can be assumed
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that the gap must have been traversed more frequently than if the gap was 

traversed only once. The adjustments made to kftrackXo create kfud, which 

made estimates of geolocation for all days regardless of the presence of an 

observation, allow for the potential use of the connecting areas by the tuna to be 

included in the home range estimate (Figure 15).

5.1 Effects of Observation Frequency

The effect of missing data is made apparent in Figure 19 where a sub­

sampling of one of every six observations originally made, resulted in a home 

range that was both phased southward and is less precise. Another example of 

the effect missing observations can have is shown in Figure 18. In this case, 

every other observation was ignored. Note that the home ranges estimated are 

out of phase, but the direction of the phase shift depends on if every other 

observation was omitted beginning with the 2nd or the 3rd observation. The 

missing values can also substantially alter estimates of individual parameters.

The parameter D in this case was dramatically affected, influencing the daily 

movement rates we would have derived from the analysis depending on which 

set of observations were actually made. When observations that were not 

ignored happened to be close to each other (average distance 9.83 nm/day), the 

daily displacement of the tuna was estimated to be low, and in turn, D was small 

(437 nm2/day), leading to a more confined home range estimate. When the 

retained observations were far apart given the amount of time between them 

(average distance 21.03 nm/day), D became larger (1206 nm2/day) and the
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home range was slightly broader. Generally, if a UD estimate is inflated, perhaps 

due to uncertainty in observed geolocations, the resulting estimate may not be 

precise, but it would likely be less accurate if the data was rarified. Therefore, it 

seems tracking an animal via frequent observations is of great importance when 

estimating a UD.

5.2 Increasing Geolocation Prediction Rate

For this study, an effect on the most probable track and the UD was 

observed for a prediction frequency of both 2 and 6 times a day. The 95% home 

range was not affected drastically by increased frequency of prediction beyond 

once a day (Figure 20 and Figure 21). The home range did expand slightly upon 

each increase of frequency beyond once a day. It is not clear if increasing 

prediction frequency to a time scale more minute than the observations is of 

benefit. With each interpolated prediction, the model has greater opportunity for 

the model to wander. This thesis employed an unbiased random walk in kfud as 

the theoretical movement model of the tuna. If a biased random walk was instead 

used, it might mitigate this increased home range size so increasing interpolation 

frequency will not continually expand the home range estimate.

5.3 Effect of No Measurement Error

Many forms of tracking an animal are currently available for a variety of 

habitats, each with its own temporal observation structure, and with different
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degrees of measurement error. Indeed, some tags such as Argos or GPS have 

very little measurement error relative to PSAT tags that use light-based 

geolocation (Galuardi 2006). To simulate how the home range estimation method 

behaves operating on geolocations with very little measurement error, the kfud 

approach was applied to Argos positions. Lower measurement error substantially 

reduced the uncertainty in the home range (Figure 31), and indeed the effects of 

rarefied data (Figure 32). When observations are known with little error, removing 

portions of the original data does affect the UD estimates, but the magnitude of 

the shifts seen for Tags 37008 and 37011 were not seen in 3817. It may then be 

suggested that while frequent observations is beneficial to this UD estimation 

technique, directionally biased estimates can generally be avoided if using 

positions known with very little error. The priority, therefore, should be to gather 

position data in as accurately a way as possible, even if for some reason it 

requires a sacrifice in observation frequency. With accurate observations, the 

Kalman filter based UD estimate may be robust to sample size and frequency.

5.4 Model Performance

The kfud model used an unbiased random walk to model movement, and 

as mentioned earlier, it would have been preferable to have used a biased 

random walk. Unfortunately, unless the biases of the movement models 

(parameters u and v) are set to zero, the model proves unstable during MCMC 

analysis, driving D exponentially larger with each subsequent run of the MCMC. 

The -m cdiag  option was also used in the MCMC command of ADMB, without
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which D also would inflate during the MCMC far beyond the value estimated for 

the most probable track. This command option produces a diagonal covariance 

matrix, removing any covariance between the parameters. With these details 

addressed, the MCMC behaved as expected with parameters not drifting during 

the sequence of runs.
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CHAPTER 6

CONCLUSIONS AND THE NEXT STEP

Estimating an animal’s UD through application of the Kalman filter and 

MCMC is successful in producing realistic estimates. The estimates are sensitive 

to the serial correlation of the observations, the daily migratory abilities of the 

species being monitored, and the uncertainty of the geolocation estimates. 

However, the large amount of uncertainty associated with light-based geolocation 

demands a frequent observation structure, with very few missing days of 

observations. As data becomes more rarefied, the likelihood of imprecise and 

inaccurate UD estimates increases. Geolocations with greater accuracy 

diminishes the UD estimator’s sensitivity to rarefied data.

One of the problems encountered from the inaccurate measurements is 

that the geolocation and associated UD are often estimated to be on land. To 

make the UD estimate truly realistic, it would need to not include land in its 

estimate for tuna, or any other strictly marine or aquatic animal. The UD estimate 

presented here does not resolve this issue, however one promising method has 

been developed to change the filter to exclude the possibility of the tuna traveling 

on land. Work underway at the UNH Center for Large Pelagics and by John 

Sibert’s Pelagic Fisheries Research Program at the University of Hawaii at 

Manoa incorporates the extra data gathered by the PSATs such as temperature
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and dive depth to improve the accuracy of the tag’s locations and tracks (Royer 

etal. 2005, Galuardi 2006, Nielsen eta l. 2006, Royer eta l. 2006). This can help 

restrict tag location estimates to the water. The tags record temperature on an 

hourly basis. This temperature data can then be used to correct for the inherently 

inflated latitudinal geolocation errors through comparison with sea surface 

temperatures (SST) gradients in the area. This approach would exclude land 

from being estimated as a possible area of use because there are no SSTs on 

land to match the temperature read by the tag.

Many features of the environment that may restrict movement of an animal 

are not so readily identified. Accurate and frequent observations are the best way 

to restrict home range estimates from extending into areas that are not potential 

habitats for the animal. For tuna, methods such as using SST or bathymetry to 

improve accuracy of the geolocation estimates and to block the model from going 

on land, will lead to a more realistic and informative utilization distribution 

estimate.

This UD estimation approach can be modified to fit a large number of 

situations. The code developed for this study, kfud, can be applied to any animal 

for which a time-series of locations has been observed. Kfud produces UD 

estimates that are more connected, informative, and unique to the animal’s 

capabilities. Further modification of the Kalman filter can be in the application of a 

third dimension, as has been done with SST (Royer et al. 2005, Galuardi 2006, 

Nielsen eta l. 2006, Royer etal. 2006), or into a more realistic movement model 

such as the biased random walk. The filter itself could be altered as well. This
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code utilizes the Extended Kalman Filter. However, there are several other 

versions of the Kalman filter that have been developed such as the Ensemble 

(Evensen 2003), Unscented (Julier and Uhlmann 1997), and Particle (Bolviken 

and Storvik 2001) that can, and have been applied to correct geolocation 

estimates (Royer etal. 2006). The filers may aid in the further reduction of 

geolocation error, and thus cause an increase in the robust quality of a resulting 

UD. Finally, with the more realistic nature of the UD estimation developed in this 

thesis, more accurate and illuminating correlations between utilization 

distributions and the environmental factors influencing the animal’s movements 

can be pursued.
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APPENDIX A -  KFUD CODE

// KFtrack program by John Sibert <jsibert@soest.hawaii.edu> (2001)
// Minor modifications by Anders Nielsen <anielsen@dina.kvl.dk> (2002+3)
// Modifications by Daniel Badger <daniel.badger@unh.edu> (2006) to produce 
geolocation estimates everyday
//
// This version includes:
//
// Extended Kalman filter 
// Smoothing
// minor modification of likelihood function
// Known recapture position option (but weight is not used anymore)
// first need not to be known
// error estimates on most probable track
// commands to extrand likelihood profiles of the parameters

GLOBALS_SECTION 
#include <fstream.h>
#include <math.h>
#include <fvar.hpp>
#include <azimuth.cpp>
#include <adstring.hpp>
#include "yrmonday.h"
#include "trace.h"
#include <strstream>
#include <iostream> 
using std::ostrstream;
#undef REPORT
#define REPORT(object) report«  #object" = " «  ob ject«  endl; 
#define MREPORT(object) report «  # o b je c t \n "  «  object «  endl;

//function prototypes 
// adstring make_banner();
// double azimuth(const double& y, const double& x);
// dvariable azimuth(const dvariable& y, const dvariable& x);
// dvariable gc_dist(const dvector& y1, const dvar_vector y2);
// int previous_solstice(const int yO, const int mO, const int dO);

// global variables
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const double mpg = 60.0; // Nautical miles per degree 
const double rmpg = 1.0/mpg; 
const double mpi180 = M_PI/180.0; 
const double two_pi = 2.0*M_PI;
const double epss = 1e-8 ; //small number to avoid divide by 0
ofstream clogf("kftrack.log");
int u_phase = - 1;
int v_phase = -1;
int D_phase = -1;
int bx_phase = -1;
int by_phase = -1;
int vx_phase = -1;
int vy_phase = -1;
int cos_phase = -1;
int aO_phase = -1;
int bOjDhase = -1;
int dev_phase = -1;
int t;

adstring copyright("\n (c) 2001 John Sibert\n"\
" Pelagic Fisheries Research Program, University of Hawaii\n");

DATA_SECTION 
in it jn t npoint;
HTRACE(npoint) 
in it jn t N; 
in it jn t m; 
in it jn t col; 
in it jn t dal;
in it jn t no_data_days; 
in it jn t step; 
in it jn t half_step; 
in it jn t release_point;
! !TRACE(release_point) 
in it jn t recap_point;
! !TRACE(recap_point)
!!TTRACE(N,m) 
in it jn t u_active; 
in it jn t v_active; 
in it jn t D_active; 
in it jn t bx_active; 
in it jn t by_active; 
in it jn t vx_active; 
in it jn t vy_active; 
in it jn t aO_active; 
in it jn t bO_active;
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in it jn t D_wt_phase; 
in it jn t rnwalk_wt_phase;

// Read in initial values for the following parameters 
init_number init_u; // longitudinal bias 
init_number init_v; // latidunial bias
init_number init_D;// rate at which the uncertainty of the position increases over 

time
init_number init_bx; // inherent longitudinal bias of the tag, in degrees
init_number init_by; // inherent latitudinal bias of the tag, in degrees
init_number init_vx; // mean squared error in estimating longitude
init_number init_vy; // mean squared error in estimating latitude
init_number init_aO; // affects the variability of latitude measurement

// error throughout year 
init_number init_bO; // number of days prior to the equinox 
init_number D_prior_variance; 
init_number init_D_wt; 
init_number init_rnwalk_wt; 
init_number avg jong ; 
init_number a vg ja t;

in it jn t cos_errors; 
in it jn t dev_errors; 
init_number vy_dev_penalty_wt;

number point; 
number length; 
number tim e jength;
!! length = (npoint)*step-half_step+no_data_days*step;
I! tim e jength  = (npoint)*step-half_step+no_data_days*step; 
number interp;
!! interp = length-npoint; 
number step_2 ;
!! step_2 = step;

int nphase; 
matrix Y(1, length, 1,N) 
matrix y_deg(1 .length,1 ,N) 
matrix P0(1,m,1,m); 
vector v y j (1 .length); 
vector time(1 .length);

init_matrix dat_mat(1 ,npoint+no_data_days,1 ,col); 
!! PO.initialize(); 
number s ta rtjong ;
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LOCAL_CALCS 
nphase = -1;
if (u_active || v_active || D_active)
{

nphase ++; 
if (u_active) 

u_phase = nphase; 
if (v_active) 
v_phase = nphase; 

if (D_active)
D_phase = nphase;

}
if (vx_active || vy_active || bx_active || by_active) 
{

nphase ++; 
if (bx_active) 

bxjDhase = nphase; 
if (by_active) 

by_phase = nphase; 
if (vx_active) 
vx_phase = nphase; 

if (vy_active) 
vy_phase = nphase;

}
if (cos_errors)
{

nphase ++; 
cos_phase = nphase; 
if(aO_active)aO_phase=cos_phase; 
if(bO_active)bO_phase=cos_phase;

}
if (dev_errors)
{

nphase ++; 
dev_phase = nphase;

}
TTRACE(u_active,u_phase)
TTRACE(v_active,v_phase)
TTRACE(D_active,D_phase)
TTRACE(bx_active,bx_phase)
TTRACE(by_active,by_phase)
TTRACE(vx_active,vx_phase)
TTRACE(vy_active,vy_phase)
TTRACE(cos_errors,cos_phase)
TTRACE(dev_errors,dev_phase)
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PARAMETER_SECTION 
matrix a(1 .length, 1,m); 
matrix a1(1,length, 1,m); 
matrix aSmooth(1,length,1 ,m); 
matrix T(1,m,1,m) 
matrix TT(1,m,1,m) 
vector d(1,N) 
matrix c(1, length, 1,m) 
matrix Q(1,m,1,m) 
matrix H(1,N,1,N) 
matrix v(1, length, 1,N);
3darray P(1,length,1 ,m,1 ,m);
3darray P1 (1 .length, 1 ,m,1 ,m);
3darray PSmooth(1 .length,1 ,m,1 ,m);
3darray PSmoothTrans(1,length,1 ,m,1 ,m);
3darray PStar(1 .length,1 ,m,1 ,m); 
matrix ySmooth(1, length, 1 ,N); 
vector next_y(1,N); 
vector blk(1 .length); 
vector observed(1 .length); 
init_vector rnpar_lat(1 .interp); 
init_vector rnpar_long(1 .interp); 
matrix rnwalk(1,length, 1 ,m);

init_bounded_iiumber uu(-50.0,50.0,u_phase);
init_bounded_numbervv(-50.0,50.0,v_phase);
init_bounded_number D(0.0,5000.0,D_phase);
init_bounded_number vx(0.0,50.0,vx_phase);
init_bounded_number vy(0.0,50.0,vy_phase);
init_bounded_number bx(-50.0,50.0,bx_phase);
init_bounded_number by(-50.0,50.0,by_phase);
init_bounded_number a0(0.0,50.0,a0_phase);
init_bounded_number b0(-80.0,80.0,b0_phase);
init_bounded_vectorvy_dev(2,length,-500.0,500.0,devjDhase);
init_bounded_number D_wt(0.00,1.00,D_wt_phase);
init_bounded_number rnwalk_wt(0 .00,1.00,rnwalk_wt_phase);
matrix Z(1,N,1,m)
objective_function_value f;
matrix expanded(1 .length,1 ,col+1);
number kalm anjike;
number recap_err;
number gc_recap_err;
number e1;
number e2 ;
number e3;
number e4;
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number dt;
likeprof_number u_prof; 
likeprof_number v_prof; 
likeprof_number D_prof; 
likeprof_number vx_prof; 
likeprof_number vy_prof; 
likeprof_number bx_prof; 
likeprof_number by_prof; 
likeprof_number aO_prof; 
likeprof_number bO_prof; 
likeprof_number last Jong; 
likeprof_number la s tja t; 
likeprof_number te s tja t; 
likeprof_number te s tjo n ;

sdreport_number sduu; 
sdreport_number sdvv; 
sdreport_number sdD; 
sdreport_number sdbx; 
sdreport_number sdby; 
sdreport_number sdvx; 
sdreport_number sdvy; 
sdreport_number vxy; 
sdreport_number hdg; 
sdreport_number spd;
LOCALCALCS
cou t«  "D_phase = "  «  D_phase «  endl; 
cou t« "step_2 = " «  step_2 «  endl; 
uu = init_u; 
vv = init_v;
D = init_D; 
bx = init_bx; 
by = init_by; 
vx = init_vx; 
vy = init_vy;
D_wt = init_D_wt; 
rnwalk_wt = init_rnwalk_wt; 
if (D < epss)

D = epss;
TTRACE(init_D,D); 
if (vx < epss) 

vx = epss;
TTRACE(init_vx,vx) 
if (vy < epss) 

vy = epss;
TTRACE(init_vy,vy)
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if (cos_phase < 0){ 
aO = epss; 
bO = O.O;

}else{ 
aO = init_aO; 
bO = init_bO;

}
d.initialize();
Z.initialize();
T.initialize();
T(1 >1)=1; T(2 ,2)=1;
TT=trans(T);

dvector yLong = column(dat_mat,4);
TTRACE(min(yLong),max(yLong))
s ta rtjong  = min(yLong)+0.5*(max(yLong)-min(yLong));
TRACE(startJong)
c log f« "\nInput data:" «  endl;
c log f« "index date sday long lat x y"

«  endl;
cout «  "length = " «  length «  endl;
cout «  "tim ejength = "  « tim e jength  «  endl;
if(step == 1){
for(int i = 1; i <= length; i++){ 

time(i) = 12;
}

}else{ 
time(1) = 12;
for (int i = 2 ; i <= length; i++){ 

if(time(i-1 )+24/step < 24){ 
time(i) = time(i-1) + 24/step;

}else{
time(i) = -24 + time(i-1) + 24/step;

}

}
}
cout «  "interp = " «  interp «  endl; 
cout «  "time" « time «  endl;

// to create a matrix that has room for mult values per day 
for (int w = 1; w <= col; w++) expanded(1 ,w) = dat_mat(1 ,w); 
expanded(1 ,col+1) = time(1); 
for (int i = 2 ; i <= tim ejength; i++){ 

expanded(i,col+1) = time(i);
if((i-1 )%step==0){ //if step is divisible by i, then we do the

following
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for(int j= 1; j<=col; j++){ 
expanded(i,j)=dat_mat((i-1 )/step+1 j);

}
}else{ 

if(time(i) > 12){
expanded(i,1) = expanded(i-fmod((i-1),step),1); 
expanded(i,2) = expanded(i-fmod((i-1),step),2); 
expanded(i,3) = expanded(i-fmod((i-1),step),3);

}
}

}
for (int i = 2 ; i <= tim ejength; i++){ 

if(time(i) < 12){
expanded(i,1) = expanded(i+step-fmod((i-1),step),1); 
expanded(i,2) = expanded(i+step-fmod((i-1),step),2); 
expanded(i,3) = expanded(i+step-fmod((i-1),step),3);

}
if(expanded(i,4)==0){ //T o  allow unobserved day's initial position values to 

be set
// to appropriate scale 

expanded(i,4) = avg jong ; 
expanded(i,5) = a vg ja t; 
expanded(i,8) = expanded(i-1,8)+(1/step_2);

}
}

for(int i =2;i<=timeJength;i++){ 
expanded(i,6) = expanded(i-1,6)+1;

}

blk(2) = 1/step;
for (int t = step+1; t <= length; t++){ 

if(value(expanded(t-step,7)) == 0){
blk(t) = blk(t-1) + 1; // allows the number of days since an

// observation to increase based on a non-observation
day 

}else{ 
blk(t) = 1;

}
}

for (int g = 1; g <= length; g++){ // tells me the point at which it is midway
// between observations on a given day and

month
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if((value(expanded(g,9)) == 0)&&(value(expanded(g,1)) == 
9)&&(value(expanded(g,2)) == 2)){ 

point = g;
}

}

cou t«  "dat_mat =" «  dat_m at«  endl; 
cout «  "expanded = " «  expanded «  endl;

for (int i = 1; i <= length; i++)
{

// set up estimated geographic posision from tag data 
y_deg(i,1) = value(expanded(i,4)); 
y_deg(i,2) = value(expanded(i,5));

// shift origin longitude
Y(i,1) = y_deg(i,1) - start_long*value(expanded(i,7));
Y(i,2) = y_deg(i,2);

dvar_vector Yi=zlnv(Y(i)); 
clogf «  setw(5) «  expanded(i,8)

«  setw(10) «  Y(i,1) «  setw(10) «  Y(i,2)
«  setw(10) «  Yi(1) «  setw(10) «  Yi(2)
«  endl;

}
clogf «  "\nFinished LOCAL_CALCS in PARAMETER_SECTION.\n" «  endl; 
cout «  " Finished LOCAL_CALCS in PARAMETER_SECTION.\n" «  endl;

PROCEDURE_SECTION 
setup_d(); 
setup_H(); 
int counter = 1; 
for(int h = 1; h<=length;h++){ 

if(expanded(h,7)==0){ 
rnwalk(h,1 )=rnpar_long(counter); 
rnwalk(h,2)=rnpar_lat(counter); 
counter+=1;

}
if(expanded(h,7)==1){ 

rnwalk(h,1)=0 ; 
rnwalk(h,2)=0 ;

}
}
f+=kalman_filter();
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vxy = sqrt(vx*vx+vy*vy);
sduu = uu;
sdvv = vv;
sdD = D;
sdbx = bx;
sdby = by;
sdvx = vx;
sdvy = vy;
spd = sqrt(uu*uu+vv*vv+epss); 
hdg = azimuth(vv,uu);

FUNCTION setup_d 
d(1) = bx; 
d(2) = by;

FUNCTION setup_Q 
Q.initialize(); 
for (int i=1 ;i<=m;i++)

Q(i,i) = 2.0*D*dt;

FUNCTION setup_H 
H.initialize();
H(1,1) = vx*vx;
H(2,2) = vy*vy;

FUNCTION dvar_vector varA(dvar_matrix Y) 
dvar_vector A1 (1 .length), A2(1 .length); 
dvar_vector tmp(1,2); 
for(int i=1; i<=length; ++i){ 

tmp=zlnv(Y(i));
A1(i)=tmp(1); A2(i)=tmp(2);

}
tmp(1)=pow(std_dev(A1),2); tmp(2)=pow(std_dev(A2),2); 
return(tmp);

FUNCTION dvar_vector z(dvar_vector alpha) 
dvar_vector tmp(1 ,N);
tmp(1 )=alpha(1 )/(mpg*cos(alpha(2)/mpg*mpi180));
tmp(2)=alpha(2)/mpg;
return(tmp);

FUNCTION dvar_vector zlnv(dvar_vector y) 
dvar_vector tmp(1 ,m); 
tmp(1 )=y(1 )*mpg*cos(y(2)*mpi180); 
tmp(2)=y(2)*mpg; 
return(tmp);
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FUNCTION dva rjna trix  ZHatFun(dvar_vector a) 
dvar_matrix tmp(1 ,N,1 ,N); 
dvariable ex1=mpg*cos(a(2)/mpg*mpi180); 
tmp(1,1)=1.0/ex1;
tmp(1,2)=a(1 )*sin(a(2)/mpg*mpi180)/(ex1 *ex1 )*mpi180;
tmp(2 ,1)=0 ;
tmp(2 ,2)=1.0/mpg;
return(tmp);

FUNCTION dvariable kalman_filter(void) 
dvar3_array F(1 .length, ;
dvar3_array Finv(1,length, 1 ,N,1 ,N); 
dvar_matrix Ptemp(1 ,m,1 ,m);

a(1,1) = mpg*(Y(1,1 ))*cos(mpi180*Y(1,2)); 
a(1,2) = mpg*Y(1,2);

if(!release_point){
dvar_vector tmp(1,2); tmp=varA(Y);
P0(1,1 )=value(tmp(1)); P0(2 ,2)=value(tmp(2));

}

P(1)=P0; 
rnwalk(1,1)=0 ; 
rnwalk(1,2)=0 ;
// This is the Kalman filter recursion. The objects tmp1 
// and tmp2 hold common calculations to optimize a bit 
for (t=2 ;t<=length;t++)
{

dt = 1/static_cast<double>(step);

setup_Q();
c(t,1)=uu*dt;
c(t,2)=vv*dt;

a1 (t)=T*a(t-1)+c(t);
P1 (t)=T*P(t-1)*TT+Q; 
if(expanded(t,7)==0){

P1(t,1,1)=P1(t,1,1)+rnwalk(t,1);
P1 (t,2,2)=P1 (t,2 ,2)+rnwalk(t,2);

}

Z=ZHatFun(a1(t));
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if((recap_point)&&(t==length)){
next_y=z(a1(t));

}else{
next_y=z(a1 (t))+d*expanded(t,7); 11 Makes'd' be zero in the matrixfor any

time step
// where there was not an observation

}
v(t)=Y(t)-next_y*expanded(t,7); 
dvar_matrix tmp1 =P1 (t)*trans(Z);

if (cos_errors){
int sdx = (int)fmod(value(expanded(t,8)),365.25); 
int bdx = (int)(sdx/182.625) + 1;
e1 = cos(two_pi*(pow(-1.0,bdx)*b0+value(expanded(t,8)))/365.25); 
e3 = vy*1.0/sqrt(e1*e1+a0);
H(2,2) = e3*e3;

}
if (active(vy_dev))
{

e4 = vy*(exp(vy_dev(t)));
H(2,2) = e4*e4;

}
if((recap_point)&&(t==length)){

H(1,1 )=0; H(1,2)=0; H(2,1 )=0; H(2,2)=0;
}
vy_t(t) = sqrt(value(H(2,2)));
F(t)=Z*tmp1+H;
Finv(t)=inv(F(t));
dvar_matrix tmp2= tmp1*Finv(t);
P(t)=P1 (t)-tmp2*Z*P1 (t)*expanded(t,7);
a(t)=a1 (t)+tmp2*v(t)*expanded(t,7)+rnwalk(t)*(-1 *(expanded(t,7)-1));

}
int sgn=0 ;
ka lm anjike = (npoint-1)*log(two_pi);

ujDrof = uu; 
v_prof = vv;
D_prof = D; 
vx_prof = vx; 
vy_prof = vy; 
bx_prof = bx; 
by_prof = by; 
aO_prof = aO; 
bO_prof = bO;
kalm anjike +=D_wt*(log(sqrt(D_prior_variance))+.5*log(two_pi)+((log(D)- 

log(init_D))*(log(D)-log(init_D)))/(2*D_prior_variance))+log(sqrt(2*D*dt)) +
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.5*log(two_pi); //the last two terms are connected with the likelihood equation 
below, but do not need to be repeated for every t 

for (t=2 ;t<=length;t++)
{

dvariable tkl = (v(t)*Finv(t)*v(t))*value(expanded(t,7)); 
kalm anjike

+=(0.5*ln_det(F(t),sgn)+0.5*v(t)*Finv(t)*v(t))*\/aliie(expanded(t,7))+rnwalk_wt*(1-
expanded(t,7))*(((rnwalk(t,1)-0)*(rnwalk(t,1)-0))/(4*D*dt)+((rnwalk(t,2)' 
0)*(rnwalk(t,2)-0))/(4*D*dt)); //

}
dvariable f = kalm anjike;

if (active(vy_dev))
{

f += vy_dev_penalty_wt*norm2(vy_dev);
}

//Smoothing loop 
if(recap_point){

PSmooth(length,1,1)=0; PSmooth(length,1,2)=0;
PSmooth(length,2,1 )=0; PSmooth(length,2,2)=0;

}else{
PSmooth(length)=P(length);

}

if(recap_point){
aSmooth(length)=zlnv(Y(length));
ySmooth(length)=Y(length);

}else{
aSmooth(length)=a(length);
ySmooth(length)=z(aSmooth(length)); //notice without bias term

}

for(int i=(length-1); i>=1; - i) {
PStar(i)=P(i)*inv(P1 (i+1));
aSmooth(i)=a(i)+PStar(i)*(aSmooth(i+1 )-a(i)-c(i+1)); 
ySmooth(i)=z(aSmooth(i)); //notice without bias term 
PSmooth(i)=P(i)+PStar(i)*(PSmooth(i+1 )-P1 (i+1 ))*trans(PStar(i));

I

for(int i=1; i<=length; ++i){
PSmoothTrans(i)=ZHatFun(aSmooth(i))*PSmooth(i)*trans(ZHatFun(aSmooth(i)));
}
las tjong  = ySmooth(length,1 )+startJong; 
la s tja t = ySmooth(length,2); 
te s tjo n  = rnwalk(10,1);
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te s t ja t = rnwalk(10,2);

dvar_vector Ion = column(ySmooth,1); 
dvar_vector lat = column(ySmooth,2);

if (mceval_phase()){
cout «  " la t:" «  la t«  " "  «  "long:" «  lon+startjong «  endl;

// Comment in the below statement and comment out the above statement to 
have the
// -mceval command return the parameter values throughout the MCMC runs 
// cout «  "D :" «  D «  " "  «  "uu :" «  uu «  " "  «  "v v :" «  vv «  " "  «  "bx: " 
«  bx «  " "  «  "b y :" «  by «  " "  «  "vx :" «  vx «  " "  «  "vy :" «  vy «  " "  «  
"aO:" «  aO «  " "  «  "bO:" «  bO «  endl;

}
return f;

REPORT_SECTION 
REPORT(current_phase()) 
charflags[80]; 
ostrstream ss(flags,80);
ss <<active(uu)«active(vv)«active(D )«active(bx)«active(by) 

«active(vx)«active(vy)
«cos_errors«active(vy_dev) «  ends;

REPORT(flags)
int days_at_liberty = dal;
REPORT(days_at_liberty)
REPORT(npoint)
double reporting_rate = (double)npoint/(double)days_at_liberty;
REPORT (reporting_rate)
REPORT(npoint)
int Number_of_parameters = initial_params::nvarcalc(); 
REPORT(Number_of_parameters)
REPORT(f)
REPORT (kalm anjike)
REPORT (recapjDoint) 
if (recap_point)
{

REPORT(recap_err)
REPORT (gc_recap_err)

}
REPORT(uu)
REPORT(vv)
REPORT(D)
REPORT(D_wt)
REPORT(rnwalk_wt)
REPORT(bx)
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REPORT(by)
REPORT(vx)
REPORT(vy)
REPORT(aO)
REPORT(bO)
REPORT(spd)
REPORT(hdg)
REPORT(vxy)
REPORT(vy_dev_penalty_wt)
REPORT(norm2(vy_dev))
REPORT(c)
MREPORT(Q)
REPORT(d)
MREPORT(H)
MREPORT(rnwalk)

if (last_phase())
{

adstring gmt_name("gmt_"); 
gmt_name += adstring(flags); 
gmt_name += adstring(".dat");
REPORT(gmt_name); 
adstring rstuff_name("rstuff_"); 
rstuff_name += adstring(flags); 
rstuff_name += adstringf.dat");
REPORT(rstuff_name); 
adstring mpt_name("mpt_"); 
mpt_name += adstring(flags); 
mpt_name += adstring(".dat");
REPORT (mpt_name); 
ofstream rstuff(rstuff_name);
rstu ff« "i date time dt j vy ax ay ox oy px py smoothX smoothY 

Psmooth11 Psmooth12 Psmooth21 Psmooth22 observed?"«  endl; 
dvector PY(1,N); 
for (int i = 1; i <= length; i++)
{

if(i%i==0){ 
dt = 0 ;
double vyt = 0 .0 ;
PY = y_deg(i);
if (i > 1)
{

dt = 1/static_cast<double>(step);
if (no_data_days == 0) dt = value(expanded(i,6)) - value(expanded(i- 

step,6));
vyt = vy_t(i);
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PY = value(z(a(i)));
PY(1) += startjong ;

}
if(value(expanded(i,7))==1){ 

rstuff «  setw(5) «  expanded(i,6) «  " "  «  value(expanded(i,3)) «
«  value(expanded(i,2)) «  "/" «  value(expanded(i,1)) «  setw(4) « time(i) «  
":00" «  " ” «  setw(6) «  dt «  " "

«  setw(5) «  expanded(i,8) «  " "  //
setw(5) says to make 4 spaces before performing next thing 

«  setw(10) «  setprecision(4) «  vyt « " "
<< setw(10) «  setprecision(5) «  a(i,1) « " "
«  setw(8) «  setprecision(4) «  a(i,2) « " "
«  setw(11) «  setprecision(6) «  y_deg(i,1) « " "
«  setw(8) «  setprecision(5) «  y_deg(i,2) « " "
«  setw(11) «  setprecision(6) «  PY(1) « " "  // Predicted Track
«  setw(9) «  setprecision(5) «  PY(2) « " "  // Predicted Track
«  setw(10) «  setprecision(6) «  ySmooth(i,1 )+start_long « " "  //

Smoothed most probable track
«  setw(9) «  setprecision(5) «  ySmooth(i,2) « " "  //

Smoothed most probable track
«  setw(11) «  setprecision(5) «  PSmoothTrans(i,1,1) « " "
«  setw(11) «  setprecision(5) «  PSmoothTrans(i,1,2) « " "
«  setw(11) «  setprecision(5) «  PSmoothTrans(i,2,1) « " "
«  setw(11) «  setprecision(5) «  PSmoothTrans(i,2,2) « " "
«  setw(31)« "locations_observed"
«  endl;

}else{
rstuff «  setw(5) «  expanded(i,6) «  " "  «  value(expanded(i,3)) «  "I" 

«  value(expanded(i,2)) «  «  value(expanded(i,1)) «  setw(4) « time(i) «
":00" «  " "  «  setw(6) «  dt «  " "

«  setw(5) «  expanded(i,8) «  " "
«  setw(10) «  setprecision(4) «  v y t« " "
«  setw(10) «  setprecision(5) «  a(i,1) « " "
«  setw(8) «  setprecision(4) «  a(i,2) « " "
«  setw(11) «  setprecision(6) «  y_deg(i,1) « " "
«  setw(8) «  setprecision(5) «  y_deg(i,2) « " "
«  setw(11) «  setprecision(6) «  PY(1) « " "
«  setw(9) «  setprecision(5) «  PY(2) « " "
«  setw(10) «  setprecision(6) «  ySmooth(i,1 )+start_long « " "  
«  setw(9) «  setprecision(5) «  ySmooth(i,2) « " "
«  setw(11) «  setprecision(5) «  PSmoothTrans(i,1,1) « " "

«  setw(11) «  setprecision(5) «  PSmoothTrans(i,1,2) « " "
«  setw(11) «  setprecision(5) «  PSmoothTrans(i,2,1) « " "
«  setw(11) «  setprecision(5) «  PSmoothTransO^^) « " "
«  setw(31)« "locations_NOT_observed"

«  endl;
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}
}

}
ofstream mpt(mpt_name); 
m p t«  "# npoint" «  endl; 
mpt «  setw(5) «  npoint «  endl;
m p t« " #  i date time dt j vy ax ay ox oy

px py smoothX smoothY Psmooth11 Psmooth12 Psmooth21 
Psmooth22 observed?"«  endl; 

for (int i = 1; i <= length; i++)
{

dt = 0 ;
double vyt = 0 .0 ;
PY = y_deg(i);
if (i > 1)
{

dt = 1/static_cast<double>(step);
if (no_data_days == 0) dt = value(expanded(i,6)) - value(expanded(i- 

step,6));
vyt = vy_t(i);
PY = value(z(a(i)));
PY(1) += startjong ;

}
if(value(expanded(i,7))==1){

mpt «  setw(5) «  expanded(i,6) «  " "  «  value(expanded(i,3)) «  "/" «  
value(expanded(i,2)) «  «  value(expanded(i,1)) «  setw(4) « time(i) «
":00" «  " "  «  setw(6) «  dt «  " "

«  setw(5) «  expanded(i,8) «  " "
«  setw(10) «  setprecision(4) «  vyt « " "
«  setw(10) «  setprecision(5) «  a(i,1) « " "
«  setw(8) «  setprecision(4) «  a(i,2) « " "
«  setw(11) «  setprecision(6) «  y_deg(i,1) « " "
«  setw(8) «  setprecision(5) «  y_deg(i,2) « " "
«  setw(11) «  setprecision(6) «  PY(1) « " "
«  setw(9) «  setprecision(5) «  PY(2) « " "
«  setw(10) «  setprecision(6) «  ySmooth(i,1 )+start_long « " "  
«  setw(9) «  setprecision(5) «  ySmooth(i,2) « " "
«  setw(11) «  setprecision(5) «  PSmoothTrans(i,1,1) « " "
«  setw(11) «  setprecision(5) «  PSmoothTrans(i,1,2) « " "
«  setw(11) «  setprecision(5) «  PSmoothTrans(i,2,1) « " "
«  setw(11) «  setprecision(5) «  PSmoothTrans(i,2,2) « " "
«  setw(31)« "locations_observed"
«  endl;

}else{
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mpt «  setw(5) «  expanded(i,6) « " "  «  value(expanded(i,3)) «  «
value(expanded(i,2)) «  «  value(expanded(i,1)) «  setw(4) « time(i) «
":00" «  " "  «  setw(6) «  d t«  " "

«  setw(5) «  expanded(i,8) «  " "
«  setw(10) «  setprecision(4) «  vyt « " "
«  setw(10) «  setprecision(5) «  a(i,1) « " "
«  setw(8) «  setprecision(4) «  a(i,2) « " "
«  setw(11) «  setprecision(6) «  y_deg(i,1) « " "
«  setw(8) «  setprecision(5) «  y_deg(i,2) « " "
«  setw(11) «  setprecision(6) «  PY(1) « " "
«  setw(9) «  setprecision(5) «  PY(2) « " "
«  setw(10) «  setprecision(6) «  ySmooth(i,1)+start_long « " "  
«  setw(9) «  setprecision(5) «  ySmooth(i,2) « " "
«  setw(11) «  setprecision(5) «  PSmoothTrans(i,1,1) « " "

«  setw(11) «  setprecision(5) «  PSmoothTrans(i,1,2) « " "
«  setw(11) «  setprecision(5) «  PSmoothTrans(i,2,1) « " "
«  setw(11) «  setprecision(5) «  PSmoothTrans(i,2,2) « " "
«  setw(31)« "locations_NOT_observed"

«  endl;
}

}
const int npma = 5;
const double rmaden = 1.0/(double)npma; 
const int n2 = npma/2 + 1; 
double sumx = 0 .0 ; 
double sumy = 0 .0 ; 
dmatrix ZP(1,m,1,m);
ZP.initialize(); 
ofstream gmt(gmt_name);
// these labels will cause GMT to complain, but shouldn't cause an error 
// they work with R
g m t« "ox oy px py mx my ex ey smoothX smoothY"«  endl; 
for (int i = 1; i <= length; i++)
{

if ((i > 1)&&(step==1)&&(no_data_days==0))
{

if (blk(i) > 1)
g m t« " >  > > > > > > > >  >" «  blk(i) « e n d l;

}
sumx = 0 .0 ; 
sumy = 0 .0 ; 
if (i < n2)
{

sumx = y_deg(i,1); 
sumy = y_deg(i,2);

}

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



else if (i > (Iength-n2))
{

sumx = y_deg(i,1); 
sumy = y_deg(i,2);

}
else
{

int n1 = i - n2 + 1;
int n2 = n1 + npma - 1;
for (int nn = n1; nn <= n2 ; nn++)
{

sum x+= y_deg(nn,1); 
sumy += y_deg(nn,2);

}
sumx *= rmaden; 
sumy *= rmaden;

}

gmt «  y_deg(i,1) «  " " «  y_deg(i,2);
if (i— 1)

g m t« "  "« y _ d e g ( i,1) « "  " «  y_deg(i,2); 
else 
{

dvector ta = value(z(a(i)));
g m t « "  " «  (ta(1 )+start_long) «  " " « t a ( 2);
dmatrix PP = value(P(i));
ZP = ((value(Z)*PP+epss)/i);

}
g m t«  " " «  sumx «  " " «  sumy;
gmt «  " " « Z P ( 1 , 1 ) « "  " «  ZP(2,2);
g m t « "  " «  ySmooth(i,1)+start_long «  " " «  ySmooth(i,2);
g m t«  endl;

}
report« " \ n P h a s e " «  current_phase() « "  tracks written to file s " 

«  mpt_name « "  and "
«  gmt_name «  endl; 

c log f«  "\nPhase " «  cu rren t_ ph a se ()« " tracks written to files " 
«  mpt_name «  " and "
«  gmt_name «  endl; 

cout «  "\nPhase " «  current_phase() «  " tracks written to files " 
«  mpt_name «  " and "
«  gmt_name «  endl;

}
TOP_OF_MAIN_SECTION

arrmblsize=20000000;
gradient_structure::set_MAX_NVAR_OFFSET(800315);
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gradient_structure::set_CMPDIF_BUFFER_SIZE(3000000); 
gradient_structure::set_GRADSTACK_BUFFER_SIZE(1000000); 
gradient_structure::set_NUM_DEPENDENT_VARIABLES(1000);
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APPENDIX B - THE COOKBOOK:

STEP-BY-STEP PROCESS FOR HOME RANGE ESTIMATION USING KFUD

> The first step is preparing the data file. Follow the instructions in the DATA 
section of the tpl file (Section 0) to ensure you have needed information. 
Be sure to set the active parameter for u and vas ‘0’ to keep the filter 
using an unbiased random walk.

o I found it easiest to prepare in Excel, and then save it as a .txt file 
with a name like kfud.dat. Be sure that the first portion (‘kfud’) be 
the same as a the .tpl file’s name.

> Compile the tpl file. This can be done through a dos window. I like to do it 
in the program Textpad. If using Textpad, go to Tools -> Run. Command 
is Command for compiling is ‘admb’. Parameters: ‘kfud’.

> To get most probable track:
o Command: ‘kfud.exe’ 
o Parameters: ‘kfud’
o You can view the various parameter estimate results in the kfud.rep 

file.
o Three files will be produced that can be used to view the

geolocation estimations: mpt_111111110 .dat, gmt_111111110.dat, 
rstuff_111111110.dat 

o To plot track in R:
■ track =

read.tablefc:/.. ./kfud/rstuff_001111110.dat",head=TRUE)
■ pts = matrix(c(track$smoothX,track$smoothY),,2)
■ plot(pts,type=’b’)

> To get likelihood profiles of parameters and geolocations of interest
o Ensure you have defined the parameters as described in Section 0 
o Run kfud:

■ Command: ‘kfud.exe’
■ Parameters ‘-Iprof kf’

o A file will be produced titled ‘variablename.plt’ which returns the 
likelihood profile values

> To perform MCMC
o Run kfud:

■ Command: ‘kfud.exe’
■ Parameters: ‘-mcmc 100000 -mcscale -mcsave 50 kfud -  

mcdiag’
• 100000 is the number of runs, and it will draw the 

results from every 50th run. 
o Run kfud again:

■ Command ‘kfud.exe’
■ Parameters: ‘-mcmc 100000 -mcscale -mcsave 50 kf -  

mcdiag -m ceval’
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■ On the screen, the results of the MCMC for the parameters 
you noted in the “mceval” function in /(fad will be displayed. 
Once displayed, remove all text before and after the strings 
of lats and longs; save as a text file titled “Command 
Results.”

■ Distributions can also be viewed in the kfud.hst file
> To view MCMC lat/long results plotted in R

o tabl<-read.table("C:/.../kfud/Command Results.txt") 
o perform the command dim(tabl)

■ Note the number of columns. The way this is set up, the lat 
and longs are on the same rows, so we need to read 
particular columns to extract the appropriate numbers in the 
proper order.

o Perform the following commands
■ long<-tabl[,y:z] #where z is the total number of rows, learned 

from the dim() function, y is z/2+2
■ lat<-tabl[,2:x] # where x is z/2
■ lat<-as.matrix(lat)
■ long<-as.matrix(long)
■ lat_t <- as.vector(t(lat))
■ long_t <- as.vector(t(long))
■ plot(long_t,lat_t,cex=.2,pch=3)

> To make the 95% home range contour using the 2D Kernel Density 
method:

■ library(KernSmooth)
■ est_kfud <- bkde2D(cbind(long_t,lat_t), gridsize=c(201, 201), 

bandwidth=c(.5,.5))
■ kfud_z <- est_kfud$fhat/max(est_kfud$fhat)
■ contour(est_kfud$x1, est_kfud$x2, kfud_z, 

zlim=c(5*max(est_kfud$fhat)/100,max(est_kfud$fhat)),nlev= 
20,label="95% Home Range",levels=.05)
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