Spatiotemporal studies of black spruce forest soils and implications for the fate of C

Jennifer Harden
USGS

Kristen L. Manies
USGS

Jonathan O'Donnell
University of Alaska, Fairbanks

Kristofer Johnson
University of Alaska, Fairbanks

Steve Frolking
University of New Hampshire - Main Campus, steve.frolking@unh.edu

See next page for additional authors

Follow this and additional works at: https://scholars.unh.edu/earthsci_facpub

Recommended Citation
Authors
Jennifer Harden, Kristen L. Manies, Jonathan O'Donnell, Kristofer Johnson, Steve Frolking, and Zhaosheng Fan

This article is available at University of New Hampshire Scholars' Repository: https://scholars.unh.edu/earthsci_facpub/276
Spatiotemporal analysis of black spruce forest soils and implications for the fate of C

Jennifer W. Harden,1 Kristen L. Manies,1 Jonathan O’Donnell,2 Kristofer Johnson,2,3 Steve Frolking,4 and Zhaosheng Fan5

Received 28 July 2011; revised 2 November 2011; accepted 11 November 2011; published 10 February 2012.

Post-fire storage of carbon (C) in organic-soil horizons was measured in one Canadian and three Alaskan chronosequences in black spruce forests, together spanning stand ages of nearly 200 yrs. We used a simple mass balance model to derive estimates of inputs, losses, and accumulation rates of C on timescales of years to centuries. The model performed well for the surface and total organic soil layers and presented questions for resolving the dynamics of deeper organic soils. C accumulation in all study areas is on the order of 20–40 gC/m² yr for stand ages up to ~200 yrs. Much larger fluxes, both positive and negative, are detected using incremental changes in soil C stocks and by other studies using eddy covariance methods for CO₂. This difference suggests that over the course of stand replacement, about 80% of all net primary production (NPP) is returned to the atmosphere within a fire cycle, while about 20% of NPP enters the organic soil layers and becomes available for stabilization or loss via decomposition, leaching, or combustion. Shifts toward more frequent and more severe burning and degradation of deep organic horizons would likely result in an acceleration of the carbon cycle, with greater CO₂ emissions from these systems overall.

1. Introduction

High northern latitude soils contain 50% of the world’s soil organic carbon (C) [McGuire et al., 2009; Tarnocai et al., 2009], much of it stored in the organic layers of subarctic boreal forests and peatlands. In boreal forests, large changes in soil C stocks occur when fire consumes these organic horizons [Kasischke and Johnstone, 2005]. Burning is typically followed by a gradual accumulation of the shallow organic layer. Given the role of boreal forests in the global climate system [Chapin et al., 2000], it is essential to quantify C fluxes over timescales of stand replacement [Bhatti et al., 2003; Kashian et al., 2006]. Although recent research has studied the amounts of C released from boreal fires [e.g., Flannigan et al., 2009; Turetsky et al., 2011], fewer empirical studies have focused on the accumulation of soil C following fire [e.g., Camill et al., 2009; Trumbore and Harden, 1997]. Therefore, modeling efforts typically rely on sparse data from only one region or site when modeling C cycling of boreal forests in response to fire.

Soil carbon is recognized and modeled as a mixture of dynamic and static pools that are typically represented by a mixture of these pools within a set depth [Parton et al., 1994] or by using temporal vegetation shifts that impact the soil pools [Trumbore et al., 1995]. Northern soils, however, present a rather different physical and biogeochemical structure because of the upward accumulation of organic horizons, a structure that challenges the concept of separate C pools of a fixed depth or with fixed mixtures of substrate inputs. Moreover, the upward accumulation of organic horizons exerts major feedbacks on soil thermal properties and the ground temperature regime [O’Donnell et al., 2009]. Therefore, in boreal forest soils, carbon turnover and decomposition change with respect to both pool dynamics and to vertical structure as it changes over the course of stand replacement.

Models for soils and ecosystems have been greatly improved by chronosequence studies in which space-for-time substitutions apply to both landform [Viereck, 1970] and fire [Bond-Lamberty et al., 2004]. Our understanding of spatiotemporal variations of soil and vegetation C of boreal forests has expanded as well because of the combination of spatial and temporal variations nested in the chronosequence design. Detecting changes in soil C stocks over time, however, is a challenge because of spatial variation in both the local and landscape-scale features that govern soil C storage and because of historical variations in other variables not shared by all sites. For example, spatial variation of C stocks

Copyright 2012 by the American Geophysical Union.
0148-0227/12/2011JG001826
in black spruce forests are related to soil drainage class (including the presence of permafrost), topography, burn intensity, vegetation class, and the timing of previous burns [Johnson et al., 2011; Mack et al., 2008; Turetsky et al., 2005; Yi et al., 2009]. While some studies have recognized the near-constant rate of C accumulation in post-fire soil organic layers [Kane and Vogel, 2009; O’Neill et al., 2006; Turetsky et al., 2011], few studies have addressed whether accumulation is generalizable or whether spatial variations are too great to detect such a signal in soil C stocks. Moreover, if our goal is to better understand how C accumulation is linked to the dynamics of succession and regrowth, then capturing attributes of depth, input, and loss in our analysis is also important.

In order to improve estimates for carbon uptake and loss in response to disturbance across the North American boreal forest biome, four soil chronosequences of fire disturbance were established in Alaskan and Canadian boreal forests to constrain C accumulation in shallow and deep organic-soil horizons. Soil C stocks (in gC/m²) were calculated for soil horizons above the charred layer, reflecting organic C accumulation since the time of burn, herein called shallow C or Cₛ (Figure 1). Soil C that remained post-fire is referred to as deep C or Cₘ (Figure 1), with the total sum of shallow and deep organic-layer C referred to as total C or Cₜₒˡ. These data were input into a simple mass balance model and used to constrain long-term inputs and losses to Cₛ, Cₘ, and Cₜₒˡ. Our objectives were to robustly quantify post-fire C accumulation in the context of Cₛ and Cₘ; to compare our stock-based rates of C exchange to rates based on other methods of estimating C accumulation and loss in these ecosystems; and to improve upon our understanding of soil C and its fate at a variety of temporal and spatial scales.

2. Methods

2.1. Study Area and Site Descriptions

Fire chronosequences, in which black spruce (Picea mariana (Mill.) BSP) ecosystems had stand-replacing fires at various times in the past, were identified and sampled in four study areas in Alaska, USA, and Manitoba, Canada (Figure 2). The Thompson, Manitoba, study area is located within the northern study area (NSA) of the Boreal Ecosystem Atmosphere Study (BOREAS) [Sellers et al., 1997] and represents sites of a subsequent study (FIRES-ExB) of black spruce/feathermoss stands in various stages of recovery from stand-replacing fires. The Hess Creek study area is located in interior Alaska approximately 150 km north of Fairbanks and is underlain by ice-rich eolian silt of the Pleistocene [O’Donnell et al., 2011]. The Delta Junction study area is located on flat to nearly flat glaciofluvial and eolian deposits approximately 150 km southeast of Fairbanks [Péwé and Holmes, 1964]. The Taylor Highway study area is located in interior Alaska, north of the city of Tok, where parent material consists of metamorphic rocks on steeper topography.

Data were collected from 316 profiles covering 24 stand ages over nearly 200 yrs (see Table S3 in Text S1 of the auxiliary material). For each study area at least five ages since time of last burn, which varied from <1 yr to >100 yrs,
were sampled. Study areas varied in climate, topography, soil drainage class, and parent material (Table 1). In study areas with slopes >5% (Hess Creek and Taylor Highway), sampling sites were located on north-facing slopes with the exception of one Hess Creek profile, which was located on a south-facing slope. In all study areas, mosses and forbs colonized stands <5 yrs post-fire; black spruce and mosses dominated the vegetation of mature stands [Bond-Lamberty et al., 2002; Mack et al., 2008]. The vegetation of mid-successional stands (10–100 yrs in age) varied in the amount of deciduous tree and moss type. NPP was characterized at Delta Junction, AK [Mack et al., 2008], and Thompson, Manitoba [Bond-Lamberty et al., 2004], and ranged from about 150 to 300 gC/m²/yr in mature stands in both study areas. Eddy covariance was measured over a 3 yr period at the Thompson study area [Goulden et al., 2006] and over a 1–2 yr period for two sites in the Delta Junction study area [Welp et al., 2007].

2.2. Carbon in Shallow, Deep, and Total Organic Layers

At each site we described and measured the thickness of organic-soil layers within a soil profile along linear transects (using the nomenclature of Manies et al. [2004]), with plots spaced every 5–20 m depending on the extent of the stand and the heterogeneity of vegetation. Additionally, over one third of these profiles were sampled for bulk density and chemical characterization. For profiles described but not sampled, we developed linear regression models for predicting soil C storage (gC/m²) on the basis of organic layer thickness (cm) for each horizon type using data from the Thompson, Hess, and Delta Junction study areas (see Text S1 in the auxiliary material). Observed versus predicted regressions of soil organic C from withheld observations (25% of data) resulted in R² values from 0.73 to 0.93 (Table S1 in Text S1), demonstrating that our predictive equations function well for estimating C storage from field descriptions. For all profiles, we calculated cumulative C storage in total organic layers (C_{tol}), and where possible we calculated C storage in the shallow layers above the uppermost charcoal layer (C_s) and the deep organic layers below the uppermost charcoal layer (C_d). We infer that C_s is a measure of carbon accumulated since the last burn and that C_d is, initially, a measure of unburned detritus accumulated over previous burns (Figure 1).

Where between-area comparisons were made, we generalized time since fire into five categories, 0–14, 15–49, 50–99, 100–149, and 150–200 yrs. Analysis of variance (ANOVA) tests were run in Statistica (version 7.1, StatSoft Inc., Tulsa, Okla.) using the Fisher Least Significant Difference test to evaluate significant differences among means. Generalized models for annual rates of carbon recovery over the time span of the chronosequence were estimated from the following simple first-order equation for the soil:

\[\frac{dC}{dt} = I - kC, \]

where \(\frac{dC}{dt} \) is net carbon exchange (gC/m²/yr), \(I \) is the C input to the system (gC/m²/yr), \(t \) is time (yr), and \(k \) is a decomposition coefficient (yr⁻¹). \(C \) is the soil C stock in gC/m² [Harden et al., 1997]. We solved equation (1) for each site individually and all sites combined for \(C_s \), \(C_d \), and \(C_{tol} \) using plots of C against stand age (time-since-fire). The best fits were for \(C_s \) and \(C_{tol} \) (see auxiliary material for \(C_d \) information). For \(C_s \), equation (1) was solved by plotting \(C_s \) (gC/m²) against stand age (time since fire in yrs) while assuming the intercept is zero:

\[C_s(t) = I_s/k_s(1 - e^{-k_s t}). \]

This approach is a single-pool model of soil carbon for \(C_s \), the recovered organic layer after fire, and it does not include organic C in the below-char organic or mineral layers, nor does it partition C into fast and slow pools. For total C (C_{tol}), equation (1) was solved by plotting \(C_{tol} \) (gC/m²) against stand age (yr), but we did not assume the intercept to be zero (\(C_o > 0 \))

\[C_{tol} = I_{tol}/k_{tol}(1 - e^{-k_{tol} t}) + C_o e^{-k_{tol} t}. \]

Therefore, \(C_o \) represents the unburned organic soil at the time of the fire (\(C_d \) at time 0). Inputs (I_{tol}) were constrained to be \(\geq I_s \). This approach is also a single-pool model of soil C but does not include organic C in mineral soil horizons.

Model fits for equations (2) and (3) were generated by TableCurve 2D (version 5.01, Systat, Inc., San Jose, Calif.),

Table 1. Site Characteristics of Four Black Spruce Chronosequences in Alaska and Manitoba

<table>
<thead>
<tr>
<th>Site Characteristics</th>
<th>Delta Junction, AK</th>
<th>Hess Creek, AK</th>
<th>Taylor Highway, AK</th>
<th>Thompson, MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of soil profiles</td>
<td>77</td>
<td>89</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Latitude (°N)</td>
<td>63.9</td>
<td>65.6</td>
<td>63.4</td>
<td>55.9</td>
</tr>
<tr>
<td>Elevation (m)</td>
<td>429</td>
<td>289</td>
<td>867</td>
<td>259</td>
</tr>
<tr>
<td>Slope (%)</td>
<td>0–2</td>
<td>3–9</td>
<td>6–9</td>
<td>0–3</td>
</tr>
<tr>
<td>Mean summer temperature (°C) ‡</td>
<td>13.5</td>
<td>13.8</td>
<td>12.3</td>
<td>14.2</td>
</tr>
<tr>
<td>Mean winter temperature (°C) ‡</td>
<td>24.8</td>
<td>19.7</td>
<td>-1.7</td>
<td>-22.4</td>
</tr>
<tr>
<td>Growing season length (days) ‡</td>
<td>174</td>
<td>163</td>
<td>170</td>
<td>N.D.</td>
</tr>
<tr>
<td>Annual precipitation (mm)</td>
<td>383</td>
<td>310</td>
<td>351</td>
<td>517</td>
</tr>
<tr>
<td>Parent material</td>
<td>silt over glaciofluvial outwash</td>
<td>silty loess somewhat poorly</td>
<td>silty loess over bedrock well to moderately well</td>
<td>lacustrine clay and silt moderately well</td>
</tr>
<tr>
<td>Soil drainage class</td>
<td>somewhat poorly</td>
<td>somewhat poorly</td>
<td>well to moderately well</td>
<td>moderately well</td>
</tr>
<tr>
<td>Active layer depth (cm), mature stands</td>
<td>~70</td>
<td>~50</td>
<td>~40</td>
<td>~100</td>
</tr>
<tr>
<td>Thickness of silt cap (m)</td>
<td>~1</td>
<td>>10</td>
<td><0.3</td>
<td>>3</td>
</tr>
</tbody>
</table>

A single dagger (†) indicates that the same stand was sampled two different times. A double dagger (‡) indicates that the mean climate data for Alaska were taken from the Parameter-Elevation Regression of Independent Slopes Model (PRISM), a product of the Spatial Climate Analysis Service at Oregon State University (1961–1990) [Daly et al., 2001]. For Thompson, Manitoba, the Canadian Climate Normals (1971–2000) for the Thompson station (http://climate.weatheroffice.gc.ca/) were used.
Table 2. C Stocks for Shallow C (Cs), Deep C (Cd), and Total Organic Layer C (Ctol) for Stand-Age Classes Among the 4 Study Sitesa

<table>
<thead>
<tr>
<th>Age class</th>
<th>All sites</th>
<th>Delta Junction, AK</th>
<th>Hess Creek, AK</th>
<th>Taylor Highway, AK</th>
<th>Thompson, MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cs (g/m²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–14 yrs</td>
<td>104 A</td>
<td>56 b</td>
<td>90 a,b</td>
<td>0 a,b</td>
<td>180 a</td>
</tr>
<tr>
<td>15–49 yrs</td>
<td>807 A</td>
<td>320 c</td>
<td>1083 a,b</td>
<td>508 b,c</td>
<td>1423 a</td>
</tr>
<tr>
<td>50–99 yrs</td>
<td>2305 B</td>
<td>1550 b</td>
<td>2005 b</td>
<td>—</td>
<td>3603 a</td>
</tr>
<tr>
<td>100–149 yrs</td>
<td>2314 B</td>
<td>2620 a</td>
<td>3397 a</td>
<td>2007 a</td>
<td>—</td>
</tr>
<tr>
<td>150–200 yrs</td>
<td>4190 C</td>
<td>—</td>
<td>2571 a</td>
<td>—</td>
<td>4676 a</td>
</tr>
<tr>
<td>Cd (g/m²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–14 yrs</td>
<td>3155 A</td>
<td>3162 b</td>
<td>4780 a</td>
<td>468 c</td>
<td>1480 c</td>
</tr>
<tr>
<td>15–49 yrs</td>
<td>2698 A</td>
<td>3563 a</td>
<td>2469 a,b</td>
<td>3105 b</td>
<td>1556 b</td>
</tr>
<tr>
<td>50–99 yrs</td>
<td>1185 B</td>
<td>317 b</td>
<td>3676 a</td>
<td>—</td>
<td>407 b</td>
</tr>
<tr>
<td>100–149 yrs</td>
<td>3251 A</td>
<td>3168 a</td>
<td>2757 a</td>
<td>3366 a</td>
<td>—</td>
</tr>
<tr>
<td>150–200 yrs</td>
<td>3105 A</td>
<td>—</td>
<td>8618 a</td>
<td>—</td>
<td>1451 b</td>
</tr>
<tr>
<td>Ctol (g/m²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–14 yrs</td>
<td>3410 A</td>
<td>3322 b</td>
<td>4922 a</td>
<td>468 a</td>
<td>2137 a</td>
</tr>
<tr>
<td>15–49 yrs</td>
<td>3329 A</td>
<td>3308 a</td>
<td>3662 a</td>
<td>3857 a</td>
<td>2698 a</td>
</tr>
<tr>
<td>50–99 yrs</td>
<td>4446 A</td>
<td>2606 c</td>
<td>7636 a</td>
<td>—</td>
<td>3516 b</td>
</tr>
<tr>
<td>100–149 yrs</td>
<td>5755 B</td>
<td>5891 a</td>
<td>5404 a</td>
<td>5884 a</td>
<td>—</td>
</tr>
<tr>
<td>150–200 yrs</td>
<td>8416 C</td>
<td>—</td>
<td>11590 a</td>
<td>—</td>
<td>6753 b</td>
</tr>
</tbody>
</table>

aUppercase letters within columns indicate statistical similarities among stand ages and lowercase letters indicate statistical similarities among study sites, with errors and sample number information shown in the auxiliary material (Table S2 in Text S1).

in which an equation solver is used to indicate \(I \), \(k \), and \(C_0 \) using a best-fit procedure. The resulting TableCurve equations were used to calculate the C stocks of \(C_s \) and \(C_{tol} \) on an annual timestep. There were 316 profiles available for \(C_{tol} \) and 229 profiles for \(C_s \) calculations.

Radioisotopes were measured on untreated, homogenized soil for select soil profiles by vacuum sealing a homogenized sample containing about 1 mg C with cupric oxide and elemental silver in a quartz tube and combusting at 850°C. The CO₂ produced was purified cryogenically and oxigenized sample containing about 1 mg C with cupric oxide and elemental silver in a quartz tube and combusting at 850°C. The CO₂ produced was purified cryogenically and reduced to graphite using a modified reduction method with titanium hydride, zinc, and cobalt catalyst [Vogel, 1992] for samples from Thompson and Delta. For Hess samples, this method was modified in order to improve precision [Xu et al., 2007]. The graphite target was measured directly for \(^{14}C\) of approximately 0‰ with a deviation in the \(^{14}C/^{12}C\) in parts per thousand (‰) from a standard \((^{14}C/^{12}C\) standard = 1.176 × 10^-12), with a correction for possible fractionation based on \(^{13}C\) [see Stuiver and Polach, 1977]. A \(^{13}C\) of approximately 0‰ represents the \(^{13}C/^{12}C\) of atmospheric CO₂ in the year 1890. After ~1954, C fixed by plants and input to soil was subjected to enrichment of the atmosphere by aboveground weapons testing.

2.3. Changes in C Stocks Over Incremental Timesteps

We also calculated the change in C stocks (gC/m²) over incremental timesteps between stand ages for each stand (Table S3 in Text S1), including across-study area comparisons. These values were then averaged using the same five age classes utilized for the statistical tests (see section 2.2).

3. Results

3.1. Variations in C Stocks Across Regions and Stand-Age Classes

Stocks of \(C_s \) were significantly different among age classes (\(df = 1, F = 14.16, p-value = 0.0002 \)) and had an age class by study area interaction (\(df = 8, F = 2.87, p-value = 0.0047 \)). This interaction was in part a result of greater \(C_s \) in Thompson (as compared to Delta Junction and Taylor Highway, 0–14 yrs; Delta Junction and Hess Creek, 50–99 yrs; and Hess Creek, 150–200 yr) (Table 2). Both within study areas and overall, \(C_s \) increased as a function of stand age (Figure 3a) as dictated by equation (2). Model fit was good (adj. \(R^2 \) values ranged from 0.52 to 0.70, all \(p-value < 0.01 \)) (Table 3).

Stocks of \(C_{tol} \) also had a significant age class by study area interaction (\(df = 8, F = 5.30, p-value < 0.0001 \)), largely owing to the higher stocks at Hess Creek (as compared to all study areas, 0–14 yrs; Thompson and Delta Junction, 50–99 yrs; and Thompson, 150–200 yrs) (Table 2). Both within study areas and overall, \(C_{tol} \) increased as a function of stand age (Figure 3b), as dictated by equation (3). Model fit was significant (adj. \(R^2 \) values ranged from 0.07 to 0.29, all \(p-value < 0.02 \)) (Table 3).

Stocks of \(C_d \) had a significant age classes by study area interaction (\(df = 8, F = 4.7, p-value = 0.0003 \), due to the higher stocks at Hess Creek (as compared to all study areas, 0–14 yrs; Delta Junction and Thompson, 50–99 yrs, and Thompson, 150–200 yrs) (Table 2). In the 15–49 yr-old age class Taylor Highway and Delta Junction had higher \(C_d \) stocks than either Hess Creek or Thompson (Table 2). Equations (1)–(3) were unable to describe \(C_d \) dynamics over time, both within individual study areas and for all study areas combined (adj. \(R^2 \) values ranged from 0.00 to 0.06, all \(p-value > 0.04 \)).

3.2. Dynamics of Soil C Based on Stand-Age Chronosequences

Because model fits of \(C_s \) (equation (2)) and \(C_{tol} \) (equation (3)) were significant for each of the four study areas and for all study areas combined (see section 3.1), we examined the model parameters further. Annual coefficients for \(k_s, k_{tol}, k_{ho}, \) and \(k_{tol} \) were not significantly different among study areas based on the overlapping 95% confidence intervals (Table 3). Therefore, the combined-study-area model was used to evaluate temporal variations in \(C_{tol} \) and \(C_s \) over the chronosequence.

The combined-study-area model of \(C_s \) demonstrated an increase over the course of stand replacement from 0 to
Table 3. Input and Decay Constants for Shallow and Total Organic Soil C Accumulationsa

<table>
<thead>
<tr>
<th>Site</th>
<th>I_s (gC/m²/yr)</th>
<th>k_s (yr⁻¹)</th>
<th>I_{tol} (gC/m²/yr)</th>
<th>k_{tol} (yr⁻¹)</th>
<th>C_0 (gC/m²)</th>
<th>Average net C Accumulation (gC/m²/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta Junction, AK</td>
<td>24 (13–34)</td>
<td>0.0005</td>
<td>24 (148–196)</td>
<td>0.0009</td>
<td>2887 (1895–3879)</td>
<td>20</td>
</tr>
<tr>
<td>Hess Creek, AK</td>
<td>51 (29–72)</td>
<td>0.0173</td>
<td>51 (11–112)</td>
<td>0.0021</td>
<td>3145 (2252–4038)</td>
<td>29</td>
</tr>
<tr>
<td>Taylor Highway, AK</td>
<td>26 (5–46)</td>
<td>0.0086</td>
<td>147 (147–441)</td>
<td>0.0246</td>
<td>2038 (1448–5525)</td>
<td>20</td>
</tr>
<tr>
<td>Thompson, MB</td>
<td>59 (30–88)</td>
<td>0.0095</td>
<td>59 (5–112)</td>
<td>0.0038</td>
<td>1449 (553–2346)</td>
<td>30</td>
</tr>
<tr>
<td>All sites</td>
<td>42 (24–59)</td>
<td>0.0121</td>
<td>42 (24–147)</td>
<td>0.0020</td>
<td>2475 (1449–3145)</td>
<td>29 (20–40)</td>
</tr>
</tbody>
</table>

aShallow stocks C_s were fit to stand ages (equation (2)) to derive I_s and k_s. Total organic stocks C_{tol} were fit to stand ages (equation (3)) to derive I_{tol}, k_{tol}, and C_0 for separate and combined chronosequences. Average net C accumulation rates were calculated from model fits of annual stock change. In the parentheses are 95% confidence intervals (model parameters) or minimum/maximum values (net C accumulation values). Goodness of fit (adj. R^2) values were as follows: C_s (equation (2)): Delta Junction = 0.70 (p-value < 0.001); Hess Creek = 0.62 (p-value < 0.001); Taylor Highway = 0.52 (p-value < 0.01); Thompson = 0.55 (p-value < 0.001); and all sites = 0.55 (p-value < 0.001). C_{tol} (equation (3)): Delta Junction = 0.07 (p-value = 0.02); Hess Creek = 0.31 (p-value < 0.001); Taylor Highway = 0.16 (p-value < 0.01); Thompson = 0.29, and all sites = 0.28 (p-value < 0.001).
about 4000 gC/m² (Figure 3a). \(I_s \) averaged 42 gC/m²/yr (ranging from 24 to 59), and \(k_s \) averaged 0.0121 yr⁻¹ or a turnover time of 83 yrs (ranging from 56 to 160 yrs) (Table 3). (For comparison, see Trumbore and Harden [1997], which had inputs to the surface soil of 60 gC/m²/yr + 30 gC/m²/yr and 0.011 yr⁻¹ + 0.007 yr⁻¹ for \(k_s \)). Rates of \(C_s \) accumulation varied fivefold between newly burned stands (0–14 yrs; 39 ± 2 gC/m²/yr) and very mature stands (150–200 yrs; 5 ± 1 gC/m²/yr). Intermediate-aged stands (50–99 yrs) accumulate \(C_s \) about three times faster than very mature (150–200 yrs) stands (Table 3).

3.3. Soil Radiocarbon

[19] \(C_d \) samples from sites that burned before 1954 were enriched by bomb-spike \(^{14}\text{C} \) during the time between burning and the time of sampling (Figure 4). Enrichment was highest for oldest (age of 150, from ~1850) and youngest (age 74, from ~1930) stands from depths of 21 cm and 17 cm, respectively.

4. Discussion

4.1. Is the Heterogeneity of Soil C Stocks Related to Stand Age?

[20] Temporal shifts in spatial variability may help to elucidate the influence of burning, succession, and decomposition on heterogeneity. Despite variations in site conditions such as permafrost, slope, and drainage (Table 2), variations in \(C_{tol} \) across stand age and study area typically are within 40%–60% of the mean (based on values from Table S2 in Text S1). The contributions from \(C_s \) and \(C_d \) to such variations shift depending on stand age. Coefficients of variation (CV, or standard deviation/mean) were the highest (>1.2) for \(C_s \) in stands <49 yrs old and the highest for \(C_d \) (>1.2) in stands between 49 and 99 and >149 yrs old. Forest floor burning has been shown to be a heterogeneous process [Harden et al., 2003; Shetler et al., 2008] that is reflected as legacy carbon (\(C_d \) at time 0). In stands <14 yrs, the CV of \(C_d \) is about 0.7, while the CV of \(C_s \) is 2.2. Thus, while spatial variations in burning are great, the variation in early plant colonization (both in coverage and species) introduces significantly more heterogeneity to those young stands. As stands mature, \(C_s \) becomes less variable (CV = 0.5 for 50–99 yrs), likely reflecting a more pervasive organic horizon thickness that promotes consistent and cooler temperatures [Carrasco et al., 2006; O’Neill et al., 2006]. Meanwhile, \(C_d \) variations increase over the course of succession, perhaps reflecting spatial variations across the study areas in fire legacies as well as variations in root input and decomposition. The stand-age shifts in \(C \) stock heterogeneity demonstrated here likely have major impacts on the variability of gaseous and dissolved \(C \) fluxes and their sources, whether derived from root, moss, or heterotrophic respiration, variability that was noted by Czimczik et al. [2006]. Despite the spatial heterogeneity of soil \(C \) stocks observed across stand ages, the signal of \(C \) accumulation over time-since-disturbance is clear, as evidenced by goodness of fit for the \(C_s \) and \(C_{tol} \) models (Table 3).

4.2. Do \(C \) Accumulation Rates Change as Stands Age?

[21] Despite the spatial variations in \(C \) stocks, total \(C \) accumulation rates were roughly constant over time and
within 20 to 40 gC/m²/yr for all study areas. Across these study areas, the C\text{tol} intercept indicates that 2500 ± 250 gC/m² remains as unburned organic matter. Our models for total organic layer carbon (C\text{tol}) reflect significant relationships between stand age and C\text{tol} stocks within each study area and across combined study areas overall. Near-linear accumulation for C\text{tol} of ~20 to 40 gC/m²/yr is supported by other studies of North American boreal forests [Kane and Vogel, 2009; O’Neill et al., 2006; Turetsky et al., 2011]. By contrast, the shallow soil’s (C_s) portion of C\text{tol} reflects rates of accumulation that decline fivefold over the course of stand replacement, a nonlinear trend that is consistent with a simple model of constant inputs and fractional decomposition (equation (2)). In contrast to the constant inputs assumed in the soil model, NPP of aboveground vegetation for the study areas in Delta Junction [Mack et al., 2008] and Thompson [Bond-Lamberty et al., 2004] were not constant over stand replacement. Clearly, more information is needed to elucidate interactions among above- and below-ground processes.

The combination of a near-linear trend of C\text{tol} (Figure 3b) and the declining rate of accumulation of C_s (Figure 3a) infers that C_d stocks likely increase over time in a way that compensates the difference in trends between C\text{tol} and C_s. A decline in C_d in young stands is more consistent with initially warmer soils post-fire [Kane and Vogel, 2009; O’Donnell et al., 2010; O’Neill et al., 2006] and with measures of C flux by eddy covariance at the Thompson study area [Goulden et al., 2011]. In these early stand ages soil C is destabilized via decomposition and leaching. An increase in deep C, however, favors inputs from roots, litter, and DOC to C_d layers as well as a slowing of decomposition as C_d becomes cooler, wetter, and further from the surface. Radiocarbon measurements of C_d (Figure 4) clearly demonstrate that some new inputs occur in these mid to late successional stages. For example, stands that burned between 1850 and 1930 were 25–100 yrs old when the atmosphere was first enriched by weapons testing in 1954. Yet these stands have C_d samples that are highly enriched with 14C relative to the atmosphere at the time of burning (Figure 4). C_d dynamics deserve further investigation to address the complex feedbacks among rates of burial, temperature shifts in decomposer communities, root colonization, priming, and the allocation of nutrients and carbon. Meanwhile, our model results of C_s and C\text{tol} can help to constrain the net changes of C_d for moderately well to somewhat poorly drained black spruce ecosystems.

4.3. How Do Rates of Net C Accumulation Relate to Long-Term C Fate?

Models of net C accumulation derived from equations (1)–(3) show pervasive, clear signals across the study areas,
but these rates are small compared to other measures of net C accumulation (NetC). Eddy covariance CO₂ measurements of NetC (Net Ecosystem Production or NEP) at the Thompson site, for example, which comprise all sources and sinks of C, including aboveground carbon, have much larger NetC rates (−150 to +140 g C m⁻² yr⁻¹) (Figure 5a) [Goulden et al., 2011] than were found using soil models of equations (1)–(3) (20–40 g C m⁻² yr⁻¹) (Figure 5c). Another method for estimating NetC used by Goulden et al. [2011] was based on incremental changes in soil C stocks, which we calculated for our sites for the full array of stand ages across all study areas (Table S3 in Text S1 and Figure 5b). For both eddy covariance and incremental stock changes, NetC rates decline as ecosystems progress from young to older stands (Figures 5a and 5b). All three methods converge at similar values in the oldest stands (+27 to +52 g C m⁻² yr⁻¹). The discrepancy in the rates of NetC for early stand ages is likely due to the fact that eddy covariance and stock-change NetC rates are greatly impacted by spatial variation (i.e., differences in burn severity), differences in C sources and sinks (i.e., in the case of eddy covariance, C accumulation in aboveground components that have not yet entered soil), and interannual variations in climate that influence C processing. By contrast, NetC rates in older stands and/or on longer time scales represent long-term averages over timescales during which variations can cancel each other out. This concept of short-term, high-amplitude variations and longer-term, lower-amplitude variations in NetC exchange rates is consistent with the comprehensive studies reported by Roulet et al. [2007] for the Mer Bleue boreal peatland in which the authors found that interannual variations in NetC rates by eddy covariance were quite large (−14 to +89 g C m⁻² yr⁻¹ over 6 yrs), with the majority of this variation ascribed to interannual variations in seasonal climate. Variations of longer term and deeper pools of NetC were found by Roulet and others to be smaller (−14 to 22 g C m⁻² yr⁻¹), with these variations in rates ascribed to large scale differences in physiographic and drainage conditions.

[24] Similarly, inputs and losses of C also vary depending on the temporal scale examined. Annual NPP is on the order of 200 to 300 g C m⁻² yr⁻¹ for the Thompson and Delta study areas [Goulden et al., 2011; Mack et al., 2008], whereas our model based long-term inputs to the soil system are <60 g C m⁻² yr⁻¹ (Table 3, Iₘₕ), much less than average annual NPP. Therefore, only ~15%–25% of NPP enters the long-term soil pools, the remaining either is stored aboveground or is cycled back to the atmosphere as respiration. In Thompson, about 20%–40% of NPP was ascribed to the forest floor, consistent with our soil input term (Iₘₕ), and another 20%–40% is ascribed to storage in wood and vegetation [Goulden et al., 2011, auxiliary material]. Similarly, annual-scale scale measurements of soil C loss (heterotrophic respiration, or Rₘₕ) at Thompson were estimated at ~160 g C m⁻² yr⁻¹ [Goulden et al., 2011], while this paper’s century-scale estimates of kC were ~38 g C m⁻² yr⁻¹ (Figure S1 in Text S1), about one fourth of the annual flux. The discrepancies between NPP and J (equation (1)) and Rₘₕ and kC (equation (1)) suggest that black spruce forests receive large amounts of C (>80%) that cycle over decadal timescales and are transient relative to the persistence of soil C stocks (Figure S1 in Text S1). Over millennial timescales, C accounting would also need to include combustion losses, which are on the order of 1 [Balshi et al., 2007] to 25 g C m⁻² yr⁻¹ [Turetsky et al., 2011], resulting in 0%–20% of ecosystem NPP being sequestered over millennial timescales.

5. Implications

[25] A number of recent studies indicate that the North American boreal forest biome is undergoing an increase in fire activity [Flannigan et al., 2009; Gillett et al., 2004] with a shift toward shorter fire return intervals [Bergeron et al., 2004] that occur seasonally later and with more severe burning [Turetsky et al., 2011]. Fire regime shifts have consequences for not only combustion but also for production [Mack et al., 2004] and decomposition [O’Donnell et al., 2011] with a net effect of accelerating C cycling [Kimball et al., 2007] as plant and soil processes respond to the new regime. Our annual to decadal modeling perspectives and associated data provide important constraints on the complexities of net C accumulation in these landscapes. While 20–40 g C m⁻² yr⁻¹ likely accumulate over the course of succession (Table 3), combustion estimates reduce this rate even further. Shifts in fire—including severity, return interval, and successional cover—will likely play an important role in the net C balance. Given the significant contribution of both the shallow and deep organic layers to both biogeochemical and thermal controls of black spruce systems, there is great importance in understanding and constraining the mechanisms that sustain and control the C cycling of these horizons.

Acknowledgments. We thank Torre Jorgenson, Misha Kanevskiy, and Stephanie Ewing for field insights at the Taylor Highway site. Many thanks to A. D. McGuire and E. Kane for thoughtful reviews and to Sue Trumbore for her review and for longstanding collaborations and guidance with ¹⁴C data. This research was supported by USGS Global Change programs, NSF Collaborative Grant EAR-0630249, the NASA Terrestrial Ecology Program, and NASA Grant NNX09AQ36G.

References

Z. Fan, Department of Geosciences, University of Colorado Boulder, Campus Box 399, 2200 Colorado Ave., Boulder, CO 80309, USA.

S. Frolking, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Morse Hall, 8 College Rd., Durham, NH 03824-3525, USA.

K. Johnson, Climate, Fire, and Carbon Cycle Sciences Unit, U.S. Forest Service, Northern Research Station, Ste. 200, 11 Campus Blvd., Newtown Square, PA 19073, USA.