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A B S T R A C T

AN OBSERVER-BASED ATTITUDE AND NUTATION CONTROL AND 

FLEXIBLE DYNAMIC ANALYSIS FOR THE NASA MAGNETOSPHEREIC

MULTISCALE MISSION

by

NEIL MUSHAWEH 

University of New Hampshire. May, 2007

Current research with the NASA Goddard Space Flight Center (GSFC) involves the 

dynamic modeling and control of the NASA Magnetosphereic Multiscale (MMS) Mission, 

a Solar-Terrestrial Probe mission to study Earth’s magnetosphere. Four observer-based 

attitude and nutation controllers are designed and evaluated to determine the most effective 

feedback control system as it applies to MMS. Also, a dynamic analysis of each of the 

four identical satellites’ two Axial Double Probe (ADP) booms is performed to provide an 

understanding of flexible boom dynamics.

The Finite Element method is used in evaluating boom modes of vibration for confir

mation of NASA GSFC theoretical analysis and use in flexible model development. The 

dynamic transient and modal extraction technique are investigated for vibration analysis 

of constrained and unconstrained bodies. A fully flexible boom and rigid spacecraft model 

is also developed for vibrational analysis under steady-state rotation and thruster loads. 

Results indicate, however, the need for future research in numerical analysis of propagating 

systems through finite element methods and in the stability of the observer-based control 

system.

Linear and nonlinear observers are developed through simulations to estimate satellite 

attitude and angular body rates without the use of rate sensors. Control systems are then 

developed assuming perfect state measurements. Euler angles are used to describe satellite 

attitude in this research. Finally, linear and nonlinear (Sliding Mode Control) techniques
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XV

are implemented in conjunction with the nonlinear observers to complete the observer-based 

control system.

The results of this research show that, of the methods analyzed, both the Extended 

Kalman Filter and Sliding Mode Observer implemented with Sliding Mode Control yield 

the most satisfactory performance. These observer-based control systems both meet NASA 

design requirements while reducing thruster control effort and reducing the effects of mea

surement noise and spacecraft uncertainties/disturbances. More simulations, however, are 

needed to verify performance of the proposed observer-based control system over all possible 

ranges of operation.
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1

CHAPTER 1 

INTRODUCTION

1.1 O b jective

The NASA Magnetospheric Multiscale (MMS) satellite constellation is scheduled 

for launch in 2013. Each satellite is composed of six instrum entation booms reaching 

up to 50 meters in length th a t will be used to  collect astrophysical data. Once oper

ational, the three satellite formation will provide a three dimensional understanding 

of the E a rth ’s magnetosphere, small scale plasma processes and other astrophysical 

phenomena.

The mission will progress in three stages, each requiring large orbital maneuvers. 

These large orbital transfers, coupled w ith the high sensitivity of the instruments, 

require the satellite to  m aintain a constant pure rotation about its local z-axis. Mass 

imbalances, external torques and other unknown disturbances cause the satellite to  

tend to nutate  about its x and y axis undesirably. In order to  effectively reject all 

satellite nutation, while maintaining a constant spin, it is essential tha t the satellite 

angular body rates are accurately known.

A finite element analysis is performed on the satellites highly flexible instrum enta

tion booms. A dynamic analysis is used to  extract boom natural frequencies, modes 

of vibration and provide an overall understanding of the flexible boom dynamics 

through transient simulations. This analysis is used to aid NASA engineers in the de

velopment of a. m athem atical model th a t will be used in orbital control, while laying 

the foundation for the integration of a ttitude estimation based nutation and orbital
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control on a fully flexible spacecraft model.

This thesis also investigates the feasibility of an estimation algorithm that is ca

pable of determining spacecraft angular rates with only star tracker attitude mea

surements. The focus of this research is on the rotational (attitude) dynamics of the 

spacecraft rather then the translational motion (orbit). Although these dynamics are 

highly coupled, the work in this thesis will decouple attitude and orbital dynamics 

(the control of an integrated attitude/orbital system is left for future work). The ap

plication of such estimation capabilities has implications on designs that avoid costly 

angular rate measurement systems while maintaining highly accurate state represen

tations. These body rate estimates will then be used in a control algorithm that will 

utilize thrusters to reject satellite spin nutation. Several estimation and control tech

niques are explored and compared to deliver the most effective results given NASA 

design requirements.

The MMS satellite has 6 instrumentation booms (2 Axial Double Probe, 4 Spin 

Double Probe) that extend up to 50 meters in length at just under two millimeters 

of thickness. These highly sensitive instruments require that the satellite spin at a 

constant rate about its 2-axis at 0.3 rad/s  while rejecting nutation (as a result of mass 

imbalances and/or disturbance torques) about the x and y axis (±0.02 rad/s 3a) 

which may occur from mass imbalances, or external torques. While maintaining these 

satellite body rates, the spacecraft must also have an orientation that is 3 degrees 

(±  0.009 rad 3a) about its x and y body-fixed reference frame.

Much research has been performed in the area of spacecraft attitude estimation 

and control. Additionally, the analysis of flexible space structures and flexible struc

ture control has been a recently expanding field of research. Past research in the field 

of estimation, control, and flexible structure analysis will be provide a foundation 

for this research to expand upon. This thesis will investigate observer-based attitude
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3

control systems for a flexible spacecraft while attempting to provide a design tool 

through finite element models for estimation and control design.

1.2 F in ite Elem ent A nalysis: O verview

Finite Element Analysis (FEA) is an engineering tool that is applied to applica

tions ranging from aerospace structural analysis, to heat transfer and electromagnetic 

design and analysis. As technology in solid modeling of mechanical systems and nu

merical analysis has advanced, the use of FEA methods on complex engineering ap

plications has greatly increased. Today, research and development of FEA software 

packages is still improving and advancing the effectiveness of FEA, particularly in 

dynamic applications where large deformations occur.

FEA is a numerical method that involves discretization of a continuous system 

through interconnected finite elements connected at nodal points and constrained 

boundary conditions. Rather than directly soloving nonlinear time-dependent differ

ential equations that mathematically describe a system, FEA results in systems of 

algebraic equations. These sometimes very large systems of equationsare solved via 

digital computers and numerical techniques to determine approximations of system 

parameters for very complex bodies. The system parameters, would, otherwise be 

extremely difficult to analyze through continuous equations. FEA can offer approxi

mations of displacements and stresses at each node for structural applications, while 

temperatures and pressures can be found for thermal-fluid systems.

Analysis of flexible space structures has been an increasingly researched field with 

the high demand for cheap, light and strong spacecraft components. Lee [2] proposes 

dynamic continuum modeling through finite element methods for beamlike space 

structures which has proven to yield accurate results compared to existing meth

ods. Hutton [3] uses modal analysis through finite element methods to investigate
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dynamic characteristics of large deployable space structures. Also, Pai and Wheater 

[4] present a displacement based finite element method for beams experiencing large 

displacements and rotations. This type of research is particularly useful because it 

offers insight into dynamic transient responses of flexible structures. Such an analysis 

is helpful in understanding flexible dynamics of the NASA MMS spacecraft. How

ever, estimation and control of the spacecraft is not considered or implemented with 

the developed flexible models. This research investigates flexible structures, while 

laying the foundation for an observer-based control system for a satellite with flexible 

appendages.

1.3 A ttitu d e D eterm ination  and Control: O verview

Attitude dynamics are used to describe a spacecraft’s orientation and angular mo

tion under the influence of external moments with respect to a fixed inertial reference 

frame. In order to understand a spacecrafts attitude dynamics in space, it is essential 

to obtain accurate representations of angular positions and velocities in real time. 

From knowledge of these states, an automatic feedback control algorithm may be 

used to rotate a spacecraft to a desired orientation, rotate the spacecraft at a desired 

rate or both.

In some applications spacecraft are required to maintain an orientation within 

strict design requirements due to flexible appendages, such as instrumentation booms 

or solar arrays. Today’s missions demand that all attitude control requirements are 

met while minimizing cost. Attitude determination is a technique used to reconstruct 

attitude states from real time sensor data. It can be useful in meeting design require

ments and improving the control design while reducing costs by avoiding the use of 

expensive measurement systems.

Attitude determination techniques arise from the need of understanding attitude

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



dynamics from corrupted or nonexistent measurement data. The attitude deter

mination, or estimation, process works by comparing real time measurements with 

a dynamic model that is developed off line. By comparing measurement data of 

the spacecraft dynamics with what is believed to be happening from the spacecraft 

model, an error signal is produced. This error signal is then used in an algorithm, 

called an observer, to force the error signal to zero. When the error signal is at or 

approaching zero, the state estimates are then used to update implemented control al

gorithms. Measurement noise, unknown disturbances, inaccurate system models, and 

parametric uncertainties are just a few reasons why attitude determination methods 

are augmented with spacecraft sensor systems. As spacecraft have become smaller, 

the availability of complex measurement systems has decreased due to financial de

sign constraints and size limitations. It is for both of these reasons that gyroscopes 

are typically avoided in spacecraft design. Gyroscopes are a measurement device that 

provide real time angular rate data of a spacecraft in orbit. Not only do these sensors 

consume space and are expensive, they also have a tendency to “drift” which require 

real-time re-calibration that is undesirable for long missions. They are also prone to 

failure.

In most satellite applications, there are design requirements on both the attitude 

and angular rate. For satellites that require solar arrays to generate electrical power, 

it is necessary to adjust the orientation of the satellite frequently to optimize the 

amount of solar power. Many satellites are spin-stabilized, requiring the satellite to 

maintain a constant spin rate. In both instances, actuators are used to orientate or 

spin the spacecraft at desired values based on the real time attitude dynamics. As with 

observer techniques, many different control algorithms exist and specific techniques 

are chosen accordingly, depending on the specific mission.

Multiple sensor and actuator systems can be used on satellite missions and are
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usually thoroughly explored during the design phase. In the following section, a brief 

description of various types of attitude sensing and actuating hardware is provided.

1.4 A ttitu d e Hardware

The combination of attitude sensing hardware with orientation and angular rate 

actuation can function in several different configurations. For attitude sensing hard

ware, there exist two classifications: (1) vector sensors, that can provide magnitude 

and direction of a specific measurement, and (2) relative sensors that provide changes 

of attitude orientation or rate relative to a fixed reference frame. Some common 

methods for satellite control include: propulsion systems, momentum exchange de

vices, and magnetic torqrods. All descriptions of attitude hardware presented have 

been adopted from [5], [6] and [1].

1.4.1 A ttitude Sensing

Star Sensors: Star sensors are an optical attitude sensing system that detect 

light emitted from stars and can calculate the orientation of the satellite based on the 

known fixed inertial frame of the stars. A satellite computer contains star catalogues 

and provides star characteristics, such as visual magnitude and spectral type, that 

allow the sensor to differentiate between stars. There are three common types of star 

sensors that are used for attitude measurements: fixed-head star trackers, gimbaled 

star trackers, and star scanners. The fixed-head star trackers use electronics to scan 

the sky that is within the sensor’s field of view to acquire and track selected stars. 

This type of attitude measurement is typically used in three axis stabilized satellites. 

The gimbaled star tracker is similar to the fixed-head star tracker, except that rather 

then electronically scanning the sensor field of view it mechanically scans the sky 

which allows for a large quantity of stars tha t can be used for tracking. The sim
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plest of star sensors is the star scanner, which is used for spin stabilized satellites in 

which the attitude of the spin axis must be known and does not require knowledge 

of all three body axes. The advantage of these types of sensors is their accuracy 

which is typically on the order of arc-seconds (one of the most accurate attitude sen

sors). The disadvantage of star sensors is that they require high amounts power and 

computational resources and can be effected by background celestial light.

Sun Sensors: Sun sensors are the most commonly used attitude sensing device on 

satellites when one or two axis determination is needed. As opposed to using stars as 

references for attitude determination, the Sun is optimal because of its large size and 

high luminosity. The Sun’s luminosity makes a sensor less susceptible to inaccurate 

readings due to background celestial light. The two main types of sun sensors that 

exist are analog and digital sensors. Analog sun sensors work by generating a current 

that is proportional to the incident of the sun angle a. Although analog sensors 

are not as accurate as digital sensors, they are cheaper, take up less payload and 

are mechanically and electrically simple. Digital sun sensors, however, have a higher 

accuracy then analog sensors (0.017°) with a higher field of view, providing more 

versatility in attitude determination.

Infrared Earth Sensors: Infrared Earth (IRE) sensors use two different meth

ods to determine the attitude of a satellite with respect to the Earth. Horizon sensors 

and static determination are both designed to detect temperature gradients between 

space and the E arth’s atmosphere. IRE sensors are useful for any satellite application 

in which the orientation of the Earth is important (i.e. weather observation, naviga

tion, communications). An advantage to IRE sensors is their reference is the second 

brightest celestial object, aside from the Sun. The most obvious disadvantage to IRE 

sensors is their proximity to Earth restricts the sensors’ field of view and will some

times require the sensor to mechanically scan space, involving complex mechanical
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components.

M agnetom eters: Magnetometers are a vector sensing device that uses a com

bination of sensor outputs and mathematical models of the Earth’s magnetosphere 

to determine attitude. The magnetometers output a magnitude and direction with 

respect to the magnetic field. The advantage of these types of sensors is that they 

are lightweight and have low power requirements with effectiveness over large tem

perature ranges. These capabilities make these sensors desirable at low Earth orbits. 

However, because the sensor outputs must be combined with mathematical predic

tions, many problems can occur. Substantial errors in satellite position magnitude 

can occur because of inaccuracies in magnetic field models. Also, as satellite orbits 

increase with altitude, magnetic field strength decreases, making magnetometers less 

effective in determining attitude.

Gyroscopes: A gyroscope or gyro is a sensor used for satellite rate determina

tion. In all gyros, a rotating mass is used to sense changes in the orientation of the 

spin axis. Rate integrating gyros are used to measure angular displacements of the 

satellites spin axis, while rate gyros directly measure spacecraft angular rates. These 

types of instruments have many advantages and disadvantages in attitude determi

nation and control. They are highly effective in situations where it is essential to 

maintain constant satellite spin when attitude position measurements are not able 

to be differentiated. Disadvantages with gyros include cost, significant measurement 

noise, and (most importantly), drift. Drift occurs typically in rate integrating gyros 

at a rate of 0.03°/hr to l° /h r  and can have negative effects on satellite attitude de

termination. As discussed below, gyros are also used in satellite attitude control in 

the form of a momentum exchange actuator.
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1.4.2 Satellite A ctuators

Propulsion System s: Propulsion systems use jets or thrusters to produce forces 

and torques on a spacecraft body. The advantage to propulsion systems is the versa

tility of the forces and torques they produce. Thrusters and jets are used for orbital 

transfers, attitude control, spin control, and nutation control. There are two main 

categories of thrusters: chemical, and cold gas. Chemical thrusters are the most pow

erful of the propulsion systems and use either a solid or liquid as the propellent. Solid 

fueled thrusters can deliver thrusts up to hundreds of thousands of Newtons (typi

cally used when large changes in velocity are needed to escape E arth’s gravitational 

force or to change orbits). The drawback of solid propellant thrusters is that once 

ignited, they continue to burn until the propellant is completely used. The cold gas 

propulsion systems use a compressed gas to produce a force or torque on a spacecraft. 

These types of thrusters can deliver about 5 Newtons of force and have impulses of 

approximately 50-70 seconds. Cold gas thrusters require pressure vessels that can 

withstand high amounts of pressure, which adds weight to the overall payload and is 

the main disadvantage of cold gas propulsion.

M om entum  Exchange Devices: Momentum exchange actuators use a rotat

ing flywheel to impart a momentum change on the spacecraft body, thus creating a 

torque. These types of actuators are used for multiple purposes, including rejection 

of disturbance torques, attitude actuation, and spacecraft spin control. The flywheel 

is rotated by an electrical motor and thus, requires no fuel and does not significantly 

change spacecraft parameters (such as mass and moments of inertia) throughout the 

mission. A common type of momentum exchange device is the control moment gyro 

(CMG) which works by changing the momentum vector of the flywheel inside of the 

spacecraft body, producing a control torque about the spin axis. Momentum ex

change devices typically deliver a control torque ranging from .01-1 N-m [7] and are
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designed to operate on missions lasting 5-12 years. The major drawback of momen

tum exchange devices is the need for lubrication of mechanical bearings in a space 

environment to prevent excessive frictional damage.

M agnetic Torqrods: Torqrods are capable of generating a magnetic moment on 

a spacecraft by energizing a magnetic core and coil while in the Earth’s magnetic field. 

They are used in multiple attitude applications and, like momentum exchange devices, 

do not require consumable fuel to be effective, thus eliminating weight, fuel slosh, and 

constantly changing spacecraft parameters. The major drawback of torqrods is their 

ineffectiveness at high orbits due to a weak magnetic field, and corruption of attitude 

measurements if used with magnetometer senors.

1.5 A ttitu d e D eterm ination  and Control M ethods

Attitude determination and control has become a highly researched topic in the last 

50 years since the need for efficient and cheap satellites has risen for communications, 

scientific and defense applications. In nearly all spacecraft applications, the control 

law is said to be a feedback control system, in which measured or estimated data is fed 

back to the controller to update the implemented control algorithm. One of the first 

applications of this kind of control law was developed in 1620 by Cornelis Drebbel to 

control the temperature of a furnace in an incubator. Another benchmark applica

tion of feedback control came in 1788 as a means of controlling shaft speed in steam 

engines developed by James Watt. The fly-ball governor, as it became to be known 

as, used centrifugal force to maintain a constant shaft speed when engine loads were 

applied. The next breakthrough in feedback control came in 1936 from Callender, 

who developed the proportional-integral-derivative (PID) control. The PID control 

law worked off linearized approximations of nonlinear systems and, at the same time, 

allowed for the development and research of guiding and controlling aircraft. It was
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also about this time that sensors were being developed to measure aircraft altitude 

and speed to be used in feedback control laws. W ith sensor development, there was 

much measurement noise that corrupted data and, thus, led to the development of 

statistically optimal filters by Wiener in 1940. These foundations which came to be 

known as classical control and signal processing lead to modern control theory and 

estimation. It was R. Bellman and R.E. Kalman who first began looking at differ

ential equations as the model to base control design. This advance, was driven by 

the need to control Earth orbiting satellites with the newly available technology of 

digital computers. Work done by Grasshoff [8] and Lin [9] explore nutation control 

through accelerometer measurements and thruster actuation. However neither offer 

a comprehensive comparison of nonlinear and linear observer based control systems. 

Wilson [10] also presents a bang-bang control method for spin reduction and stabi

lization of space vehicles using gas jets. This prior research serves as a reference in 

the development and comparison of an observer based controller for the NASA MMS 

mission.

The Kalman filter is a recursive estimation technique that uses sensor measure

ments and state space system models, which are linearized equations about an op

erating point, to estimate desired states. Application of Kalman filters to spacecraft 

estimation was first introduced by E.J. Lefferts [11] in 1982 to use attitude measure

ment vectors combined with gyro outputs to estimate satellite attitude. It is also not 

uncommon to find that linear Kalman filters are not sufficient in estimating states 

of highly nonlinear systems, which is the case for many spacecraft applications. A 

nonlinear extension to the Kalman filter linearizes the system equations about each 

estimated state, rather than a predetermined operating point (as with the Kalman 

filter), and is referred to as the Extended Kalman Filter (EKF). Using this state 

estimation technique, many researches have proposed algorithms that use one set of
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sensor data to obtain a full understanding of states and torques. Psiaki [12] used 

magnetomentor vector measurements to determine attitude, angular rates, and ex

ternal torques while Gai [13] used star sensor measurements to determine attitude 

and angular rates. In another application of nonlinear filters, Markley and Crassidis 

[14] used a feed-forward predictive estimator to determine attitude, rate and model 

error trajectories without gyroscopic sensors.

A nonlinear variable structure technique for state estimation is called the Sliding 

Mode Observer (SMO). In the standard SMO, two sets of fixed gains (the Luenberger 

gains and switching gains) are used, unlike the EKF which uses time-varying gains, 

resulting in high computational demand of onboard spacecraft computer systems. 

A drawback of the SMO is its use of saturation or signum functions in the sliding 

surface formulation which tend to cause chattering of state estimates. The SMO is 

noted for robustness to modeling uncertainty and unknown disturbances. The SMO 

is an extension of the Sliding Mode Controller, where the estimation error trajectory, 

rather then the control error trajectory, is made to converge to zero. Applications of 

variable structure estimation and control include Luk'vanov [15] who used an SMO 

to control a spacecraft while excluding rate estimates. Misawa has done extensive 

research in the field of nonlinear estimation and sliding mode observers [16], [17].

Significant amounts of research has also been performed in the area of flexible 

structure control. Gale [18] investigated the influence of flexible appendages on 

dynamic behavior and control response for spacecraft using gas jets. Also, Wei [19] 

investigated nonlinear dynamics and stability of a gas jet, spin-stabilized flexible 

spacecraft. An optimal control method for damping flexible spacecraft through the 

use of momentum wheels was presented by Meirovitch [20]. Finally, a variable 

structure controller for a spin-stabilized spacecraft by [21] is one of many examples 

of flexible structure control.
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Although these studies offer insight into the application of sliding mode control 

and estimation, they do not implement an observer-based attitude control system for 

flexible structures sufficient for specific application to the NASA MMS mission.

The goal of this thesis is to explore two nonlinear state estimation techniques to be 

used in an observer-based control system specifically for use in the NASA MMS mis

sion. Each system is evaluated on its effectiveness to reject satellite nutation, while 

maintaining a desired satellite orientation and desired body rates. The state estimate 

techniques (EKF and SMO) are developed separately from the feedback controllers 

(linear and SMC). The various state estimate techniques are then implemented in 

the closed-loop feedback controller, where the entire observer-based control system is 

analyzed through simulation. Also, flexible boom dynamics are investigated through 

finite element techniques. This part of the research is useful in developing mathemat

ical models that account for flexible dynamics as well as provide an understanding 

of these influences on estimation and control effectiveness and will be used in future 

work.

1.6 T hesis O utline

The following chapters are organized as follows:

• Chapter 2, Spacecraft Attitude Models - An overview of coordinate systems used 

in orbital and attitude dynamics are introduced. Next, Euler angle representa

tions of spacecraft attitude kinematics, Euler moment equations for spacecraft 

rotational rigid-body dynamics, and flexible spacecraft dynamics are discussed.

• Chapter 3, Spacecraft Attitude Estimation and Control Techniques - Linear and 

nonlinear estimation and control methods are discussed and mathematically 

introduced for application to nutation rejection via body rate estimates.
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• Chapter 4, Finite Element Methods for Dynamic Modeling - Finite element 

analysis is introduced followed by numerical techniques for dynamic response 

resulting from flexible modes and modal extraction for vibrating systems.

• Chapter 5, Finite Element Results for Dynamic Responses - Satellite flexible 

boom modes of vibration are extracted using finite element methods. The 

foundation for this flexible model approach to satellite estimation and control 

design is presented.

• Chapter 6 , Attitude Estimation Results - A comparative study is performed 

using the Extended Kalman Filter and Sliding Mode Observer techniques to 

determine the most effective method of state estimation without gyroscopic 

measurements. Simulation results are investigated for steady state error, mea

surement noise and unknown disturbance torque robustness.

• Chapter 7, Attitude Control of Perfect Measurements - Control techniques are 

designed for attitude and rate control assuming that perfect state measurements 

are available. Linear and nonlinear methods are explored and simulation results 

are presented.

• Chapter 8 , Observer-Based Control - Both estimation techniques explored in 

Chapter 6 are used to update feedback control algorithms. Results are presented 

and analyzed to determine the optimal estimation and control system as it 

applies to the MMS mission.

• Chapter 9, Conclusions and Future Work - Contributions of this thesis to the 

MMS mission are summarized and, future research is itemized.
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CHAPTER 2

SPACECRAFT ATTITUDE MODELS

A ttitude is defined as the orientation of a body in space. One m ethod in which 

the orientation is described is through a series of rotations th a t transform  the body- 

fixed coordinate system of the spacecraft to an inertial fixed reference frame. An 

introduction to coordinate systems, the kinematics of param eters used to define an 

orientation, and the dynamics of these a ttitude  param eters under applied forces are 

all necessary to fully understand a spacecraft a ttitude  model.

Section 2.1 introduces coordinate reference frames th a t are used as the foundation 

to relate spacecraft orientation to fixed bodies such as the E arth, Sun, or other stars. 

Once an understanding of coordinate systems is established, the relative motion (or 

kinematics) of a spacecraft with respect to a reference frame is discussed in Section 

2.2. To finish the a ttitude  m athem atical model, rigid body dynamics of a rotating 

spacecraft are introduced in Section 2.3. Finally, flexible dynamics of a spacecraft are 

discussed in Section 2.4 to establish a fundamental understanding of elastic structural 

effects on the overall system and system model. This m aterial has been adopted from 

[5], and [l] as well as [7], and the reader should refer to th is m aterial for further 

detail.

2.1 C oord in ate  S y stem s

Spacecraft centered and non-spacecraft centered systems are the two common 

forms of coordinate systems used in describing the dynamics of a  spacecraft. Typ
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ically, non-spacecraft centered systems are used in orbital dynamic models, while 

spacecraft centered systems are utilized in attitude dynamic models. In instances 

where orbital and attitude dynamics are being formulated, a clear understanding of 

coordinate systems coordinate transformations is essential. The scope of this research 

focuses on dynamic models that utilize spacecraft centered coordinate systems for a t

titude dynamic formulations. The main spacecraft-centered systems are described 

below.

2.1.1 Spacecraft-Centered Coordinate System s

Spacecraft Inertial (SCI) Coordinates: This is the most common coordinate 

system when describing spacecraft motion. The origin of this reference frame trans

lates with the spacecraft and is defined relative to the rotation axis of the Earth. The 

axes of this frame are fixed in inertial space and are parallel to the Earth-centered 

inertial frame. The Earth centered inertial frame is a common non-spacecraft cen

tered coordinate system and is fixed at the E arth’s center. This frame, as with the 

spacecraft frame, is allowed to translate with Earth, but does not rotate about its 

spin axis.

Spacecraft Fixed (SCF) Coordinates: Since all attitude measurements are 

made with respect to the spacecraft fixed coordinates, this reference frame is ideal 

for attitude determination and control applications. SCF are fixed to the center of 

mass of the spacecraft and are allowed to rotate and translate with the spacecraft. In 

most cases, the axes of this reference frame are selected based on the principle axes 

of inertia of the spacecraft.

Orbit Defined Coordinate Systems: The axes of the orbit coordinate system 

are defined based on the orbit of the spacecraft. For this type of reference frame, the 

spacecraft x-axis is defined in the direction of orbital velocity, while the z-axis is the
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ocs

SCF

Earth

Figure 2-1: Spacecraft centered coordinate systems with respect to the Earth [1]

nadir vector, and the final y-axis is defined by completing dextral triad (right-hand 

rule). The origin of this reference frame, as with all spacecraft-centered coordinate 

systems, is fixed at the spacecraft center of mass.

Figure 2-1 shows the relationship of each of the three spacecraft-centered coordi

nate systems with respect to the Earth.

2.2 A ttitu d e Param eterizations

The most basic representation of the orientation of a body in space is the atti

tude matrix. This matrix transforms a reference frame into a body-fixed frame of 

a spacecraft. There are several parameterizations that satisfy the attitude matrix, 

which is determined through successive rotations in space. The direction cosine ma

trix, and the Euler Angle rotation sequence are two common parameterizations that 

are used to determine an attitude matrix through rotations. A problem with these 

types of parameterizations is the occurrence of singularities and discontinuities that 

arise when inverse trigonometric functions appear in the transformation matrix. The
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Figure 2-2: A reference frame and body fixed frame of a spacecraft in orbit [1]

Gibbs vector and Quaternion are two methods that use vectors and rotation angles 

to determine the attitude matrix of a spacecraft. In this research, the Euler Angle 

sequence is implemented in the dynamic model formulation.

2.2.1 D irection Cosine M atrix

A direction cosine matrix is simply the matrix which describes the cosine of the 

angle between two unit vectors in different reference frames. The direction cosine 

matrix (also called the attitude matrix or transformation matrix) is a 3 x 3 orthogonal 

matrix that represents the orientation of one reference frame with respect to another. 

For example, let ( r i , r 2 ,r s)T and (bi,b 2 ,bs)T represent the unit vectors of a inertial 

reference frame and body-fixed frame respectively, as illustrated in Figure 2-2.

The direction cosine matrix tha t describes the orientation of the body fixed frame
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with respect to the reference frame is:

r i On O\2 CrA

1t rH
1

r 2 — C21 C22 C23 62

C31 C32 C33 &3

where Ct] — ?i ■ bj = cos(fi. bj) and (i. j  — 1,2,3) are the elements of the direction 

cosine matrix.

The direction cosine matrix in an orthonormal matrix, as the following properties 

hold true for all cases:

C T =  CT1 (2.2)

which is equivalent to:

C TC =  I =  C C T (2.3)

Another important relationship of the direction cosine matrix is the ability to 

change the direction of transformation. For example, in Eq.(2.1), the relation shows 

the transformation from the body-fixed axis to an inertial reference frame, which can 

be shown as: A —> B in which the direction cosine matrix can be defined as C A/B. 

To determine the direction cosine matrix C B/A the following relationship holds true:

C B/A =  [CA /B ] _1 (2.4)

The direction cosine matrix is the most basic form or representing spacecraft orien

tation. Since there are parameters of the transformation matrix that are redundant, 

the direction cosine matrix less desirable for application and simulation due to its 

high computational requirements. The Euler Angle approach offers an alternative to 

attitude matrix determination and is based on the same mathematical principals as 

the direction cosine matrix without parameter redundancy.
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Figure 2-3: The 3-2-1 Euler rotation sequence [1]

2.2.2 Euler Angles

As with the direction cosine matrix, the Euler Angle approach to attitude rep

resentation involves an orthogonal transformation between the body fixed axis of a 

spacecraft and another reference frame. Euler angles accomplish this transformation 

through a series of pure rotations about the body-fixed reference frame. There are 12 

possible rotations that can produce the attitude matrix of a spacecraft. Figure 2-3 

shows the three possible rotations about the body-fixed reference frame for the 3-2-1 

Euler angle rotation sequence which occurs about the Z  — y' — x" axes of the body 

frame respectively. The transformation to the final orientation (x,y, z ) is as follows:

1. A rotation about the Z  axis through angle cb to transform X , Y, Z  —» x ' , y ' . z'

2. A rotation about the y' axis through angle 6 to transform x ' ,y ' ,z '  —> x" , y", z"

3. A rotation about the x" axis through angle ip to transform x" , y". z" —> x ,y ,  z

There are three possible orthogonal matrices that are used in each of the rotations 

which are functions of the angle they pass through. By multiplying these three 

matrices in the order of their transformation, the overall attitude matrix that relates
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X . Y, X  to x. y. z is as follows:

cos 6 cos @ cos 6 sin cp — sin 6

C =  — cos ip sin cp +  sin ip sin 6 cos cp cos ip cos cp +  sin ip sin 6 sin cp sin ip cos 6

sin xp sin cp +  cos ip sin 0 cos cp — sin ip cos cp +  cos ip sin 6 sin cp cos ip cos 0
(2.5)'

This transformation is one of many Euler angle sequences that is used to describe 

the orientation of an object in space. The most noted disadvantage of this type of a tti

tude representation is the singularities that arise from inverse trigonometric functions. 

Also, there is a high computational cost associated with Euler angle transformation 

matrices, especially when inverting matrices to obtain the reverse of the transfor

mation. The rate of change of these Euler parameters (ip,0,cp) is also important in 

understanding attitude dynamics and is presented in the following section. Other 

representations may be used tha t are more computationally efficient (e.g quaternions 

and Gibb’s vector notation). However, Euler angle rotation is used because it is more 

physically understood more easily interpreted.

2.3 A ttitu d e K inem atics

Attitude kinematics is a set of nonlinear differential equations that describe the 

rotational motion of a spacecraft about its center of mass, ft is similar to that of the 

attitude matrix formulation, except the transformation between two reference frames 

is now time dependent. These equations are all functions of the time rate of change of 

attitude parameters. As with spacecraft attitude, attitude kinematics can be derived 

by several parameterizations. Since this research focuses on the Euler angle approach 

to attitude definition, the formulation of the kinematic equations remains consistent 

with that methodology. The derivation of the following equations is based on the 

3-2-1 Euler angle sequence and is adopted from [1]. The major disadvantage of using
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the Euler angle approach lies in the singularity that occurs at 6 = 90° that is refereed 

to as “gimbal lock” . To avoid this singularity, it is assumed that all angular motion 

about the body axis is less then 90°.

2.3.1 Euler A ngle K inem atics

The time dependency of Euler angles of the 3-2-1 sequence derived above will be 

formulated below.

The angular velocity of the spacecraft body fixed axis with respect to a fixed 

reference frame is defined as:

^b /i  ^b/o  T t^o/i ( '̂®)

where the angular velocity of the orbital reference frame with respect to the fixed 

reference frame is:

^ o /i  ^ojo  (^•'^)

and the spacecraft body-fixed frame with respect to the orbital reference frame is 

defined as:

W h / o  —  +  8 j '  +  ( 2 - 8 )

The unit vectors correspond to the axis formed after each rotation during the 

Euler angle sequence. When all coordinates are transformed to the final reference 

frame ( i , j ,  k)  the angular velocity of the spacecraft with respect to a fixed reference 

frame can be defined as:

^b/o 0̂b/ô   ̂d“ ^b / 0 2  3 d“ ^ 6/03 k  (2.9)

where the components of the angular velocity can be defined as:

Wb/0l =  — sin 0 ^ +  ip (2 .10a)

/e>2 =  sin cj) cos 6 cf> cos 'ip 6 (2 .10b)
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^ 6/o3 =  cos V* cos Q <t> ~  sin ip # (2 .10c)

To determine the Euler angle rates (<p,6,<p) Eq.(2.10) can be arranged as follows:

cp — (ujb/o3 cos ip +  ^b/o2 sin ip) secO (2 .11a)

0  =  U b /o 2 co s i> ~  UJb/oz  sin-ip (2 .11b)

ip =  U)b/ 0 l  + (u>b/o3 cos-ip +  cob/ o 2 sin ip) tan ^  (2 .11c)

Eq. (2.11) is used to describe the first three states (cp, 6, ip) in the formulation of the 

spacecraft attitude dynamic equations of motion. The following section introduces 

spacecraft rigid-body dynamics, which is used in the derivation of the final three 

equations of motion for spacecraft attitude.

2.4 R ig id -B ody A ttitu d e D ynam ics

Attitude dynamics describes the motion of an object due to applied moments, 

while orbital dynamics are concerned with the translating motion of a spacecraft 

center of mass due to external forces. This section focuses on the rotational motion 

of a spacecraft about its center of mass. The rigid body assumption for analyzing 

dynamic motion disregards internal energy dissipation due to structural elasticity. 

Although it may be necessary to analyze flexible structure dynamics for analytical 

completeness, when implementing estimation and control, these equations tend to be 

extremely complex and nonlinear, where as a rigid-body dynamic model is proven to 

be sufficient [6]. Later in this chapter, flexible structure dynamics are considered in 

order to analyze the corresponding effects on attitude control. Presently, however, 

rigid-body assumption is used for state equation formulations.
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2.4.1 R otational Dynam ics

The fundamental equations governing rigid-body motion due to applied forces stem 

from the conservation of angular momentum principle. If there are no momentum 

exchange devices, then the angular momentum of a spacecraft can be defined as:

(2 .12)

where I is the symmetric inertia matrix of the spacecraft about the body-fixed ref

erence frame. The diagonal terms of the inertia matrix are the principle moments 

of inertia of the spacecraft, while the off-diagonal terms are referred to as the cross 

products of inertia and arise when the body-fixed axis frame does not coincide with 

the principle axes of the spacecraft.

The rate of change of angular momentum is also important in dynamic model 

formulation. If there are external moments (M) acting about the center of mass of 

the spacecraft, then the angular momentum rate of change with respect to a fixed 

reference frame (o) can be defined as:

dH
dt = E M- (2.13)

This relationship along, with Eq.(2.11), is necessary to define the attitudinal motion 

of a spacecraft under applied moments.

2.4.2 Euler M om ent Equations

The Euler moment equations are based on the law of conservation of angular mo

mentum and used in the formulation of attitude motion. Eq.(2.14) may be expanded 

as follows:

X > »  =
m
dt

-t- uj x H (2.14)
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where the subscript b refers to the body fixed axes of the spacecraft. By evaluating 

Eq.(2.14), the Euler moment equations for body rate dynamics may be defined as:

x — (xlz^y (2.15a)

My — hy + u zhx — u xhz (2.15b)

M z = hz + u xhy — uiyhx (2.15c)

Eqs.(2.15) assume that cross products of inertia exist in the inertia matrix. It

should also be noted tha t the Euler moment equations are directly coupled with

Eqs.(2.11) and that the last three states used in the dynamic equations of motion 

(u)X)L)y,6jz) arise in the differentiation of the angular momentum.

Simplifications of the Euler moment equations are often used in special situations 

in which valid assumptions can be made. By assuming that the principle axes of the 

spacecraft coincide with the body fixed reference frame, cross products of inertia are 

eliminated such that the Euler moment equations reduce to:

Mi =  I\lox +  uiyU!z(Is — I 2 ) (2.16a)

M2 =  hwy +  ujxloz(Ii — Is) (2.16b)

Ms =  Is^z +  — II) (2.16c)

Furthermore, by assuming that the spacecraft is axisymmetric (/1  =  J2) and that

there are no external torques acting on the system (M =  0) the equations additionally 

reduce to:

cox +  AcOy =  0 (2.17a)

cby — \ lox — 0 (2.17b)

where loz is a constant spin rate (n rads/s) and A is a parameter defined as:

(2 .18)
-<1
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Eq.(2.17) is used as a linear approximation of the Euler moment equations and 

simplifies analysis. It is shown later, tha t this approximation is usually insufficient in 

describing highly nonlinear spacecraft attitude dynamics for control and estimation 

design.

2.5 F lexible Spacecraft D ynam ics

Flexible spacecraft dynamics must be considered when highly flexible spacecraft 

components have a significant effect on the overall response of the system under ap

plied loads. To ensure that flexible dynamics do not affect the overall system response, 

it is usually desired that flexible modes of vibration be an order of magnitude greater 

then rigid body modes [5]. Highly flexible spacecraft components can effect sensor 

data, control commands, and physical characteristics such as moments of inertia and 

center of mass, all of which can cause a spacecraft to go unstable. Especially in ap

plications that require deployment of instrumentation booms, flexibility effects and 

frequency modes can change drastically, requiring a more comprehensive dynamic 

analysis. Modeling and control of highly flexible structures is a popular area of re

search in the aerospace and structural field. However, this is beyond the scope of this 

research. Below, the simple methods of modal analysis are presented as they apply 

to this research.

2.6 N utation

Nutation is an undesirable spacecraft effect that can cause inaccuracies in exper

imental measurements, excessive spacecraft oscillations or, in worse case scenarios, 

instability. Although the mathematical representation of nutation is not included in 

attitude models for this research, it is necessary to understand the physical nature of 

the effect in order to develop control and estimation techniques that are used to re
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ject nutation. For more a more comprehensive mathematical background in nutation 

dynamics the reader should reference [6] and [5].

Nutation is a rotational motion effect in which the spin axis is not aligned with 

the principle axis of the spacecraft, thus causing the principle axis to rotate about 

the angular momentum axis that is fixed in space. This resulting induced rotation 

about the remaining two spacecraft fixed axes is refereed to as nutation and can be 

induced by multiple physical effects such as fuel sloshing, mass imbalances, or cyclical 

external torques.
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CHAPTER 3

FINITE ELEMENT ANALYSIS A ND  

NUM ERICAL M ETHODS

The finite element m ethod has been used in the engineering field for the last 40 

years. Since the development of the digital computer, much larger systems of equa

tions involving high order m atrix operations, once thought to  be impractical to solve, 

were evaluated in. minutes. W ith the digital computer, a new field of research in 

digital com putation and numerical methods spawned. These new methods allow for 

highly complicated, nonlinear structures to be evaluated simply by user specification 

of material properties, boundary conditions and finite element properties.

R. W. Clough first introduced the phrase ’’Finite Element” in his 1960 paper ’’Fi

nite Element M ethod in Plane Stress Analysis” [22]. The m athem atical principals 

of finite element modeling can be traced back to the early 2 0 th  century with research 

done by famous m athem aticians such as Lord Rayleigh and W alter Ritz [23]. Their 

research in particular provided a  foundation upon which numerical methods were de

veloped for eigenvalue analysis. It was in the 1940’s when extensions of Rayleigh and 

R itz’s research in approximation of continuous differential equations were introduced 

by Richard Courant in his paper “Variational M ethods for the Solution of Problems of 

Equilibrium and Vibrations” . The Russian scientist Boris Galerkin was also pivotal 

in the early developments of FEA in his 1915 paper ’’Series Solution of Some Prob

lems of Elastic Equilibrium of Rods and Plates” . Since the recognition of the finite 

element m ethod for structural dynamic problems in the 1960’s, it has seen applica
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tions ranging from thermal analysis to providing a three dimensional understanding 

of electromagnetic fields.

The most common form of FEA is called the displacement-based finite element 

method. Spatial discretization results in a system of differential equations of motion 

adopted from [24] and defined as:

R  =  M U  +  C U  +  K U  (3.1)

where the state variables U  =  [U, V, W \r represent nodal displacements in x,y,z di

rections of the body-fixed axes respectively. M ,  C , and K  are the element specific 

mass, damping and stiffness matrices, respectively, and R  is the time-dependent load 

vector. A more comprehensive mathematical description of the displacement-based 

finite element method can be found in [24] and [22]. From inspection of these 

equations it can be seen that in steady-state or statics applications, only stiffness 

effects are considered while dynamic problems include inertia and energy dissipation 

effects. In many situations it is difficult to quantify energy dissipation effects due to 

its dependence on frequency, and it is, thus, excluded from the system equations and 

constructed from experimental data when it is to be considered [24].

The following sections offer an introduction into the basic mathematics of the 

finite element method. Most of what is developed below is adapted from Bathe [24] 

and offers a very respected and comprehensive reference on finite element analysis 

and its applications. The reader should reference this source for a more in-depth and 

advanced understanding of finite element mathematics.

3.1 D iscrete System s

A fundamental problem that faces engineers in the analysis of complex systems 

is the highly nonlinear and complicated continuous differential equations that are
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used to describe the physical response of a system. From a mathematical view, they 

offer a pure understanding of the physical system. However, in the analysis of these 

equations for engineering purposes, it can be a tedious and unmanageable task. It is 

only in very simple situations where exact solutions to differential equations can be 

obtained. For complex systems, it is necessary to reduce the continuous equations to 

a finite dimensional system of algebraic equations. In the analysis of these discrete 

equations, four steps can be followed in all instances as proposed in [24]:

system  idealization - the continuous system is subdivided into a finite number of 

elements

elem ent equilibrium  - the equilibrium of each element is determined

elem ent assem blage - the mathematical relationship is established between each 

element and then augmented into a set of algebraic equations that describe the 

state variables

solution of response - the set of simultaneous equations is solved for state variables 

and the response of each element is determined to gain an understanding of 

overall system

Three main situations in which discrete systems are analyzed involve steady-state 

problems, propagation problems and eigenvalue problems. Steady-state problems 

involve the determination of state variables that are not dependent on time. This 

is the most common application of FEA and can be utilized in the evaluation of 

deflection and bending stress gradients in structures under static loads, or steady- 

state temperature gradients in thermal systems. The scope of this research focuses 

on the application of finite element methods to dynamic systems.

The following sections will give a more in depth introduction to propagation and 

eigenvalue problems, and the procedures in which they are numerically solved.
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Dynamic extensions of FEA, or propagation problems, arise from the need to 

understand how systems responsed under time variant loads. Unlike in steady-state 

or static problems, time dependent loads, such as a body’s inertia, are included in 

the analysis. State variables are time dependent and their response under loads is 

determined through FEA of propagating systems. The numerical solution of these 

problems involves determining state variables at each time increment. The length of 

the time steps is defined by the analyst and can greatly effect the predicted overall 

response of the system. Several numerical techniques have been developed for solving 

these types of problems and are introduced in following sections.

The main assumption in steady-state and propagation problems is that the sys

tem responds in a unique manner under static or time-variant loads. The eigenvalue 

analysis computes various possible responses of a system under applied loads. Eigen

value problems can be extended to both steady-state and dynamic problems. Under 

steady-state conditions, eigenvalue analysis is used to determine the stability of a 

system if it is perturbed about its equilibrium position. For dynamic systems, eigen

value analysis (also referred to as modal analysis in dynamic instances) is utilized 

to determine the natural modes at which a system will oscillate. Natural modes are 

defined by the frequency at which they oscillate and their shape of vibration. The 

number of natural modes a system has is equal to the system’s degree of freedom. In 

other words, if a continuous system is discretized and has N  degrees of freedom, the 

system will have N  natural modes [23]. This can be mathematically cumbersome in 

complicated systems and since the higher order modes of vibration converge to zero 

quickly, it is only the first modes of vibration that are of interest.

The mathematical basis of eigenvalue analysis is introduced as it applies to uniform 

beams.
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3.2.1 M odal Analysis

The mathematical basis for modal analysis is adopted from Wei [25]. Although, 

this research focuses on a finite element approach to modal extraction, the assumption 

of a uniform bar with longitudinal vibration and control input being applied to x = 0 

is used in the mathematical formulation of modal analysis. For an infinite number of 

vibrational modes, the transfer function relating control input (u) to beam deflection 

(y(x)) in the Laplace domain is given as:

where a*(x) =  2 cos(mx) for all modes of vibration i = 1,..., oo and Q is the modal 

damping parameter responsible for energy loss during oscillation from material elastic 

deformation.

Modal truncation is a process of reducing the infinite series expressed in Eq.(3.2) 

to a finite-dimensional model that can be useful in analyzing flexible structure modes 

and their overall contribution to the vibrational response. For modal truncation, 

the system is assumed to have the same damping ratio (■ for each , as well as an 

impulse input applied at x  =  0. The corresponding vibrational response of the first 

n influential modes is given as:

to zero and this is the reason why only the first p modes are considered when analyzing 

the vibrational response. The modal gain also offers insight into the influence of each

y(x ,s)  
u(s) s2

OO

(3.2)

The modal gain mathematically describes the amplitude of the ith mode of vibra

tion at time t and location along the structure x  and is defined as:

(3.4)

It can be seen in the modal gain equation that higher order modes rapidly converge
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mode on the overall system response. This can be useful in sensor and actuator 

placement as well as deciding discretization schemes for flexible modeling [26]. Most 

importantly, by understanding the dominate modes of a vibrational response, control 

and observer design can take into consideration these modes, as to not excite them 

during spacecraft operation.

Next, the numerical methods used for eigenvalue analysis and propagation of com

plex systems under applied forces will be presented.

3.3 N um erical A nalysis of Propagating System s

The following material is adopted from Logan [22] and Bathe [24] and should be 

referenced for a more in depth understanding of these complex mathematical tools.

As stated above, propagation problems involve dynamic systems in which the se

lected state variables change with time. Discretization allows for these continuous 

systems to be solved in reasonable time through numerical integration methods. Nu

merical methods have been introduced with the advancement of digital computers to 

discretize Eq.(3.1) and solve the state variables.

Most or all of the following techniques presented are available on commercial 

finite element software packages. Each technique has its own drawbacks ranging 

from computational demand to numerical instabilities, that cause inaccurate results. 

In all cases, each technique should be tested and compared to determine the most 

appropriate method for a given application.

3.3.1 Central Difference Integration

The most common numerical technique used in discrete dynamical systems is called 

direct integration. Essentially, direct integration conducts a static analysis at each 

time interval, however, inertia and damping effects are included. The central differ

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



34

ence method is defined as (assuming damping effects are neglected):

(A t)2U
U i-1 = U i -  AtUi  +  1 } 1 (3.5a)

Ui = M ~ \ R i - K iUi) (3.5b)

M U i+1 =  (A t f R i  +  [2M  -  (A t)2IT]C7i -  M U ;_i (3.5c)

where i is the time increment defined for a certain time step A t, Ui =  C7(/,) and 

Ui+1 = U (t + At). To begin this routine, initial conditions U0. U0 and U0 must be 

defined. Time steps are selected by the user with smaller steps resulting in greater

accuracy. A method of selecting step size that ensures numerical stability is proposed

by Bathe [24], which states:

A t  < - A -  (3.6)
m ax

where usmax is the structure’s highest natural frequency which can be determined from 

multiple different eigenvalue evaluations. This is also referred to as the critical time 

step for central difference integration. If the time step for a given application is larger 

then the critical time step, the numerical analysis might become unstable, yielding 

worthless results.

3.3.2 H oubolt M ethod

The Houbolt method is similar to the central difference equations presented in 

Eq.(3.5). The governing equations of the Houbolt method are defined as [24]:

Ut+At — 2 [2Ut+At — 5Ut +  AUt-At — Ut~2 At] (3.7a)

Ut+At — [1 1 C W  -  18t/t +  9Ut_At -  2Ut-2Deltat} (3.7b)

In order to solve for the state variables at t + A t,  Eqs.(3.7) must be substituted 

into Eqs.(3.8).

M U t+At +  C U t+At +  KUt+At — Rt+At (3-8)
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The main disadvantage of the Houbolt method lies with its conditional stability, 

as with the central difference equation. If the size of the time step of the numerical 

analysis is not adequately small, the procedure will yield inaccurate results.

3.3.3 N ewm ark’s M ethod

The Newmark, or also called Newmark-Beta, method is another numerical method 

used to solve dynamic equations. It is an extension of the central difference equations, 

however, the method is more robust to time step size selections. Although the deriva

tion of Newmarks’s equation are not presented below, the governing equations are 

provided to offer insight into the method by which finite element software packages 

arrive at solutions. For a complete derivation of Newmark’s equations, one should 

refer to [24]. Newmark’s equations are defined as:

Ui+\ =  Ui + (At) (1 — 7 )C/i +  jUi+i (3.9a)

Ui+1 = Ui + {At)Ui +  (At) 2 (±-P)Ui  + pUi+1 (3.9b)

where (3 and 7  are user-defined parameters. Typically, (3 is chosen between 0 and 

0.25 while 7  is usually selected at 0.5. It has been proven by Bathe [24] that if (3 and 

7  are selected at 0.16 and 0.5 respectively, Eqs.(3.9) reduce to the central difference 

equations. Also, unlike the central difference method where time steps must be chosen 

sufficiently small to guarantee numerical stability. Newmark’s method remains stable 

for (3 — 0.5 and 7  =  0.25. Finally, it has been shown that the numerical method yields 

the most accurate results when the time step is selected at 0 .1 0  of the lowest natural 

frequency. It is for these reasons of numerical stability and an easily defined optimal 

time step that the Newmark method is ideal, especially in commercially available 

finite element software packages.
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3.3.4 Num erical Analysis for Eigenvalue Problem s

The numerical methods described in this section are adopted from the mathemat

ical principal of these methods presented in Bathe [24], Eigenvalue analysis, also 

called modal extraction, is a numerical evaluation that determines natural modes of 

vibration of a given dynamic system. The most basic eigenvalue problem to be solved 

in structural dynamics applications is defined as:

Kcp = XM<p (3.10)

where the stiffness matrix is defined as K  and mass matrix M  while the natural 

modes of vibration are defined by natural frequencies A* and eigenvectors d>t. For a 

system with N  degrees of freedom, then K ,  M e$lNxN and the system will have N  

frequencies of vibrations and eigenvectors such that:

0 < Ai < A2 < A3 < ....... < AN (3.11)

For a system that has been discretized in to many elements, it can be tedious 

to calculate all modes of vibration. As stated earlier, many higher order modes of 

vibration converge to zero quickly. In engineering applications, typically the 10 lowest 

natural frequencies are of interest. The demand to approximate the important modes 

of vibration for a large complicated system has lead to the development of several 

numerical techniques. An important property in modal analysis is that a body is fully 

constrained during the numerical procedures. In other words, if a mechanical body 

is allowed to rotate or translate in one or more degrees of freedom, the numerical 

algorithms are not able to compute all possible modes of vibration. This requirement 

makes modal extraction of bodies in motion nearly impossible.

There are three main approximation procedures that can be found in commer

cial software for eigenvalue analysis: static condensation, Rayleigh-Ritz, and Lanczos 

method. In the static condensation method, degrees of freedom that do not appear in
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the global finite element matrices are eliminated. From here, the mass is lumped at 

specified degrees of freedom to ease the frequency calculations. This makes computa

tion easy from Eq.(3.10), however accuracy is sacrificed. The Rayleigh-Ritz method 

utilizes basis vectors to determine the approximations of eigenvectors that span the 

basis vectors. Finally, the Lanczos method uses iteration algorithms that can calcu

late modes of vibration that have improved accuracy as a result of the iteration. To 

understand these methods and their complex mathematical development, the reader 

is referred to [24] for further detail.
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CHAPTER 4 

FINITE ELEMENT ANALYSIS RESULTS

The Finite Element Analysis phase of the MMS research involves multiple stages. 

In the first stage of the research a modal analysis is performed on the MMS axial 

booms using the MARC M entat FEA software package. The goal behind the modal 

extraction is to  confirm NASA boom natural frequencies of the two axial double probe 

(ADP) booms through two different simulation techniques tha t are described in the 

following sections. Along with acquiring natural modes of vibration and mode shapes, 

a modal gain analysis is conducted to  assist NASA in m athem atical model develop

ment, of flexible booms. Equations based on the paper written by Erik Stoneking [26] 

at the NASA Goddard Research Center are to be developed for implementation into 

MATLAB simulations in future research. This will allow for an understanding of fully 

flexible boom dynamics under orbital and a ttitude maneuvers. Finally, a  fully elastic 

model of the MMS spacecraft with axial booms is developed using finite elements. 

From this model, stresses a t boom joints can be determined from a rotating space

craft translating through space. Also this will give insight into the dynamic elastic 

behavior of the spacecraft under thruster forces.

The following chapters will present results of the finite element analysis performed 

on the NASA MMS.
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4.1 M odal A nalysis

The modal extraction conducted on the ADP booms is evaluated in two different 

techniques. The first method involves an eigenvalue analysis as presented in Chapter 

3 for a fully constrained body. In this analysis the first ten natural frequencies of 

vibration are calculated along with graphical descriptions of their mode shapes. These 

results are then compared with natural frequencies obtained from a dynamic analysis. 

In this type of simulation, booms are attached to a rigid spacecraft body that is 

acted on by external forces to emulate thrusters. The spacecraft body is allowed to 

translate through space, and the resulting boom vibrations are analyzed. It is vital in 

determining the relationship between methods, so tha t in a fully dynamic case, any 

frequencies of vibration that are observed are accurate natural modes.

The booms are modeled as a single rigid element with all elasticity stored in 

a spring at the origin. Figure 4-1 illustrates the rigid boom model. Rotational 

springs about all three axis are implemented with a specified stiffness provided by 

NASA engineers. Combined with a constraint on all three translational degrees of 

freedom, the model is fully constrained and the analysis is able to converge. The rigid 

boom with elastic spring assumption aided in natural frequency calculation and finite 

element methods are used in confirmation of these natural frequencies. An accurate 

knowledge of these frequencies is essential in spacecraft design, especially in orbit and 

attitude control. If the thrusters, used in actuation, fire at similar frequencies to that 

of the booms, dominate modes will be excited undesirably.

4.1.1 M odal E xtraction

The first part of the modal extraction phase involved model development. Table

4.1 illustrates the model parameters that are used to define the ADP boom. All 

values have been supplied by NASA engineers.
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Figure 4-1: Rigid Boom Finite Element Model

Model Parameters Values

Moments of Inertia (kg — m 2) Ix =  0.00014, Iy = 13.978

Cross Sectional Area (m2) A=0.0006

Elastic Modulus (Pa) E =le+14

Material Density (kg /m 2) p = 181.57

Table 4.1: Modal Extraction Model Parameters
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K p(x ,y ) (N /m ) Modal Extraction ton (x,y) Hz NASA ojn (x,y) Hz

49.7432 0.151 0.15

22.1081 0.1007 0.10

28.2298, 39.4973 0.1138, 0.1346 0.113, 0.134

88.4323 0.2014 0.20

Table 4.2: Modal Extraction Results for Rigid Boom

A single beam element is used to create the simplified model, with rotational 

springs constraining the x and y rotations, while the z rotation as well as x,y and 

z translations had zero displacement constraints. Multiple different spring stiffness 

values are simulated. Figure 4-1 illustrates the single beam element used in the modal 

extraction of a rigid body.

Along with defining a model, many simulation parameters are selected for numeri

cal analysis. Multiple different numerical techniques are available for modal extraction 

in the MARC Mentat software. The Lanczos method is used for modal shape and 

frequency determination.

Simulation results are presented in Table 4.2 along with NASA results as com

parison. It can be seen that the natural frequency u:n, of the first natural mode 

of vibration, is verified through modal extraction techniques for all spring stiffness 

values.

4.1.2 Dynam ic Transient

The dynamic transient analysis option in MARC Mentat allows for time dependent 

simulations. For this type of simulation, forces are applied to the model and the 

simulation produces time dependent results. This method allows for a full dynamic 

understanding of stresses and deflections during maneuvers. Thruster loads will be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



42

I

I

i
I
I

Figure 4-2: Finite Element Model of Satellite with Rigid Booms

applied to the rotating spacecraft with fully elastic booms to simulate orbital transfers.

Before a fully dynamic model is performed, it is necessary to prove that vibration 

data obtained from these simulations is valid. Ultimately, frequencies of vibration of 

the axial booms are to be found, and since modal extraction does not allow for vibra

tional analysis of a partially constrained body, it is in dynamic transient simulations 

where this data is found.

The simulation model consists of a rigid spacecraft body with attached axial 

booms. These booms are attached through rotational springs about the x and y axis, 

and constrained in x, y and z translations relative to the spacecraft body. Figure 4-2 

illustrates the spacecraft body and rigid axial booms. The model undergoes transla

tional motion due to four thrusters that exert 10 Newtons of thrust each as shown in 

Figure 4-3. Since the spacecraft is not rotating about its z-axis, only thrusters acting 

in the positive x-axis are used to induce translation.

Table 4.3 show the model parameters for the satellite booms. Each boom is 12
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Figure 4-3: Satellite Thruster Locations

meters in length while the spacecraft body is an octagon shape with sides equal to 

1 meter and depth of 0.5 meters. For non elastic analysis, booms are constructed 

of a single elastic beam finite element with a high elastic modulus le+14 Pa. In 

simulations when elastic motion is investigated, each axial boom is subdivided into 

12 elastic beam elements. For the spacecraft body, a geometry is constructed using 

MARC, followed by a mesh generation using tetrahedral elements. Again, the space

craft body is given a high elastic modulus to make the body rigid and ensure that 

minimal deformation occurs under thruster loads.

The dynamic transient simulation runs for 100 seconds with 500 time steps (At =  

0.2s). A full Newton-Raphson iteration technique is used, and two different integra

tion methods are investigated. In both integration techniques, the large strain option 

of the finite element software is selected to allow for nonlinear analysis to take place.

The first integration method tested is the Houbolt numerical analysis. From in-
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Model Parameters Values

Moments of Inertia (kg — m 2) Ix = 0.00014, Iy = 13.978

Cross Sectional Area (m2) A=0.0006

Elastic Modulus (Pa) E =le+14

Material Density (kg /m2) p — 181.57

Table 4.3: Dynamic Transient Parameters

K p(x, y )(N/m) Modal Extraction u>n (x,y) Hz NASA uin (x,y) Hz

49.7432 0.1511 0.15

22.1081 0.1007 0.10

28.2298, 39.4973 0.1139, 0.1345 0.113, 0.134

88.4323 0.2013 0.20

Table 4.4: Dynamic Transient Results for Rigid Boom Vibrations

vestigation of boom tip displacements, it is determined that the Houbolt integration 

method causes a numerical inaccuracy. There are no damping parameters selected in 

the analysis, yet tip displacement amplitude results suggests that energy dissipation 

occurs. Despite increasing numerical increments from 500 to 2000 (decay decreased 

from 17% to 1.4%) and investigating various iteration techniques, the numerical in

accuracy could not be eliminated.

The implementation of the Newmark-Beta technique through the MSC software in

dicates that numerical damping is eliminated. Numerical parameters included (3 = 0.5 

and 7  =  0.25 which are typical values of this type of analysis that guarantee numerical 

stability according to [24], Results show that the “numerical damping” inaccuracy 

that causes unnatural results is eliminated through the use of the Newmark-Beta in

tegration technique. Also, with an x and y rotational spring of stiffness K v — 49.7432
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N/m  the first natural frequency is consistent with the modal extraction method and 

NASA results. This leads to the encouraging conclusion that the dynamic transient 

method of vibration analysis for unconstrained bodies is consistent with other vi

bration analysis techniques. The drawback of the dynamic transient analysis, is that 

only the lowest frequency of vibration can be determined and higher order frequencies 

remain unknown. Table 4.4 lists the remaining frequencies of vibrations for various 

spring stiffness values.

4.2 Satellite D ynam ic R esponse

The final step in the finite element analysis, is a dynamic transient response. Uti

lizing the Newmark-Beta integration technique, the model illustrated in Figure 4-2 is 

given an initial rotational velocity about its z-axis, and then thrusters will impart a 

force to induce translation. Four thruster firing schemes are investigated:

• One pair of thrusters will fire every 180° of rotation (firing frequency of 0.05 

Hz) for a length of 1 second

• One pair of thrusters will fire every 180° of rotation (firing frequency of 0.05 

Hz) for a length of 2 seconds

• One pair of thrusters will fire every 360° of rotation (firing frequency of 0.10 

Hz) for a length of 1 seconds

• One pair of thrusters will fire every 360° of rotation (firing frequency of 0.10 

Hz) for a length of 2 seconds

Since it is yet to be determined exactly how the MMS will function during its 

operational stages, these results will help in determining optimal operation. From
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these simulations, reaction forces at beam connections to the spacecraft can be de

termined, and with the implementation of fully elastic beams, an understanding of 

flexible dynamics can be obtained.

The implementation of the initial spacecraft rotation is attempted through equal 

and opposite thruster firings that create a torque about the z-axis of the spacecraft, 

and thus inducing rotational motion. Also, initial conditions are given to the space

craft model such that the z-axis would rotate at 0.3 rad/s. In both instances it is 

immediately determined that numerical instabilities are causing inaccurate results. 

The software is not effectively performing coordinate transformations at roughly 90 

degrees of rotation. If certain simulation parameters are selected to allow for this 

rotation, the model unnaturally expands at a rapid rate. Much consultation with 

MSC user support engineers yielded in minimal progress in overcoming this numeri

cal stability. This type of numerical instability can occur in many applications such 

as collision analysis when rotational motion is induced and coordinate transformation 

cannot occur. It is my opinion that this topic in itself is of much interest and worthy of 

future research for its implications on many dynamic transient analysis applications.
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CHAPTER 5 

ATTITUDE ESTIMATION A N D  CONTROL  

METHODS

A ttitude control is the process by which actuators are used in producing an exter

nal force or torque on a spacecraft to m aintain a desired a ttitude  or to change the 

a ttitude of a  spacecraft. A ttitude stabilization is the process by which a spacecraft 

must m aintain a desired a ttitude with respect to a fixed reference frame or inertial ref

erence frame. A ttitude maneuvers usually require knowledge of the current spacecraft 

orientation in order to  effectively change attitude. In either case, a ttitude  sensors are 

used for feedback of state  information. The difference between desired and actual ori

entations are then used in a control process to activate actuators th a t im part desired 

torques or forces on the system to acquire and maintain desired spacecraft attitude.

A ttitude control systems may be classified into two common types: 'active control 

and passive control. Active control uses discrete-time measurements of spacecraft 

states, such as a ttitude or body rate information, in order to control a spacecraft’s 

attitude. A ctuators such as gas jets, momentum wheels and magnetic torque rods 

are used to  control the spacecraft, so as to m aintain the tracking error to within 

desired limits (usually as close to zero as possible). Passive control, while often used 

in conjunction with active control, uses the spin of a spacecraft to m aintain a con

stan t momentum vector to keep the satellite spinning a t a desired attitude. Since 

there are many unknown disturbance torques th a t can act on a  spacecraft, the use of 

active control to  m aintain the orientation of the spin vector is usually necessary. A1-
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though the correct selection of actuators and sensors is vital to a successful spacecraft 

application, it is the control process that must be designed to adequately integrate 

sensor and actuator systems with the overall spacecraft. Optimal linear and nonlin

ear algorithms, sliding mode control, adaptive and hybrid algorithms are examples of 

techniques that are used for attitude control.

Accurate knowledge of real time spacecraft dynamics is a vital component of en

suring that the attitude control system will perform sufficiently. In many spacecraft 

applications, sensor data is corrupted by significant levels of noise, unknown distur

bances, and/or parameter uncertainties. Also, with the need to reduce spacecraft 

costs and weight, some sensors are excluded altogether, making attitude control even 

more difficult to satisfy given design requirements. Attitude state observers use non

linear system dynamics with available sensor data to obtain state estimates. As with 

control systems, feedback is used to generate an error signal between estimated mea

surement output and actual sensor data. A dynamic estimation process is used to 

minimize this output measurement error and, thereby, minimize the state estimate 

errors. The Extended Kalman Filter (EKF) and Sliding Mode Observer (SMO) are 

two examples of such nonlinear state estimation techniques.

Control and estimation algorithm selection is mainly a trade off study between 

different system performance characteristics. In many applications it is desirable to 

explore multiple techniques to determine the most effective method for given design 

specifications. In this chapter, a mathematical background of linear and nonlinear 

control and estimation techniques are briefly introduced for their use in the NASA 

MMS mission.
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5.1 M odels

For a general representation of spacecraft state dynamics and outputs, the following 

form is used:

x(t)  = f ( x ( t ) , u ( t ) , t ) +  w(t)  (5.1a)

y  = h(x(t) )  +  z(t)  (5.1b)

where f ( x ( t ) , u ( t ) , t )  e !ftn represents the nonlinear equations of motion and h ( x ( t )) e 

is the nonlinear measurement model. The spacecraft dynamics are corrupted by pro

cess noise consisting of parameter uncertainty and unknown disturbances which can 

be embedded in f ( x ( t ) , t )  and/or lumped in w(t)  eSR". Also, the measurement vec

tor y  t is corrupted by Gaussian white measurement noise z  c . The vector of 

known inputs is shown as u(t) <: W ’. The superscripts of n, m, and p represent the 

number of states, outputs and inputs, respectively.

When a time-invariant system is linearized, it can be expressed as a set of matrices 

defined as:

x  — A x  +  B u  (5.2a)

y  =  C x  (5.2b)

where A  and B  are state matrices and C  is the matrix that relates the output y  e to 

system states. This linear time-invariant (LTI) system is a common representation of 

systems when nonlinear dynamics are minimal. A common analysis of linear systems 

is their stability, which is guaranteed in an open-loop system if all eigenvalues have 

negative real parts. There are n eigenvalues, A;, for a system with n states such that:

\A — I \ \  = 0 (5.3)

For linear observers and controllers, eigenvalue determination varies slightly. How

ever, all eigenvalues must always have negative real parts to help avoid instability.
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Different control methods are evaluated in this research to determine the most 

effective and practical control process for the MMS application. Linear control with 

optimal gain selection is introduced, followed by a Sliding Mode Control (SMC).

5.2.1 Linear Optim al Control

Linear control is the simplest form of feedback control design. For an LTI system 

described in Eqs. (5.2a) a feedback gain is used to adjust the system input such that:

where Kc '$mxn is a constant feedback gain matrix. Changing the feedback gain 

matrix affects the closed loop eigenvalues which all must have negative real parts 

according to:

The feedback gains are chosen according to the desired location of eigenvalues to

process tha t requires multiple simulations and reevaluation. Although it has proven 

effective for simplified systems, in higher order systems with multiple inputs and 

outputs, it can be a daunting and suboptimal approach.

Optimal control attempts to select feedback gains that produce an optimal input 

to force the system along a desired trajectory while minimizing a performance index 

on the system response. The most common form of optimal control is the Linear 

Quadratic Regulator (LQR), based on a LTI system as in Eq. (5.2a) which selects 

feedback gains while minimizing the performance index defined as:

u  =  —K x (5.4)

\(A — GK) — 7A| =  0 (5.5)

obtain the specified system characteristics. Gain selection and tuning is an iterative

(5.6)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



51

where matrices Qt <R R nxn and Rc 97/?mxm are symmetric, positive semi-definite time, 

invariant performance matrices based on the states and inputs respectively. Eq. (5.6) 

also contains a penalty on the final time expressed by P  [x ( t f ) , tf] which is a function 

of the states at the final time tf. The ultimate goal is to determine an optimal u  

such that Eq. (5.6) is satisfied. In order to solve this optimization problem, the

Hamiltonian is introduced to develop state and costate equations which result in the

following equations that define the optimal u: (for more background on optimization 

techniques refer to [27]).

u  = —K x  (5.7a)

K  =  R~1B t S  (5.7b)

- S  = A TS  + S A -  S B R ~ 1B t S  + Q (5 .7c )

where S  is an unknown function introduced from the state and costate equations 

during optimization and Eq. (5.7c) is referred to as the Riccati equation. The Ricatti 

equation is solved in reverse time starting at t f  and can be found from computer 

routines common to most simulation packages. The optimal gain K  is the important 

outcome of these equations, since Eq. (5.7a) holds true for all linear feedback control 

systems. By selecting the diagonal terms of Q and R  based on system requirements, 

the optimal gain can be determined through the Ricatti equation. Although this 

technique requires iterations of weighting factors, simulations, and re-evaluation to 

acquire a desired system response, for high order systems, the number of design 

parameters to be selected are considerably reduced compared to gain tuning if only 

considering diagonal weight elements.

5.2.2 Sliding M ode Control

The Sliding Mode Control (SMC) is a variable structure, nonlinear controller that 

uses sliding surfaces to force control error trajectoies to zero. The SMC is simliar to
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the Sliding Mode Observer used in estimation problems and explored in this thesis. 

The mathematical formulation of the SMC is adopted from multiple sources and for a 

more comprehensive understanding of sliding mode phenomena the reader is referred 

to [16] and [1] .

For a given nonlinear system:

x(t)  =  f ( x ( t ) , t )  +  Bu(t)  (5.8)

where for a nth order system the system states are described by x cR R rt through non

linear relationships f ( x ,  t) with inputs ueMRTn and B t R R nKrn. The same nonlinear 

system, with a feedback SMC is defined as:

x  =  f ( x ( t ) , t )  +  H x  +  K l s (5.9)

where x  — x  — Xdes, is the control error between actual states and desired states 

x (]es. The constant feedback gains H n/rn and K nxp, (where p is the number of sliding 

surfaces) are determined through design iteration. The switching function can be of 

the saturation or signum form or any such type of function. Throughout this research 

the saturation function is used to avoid chattering of the error trajectory along the 

sliding surface such that:

where s  is from 1 to n  sliding surfaces. These sliding surfaces are all functions of the 

control error and, in most cases, involve the derivative, integral and/or summation 

of the error. The boundary layer, p, is another design parameter that affects error 

trajectory chattering as well as convergency of the error to the sliding surface [1],

In designing an SMC, feedback gains, sliding surfaces, and boundary layers must 

be selected. As with linear feedback control, gain tuning is an iterative and time 

consuming process that continues to quickly increase in complexity as the system 

order increases.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



53

5.3 E stim ation  Techniques

As with control techniques, linear and nonlinear methods are available depending 

on system complexity. In this research, the most basic estimation techniques are first 

tested for effectiveness, and then more complex nonlinear methods are explored. The 

following sections introduce linear estimation techniques, followed by the nonlinear 

EKF and SMO techniques.

5.3.1 Linear Observers

For a linear time invariant system, as described in Eq.(5.2a), a linear estimation 

of all states is defined as follows:

where the estimated state vector is x  and the feedback observer gain, also called 

the Luenberger gain, is L e9flRnxm where m  represents the number of measurements. 

The Luenberger gain, as with linear control gains, are implemented in order to drive 

an error signal to zero. In the case of linear observers the error signal is defined as 

V — V — V where y is the estimated ouput. The Luenberger gain is designed such 

that the closed loop eigenvalues have negative real parts (such that | A — LC\ < 0) 

for system stability [28].

Another similarity with feedback control is the optimal selection of the feedback 

gains. This is referred to as the Kalman filter, and uses Q and R  weight matrices 

to solve for the optimal gains through an error propagation equation, similar to the 

Ricatti equation. The Q matrix puts a weight on process noise such as those caused 

by parametric uncertainty and unknown disturbances, while the R  matrix weights 

the measurements corrupted with noise. The linear time-invariant Kalman filter

x  — A x  +  B u  +  L(y  — Cx) (5.11a)

y  = C x (5.11b)
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equations are adopted from [28] and are defined as follows:

P{t) = AP{t)  +  P(t)AT +  B Q B t  -  LRL t RL t  (5.12a)

L = P C T R _1 (5.12b)

Eq.5.12a is known as the Ricatti equation or error covariance propagation and is 

solved through iteration techniques.

As the Luenberger gain increases, the bandwidth of the Kalman filter increases, 

thus placing bias towards the measurements, rather then the model. Inversely, if the

Luenberger gain decreases, so does the filter bandwidth, which requires the observer

to rely more on system models rather then noisy measurement data.

The Kalman filter has been proven to be highly effective estimation technique, 

especially when it comes to filtering measurement noise. The nonlinear extensions 

of the Kalman filter are reviewed below, along with the Sliding Mode Observer, as 

alternatives to state estimation when systems are too complex to be expressed as LTI 

models.

5.3.2 E xtended Kalm an Filter

In many applications, system dynamics can be highly nonlinear and in most cases, 

linear observers are insufficient in estimating nonlinear states.

When using the Kalman filter, nonlinear system equations in the form of Eqs. 

(5.1) are linearized off-line about a predetermined state vector and the Luenberger 

gain is then calculated. The Extended Kalman Filter (EKF) involves updating the 

linearized system and linearized measurement model at each estimation step. These 

linearizations, or Jacobian matrices, are updated with each state estimate vector, 

rather then off-line with predetermined equilibrium points as with the linear Kalman 

filter. This linearized update makes the EKF more effective for systems with highly 

nonlinear dynamics (for the formulation below, the measurement model is assumed
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linear). For a given nonlinear system the state estimation model is defined as (The 

reader is referred to [28] for further mathematical background on the EKF):

x(t)  =  f (£(t),t) + K(t)[y(t) -  fi(x(t),i)] (5.13)

where y(t) = /i(x(t),t) +  z(t) is sensor outputs (h(x(t), t))  and measurement noise 

(v(t)).

The gain matrix (K(t))  calculation begins with propagating the estimation error 

covariance matrix equation given by:

P (t) = F(x(f), t)P(t) + P( t )FT(x(t)11) + Q(t) -  P{t)HTRT1 (t)HP(t)  (5.14)

where the linearization of the nonlinear system model about each estimate is given 

by:

F i m ' i )  =  8 f t i( { ) t )  U|,)- " |,) ( 5 ' 1 5 )

and Q(t) and R(t) are weight matrices selected based on process noise and measure

ment noise respectively. The gain matrix is calculated by:

K(t) = P ( t )H TR - \ t ) (5.16)

The error covariance equation, Eq. (5.14), and state matrix are then updated 

using the gain matrix and measurement error.

The EKF offers exceptional results when it comes to measurement noise rejection 

for highly nonlinear system models. However, the inability to guarantee closed loop 

system stability, as with the linear Kalman filter, is one of the drawbacks of the EKF. 

Also, since the calculation of the gain matrix is dependent upon the Jacobian of the 

nonlinear system equations, a highly accurate system model is necessary and, thus, 

makes the EKF less robust to parametric or modeling uncertainties. Finally, the 

evaluation of complex matrix operations such as inverses in Eq. (5.14) that must be

calculated at each time step, make the EKF less desirable for applications with strict

computational constraints.
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5.3.3 Sliding M ode Observer

The Sliding Mode Observer is another nonlinear state estimation technique. Un

like the EKF, the SMO requires no linearization about any operating points during 

estimation. This makes the technique desirable in that the state equations are not 

being simplified in order to estimate states.

The SMO is very similar to the SMC presented in Section 4.2.2. Like the SMC, 

the SMO also utilizes a switching function and sliding surfaces to force the error 

trajectory to zero. For SMO development the observer dynamics is a function of 

estimated states, x,  and is defined as:

where the estimation error signal is defined as z  = z  — z. Gain matrices Ht\ftnxm and 

KeMnxp are selected through design iteration where n, m  and p represent the number 

of states, measurements and sliding surfaces, respectively. The switching function, as 

defined in the SMC, is a saturation function such that:

As with the SMC, the number of sliding surfaces and how they are defined is part 

of the development process. The boundary layer and gain matrices are also defined 

through design and iteration.

For a more complete development of Sliding Mode Observers and Nonlinear Sys

tems the reader is referred to [16] and [17].

x  = f ( x ( t ) , t )  + B u ( t ) +  H z  + K l s (5.17a)

z  = C x (5.17b)

(5.18)
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CHAPTER 6 

ATTITUDE ESTIMATION RESULTS

The first step in satellite nutation rejection and a ttitude  control is ensuring th a t 

there is accurate real tim e information of the satellite states. This chapter presents 

three different designs for satellite body rate estimation assuming th a t only a ttitude 

measurements are available. The design is based on an Euler angle and Euler mo

ment formulation of the dynamic equations of motion, which are then corrupted with 

param eter uncertainty, measurement noise, and satellite imbalances. In each case, 

all states are estimated, while the body rates are extracted for nutation control and 

Euler angles 4’ and 9 for a ttitude control.

A ttitude differentiation involves the differentiation and filtering of raw attitude 

measurement d a ta  for obtaining satellite body rate data. A lthough this is the sim

plest form of body rate determination, it is highly sensitive to increases in measure

ment noise as well as time delays due to low-pass filter bandwidth [1]. It is because 

of these findings th a t a ttitude differentiation is not considered in this research. A 

simple linearized Kalman filter, as introduced in Chapter 5, is first implemented on 

this highly nonlinear system to determine body rate estimation effectiveness. Upon 

analysis of the linear estimation results, the Extended Kalman Filter is used. Finally, 

the Sliding Mode Observer is implemented and compared with the linear Kalman 

Filter and the EKF in order to  chose the most effective estim ation technique, which 

is essential for effective a ttitude and nutation control.

Previous research on attitude estim ation without the use of gyroscopic instruments 

has already been preformed by [13] and [14] with a recent study focusing on Euler
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angle and quaternion representations of attitude, while investigating the effectiveness 

of the SMO for full state estimation [1]. While all of these studies offer insight into 

the research presented in this thesis, there is no existing development of a complete 

observer-based control system for particular use in the NASA MMS mission. It is in 

the implementation of the estimated states in the feedback control system and the 

overall system effectiveness to reject spin nutation that the estimation techniques are 

evaluated. Furthermore, flexible structure consideration and analysis provides the 

foundation for research in the area of full-state attitude and orbit estimation-based 

control of flexible structures as it applies to the NASA MMS mission.

6.1 Satellite D ynam ic Equations of M otion

As stated above, Euler angle kinematics and Euler moment equations are used to 

formulate dynamics equation of motion to emulate spacecraft attitude motion while 

in orbit. A 3-2-1 Euler rotation sequence, as presented in Chapter 2, coupled with 

Euler moment equations, assuming no cross products of inertia is defined as:

oox +  {vz cos ip +  u)y sin ip) tan 0 

ujv cos ip — ooz sin -ip 

(loz cos ip +  toy sin -ip) sec 0 

((-fy Iz) / 1x) OOyLOz

( ( / 2 I x )  I  I y )  LUx LOz

((A Iy)/ Iz) 00x00y

where x  — f ( x ( t ) , t )  and the vector of states is x(t)  =  [tp, 9, cp, tox, ooy, ioz]T. Eq.(6.1)

is used for nonlinear estimation models and do not take into account cross products of

inertia, unknown disturbances, or external torques. For dynamic equations of motion 

in which external torques and cross products of inertia are considered, the following

(6 .1)
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decoupled equations are used to  find Cjx , cjy iu>z in term s of ojx ^ujy  ̂ljz and  hx , h y, h z:

■^x^x -f-xy^y  ^ x z ^ z  ^ - x  ^ y ^ z  " f "x ^ y '

~fo-xy^x  " t "  l y ^ ' y  f o y z ^ z  ^ z f o x  ~ t~  ^ x f o z

—Ixz^x foyz^y T  fozUz = M z -  L0Xfoy ~h UJyh

where:

fox IXX foxy fo-xz ^X

foy = ~~Iyx foyy ~~foyz OJy

hz fozx fo-zy fo-zz

(6 .2a)

(6 .2b)

(6 .2c)

(6.3)

as described in Chapter 5. It should be noted that for consideration of cross products 

of inertia and external torques, the first three state equations of Eq. (6.1) remain the 

same since Eqs. (6.2) are not dependent on states ip, 9, <p

Eqs. (6.1) can be linearized assuming the spacecraft is axisymmetric and has 

no applied torques. These assumptions allow for a reduction of the state vector to 

x  — \iz'x,LOy,u!z]T [6]. The linearized equations are expressed in state-space form as 

follows:

0

(A r* ) n 0

1 0 

0 1

«1

«2

(6.4)

where u>z spins at a constant rate n  and u j , u2 are thrust inputs.

6.2 Linearized Observer

A linear observer is designed based on the dynamics of Eq.(6.4) to estimate body 

rates ujx, ujv of the nonlinear Eqs. (6.1). The linear observer is used to investigate 

the effectiveness of using a simplified observer model, to estimate states of a highly 

nonlinear system. It should be noted that the actual dynamics of the system remain 

nonlinear (although they ignore cross products of inertia), and it is only the system
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Actual System Observer

I.C.: ip, 6, <p (rad) 0 , 0 , 0 0 ,0,0

I.C.: u)x,ujy,u)z (rad/s) 0.01, 0.01, 0.3 0 ,0,0

Inertia Matrix (kg ■ m 2)
8402.64  0 0 

0 8411.97  0 

0 0 16414.66

8402.64  0 0 

0 8411.97  0 

0 0 16414.66

Table 6.1: Simulation Parameters for Linear Observer

model used for observer design that is linearized such that the Kalman filter approach 

can be investigated.

The linear observer based on Eqs. (6.4) is assumed to be rotating at a constant 

spin rate n =  0.3 rad/s with system and observer parameters listed in Table 6.1.

The output measurements of the actual system (ip,0,<p) are corrupted with a 

zero-mean gaussian white noise of ±0.03 rad.

The linear Kalman filter is of the following form:

x  — A x  ±  L(y  -  y) 

y  = C x

where the observer state matrix A  is defined as:

(6.5a)

(6.5b)

A =
0

(6 .6 )
~ ( ^ ) n  0

and the system output matrix C =  [hx 3  03x3]. The Kalman gain L  is found through 

minimizing a cost function, by selecting non-zero diagonal weighting matrices QeM6xi' 

and RelR3x3 defined as (it will be assumed in this research that all off diagonal terms 

of weighting matrices will remain zero):

Q =
diag(Qa7i 

diag(Qf%i
(6.7a)
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R — diag(Ri) 7 * — 1,2,3 (6.7b)

where a  is a weight on modeling uncertainty in the states v.  6. 0  and j3 represents 

the weight of modeling uncertainty in the states ujx ,ujV)u)z. The matrix R  is a weight 

on the measurement noise in the available outputs The importance in par

titioning the matrix Q between two different weight factors is that measurements are 

only available for the first three states (weights are significantly different in situations 

where measurements are not available). Selecting Q, along with R, is an iterative 

process, and during the tuning stage, the elements of Qaj  may vary slightly from 

each other. However, relative to Q@ti, they may be orders of magnitude apart. The 

relative magnitude of QaA and QpA is first determined, followed by the tuning of 

each element within the partitioned matrices. Ultimately, trial and error simulations 

are conducted until the most acceptable weight matrices are determined. Selection 

criteria includes filtering effectiveness and tracking ability.

The Q and R  matrices selected after weight tuning are as follows:

Q =

0.01 0 0 0 0 0

0 0 .01 0 0 0 0

0 0 0.01 0 0 0

0 0 0 20000 0 0

0 0 0 0 20000 0

0 0 0 0 0 20000

10000 0 0

R = 0 10000 0

0 0 10000

(6 .8 a)

(6 .8b)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The Kalman gains are obtained using the Q and R  matrices and are calculated 

via a MATLAB routine and defined as:

1.6697 0 0

0 1.6697 0

0 0 1.6697
L = (6.9)

1.3939 -0.2388 0

0.2388 1.3939 0

0 0 1.4142

Results for Euler angle and body rate estimation can be found in Figures 6-1 

and 6-2, respectively. From inspection of the oscillatory nature of the uix and u>y 

body rates the satellite is experiencing nutation, while the filter attempts to track 

those states. Estimation error can also be seen in Figures 6-3 and 6-4. Although the 

error is extremely small, relative to the actual magnitudes of attitude and body rates, 

estimates produced by the Kalman filter are not expected to be accurate enough when 

implemented in attitude control systems. Also, the error in body rates about the x 

and y axes also increase after significant simulation time.

The results illustrate that the Kalman filter is ineffective at filtering measurement 

noise from attitude estimates as well as accurately tracking all satellite states. The 

Kalman filter takes a significant amount of time to begin to converge to actual body 

rate values, especially with respect to uiy, although it does effectively filter body 

rate noise that could be a result from attitude measurements. Measured Euler angle 

parameters (ip, 6, (p) tha t are corrupted with measurement noise are ineffectively 

filtered as illustrated in Figure 6-3. The maximum steady state error is equivalent to 

the measurement noise of ±.05 rad, illustrating that the filter is extremely ineffective, 

even as the weight matrix R  is increased. Also, in instances where there is a high rate 

of change of these parameters, the Kalman filter has difficulty maintaining accurate

estimates.
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Kalman filter MATLAB simulation code and diagrams may be found in Appendix

A.

6.3 E xtended  K alm an Filter

(6 .10)

The EKF is investigated for its effectiveness in estimating satellite attitude. For 

this design and analysis, the following observer dynamics are adopted from Eqs.(6.1):

u x +  (Cjz c o s  ii + ojy sin ip) tan  9 

ojy cos ip — Cjz sin ip 

(luz c o s  ip + Loy sin ip) sec 6

((ly A) /A)  ^'y^z

((A 4 )/A)

((A A)/A) '̂x̂ y

The Jacobian matrix of the observer dynamics in Eq.(6.10) can be found in Appendix 

A.

Simulation parameters are listed in Table 6.2. An external moment of M  =

0.001 sin(.3/,) N-m is added to all three axes to simulate unknown uncertanties/disturbances

acting on the satellite that oscillate at the same frequency as the satellite rotation.

This is to emulate disturbances that could be acting on the spacecraft while spin

ning at 3 rotations per minute (0.3 rad/s). These disturbance torques act about the 

x, y and z axes of the spacecraft body-fixed reference frame and are consistent in 

magnitude with external torques acting on orbiting spacecraft at a given altitude 

of approximately 105 km [5]. Also, a 10 percent error in moment of inertia values 

are in the observer dynamics to simulate further parametric uncertainty. The EK F’s 

robustness to such common inconsistencies are analyzed.
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Actual System Observer

I.C.: ip, 0, cp (rad) 0 , 0 , 0 0 , 0 , 0

I.C.: L}x,u!y,Luz (rad/s) 0.01, 0.01, 0.3 0 ,0,0

Inertia Matrix (kg ■ m 2)
8402.64  - 58.8  - 44.6 

- 58.8  8411.97  -1 0 0  

- 44.66  -1 0 0  16414.66

8000  0 0 

0 8600 0 

0 0 17500

Noise bounds (rad) ±0.03

Table 6.2: Simulation Parameters for the Extended Kalman Filter

As with the selection of weight matrices in Kalman filter design, EKF matrices 

are selected through partitioning. It is for this reason of unknown disturbances and 

parametric uncertainty that the Euler moment equations describing ujx , u)y and u z are 

most negatively affected and, therefore, require Qp to be orders of magnitude higher 

then Qa. The relative magnitude of the two partitioned matrices that construct Q is 

determined, followed by the individual tuning of the diagonal elements. Iteration and 

analysis of each simulation’s filtering and tracking effectiveness determine the final 

matrices. Q and R  weight matrices are defined as:

0.1 0 0 0 0 0

0 0.1 0 0 0 0

0 0 0.1 0 0 0

0 0 0 120000 0 0

0 0 0 0 100000 0

0 0 0 0 0 130000

Q (6 .11a)

R =

106 0 0 

0 106 0 

0 0 106

(6 .11b)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



67

Multiply
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phi est
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Figure 6-5: Extended Kalman Filter Simulation Diagram

The EKF simulation model is shown in Figure 6-5, where the estimates and non

linear system represent equations of motion for the observer dynamics and actual 

satellite system, respectively. More detailed simulation diagrams can be found in 

Appendix A.

To improve estimation results further, body rate estimations in particular, the 

overall influence of the observer loop on body rate correction terms is investigated. 

It can be seen through inspection of the closed loop observer simulation diagram 

that the EKF is updated via Euler angle errors only, since these states are the only 

ones being measured. The error that is produced, for example, in Figure 6-11 is not 

observed by the closed loop EKF, and therefore cannot guarantee convergence to 

zero. By investigating the correction terms tha t affect the satellite body rates, and 

independently tuning those, the percentage error and steady state error can greatly 

be improved. The gains are tuned through iterations starting with the u x correction
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term and then independently tuning for the coy and coz correction terms. Steady- 

state error is drastically reduced while maintaining effective noise filtering as gains 

increase. Slowly, as the gains increase, so does the noise that is being amplified by 

the gains. Figure 6-6  illustrates the final gain selections of 3.75, 1.9 and 1 for u x, u y 

and u)z, respectively, used to tune body rate correction terms. Figure 6-7 illustrates 

an example of the improvement in body rate tracking for u>x with the additions of 

correction term tuning. Since this tuning occurs around selected initial conditions, 

further investigation is needed to be done into the bounds of spacecraft operating 

conditions in which the presented correction input tuning is effective.

Actual and Estim ated Euler A ngles (rad)
0.1

CL

- 0.1
20 25

0.05

-0.05

0.05

CL

-0.05

— Actual 
Estim ated

tim e (s)

Figure 6-8 : Extended Kalman Filter Euler Angle Estimations
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Figure 6-10: Extended Kalman Filter Body Rate Estimations
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Body Rate Estimation Error (rad/s)
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Figure 6-11: Extended Kalman Filter Body Bate Estimation Error

The Extended Kalman Filter offers a much more comprehensive and effective 

estimation technique, as compared to its linear counterpart. From inspection of the 

simulation results, it can be seen that noise filtering, and body rate estimation is 

greatly improved by using a nonlinear estimation technique. Figures 6-8  and 6-9 

show the EKF’s effectiveness at filtering measurement noise, which is vital to an 

effective control sequence to maintain a desired satellite attitude. It can also be seen 

in Figures 6-10 and 6-11 that the EKF estimates body rates effectively, especially 

given unknown disturbances and modeling uncertainties which typically affect these 

states the most. Although the error magnitude is small, a percent error is evaluated 

from the steady-state amplitude of oscillations of all six states and their respective 

amplitude of stead-state error. Magnified error signals for body rate and Euler angle 

estimation can be seen in Figures 6-12 and 6-13. These results are tabulated, along 

with maximum steady-state error for all six states in Tables 6.3 and 6.4.
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%!) e 0

Steady-State Error (rad) ±0.004 ±0.006 ± 0 .002

Percent Error 2.14 4.7 0.0079

Table 6.3: Extended Kalman Filter Steady-State Euler Angle Estimation Errors

Wx U!y w2

Steady-State Error (rad/s) ±0.004 ±0.005 ±0.004

Percent Error 1.68 1.48 .66

Table 6.4: Extended Kalman Filter Steady-State Body Rate Estimation Errors

From inspection of the results it can be seen that EKF has difficulty in rejecting 

disturbance torques. Error oscillation of the body rate and Euler angles is an indica

tion that the estimator is not effectively tracking these states, thus, causing an error 

signal that is of the same magnitude of the disturbance torque acting on all three 

axes of the satellite. It should be noted that while this design offers promising re

sults for application to the NASA MMS mission, slight improvements in steady-state 

error and percent error may be achieved upon further tuning of the design parame

ters. There is a constant tradeoff when trying to filter measurement noise, while still 

using the available star tracker data, and not relying too heavily on inaccurate m ath

ematical models. As the weights of R  increase, more measurement noise is filtered. 

However, this affects a greater dependency on the accuracy of mathematical models, 

which increase the effects of unknown disturbances and parametric uncertainty. Also, 

a full Monte-Carlo analysis, that would test the proposed design for all operating 

conditions, should be performed to guarantee stability, which cannot be otherwise 

proven.
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6.4 Sliding M ode Observer

The Sliding Mode Observer (SMO) is the final estimation technique investigated for 

full state estimation. The goal of this research is to compare results and closed-loop 

performance to tha t of the EKF for estimation of MMS dynamics and kinematics. 

As with the Kalman Filter and EKF, the vector of state estimates are as follows:

x
T

'ip,0,4>,ujX)u y,uj2 (6 .12)

The Sliding Mode Observer dynamics are defined as:

x  — f ( x ,  t ) +  Bu(t)  +  L (C x  — Cx)  +  K l sy  — C x

where C =  [/3X3O3X3] is the output matrix of measured states. The input torques 

into the system are represented by u(t)  that act on states ujx, ujy and u z, and B — 

O3X3 h x 3  ■ The equations of motion are identical to those used in the Extended 

Kalman Filter and given in Eq. (6.10). Observer gain matrices are represented 

by L and K  in which L. K  e9?6x3. The Luenberger gain, L, is an optimal Kalman 

gain determined from a linearzied system model and remains constant throughout 

the simulation. The Sliding Mode correction term ensures that the error trajectory 

remains on the sliding surface and is selected through design iteration.

Simulation parameters for the sliding mode observer are listed in Table 6.5. As 

with the EKF, an external moment of M  — 0.001 sin(.3/,) N-m was added to all three 

axes to simulate unknown disturbances as well as a 10 percent uncertainty in principle 

moment of inertia parameters. The SMO simulation diagram is shown in Figure 6-14.

Unlike in EKF design, the SMO offers many more design parameters that affect 

system performance. In the design of the SMO, the sliding surface selection proves 

to be the most influential design parameter. Multiple different surfaces are tested 

through simulations until the most effective surface in state tracking and noise filtering 

is determined. As the number of sliding surfaces increase, as do the the number of
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Actual System Observer

I.C.: V) 41 (rad) 0 , 0 , 0 0 , 0 , 0

I.C.: tux,ujy,ujz (rad/s) 0.01, 0.01, 0.3 0 ,0,0

Inertia Matrix (kg ■ m 2)
8402.64  - 58.8  - 44.6 

- 58.8  8411.97  -1 0 0  

- 44.66  -1 0 0  16414.66

8000  0 0 

0 8600  0 

0 0 17500

Noise bounds (rad) ±0.03

Table 6.5: Simulation Parameters for the Sliding Mode Observer

input
phi e s t

w y output

mx output

sitio ga in  S a tu ra tion  s

Figure 6-14: Sliding Mode Observer Simulation Diagram
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elements tha t must be selected in the SMO gain K.  As with the Kalman filter 

and EKF, the SMO gain matrix K  is tuned through trial and error simulations 

while analyzing estimator performance. The sliding surface s is defined through the 

switching function l s as:

l .  = s a t \ S- \ = s a t t Z't  + Z’ + Z*> <6'13) J !  \ P

where z is the error between measured and estimated states, and p is another design 

parameter referred to as the sliding surface boundary layer.

The Luenberger gain is adopted from the the Kalman filter analysis for a linear 

system while the sliding mode gain is tuned through trial and error and defined as:

L =

1.6697 0 0 1

0 1.6697 0 1

0 0 1.6818
, K  =

1

1.3939 -0.2388 0 1

0.2388 1.3939 0 1

0 0 1.4142 1

* 10 - 3 (6.14)

with the boundary layer chosen as p — .0006. As with the EKF, the correction terms 

for tox, ujy, and coz are tuned to improve estimates when gain tuning is exhausted as 

with the EKF design. Figure 6-15 illustrates the gains that are used for correction 

input tuning.
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Figure 6-19: Sliding Mode Observer Body Rate Estimation Error

Figures 6-18 and 6-19 show the effectiveness of the SMO at tracking satellite body 

rates while Table 6.6  shows error results. Once again, it is important in recogniz

ing overall percentage error between estimated and actual states to determine the 

effectiveness of the observer and usefulness of the observed states. States with large 

percent errors are ineffective when used to update a control algorithm to maintain 

constant spin and attitude while rejecting nutation. Compared to the EKF, it can be 

seen that the tracking error and steady-state percent error are smaller for the SMO. 

However, the estimates have slightly more measurement noise as seen in Figure 6-17. 

Euler angle estimation results are shown in Figures 6-16 and 6-17 with tabulated 

results presented in Table 6.7. Initial errors for both body rates and Euler angles are 

small for the SMO compared to the EKF estimates. It can also be seen from steady- 

state error analysis in Figures 6-20 and 6-21 that the SMO is much more effective at 

tracking satellite states under unknown disturbance torques.
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k*X LOy

Steady-State Error (rad/s) ±0.0025 ±0.0015 ±0.0007

Percent Error 1.81 0.633 0.23

Table 6 .6 : Sliding Mode Observer Steady-State Body Rate Estimation Errors

ip e 0

Steady-State Error (rad) ± 0.001 ±0.0004 ±0.0007

Percent Error 0.55 0.50 0

Table 6.7: Sliding Mode Observer Steady-State Euler Angle Estimation Errors

Again, it should be noted that while these results offer acceptable estimates from 

inspection of simulation results, it is their implementation into a control sequence that 

will determine their overall usefulness. The addition of multiple sliding surfaces that 

involve derivatives and integrals of the estimation error, as well as further gain tuning 

may result in more accurate results. However, these results are deemed acceptable 

for control implementation. In the following chapter, estimates produced by the 

Sliding Mode Observer and Extended Kalman Filter are used in a control algorithm 

for nutation rejection and attitude control. While the control results are presented, it 

should be noted that the design iteration involves control implementation, evaluation, 

and then further observer tuning until the more satisfactory results are obtained.
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CHAPTER 7 

FEEDBACK CONTROL W ITH PERFECT  

M EASUREM ENTS

Two different control techniques are tested and compared to determine the most 

effective technique as it applies to the NASA MMS in a ttitude  control with perfect 

state knowledge. The first step in this process involves the design of a  controller 

assuming perfect state  measurements. From this design, an understanding of control 

accuracy can be obtained without influence of complicated effects such as measure

ment noise, unknown disturbances and param etric uncertainty. A linear feedback 

controller consisting of proportional, derivative and integral control is designed first, 

followed by a  variable structure, sliding mode controller. Upon completion of these 

designs, the feedback controller is updated with sta te  estim ates from the observer 

algorithms developed earlier in the thesis to determine an overall optim al system for 

the NASA MMS application.

Thrusters are the only form of actuation on the satellite. And, because the satellite 

is spin-stabilized, the spacecraft is limited in its firing frequency and the duration 

of each firing. O ther design considerations include rapid control peaks, as well as 

excessive oscillation, both of which can potentially excite unmodeled dynamics and 

potentially cause instability.

As part of the design process in developing a  suitable control system, low pass fil

ters are also developed for desired state  signals. When the controller is initiated and 

reacts to  initial errors, large transient errors and actuator signals can result. Sudden
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control demands for actuator compensation can result in satellite oscillations that 

can, in turn, excite vibration modes, especially in the presence of highly flexible ap

pendages. Since spin-stabilized spacecraft are sometimes given hours for reorientation 

after orbital maneuvers, these low pass filters prove essential for limiting demand that 

can be placed on thrusters by decreasing the speed of response of the system. The 

filters allow the controller to track command signals while avoiding sudden command 

impulses.

In the following sections, a linear and nonlinear feedback control system are de

signed assuming all states are perfectly known. Using these designs, nonlinear ob

servers developed in Chapter 4 are implemented in the feedback system and overall 

system characteristics are evaluated and compared. Each controller is tuned for ef

ficiency and to maintain desired satellite body rates and orientation, while meeting 

NASA design requirements.

7.1 Linear Feedback Control

The first control method tested uses linear feedback to control the satellite body 

rate and orientation. Simulation parameters are given in Table 7.1 and the desired 

states are defined as follows:

•&des

1

S' to
1

0.052

@des - 0 .0 5 2

v^xdes — 0

^ y d e s 0

M zdes 0.3

(rad,rad/s) (7.1)

Gains applied to the error signal, as well as the integral and derivative of the 

error signal are tuned to force the spacecraft to converge to desired values. Derivative 

control is essential to eliminate excessive system overshoot and oscillation, while inte-
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Actual System

I.C.: tp, 6, 4> (rad) 0 , 0 , 0

I.C.: lux, ujy, loz (rad/s) 0.01, 0.01, 0.5

Inertia Matrix (kg • m 2)
8402.64  0 0 

0 8411.97 0 

0 0 16414.66

Table 7.1: Simulation Parameters for Feedback Control of Perfect State Measurements

gral control does not significantly affect the overall system response. Linear feedback 

gains are defined as follows:

K \  =  [KaK j \ , A = p, i ,d (7.2)

where K ae$l3x2 and ?3x3 are gain matrices associated with the Euler angle and 

body rate state dynamics respectively. Each of these gain matrices are first tuned 

independently and then augmented during simulation. This allows for a better under

standing of how each gain affects the overall system response and, thus, can be tuned 

more effectively. As with estimator gain tuning, partitioning is utilized in selecting 

gains. Once diagonal terms are selected, off diagnol elements are selected through 

trial and error simulations.

The final feedback gains and configuration involve a PD controller. Many combi

nations of proportional, integral, and derivative control presented in [29] are tested 

for application. Below are the final gain selections based on simulation iteration and 

tuning:

300 50 20 1 0

Kp = 50 300 1 20 0 , Kd = K p * 0.1 (7.3)

0 0 0 0 20

These gains are implemented in the simulation of Figure 7-1. Also implemented in 

the feedback control system is a third order input command filter to limit any sudden
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Figure 7-1: Simulation Diagram for Feedback Control of Perfect State Measurements

changes in error signals. The effects of the third order filters used to limit attitude 

commands can be seen in Figure 7-2 and are defined as follows:

Tj = ------^ ~ ---------------, i = ib,6,uiz (7.4)
512s3 +  192s2 +  2 4 s+  1 ’ ^ y J

Figure 7-3 and 7-4 show the system response of the satellite Euler angles and 

Euler angle estimation error while body rate estimates and error signals can be seen 

in Figure 7-5 and Figure 7-6. States converge to their desired trajectories, however, 

a steady-state nutation error exists. The u>x and coy states show a steady-state error 

of approximately 0.016 rad/s as can be seen in Figure 7-7. Although the steady-state 

error still lies within NASA design requirements, multiple different control combina

tions are implemented to try and eliminate this steady-state error. Integral control is 

able to eliminate steady-state error with respect to ojx and uiy body rates. However, 

it creates steady-state error in the remaining states and drastically slows system re-
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Figure 7-4: Euler Angle Error Using Linear Control

action. Integral control also increases the sharp transient response that can be seen 

especially in the uix and ujy states. Control effort shown in Figure 7-8 has a high 

transient response but still fails to saturate the thrusters.

Ultimately, the tradeoff between a small steady-state nutation error and overall 

system response results in a proportional and derivative control that offers acceptable 

results for tracking control commands while eliminating excessive oscillations. Fur

ther control techniques, such as the Sliding Mode Control, must be investigated to 

determine if steady-state errors, particularly regarding nutation and transient errors 

can be improved.
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7.2 Sliding M ode Control

The second control technique investigated is the Sliding Mode Controller (SMC). 

SMC is a nonlinear control technique similar to the SMO developed in Chapter 6 in 

that it uses a sliding surface and feedback gains to ensure that the error trajectory 

converges to zero. Multiple different sliding surfaces can be utilized in a SMC, as well 

as the type of nonlinear switching function used. The SMC design process involves 

selecting the type of sliding surface, the switching function, feedback gains, and a 

sliding surface boundary layer. As with linear feedback control, SMC involves multiple 

design iterations and simulations to tune feedback gains and sliding surfaces to acquire 

an effective feedback control system.

The Sliding Mode Controller introduced in Chapter 3 is again defined as:

where the nonlinear equations of motion f ( x , t )  are defined in Eq. (6.1) and the 

switching function is dependent upon the boundary layer p and is defined as l s =  

sat(s/p).

The desired states are defined in Eq. (7.1) and simulation parameters are defined 

in Table 7.1.

In designing a SMC, as many as five and as few as one sliding surfaces are in

vestigated for control purposes. These sliding surfaces include combinations of error 

summations, derivatives and integrals to determine the most effective form of variable 

structure control. The selection of the sliding surfaces influenced the performance of 

the observer more then other design parameters. Five sliding surfaces are selected 

and defined as:

where ij is the error between actual and desired states. During the sliding surface

x  =  f ( x ,  t ) +  Bu( t)  + Hsmcz  T K smcl s (7.5)

i  =  1 , 2 , 3 , 4 , 5 (7.6)
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control input wx.output

sliding surfaces

Figure 7-9: Sliding Mode Control Simulation Diagram

selection process, weighting factors Ai =  1 and A2 =  0.5 are also determined to 

affect the overall influence of these error signals on the control signal. As the number 

of sliding surfaces increase, as does the size of the gain matrix K.  To ease in the 

selection of matrix elements, matrices are partitioned and to assist in gain selection 

and then tuned through trial and error as with estimator and control gain tuning. 

Design criteria for control gain selection involved control effort, transient response, 

and steady-state tracking ability of desired commands. The two gain matrices and 

boundary layer are defined as:

10 0 2 0 0 0.05 0 0.001 0 0

0 10 0 2 0 K  —) 1Ysmc 0 0.05 0 0.001 0

0 0 0 0 2 0 0 0 0 0.001

(7.7)
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Figure 7-10: Sliding Mode Control Euler Angles

The simulation diagram for Sliding Mode Control with perfect state measurements 

can be seen in Figure 7-9.
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Figure 7-11: Euler Angle Error Using Sliding Mode Control

Euler angle control results are presented in Figures 7-10 and 7-11. It can be seen 

that the steady state error is essentially zero, which cannot be said for linear control 

results. There is however a slight overshoot and oscillation before the controller begins 

to track the command signals. Results for body rate control are presented in Figures 

7-13 and 7-15. The transient response shows increased oscillation but a reduction 

in initial response of the system. The steady-state error could not be reduced and 

remains similar to that of the linear control. Control effort shown in Figure 7-16 

is significantly reduced when compared to linear feedback control. All simulation 

diagrams and code can be found in Appendix B.

Both linear and sliding mode controllers produce results that meet NASA design 

requirements for attitude and nutation control. In the next chapter these controllers 

are updated with nonlinear observers to obtain an effective observer based control 

system as it applies to the NASA MMS satellite.
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Figure 7-12: Magnified Euler Angle Error Using Sliding Mode Control
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Figure 7-13: Sliding Mode Control Body Rates
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Figure 7-14: Body Rate Error Using Sliding Mode Control
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Figure 7-15: Magnified Body Rate Error Using Sliding Mode Control
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CHAPTER 8

OBSERVER BASED CONTROL RESULTS

The next step in a ttitude control is augmentation of the nonlinear and linear con

trol systems with estimation algorithms. First, the sliding mode observer is tested 

with the linear feedback controller, as well w ith the Sliding Mode Controller, to de

termine observer effectiveness as it applies to a ttitude control. It is in this step, 

th a t the practicality and effectiveness of the overall observer-based control systems 

is determined as it applies to  a ttitude  and nutation control w ithout the use of rate 

sensors. For all simulations, the control sequence is initialized only after the observer 

state estimates are allowed to converge to  actual state  values. Otherwise, the con

troller would be updated using inaccurate state  estimates, possibly causing spacecraft 

instability.

Since estim ates are used in the feedback control system, exact measurements are 

not available and the desired trajectories for the control system are defined as:

X d e s

4 ’des 0.052

L S 0.052

^ x d e s = 0

^ Vd.es 0

u-'zdes 0.03

(rad, rad/s) (8 .1)

The following sections present analysis on the Sliding Mode Observer and Ex

tended Kalman Filter th a t are implemented with linear and nonlinear feedback con

trol techniques.
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8.1 Sliding M ode Observer

The Sliding Mode Observer designed in Chapter 6 is first augmented with the 

linear feedback controller, followed by the Sliding Mode Control technique. The 

control sequence commences after 15 seconds of simulation time to allow the SMO 

to effectively acquire accurate state estimates. Table 8.1 shows the estimation and 

control simulation parameters used for feedback control design and analysis.

A zero mean Gaussian white noise is used to corrupt Euler Angle measurements 

of ± 1 .5  rad and a disturbance torque of MXjyiZ =  0.001sm(0.3f) N m  was used to 

simulate unknown moments acting on the spacecraft. Euler angle measurement noise 

particularly diminishes results because the magnitude of the noise used in estimation 

design is of the same magnitude as that of the desired satellite orientation. This means 

that the Euler angle estimation signals are completely embedded in measurement 

noise, making accurate control difficult. Simulations are presented with measurement 

noise to illustrate system stability and robustness. NASA is to supply measurement 

models or known measurement noise bounds for control testing in future research.

Actual System Observer

I.C.: ip, 9, <p (rad) 0 , 0 , 0 0 , 0 , 0

I.C.: u)x,uiy,u)z (rad/s) 0.01, 0.01, 0.5 0 ,0,0

Inertia Matrix (kg ■ m 2)
8402.64  - 58.8  - 44.6 

- 58.8  8411.97  -1 0 0  

- 44.66  -1 0 0  16414.66

8000  0 0 

0 8600 0 

0 0 17500

Noise bounds (rad) ±0.03

Table 8.1: Simulation Parameters for the SMO with Feedback Control
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Since the overall goal of this system is to use estimates to control actual satellite 

dynamics, it is the observation of the actual satellite dynamics that are compared 

to design requirements to determine control effectiveness. Also, the ability of the 

observer to estimate these states under control influences are evaluated.

8.1.1 SMO Based Linear Control

Results for linear control of satellite attitude and nutation using sliding mode esti

mates are shown in Figures 8-1 and 8-2 while body-rate control results are illustrated 

in Figures 8-3 and 8-4.

From Figures 8-2 it can be seen that the satellite attitude error is reasonable at 

only about 0.001 rad and 0.002 rad for the p  and 6 Euler angles, respectively, as well 

as the constant z-axis spin error of approximately 0.0001 rad/s. The most obvious 

problem is the steady-state error and transient control demand that occur mainly 

in the x and y body rates as seen in Figure 8-3. The steady-state nutation error is 

approximately 0.016 rads/s on both the cox and ujy axis while the transient peak error 

is -0.05 and -0.02 rads/s respectively.

There is also error oscillation in the Euler Angles that can be seen in Figure 8-5. 

This error occurs from the disturbance torques that corrupts the x,y and z axis and 

the inability of the observer to track these very small oscillations. Thus, the control 

algorithm does not know they exist and is unable to compensate.
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Figure 8-1: SMO-Based Linear Controller: Actual and Estimated Satellite Attitude
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Figure 8-2: SMO-Based Linear Controller: Euler Angle Control Error
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Figure 8-4: SMO-Based Linear Controller: Body Rate Control Error
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Figure 8-6 : SMO-Based Linear Controller: Steady-State Euler Angle Control Error
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Figure 8-7: SMO-Based Linear Control Effort

It can be seen from the results that the nutation control is the limiting factor in 

this control sequence. Both x and y body rates have a steady state error of 0.015 

rad/s (or 0.917 deg/s), which is nearly the same error experienced during control 

design, assuming perfect Euler angle measurements. This is a strong indication that 

the system is limited by the controller, rather then the accuracy of the observed 

states. Despite the steady-state error, it is only during the brief transient error in 

which design requirements are violated. All states fall well within error requirements, 

except for the x and y body rates that are only within 0.005 rad/s of acceptable errors. 

Control effort can be seen in Figure 8-7, in which the control commands have a large 

transient demand. Although the control command does not saturate the thrusters at 

10 Newtons, it is not desirable to have such a large response for the MMS mission.

Tables 8.2 and 8.3 show the steady-state Euler angle and body rate control error 

respectively. Maximum percent errors between estimated and desired states are also
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e

Steady-State Error (rad) 0.0005 -0.0005

Percent Error 1.9 3.6

Table 8.2: Steady-State SMO-Based Linear Controller: Euler Angle Control Errors

^X U)y coz

Steady-State Error (rad/s) 0.015 0.015 ± 0.001

Percent Error - - 0.36

Table 8.3: Steady-State SMO-Based Linear Controller: Body Rate Control Errors

presented to illustrate the effectiveness of the observer-based control system to track 

desired commands with estimated signals.

8.1.2 SMO Based Sliding M ode Control

The Sliding Mode Observer was next implemented with a Sliding Mode Controller. 

As with the linear feedback control system, the control commands engage the system 

at 15 seconds of simulation time to allow the SMO to acquire accurate state estimates. 

The Sliding Mode Controller designed in Chapter 7 assumed perfect measurements. 

Now the SMO estimates are used to update the SMC to investigate the effective

ness of observer-based attitude and nutation control without rate sensors. Feedback 

gains, sliding surfaces and boundary layers are defined in Eqs. (7.6) and (7.7) while 

simulation parameters are listed in Table 8.1.

Euler angle estimation and control results are shown in Figures 8-8  and 8-9. 

Steady-state control errors for attitude control are listed in Table 8.5. From first 

inspection it can be seen tha t although the Sliding Mode Control does not contain 

derivative control, noise levels are amplified upon control commencement. Figure 8- 

10 shows that the SMO is effective at tracking the attitude signals despite high levels
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Figure 8-8 : SMO-Based SMC: Actual and Estimated Satellite Attitude

of noise and that the mean steady-state orientation is desirable (0.052 rad and -0.052 

rad for the i/> and 6 Euler angles, respectively).

Body rate estimation and control results are shown in Figures 8-11 and 8-12 while 

the steady-state errors are tabulated in Table 8.4. As with the Euler angle signals, 

body rate noise is amplified upon activation of the control sequence. Steady-state 

body rate error remains consistent with other estimation and control techniques shown 

in Figure 8-13. However, noise amplitude is increased as compared with the SMO 

based linear control system, while maximum transient errors are decreased. Control 

effort is vastly improved as compared to SMO-based linear control, in particular, 

the transient response of the control effort. Figure 8-14 illustrates that the transient 

control effort is an order of magnitude smaller, while the settling time is increased as 

well to limit flexible boom responses.

The implementation of the same SMC system with EKF estimates are necessary to
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Figure 8-12: SMO-Based SMC: Body Rate Control Error
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^X LOy LUZ

Steady-State Error (rad/s) 0.015 0.015 ± 0.002

Percent Error - - 0.5

Table 8.4: Steady-State SMO-Based SMC: Body Rate Control Errors

ip e

Steady-State Error (rads) ±  0.001 ±  0.0011

Percent Error 3.2 4.3

Table 8.5: Steady-State SMO-Based SMC: Euler Angle Control Errors

investigate the performance potential of the Sliding Mode Control. It is necessary to 

keep noise levels to a minimum while maintaining desired steady-state characteristics, 

which the SMC effectively provides during perfect measurement design. All MATLAB 

simulation diagrams and code can be found in Appendix B.

8.2 E xtended  K alm an F ilter E stim ates

Controllers tested on Sliding Mode Observer estimates are implemented using es

timates produced by the EKF. Exact controllers are used on both observers to deter

mine their effectiveness relative to each other before any further gain tuning or signal 

conditioning occurrs. Simulation parameters for the controller and observers can be 

seen in Table 8.6

Since the time for the EKF to begin tracking satellite states is slightly longer 

then that of the SMO, the control sequenced commenced after 40 seconds of sim

ulation time. Also similar to the SMO with feedback control, is the 10 percent 

parametric uncertainty in inertia values, as well as unknown disturbance torques of 

M  = 0.001sm(0.3t) N m  and measurement noise of ±  0.03 rad. The same third
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order filter in Eq.(7.4) is also utilized to limit input commands.

The following sections present results of Extended Kalman Filter estimates used 

in a linear and nonlinear feedback control system. All MATLAB simulation diagrams 

and code can be found in Appendix B.

Actual System Observer

I.C.: ip, 6, (p (rad) 0 , 0 , 0 0 , 0 , 0

I.C.: ujx,u}y,LUz (rad/s) 0.01, 0.01, 0.5 0 ,0,0

Inertia Matrix (kg ■ m 2)
8402.64  - 58.8 - 44.6 

- 58.8  8411.97  -1 0 0  

- 44.66  -1 0 0  16414.66

8000 0 0 

0 8600 0 

0 0 17500

Table 8 .6 : Simulation Parameters for the EKF with Feedback Control

8.2.1 EKF Based Linear Control

The same linear controller tha t is designed assuming perfect Euler Angle mea

surements, is implemented with the EKF designed and presented in Chapter 6 . The 

overall system is evaluated to determine its effectiveness at maintaining satellite ori

entation and body rates.
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Figure 8-16: EKF-Based Linear Controller: Body-Rate Control Error
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Figure 8-17: EKF-Based Linear Controller: Actual and Estimated Euler Angles
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Figure 8-18: EKF-Based Linear Controller: Euler Angle Control Error
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Figure 8-19: EKF-Based Linear Controller: Actual and Estimated Steady-State Euler 

Angles

Implementation of the proportional and derivative controller immediately shows 

an obvious problem with using the EKF. Figures 8-15 and 8-16 show a high increase 

in noise, as a result from the derivative control. The cause for this increase in noise 

in the EKF, while not present in the SMO despite the fact they have identical noise 

characteristics, has to do with the how each observer limits the noise. Euler angle 

control results are presented in Figures 8-17 and 8-18. Similar to the SMO-based 

linear controller, there is steady-state error, as well as slight Euler angle oscillation. 

Maximum percent errors and steady-state errors for euler angle and body rate control 

can be found in Tables 8.7 and 8 .8 .

actual
estim ated
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Figure 8-20: EKF-Based Linear Controller: Steady-State Euler Angle Control Error

The main disadvantage of the linear controller using EKF estimates for updates 

is the derivative control. Differentiation of a signal that contains noise always causes 

magnification regardless of the estimation or filtering technique, and because the EKF 

is optimal in the root mean square error sense, it causes even further noise magnifica

tion. High transient error and thruster demands is another drawback to using linear 

feedback control gains. In order to reduce noise that its amplified during the control 

sequence, low pass filters should be investigated for noise reduction before thruster 

actuation. Control effort is the major disadvantage of the EKF-based linear control. 

Figure 8-22 shows tha t control effort saturates the thrusters, which is unacceptable for 

MMS application. Related simulation diagrams and code can be found in Appendix 

B.
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Figure 8-21: EKF-Based Linear Controller: Steady-State Body-Rate Control Error
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Figure 8-22: EKF-Based Linear Control Effort
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e

Steady-State Error (rad) 0.0009 0.004

Percent Error 1.88 7.90

Table 8.7: Steady-State EKF-Based Linear Controller: Euler Angles Control Errors

^ X Uy

Steady-State Error (rad/s) 0.015 0.015 ±  0.002

Percent Error - - 0.66

Table 8 .8 : Steady-State EKF-Based Linear Controller: Body Rate Control Errors
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8.2.2 EKF Based Sliding M ode Control

In this section, the Sliding Mode Control designed assuming perfect measurements 

are updated with Extended Kalman Filter estimates to attem pt to acquire desired 

attitude and body rate trajectories.

The SMC in consideration takes the form of Eq.7.5 with gains defined in Eq.7.7 

and sliding surfaces defined in Eq.7.6. Simulation parameters for the observer and 

control system can be found in Table 8 .6  with the same noise characteristics, unknown 

disturbances and parametric uncertainties used through-out this research for observer 

analysis.

Results for Euler angle control can be seen in Figures 8-23 and 8-24. Body rate 

control results are shown in Figures 8-25 and 8-26 while steady-state and percent 

errors are listed in Table 8.10 and 8.9.
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Figure 8-23: EKF-Based SMC: Actual and Estimated Euler Angles
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Figure 8-25: EKF-Based SMC: Actual and Estimated Satellite Body Rates

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



119

Euler Angle Control Error (rad)
0.1

0.05

ft-____ina.

-0 .0 5

- 0.1
100 120 140

0.05

-0 .0 5

- 0.1
120 14010020 40

tim e (s)

Figure 8-26: EKF-Based SMC: Body Rate Control Error

The average steady-state control error for attitude control is improved significantly 

over the linear feedback control system as seen in Figure 8-29. Also, since there is no 

differentiation of the feedback signals, body rate noise is reduced as seen in Figure 

8-30. Steady-state body rate control error remains unimproved. However, noise is 

significantly reduced with the implementation of the SMC. Transient responses of 

body rate correction is reduced to almost half as compared to linear control, while 

steady-state oscillations of euler angles are considerably reduced with the implemen

tation of the Sliding Mode Control. The major drawback of the Sliding Mode Control 

is the excessive oscillations that occur within the first 20 seconds of control operation. 

These oscillations can cause damage to actuators, as well as excite unknown dynamics 

in the flexible appendages/booms.
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Figure 8-27: EKF-Based SMC: Steady-State Actual and Estimated Euler Angles
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Figure 8-31: EKF-Based SMC Effort

It can also be seen in Figures 8-27 and 8-28 tha t the EKF is not as effective at 

tracking unknown disturbances when compared to the SMO in Figure 8-13. Since 

the EKF is not tracking these unknown disturbances, the controller is not capable 

of eliminating the oscillation of these states and error oscillations can result as seen 

in Figures 8-29 and 8-30. Control effort of the EKF-based SMC is optimal for all 

four cases. Figure 8-31 shows that the transient control effort is considerably smaller 

when compared to linear control techniques, while the settling time is increased to 

reduce large actuation of the satellite.
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^ X LOy Wz

Steady-State Error (rad/s) 0.015 0.015 ± 0.001

Percent Error - - 0.33

Table 8.9: Steady-State EKF-Based SMC: Body Rate Control Errors

ip e
Steady-State Error (rad) 0.0001 0.002

Percent Error 6.49 7.98

Table 8.10: Steady-State EKF-Based SMC: Euler Angle Control Errors
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CHAPTER 9 

CONCLUSIONS A N D  FUTURE W ORK

9.1 R esearch  Sum m ary

In this research, flexible spacecraft boom dynamics of the NASA MMS satellite 

are investigated for future consideration in the proposed design of an observer-based 

attitude and nutation control algorithm. In the boom dynamic analysis, finite ele

ment methods are used to extract vibration characteristics to  verify NASA results. 

Modal extraction and dynamic transient numerical analysis are the two methods used 

through the MSC.Marc finite element software in flexible dynamic modeling.

Also proposed in this research, is the design and comparative analysis of nonlinear 

estimation and control algorithms for a ttitude and nutation control w ithout the use of 

rate sensors. Euler angle dynamic models for spacecraft a ttitude  are used in designing 

a Sliding Mode Observer and Extended Kalman Filter for full state  estimation using 

only a ttitude sensors. These estimates are then implemented in a feedback control 

system th a t used a linear and Sliding Mode technique for maintaining satellite spin 

rate and attitude, while rejecting nutation. Proposed designs include a fully aug

mented observer-based control system incorporating measurement noise, parametric 

uncertainties and unknown disturbance torques to emulate flight conditions. Cou

pled w ith the finite element analysis, a fully flexible dynamic model proposed by 

Stoneking [26] is to be developed in future work for implementation on the proposed 

observer-based control systems.

Simulations for this research are done via MSC Marc M entat 2005 r3 and MAT-
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LAB /  S im u lin k™  R2006a for finite element analysis and observer/control design, 

respectively. All finite element models are developed without the assistance of prior 

research. In regards to estimation and control design, Euler angle attitude models 

are adopted from [1],

The finite element analysis for flexible booms offered acceptable results for vibra

tional responses. NASA model results are confirmed through modal extraction and 

dynamic transient methods of vibrational analysis. In the process, it is also deter

mined tha t dynamic transient methods offer accurate results of vibrational responses 

when a system is not fully constrained and modal extraction is impractical. In us

ing dynamic transient simulations, it is also shown that numerical damping occurs 

with certain integration techniques in solving dynamic problems. The Newmark-Beta 

analysis does not have such numerical issues and should be utilized in future research 

in which vibrational responses of dynamic systems are to be investigated through 

dynamic transient methods. Numerical instabilities do, however, occur in dynamic 

analysis of rotation systems. While attempting to rotate the satellite model at 3 

rotations per minute about, the inability of the software to transform coordinates 

after 90 degrees of rotation caused the rotation to cease. When such constraints on 

coordinate transformations are removed, or when the coordinate system is changed 

to cylindrical coordinates, the model began to expand in the radial direction. These 

inaccurate simulation results indicate that there are numerical instabilities tha t oc

cur in dynamic transient simulations in which rotational motion is experienced. This 

numerical instability was confirmed by MSC support engineers, and proven to be 

insurmountable in the scope of this research. Overcoming this numerical instabil

ity in dynamic transient analysis through future research could have implications on 

several design and analysis situations in which coordinate transformations can cause 

inaccurate results.
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For attitude and body rate estimation with only star tracker attitude measure

ments available, three different observers are explored. The linear Kalman filter is 

insufficient in providing estimates that will allow for effective control. The Sliding 

Mode Observer (SMO) and Extended Kalman Filter (EKF) are the two nonlinear 

state estimation techniques designed for the MMS application. Both offered accept

able results for attitude and body rate estimation given measurement noise, paramet

ric uncertainties and disturbance torques. The results presented in Chapter 6 clearly 

illustrate the strengths and weaknesses of the EKF and SMO. The EKF does an ex

ceptional job at filtering measurement noise for all six states. However, its weakness is 

in tracking satellite states with unknown disturbance torques and parametric uncer

tainties. Results illustrate a larger magnitude of error oscillation as compared to the 

SMO, due to the inability of the EKF to effectively track satellite states, especially 

body rates which are being directly influenced by external torques. Conversely, the 

SMO has slightly more noise in the estimation error signals. However, the magnitude 

of error oscillation is reduced through effective tracking of unknown disturbances. In 

either design, acceptable estimates of all six states, while only measuring satellite 

orientation, allowed for progression to the control development.

Not only are feedback gains, sliding surfaces, and weight matrices tuned for the 

development of the SMO and EKF, but also observer correction inputs are investi

gated for their influence on observer performance. During the estimation process, 

the observer works off error produced between measured attitude data, and the same 

estimated states. As can be seen in the results, both estimators effectively force the 

estimation error close to zero, however, error still exists in body rate signals. When 

observer parameters are exhaustively tuned, the estimation input correction terms 

are monitored to understand their influence on the overall observer performance. It 

is determined that by tuning the observer correction inputs, tracking results could
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be improved for body rate estimation. Correction terms are tuned through trial and 

error simulations, in which tracking effectiveness is the most important performance 

characteristic in the final design. Noise amplification is another design parameter that 

is monitored in tuning estimation correction inputs. Although there is a limit to these 

fixed, tuned gains because of their amplification of noise in the signals, they do vastly 

improve results. Further analysis of this type of tuning is necessary since the gains are 

acquired for given initial conditions, noise characteristics, and unknown disturbances. 

Ranges of satellite operating conditions need to be determined for the given set of 

correction terms and their effectiveness for a wide range of system characteristics.

Control design commenced with the development of linear and nonlinear control 

techniques assuming all states are perfectly known. This allowed for insight into the 

ability of each controller given optimal operating conditions, and measurements of 

satellite states. Upon completion, these feedback controllers are implemented with 

EKF and SMO systems.

The linear, proportional and derivative (PD) control, and nonlinear Sliding Mode 

Control are both tested on state estimates to determine the overall most effective 

system for observer-based attitude and nutation control. Results in Chapter 8 offer 

acceptable results for a few different systems. The EKF, although optimal in mea

surement noise filtering, does not offer acceptable results when implemented with a 

linear feedback controller. The derivative feedback error signal resulted in excessive 

control noise that can cause actuator failure. Also, since the EKF is ineffective at 

tracking states with unknown disturbance torques, the control system is incapable of 

recognizing them in the error signal and acceptable control compensation does not 

occur.

The SMC is far more effective at rejecting nutation, and maintaining attitude while 

filtering measurement noise. Feedback control implementation with SMO also offers
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acceptable results based on NASA design criteria. Linear feedback control again 

resulted in control signals with significant noise. However, the SMO’s robustness 

allowed for effective rejection of unknown torques and disturbances compared to the 

EKF, with SMC implementation.

9.2 Future W ork

Future work includes:

• augmentation of the attitude estimation and control algorithm with orbital state 

estimation and control. The MMS will require two orbital transfers during 

its mission in which the orbit must be known using minimal sensors, and a 

velocity change must be obtained. The coupling between attitude and orbital 

states will be essential to ensure that during and after orbital transfers, satellite 

reorientation can occur and flexible boom vibrations and deflections can be 

minimized.

• implementing a fully flexible spacecraft model into the estimation and control 

algorithms for investigation of boom vibrations during attitude correction and 

orbital transfers. The modal analysis that produced natural frequencies and 

mode shapes can be used to develop a discretized flexible spacecraft model 

based on ” Multiple Bodies Connected by Spherical Joints in a Tree Topology”

[26]. It is important to know whether flexible modes of vibration are excited 

during the spacecraft mission.

• investigating closed loop system stability using Monte-Carlo simulations for 

all possible initial conditions, unknown disturbances, and large angle orbital 

maneuvers. Since there is no guaranteed closed loop stability in using the 

Extended Kalman Filter, it will be imperative to run the system under all
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possible conditions.

• inserting thruster models and allowable pulse widths into the control sequence. 

This will emulate the spacecraft’s response to actual thruster firings and en

sure that satellite dynamics will remain stable, even after discritization of the 

actuator signal.

• implementing star tracker measurement models into the simulations. This will 

provide insight into actual measurement noise characteristics, and ensure that 

system stability is still valid under discrete measurements.

• testing the system under quaternion attitude models. Quaternions insure that 

singularities do not occur during simulations due to inverse trigonometric func

tions in Euler angle models (also referred to as gimbal lock). In most instances, 

attitude measurement devices output in quaternions and it will be necessary to 

evaluate the proposed observer-based control systems under quaternion based 

states.

• investigating numerical instabilities in dynamic transient analysis by finite el

ement methods for large displacement rotations. Allowing for a fully elastic 

model of complex structures experiencing time-varying loads, and evaluating 

their dynamic response through finite elements could be vital in many engi

neering applications. This type of research would also be very useful to many 

software packages in which dynamic transient analysis is available, but incapable 

of analyzing bodies experiencing large rotational displacements.

• investigating alternative control methods such as H-infinity and adaptive con

trol techniques. Comparing results of control for perfect state knowledge and 

observer-based control systems indicate that the control system, and not the 

observer, is the limiting factor in closed-loop system performance. It will be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



130

important in exploring alternative control techniques that could improve nuta

tion control specifically.

Both observer-based systems met NASA design requirements. However, the trade

off is in system robustness, and effective measurement noise filtering. The proposed 

research offers promising results to meet the requirements of attitude and nutation 

control without the use of rate sensors. It is in the authors opinion that the EKF 

and SMO based SMC systems offer the most comprehensive control options given the 

MMS mission. A complete flexible dynamic model will be useful in determining ob

server and control system effectiveness and understanding flexible structure responses 

under orbital and attitude maneuvers.
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APPENDIX A

Estim ation Diagrams & MATLAB FILES

Included here are the necessary MATLAB/Simulink models for a ttitude  estimation 
through a linear Kalman filter, Extended Kalman Filter and Sliding Mode Control. 
The MATLAB file m m s sim ulation  cod e is used to define spacecraft parameters, 
select feedback gains, and run MATLAB routines to  solve R icatti equations, 
m m s sim ulation  cod e.m

“/Spacecraft Moments of Inertia (kg-m~2)
Ix=8402.64 
I y  8411.97
Iz=16414.66“/Observer Moments of Inertia (kg-nT2)
Ixo=8000Iyo=8600
Izo=17500“/.Cross products of Inertia (kg-nT2)
Ixy=-58.8 
Ixz=-44.6 Iyz— 100
delta=Ix*Iy*Iz-Ix*(Iyz~2)-(Ixy"2)*Iz-2*Ixy*Ixz*Iyz-(Ixz~2)*Iy 
“/oSMO gains
kl-.OOl k2=.001 k3=.001 k4=.001 k5=.001 k6=.0Ql phi=.0006
“/,EKF R inverse
M l: : 8888818R33=.0000010 “/»Kalman filter 
n=. 3lamda=((Iz-Ix)/Ix)*n

-lamda 0; 0 0 0 lamda 

0 0 ; 0 0 0 0 1 0 ; 0 0

0 0 0 ; 0 0 .01 0 0 0 ; 0
20000 0 ; 0 0 0 0 0 20000]
R= [10000 0 0; 0 10000 0; 0 0 10000]
NN=[0; 0]
SYS=ss(A,G,C,0)
[KEST,L ,P]=KALMAN(SYS,Q,R)
“/.Linear Control Gains
alpha_des= [0.052;-0.052] ; “/Desired Euler Angles (rads)
omega_des=[0;0;0.3] ; ‘/Desired Body Rates (rads/s)

A= [0 0 0 1 0 0; 0 0 0 0 1 0; 0 0 0 0 0 l; 0 0 0 0
0 0; 0 0 0 0 0 0]
C=[l 0 0 0 0 0; 0 1 0 0 0 0; 0 0 1 0 0 0]
G= [1 0 0 0 0 0; 0 1 0 0 0 0; 0 0 1 0 0 0; 0 0 0 1
0 0 i0 :1]
q=[.<01 0 0 0 0 0; 0 .01 0 0 0 0; 0 0 .01 0 0 0; 0
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K_alpha=[300 50; 50 300; 0 0] ;
K_omega=[20 10; 1 20 0; 0 0 20]; 
K=[K_alpha K_omega]
K_d=0.1*K
°/,Sliding Mode Control 
%Luenberger Gains 
K_alpha_smc=l*[10 0; 0 10; 0 0]; 
K_omega_smc=l*[2 00; 0 2 0 ;  0 0  2]; 
K_smc=[K_alpha_smc K_omega_smc];
°/0SMC GainsH_alpha_smc=.01*[5 0; 0 5; 0 0];
H_omega_smc=.001*[l 00; 0 1 0 ;  0 0  1];
H_smc=[H_alpha_smc H_omega_smc];
rho=.01;
lamdal=llamda2=.5
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A .l  K alm an Filter
The simulation diagram for the Kalman filter and system equations are shown 

below.

Add1
Add

PLA N T psi

phi

theta  m easured

psi measured

phi m easured

K alm an G ain

Figure A-l: Main Block Diagram - Kalman Filter
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Figure A-2: Plant Sub-block
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A .2 E xtended  K alm an F ilter
Simulation diagrams for the EKF are shown below. The linearized system equa

tions that are updated with each estimate defined in the simulation diagrams as F  
are shown in Figure A-10

input

Figure A-3: Main Block Diagram - Extended Kalman Filter
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Figure A-4: Estimates Sub-block
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Figure A-5: Estimation Correction Input Sub-block
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Figure A-6 : Nonlinear System Sub-block
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Figure A-7: Angular Momentum Sub-block
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Figure A-8 : Kalman Gain Sub-block
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Figure A-9: Error Covariance Sub-block
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A .3 Sliding M ode Observer

Sliding Mode Observer simulation diagrams are listed below. Nonlinear system 
and Estimates sub-blocks are identical to those found in EKF simulations. Figure 
A-12 shows the main block diagram of the Sliding Mode Observer.

input

p si m e asu re m en t

phi m e asu re m en t

my output

s m o  gain  S a tu ra tion  s

Figure A-12: Main Block Diagram - Sliding Mode Observer
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APPENDIX B

Control Diagrams & MATLAB FILES

Included here are the necessary MATLAB/Simulink models for the a ttitude and 
nutation control implemented with perfect measurement data, Extended Kalman Fil
ter and Sliding Mode Observer. Simulation code can be found in Appendix A.

B . l  P erfect M easu rem en ts
Figures B -l and B-2 represents the simulation diagram for feedback control and the 

governing nonlinear equations respectively assuming perfect measurements. Figures 
B-3 and B-4 are the linear feedback control and Sliding Mode Control simulation 
diagrams respectively. The input limiter Figures B-6  and B-7 and control sub-blocks 
will be identical for observer-based control simulations.
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Figure B-l: Main Block Diagram - Feedback Control of Perfect Measurements

phi dot
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wy dot

Figure B-2: Nonlinear System Sub-block
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Figure B-3: Controller Sub-block (Linear)

■CD
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Figure B-4: Controller Sub-block (Sliding Mode Control)

Figure B-5: Sliding Surfaces Sub-block
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Figure B-6 : Input Limiter Sub-block

C O -
desired  s ta te ?

Switch

Out!

in p u t lim iter tran sfe r function

Figure B-7: Input Limiter Transfer Function Sub-blok
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■ 0 - 1

desired euter

desired body-rates

desired states Out!

input limite

uix.est

wy est

contro input un est

theta est

psi est

Extended Kalman Filter

C ontro ller

Figure B-8 : Main Block Diagram - EKF Based Feedback Control

B.2 E xtended K alm an F ilter Based Control
Included below are Extended Kalman Filter based control systems. Figure B-8 

shows the main simulation of the observer-based controller while Figure B-9 is the 
EKF that outputs state estimates for control use. Figures B-10 and B -ll illustrate 
control inputs for the system and observer dynamics respectively, while all other EKF 
sub-blocks can be found in Appendix A.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



psuneasuemem

wx output ' 

wy output > 

tu2 output >

rK D
psi est

r~KD
thetaest

psi est

estimaion.correction input -theta est

phi est

tux est

control lnp«a wy est 

tut est

-KD
mx est

-+CD

-KD
mz est

m — \

oreoroananoe

* }
Matrix
Multiply

Figure B-9: Extended Kalman Filter Sub-block
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Figure B-10: Nonlinear System Sub-block
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Figure B -ll: Estimates Sub-block
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B .3 Sliding M ode Observer Based Control

Simulation diagrams of Sliding Mode Observer based feedback control are shown in 
Figures B-12 and B-13. All sub-blocks related to the SMO can be found in Appendix 
A while nonlinear system, estimator and controller diagrams can be found in the 
above sections.

desired euler
desired s ta te s Outi

input limrterdesired body -tste s

Constant

utx est

Switch

wz est

S lid ing  M ode O bserver

contra input

controller

Figure B-12: Main Block Diagram - SMO Based Feedback Control
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Figure B-13: Sliding Mode Observer Sub-block
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