PROJECT GOALS
- Design a sustainable & affordable aquaponic system for use in developing nations
- Utilize an interdisciplinary approach
- Install an aquaponic system for a community in need

WHAT IS AQUAPONICS?
- Combination of Hydroponics + Aquaculture
- Recycles water in a closed, recirculating loop
- 10 times more productive than traditional agriculture

RESEARCH GOALS
- Decrease the power required to operate the system
- Use recycled, universally available materials (allowing design to be easily replicated)
- Run on renewable energy
- Maximize nutritional yield
- Create user-centered design

REFERENCES
3. PELUM Uganda, “Growing Crops on Stones; the Future of Urban Agriculture!”, Participatory Ecological Land Use Management, 2013

ENGINEERING: REDUCING OPERATIONAL COSTS
- OpenFOAM computational fluid dynamics software used to model flow patterns
- ADV velocity validation yielded mean difference of 34%
- 10 series of point measurements averaged over 60 sec
- Energy Considerations: Air-lifts & solar power

BIOLOGY: MAXIMIZING YIELDS
- Tilapia are resilient and universally available, and grow rapidly (FCR of 1.6-1.8)
- Combined, gravel and raft beds offer variety & ample nutrients

BUSINESS: FEASIBILITY STUDY
- Market niche for affordable “backyard” systems
- Little research has been conducted to optimize small-scale systems for energy efficiency
- The market potential for small-scale aquaponics is $1.5 Billion in the U.S. alone

CONCLUSIONS
- Flow improvements and use of air-lift pumps dropped energy consumption 40% when compared to a traditional system of the same size
- Using local and recycled materials where possible decreased the cost of the UNH pilot system by 27%
- Januaty assessment trip provided useful data for user-centered design
- Experimental data validation differences can be attributed to turbulent flows close to the inlet

FUTURE PLANS
- Install system for our nonprofit partner Forjando Alas, an after school program for kids in Uvita, Costa Rica

ACKNOWLEDGEMENTS
UNH Emeriti Council
UNH Peter T. Paul Entrepreneurship Center
Rosenberg Foundation
NH 2015 Social Venture Innovation Challenge
UNH Departments of Mechanical and Ocean Engineering
NH Joint Engineering Societies
Aquaponics Group, Nick Reynolds, Kelly Belanger (Biological Sciences)
Pete Bachant, Ethan Pirie, Justin Sticksen (Mechanical Engineering)
Kara Koetje (Environmental Engineering)