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BULLETIN OF MARINE SCIENCE, 38(3): 512-524, 1986

PHOTOSYNTHETIC RESPONSES OF FLORIDA
SEAWEEDS TO LIGHT AND TEMPERATURE:
A PHYSIOLOGICAL SURVEY

Arthur C. Mathieson and Clinton J. Dawes

ABSTRACT

The photosynthetic responses of 37 tropical seaweeds (14 Chlorophyceae, 5 Phaeophyceae
and 18 Rhodophyceae) were measured in a Gilson Warburg Apparatus under a variety of
light and temperature regimes. The brown algae Padina vickersiae and Sporochnus pedun-
culatus exhibited the lowest saturation light intensity (263 uE/m?/sec), while five green algae
(Acetabularia crenulata, Cladophora coelothrix, Dictyosphaeria cavernosa, Monostroma ox-
yspermum and Codium repens) had the highest light optima (3,843-4,258 uE/m?#/sec). Overall,
the Chlorophyceae exhibited the broadest range of light optima; in contrast, the Phacophyceae
primarily had low light optima, while several Rhodophyceae had higher light optima. The
thermal optima for 34 seaweeds ranged from 15-30°C. Caloglossa leprierii, Botryocladia
occidentalis, Codium taylorii, Soliera tenera and Codium intertextum exhibited relatively
broad thermal optima, with C. leprierii having the most eurythermal response. The Chlo-
rophyceae exhibited thermal optima between 15-30°C, the Phaeophyceae between 15-27°C,
and most Rhodophyceae between 18-24°C, Few taxa, except for Cladophora coelothrix and
Dictyosphaeria cavernosa, had broad physiological tolerances to both high temperature and
light regimes. Overall, the Phacophyceae exhibited the most restricted temperature and light
optima, while the Chlorophyceae and Rhodophyceae exhibited broader tolerances.

Until recently there have been few comparative physiological investigations of
Florida seaweeds. Previous studies of photosynthetic and respiratory responses
of Florida seaweeds have been concerned with the estuarine intertidal red alga
Bostrychia binderi (Dawes et al., 1978; Durako and Dawes, 1980; Hoffman and
Dawes, 1980; Davis and Dawes, 1981), the euryhaline subtidal red algae Gracilaria
tikvahiae (Lapointe et al., 1984) and Hypnea musciformis (Dawes et al., 1976;
Durako and Dawes, 1980) as well as a few open coastal species, including the
brown alga Sargassum (Prince, 1980), the green alga Batophora oerstedii (Mor-
rison, 1984) and the red alga Eucheuma (Mathieson and Dawes, 1974; Moon and
Dawes, 1976). Overall, the photosynthetic responses of these seaweeds show a
broad tolerance to light and temperature, comparable to northern intertidal and
shallow subtidal species (Stocker and Holdheide, 1938; Kanwisher, 1966; Ma-
thieson and Burns, 1971; Mathieson and Norall, 1975a; 1975b; Brinkhuis et al.,
1976). Even so the limited number of Florida seaweeds studied and the varied
techniques employed make it difficult to generalize. The present study was initiated
in order to compare the photosynthetic responses to light and temperature of a
number of subtropical and tropical species from Florida. Of particular interest
was whether the physiological responses of the plants could be correlated with
their known distribution (both horizontal and vertical) and/or seasonal occur-
rence.

METHODS AND MATERIALS

Most of the samples for this study were collected during a series of autecological and floristic studies
of Florida marine algae (Dawes et al., 1974a; 1974b; Mathieson and Dawes, 1974; 1975); the remainder
were collected during the same period (1971-1972) on the west coast of Florida (Table 1). After being
collected, the plants were maintained in an ice chest and were transported to the laboratory within a
0.5-7.0 h of collection. Standard size sections (i.e., 2.5-3.0 cm) were cut from terminal frond portions
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Table 1. Dates and collection sites in Florida
Specimens Sites* Dates
Chlorophyceae
Acetabularia crenulata Surprise Lake 5 March 1972

Anadyomene stellata
Bryopsis plumosa
Caulerpa paspaloides
Chaetomorpha aerea
Chaetomorpha linum
Cladophora coelothrix
Codium intertextum
Codium repens

Codium taylorii
Cymopolia barbata
Dictyosphaeria cavernosa
Halimeda incrassata
Monostroma oxyspermum

Phacophyceae

Eudesme virescens
Padina vickersiae
Rosenvingiella intricata

Sargassum hystrix
Sporochnus pedunculatus

Rhodophyceae

Bostrychia rivularis
Botryocladia occidentalis
Bryothamnion seaforthii
Bryothamnion triquetrum

Caloglossa leprierii
Corynomorpha clavata
Eucheuma gelidium
Eucheuma gelidium-
acathocladum type

Eucheuma isiforme var.
denudatum

Eucheuma isiforme var,
isiforme

Gracilaria confervoides

Gracilaria debilis

Halymenia pseudofloresia

Hypnea musciformis
Laurencia intricata
Laurencia poitei
Scinaia complanta
Soliera tenera

Homasassa River
Anclote Key

Homasassa River

Point of Rocks

Tampa

Tampa

Florida Middle Grounds
Florida Middle Grounds
Anclote Key

Surprise Lake

Molasses Key
Homasassa River
Tampa

Homasassa River
Homasassa River
Homasassa River

Homasassa River
Homasassa River

Tampa

Anclote Key
Money Key
Money Key

Tampa

Money Key

Molasses Key

Anclote Key &
Sarasota

Anclote Key

Molasses Key

Tampa

Molasses Key

Homasassa River

Anclote Key

Molasses Key

Anclote Key

Bahia Honda Key

Anclote Key

Tampa &
Homasassa River

6 March 1972
18 March 1972
19 May 1972

6 March 1972
19 January 1971
2 March 1972
20 January 1972
20 January 1972
13 January 1972
5 March 1972
20 March 1972
31 May 1972

2 March, 12 May 1972

12 November, 13 January 1972
22 February 1972
12 November 1971,
13 January 1972
13 January, 2 March 1972
12 November 1971,
22 February 1972

19 January 1971

28 April 1972

16 February, 20 March 1972

11 December 1971,
16 February 1972

19 January, 2 March 1972

11 December 1971

25 October, 11 December 1971

31 May 1972, 25 October 1971,
20 April 1972

5 November 1971

16 October, 12 November 1971

1 & 19 January, 2 March 1972
7 January 1972

11 November 1971

13 January 1972

7 January 1972

15 March 1972

5 February 1972

28 April 1972

13 January 1972

11 November 1972

* See Dawes (1974), Dawes et al. (1974b) and Mathieson and Dawes (1975) for detailed habitat descriptions of most of the sites.

and immersed in artificial seawater (Chapman, 1962). The sections were held for 24-36 h at 20°C and
at 986-1,972 microeinsteins (i.e., pE/m?/sec) to minimize wound respiration prior to initiating the
experiment. The rates of net photosynthesis were then measured in a Gilson Warburg Apparatus
(Model RWBP-3), equipped with a series of 60-watt incandescent light bulbs. The light intensities
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Figure 1. Net photosynthesis (as % of maximum) of Laurencia intricata, Monostroma oxyspermum
and Padina vickersiae at various light intensities and 20°C.

reaching the bottom of the manometric flasks were varied by means of a rheostat. The intensities were
measured with both a Lambda Model L.K. 185 Quantum Photometer (microeinsteins) and a General
Electric Model 2.3 Photometer (foot-candles). The former instrument records photosynthetically active
radiation in the 400-700 nm wave band. As stressed by Bickford and Dunn (1972), temperature affects
the spectral emission of lamps; however, the spectral shift over the temperature range in our studies
is small.

In all of the photosynthetic studies a single thallus section was placed in a reaction flask containing
10 ml of buffered seawater (Chapman, 1962). The samples were equilibrated for 30-40 min prior to
the initiation of each photosynthetic run, in order to keep the temperature of the flasks and water
bath identical. Each run was made for 50-60 min, with readings taken at 10- to 20-min intervals. Six
replicates were used in each experiment; the mean and standard deviations for each parameter were
calculated for subsequent statistical comparisons (Sokal and Rohlf, 1981). All light experiments were
run at 20°C, while the subsequent temperature runs were conducted at the individual light optimum
determined for each species. All of the photosynthetic data (i.e., net photosynthesis) were calculated
as ul oxygen/g dry weight/h. Only a few representative light and temperature photosynthetic response
curves (i.e., expressed as percentage of maximum net photosynthesis) are summarized herein, while
a detailed compilation of the individual light and temperature optima (i.e., as designated by the P
max values) for each species and class of seaweed is given. In the latter summaries, which are expressed
as frequency (%) distribution plots, only the initial P max values are employed.

RESULTS

Light Intensity.—Figure 1 illustrates the net photosynthesis (as percentage of
maximum) of three representative green, brown and red algae at various light
intensities. The light response of the red alga Laurencia intricata, which was typical
of the majority of seaweeds tested, showed increased photosynthesis with increas-
ing light intensity up to 1,972 uE/m?/sec, beyond which it declined. Thus, light
intensities above 1,972 pE/m?/sec were saturating, while lower intensities were
limiting. Among the other plants studied, similar low to intermediate light optima
were observed for Codium taylorii, Sargassum hystrix, Sporochnus pedunculatus,
Caloglossa leprierii and Halymenia pseudofloresia (Fig. 2). The light response of
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Gracilaria debilis
Halimeda incrassata
Laurencia intricata
Laurencia poitei
Rosenvingiella intricata
Bostrychia rivularis

Eucheuma gelidium
Eucheuma isiforme var. denudatum

Bryopsis plumosa
Bryothamnion seaforthii
Bryothamnion triquetrum
Caloglossa leprieurii
Chaetomorpha aerea
Eudesme virescens
Scinaia complanata
Sargassum hystrix

Sporochnus pedunculatus
Padina vickersiae

Figure 2. Summary of optimal light intensities (based upon P max values) for 36 species of Florida
seaweeds at 20°C. The statistically equivalent photosynthetic responses at higher intensities are des-
ignated in black.

the lightly calcified brown alga Padina vickersiae was the most extreme (Fig. 1),
having a low saturation intensity (263 uE/m?/sec) with a broad optimum/tolerance
to high light intensities—i.e., up to 4,258 uE/m?/sec. The photosynthetic response
of the green alga Monostroma oxyspermum increased correspondingly between
99 and 4,258 uE/m?/sec, with no light saturation being evident.

A summary of the optimum light intensity for 36 seaweeds is outlined in Figure
2, the data being derived from photosynthetic responses as described above (Fig.
1). If the photosynthetic responses of an individual species were statistically equiv-
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Figure 3. Frequency (%) distribution patterns of optimal light intensities for 36 species of Florida
Chlorophyceae, Phacophyceae and Rhodophyceae at 20°C.

alent for a series of higher light intensities (i.e., above the P max value) then these
values were designated graphically in black. For example, Padina vickersiae ex-
hibited a “‘plateau” of statistically equivalent values between 263-4,258 uE/m?/
sec, and this was demonstrated in Figure 2 by a long black line. On the other
hand, a second brown alga, Sporochnus pedunculatus, which also had a low light
saturation level of 263 uE/m?/sec, exhibited a restricted light optimum, with its
photosynthetic response dropping off after P max was attained. Most of the other
34 taxa evaluated had higher light optima, ranging from 986-4,258 uE/m?/sec.
Eleven seaweeds exhibited maximum photosynthesis at 986 uE/m?/sec, 10 at
1,972, 6 at 2,793, 1 at 2,947, and 6 between 3,943-4,258 xE/m?/sec. Five of the
six taxa with the highest light optima (i.e., 3,843-4,258 uE/m?/sec) were green
algae: Acetabularia crenulata, Cladophora coelothrix, Dictyosphaeria cavernosa,
Monostroma oxyspermum and Codium repens. In addition, Fucheuma isiforme
var. isiforme, Codium intertextum, Bostrychia rivularis, E. gelidium and E. isi-
forme var. denudatum all exhibited relatively broad light optima, although not
of the same magnitude as P. vickersiae (Fig. 2). In comparing the light optima for
the different Eucheuma taxa (sensu Cheney, 1975) substantial differences were
evident.

Figure 3 gives a further evaluation of the photosynthetic responses to light up
to P max for the 36 seaweeds, expressed as a frequency (%) distribution plot.
Overall, the Phacophyceae and Rhodophyceae exhibited a pattern of decreasing
frequency from low to high light intensities. Even so, the Phaeophyceae primarily
had low light optima, while several Rhodophyceae had higher light optima. Of
the three major groups of seaweeds, the Chlorophyceae had the broadest range
of light optima (Fig. 2).
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Figure 4. Net photosynthesis (as % of maximum) of Bryothamnion seaforthii, Cladophora coelothrix,
and Eudesme virescens at various temperatures and at their individual light optima (cf. Fig. 2).

Temperature.—Figure 4 illustrates the net photosynthesis (as percentage of max-
imum) of three representative green, brown and red algae at various temperatures
between 12-34°C. The thermal optima of these plants were extremely variable,
being 15-29°C. Typically, net photosynthesis increased with increasing temper-
ature up to a maximum (i.e., the thermal optimum or P max), beyond which it
decreased either gradually or precipitously.

A summary of the temperature optima (P max) for all 34 seaweeds studied is
given in Figure 5. The statistically equivalent photosynthetic values beyond the
thermal optima are designated in black. Overall, the thermal optima ranged from
15-30°C, with 5 seaweeds having their maximum net photosynthesis at 15° C, 4
at 18°C, 2 at 20°C, 6 at 23°C, 7 at 27°C and 4 at 30°C. Caloglossa leprierii,
Botryocladia occidentalis, Codium taylorii, Soliera tenera, and Codium intertex-
tum exhibited relatively broad thermal optima, with the first taxa being the most
tolerant. A frequency distribution plot of the temperature of initial maximum
photosynthesis (P max) is given for all 34 seaweeds (Fig. 6). The Chlorophyceae
exhibited a pattern of broad tolerance, with the frequency of thermal optima
increasing between 15-21°C and being approximately the same at 30°C. The
Phaeophyceae showed a contrasting pattern with decreasing frequencies between
15-27°C. The Rhodophyceae exhibited an intermediate pattern with their highest
frequencies between 18-24°C.

Temperature and Light.— A summary of the corresponding temperature and light
optima of 34 seaweeds is given in Figure 5. Relatively few taxa had broad tol-
erances to both parameters, while most were more tolerant to one parameter than
the other. For example, Cladophora coelothrix and Dictyosphaeria cavernosa had
high temperature and light optima (i.e., 30°C and 4,258 uE/m?/sec). In contrast,
Botryocladia occidentalis and Acetabularia crenulatus exhibited high light but
reduced thermal optima (i.e., 4,258 uE/m?/sec and 20°C). The broad tolerance to
light (i.e., 263-4,258 wE/m?/sec) but reduced thermal optima (20°C) of Padina
vickersiae should also be noted. In contrast, species found within shallow subtidal
communities such as Bostrychia rivilaris, Bryopsis plumosa, Bryothemnion sea-
Sforthii, B. triquetrum and Sargassum hystrix had low light optima (986 uE/m?/
sec) but high temperature optima (27-30°C). Eudesme virescens, Scinaia com-
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Figure 6. Frequency (%) distribution pattern of optimal temperature for 34 species of Florida Chlo-
rophyceae, Phaeophyceae and Rhodophyceae.

planata and Sporochnus pedunculatus had low light and temperature optima.
Overall, there was little statistical correlation (i.e., R = —0.38) between the cor-
responding temperature and light optima of each taxa.

A summary of the light and temperature optima for all three classes of seaweeds
is given in Figure 7, with the physiological optima being circumscribed as poly-
gons. The Phacophyceae exhibited the most restricted temperature and light op-
tima, while the Chlorophyceae and Rhodophyceae exhibited broader tolerances.
Even so, a comparison of Figures 3 and 6 suggests that the Chlorophyceae have
a broader tolerance than the Rhodophyceae to both parameters.

DiscussioN

The light response of the shallow-water, perennial brown alga Padina vickersiae
was one of the most unique as it exhibited a low light optimum and a broad
tolerance to high light intensities. Several investigators (Kanwisher, 1966; Brink-
huis et al., 1976; Niemeck and Mathieson, 1978; Chock and Mathieson, 1979;
Liining, 1981) have recorded similar photosynthetic responses for intertidal fucoid
brown algae and emphasized that it allows such plants to maximize their pho-
tosynthesis throughout the day, independent of seasonal and diurnal light vari-
ations. In contrast, most of the other tropical seaweeds evaluated (986-4,258 uE/
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LIGHT INTENSITY AND TEMPERATURE FOR OPTIMUM NET PHOTOSYNTHESIS
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Figure 7. Summary of the corresponding temperature and light optima for the various Chlorophyceae,
Phaeophyceae and Rhodophyceae, with the physiological optima being circumscribed as polygons.

m?/sec) either exhibited intermediate or high light optima. Thus, the intertidal
green alga Monostroma oxyspermum was not saturated at the highest intensity
tested (4,258 uE/m?/sec), while the optimal light intensity for the shallow subtidal
red alga Laurencia intricata was 1,972 uE/m?/sec. The photosynthetic response
of L. intricata was representative of the largest number of seaweeds, particularly
subtidal taxa. Similar tolerances to high light (i.e., without photosynthetic inhi-
bition) have been shown for Hyprea musciformis (Dawes et al., 1976; Durako
and Dawes, 1980) and Gracilaria verrucosa (Dawes et al., 1978). Comparable
light optima have been recorded for several temperate subtidal seaweeds like
Chondrus crispus (Mathieson and Burns, 1971), Macrocystis pyrifera (Clendenning
and Sargent, 1957), and Egregia laevigata (Chapman, 1962); also see Liining
(1981) for a further summary.

Many of the photosynthetic-light experiments described above are supportive
of other field and culture observations (Dawes et al., 1974b; Mathieson and Dawes,
1975). For example, all four of the subtidal Fucheuma taxa evaluated had rela-
tively low light optima (Fig. 2), and they were extremely sensitive to high light
intensities. Thus, when they were transplanted from the deep to the shallow
subtidal zone, they became bleached or greenish-brown in color; this bleaching
could be reversed if the plants were cultured under reduced illumination (i.e.,
<986 uE/m?/sec, Dawes et al., 1974a). As suggested previously, there is a general
correlation between the vertical distribution of seaweeds and their photosynthetic
light responses (Stocker and Holdheide, 1938; Rabinowitch, 1956; Mathieson and
Burns, 1971; Mathieson and Norall, 1975a; 1975b; Liining, 1981). Thus, subtidal
seaweeds tend to have lower light optima (i.e., <3,259 uE/m?/sec) and are sensitive
to high light intensities. Similarly, the Chlorophyceae, which often dominate in
shallow waters (Dawes, 1974; Mathieson and Dawes, 1975), exhibit a broad
tolerance to high light intensities (Figs. 1 and 2). In contrast, the Phacophyceae
and Rhodophyceae, which exhibit a pattern of greater sensitivity to high light
intensities (Figs. 1 and 2), are typically found within deeper waters (Mathieson
and Dawes, 1975; Lining, 1981). However, as with most generalizations, there
are obvious exceptions, including the high light optima of the deep-growing green
alga Codium repens (Fig. 2 and Cheney and Dyer, 1974), as well as the opposite
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response for the intertidal red alga Bostrichia rivularis. In the latter case the
adaptation to low light does reflect the habitat in which B. rivularis grows, namely
on shaded mangrove prop roots. Ramus (1978) and Littler and Littler (1980) also
emphasize that few phylogenetic generalizations can be made regarding light sat-
uration levels for photosynthesis, as well as the magnitude of the corresponding
net productivity. Rather there is a closer relationship between thallus form and
light-saturated photosynthesis—e.g., amount of pigment/cell or ratio of pigment-
ed/non-pigmented cells.

Several generalizations regarding the marine flora of Florida may be helpful in
interpreting the thermal characteristics of the seaweeds evaluated. Foremost, the
flora consists of diverse geographical components, and exhibits pronounced sea-
sonal and spatial fluctuations (Humm and Taylor, 1961; Dawes, 1974; Mathieson
and Dawes, 1975; Cheney and Dyer, 1974). Much of this phenological variation
is primarily due to temperature variation (Setchell, 1915), which, as noted by
Earle (1972), is spatially and temporally variable in the Gulf of Mexico. For
example, the offshore summer temperatures in the southern Gulf are tropical (i.e.,
25-30°C), while the average temperatures for inshore waters in the northern Gulf
are approximately the same as those in New England during the summer. Earle
(1972) further states that 50 species with New England affinities thrive during the
winter in the northern Gulf, but they do not occur in the southern Gulf. Many
of the latter species (e.g., Eudesme virescens) are summer annuals at Cape Cod,
Massachusetts (Coleman and Mathieson, 1975).

Considering the above information, it is not surprising that the thermal optima
of the 34 species evaluated were so variable (i.e., 15-30°C), as they were collected
seasonally at a variety of sites (Table 1). Even so, several generalizations can be
made regarding the thermal ecology of these species. Foremost, the Phacophyceae
exhibited the most restricted tolerance to high temperatures; by contrast, the
Chlorophyceae showed the opposite pattern, while the Rhodophyceae had an
intermediate trend. It should be recalled that the Phaeophyceae are often used as
biological indicators of cold water floristic affinities (Druehl, 1981), while sub-
tropical to tropical floras as found in Florida have high ratios of Rhodophyceae/
Phaeophyceae or Rhodophyceae + Chlorophyceae/Phacophyceae (Feldmann,
1937; Mathieson and Dawes, 1975; Cheney, 1977). With this in mind, it is not
surprising that three of the four plants with the lowest thermal optima (15°C) were
ephemeral brown algae—i.e., Rosenvingiella intricata, Eudesme virescens,
and Sporochnus pedunculatus. Each of these plants is found in Florida during the
winter/spring period (Mathieson and Dawes, 1975) versus the summer occurrence
of E. virescens in New England (Coleman and Mathieson, 1975; Mathieson and
Hehre, 1982). In contrast to the above-described ephemeral brown algae, three
green algae (i.e., Cladophora coelothrix, Dictyosphaeria cavernosa and Bryopsis
plumosa) and one red alga (Bostrychia rivularis) exhibited the highest thermal
optima (30°C) recorded; each of these plants is particularly common in shallow
water habitats. The annual green algae B. plumosa and Monostroma oxyspermum,
which have thermal optima of 27-30°C (Fig. 5), also grow abundantly during the
summer in shallow New England estuarine habitats (Mathieson and Hehre, 1983)
where the temperatures often reach 25-27°C (Norall et al., 1982).

The thermal optima of several perennial green and red algae (e.g., Chaetomorpha
aerea, C. linum, Eucheuma ssp., Gracilaria spp. and Laurencia intricata) were
intermediate to those described above. In addition, they were relatively low (i.e.,
20-24°C) when compared to the seasonal temperature regimes prevalent where
they grow (i.e., 15-33°C, Dawes et al., 1974b; 1978). The two Chaetomorpha
species grow abundantly in the North Atlantic (Blair, 1983; Taylor, 1962), and
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they may have cold water affinities. On the other hand, the period of maximum
growth for some of the other tropical perennial species (e.g., Eucheuma ssp.) is
primarily during the adverse summer period of high temperatures and low nu-
trients, and they became reproductive in the fall (Dawes et al., 1974b). An eval-
uation of the temperature optima for several perennial New England species, such
as Chondrus crispus and Gigartina stellata (Mathieson and Burns, 1971; Mathie-
son and Norall, 1975b), Phyllophora truncata (Mathieson and Norall, 1975a),
Polysiphonia elongata and P. lanosa (Fralick and Mathieson, 1975), and Asco-
phyllum nodosum and Fucus spp. (Niemeck and Mathieson, 1978; Chock and
Mathieson, 1979), shows that they are comparable to these tropical, perennial
species (i.e., 21-24°C). Even so, their growth occurs primarily during the late
spring and summer. Thus, the seasonal growth patterns of several northern and
southern perennial species are different, although their optimal temperatures for
photosynthesis may be approximately the same. Differential tolerances to low and
high temperatures can obviously restrict tropical and temperate plants, respec-
tively, to distinct geographical areas.

As noted by Fralick and Mathieson (1975), cosmopolitan species of the genus
Polysiphonia tolerate a variety of environmental factors, such as temperature,
light and salinity. In contrast to this pattern, relatively few tropical taxa exhibited
broad tolerances to both temperature and light (Fig. 5); rather, they seemed to
exhibit a strategy of being more tolerant to one parameter than the other. The
broad cosmopolitan distribution of Monostroma oxyspermum was previously
noted; it extends from the tropical Atlantic to Newfoundland (Taylor, 1962; South
and Hooper, 1980). Thus, it was one of the few cosmopolitan species that con-
formed to the above generalization, having broad physiological tolerances to both
light and temperature. Bostrychia rivularis was representative of the majority of
species examined, as it exhibited a very high thermal optimum (30°C) but a
moderately low light optimum (986-1,972 uE/m?/sec). As is well known, B. ri-
vularis grows abundantly in shaded and turbid intertidal habitats, especially on
mangrove roots (Dawes, 1974). In such habitats, the above described physiological
traits may be of adaptive significance, as suggested by Littler and Littler (1980).
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