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ABSTRACT

CATALYTIC EMULSION POLYMERIZATION 

OF NORBORNENE 

by

Diane E. Crosbie 

University of New Hampshire, May, 2007

The use of late transition metal catalysts for the polymerization of olefins in 

aqueous media has created new opportunities to produce latex particles based on 

ethylene and its olefinic derivatives. This thesis reports on three different aspects of the 

catalytic emulsion polymerization of norbornene; 1 ) reaction parameters (e.g. reaction 

temperature, ionic strength), 2) addition of various classes of surfactants, and 3) 

polymerization of a variety of norbornene-derived monomers. These reactions have 

been carried out as ab initio batch emulsion polymerizations using allyl palladium 

catalysts and a lithium based activator, supported by a variety of surfactants.

The role of surfactants in traditional emulsion polymerization is to assist in 

particle nucleation and/or to stabilize latex particles. We studied the role of several 

classes of surfactants in the emulsion polymerization of norbornene with Pd catalysts, 

both with and without the activator LiFABA. In the catalytic emulsion polymerization of 

norbornene, some of these surfactants were found to act as weakly coordinating anions 

with the Pd based catalysts to promote polymerization. When the base latex recipe
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already contains an activator specifically designed to work effectively with Pd in organic 

media (e.g. LiFABA), certain classes of surfactants (e.g. sulfates) act to provide an 

alternative pathway for polymerization and latex particle formation. Other surfactants 

(e.g. cationics) can actually suppress all or part of the polymerization by destructively 

interfering with either the catalyst or the activator. Alkyl sulfates and sulfonates were 

both effective activators of allyl Pd catalysts and produced latex particles (ca. 40-50 nm) 

without significant amounts of coagulum. This activity is significantly dependent on the 

alkyl chain length, and alkyl sulfate anions are more active than the equivalent alkyl 

sulfonate anions. Cationic, fatty acid and non-ionic surfactants produced variable, but 

ineffective, results in our studies.

This work determined that the n-alkyl norbornenes can be polymerized in 

aqueous emulsion and that the mechanisms for latex particle formation are the same as 

that for norbornene monomer alone. As in the case of norbornene, large amounts of 

coagulum can be formed if the catalyst and activator are allowed to reach the emulsified 

monomer droplets and effect polymerization in that location. As the substituents on the 

norbornene become larger and non-polar, it is necessary to consider their effect on the 

water solubility of the monomers in order to analyze the experimental results in an 

effective manner. Our studies included butyl and decyl-norbornene, vinyl and butenyl- 

norbornene, and methanol-norbornene in ab initio emulsion polymerization and also the 

mini-emulsion polymerization of decyl-norbornene.

ix
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CHAPTER 1

INTRODUCTION

Organization of this Thesis

This thesis is divided into five chapters, each describing a different aspect of the 

work on catalytic emulsion polymerization of norbornene and associated monomers. 

The first chapter provides background information about catalytic and free radical 

polymerization as well as the motivation of this work. Basic aspects of norbornene 

polymerization in solution and emulsion are explained, including polymerization and 

particle formation mechanisms. The second chapter describes in detail the experimental 

and analytical methods for latex preparation and characterization.

The next three chapters are the crux of the thesis work. Each chapter examines 

the emulsion polymerization of olefins, but various parameters are altered in each 

chapter to examine their effect on catalytic activity and latex characteristics. Chapter 3 

covers the emulsion and solution polymerization of norbornene using two similar 

catalysts. Catalyst, activator, and surfactant concentrations, ionic strength, and reaction 

temperature were varied. The goal of Chapter 3 is to report on the catalytic emulsion 

polymerization of norbornene and to describe its sensitivity (or insensitivity) to various 

changes in reaction conditions. Chapters 4 and 5 concern studies on the effect of a 

variety of surfactants on the catalytic emulsion polymerization of norbornene, and on a 

variety of norbornene-derived monomers, respectively. The content of chapters 3, 4, 

and 5 have individually been submitted for publication in Macromolecules''3. Each

1
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chapter presents its own abstract and conclusions sections. An overall set of 

conclusions, encompassing all of the chapters, is offered in Chapter 6 .

Background on Emulsion Polymerization

Emulsion polymerization is an economically important and common industrial 

process. It is used to produce synthetic latex that is comprised of polymer particles, 

typically 50-500 nm in diameter, dispersed in an aqueous phase. The latex can be 

produced at atmospheric pressure and temperatures from 40 to 95°C, making 

production relatively safe in a standard stirred tank reactor. Billions of pounds of latex 

are produced worldwide every year. Their applications range from paints and 

adhesives, to impact modifiers for engineering thermo-plastics, and to synthetic rubber. 

Environmentally, emulsion polymerization is extremely safe because water is the 

continuous medium. This is particularly important because more stringent environmental 

regulations require that the volatile organic compound levels are as low as possible. 

Water also provides easy handling and good heat transfer in the reactor. Emulsion 

polymerization allows high molecular weight polymers to be produced without an 

increase in latex viscosity, making processability vastly easier than bulk polymerization.

The majority of latex paints are made using acrylic monomers and are relatively 

expensive. Less expensive monomers, such as olefins, are being examined for paint 

applications. Unlike acrylates, olefins cannot be polymerized using standard free radical 

polymerization routes. Rather, olefins are polymerized using transition metal catalysts. 

Polymerizing olefins using catalysts allow for well defined polymer architecture, inherent 

UV resistance, and a new range of mechanical properties4'13.

The olefins of interest for catalytic polymerization are the a-olefins, such as 

ethylene, and strained-cyclic olefins, such as norbornene. Polyethylene has a low glass

2
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transition temperature, Tg, of -120°C whereas polynorbornene has an extraordinarily 

high Tg ~300°C13. Copolymerizing these two monomers would allow the production of a 

large range of Tg’s as well as highly durable and chemically resistance polymers. The 

ethylene homopolymer is crystalline and thus will not film-form when cast from a water- 

based latex. Copolymerization is likely to break the crystallinity of polyethylene and 

allow easy tailoring of the Tg for film forming polymers. Additionally there is a family of 

norbornenes, such as acetyl, butyl, decyl, etc., in which the substituents decrease the Tg 

of the polymer. This offers many opportunities to make latices with interesting and 

useful properties.

The mechanism of particle nucleation in free radical emulsion polymerization is 

well known to occur via micellar or homogeneous nucleation14'16. A schematic of this 

particle nucleation can be found in Figure 1. The oligomers are formed in the water 

phase and either enter a micelle or precipitate. Once particles are formed, there are 

three places for polymerization to occur; water phase, particle surface, and inside the 

particle. Particle size is controllable by the temperature, the amounts of surfactant and 

initiator, and the amount of monomer added to the reactor. Once particles are formed, 

the resulting monomer will polymerize within those particles, barring the existence of 

micelles. The molecular weight increases through propagation and is stopped through 

chain transfer and termination reactions. In contrast, catalytic emulsion polymerization 

produces active polymer chains that cannot terminate with another polymer chain like 

free radical emulsion polymerization can, but rather the growing chains can be stopped 

through chain transfer reactions or deactivation of the catalyst. These contrasting 

mechanisms may result in differences in the mechanisms of particle nucleation and 

growth, and molecular weight development between catalytic and free radical emulsion 

polymerization. A review of norbornene polymerization is presented below.

3
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Surfactant 
P Polymer 
M Monomer 
I Initiator 

R' Primary RadicalRM

RMM

RMMMMonomer

Micelle

Figure 1. Schematic of particle nucleation via free radical emulsion polymerization.

Background on Norbornene Polymerization

Norbornene, or bicyclo[2.2.1]hept-2-ene, can be polymerized via three different 

routes shown in Figure 2. The most common polymerization of norbornene is ring- 

opening metathesis polymerization (ROMP)17. The polymerization route opens the 

strained ring and leaves the double bond intact. This polymer is produced industrially 

and sold under the trade name Norsorex®. The polymerization occurs in air using a 

RUCI3 /HCI catalyst in butanol. The glass transition temperature (Tg) of ROMP 

polynorbornene is 37°C. The residual double bonds can be crosslinked to produce an 

elastomeric material that is used for oil spill recovery and in vibration and sound 

damping materials18.

4
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ROMP ,

n

cationic t

vinyl t

Figure 2. Three different routes to polymerize norbornene

Relatively little is known about cationic polymerization of norbornene. Recently, 

Myagmarsuren et al . 1 9  achieved high molecular weight (Mw = 76,300-307,400 g/mole) 

polynorbornene via cationic polymerization with a Tg range from 346-365°C. They used 

Rd(Acac)2 /BF 3 OEt2  as the catalyst system in a toluene solution.

Vinyl polymerization of norbornene leaves the bicyclic structure intact and 

polymerizes through the double bond. This polymer has gained attention in recent years 

for its many interesting applications and properties. Polynorbornene has a high Tg 

(>300°C), optical transparency, low birefringence, and low moisture absorption20. 

Norbornene is readily synthesized by the Diels-Alder reaction of cyclopentadiene and a 

dienophile. The dienophile can contain a variety of functional groups, adding 

functionality to the polymer and changing its properties (e.g. adding a long alkyl chain 

will decrease the polymer Tg). A Diels-Alder reaction to make a norbornene-derived 

monomer can be found in Figure 3.

5
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diene dienophile norbornene -  type
monomer

Figure 3. Preparation of cis-norbornene-5,6-endo-dicarboxylic anhydride via a Diels- 
Alder reaction21.

Copolymerization of ethylene and norbornene in organic solution is produced by 

Ticona and Mitsui Chemicals under the trade name TOPAS (Thermoplastic Olefin 

Polymers of Amorphous Structures). The Tg of polyethylene is -120°C, although it is not 

soft at room temperature because it is crystalline. The addition of polynorbornene 

breaks the crystallinity as well as increases the Tg by introducing the rigid cyclic 

structure. The norbornene-ethylene copolymer has been prepared using a zirconium, 

titanium, or palladium based catalyst22'25. This line of copolymers has excellent 

transparency, high stability against hydrolysis and chemical degradation, and 

processability. TOPAS™ polymers are used in heat resistant applications and compact 

discs. Many researchers have begun studying the stereochemistry and effect of various 

amounts of each monomer on the mechanical properties of these TOPAS polymers22'25.

Solution Polymerization of Norbornene

It has been shown that norbornene can be polymerized in solution with Ni and Pd 

based catalysts through vinyl polymerization in the temperature range of 25-75°C26'38. 

The molecular weights reported were between 400 and 300,000 g/mole. Monomer 

conversions ranged from as low as 20% to as high as 100%. Some researchers20,26'34,39' 

4 1 found that polynorbornene was soluble in standard solvents such as 

tetrachloroethene, xylene, cyclohexane, and chloroform, while others3 4 ' 3 8 , 4 2 , 4 3  found that 

polynorbornene was insoluble in those same solvents. This may be due to

6
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crystallization of polynorbornene at higher molecular weights36. The most common 

catalyst for vinyl polymerization of norbornene is PdCb- This basic catalyst yields low 

molecular weight polymers. The addition of large ligands on to the palladium center can 

increase monomer addition selectivity44.

A recent patent submitted by Rohm and Haas3 3  shows the robust activity of two 

catalysts that homopolymerize and copolymerize norbornene, norbornene derivatives, 

and acrylates in solution. The catalysts used were allyl palladium chloride 1,3(bis(2,4,6- 

trimethylphenyl)imidazole-2-ylidene) (TMP) and allyl palladium chloride 1,3(bis(2,6- 

diisopropylphenyl)imidazole-2-ylidene) (DPP) whose structures are found in Figure 4. 

These catalysts were activated by a variety of weakly coordinating anion activators, most 

notably AgPFe, AgSbF6, and LiFABA (the latter structure is found in Figure 5).

)
(a) (b)

Figure 4. Structure of catalysts, (a) TMP, (b) DPP

F F

F

F F 4

Figure 5. Structure of the activator, LiFABA

7
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As shown in Figure 6 , the weakly coordinating anion pulls the chlorine off of the 

catalyst in organic media, leaving a vacancy. The monomer, in this case norbornene, 

coordinates with the palladium. The insertion step may occur through the allyl group via 

the Cossee mechanism, which is detailed elsewhere17.

- C l

Pd

Figure 6 . Potential mechanism of polymerization for norbornene with TMP catalyst.

Emulsion polymerization is the preferred method of polymerization for 

environmental reasons. Polymerizing norbornene and norbornene copolymers in an 

aqueous environment would be more environmentally beneficial and also increase the 

ease of manufacturing processability.

8
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Emulsion Polymerization of Norbornene

Norbornene has been polymerized in aqueous emulsion environments before. 

Eychenne et al . 4 3  and Novak et al . 4 1 published in 1993 about the aqueous polymerization 

of norbornene and diethyl bicyclo[2.2.1]hepta-2,5-diene-2,3-dicarboxylate, respectively. 

They both used PdCI2 as their catalyst. Eychenne used sodium dodecyl sulfate (SDS) 

as the surfactant and produced small particles with a diameter of 10-20 nm. They found 

that the polymer molecular weight increased as their SDS concentration increased. 

Oligomeric polynorbornene was formed even with high polymer yields which they 

proposed was due to the sulfate head group of the SDS complexing with the palladium 

and leading to chain terminations without catalyst deactivation. Eychenne also 

investigated a polymerization without surfactant. Unlike the emulsion polymer made with 

surfactants, the polymer without surfactant precipitated out of the solution and was 

insoluble in solvents they tried.

Lipian et a l . 3 1 found that some palladium complexes efficiently polymerized the 

functionalized norbornene, butyl-norbornene, in water. They used [(r|3 -allyl)Pd(CI) ] 2  

catalyst precursor, P(m-C6 H4 S 0 3 Na) 3  ligand, and LiFABA activator with SDS for the 

emulsion polymerization and obtained 89% conversion at 65°C over a period of 4 hours. 

A bimodal particle size distribution was obtained with large ‘beads’ around 5 pm and 30 - 

50 pm in diameter. A polymer molecular weight around 1 million g/mole was achieved 

with a polydispersity index of 2.7. Lipian showed that these palladium catalysts could 

retain high activity in water. They claim that high catalyst activity was obtained with 

coordination of the phosphine ligand to a cationic palladium center in the presence of the 

weakly coordinating FABA anion.

Chemtob et al. 4 2  recently reported the polymerization of norbornene using mini­

emulsion techniques. A typical mini-emulsion involves the sonication of monomer in

9
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water with surfactant to form droplets in the 100-500 nm range. The polymerization 

occurs in the monomer droplets and thus results in polymer particles that are the size of 

the monomer droplets. Chemtob used two palladium based catalysts; water soluble and 

water insoluble. These two catalysts are the same as the catalysts that Lipian used in 

aqueous environments. When Chemtob did not sonicate to create the mini-emulsion, 

they found large amounts of coagulum (>2 0 %) as well as polymer particles that were 

greater than 1 pm. The polymer was not soluble in any solvents that were tried, 

therefore the molecular weight was not determined. They proposed that they made a 

high molecular weight polymer because of its insolubility as well as its high thermal 

stability. Interestingly, they were not able to observe a Tg even when heating to 500°C in 

a differential scanning calorimeter. They also examined various surfactants and found 

that sodium dodecyl sulfate (SDS) yielded the most stable polymer particles 80-200 nm 

in diameter.

Objectives of this Thesis

This thesis describes studies of the polymerization of norbornene in an aqueous 

emulsion environment with a transition metal catalyst and a weakly coordinating anion 

activator. In particular, the effect of catalyst, activator, and surfactant concentrations, 

ionic strength, reaction temperature, and surfactant and monomer types on the overall 

catalytic activity of norbornene emulsion polymerization was investigated.

Previous work has investigated the catalytic polymerization of olefins in organic 

solutions4'13,26'38. In organic solutions, additives such as surfactants are not required 

because polymer particles are not being created. Surfactants are required in latices as a 

stabilizer to prevent coagulation of particles. Many of these surfactants are ionic and 

have the potential for coordinating with the catalyst or activator in catalytic emulsion

10
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polymerization, as both of these species are also charged. This work investigates the 

interaction of these charged surfactant molecules with the catalyst and activator.

The addition of substituents on the norbornene monomer could decrease the 

polymer Tg, increase adhesion to substrates, or allow the polymer to be functionalized 

through secondary reactions. Various norbornene based monomers may also interact 

negatively with the catalyst by the substituent coordinating with the active site. If the 

monomer can coordinate with the catalyst, the polymerization may be hindered or 

completely shut down. Various norbornene-derived monomers are investigated to see if 

the polymerization is hindered by the addition of certain substituents.

This work represents the first study that has systematically investigated the 

effects of catalyst, surfactant type and level, and norbornene monomer type on emulsion 

polymerization of norbornenes. The goal is to elucidate the reaction mechanism of 

catalytic emulsion polymerization of norbornene, extended more generally to olefins, as 

well as to determine the effect of various additives on the production of norbornene 

latices.

11
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CHAPTER 2

EXPERIMENTAL AND ANALYTICAL METHODS

Chemicals

Norbornene (99%, Aldrich), 5-butyl-2-norbornene (Rohm & Haas), 5-decyl-2- 

norbornene (Promerus), 5-vinyl-2-norbornene (95%, Sigma Aldrich), 5-butenyl-2- 

norbornene, and 5-methanol-2-norbornene (95% City Chemical) were used as received. 

Allylchloro[1,3-bis(2,6-di-i-propylghenyl)imidazol-2-ylidene] palladium (97%, Strem 

Chemical) (henceforth referred to as DPP) and Allylchloro[1,3-bis(2,4,6-tri- 

methylphenyl)imidazol-2-ylidene] palladium (Rohm & Haas) (henceforth referred to as 

TMP) were the catalysts and also used as received. The structures of catalysts are 

shown in Figure 4. Lithium tetrakis(pentafluorophenyl) borate (LiFABA) (Boulder 

Scientific) was the activator and used as received. The structure of this activator is 

shown in Figure 5. The catalysts and activators are oxygen sensitive and were kept in 

an MBraun glove box to ensure stability. Sodium decyl sulfate (Acros) (SDecS), sodium 

dodecyl sulfate (99%, Alfa Aesar) (SDS), sodium tetradecyl sulfate (95%, Acros) 

(STDS), sodium hexadecyl sulfate (99% Alfa Aesar) (SHDS), and sodium octadecyl 

sulfate (93%, Aldrich) (SODS) were used as received. Rhodapex CO-436 (Rhodia), 

sodium stearate (99%, Sigma), tetrasodium pyrophosphate (TSPP) (>95% , Sigma), 

dodecyl benzene sulfonic acid (Acros) (DBSA), sodium 1-hexadecane sulfonate (98%, 

Avocado Research Chemicals), Aerosol OT (EM Chemicals), and cetyl- 

trimethylammonium bromide (CTAB) were used as received. Igepal CO-520 and CO- 

997 (Rhone Poulenc) and Igepal CO-720 and CO-890 (Aldrich) were used as received.
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Deionized water from a Corning Mega Pure™ D2 water purification system was used in 

all experiments. Acetone (99.5%, EMD Chemicals) and tetrahydrofuran (99.9%, EMD 

Chemicals), and cyclohexane (99.9%, Fisher Scientific) were used as received.

Procedure and Experimental Conditions

Latex Preparation

Distilled water was boiled and purged with argon for 30 minutes to eliminate the 

oxygen. Norbornene was dissolved in acetone in a ratio of 9:1 to ease the transfer of 

norbornene to the reactor because it is solid at room temperature (Tm = 45°C). The 

other norbornene-derived monomers are liquid at room temperature, thus the acetone 

was omitted in those experiments. Surfactant was also dissolved in water to ease the 

transfer into the reactor. The SDS concentration was designed to be well below the 

critical micelle concentration (cmc). The other sodium alkyl sulfate surfactants were 

designed to have the same molar concentration as SDS (9 x 10 ' 3  M in water), and thus 

could be above their cmc (i.e., sodium tetradecyl sulfate, cmc = 2.1 x 10' 2  M at 25°C42). 

Both solutions (monomer and surfactant) were purged with argon for 10 minutes. The 

reaction was carried out in a 125mL, three-neck, water-jacketed glass reactor equipped 

with a magnetic stirring bar. The stirring was adjusted to have enough of a vortex that 

monomer pooling was not observed in the reactor. The reaction temperature was 

controlled by means of a water bath and the reactor was evacuated and purged with 

argon. The above solutions were cannulated into the reactor using argon pressure and 

then the reactor was brought up to temperature, typically 60°C. The catalyst and 

activator were dissolved separately in 0.5 g THF, to produce solutions of 0.013 M and 

0.016 M, respectively, and then transferred out of the glove box. The catalyst solution 

was injected into the reactor followed by the activator solution. After the reaction was
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complete, the polymer latex was filtered through eight layers of cheese cloth to separate 

coagulum present in the latex. A standard polynorbornene recipe is shown in Table 1. 

Solution polymerizations were also carried out by following the same procedure as 

above but removing the SDS and replacing the water with cyclohexane.

Table 1. Standard polynorbornene polymerization recipes

Polymerization Recipes
Emulsion Solution

Dl Water 95 g —

Cylcohexane 95 g
Monomer 5  g 5 g
Acetone 0.5 g 0.5 g
SDS 0.25 g —

Catalyst 3.2 mg 3.2 mg
Activator 5.6 mg 5.6 mg
THF 1 g 1 g
Temperature

oooCD oooCD

Latex Characterization

Latex Conversion

Latex conversion was measured gravimetrically after evaporating the volatile 

compounds in a conventional oven at 60°C. The total coagulum level was determined 

from the amount of polymer left in the reactor after removal of the latex (i.e. wall scale) 

and that separated by filtration through cheesecloth. The overall conversion was 

calculated as the sum of the latex conversion and the coagulum conversion. The solids 

content is the mass of the polymer solids/ total mass of latex. Two samples were taken 

from the latex and dried in an aluminum pan. The solids content values are the average 

of the two samples, and the measurements usually agree within a few tenths of one 

percent. Reaction rates were observed by sampling the latex as a function of time.
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Particle Size

Particle size distributions of the final latices were measured by light scattering 

(Microtrac Nanotrac™ 250) and capillary hydrodynamic fractionation (Matec CHDF2000) 

as well as compared to Scanning Electron Microscopy (Amray 3300FE) (SEM) images. 

The latex was diluted in deionized water, with a solid content <0.01%. A droplet of the 

dilution was dried on a pure polished carbon wafer that was mounted on a SEM 

specimen stub with low resistant contact cement. The dried samples were sputter- 

coated with ~50A of platinum and observed in the SEM.

Molecular Weight Determinations

The molecular weight distributions of the solution polymerization of norbornene, 

5-butyl-2-norbornene, and 5-decyl-2-norbornene were determined by gel permeation 

chromatography (GPC). The GPC system consisted of Waters components and a 

refractive index and ultraviolet detector. There were four Styragel columns connected in 

series; three HMW 6 E and one HMW7 column. The columns were calibrated using 

polystyrene standards from Polysciences Inc. Polymers were formed in cyclohexane 

solution and diluted in chloroform to a concentration of 0.5 wt% polymer. The polymer 

solution was filtered through a 0.45 pm syringe filter before injection into the GPC.
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CHAPTER 3

AB INITIO  POLYMERIZATION OF NORBORNENE

Abstract

It has recently been shown that it is possible to polymerize homo- and 

copolymers of olefins in aqueous media by using late transition metal catalysts. This 

has opened a new set of opportunities to produce simple and composite latex particles 

based on ethylene and its olefinic derivatives. Here we report some of our experience in 

creating water based latices from the strained cyclic olefin, norbornene. This has been 

done as ab initio batch emulsion polymerizations using two different allyl palladium 

catalysts and a lithium based activator as substitutes for the free radical initiator in 

standard emulsion polymerization. Such experiments produce small latex particles (ca. 

50 nm) and can be burdened with large amounts of coagulum. In studying the effects of 

catalyst levels, ionic strength, and temperature on the reaction rates, conversion levels, 

and particle size, we have determined that the coagulum is produced by the migration of 

the catalyst and activator to the emulsified monomer droplets, producing large 

agglomerates of -10  pm polymer particles. After separating out the coagulum, the 

latices are stable for over a year. It has also become clear that in the aqueous 

environment, the lithium activator is not necessary to promote emulsion polymerization, 

and that w ithout it we elim inate the coagulum. Apparently, the surfactant (in our case 

SDS) works as a weakly coordinating anion with the Pd catalyst. This work has shown 

that Pd catalysts can tolerate direct injection into the water and that it is not necessary to 

use mini-emulsion polymerization techniques to produce stable polynorbornene latices.
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Introduction and Background

During the past decade, it has been demonstrated4 ' 1 3  that late transition metal 

catalysts are capable of producing some aqueous based latices of polyolefins and their 

copolymers with a few vinyl monomers. The use of such latices as aqueous based 

coatings with low VOC offers numerous possible advantages over free radically derived 

latices including low cost monomers, well defined polymer architecture, new ranges of 

mechanical properties, inherent UV resistance, etc. This opportunity has led us to begin 

a research program based upon the catalytic emulsion polymerization (Cat EP) of 

polyolefins with the objective of elucidating the independent and combined mechanisms 

of polymerization reactions and polymer particle nucleation and growth. In those efforts, 

we have tried to compare and contrast our findings and ideas to those inherent to 

traditional free radical emulsion polymerizations (FR EP).

The olefins of interest are a-olefins, such as ethylene, and strained-cyclic olefins, 

such as norbornene. Polyethylene has a low glass transition temperature (Tg) of -120°C 

whereas polynorbornene has an extraordinarily high Tg ~300°C13. Copolymerizing these 

two monomers would allow the production of a large range of Tg’s as well as obtaining 

highly durable and chemically resistance polymers. The ethylene homopolymer is 

crystalline and thus will not film-form when cast from a water based latex. 

Copolymerization is likely to break the crystallinity of polyethylene and allow easy 

tailoring of the Tg for film forming polymers. Additionally there is a family of norbornenes, 

such as acetyl, butyl, decyl, etc., in which the substituents decrease the Tg of the 

polymer. This offers many opportunities to make latices with interesting and useful 

properties.

The mechanism of particle nucleation in FR EP is well known to occur via 

micellar or homogeneous nucleation. The oligomers are formed in the water phase and
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either enter a micelle or precipitate. Once particles are formed, there are three places 

for polymerization to occur; water phase, particle surface, and inside the particle. 

Particle size is controllable by the temperature, the amounts of surfactant and initiator, 

and the amount of monomer added to the reactor. Once particles are formed, the 

resulting monomer will polymerize within those particles, barring the existence of 

micelles. The molecular weight increases through propagation and is stopped through 

chain transfer and termination reactions. In contrast, Cat EP produces active polymer 

chains that cannot terminate with another polymer chain like FR EP can, but rather the 

growing chains can be stopped through chain transfer reactions or deactivation of the 

catalyst. These contrasting mechanisms may result in differences in the mechanisms of 

particle nucleation and growth, and molecular weight development between Cat and FR 

EP.

It has been shown that norbornene can be polymerized in solution with Ni and Pd 

based catalysts through vinyl polymerization in the temperature range of 25 - 

75°C19,20,28,32,34. The molecular weights reported were between 400 and 300,000 g/mole. 

Monomer conversions ranged from as low as 20% to as high as 100%. Only a few 

authors have polymerized norbornene or substituted norbornene monomers in aqueous 

based emulsions. Puech et al . 3 9  were the first to report the aqueous polymerization of 

norbornene via vinyl polymerization. Their catalyst was PdCI2  and produced low 

molecular weight oligomeric polynorbornene. They found that an increase in their 

surfactant (SDS) level increased the molecular weight of the polymer and that the latex 

particles formed were only 10-20 nm in diameter. Lipian et al . 31 reported the 

polymerization of butyl-norbornene in aqueous media. They used [(ti3 -allyl)Pd(CI) ] 2  

catalyst precursor, P(m-C6 H4 S0 3 Na ) 3  ligand, Li[B(C6 F5 )4 -2 .5 Et2 0  (LiFABA) activator for 

the polymerization and obtained 89% conversion at 65°C over a period of 4 hours. The
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Mw of the polymer was 1.03 million and the Mn was 384,000. Lipian claims that high 

catalyst activity was obtained with coordination of a phosphine to a cationic palladium 

center in the presence of the weakly coordinating FABA anion. Chemtob et al . 4 2  used 

the same catalysts, ligands, and activators as Lipian as well as a PCy3  ligand to 

polymerize norbornene via mini-emulsion with hexadecane as a co-stabilizer. Chemtob 

obtained 1 0 0 % conversion but could not measure the molecular weight of the polymer 

because it would not dissolve in any of the solvents they tried. In one experiment, they 

omitted hexadecane and the conversion still was 1 0 0 % but the particle size was greater 

than 1 urn. The amount of coagulum was more than 20 wt%.

The goal of the present communication is to assess the possibility of producing 

stable polynorbornene latices with certain allyl palladium catalysts and to do so under 

conditions common to FR EP. Using ab initio batch emulsion polymerization conditions, 

we have studied the effect of Pd catalyst structure, the use of a lithium based activator, 

and the influence of catalyst, temperature, surfactant, and ionic strength levels. Where 

possible we comment on the apparent site of polymerization and the formation of the 

latex particles.

Results and Discussion

While the bulk of our experiments were carried out in latex form, we also used 

the catalysts and activator in solution polymerization to judge the inherent activity of the 

catalysts. The discussion below begins with this aspect of the work.

Solution Polymerization

Table 1 shows the recipe for these experiments conducted at 60°C and for a 

duration of 2 hours. For the TMP catalyst system, an optically clear and continuously
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increasing viscous solution was produced during the first hour. During the second hour, 

the solution turned slightly opaque indicating that some of the polymer had precipitated 

out of solution. The final conversion of monomer to polymer was only 60%. The DPP 

catalyst system resulted in a continuously precipitating polymerization process creating a 

completely gelatinous mass within the reactor while reaching 100% conversion. While 

the reaction rates were not measured directly, the visual aspects of the reactor contents 

indicated that the polymerization continued for much of the two-hour period. This set of 

experiments was our first indication that the polymer microstructure produced by the two 

different catalysts might be different enough to have contrasting solution properties.

The above experiments were repeated without the addition of activator and, as 

expected, no polymerization reactions occurred. This is to be contrasted with the results 

described in the next section.

Emulsion Polymerization

Our goal in this portion of the work was to contrast ab initio catalytic emulsion 

polymerization to that using the standard free radical process, albeit for a very different 

type of monomer. As such, we wanted to keep the sequence of addition of materials to 

the reactor the same and to study the effects of catalyst level, temperature, ionic 

strength, and surfactant level (and type) on the resultant latex characteristics. The 

following discussion is related to the results obtained for the first three variables. We will 

report a large study on the effect of surfactant type and level in a subsequent 

communication.
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Catalyst and Surfactant Levels Used for Base Conditions

Both the TMP and DPP catalysts are activated by the removal of the chloride ion 

to form a vacant site. The LiFABA activator is used to abstract the chlorine as well as to 

leave the weakly coordinating FABA anion to associate with the palladium. Palladium 

has four bonds and the allyl group associates with two of them. Both the catalyst and 

the activator are soluble in water. The catalyst and activator concentrations were 

designed to yield a molecular weight of -750,000 g/mole, assuming there would be one 

catalyst molecule per polymer chain (i.e., no chain transfer). This resulted in a catalyst 

concentration of 32 mg catalyst/L of water (6.7x1 O'5 M) for a 5% polymer solids latex. 

The molar ratio of palladium to lithium was normally 1:1, but we also performed 

experiments with no activator where the ratio was 1:0.

We chose to use sodium dodecyl sulfate (SDS) as the surfactant in this portion of 

the study and to add it at the level of 2.5 grams/liter of water. At 60°C, this represents a 

surfactant concentration just slightly below the cmc. We recognized that this would not 

enhance micellar nucleation of particles (if such a mechanism exists for catalytic 

emulsion polymerization). In addition, we performed all of the experiments in the batch 

mode of operation.

One of our initial concerns was the potential high sensitivity of the catalysts to 

degradation by oxygen. In standard FR EP, we are careful to exclude oxygen by 

purging the reactor after water addition with standard grade nitrogen gas, and usually 

remove oxygen from the water prior to adding it into the reactor. No other materials are 

de-oxygenated prior to adding them to the reactor, but we keep a slow flow of nitrogen to 

the reactor throughout the reaction. In our initial catalyst experiments, we swept the 

empty reactor with argon, cannulated de-oxygenated water to the reactor from a Schlenk 

flask using argon, purged the norbornene/acetone and surfactant/water solutions with

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



argon and added both in the same manner as the water. We prepared the catalyst and 

activator solutions in a glove box, and injected them into the reactor. In contrast, we 

conducted additional separate experiments with both catalysts in which we used 

standard grade nitrogen gas and followed the procedure noted above for the “standard” 

FR EP, but maintained the injection of the catalysts and activator to the reactor. The 

results for these contrasting experiments are displayed in Table 2. It is seen that the 

extra care to exclude oxygen did not significantly affect the overall conversion levels, 

and the coagulum levels (a significant problem for many of the reactions described in 

this paper) showed no clear trend. Thus, it appears that the usual oxygen purging 

precautions employed in emulsion polymerization might also be applicable to such 

reactions using the catalysts of Figure 4. Nonetheless, we conducted most of the 

experiments reported below under the more stringent conditions.

Table 2. Oxygen sensitivity of norbornene emulsion polymerization

Experiment
Number

wt% solids 
theoretical

wt% polymer in 
coagulum

% total 
conversion Comments

DEC2-60
DEC2-85
DEC2-92
DEC2-96

5.3%
5.1%
5.0%
5.0%

50%
48%
34%
24%

73.0%
69.9%
67.2%
70.1%

thorough 0 2 purging 

moderate 0 2 purging

DPP
catalyst

DEC2-37
DEC2-95
DEC2-97

5.7%
5.1%
4.9%

30%
31%
46%

71.8% 
67.5% 
67.1%

thorough 0 2 purging 

moderate 0 2 purging
TMP

catalyst

Experiments with Variations in Catalyst/Activator Levels

The DPP catalyst concentration was varied to determine if the polymer 

conversion, the latex stability and the polymer molecular weight were affected by the 

amount of catalyst. The activator was also varied with the catalyst to keep with the 

molar ratio of palladium to lithium 1:1. For this series of experiments, the conversion
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and amount of coagulum are shown as a function of catalyst concentration in Figure 7. 

The conversion and coagulum data were quite reproducible. The overall conversion 

appears to increase somewhat with catalyst level until a concentration of about 120 mg 

catalyst/L. Continued catalyst concentration increases showed no further improvement 

in conversion level. In addition, as the conversion increased, the amount of coagulum 

decreased markedly, and the minimum amount of coagulum corresponded to the 

maximum conversion at 120 mg catalyst/L. The coagulum level markedly increased at a 

catalyst concentration of 325 mg/L. Although the catalyst and activator are both ionic, 

the combined ionic strength of the catalyst and activator is only 1.5x10'3M. This ionic 

strength would have a negligible effect on colloidal stability in normal (i.e. free radical) 

styrene or acrylate latices.

100% 100%

80% - -  80%

co
60% -

<u>coO

-  60% 3o

2
<D 40% -

o
-- 40%

20%  ..... - -  20%

Overall Conversion

w t%  polymer in coagulum  form

0% 0%
50 100 150 200 250 3000 350

concentration of catalyst (mg cat/ L soln)

Figure 7. Overall polymer conversion versus catalyst concentration of norbornene 
polymerization at 60°C with DPP catalyst.
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The Tg of polynorbornene is high (~300°C) and with the reaction temperature at 

60°C, the Fox equation suggests that the highest conversion that should be attained 

before the glass effect prevents further polymerization is -70% . At high catalyst 

concentrations, the theoretical conversion of 70% is surpassed and 80% conversion is 

experimentally attained. This implies that the glass effect does not limit the polymer 

conversion in the same manner that it does in free radical polymerization. This is 

surprising.

In these experiments we expected the polymer molecular weight to decrease as 

the catalyst concentration was increased. This assumes that there is one catalyst 

molecule per polymer chain. Decreasing the polymer molecular weight may increase 

the solubility of the polymer in solution. Polynorbornene did not dissolve in several 

solvents, even when produced at high catalyst concentrations. Others have also noted 

that polynorbornene does not dissolve in a number of solvents34,42 while others note that 

it does19,20,35. The mentioned solvents (i.e., 1,2-dichlorobenzene, bromobenzene, 

cyclohexane) did not dissolve our polynorbornene and since we were not able to get 

polynorbornene in solution, there are no MW data to report at the present time.

The experiments with 32 mg catalyst/L of water yielded almost 50% and 30% 

coagulum with DPP and TMP catalyst, respectively. The resulting latex was examined 

via SEM and the results are shown in Figure 8a. The particle size contains mainly small 

particles around 30-80 nm and a few larger particles around 100-300 nm. Just as there 

were solubility differences between the two catalysts in solution polymerization, there is 

an apparent difference in the particle size distributions they created. There are fewer 

large particles when the TMP catalyst is used as seen in Figure 8b.
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(a) (b)

Figure 8. SEM image of polynorbornene particles made via (a) DPP catalyst (scale bar 
equals 100 nm) and (b) TMP catalyst (scale bar equals 1000 nm), both with LiFABA 
activator.

Variations with Temperature

If the glass effect limits final conversion levels, then in the absence of competing 

effects, the conversion should increase slightly at higher temperatures and decrease 

slightly at lower temperatures. Figure 9 is a plot of polymer conversion versus reaction 

temperature over the range of 50-80°C for the standard polymerization recipe conditions 

listed in Table 1 using the DPP catalyst. The amount of coagulum drastically increased 

as the temperature increased; the instability occurred immediately after the activator was 

added to the reactor and worsened with time. Surprisingly, over the same temperature 

range, the overall conversion decreased slightly, again suggesting that the glass effect 

does not limit conversion in the same manner as in standard FR EP.
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Figure 9. Overall polymer conversion versus reaction temperature of norbornene 
polymerization with DPP catalyst.

Ionic Strength Effects

Both the catalyst and the activator are ionic species. The lithium from the 

activator is thought to abstract the chloride from the catalyst, leaving a cationic vacancy 

on the catalyst31. The vacancy is weakly coordinated with the activator anion and is the 

site of polymerization. If the vacancy becomes too strongly coordinated, monomer will 

not easily access the vacant site and polymerization will be hindered or prevented. In 

this sense, we wondered if the overall ionic strength of the aqueous phase would affect 

the catalytic activity. Monovalent buffers, such as sodium bicarbonate, are frequently 

used in FR EP14'16. When there are too many ions in such emulsion polymerization 

systems, the polymer particles may destabilize and coagulate. In our study, we wanted 

to examine if the catalyst efficacy and the amount of coagulum would be affected by
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variations in ionic strength (using NaCI). Figure 10 is a plot of overall conversion and 

coagulum level as a function of the total salt level and takes into consideration the ionic 

strength that is contributed by the SDS. The latter is depicted by the shaded area on the 

plot. The polymer conversion initially increased with ionic strength, from 72% at 0.01 M 

to 86% at 0.03M. Under the same conditions the coagulum level surprisingly decreased 

from 49% to 36%. This increase in polymer conversion was unexpected because we 

thought that the increased chloride ion concentration might interfere with the catalyst 

site. When the ionic strength was increased further to 0.07M, the overall conversion did 

decrease (back to the original level of 72%) while the percentage of coagulum slightly 

increased. Going further, the overall conversion decreased drastically at an ionic 

strength of 0.18M. Thus, it appears that there is a significant deleterious effect of salt 

content on the polymer conversion. Interestingly, the coagulum level seemed to have 

been relatively unaffected by the addition of NaCI.
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Figure 10. Overall polymer conversion versus ionic strength of norbornene 
polymerization at 60°C with DPP catalyst.

Experiments Without Activator

If the lithium ion in the activator is thought to abstract the chlorine from the 

catalyst to produce an active site, could something else activate the catalyst as well? To 

probe this question we were interested in seeing if the catalyst could be activated and 

polymerization achieved without the LiFABA activator. A series of emulsion 

polymerization experiments was conducted with the same concentrations of TMP 

catalyst and surfactant as Table 1, but without the activator. As previously noted, when 

the catalyst and activator were used together, the overall conversion was 72% and the 

coagulum level was 30%. The latex particle size distribution included small particles 

(50-100 nm) as well as a few larger particles (200-500 nm) as seen in Figure 8b. In 

contrast, when no activator was used, an overall conversion of 66% was obtained. Thus
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it appears that in this latex system it is not necessary to have the LiFABA activator to 

achieve reasonable polymerization. There was also a drastic decrease in the coagulum 

level to 4%, confirmed with replicate runs. This coagulum was markedly different in 

physical form than the coagulum formed with activator, as will be discussed later. The 

particle size distribution was limited to particles in the 30-70 nm diameter range as seen 

in Figure 11. While we did not accurately measure the rates of polymerization, we did 

find that those with activator present were faster (2 hours to completion) than those 

without activator (4 hours to completion).

' ■ .U U  i ■/ 4 k  iH h jlM '

Figure 11. SEM image of polynorbornene particles using only TMP catalyst (no 
activator). Scale bar equals 100 nm.

Given the above results in emulsion polymerization, we tried the same reaction in 

solution polymerization. We again used the recipe in Table 1, and in this case, we got 

no polymerization at all - a result that we fully expected. Going a bit further, we tried the 

latex recipe without surfactant but with activator. In this case, we achieved “normal” 

conversion of about 76% but, as might be expected, we obtained essentially complete 

coagulum (93% of the polymer in coagulum form). Leaving the activator and the 

surfactant out of the emulsion polymerization recipe (thus having just water, monomer,

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and catalyst) resulted in no polymerization. Taken together these results offer clues as 

to the chemical reaction mechanisms involved in these experiments.

Competitive Reactions During Catalytic Emulsion Polymerization of Norbornene 

Clearly, the amount of coagulum formed in most of the reactions described 

above is far greater than any acceptable value and certainly well above that commonly 

experienced in free radical based emulsion polymerizations. This led us to investigate 

the nature of the coagulum formed in the catalytic emulsion polymerization reactions via 

electron microscopy. A typical example is shown in the SEM image of Figure 12.

Figure 12. SEM image of the coagulum produced in the emulsion polymerization recipe 
of Table 1 with the TMP catalyst. Scale bar equals 10 pm.

It is very clear in this photo that the coagulum is composed of an agglomeration 

of polymer particles in the 10 pm diameter range. This is entirely consistent with the size 

of emulsified monomer droplets in normal free radical batch emulsion polymerizations 

that serve as reservoirs of monomer to supply the reactions that take place in the 

growing polymer particles (which are two orders of magnitude smaller than the 

emulsified droplets). Such coagulum forms to varying, but to very large degrees in all of 

the Cat EP reactions utilizing the activator described above. It does not form when we
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eliminate the LiFABA activator. Noting that we achieve roughly normal levels of overall 

conversion and the usual small latex particles without the use of activator, we now 

speculate that it is possible that the coagulum produced in systems utilizing the LiFABA 

activator results from the catalyst and activator migrating to the emulsified droplets and 

promoting rapid polymerization within them, much as in the solution polymerization 

reactions described earlier. Without activator present we know that polymerization does 

not take place in solution polymerization, nor in the bulk polymerization of the 

norbornene. It appears to us that without the LiFABA activator the catalytic emulsion 

polymerization takes place in the aqueous environment and creates latex particles in the 

50 nm size range, and that these particles are stabilized by the SDS surfactant in the 

normal fashion. Considering the Cat EP experiment with neither activator nor SDS, 

which showed no polymer formation, it appears that the SDS surfactant may play a 

larger role than simply stabilizing particles. This leads us to further speculate that the 

allyl Pd catalyst is somehow activated by the SDS surfactant, perhaps acting as a 

weakly coordinating anion. We will comment more extensively on this in a future report.

Concluding Remarks

With the above thoughts, we reflect upon the overall results presented in this 

paper. It now appears to us that in the standard latex formulations expressed in Table 1, 

we create a situation in which there is a significant competition for reaction in distinctly 

different regions of the overall reaction medium. For batch emulsion polymerization 

reactions there is always that period of time in which reaction can take place in the 

aqueous phase and also possibly in the emulsified monomer droplets. In free radical 

emulsion polymerization, reaction in the large droplets is not important relative to the 

much faster reactions in the aqueous/micellar environment. However, in the catalytic
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emulsion polymerization of norbornene that appears not to be the case. Here we think 

that when the LiFABA activator is present, reaction happens in both the aqueous 

environment and in the large emulsified droplets -  to an extent that nearly equal 

amounts of polynorbornene are produced in both places. When the activator is left out 

of the recipe, polymerization in the emulsified droplets is eliminated because catalytic 

reactions in those droplets require the presence of the LiFABA activator in order to 

create a vacancy on the Pd to induce polymerization. It appears that the LiFABA 

activator is not required to promote polymerization in the water and surfactant 

environment. Clearly, there are likely to be other complications to understanding the 

mechanisms of polymerization and especially latex particle formation that have not yet 

been addressed here, but the ideas presented above appear to us to be a start on that 

task.
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CHAPTER 3

SURFACTANT EFFECTS IN THE AB INITIO  POLYMERIZATION OF
NORBORNENE

Abstract

The polymerization of olefins in aqueous media by late transition metal catalysts 

has created new opportunities to produce latex particles based on ethylene and its 

olefinic derivatives. In this work, we have concentrated on creating water-based latices 

from the strained cyclic olefin, norbornene. This has been done as ab initio batch 

emulsion polymerizations using allyl palladium catalysts and a lithium based activator, 

supported by a variety of surfactants. The role of surfactants in traditional emulsion 

polymerization is to assist in particle nucleation and/or to stabilize latex particles. We 

studied the role of several classes of surfactants in the emulsion polymerization of 

norbornene with Pd catalysts, both with and without the activator LiFABA. In the 

catalytic emulsion polymerization of norbornene, some of these surfactant classes were 

found to act as weakly coordinating anions with the Pd based catalysts to promote 

polymerization. When the base latex recipe already contains an activator specifically 

designed to work effectively with Pd in organic media (e.g. LiFABA), certain classes of 

surfactants (e.g. sulfates) act to provide an alternative pathway for polymerization and 

latex particle formation. Other surfactants (e.g. cationics) can actually suppress all or 

part of the polymerization by destructively interfering with either the catalyst or the 

separately added activator. Alkyl sulfates and sulfonates were both effective activators 

of allyl Pd catalysts and produced latex particles (ca. 40-50 nm) without significant 

amounts of coagulum. This activity is significantly dependent on the alkyl chain length,
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and alkyl sulfate anions are more active than the equivalent alkyl sulfonate anions. 

Cationic, fatty acid and non-ionic surfactants produced variable, but ineffective, results in 

our studies.

Introduction

The polymerization of olefins using late transition metal catalysts in aqueous 

emulsions is possible and has begun to receive some attention in the literature4'13. For 

the most part, these studies have utilized the mini-emulsion polymerization route and 

often used substantial amounts of hexadecane to retard Ostwald ripening of the particles 

during polymerization. In those studies reported thus far, sodium dodecyl sulfate (SDS) 

has been the main surfactant employed, with Chemtob et al.42 examining four other 

surfactants, but using SDS for the bulk of the experiments. Regarding the emulsion 

polymerization of norbornene and its derivatives, very few studies have been reported. 

Puech et al.39 were the first to report the aqueous polymerization of norbornene via vinyl 

polymerization. Their catalyst was PdCI2 and produced low molecular weight oligomeric 

polynorbornene. They found that an increase in their surfactant (SDS) level increased 

the molecular weight of the polymer and that the latex particles formed were only 10-20 

nm in diameter. Lipian et al.31 reported the polymerization of butyl-norbornene in 

aqueous media using [(ri3-allyl)Pd(CI)]2 catalyst precursor, P(m-C6 H4S0 3Na ) 3  ligand, and 

LiFABA activator with SDS as surfactant. They claimed that high catalyst activity is 

obtained with coordination of a phosphine to a cationic palladium center in the presence 

of the weakly coordinating FABA anion. Chemtob used the same catalysts, ligands, and 

activators as Lipian, as well as a PCy3 ligand, to polymerize norbornene via mini­

emulsion with hexadecane as a co-stabilizer and SDS as surfactant. Chemtob could not 

measure the molecular weight of the polymer because it would not dissolve in any of the
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solvents they tried. When they omitted the hexadecane, they reported that the 

conversion was still 100% but the particle size was greater than 1 nm. The amount of 

coagulum was more than 20 wt%.

We have recently reported some results from our study on the ab initio batch 

emulsion polymerization of norbornene using two Pd based catalysts1. In that paper we 

concluded that there is a major competition for polymerization reactions between the 

latex particles (on the order of 50 nm in diameter) and the emulsified droplets (ca. 10 nm 

in diameter). The use of a Li borate activator (LiFABA) promoted polymerization in both 

the emulsified droplets and the aqueous phase -  the former produced great amounts of 

coagulum and the latter produced stable latex particles. When using SDS as the 

surfactant, we achieved overall conversion levels of about 75% and about half of the 

polymer was produced as coagulum. The coagulum was identified as massive 

agglomerates of -10  nm particles and thought to have come from reaction in the 

emulsified droplets. In an attempt to reduce/eliminate the coagulum in these latices we 

subsequently varied the type of surfactant used in the basic recipe and studied the 

resultant reactivity, overall conversion and coagulum levels. Anionic, cationic, and non­

ionic surfactants were used alone and in combinations. The purpose of this chapter is to 

report those results for norbornene monomer and to comment on the possible 

mechanisms of polymerization and particle formation as they are affected by the 

surfactants employed in the recipe.

Results and Discussion

A useful backdrop for this discussion is to describe the set of reaction 

mechanisms that we proposed in our recent paper1. There we suggested that with either 

the TMP or the DPP catalysts in the presence of LiFABA activator there is an opportunity
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to have stable latex particle formation and simultaneously have reaction in the large, 

emulsified droplets. The latter leads to massive agglomerates of ca. 10 pm particles and 

the formation of coagulum. In the beginning our testing of a large number of surfactants 

arose from our desire to eliminate the coagulum, and ultimately, we have begun to gain 

a more complete picture of the role of surfactants as either positively or negatively 

interacting with the catalysts and/or the LiFABA activator. Figure 13 shows that when 

SDS is used (this was our “reference” surfactant against which to judge the performance 

of others) there may be three mechanisms responsible for the polymerization. The first 

is the migration of the catalyst and the LiFABA activator through the water and into the 

emulsified droplets to produce large polymer particles (eventually coagulum), and the 

second is to have the same catalyst and activator produce colloidally stable latex 

particles (ca. 40 nm in size). A third possibility is that of the surfactant acting as a 

weakly coordinating anion and activating the catalyst in the water phase leading to latex 

particle formation. These pathways numbered 1-3 and are depicted by the various 

arrows in Figure 13. These reaction steps are meant to be occurring simultaneously. It 

appears to us that the final characteristics of the latex are determined by the dominant 

reaction pathway that is specific to the recipe and temperature conditions used in the 

experiment. Indeed, our goal eventually became to influence the competition between 

the various potential mechanisms.

Surfactant

Coagulum
Activator

Catalyst
Stable
Latex

Particles

Figure 13. Proposed reaction pathways for norbornene polymerization using DPP or 
TMP catalysts with LiFABA activator.
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Another interesting reference point is that of a latex recipe without any surfactant 

at all. Standard emulsification of monomer in water using mechanical stirring produces 

droplets around 10 pm or greater in diameter. When the catalyst and activator were 

sequentially added to our reactor containing only water and dispersed monomer, a rapid 

reaction ensued and an overall conversion of 70% was obtained. However, 92% of that 

polymer was in coagulum form, although there was a small amount (ca. 6%) of latex 

conversion. The stable latex particles had a broad size distribution of 50-300 nm. This 

indicates that there was some water phase polymerization even without the presence of 

surfactant. It now becomes interesting to observe what happens as various surfactants 

are added to the recipe, both with and without the LiFABA activator.

For discussion purposes, the surfactants are separated into classes; sulfates, 

sulfonates, cationic, fatty acid soap, and non-ionics. The overall polymer conversion 

resulting from the use of various surfactants can be found in Table 3. All of the 

experiments using LiFABA activator employed the DPP catalyst. The set of experiments 

that did not use the LiFABA activator used the TMP catalyst. The polymers produced 

were not soluble in a number of different solvents, and thus we were not able to obtain 

molecular weight data for any of the experiments at this time.
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Table 3. Overall polynorbornene conversion as a function of surfactant type using DPP 
catalyst and LiFABA activator. The nonionic surfactants were added at the same 
masses, while the remaining surfactants were added at -9X1 O'3 M in water.

Experiment
Number

wt%
solids

theoretical

wt% polymer 
in coagulum 

form

% overall 
conversion

[Surfactant]
x10'3

(mol/L)
Surfactant

a DEC2-70 4.7% 92% 76.0% 0.00 no surfactant
DEC2-62 5.0% 83% 16.3% 9.21 DBSA
DEC2-63 5.3% 33% 35.1% 6.60 Aerosol OT

b DEC2-66 5.6% 33.% 64.1% 9.02 sodium hexadecane sulfonate
DEC2-73 5.5% 81% 57.9% 16.7 Igepal CO-520 (5EO Units)

DEC2-75 4.6% 54% 30.2% 8.08 Igepal CO-520 w/8x10‘3M SDS

DEC3-18 5.4% 23% 10.1% 8.63 Igepal CO-720 (12 EO Units)

DEC3-14 5.3% 30% 15.4% 3.18 Igepal CO-890 (40 EO Units)

DEC3-15 5.0% 19% 26.7% 2.06 Igepal CO-890 w/8x10‘3M SDS
DEC2-74 4.7% 5% 11.1% 1.29 Igepal CO-997 (100 EO Units)

c DEC2-76 4.8% 81% 43.9% 0.86 Igepal CO-997 w/8x10'3M SDS

d DEC2-80 4.7% 31% 2.0% 7.89 CTAB
DEC2-55 5.1% 0% 0.0% 8.59 Sodium Stearate

e DEC2-57 5.0% 0% 0.0% 8.59 Sodium Stearate + TSPP
DEC2-59 5.3% 36% 59.5% 9.58 Rhodapex CO-436
DEC2-60 5.3% 50% 73.0% 9.40 SDS (C-12)

DEC2-85 5.1% 48% 69.9% 8.89 SDS (C-12)
DEC2-69 5.4% 81% 74.0% 8.94 SDecS (C-10)

f DEC2-64 4.8% 34% 79.4% 8.58 STDS (C-14)
DEC2-67 5.3% 24% 86.7% 8.85 STDS (C-14)
DEC2-79 5.0% 11% 79.9% 8.41 SHDS (C-16)
DEC2-82 5.2% 8% 81.1% 8.12 SHDS (C-16)

DEC2-68 5.0% 31% 70.1% 7.90 SODS (C-18)
a -  no surfactant, b -  sulfonated series, c -  non-ionic series, d -  cationic, e -  stearate, f -  sulfate 
series, * EO -  ethylene oxide

Sulfate Series

Since SDS, in the presence of our catalysts and activator, was able to enhance 

the production of latex particles and provide a new pathway that can effectively compete 

with reaction pathways 1 and 2 in Figure 13, we suspected that other alkyl sulfate 

surfactants would provide interesting results. Our conclusion that the alkyl sulfate anion 

provided a weakly coordinating pair with the Pd cation is supported by the work of 

Lapinte et al46. They used PdCI2 as the catalyst to polymerize octene in aqueous 

emulsion and determined that the alkyl (C-12) sulfate anion coordinated with the Pd
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cation to effect the polymerization of the octene. Although our Pd catalyst is different, it 

appears to also be activated by the same sulfate anion.

Our first experiment utilized sodium sulfate, Na2 S 0 4, salt instead of surfactant to 

test the unlikely possibility of the simple sulfate anion coordinating with the Pd cation to 

activate the catalyst without the LiFABA activator present. It did not do so, as no 

polymer was formed when LiFABA was absent. As previously mentioned, ‘normal’ 70% 

conversion was obtained when no surfactant was added and catalyst and activator were 

present. The Na2 S 0 4  salt without activator yielded no polymer, which is similar to the 

experiment where no surfactant or activator was used.

We then used sodium alkyl sulfates of varying carbon chain lengths, ranging from 

10 to 18 carbons. Figure 14 shows the results for sodium alkyl sulfates when LiFABA 

was used, and Figure 15 displays similar data for the experiments in which the LiFABA 

was omitted from the recipe. Figure 14 uses the DPP catalyst and Figure 15 uses the 

TMP catalyst. As we showed in a previous paper1, the overall polymer conversion does 

not change when changing the catalyst. In Figure 14 it is striking to see as the alkyl 

chain length increased from 1 0  to 18 carbons that the conversion levels changed little 

while the coagulum levels dropped dramatically. This means that reaction pathway 3 

became more and more prevalent with the increasing alkyl chain length and provided a 

highly competitive alternative to pathways 1 and 2 for polymerization. The C-16 alkyl 

sulfate effectively eliminated the tendency of the catalyst and the LiFABA to migrate to 

the large emulsified droplets and produce coagulum by providing a more rapid pathway 

for polymerization to produce small latex particles (ca. 40 nm). This interpretation of the 

results is supported by the fact that when the LiFABA is omitted of the recipe (Figure 

15), there is very little coagulum formed and monomer conversion is nearly as high as it 

was when the LiFABA activator was present to offer an additional pathway for
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polymerization. Also in Figure 15, it is seen that the C-10 alkyl sulfate surfactant does 

not appear to activate the catalyst. This is apparently why this surfactant allowed the 

LiFABA to induce the formation of massive amounts of coagulum, as seen in Figure 14. 

It is striking that adding 2 methylene groups to this alkyl chain, so as to produce SDS, 

results in a dramatic increase in the activity of the catalyst.

co

fl>>coO
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100% 100%
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Figure 14. Overall polymer conversion of norbornene and coagulum level versus alkyl 
chain length (n= number of carbons in alkyl chain) of sodium sulfate surfactants for 
polymerization at 60°C with DPP catalyst and with LiFABA activator.
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Figure 15. Overall polymer conversion of norbornene and coagulum level versus alkyl 
chain length of sodium sulfate surfactants for polymerization at 60°C with TMP catalyst 
(without LiFABA activator).

It appears from the data in Figure 14 and Figure 15 that the positive trend seen 

with increasing the alkyl chain length does not extend beyond 16 carbons, as the C-18 

sulfate surfactant seems to perform less well than the C-16 surfactant, both with and 

without the LiFABA activator. In a further test of the effect of the characteristics of the 

organic portion of the sulfate surfactant, we chose to use an ammonium salt of nonyl 

phenyl ethylene oxide (4 units) sulfate (Rhodapex CO-436) in experiments with and 

without the LiFABA activator. As seen in Table 3, the monomer conversions using 

Rhodapex CO-436 was the lowest in the sulfate series, although the surfactant clearly 

activated the catalyst (i.e. when the Rhodapex CO-436 was used without activator, 40% 

overall conversion was achieved, indicating that the surfactant can activate the catalyst). 

Since the number of carbons in this surfactant is 23, it may be that it is too large to be as
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effective as the C-16 sulfate. On the other hand, it may be that the ethylene oxide group 

adds an additional hydrophilic nature to the surfactant and in that way alters the 

association with the Pd catalyst.

Lastly, there was no correlation found between the latex particle size and the 

alkyl chain length. All of the experiments contained small particles around 30-80 nm as 

well as a few larger particles around 100-300 nm, irrespective of the surfactant. The 

coagulum produced with the LiFABA was composed of agglomerates of -10  pm 

particles and had a very different character than the small amounts of coagulum formed 

without LiFABA. The latter had the features of “normal” latex coagulum as usually found 

around the stir shafts and blades in latex reactors.

Sulfonate Series

Three surfactants were examined within the sulfonate series; sodium 

hexadecane sulfonate, dodecyl benzene sulfonic acid (DBSA), and Aerosol OT. These 

were chosen in an attempt to reduce the coagulum levels produced in reactions 

containing the LiFABA activator. They also serve to compare sulfonate surfactants to 

sulfate surfactants as potential weakly coordinating anions activating the Pd catalysts. 

Surprisingly the overall conversions obtained in these three surfactant experiments 

(Table 3b) were considerably lower than the surfactant free experiment. Sodium 

hexadecane sulfonate yielded the highest overall conversion at 64% with about one third 

of that in coagulum form. The polymer formed with DBSA was mainly produced as 

coagulum while the polymer formed with Aerosol OT had considerably less coagulum 

and a higher overall conversion level. Clearly these surfactants have affected the 

relative importance of the different pathways depicted in Figure 13. Sodium hexadecane 

sulfonate, similar to the C-16 sulfate except for the removal of an oxygen, yielded a total
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polymer conversion of 64%, with about a third of polymer in coagulum form. This is a 

decrease compared to C-16 sulfate which yielded 80% overall conversion. When the C- 

16 sulfonate was used without activator, 56% overall conversion was obtained (not 

shown in table). This indicates that the surfactant is able to activate the catalyst on its 

own. Both the C-16 sulfate and sulfonate experiments without activator yielded similar 

overall reactions; 61% and 56%, respectively. This suggests a shift towards the 

enhancement of reaction pathway 3, but without the total diminution of the pathway to 

coagulum formation (when the activator is used).

The DBSA significantly hindered the polymerization because there was only 16% 

overall conversion. Since the surfactant is present in large molar excess of both the 

catalyst and the LiFABA activator, destructive interference with either or both could 

totally destroy the reactivity of the system. Achieving 16% conversion with nearly the 

entire polymer in coagulum form would suggest that pathway 1 in Figure 13 has been 

seriously diminished (as compared to the experiment with no surfactant) without any 

significant positive effect on the other two reaction pathways. Aerosol OT yielded a 

slightly higher conversion of 35% compared to DBSA with significantly less polymer in 

coagulum form, 33%. This result suggests to us that pathway 3 has been enhanced at 

the expense of pathway 1 for this surfactant but the activity of the catalyst has 

decreased.

Cationic

Cetyl trimethyl ammonium bromide (CTAB) was the only cationic surfactant used. 

The conversion level for the CTAB experiment was only 2%. Bromide is the anion of this 

surfactant and it is very unlikely that it can act as a weakly coordinating anion with the 

catalyst. Pathway 3 in Figure 13 is not active as confirmed by Lapinte et al . 4 6  who used
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a brominated cationic surfactant with PdCI2  catalyst. Clearly the CTAB had a 

catastrophic effect on the reactivity of our catalyst/activator system and even prevented 

this pair from migrating to the large emulsified droplets to produce polymer. We 

conclude that the cetyl trimethyl ammonium cation interferes with the LiFABA anion of 

the activator and effectively shuts down reaction pathways 1 and 2 in Figure 13, without 

providing an alternative pathway to polymerization.

Stearic Acid Soap

When we used sodium stearate as surfactant, we did so with and without the use 

of tetrasodium pyrophosphate buffer (TSPP). TSPP buffers the system at a pH of 9.0 -  

without it the system operated at a pH of about 6 , somewhat above the pKa of the 

carboxylic acid group47. Absolutely no reaction was observed when using this surfactant 

with or without TSPP. Clearly the reaction pathways 1 and 2 must have been eliminated 

by the C-16 alkyl carboxylic anion. We suspect that this anion interacted with the Pd 

cation in a manner such that it eliminated the catalyst’s ability to coordinate with the 

LiFABA. Since the molar concentration of the surfactant was so much higher than that 

of the catalyst, a strong, negative interaction with the catalyst would remove the catalyst 

from the system and eliminate any possibility of polymerization. Even without the TSPP, 

it would appear that the carboxylic group is ionized enough to interfere destructively with 

the catalyst.

Non-Ionic Series

Four nonyl-phenyl ethylene oxide surfactants were used with various ethylene 

oxide chain lengths. These non-ionics were tested alone as well as with SDS. The 

polymer conversion and coagulum levels achieved with these surfactants are listed in
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Table 3c. These data are more dramatically summarized in Figure 16 where the 

conversion and coagulum levels are plotted as a function of the ethylene oxide (EO) 

chain length. We had expected that the non-ionic surfactants might stabilize the 

particles that were formed without interfering with the polymerization reactions, but the 

data tell a very different story. As seen in Figure 16, the surfactant with 5 EO units 

produced slightly less polymer than the “no surfactant” experiment but again with nearly 

the entire polymer produced in coagulum form. Additional EO units resulted in a 

dramatic decrease in the conversion levels to 1 0 %, but the vast majority of the polymer 

was created as stable particles. By referring to the reaction pathways in Figure 13 we 

suggest that these non-ionic surfactants may render the LiFABA activator to be inactive 

(as evidenced by essentially no coagulum formation) while slightly activating the catalyst 

to promote some limited latex conversion and the formation of stable latex particles. 

This apparent activity with low conversion level is consistent with that seen by Lapinte 

with the use of Bri J 35 (CH3 (CH2 )1 1 (OCH2 CH2 )2 3 0 H), a non-ionic surfactant.
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Figure 16. Overall polymer conversion and coagulum level versus ethylene oxide chain 
length of nonyl phenyl surfactant for norbornene polymerization at 60°C with DPP 
catalyst and with LiFABA activator.

Also entered into Table 3c are some results using a dual surfactant system by 

adding SDS to several of the non-ionic surfactants (those with 5, 40 and 100 EO units). 

We had anticipated that we might achieve at least the quality latex production obtained 

with SDS alone and perhaps some further enhancement due to the additional surfactant. 

The results are quite perplexing. At the 5 EO chain length, the two surfactants working 

together reduced the overall conversion level from that achieved with just the non-ionic 

alone (30% vs. 58%), yet also reduced the portion of the polymer produced as coagulum 

(55% as compared to 81%). When the same amounts of SDS were added to the non­

ionic surfactant with 40 and 100 EO units, the conversion levels were 27% and 44%, 

respectively; both results were improvements over those obtained with just the non-ionic 

surfactant alone. However the effect on the coagulum formation in these two
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experiments showed opposite trends. Thus we see no consistency in the overall results 

of the non-ionic surfactant study and do not offer any suggestions as to possible effects 

on the reaction pathways displayed in Figure 13.

Concluding Remarks

It is clear to us that a number of surfactants commonly used in standard emulsion 

polymerization of vinyl monomers can serve as weakly coordinating anions for Pd based 

catalysts used to polymerize norbornene in aqueous emulsion. Both alkyl sulfate and 

alkyl sulfonate salts provide significant to excellent activation of the two forms of Pd 

catalysts used in our study. Additionally, there is a strong effect of the alkyl chain length 

on this activation capability when the number of carbons is less than 1 2 , and some 

indication that the activation decreases as the number of carbons is greater than 16. 

The alkyl sulfate anions appear to be better activators than the alkyl sulfonate anions. 

When using such surfactants, it is not necessary to provide other means of activation of 

the Pd catalyst such as commonly done by the use of LiFABA. Cationic and fatty acid 

surfactants destructively interfere with the LiFABA activator and the Pd catalyst, 

respectively, and it is not clear why neither class of these surfactants was useful in 

suppressing the coagulum formation while allowing polymerization. The non-ionic 

surfactants create a complicated set of interactions with either or both of the catalyst and 

LiFABA activator, but do not provide for an overall effective stabilizing system. The role 

of the surfactant in activating the catalyst in norbornene emulsion polymerization sets it 

in striking contrast to the traditional role of the surfactant in standard, free radical 

emulsion polymerization where the surfactant can serve to nucleate and then stabilize 

the latex particles, but it does not influence the inherent activity of the initiator.
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CHAPTER 4

A B IN T IO  POLYMERIZATION OF NORBORNENE DERIVED

MONOMERS

Abstract

The use of late transition metal catalysts for the polymerization of olefins in 

aqueous media has created new opportunities to produce latex particles based on 

ethylene and its olefinic derivatives. In this work we report on the production of water 

based latices from a variety of monomers based on the strained cyclic olefin, 

norbornene. These have been carried out as ab initio batch emulsion polymerizations 

using allyl palladium catalysts and a lithium borate activator, as well as sodium dodecyl 

sulfate surfactant. We find that the n-alkyl norbornenes can be polymerized in aqueous 

emulsion and that the mechanisms for latex particle formation are the same as that for 

norbornene monomer alone. The latex particles created are small, averaging about 45 

nm in diameter. As in the case of norbornene, large amounts of coagulum can be 

formed if the catalyst and activator are allowed to reach the emulsified monomer 

droplets and effect polymerization in that location. As the substituents on the 

norbornene become larger and non-polar, it is necessary to consider their effect on the 

water solubility of the monomers in order to analyze the experimental results in an 

effective manner. Our studies included butyl and decyl norbornene, vinyl and butenyl 

norbornene, and methanol norbornene.
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Introduction

In two recent papers1 ,2  we have described some of our studies on the catalytic 

emulsion polymerization of norbornene. In particular, we used two forms of allyl 

palladium chloride catalysts and an activator, LiFABA, a fluorinated borate. The 

chemical structures of these compounds have been detailed elsewhere1 ,2  and they 

function by forming an ion pair. This activation is strong in organic media and quite 

weak in an aqueous phase. Nevertheless, water does not deactivate the catalysts as 

evidenced by the rapid reaction of norbornene when the monomer is simply dispersed in 

water without a surfactant and the catalyst and activator are added to the aqueous 

phase. It appears that the Pd catalyst and LiFABA activator can migrate through the 

water to polymerize the norbornene in the dispersed droplets of about 1 0  pm in 

diameter1. This produces massive coagulum formation. When surfactants are added, 

as in standard emulsion polymerization, several different things happen depending on 

the type of surfactant used. In particular, the alkyl sulfate surfactants can act as weakly 

coordinating anions and activate the catalyst in the water so that small latex particles 

(-40 nm) are formed. Without the addition of LiFABA to the emulsion, conversion of 

norbornene at 60°C reaches 70+% and little or no coagulum is formed2. When the 

LiFABA activator and the alkyl sulfate surfactants are present at the same time, there 

appears to be a competition for the activation of the catalyst by the LiFABA and by the 

surfactant. Such conditions produce variable ratios of coagulum to stable latex particles 

depending on the particular surfactant used, with the hexadecyl sulfate surfactant 

resulting in almost no coagulum.

In the above manner, we have investigated the effects of catalyst level, 

temperature, ionic strength, and surfactant type on the production of polynorbornene 

latices1,2. We now extend our report to include a variety of substituted norbornene
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monomers. These studies were carried out in both organic solutions and in aqueous 

emulsions using the same catalysts and activators (LiFABA and surfactants) as 

described above. The monomers were all derivatives of norbornene with substitutions at 

the 5th position and included the butyl and decyl alkyl derivatives, the vinyl and butenyl 

derivatives, and the methanol derivative, as shown below in Table 4. The reactivity of a 

number of these monomers has been studied by others in solution2 8 , 3 0 ' 3 2 , 4 0  as well as 

emulsion3 1 , 4 2  polymerization using other Pd based catalysts and then compared to the 

reactivity of norbornene. Because these monomers are commonly prepared via Diels- 

Alder reactions, such functionalized norbornenes consist of both exo and endo 

isomers48. Often the ratio of the exo to endo isomers is in the range of 25:7532, and it 

has been shown4 2 , 4 8 , 4 9  that the endo form is moderately to substantially less reactive that 

the exo form. The purpose of our homopolymerization studies was also to compare the 

reactivities obtained with these monomers to that of norbornene itself, but in this case 

using aqueous emulsion polymerization systems. In addition we were interested in 

whether or not the same mechanisms of reaction and latex particle formation were 

apparent for these substituted norbornene monomers as those found for norbornene.

Results and Discussion 

Solution Polymerization

Solution polymerizations were performed with three of the monomers to gauge 

their activity with the catalyst and what we presumed would be their maximum 

conversion levels. The reactions were performed in cyclohexane at 60°C for a period of 

two hours. The three monomers were norbornene (NB), 5-butyl-2-norbornene (NB-4), 

and 5-decyl-2-norbornene (NB-10). The results of the polymerizations of these 

monomers can be found in Table 4 and Figure 17. Both TMP and DPP catalysts were
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used and the DPP catalyst with NB resulted in a continuously precipitating polymer that 

created a gelatinous mass within the reactor while reaching 100% conversion. The TMP 

catalyst with NB resulted in a viscous, opaque solution that only reached 57% 

conversion in the two hours of reaction. The visual differences between the resulting 

solutions, as well as the polymer conversion, indicates that there may be a difference in 

polymer microstructure dependent on the catalyst used. Neither the butyl nor decyl 

norbornene exhibited such a dramatic visual or conversion differences between 

catalysts.

Table 4. Monomer conversions and observations from solution polymerizations of 
various monomers using either TMP or DPP catalyst with LiFABA activator in 
cyclohexane at 60°C

E xperim ent
N um ber

w t%  solids  
theoretica l

%  total 
conversion

M o n o m er C ata lys t O bservations M w
(g /m o le )

M n

(g /m o le ) M w/M n

D E C 3 -2 5 5 .1 % 1 0 0 .0 % NB D P P precip ita ted Inso lub le  in chloroform

D E C 3 -2 6 5 .2 % 5 6 .8 % N B T M P o p aq u e 5 5 4 ,5 2 3 3 7 3 ,0 0 8 1 .4 9

D E C 3 -2 7 5 .1 % 7 .2 % N B -4 D P P c lear 2 8 4 ,65 1 1 1 9 ,8 6 7 2 .3 7

D E C 3 -2 8 4 .9 % 8 .3 % N B -4 T M P clear 4 0 8 ,9 8 0 2 4 4 ,3 8 8 1 .67

D E C 3 -2 9 5 .1 % 3 3 .6 % N B -4 4 x  D P P clear . . . . . . . . —

D E C 3 -3 0 5 .3 % 3 8 .8 % N B -4 4 x  T M P c lear Inso lub le  in C hloro form

D E C 3 -2 3 5 .1 % 7 8 .2 % N B -1 0 D P P c lear 2 6 7 ,3 9 3 1 3 4 ,2 2 3 1 .9 9

D E C 3 -2 4 5 .2 % 9 8 .6 % N B -1 0 T M P clear Inso lub le  in Chloroform

The polynorbornene formed using the DPP catalyst was a gelatinous mass which 

would not dissolve in chloroform. The polymer formed with the TMP catalyst dissolved 

in chloroform and the molecular weight determined by GPC was 555,000 g/mole. The 

expected molecular weight of the polymer, assuming one Pd atom per polymer chain 

and complete monomer conversion, is 750,000 g/mole. This molecular weight is slightly 

lower than the theoretical, potentially indicating that all of the catalyst is not active. At 

the present time, molecular weight data range from 250,000 to 550,000 g/mole, with 

some polymers not soluble in chloroform.
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Figure 17. Overall norbornene conversion versus 5-alkyl-2-norbornene chain length in 
solution polymerization at 60°C with various catalysts.

NB-4 only reached low conversions (7-8%) with either catalyst, and those 

conversions were sensitive to the concentration of catalyst and activator. Raising the 

catalyst and activator concentrations by a factor of four increased the polymer 

conversion to 34 and 39% for the DPP and TMP catalysts, respectively. Even with this 

higher catalyst and activator concentration, the NB-4 conversion was still much lower 

than that for NB solution polymerization. A recent patent3 3  describes the use of the TMP 

catalyst with LiFABA activator to polymerize NB-4 in toluene. With a catalyst 

concentration lower than the “standard” used in our studies (0.51 pmol/g NB compared 

to our ‘standard’ 1.34 pmol/g NB as shown in Table 1), the authors were able to achieve 

91% conversion. Myagmarsuren et al . 3 2  and Funk et al . 4 9  found that NB-4 had a lower 

reactivity than NB due to the steric bulk of the butyl chain. Our results for NB-4 reactivity
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are significantly lower than that of Myagmarsuren and Funk, and also much less than the 

reactivity of NB. We will discuss more about the NB-4 conversion characteristics in the 

emulsion polymerization section of this paper.

NB-10 showed slight final conversion dependence with catalyst type, although 

reasonably high conversions were achieved with both catalysts. These solution 

polymerizations also showed a slight increase in viscosity during reaction, but polymer 

did not precipitate out of solution. This slight increase (rather than an expected large 

increase) in viscosity would seem to indicate that the poly (NB-10) might be of low 

molecular weight, but such measurements have not yet been made. Strangely, we did 

not observe clear glass transition temperatures (Tg) of the NB, NB-4, or NB-10 polymers, 

even upon heating to 400°C in the DSC. Overall, these solution polymerization results 

have shown that the allyl Pd catalyst -  LiFABA activator pair has good activity for NB 

and NB-10 monomers and relatively much poorer activity for NB-4. The NB-10 shows a 

higher reactivity than expected, in contrast to Myagmarsuren3 2  who found that as the 

alkyl chain length increased on the substituent, the monomer reactivity decreased.

Emulsion Polymerization

In this section of the paper we divide our discussions into those for the different 

classes of substituted norbornene monomers. As we do so, we note that in addition to 

the chemical structure differences between the monomers, there will also likely be 

differences in their water solubilities, something that is always important in emulsion 

polymerization. Indeed, as one looks at the various reaction pathways for norbornene 

catalytic emulsion polymerization with surfactant acting as a weakly coordinating anion, 

as shown in Figure 13, it is apparent that the production of latex particles via pathways 2 

and 3 (but predominantly pathway 3) will gain or lose importance as the water solubility
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of the monomer is higher or lower, respectively. As we indicated previously2, alkyl 

sulfate anions such as SDS interact favorably with the TMP catalyst to create small latex 

particles (via pathway 3) and establish a rate of polymerization that is quite competitive 

to that of the catalyst and LiFABA activator migrating to the emulsified droplets and 

producing large amounts of coagulum (agglomerates of - 1 0  pm polymer particles). 

Since norbornene has a water solubility of about that for styrene13, adding substituents 

to the norbornene monomer at the 5 position is very likely to decrease their water 

solubility. Octanol to water partition coefficients for the monomers were predicted using 

‘property prediction software’ from ChemSilico50. These results allowed us to rank the 

monomers by order of most to least water soluble. As such we have MeOH-NB > NB > 

Vinyl-NB > Butenyl-NB > NB-4 > NB-10.

100% 100%

80% 80%

CO
'j» 60%
o>coo

- 60%

IS
!_
0) 40%>O

- 40%

20% -  20 %

Overall Conversion 

W t%  Polym er in Coagulum

0% 0%
2 6 8 100 4

(alkyl)n norbornene

Figure 18. Overall conversion and amount of coagulum as a function of 5-alkyl-2- 
norbornene chain length in emulsion polymerization at 60°C with TMP catalyst and 
LiFABA activator.
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The experimental results for the emulsion polymerization of the substituted 

norbornene monomers are displayed in Table 5. The results for the NB-4 and NB-10 are 

compared to those for norbornene itself in Figure 18 where we have plotted the overall 

monomer conversions and percent of polymer in coagulum form against the number of 

carbons in the substituted alkyl chain. When the final conversion (at the end of the 3 

hour reaction) is less than 1 0 0 %, we use the conversion level as an indication of the 

reactivity of the monomer with the catalyst and activator. As expected from the work of 

others with Pd catalyzed norbornene monomers32,49, NB-4 is substantially less reactive 

than norbornene, in this case only achieving half the conversion of norbornene in the 

same reaction time. This is consistent with our solution polymerization results as 

discussed above, but the extent of the comparative decrease is much larger than that 

which others have reported in solution polymerization. Perhaps this is due to our 

particular catalyst system or an unusually high level of the endo isomer in the monomer. 

The latex particle sizes achieved were very nearly the same (45 nm via Nanotrac) for the 

two monomers and SEM photos are shown in Figure 19 (a) and (b).

The polymerization of NB-10 obtained nearly full conversion in the emulsion, 

consistent with that found in our solution polymerization experiment. These results are 

quite in contrast to those found by others3 2 , 4 9  in that the apparent reactivity is higher than 

norbornene itself and very much greater than that for the butyl derivative. Given the 

likely water insolubility of the NB-10, is not surprising that there was only a very small 

portion of the polymer formed as latex particles. However, those that were formed were 

somewhat larger than those from NB and NB-4, as noted in the SEM photo in Figure 19 

(c). What is perhaps the most distinctive about the data for the NB-10 is that nearly all of 

the polymer formed as coagulum. As noted in Figure 13, we believe that this would be 

due to the majority of reaction taking place along pathway 1. In fact, as we view all of
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the coagulum data in Table 5 and Figure 18 we see that the ratio of the amount of 

coagulum to latex particle polymer increases as the alkyl chain length becomes higher. 

We speculate that this is due to the relative water solubilities of the monomers, which 

should decrease substantially as one moves from NB to NB-4 to NB-10, and its impact 

on reducing the importance of reaction pathways 2 and 3. As these pathways are 

adversely affected by the water solubility of the monomers, pathway 1 is unaffected.

Table 5. Emulsion polymerization of various norbornene derived monomers using either 
TMP or DPP catalyst with LiFABA activator at 60°C

w t%
solids

theoretica l

w t%  
po lym er in 
coagulum

Experim ent
N um ber

%  total 
conversion

C ata lystM o n o m er

D E C 2 -3 7

D E C 2 -6 0

D E C 2 -8 5

D E C 2 -9 9

3 0 % 7 1 .8 % NB

NB

N B

NB

T M P  

D P P  

D P P  

4x  D P P

5 .7 %

5 .3 %

5 .1 %

5 .7 %

5 0 %

4 8 %

7 3 .0 %

6 9 .9 %

7 9 .7 %3 1 %

D E C 3 -2 0 NB 4x D P P5 .4 % 2 9 % 8 2 .8 %

D E C 2 -3 9 5 .3 % 5 6 % 3 0 .1 % N B -4 T M P

D E C 2-81 3 4 % 3 9 .9 % N B -4 T M P5 .0 %

D E C 2 -4 3 4 4 % N B -44 .9 % 8 0 .9 % 4 x  T M P

D E C 3 -4 4 9 9 % 9 3 .4 % N B -1 0 T M P5 .1 %

D E C 2 -1 9 8 9 % V in yl-N B T M P5 .8 % 7 .4 %

CH=CH
D E C 2 -2 0 5 .4 % 7 5 % 9 .6 % V in yl-N B T M P

Butenyl-
NB

D E C 2 -4 5 4x  T M P4 .7 % 22% 1 4 .7 %

M e O H -
NB

T M PD E C 2-41 4 8 .8 %5 .2 % 8 9 % c h 2o h
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(a) (b)

(C)

Figure 19. SEM images of (a) NB, (b) NB-4, and (c) NB-10 latex particles produced in 
aqueous emulsion using TMP catalyst.

Returning to the unexpectedly low conversion levels achieved with the NB-4 in 

both solution and emulsion polymerizations, we determined the effect of increasing the 

TMP catalyst (and associated LiFABA) concentrations, while conducting the reactions at 

the same 60°C. Figure 20 shows these results and it is quite clear that major increases 

in reactivity were achieved in both systems. The response for norbornene in emulsion 

polymerization is also shown in Figure 20 for reference. Further, the data in Table 5 

shows that the relative amounts of coagulum polymer to latex particle polymer were 

unchanged as the catalyst level was increased fourfold. It appears to us that the relative 

importance of the various reaction pathways shown in Figure 13 is unchanged as we
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add more catalyst and LiFABA activator. Since the SDS is present in great molar 

excess of the catalyst, its concentration did not have to be increased to allow pathway 3 

to be impacted favorably by the increase in catalyst concentration. Alternatively, the 

LiFABA concentration had to be increased in the same proportion as the catalyst to have 

pathways 1 and 2 appropriately impacted. In this manner it is possible to understand 

why the conversion levels were higher but the fraction of polymer formed as coagulum 

remained constant. In addition we found that the particle size at the higher catalyst 

loading was 52 nm (via Nanotrac) and shown as SEM photos in Figure 21 (a) and (b).

100%
EP o f NB with D P P  catalyst 

- • —  EP of NB-4 with T M P  catalyst 

•   SP  o f N B-4 with T M P  catalyst

80% -

c
o
£
0 )>c

60% -

o
o
re 40% -
0)>
O

0%
500 100 150

Concentration of Catalyst (mg catI L soln)

Figure 20. Overall conversion of NB and NB-4 in emulsion (EP) or solution (SP) as a 
function of either TMP or DPP catalyst concentration.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(a) (b)

Figure 21. SEM images of P(NB-4) latex particles produced at 4x the standard TMP 
catalyst concentration.

We were interested in experimenting with vinyl substituted norbornenes as a 

means to obtain NB type latices that contained pendant vinyl groups on the polymer 

chains. One can imagine that these latex particles might serve as seed particles for the 

creation of composite latex particles (perhaps with acrylics) and that the pendant double 

bonds might lead to the ability to form graft copolymers using free radical initiators. 

When we reacted these monomers in emulsion polymerization (we did not perform 

comparative studies in solution), we found that the conversion level achieved for the 

vinyl NB was only 8-9 % in the 3 hour reaction time. It seems the water solubility of this 

monomer should not be greatly lower than that for NB and thus that the suppression of 

the reactivity was likely due to the endo isomer retarding the polymerization rate. For 

the butenyl-NB, we increased the catalyst and activator concentrations by a factor of four 

in order to achieve high conversion, but only achieved 15%. Given the discussion in the 

literature about the suppression of reaction rates by the substituent groups on the NB 

ring, we had thought that the butenyl derivative might not retard the rate as much as the 

vinyl derivative due to the possibility of chelation via a six-membered ring in the latter
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and not in the former. At this point we cannot offer any further analysis of the results for 

these two monomers.

A last new monomer experiment was conducted with methanol NB in an attempt 

to change the polar nature of the substituted group. Oxygen containing side groups on 

the NB (e.g. carboxylic acid) are known to seriously degrade the reactivity of the 

monomer in solution polymerization48,49, and thus we expected a retardation in our 

emulsion polymerization rate with this monomer. Table 5 shows that we only achieved 

48% conversion with this monomer. Puech et a l 4 0  polymerized MeOH-NB to 80% 

conversion using PdCI2 (TPPTS ) 2  catalyst in water over a reaction time of 24 hours. 

Perhaps an extension of our reaction time would have improved the conversion level. In 

contrast to some of the other monomers described in this paper, the 48% conversion 

figure is not nearly as poor as some of the others, being about two-thirds as active as 

norbornene. However, the vast majority of the polymer was produced as coagulum. 

This result is not consistent with the idea that the water solubility might be slightly higher 

than norbornene and that we might expect similar retardation effects on the reactivity 

characteristics in both the water environment (reaction pathways 2 and 3) and the bulk 

monomer environment (pathway 1). This remains unexplained.

Mini-Emulsion of Decvl-norbornene

As we showed above, the very hydrophobic monomer, NB-10, could be

polymerized to a high extent with catalyst and activator in aqueous emulsion, however 

99% of the polymer was formed as coagulum. To show that the polymer particles could 

be stabilized by SDS if they were smaller, NB-10 was mini-emulsified with SDS to 

produce 1 2 0  nm droplets of monomer, and then catalyst and activator were added to the 

reactor. The resulting particles were all stable latex particles with a diameter of 190 nm, 

as seen in the particle size distribution curves in Figure 22. We did not add any
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compound to prevent Ostwald ripening so we might have experienced some particle size 

increase by this mechanism. The sonified NB-10 resulted in 96% conversion with none 

of the polymer as coagulum. The catalyst and activator were apparently able to migrate 

to the monomer droplets to effect polymerization in that location. New particles were not 

nucleated during this experiment, which shows that we had a ‘true’ mini-emulsion where 

the polymerization occurred in the monomer droplets. These results complement those 

noted earlier -  the catalyst and activator easily migrate through the water to penetrate 

small (mini-emulsified) or larger (normally emulsified) monomer droplets and promote 

reaction within them. The SDS appears to stabilize the 190 nm particles while it does 

not stabilize micron sized polymer particles.

 N B -1 0

 P (N B -1 0 )
25 -

DV(NB-10)= 120nm
20 -

0)
c Dv (P(NB-10))= 190nmcm
■C
o
3?

10 -
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Figure 22. Nanotrac particle size results of sonified NB-10 monomer and the resulting 
P(NB-10) latex.

Concluding Remarks

It is quite evident that substituted norbornene monomers have lower reaction 

rates than the parent norbornene, as shown previously by others in solution
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polymerization. Our results have further demonstrated that this is also true in emulsion 

polymerization when using a consistent Pd based catalyst and activator system as one 

moves from solution to emulsion polymerization systems. In contrast to other studies, 

our results do not show a continual decrease in the reactivity of n-alkyl substituted 

norbornenes over the range of 0-10 carbons in the chain. The reactivities of these alkyl 

norbornenes are affected by the catalyst concentration in both solution and emulsion 

systems, as might be expected. We find that the apparent mechanisms for latex particle 

formation for these substituted norbornene monomers is the same as that for 

norbornene, and that large amounts of coagulum can be formed when the catalyst and 

activator are allowed to migrate to the emulsified monomer droplets and effect 

polymerization in that location. Such large polymer particles are not stabilized by SDS. 

Alternatively the very non-polar decyl-norbornene can be polymerized to form a 

colloidally stable latex at ca. 200 nm particle size with the same level of SDS by using 

the mini-emulsion polymerization process.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions

The work in this thesis, as well as previous works4'13,26'38, has shown that 

palladium-based catalysts can polymerize norbornene via a vinyl polymerization 

mechanism in organic solutions. The polymerization mechanism in solution appears to 

be simpler than in emulsion. In water, there is a competition between the organic and 

aqueous phase polymerization sites for the reaction of norbornene. As a contrast, in 

standard free radical emulsion polymerization, reaction in the large emulsified monomer 

droplets is not important relative to the much faster reactions in the aqueous/micellar 

environment. However, in the catalytic emulsion polymerization of norbornene via allyl 

Pd-based catalysts, that appears to not be the case. In an aqueous environment, 

without surfactant, the catalyst and activator migrate through the water phase into the 

emulsified norbornene droplets where they promote polymerization. The catalyst 

appears to retain its activity as it migrates through the water phase, and is still active to 

promote polymerization in the monomer droplets. This reaction pathway produces 

unstable latex particles that coagulate mainly due to their size (-10  nm). A secondary 

reaction pathway also exists in the water phase with the catalyst and activator, which 

produces small stable latex particles (ca. 50 nm). This is a relatively slow reaction and 

hardly competes with the emulsified droplet polymerization.
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The addition of surfactant to aqueous emulsion with catalyst and activator can 

provide a new and effective pathway toward stable latex particles. The efficacy of 

forming stable latex particles is determined by the surfactant’s ability to activate the 

catalyst. Various classes of surfactants were examined and it was found that the alkyl 

sulfates and sulfonates effectively activate the palladium catalyst and that the alkyl chain 

length affects the activation capabilities of the catalyst. Other surfactants destructively 

interfere with the either catalyst or the activator and prevent polymerization (e.g. the 

cationic surfactant destructively interfered with the FABA anion preventing 

polymerization in the monomer droplets or the water phase). The sulfate and sulfonate 

surfactants can act as weakly coordinating anions in the aqueous phase to activate the 

catalyst, and thus replace the need for the traditional activators, such as LiFABA. Infact, 

sodium hexadecyl sulfate can produce stable latices with very little coagulum formation 

by effectively competing with the catalyst and activator in the monomer droplet. The role 

of the surfactant in activating the catalyst in norbornene emulsion polymerization sets it 

in striking contrast to the traditional role of the surfactant in standard free radical 

emulsion polymerization where the surfactant can serve to nucleate and then stabilize 

the latex particles, but it does not influence the inherent activity of the initiator.

Finally, it has been shown that substituted norbornene monomers have lower 

reaction rates than the parent norbornene. This has been previously shown by others in 

solution polymerization32,48,49. This work has further demonstrated that this is also true in 

emulsion polymerization when using an allyl Pd-based catalyst and activator system. In 

contrast to other studies, the present work does not show a continual decrease in the 

reactivity of n-alkyl substituted norbornenes over the range of 0 - 1 0  carbons in the chain. 

The apparent mechanisms for latex particle formation for these substituted norbornene 

monomers is the same as that for norbornene, and large amounts of coagulum can be
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formed when the catalyst and activator are allowed to migrate to the emulsified 

monomer droplets and effect polymerization in that location. Alternatively, the very non­

polar 5-decyl-2-norbornene can be polymerized to form a colloidally stable latex at ca. 

200 nm particle size with the same level of SDS by using the mini-emulsion 

polymerization process.

Recommendations

There are still many unanswered questions about the mechanism of 

polymerization of norbornene in an aqueous environment. Questions about molecular 

weight development, copolymerization with other olefins, heat of reaction, and the 

possibility of creating composite particles have not yet been examined.

It has been proposed that the polymerization is a living polymerization, with one 

catalyst center used for each polymer chain. Thus, we might expect that with an 

increase in catalyst concentration the molecular weight would decrease. But after 

several experiments of this kind, the resulting polymer was still not soluble in solvents 

tried, thus leaving us without molecular weight data. A study should be performed where 

polymers with low molecular weights are formed and their chain lengths measured (i.e., 

via GPC). Such a study relating catalyst concentration to molecular weight would also 

aid in more fully understanding the polymerization mechanisms. This should be done in 

both solution and emulsion as there appears to be differences in polymerization 

mechanisms.

The ultimate goal of this project was to understand the mechanism of norbornene 

polymerization in emulsion and apply that knowledge to the copolymerization of ethylene 

and norbornene. It would be interesting to extend that study to the copolymerization of
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norbornene and other norbornene derivatives and a-olefins as well as to develop an 

understanding of the mechanism of copolymerization.

A ‘heat kick’ was not observed during any of the norbornene polymerizations, 

which is surprising because the majority of the reaction occurred within 60 minutes of the 

catalyst and activator being added to the reactor. In standard free radical 

polymerizations, the heat of polymerization is quite large, and once at an industrial scale, 

heat transfer needs to be carefully taken into consideration for reactor temperature 

control. Thus, it would be of interest to determine the heat of polymerization of 

polynorbornene. This may be best accomplished in solution polymerization using a 

reaction calorimeter.

Polynorbornene in latex form may not be an interesting polymer alone because 

of its high glass transition temperature, but it may be of interest if used as the basis for a 

composite polymer. If copolymerization of various norbornene monomers can be made 

via catalytic emulsion polymerization, these copolymers could be used as a seed latex. 

An acrylic second stage could then be polymerized via free radical emulsion 

polymerization, using the polynorbornene latex as a seed latex. This composite polymer 

may yield novel mechanical properties or provide cost advantages. This avenue of 

polynorbornene seed latex and acrylic second stage should be pursued.
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APPENDIX A

C atalytic Em ulsion Polym erization of Norbornene -  DPP catalyst

The majority of the experiments were performed in aqueous emulsion using the 

standard recipe noted below. The standard polynorbornene reaction is shown in Table 

1. This recipe is 5% polymer latex solids, which in the table is noted ’PNB latex.’ The 

table lists the experimental number, the theoretical weight percentage of solids (typically 

around 5%), the measured latex solids, the latex conversion (determined from the 

measured latex solids and the theoretical solids), the weight percent of polymer that is in 

coagulum form, and the total conversion (determined from the total polymer formed from 

latex and coagulum from the theoretical polymer that could be formed). The ’Comments’ 

column indicates the difference between the standard PNB latex. For example, DEC2- 

79 has a comment ’PNB latex w/SHDS’ which indicates that rather than the standard 

SDS surfactant, SHDS (sodium hexadecyl sulfate) was used in the polynorbornene 

reaction. DEC3-39a has a comment ’PNB latex w/o activator’ indicating that the 

standard PNB latex recipe applies, but the activator is completely omitted. Appendix A 

is specific to reactions using the DPP catalyst, while Appendix B is specific to reactions 

using the TMP catalyst.

Table 1. Standard polynorbornene polymerization recipes

Polymerization Recipes
Emulsion Solution

Dl Water 95 g
Cylcohexane 95 g 

5 g
0.5 g

Monomer
Acetone
SDS

5 g 
0.5 g 

0.25 g 
3.2 mg 
5.6 mg

1 g
60 °C

Catalyst
Activator
THF

3.2 mg 
5.6 mg

1  g
60 °CTemperature
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Experiment
Number

wt% solids 
theoretical

wt%  solids 
measured

w t%  polymer in 
coagulum form

%  conversion 
in latex

%  total 
conversion

C om m ents

D EC2-38 5.68% 2.13% 57.6% 37.6% 88.6% PNB latex
D EC2-50 4.84% 2.31% 34.7% 47.8% 73.3% PNB latex
DEC2-51 5.04% 2.28% 46.3% 45.2% 84.2% PNB w / cat/act added after NB
D EC2-52 4.64% 0.41% 79.1% 8.8% 41.9% P (N B -4) latex
DEC2-54 4.51% 0.37% 80.7% 8,2% 42.7% P (N B -4) latex
DEC2-55 5.06% 0.00% 0.0% 0.0% 0.0% PNB latex w / Sodium Stearate
DEC2-57 5.00% 0.00% 0.0% 0.0% 0.0% PNB latex w /  Sodium Stearate + TS P P
DEC2-59 5.33% 2.03% 36.0% 38.0% 59.5% PNB latex w / Rhodapex C O -436
DEC2-60 5.26% 1.93% 49.8% 36.6% 73.0% PNB latex w /S D S
DEC2-61 5.08% 1.65% 48.6% 32.6% 63.4% PNB latex w /R D P  and SDS
D EC2-62 5.03% 0.14% 83.4% 2.7% 16.3% PNB latex w /DB SA
D EC2-63 5.33% 1.25% 33.4% 23.4% 35.1% PNB latex w/Aerosol OT
DEC2-64 4.78% 2.51% 33.9% 52.4% 79.4% PNB latex w / S TD S
D EC2-65 5.28% 1.55% 55.5% 29.2% 65.7% PNB latex w /  S O D S
D EC2-66 5.62% 2.41% 33.2% 42.8% 64.1% PNB latex w / Na hexadecane S 0 3
D EC2-67 5.31% 3.51% 23.7% 66.1% 86.7% PNB latex w / S TD S
D EC2-68 4.96% 2.41% 30.8% 48.5% 70.1% PNB latex w / S O D S
D EC2-69 5.44% 0.77% 80.9% 14.1% 74.0% PNB latex w / S D ecS
D EC2-70 4.70% 0.27% 92.4% 5.8% 76.0% PNB latex w/o surfactant
DEC2-71 4.73% 1.41% 34.7% 29.9% 45.8% PNB latex w /S D S  reacts for 15min
D EC2-72 5.16% 1.98% 38.1% 38.3% 61.8% PNB latex w /S D S  reacts for 1 hour
D EC2-73 5.47% 0.61% 80.9% 11.1% 57.9% PNB latex w/  non-ionic 5 EO chains
DEC2-74 4.73% 0.22% 4.6% 4 .6% 11.1% PN B  latex w/  non-ionic 100 EO  chains
D EC2-75 4.56% 0.63% 54.5% 13.8% 30.2% PNB latex w / non-ionic 5 EO w /SDS
DEC2-76 4.85% 0.40% 81.2% 8.2% 43.9% PNB latex w /  non-ionic 100 EO w /SDS
DEC2-77 5.30% 2.99% 35.6% 56.5% 87.6% PNB latex W /0 .02 M  NaCI
D EC2-78 5.83% 4 .0 4 % 22.3% 69.3% 89.2% PNB latex w / 2x S TD S
DEC2-79 4.95% 3.52% 10.9% 71.2% 79.9% PNB latex w / S H D S
DEC2-80 4 .74% 0.07% 30.6% 1.4% 2.0% PN B  latex w / CTAB
DEC2-82 5.21% 3.87% 8.3% 74.4% 81.1% PNB latex w / S H D S
D EC2-83 5.36% 1.95% 49.8% 36.5% 72.6% PNB latex w/  SD S reacts for 22 hours
DEC2-84 9.07% 5.68% 21.8% 62.6% 80.0% 10%  PNB latex w /S H D S
OEC 2-85 5.13% 1.86% 48.0% 36.3% 69.9% PN B  latex w /S D S  reacts for 3 hours
DEC2-86 6.18% 1.89% 58.2% 30.5% 73.1% PNB latex w / 0.06M  NaCI
D EC2-87 4.92% 0,91% 51.5% 18.5% 38.2% PNB latex W /0 .17 M  NaCI
D EC2-88 4.81% 1.40% 59.0% 29.0% 70.9% PNB latex w / 4x [cat/act]
D EC2-90 5.18% 3.02% 12.1% 58.3% 66.3% PNB w/  2x S H D S
DEC2-91 5.12% 2.72% 36.8% 53.1% 84.0% PNB latex w/  0 .02M  NaCI
D EC2-92 5.04% 2.24% 33.8% 44.4% 67.2% PNB latex w /o thorough 0 2  purging
D EC2-94 5.45% 3.40% 28.4% 62.5% 87.3% PNB latex w/  4x [cat/act]
D EC2-96 4.98% 2.64% 24.3% 53.0% 70.1% PNB latex w /o thorough 0 2  purging
D EC2-98 4.97% 2.47% 26.5% 49.7% 67.6% PNB w / 0.02M  N a H C 0 3
D EC2-99 5.70% 3,15% 30.6% 55.3% 79.7% PNB w  /  4x [cat/act]
D EC3-03 4.98% 2.10% 38.7% 37.3% 60.9% PNB Trxn = 70C
D EC3-04 5.71% 2.00% 52.3% 30.6% 64.2% PNB Trxn = 70C  (stirring stopped)
D EC3-05 5.77% 0.97% 81.3% 12.3% 65.7% PNB Trxn = 80C
D EC3-06 5.95% 0.50% 93.6% 3.6% 56.3% PNB Trxn = 80C
D EC3-07 4.97% 2.81% 28.9% 51.7% 72.7% PNB Trxn = 50C
D EC3-08 5.63% 3.53% 30.5% 57.9% 83.3% PNB Trxn = 50C
D EC3-10 8.92% 5.19% 29.6% 54.8% 77.9% 10%  PNB fed w /S H D S
D EC3-12 5.93% 2.90% 14.9% 40.1% 56.6% P(NB-St) with cat and KPS initiator
DEC3-13 5.06% 4.25% 7.1% 83.9% 90.3% PNB latex w /2 x  S TD S
D EC3-14 5 .26% 0.56% 30,4% 10,7% 15.4% PNB latex w / non-ionic 40  EO
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Experiment wt% solids wt%  solids wt%  polymer in % conversion %  total
Com ments

Number theoretical measured coagulum form in latex conversion
D EC3-15 5 .02 % 1.09% 18 .7% 2 1 .7% 2 6 .7% PNB latex w / non-ionic 40  EO w /SDS
D EC3-17 11.64% 3.05% 62.4% 13.8% 51.1% P(St-BuA)seed PNB 2nd stage
D EC3-18 5.42% 0.43% 22.6% 7.9% 10.1% PNB latex w /  non-ionic 12 EO
D EC3-19 4 .73% 1.29% 57.9% 27.3% 64.8% PNB latex w / 1/3 [cat]
D EC3-20 5.41% 3.16% 29.4% 58.4% 82.8% PNB latex w/  4x  [cat]
D EC3-32 5.19% 1:41% 67.7% 27.1% 83.7% PNB latex w / 10x [cat]
DEC3-35 5.45% 3.60% 13.2% 65.0% 78.8% PNB seeded from PS grown to 100nm
D EC3-37 5.29% 2.82% 26.6% 53.1% 73.5% PNB seeded from PS grown to 200nm

D EC 3-39 a 5.11% 1.83% 35.4% 35.8% 55.5% PNB latex w/o activator
D EC3-43 5.00% 0.00% 0.0% 0.0% 0.0% PN B -10 in emulsion w / Strem cat
DEC4-11 4.63% 2.79% 26.9% 60.2% 82.4% PNB latex w / 4x [act]
D EC4-12 5.15% 2.68% 38.5% 52.0% 84.6% PNB latex w / 10x [cat/act]
DEC4-14 5.00% 2.75% 31.6% 55.1% 80.5% PNB latex w / 2x [cat] 8x[act]
D EC4-15 5.32% 2.94% 29.2% 55.4% 78.2% PNB latex w / 10x [act]
D EC4-19 5.51% 3.66% 3.4% 66.4% 68.7% PNB latex w/o activator
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APPENDIX B

C atalytic Em ulsion Polym erization of N orbornene -  TM P catalyst

Experiment
Number

wt%  solids 
theoretical

wt%  solids 
m easured

wt%  polymer in 
coagulum form

% conversion 
in latex

%  total 
conversion

Com m ents

D E C 2-02 10.14% 3.24% 27.8% 20.3% 28.1% feeding NB/acetone mix 5 hrs
D E C 2-03 5 .53% 2.27% 39.7% 25.7% 42.5% feeding NB/acetone mix 5 hrs
D E C 2-04 5.19% 2.05% 39.9% 20.4% 33.8% repeat -syringe clogged conv est
D E C 2-05 5 .01% 2.74% 28.0% 35.4% 49.1% 1 %  initial solids - feeding 1 ,5hrs
D E C 2-06 4 .61% 2.42% 33.2% 47.1% 70.5% 0 .5 %  initial solids -  feeding 1 .5hrs
D E C 2-07 8.73% 4.40% 18.0% 47.7% 58.1% 0 .5%  initial solids - feeding 1 ,5hrs
D E C 2-08 6 .19% 1.69% 24,1% 24.4% 32.1% PNB seed used in Batch growth of PNB
D E C 2-09 6 .13% 2.93% 203 .5% 45.2% 64.5% 0 .5%  PNB seed starve fed
D E C 2-10 6 .01% 1.49% 56.7% 24.4% 56.4% 5%  PNB solids Batch
DEC2-11 5.00% 0.62% 73.0% 9.7% 36.0% Starve-fed NB (no PNB at beginning)
D E C 2-12 8 .65% 3.48% 30.7% 40.3% 63.7% P(St-B A) seed grown w /NB  (500%  SR)
D E C 2-13 5.81% 0.97% 57.9% 15.6% 37.1% 0 .5%  initial solids - feeding 1 ,5hrs - DBSA
D E C 2-17 5.00% 0.00% 0.0% 0.0% 0.0% vinyl-NB w /K P S  initiator
D EC 2-18 5 .00% 0.00% 0.0% 0.0% 0.0% vinyl-NB w /K P S  initiator
D E C 2-19 5 .00% 0.00% 0.0% 0.0% 0.0% vinyl-NB w / cat/act and KPS init
D E C 2-20 5 .00% 0.00% 0.0% 0.0% 0.0% vinyl-NB w /  cat/act and KPS init
DEC2-21 14.75% 3.12% 163.0% 7.3% 15.2% P (M M A -M A ) seed PNB 2nd stage-Batch
D EC 2-22 8.96% 6.93% 42.8% 74.7% 77.3% PNB seed PM A  2nd stage-Batch
D EC 2-23 5 .45% 0.67% 219 .5% 0.1% 44 .0 % P(N B/V inyl-N B ) 5 0 /50  mixture-Batch
D E C 2-24 10.30% 4.72% 44.1% 18.9% 55.7% P(St-BA) seed grown w /NB  (200%  SR)
D E C 2-25 9 .54% 3,35% 23.9% 32.3% 42.5% 0 .5 %  initial solids -  feeding 1 ,5hrs
D E C 2-27 4 .83% 2.77% 20.7% 57.4% 72.3% 5%  PNB solids Batch 0.2w t%  octene

D E C 2-29  -1 4 .85% 1.21% 82.9% 25.0% 58.2% PNB Batch at R&H
D E C 2-29  -3 4 .85% 0.83% 80.7% 17.1% 89.0% P(4-N B ) Batch at R&H

DEC2-31 9.88% 1.49% 7.5% 15.1% 15.5% 10%  PN B  solids starve-fed seed at R&H
D EC 2-33 5.9% 5 .30% -217 .3% 87.3% 65.6% PNB seed P (St-BuA) 2nd stage at R&H
D E C 2-34 4 .89% 1.07% 0.0% 21.8% 21.8% PN B -4 at room tem p at R&H
D E C 2-37 5.73% 2.90% 29.5% 50.6% 71.8% PNB latex
D E C 2-39 5 .32% 0.71% 55.5% 13.4% 30.1% P N B -4 latex
DEC2-41 5.24% 0.29% 88.5% 5.6% 48.8% P (M eO H -N B ) latex
D EC 2-42 5.63% 2.95% 14,8% 52.4% 61.5% PNB add cat/act before NB
D E C 2-43 4 .90% 2.21% 44.2% 45.1% 80.9% PN B -4 w /  2x [cat/act]
D E C 2-44 4 .68% 1.18% 69,9% 25.2% 83.7% P N B -4 latex
D E C 2-45 4 .72% 0.54% 22.1% 11.5% 14.7% P(butenyl-NB) [cat/act]
D E C 2-46 5 .50% 2.95% 38.2% 53.6% 60.4% PNB add cat/act before NB
D E C 2-47 4 .90% 0.86% 62.5% 17.5% 46.6% P (M eO H -N B /N B ) latex
D E C 2-48 4.97% 0.44% 29.5% 9.0% 12.7% P(butenyl-NB/NB) latex
D E C 2-49 4 .82% 1.79% 52.7% 37.2% 78.6% P (N B -4 /N B ) latex
D E C 2-53 4 .72% 1.89% 43.2% 35.1% 61.7% PNB feed
D E C 2-58 20 .48% 19.61% 0.0% 95.7% 95.7% PS latex w /  Sodium Stearate

DEC2-81 4 .95% 1.31% 33.9% 26.4% 39.9% P N B -4 latex
D E C 2-89 5.29% 3.26% 12.4% 61.7% 70.4% PNB w / S H D S
D E C 2-93 5 .75% 3.57% 20.7% 62.1% 78.3% PNB w /S H D S
D E C 2-95 5.09% 2.39% 30.6% 46.9% 67.5% PNB latex w /o  thorough 0 2  purging
D E C 2-97 4 .93% 1.79% 45.8% 36.4% 6 7,1% PNB latex w /o thorough 0 2  purging

D E C 2-100 5.10% 2.49% 29.6% 48.9% 69.4% PNB W /0 .0 2 M  IS

DEC3-01 5.54% 3.18% 29.0% 57.4% 80.9% P NB w /  0 .0 2 M  IS w / S H D S
DEC3-11 6.23% 0.71% 81.4% 11.4% 61.2% P (M eO H -N B ) w/  4x  [cat/act]

D E C 3-33 5.63% 3.34% 25.7% 59.4% 80.0% PNB latex
D E C 3-34 5.37% 2.02% 57.5% 37.6% 88.6% PNB latex w /  10x [cat/act]

D E C 3-36 5 .83% 2 .6 2 % 28.0% 43.4% 69.1% P S seed PNB 2nd stage (target = 100nm)

D E C 3-38 5.52% 2.74% 30.7% 49.6% 73.5% PS seed PNB 2nd stage (target = 200nm )

D E C 3-39  b 5.25% 3.32% 3.6% 63,4% 65.7% P NB latex w /o  activator
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Experiment
Number

wt% solids 
theoretical

wt% solids 
measured

wt% polymer in 
coagulum form

% conversion 
in latex

% total 
conversion

Comments

DEC3-41 5.64% 1.09% 22.9% 19.2% 25.0% PNB latex w/o activator Trxn = 80C
DEC3-42 5.30% 2.98% 28,9% 50.9% 71.5% PNB latex w/SHDS - fed NB
DEC3-44 5.11% 0.04% 99.1% 0.9% 93.4% PNB-10 in emulsion w/cat/act
DEC3-46 5.13% 3.19% 5.4% 62.3% 65.8% PNB latex w/o activator
DEC3-47 5.48% 3.11% 7.4% 56.8% 61.4% PNB latex w/o activator w/SHDS
DEC3-48 18.70% 1.38% 1.0% 7.4% 7.5% 20% PNB latex w/o act
DEC3-49 9.78% 3.02% 2.3% 30.8% 31.6% 10% PNB latex w/o act
DEC3-50 11.41% 2.40% 67.6% 21.0% 64.7% 10% PNB latex w /1 hr late add of act
DEC3-51 11.83% 2.96% 48.9% 25.0% 48.9% 10% PNB latex w/ 2hr late add of act
DEC3-53 3.07% 1.99% 6.8% 64.7% 69.4% 3% PNB latex w/o act
DEC3-54 5.06% 0.05% 75.5% 0.9% 3.8% PNB-10 latex w/o act
DEC3-55 9.62% 2.39% 1.1% 24.8% 25.1% 10% PNB latex w/o act w/ 2x [SDS]
DEC3-56 10.61% 3.95% 0.8% 37.2% 37.5% 10% PNB latex w/o act w/ 2x [cat]
DEC3-57 5.57% 2.07% 54.0% 24.3% 69.4% PS seed PNB 2nd stage
DEC3-58 5; 15% 1.26% 50.9% 24.4% 59.7% P(St-BuA) seed PNB 2nd stage
DEC3-59 9.24% 1.33% 59.4% 14.4% 50.1% Repeat DEC2-12 (P(St-BuA) PNB)
DEC3-61 9.50% 0.00% 0.0% 0.0% 0.0% 10% PNB latex w/ 36x [SDS] w/activator
DEC3-62 9.83% 1.34% 2.3% 13.6% 13.9% 10% PNB latex w/o act trxn -  24hrs
DEC3-63 5.80% 2.97% 25.5% 51.2% 68.7% 5% PNB w/o act - Added act (after 3hrs)
DEC3-64 9.58% 4.02% 31.3% 41.9% 50.6% PNB w/o act - Added act after 3hrs and fed NB
DEC3-65 7.73% 3.26% 17.6% 42.2% 51.2% 1% PNB w/o act - Added act and fed to 8% solids
DEC3-66 5.81% 1.84% 0.7% 47.7% 48.3% 2% PS seed (25nm) to 6% PNB 2nd stage w/o act
DEC3-67 5.77% 1.92% 2.7% 48.3% 50.3% 2% PS seed (55nm) to 6% PNB 2nd stage w/o act
DEC3-68 8.49% 2.69% 6.3% 31.6% 34.9% 4% PS seed (25nm) to 12% PNB 2nd stage w/o act
DEC3-69 9.18% 2.74% 6.2% 29.8% 32.7% 4% PS seed (55nm) to 12% PNB 2nd stage w/o act
DEC3-70 4.17% 0.83% 45.4% 19.9% 58.6% PS seed PNB 2nd stage w/ cat/act
DEC3-71 7.51% 2.35% 34.3% 31.2% 66.5% PS seed swollen w/NB and act - added cat
DEC3-72 11.53% 2.93% 3.4% 25.5% 26.4% 10% PNB with 2 shots of cat and NB w/o act
DEC3-74 5.19% 3.67% 2.9% 70.9% 73.0% 5% PNB with 2 shots of cat w/o act
DEC3-75 4.21% 1.76% 6.6% 41.8% 66.3% PS seed swollen w/NB and act
DEC3-76 9.79% 4.55% 5.6% 46.4% 49.2% PNB (5% w/o act - shot SDS.NB, & cat to 10%)
DEC3-77 5.23% 1.91% 3.3% 36.5% 37.7% 5% PNB latex with AgPF6
DEC3-78 5.44% 0.00% ----- 0.0% soln polym NB in cylcohexane
DEC3-79 5.11% 2.04% 2.4% 39.9% 40.9% 5% PNB latex with AgPF6
DEC3-80 5.33% 0.34% 0.0% 6.4% 6.4% 5% PNB latex with AgPF6
DEC3-81 9.20% 4.75% 1.8% 51.6% 52.5% 10% PNB w/ 2x [SHDS] w/o act
DEC3-82 9.69% 3.68% 2.8% 38.0% 39.1% 10% PNB w/ 3x [SDS] w/o act
DEC3-84 5.75% 1.57% 2.6% 27.3% 28.1% 5% PNB latex with AgSbF6
DEC3-87 4.75% 1.49% 45.4% 31.4% 57.6% PNB latex w/cat and act
OEC3-92 5.01% 1.96% 38.3% 39.2% 63.5% PNB latex sonicated w/cat and act
DEC3-99 4.85% 2.60% 0.5% 53.6% 53.8% P(NB-10) latex sonified w/cat and act
DEC3-100 4.71% 0.42% 19.0% 8.8% 10.9% sonified NB-10 and Styrene
DEC4-01 5.00% — — . . . —  ■ PNB latex w/o act or SDS and w/NaCI
DEC4-02 5.00% — . . . — — PNB latex w/o act or SDS
DEC4-03 5.00% _ — — . . . PNB latex w/o act or SDS and w/KCI
DEC4-04 5.00% — — — . . . PNB latex w/ Na2S04 rather than SDS
DEC4-05 5.00% . . . . . . PNB latex w/ nonionic surf and Na2S04 w/o act
DEC4-06 4.45% 2.22% 0.0% 4.7% 4.7% P(NB-10) seed PS 2nd stage FRP

DEC4-07 a 4.67% 4.48% 0.0% 95.8% 95.8% P(NB-IO) seed
DEC4-07 b 6.79% 6.02% 0.0% 74.1% 74.1% P(NB-10) seed PS 2nd stage FRP
DEC4-16 5.02% 2.65% 3.2% 52.8% 54.6% PNB w/ LiDS w/o act
DEC4-17 5.26% 2.56% 4.0% 48.7% 50.7% PNB w/ SDS w/o act
DEC4-18 4.69% 2.29% 1.3% 48.9% 49.6% PNB W / UBF4 act
DEC4-20 5.52% . . . . . . . . . . . . PNB w/o act w/ SDecS
DEC4-21 4.86% 2.58% 2.1% 53,0% 54.2% PNB w/o act w/ SODS
DEC4-22 5.23% 3.32% 3.4% 63.4% 65.7% PNB w/o act w/STDS
DEC4-24 5.56% 2.20% 2.8% 39.5% 40.7% PNB w/RDP w/o act
DEC4-25 5.22% 2.87% 2.5% 55.0% 56.4% PNB w/ Na hexadecane S03 w/o act
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APPENDIX C 

Gel Permeation Chromatography
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