On the standing wave mode of giant pulsations

K. Takahashi
N. Sato
J. Warnecke
H. Luhr
Harlan E. Spence

Boston University, harlan.spence@unh.edu

See next page for additional authors

Follow this and additional works at: https://scholars.unh.edu/physics_facpub
Part of the Physics Commons

Recommended Citation
On the standing wave mode of giant pulsations

Rights
Copyright 1992 by the American Geophysical Union.

Authors
K. Takahashi, N. Sato, J. Warnecke, H. Luhr, Harlan E. Spence, and Y. Tonegawa
On the Standing Wave Mode of Giant Pulsations

Both odd-mode and even-mode standing wave structures have been proposed for giant pulsations. Unless a conclusion is drawn on the field-aligned mode structure, little progress can be made in understanding the excitation mechanism of giant pulsations. In order to determine the standing wave mode, we have made a systematic survey of magnetic field data from the AMPTE CCE spacecraft and from ground stations located near the geomagnetic foot point of CCE. We selected time intervals when CCE was close to the magnetic equator and also magnetically close to Syowa and stations in Iceland, and when either transverse or compressional Pc 4 waves were observed at CCE. Magnetograms from the ground stations were then examined to determine if there was a giant pulsation in a given time interval. One giant pulsation was associated with a compressional wave, while no giant pulsation was observed in association with transverse wave events. The CCE magnetic field record for the giant pulsation exhibited a remarkable similarity to a giant pulsation observed from the ATS 6 geostationary satellite near the magnetic equator (Hillebrand et al., 1982). In agreement with Hillebrand et al., we conclude that the compressional nature of the giant pulsation is due to an odd-mode standing wave structure. This conclusion places a strong constraint on the generation mechanism of giant pulsations. In particular, if giant pulsations are excited through the drift bounce resonance of ions with standing Alfvén waves, \(\omega - m\omega_d = \pm \omega_p \), where \(\omega \) is the wave frequency, \(m \) is the azimuthal wave number, \(\omega_d \) is the ion drift frequency, \(N \) is an integer, and \(\omega_p \) is the ion bounce frequency, then the resonance must occur at an even \(N \).

1. INTRODUCTION

Giant pulsations are a class of magnetic pulsations observed on the ground in the Pc 4 band (period = 45-150 s). The pulsations are most often observed in the morning sector at the auroral and lower latitudes and have a typical period of 100 s and a typical amplitude of the order of 10 nT. The most outstanding distinguishing feature of the pulsations is their sinusoidal waveform, which was recognized early in this century [Birkeland, 1901] and has continued to attract researchers since [Annexstad and Wilson, 1968; Green, 1979, 1985; Rostoker et al., 1979; Glassmeier, 1980; Kokubun, 1980; Kokubun et al., 1989; Chisham et al., 1990; Chisham and Orr, 1991]. Another important distinguishing feature is their polarization. In contrast to other types of Pc 4 pulsations, which are more frequently observed, the magnetic field perturbation of giant pulsations is larger in the east-west component than in the north-south component. Furthermore, multistatation [Rostoker et al., 1979; Glassmeier, 1980; Hillebrand et al., 1982; Chisham et al., 1990] and radar [Poulter et al., 1983] observations established that giant pulsations propagate westward with an azimuthal wave number, \(m \) (where the phase variation of pulsation signals with longitude, \(\phi \), is expressed as \(e^{i\phi m} \)). From 16-35; they are larger in the east-west component than in the north-south component. Also note that odd (even-) mode waves as those having an antinode (node) of field line displacement at the equator. Also note that odd (even) modes are often referred to as symmetric (antisymmetric) waves, based on their symmetry of field line displacement about the equator. The field line displacement for the first four harmonics is illustrated in Figure 1.

Although it is generally believed that giant pulsations are a standing wave on geomagnetic field lines, the harmonic mode (or the symmetry) of the standing wave has not been determined conclusively. This is one reason why the generation mechanism of the pulsations has not been determined. For example, the drift bounce resonance mechanism previously invoked requires the standing wave to be an even mode [Glassmeier, 1980; Poulter et al., 1983; Glassmeier et al., 1990; Chisham et al., 1990; Chisham and Orr, 1991]. Note that for field lines fixed at the ionosphere we define odd-(even-) mode waves as those having an antinode (node) of field line displacement at the equator. Also note that odd (even) modes are often referred to as symmetric (antisymmetric) waves, based on their symmetry of field line displacement about the equator. The field line displacement for the first four harmonics is illustrated in Figure 1.

Previous studies used three different methods to infer the harmonic mode of giant pulsations. In the first method, ground magnetograms from north-south conjugate stations are compared and the phase lag of pulsation signals is determined. Using the string analogy of standing waves [Sigiuara and Wilson, 1964], one can then infer whether the pulsation is an odd mode.
or an even mode. An early study using near-conjugate ground stations found an event showing the north-south phase lag of an even mode [Annestad and Wilson, 1968]. However, in another study, Green [1979] concluded that two events had an odd-mode standing wave structure. Tonegawa and Sato [1987] also concluded that a giant pulsation had an odd-mode structure.

In the second method the period of the observed pulsation is compared with the periods of standing waves calculated for a model magnetosphere. Using this method, Green [1985] concluded that giant pulsations observed within the plasmasphere had an odd-mode (fundamental) structure. By contrast, for giant pulsations generated at $L = 6-8$, Chisham and Orr [1991] favor an even-mode (second harmonic) wave.

In the third method, spacecraft observations are used. Because the field line displacement is not a directly measurable quantity, one determines its symmetry from the associated magnetic field perturbation. In the inhomogeneous magnetosphere, compressional waves (fast mode) and transverse waves (Alfvén mode) are always coupled [e.g., Chen and Hasegawa, 1974; Southwood, 1974], so that the signatures of a standing wave appear in both the compressional and transverse magnetic field components. At the equator, for example, an odd-mode wave has a node of the transverse component and an antinode of the compressional component. The opposite occurs for an even-mode wave. Therefore, an equatorial satellite will observe an

TABLE 1. List of Ground Stations

<table>
<thead>
<tr>
<th>Station</th>
<th>Code</th>
<th>Geographic Latitude, deg</th>
<th>Geographic Longitude, deg</th>
<th>Geomagnetic Latitude, deg</th>
<th>Geomagnetic Longitude, deg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iceland/Antarctic Stations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Husafell</td>
<td>HUS</td>
<td>64.67</td>
<td>338.97</td>
<td>65.71</td>
<td>69.99</td>
</tr>
<tr>
<td>Isafjordur</td>
<td>ISA</td>
<td>66.08</td>
<td>336.87</td>
<td>67.59</td>
<td>69.49</td>
</tr>
<tr>
<td>Tjomes</td>
<td>TJO</td>
<td>66.20</td>
<td>342.88</td>
<td>66.67</td>
<td>74.36</td>
</tr>
<tr>
<td>Syowa</td>
<td>SYO</td>
<td>-69.00</td>
<td>39.58</td>
<td>-66.30</td>
<td>72.77</td>
</tr>
<tr>
<td>EISCAT Stations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soroya</td>
<td>SOR</td>
<td>70.54</td>
<td>22.22</td>
<td>67.13</td>
<td>107.71</td>
</tr>
<tr>
<td>Alta</td>
<td>ALT</td>
<td>69.86</td>
<td>22.96</td>
<td>66.40</td>
<td>107.61</td>
</tr>
<tr>
<td>Munio</td>
<td>MUO</td>
<td>68.01</td>
<td>23.33</td>
<td>64.50</td>
<td>106.45</td>
</tr>
<tr>
<td>Pello</td>
<td>PEL</td>
<td>66.90</td>
<td>24.08</td>
<td>63.34</td>
<td>106.04</td>
</tr>
<tr>
<td>Kilpisjarvi</td>
<td>KIL</td>
<td>69.05</td>
<td>20.70</td>
<td>65.71</td>
<td>105.16</td>
</tr>
<tr>
<td>Kevo</td>
<td>KGB</td>
<td>69.76</td>
<td>27.01</td>
<td>66.10</td>
<td>110.60</td>
</tr>
</tbody>
</table>

Fig. 2. Location of CCE foot points and the three ground stations in Iceland. The solid circles marked A through F are the CCE foot points for the time center of six transverse $Pc 4$ magnetic pulsations observed from CCE. The open circles indicate the three ground stations in Iceland. Two contours of constant magnetic latitude are drawn to indicate the separation between the foot points and the stations. The tick marks on the latitude contours indicate 10° intervals in geomagnetic longitude.
odd-mode wave as a purely compressional oscillation and an even-mode wave as a purely transverse oscillation. The only reported giant pulsation observed from a near-equatorial satellite (dipole latitude = -5°) showed a strongly compressional oscillation and the very small transverse amplitude was taken as evidence for an odd-mode standing wave [Hillebrand et al., 1982]. An equatorial compressional Pc 4 wave observed by the ATS 1 geostationary satellite (magnetic latitude ~ 2°) exhibited properties similar to those reported by Hillebrand et al. [1982], but whether the pulsation was a giant pulsation has not been discussed [Barfield et al., 1971; Lanerotti and Tartaglia, 1972]. Kokubun et al. [1989] also favor an odd-mode wave, but their satellite observations, made 10° away from the equator, give less conclusive information on the structure. Given these mixed results from ground and space observations, it is clear that more observations need to be made concerning the standing wave mode of giant pulsations.

In this paper we combine observations from the Active Magnetospheric Particle Tracer Explorers Charge Composition Explorer (AMPTE CCE) spacecraft and a number of ground stations to determine the standing wave mode of giant pulsations. To determine the mode structure, we use the third approach described above: an odd-mode standing wave will be observed as a purely compressional magnetic pulsation if CCE is located near the magnetic equator, while an even-mode wave will be observed as a purely transverse pulsation. The low inclination of the CCE orbit and its nearly continuous operation for over 4 years allow us to select a number of candidate events occurring near the geomagnetic equator. Ground observations are used to find whether a giant pulsation occurred on the ground when CCE observed a pulsation. The ground data are important because we do not know, a priori, how giant pulsations would appear in the magnetosphere. From the examination of the ground and satellite data presented here we conclude that giant pulsations have an odd-mode standing wave structure.

The organization of the paper is as follows. In section 2 we describe the magnetic field experiments. In section 3 we examine the relation between transverse magnetic pulsations observed at CCE and magnetic pulsations observed on the ground. In section 4 we examine the relation between compressional magnetic pulsations observed at CCE and magnetic pul-
Fig. 3b. Same as Figure 3a except for Pc 4 event B. Ground records are available from three stations.

The CCE spacecraft was in a low-inclination (5°) elliptical orbit with apogee of 8.8 R_E, perigee of 1.2 R_E, and an orbital period of 16 hours. The experimental details of the CCE magnetometer have been given by Potemra et al. [1985]. For the present study the original data sampled at 0.124-s intervals were averaged over the satellite spin period (~5.8 s) and were rotated into a local dipole field aligned system as described by Takahashi et al. [1990a]. In the local coordinate system, e_z is parallel to the local model magnetic field calculated from an Earth-centered dipole, e_y is perpendicular to the local dipole meridian and is directed eastward, and e_x is perpendicular to both e_y and e_z and is directed outward. The data were time differenced and plotted in hourly segments for the regions covering from $L \sim 2$ to $L \sim 7$ and for the entire CCE mission period from August 1984 to January 1989. The differencing procedure is approximately equivalent to passing the magnetic field time series through a high-pass filter with a frequency response similar to that of induction magnetometers [Takahashi et al., 1990a].

Magnetic field data from stations in Antarctica and Iceland were used to search for giant pulsations. The data were acquired with three-component search coil magnetometers installed at Syowa in Antarctica and at Husafell, Isafjordur, and Tjornes in Iceland. Digital records from the magnetometers, sampled at 2-s intervals, are used in the present study. See Sato et al. [1984] for the details of the magnetometer experiments.

Data from the European Incoherent Scatter Radar (EISCAT) magnetometer cross are also used for one giant pulsation event. The EISCAT magnetometer cross consists of seven stations in northern Scandinavia. The instruments are digitally recording flux gate magnetometers with a resolution of 1 nT and a sample rate of one per 20 s [Lühr et al., 1984]. Data shown here have been high-pass filtered with a -3 dB cutoff at
300 s. The magnetic local time of the stations is about 2.5 hours ahead of universal time (LT = UT + 2.5).

The location of the ground stations are listed in Table 1. The geomagnetic coordinates are obtained using the definition of Baker and Wing [1989]. For the ground magnetic field records we use the usual geomagnetic HDZ coordinates, where \(H \) is the northward component, \(D \) is the eastward component, and \(Z \) is the vertical component.

3. TRANSVERSE PULSATIONS AT CCE

In this section we examine whether equatorial transverse magnetic pulsations seen at CCE are observed as giant pulsations on the ground. In the first step of this analysis, we visually examined the hourly plots of the time-differenced CCE magnetic field data for transverse Pc 4 pulsations. We focused on the time intervals when the satellite was within 5° of the dipole equator and was also close to Syowa and Iceland both in local time (within ~1 hours) and in \(L \) (within ~1 \(R_E \)). From this survey we found six clear transverse Pc 4 events, which we call events A through F.

Figure 2 shows the location of the ground stations in Iceland and the CCE magnetic field foot points at the midpoints in time of the events as observed at CCE. The foot points, given at 100 km altitude, were determined using Tsyganenko’s [1987] magnetic field model for \(Kp = 0 \). Two contours of constant magnetic latitude are also drawn using the geomagnetic coordinates of Baker and Wing [1989]. The CCE foot points are either in Iceland or in its immediate vicinity. All the foot
points were within 3° of the center of the island in magnetic latitude and within 10° in magnetic longitude.

Figures 3a to 3f show the magnetic field data for the six events. The magnetic field components at CCE are in the top panel and the magnetometer data from the Syowa and the three Iceland stations are in the middle and bottom panels respectively. The location of CCE is shown above the top panel. For CCE we plotted the time derivative (B_{i+1} - B_i)/2\pi\Delta t of the original time series, where B_i is the ith data point and \Delta t is the data sampling interval (5.83 s). This is done in order to make the CCE data compatible with the ground records. We can recover the amplitude of a magnetic pulsation (in nanoteslas) by dividing the amplitude (in nanotesla hertz) of the time derivative time series by the frequency (in hertz) of the pulsation. See Table 2 for the summary of the satellite location and wave properties.

At CCE all the events show an almost purely transverse oscillation, with a large amplitude in B_x but also with an appreciable perturbation in B_y. Because the spacecraft was very close to the equator, with a dipole latitudes of less than 2° for five events and ~5° for one event, we interpret the transverse nature of the pulsation as the consequence of an even-mode standing wave structure. Previous studies of similar events also concluded that radially polarized equatorial pulsations had an even mode structure, on the basis of their frequency [Singer et al., 1982], amplitude variation with latitude [Anderson et al., 1990], and the related ion flux modulations [Takahashi et al., 1990b].

From visual examination of the ground records in Figure 3 it is evident that there is no clear indication of a giant pulsation. A giant pulsation would have been detected as a highly sinusoidal oscillation in the D component. To strengthen this statement we examine event C, which shows simultaneous pulsation activity at CCE and on the ground. We compare in Figure 4 the waveforms and power spectra of B_x at CCE and D at HUS for this event. Although the oscillation on the ground contains strong spectral power in the Pc 4 band, its waveform is quite irregular in comparison with the Pc 4 pulsation in the magnetosphere, and its power spectrum does not exhibit a sharp spectral peak that is expected for a giant pulsation. The ground-satellite correlation for the other five events is far
worse than this event. Therefore, we conclude that there is no evidence in our data set that even-mode standing waves are related to giant pulsations.

We believe that in each event the ground stations were sufficiently close to the CCE foot point to ensure detection of giant pulsations. Although giant pulsations are known to be highly localized in latitude, they still produce observable ground-level signals over ~5° of latitude [Veldkamp, 1960; Saito, 1969]. Because the foot points of CCE at the time center of each event was located within 3° (in geomagnetic latitude) of at least one of the ground stations, any giant pulsation occurring on the CCE magnetic field line should have been observed at least at one station. This statement is not altered even when the CCE foot points are calculated for $Kp > 5$ instead of $Kp = 0$. For the higher Kp range the foot point is shifted to geomagnetic south only by 0.9 to 1.7°. Since all the transverse Pc 4 events were observed when $Kp \leq 3$, the latitudes of the foot points probably did not differ from those illustrated in Figure 2 by more than 1°.

The null result of the above analysis is consistent with the general feature of radially polarized transverse magnetic pulsations known from previous studies. First of all, the waves tend to occur more often in the afternoon sector than in the morning sector [Arthur and McPherron, 1981; Takahashi and McPherron, 1984; Anderson et al., 1990]. This occurrence distribution is inconsistent with giant pulsations, which occur preferentially on the morning side [e.g., Green, 1979]. Second, the waves likely have a large azimuthal wave number, $m = O(100)$. Evidence for the wave number comes from multisatellite coherency analysis [Hughes et al., 1978] and from the analysis of ion flux oscillations associated with a magnetic pulsation [Takahashi et al., 1990b]. Because the ionosphere masks pulsations with such a large m [Hughes and Southwood, 1976a,b], it would be surprising if the waves were detected on the ground. Similar arguments have been presented by Kokubun [1980] and by Kokubun et al. [1989] based on observations with geostationary satellites.

To summarize, no giant pulsations were observed on the ground during the time intervals when CCE observed a transverse Pc 4 wave near the geomagnetic equator and on the field...
Fig. 3f. Same as Figure 3a except for Pc 4 event F. Ground records are available from four stations.

4. Compressional Pulsations at CCE

In an effort to find symmetric standing waves, we did a similar survey of compressional Pc 4 pulsations occurring near the magnetic equator and near the magnetic field lines connected to the Syowa and Iceland stations. Compared with transverse pulsations, the occurrence of nearly monochromatic and strongly compressional Pc 4 pulsations was found to be infrequent. Therefore we have relaxed the local time limits of the satellite to within ~3 hours of the ground stations while keeping the dipole latitude of the satellite within 5° and L shell within 1 R_E of the ground stations. One reason for the extended local time limits is the previous observation that giant pulsations can have a local time extent of 2 hours or longer [e.g., Veldkamp, 1960]. In this survey, five candidate Pc 4 events were found. Three of these had a corresponding pulsation signature on the ground, but only one event could be unambiguously identified as a giant pulsation from the ground records.

In the following subsections we will focus on the giant pulsation event, which occurred on February 20, 1985. We will first demonstrate that the event on the ground was indeed a giant pulsation and then describe the pulsation properties at CCE. The location of the CCE foot point and ground stations for the giant pulsation event are illustrated in Figure 5. At 1000 UT, the approximate time center of the giant pulsation, the magnetic local time was 7.2 hours at CCE, 9.8 hours at Iceland, and 12.2 hours at the EISCAT magnetometer cross.
TABLE 2. Characteristics of Transverse Pc 4 Waves Observed From CCE

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
<th>Time, UT</th>
<th>R^*</th>
<th>MLAT,*</th>
<th>MLT,*</th>
<th>B_x Amplitude, nT</th>
<th>Period, s</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Aug. 25, 1984</td>
<td>1610</td>
<td>6.2</td>
<td>0.8</td>
<td>16.2</td>
<td>2</td>
<td>48</td>
</tr>
<tr>
<td>B</td>
<td>Sept. 28, 1984</td>
<td>1420</td>
<td>6.1</td>
<td>-0.5</td>
<td>14.7</td>
<td>0.5</td>
<td>49</td>
</tr>
<tr>
<td>C</td>
<td>Dec. 20, 1984</td>
<td>1040</td>
<td>5.9</td>
<td>-0.5</td>
<td>10.7</td>
<td>4</td>
<td>90</td>
</tr>
<tr>
<td>D</td>
<td>Oct. 20, 1985</td>
<td>1440</td>
<td>5.8</td>
<td>1.4</td>
<td>14.7</td>
<td>3</td>
<td>90</td>
</tr>
<tr>
<td>E</td>
<td>May 26, 1987</td>
<td>1150</td>
<td>6.4</td>
<td>0.0</td>
<td>12.1</td>
<td>2</td>
<td>93</td>
</tr>
<tr>
<td>F</td>
<td>Mar. 8, 1988</td>
<td>1720</td>
<td>5.9</td>
<td>3.9</td>
<td>17.4</td>
<td>5</td>
<td>120</td>
</tr>
</tbody>
</table>

* R, MLAT, and MLT are the geocentric distance, magnetic latitude, and the magnetic local time of the satellite.

4.1. Geomagnetic Background for the February 20, 1985, Event

Figure 6 shows the AE index for the 1-day interval including the giant pulsation event. The geomagnetic activity was fairly high throughout the first half of the day. The Kp index also showed a higher geomagnetic activity in the first half of the day. At 1000 UT the value of Kp was 2+. There was no satellite observation of the solar wind at the time of the giant pulsation.

Figure 7 shows the magnetic field and particle data [McEntire et al., 1985] from CCE. The pulsation event (indicated by vertical dashed lines) was preceded by moderately enhanced geomagnetic activity as seen in the ion injections at 0630 UT and 0800 UT. However, there is no evidence of local particle flux enhancement at the time of the pulsation. The pulsation event cannot be seen in these magnetic field data because they were averaged to 68-s time resolution.

4.2. Ground Magnetograms for the February 20, 1985, Event

Waveform. Figures 8 and 9 show the magnetic field data from the ground stations. At the Syowa and Iceland stations (Figure 8) a giant pulsation is observed from 0940 to 1030 UT.
Fig. 5. Location of the CCE foot points and ground stations for the giant pulsation event on February 20, 1985. The format is the same as in Figure 1, except for additional stations of the EISCAT magnetometer cross. The conjugate point of SYO is also indicated by a solid circle marked SYO*. The arrows indicate the motion of the CCE foot points for the time interval 0900-1000 UT obtained from the Tsyganenko [1987] model field for the two activity levels $Kp = 0$ (open arrow) and $Kp > 5$ (solid arrow).

The average period of the oscillation is 90 seconds. The overall amplitude maximum (0.3 nT Hz, or 27 nT peak to peak at 90-s period) occurred in D of the lowest latitude station, HUS ($L = 5.99$). At the EISCAT magnetometer cross a similar pulsation is observed. Because the EISCAT stations are located about 30° east of Iceland, the data imply that the pulsation was extended at least 30° in longitude. The amplitude is larger in D than in H, especially at PEL where the amplitude is maximized.

Latitude dependence of amplitude and ellipticity. Figure 10 shows the latitude profile of the power spectral density and the ellipticity of the pulsation signal calculated separately for the EISCAT and Iceland station groups. The spectral density is represented by the trace of the horizontal power, which is normalized to the maximum power observed in each set of the stations. The ellipticity is defined in such a manner that 1 means clockwise circular polarization on the horizontal plane as viewed from above, 0 means linear polarization, and -1 means counterclockwise circular polarization. These spectral parameters are evaluated at the frequency center, 11 mHz, of the pulsation signal. The power density is highest near 63° ($L \sim 4.9$) and at this latitude the sign of the ellipticity changes from negative at lower latitudes to positive at higher latitudes. These features are consistent with previous multistation observations of giant pulsations [Rostoker et al., 1979; Glassmeier, 1980; Hillebrand et al., 1982; Chisham et al., 1990].

Azimuthal wave number. Using multiple ground stations, we can determine the azimuthal wave number of the pulsation. Since we do not have stations located at exactly the same latitude, we need to take into account a possible latitudinal phase variation in evaluating the azimuthal wave number. As a simple approach to this problem we adopt a method used by Tonegawa and Sato [1987]. In that method the phase of a pulsation signal is assumed to change linearly both in latitude (λ_i) and in longitude (ϕ_i), i.e., as $\exp[i(\lambda_i + m\phi_i)]$. The horizontal phase variation is then determined by solving the equation

$$\Phi_j - \Phi_i = \kappa \cdot (r_j - r_i)$$

(1)

where Φ is the phase of the oscillation in a magnetic field component (H or D), $\kappa = (l, m)$ is the dimensionless horizontal wave vector, and $r = (\lambda_i, \phi_i)$ gives the geomagnetic latitude and the longitude of a station. The subscripts, i and j designate a station pair. For each of the magnetic field components, data from three stations yield a unique value of κ because equation (1) gives three scalar equations but only two of them are independent.

Fig. 6. AE index for a 1-day interval including the giant pulsation event on February 20, 1985.
Since pulsation signals do not in general represent a plane wave, caution must be exercised in interpreting the "wave numbers" derived from this equation. That is, the latitudinal wave number is likely related to a latitudinal field line resonance [e.g., Hughes and Southwood, 1976b], which does not in general exhibit a linear phase variation. Also, the latitudinal phase variation may differ for different magnetic field components. On the other hand, because pulsation signals very likely propagate azimuthally, the azimuthal wave number derived from (1) would have the usual meaning for a propagating wave.

We have calculated the value of \(I \) and \(m \) from the relative phase of the \(D \) component pulsation seen at the three stations in Iceland and also at the three stations KIL, ALT, and KEV in the EISCAT magnetometer cross. All these stations were located northward of the inferred latitude of the amplitude maximum. The time interval used is 0940–1000 UT for the Iceland stations and 0940–1020 UT for the EISCAT stations. The magnetic records from the station at the intermediate longitude (HUS in Iceland and ALT in the EISCAT magnetometer cross) were used as reference time series, and the phase lag was defined within the range of \(-180^\circ\) to \(180^\circ\). The phase lag was estimated at the frequency, 11 mHz, of the giant pulsation, using the standard fast Fourier transform of two-component time series [Bendat and Piersol, 1971]. We used smoothed cross spectra (number of degrees of freedom = 6) throughout. For the former station group we obtained \(I = -4 \) and \(m = -36 \) and for the latter \(I = 7 \) and \(m = -25 \), where the negative sign means southward phase propagation for \(I \) and westward phase propagation for \(m \).

The small values of \(I \) mean a slow latitudinal phase variation, which has been observed previously [e.g., Glassmeier, 1980]. The sign and the magnitude of \(m \) are also consistent with previous observations [Rostoker et al., 1979; Glassmeier, 1980; Hillebrand et al., 1982; Poulter et al., 1983; Chisham et al., 1990], although an azimuthal wave number of \(-36\) appears to be at the higher end of previously observed values. The different azimuthal numbers obtained from the two station sets imply that the wavelength of the pulsation varied with latitude, because the pulsation periods were almost identical at the two locations.

To summarize the ground observations, the \(\text{Pc} 4 \) pulsation observed on February 20, 1985 had the properties of a giant pulsation.

4.3. CCE Magnetic Field Data for the February 20, 1985, Event

Figure 11 shows the magnetic field data from CCE along with selected ground stations. Both the raw magnetic field record and its time derivative are shown for CCE. From 0940 to 1000 UT a strongly compressional oscillation was present at CCE. Its period is 88 s, which is in exact agreement with the period observed at the Syowa and Iceland stations for the same interval. The amplitude is 1–2 nT peak to peak, which is smaller than the \(D \) component amplitude on the ground by a factor of 10–20.

The time series plots and power spectra of the CCE \(B_z \) component and the HUS \(D \) component are shown in Figure 12.
Fig. 9. Magnetic field variations observed by flux gate magnetometers at six EISCAT magnetometer cross stations for the giant pulsation event on February 20, 1985. The data have been high-pass filtered with a cutoff of -3 dB at 300 s and are plotted in 20-s intervals.

Note that the spectral peaks of the oscillations occur at the same frequency at the two locations and that the relative phase of the oscillations is maintained constant for the 25-min interval illustrated. On the basis of this high degree of correlation we conclude that the spacecraft and the ground station observed the same phenomenon even though the observing points were separated by 2.6 hours in magnetic local time. Most importantly, since the spacecraft was only 4.7° north of the dipole equator, we conclude that the strong compressional component is the consequence of an odd-mode standing wave.

Our observation is consistent with that made by Hillebrand et al. [1982]. They showed that the magnetospheric signal corresponding to a well-defined giant pulsation on the ground was a strongly compressional magnetic perturbation with a period of 90 s and a peak-to-peak amplitude of 1–2 nT, all quite similar to the February 20, 1985, event observed from CCE. Also the location of their satellite (ATS-6), $R = 6.6 R_E$, MLAT = −5°, and MLT = 6 hours, was very close to that of ours, $R = 6 R_E$, MLAT = −5°, and MLT = 7 hours. This similarity in satellite observations, combined with the null results obtained in section 3, gives us a very strong basis for suggesting that giant pulsations as seen in the magnetosphere and near the magnetic equator are a small-amplitude ($\Delta B/B \sim 1\%$) compressional pulsation, rather than a transverse pulsation. If the pulsations have a standing wave structure along the geomagnetic field lines, then the presence of almost purely compressional oscillations together with the lack of transverse oscillations implies an odd-mode structure.

5. DISCUSSION

In this section we compare our results with previous results and discuss possible generation mechanisms of giant pulsations.

5.1. North–South Conjugacy

Our conclusion is in conflict with some ground-based observations of the harmonic mode of giant pulsations. We would like to comment on whether reliable results can be obtained from conjugate ground observations. If the stations are in exact conjugacy it is easy to determine the mode: for an odd-mode wave there will be a 180° north-south phase lag in D, while for an even-mode wave there will be no phase lag. In reality, however, stations are not in exact conjugacy, and because the phase of a giant pulsation changes with longitude, one has to be careful in discussing the north-south phase lag. If we take the azimuthal wave number of −36 as was measured at Iceland for the February 20, 1985, giant pulsation, the phase changes 360° over a longitudinal distance of 10°. Therefore, in order to deduce a correct standing wave mode without compensating for the azimuthal phase variation, one needs to have stations separated by less than 2.5°, which corresponds to a phase lag of...
5.2. Plasma Density and Pulsation Periods

Chisham and Orr [1991] discussed the relation between the period of giant pulsations and expected ranges of equatorial mass densities and came to the conclusion that the pulsations had a period corresponding to the second-harmonic standing Alfvén waves. If the giant pulsations observed at $L = 6 - 8$ had an odd-mode (fundamental) structure, then the equatorial mass density needed to be about 1 order of magnitude lower than that expected.

We would like to make two comments on their analysis. One is that the range of the mass densities was estimated from the observed periods of pulsations [Poulter et al., 1984] which were not giant pulsations. Therefore, the density range does not necessarily reflect the geomagnetic condition under which giant pulsations are excited. Giant pulsations are a rare phenomenon, so the equatorial mass density might be unusually low when giant pulsations are excited. We emphasize that there has been no in situ measurement of the mass density during a giant pulsation event.

Fig. 11. Comparison of magnetic field data from CCE and selected ground stations for the giant pulsation event on February 20, 1985. To make ground-satellite comparison easy, both the raw time series and its time derivative are shown for CCE.
Another comment is that the pulsation periods of Chisham and Orr [1991] do not exclude the possibility of third-harmonic standing waves. Since the frequency ratio of the third harmonic to the second harmonic is roughly 1.6 [Cummings et al., 1969], the equatorial density corresponding to the assumption of a third harmonic is only by a factor of 2.6 (=1.6^2) higher than the density corresponding to the assumption of a second harmonic. Equatorial mass densities higher by this factor are within the allowed range as discussed by Chisham and Orr.

There is some evidence supporting the third-harmonic standing wave structure for the February 20 event. In the records from the EISCAT magnetometer cross (Figure 9), the H component shows a Pc 5 pulsation from 0900 to 0930 UT. Note that in this time interval the giant pulsation was already present (see the D component variation at PEL), implying that two waves from different origins coexisted on the same field line. From the strong north-south perturbation of the Pc 5 oscillation we suggest that it was a standing Alfvén wave excited by an external source. If that is the case, then it is most likely that the wave was a fundamental mode and its period, 200-300 s, implies that the giant pulsation (period ~ 90 s) was excited at the third harmonic. Note that a fundamental period around 300 s has often been observed at L = 6 - 7, for example with the STARE (Scandinavian twin auroral radar experiment) radar [Walker et al., 1979] and with the GEOS 2 electric field experiment [Junginger et al., 1984].

5.3. Excitation Mechanism for Giant Pulsations

Brief comments are made here on previously suggested generation mechanisms for giant pulsations.

Ion resonance with standing Alfvén waves. Energetic ions in the ring current can excite standing Alfvén waves through drift bounce resonances

\[\omega - m_\omega d = N\omega_b \]

where \(\omega \) is the frequency of a standing wave, \(\omega_d \) and \(\omega_b \) are the magnetic drift and bounce frequencies of trapped ions, and \(N \) is an integer. Theoretical analyses indicated that an instability most likely generates an even-mode standing wave through the \(N = \pm 1 \) resonances [Southwood, 1976; Chen and Hasegawa, 1988, 1991]. This mechanism has been suggested to be applicable to giant pulsations [Glassmeier, 1980; Poulter et al., 1983; Glassmeier et al., 1990; Chisham et al., 1990; Chisham and Orr, 1991]. However, we conclude that this is not the case because our observations indicate that giant pulsations are odd-mode standing waves. If the resonant excitation is applicable to odd-mode standing waves, then the resonance must occur at an even \(N \).

Drift wave instability. Green [1979, 1985] suggested the drift wave instability of a compressional mode [Hasegawa, 1971] as a source for giant pulsations. The instability is excited in a plasma with mixed cold and hot components such as in the plasmasphere. In Hasegawa's theory a slab geometry was used and no consideration was given to the coupling of the mode to a standing Alfvén wave. However, Cheng and Lin [1987] discussed the compressional mode using a realistic field geometry and concluded that the compressional mode has an odd-mode standing wave structure. Therefore, the drift wave instability remains a candidate for the origin of giant pulsations.

6. Conclusion

We have used satellite observations to determine the standing wave mode of giant pulsations. Our method is simply to examine whether the transverse (or compressional) magnetic field component has a node at the magnetic equator. This is the most direct and reliable method for determining the harmonic...
mode. Although we were able to positively determine the harmonic mode to be odd for only one giant pulsation event, the null result for even-mode waves substantially strengthens our conclusion that giant pulsations are in general an odd-mode standing wave. One important consequence is that the $N = \pm 1$ drift bounce resonance cannot be applied to giant pulsations. While second-harmonic standing Alfvén waves are quite often observed from spacecraft and they are likely generated by the $N = \pm 1$ resonance mechanism [Takahashi et al., 1990b], these waves are not the source of giant pulsations observed on the ground. If one wishes to apply drift bounce resonance to giant pulsations one needs to consider the $N = 0, \pm 2, \pm 3$, resonances. Of course, other mechanisms including the drift wave instability were not eliminated from our analysis, and they require further analysis. Tests of various generation mechanisms using CCE particle data [Shelley et al., 1985; Gloeckler et al., 1985] will be an interesting subject for the future work.

Acknowledgments. One of the authors (K.T.) is grateful to D. Orr and D. Simmons for their help in the search for giant pulsations and to K. Baker for his help in calculating geomagnetic coordinates; he is also grateful to L. Chen and R. Sheldon for valuable comments and to B. Anderson for carefully reading the final draft. The EISCAT magnetometer cross is a joint enterprise of the Finnish Meteorological Institute, the Sodankylä Geophysical Observatory, and the Technical University of Braunschweig. The AE index was provided by the Data Analysis Center for Geomagnetism and Space Magnetism, Kyoto University. The particle data used in Figure 7 were made available by the US Air Force System Command's effort of the CCE particle experimenters (R. McEnfire, principal investigator). Work at The Johns Hopkins University Applied Physics Laboratory was supported by the U.S. Air Force System Command. The Editor thanks C. A. Green and J. C. Samson for their assistance in evaluating this paper.

References

Green, C. A., Observations of Pg pulsations in the northern auroral zone and at lower latitude conjugate regions, Planet. Space Sci., 27, 63, 1979.

Shelley, E. G., A. Ghicinetti, E. Hertzberg, S. J. Battel, K. Alwegg-

H. Lühr and J. Warnecke, Institut für Geophysik und Meteorologie, Technische Universität Braunschweig, Mendelssohnstrasse 3, 3300 Braunschweig, Germany.

H. E. Spence, Space and Environment Technology Center, The Aerospace Corporation, M2-260, P.O. Box 92957, Los Angeles, CA 90009.

K. Takahashi, Applied Physics Laboratory, The Johns Hopkins University, Johns Hopkins Road, Laurel, MD 20723-6099.

Y. Tonegawa, Department of Aeronautics and Astronautics, Tokai University, Hiratsuka 259-12, Japan.

(Received October 7, 1991; revised February 6, 1992; accepted February 6, 1992.)