Effect of Carex rostrata on seasonal and interannual variability in peatland methane emissions

Genevieve L. Noyce
University of Toronto

Ruth Varner
University of New Hampshire - Main Campus, ruth.varner@unh.edu

Jill L. Bubier
Mount Holyoke College

Steve Frolking
University of New Hampshire - Main Campus, steve.frolking@unh.edu

Follow this and additional works at: https://scholars.unh.edu/earthsci_facpub
Part of the [Biogeochemistry Commons](https://scholars.unh.edu/earthsci_facpub)

Recommended Citation

This Article is brought to you for free and open access by the Earth Sciences at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Earth Sciences Scholarship by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.
Effect of Carex rostrata on seasonal and interannual variability in peatland methane emissions

Genevieve L. Noyce,1,2 Ruth K. Varner,1 Jill L. Bubier,3 and Steve Frolking1

Received 12 August 2013; revised 3 December 2013; accepted 7 December 2013; published 10 January 2014.

[1] Peatlands are a large natural source of atmospheric methane (CH4), and the sedge Carex rostrata plays a critical role in the production, oxidation, and transport of CH4 in these systems. This 4 year clipping experiment examined the changes in CH4 emissions from a temperate peatland after removing all aboveground C. rostrata biomass. Methane fluxes, dissolved CH4, and environmental variables were measured during spring, summer, and fall from 2008 to 2011. Clipping and removing the C. rostrata leaves and stems caused an immediate decrease in CH4 emissions that persisted over 4 years of this study. There was a strong seasonal trend in CH4 flux, with the largest treatment effects occurring during the fall months when the sedges were senescing. As expected, there was a strong positive correlation between C. rostrata green-leaf area and CH4 flux, implying that the presence of C. rostrata increases CH4 emissions from this peatland. Large interannual variability in vegetation distribution and biomass, water table depth, and temperature was observed in this study, indicating the importance of multiyear studies for understanding the interactions among these factors to determine how they could be incorporated into biogeochemical models to predict CH4 emissions under changing environmental conditions.

1. Introduction

[2] Peatlands contain one third of the global soil carbon (C) pool [Gorham, 1991] and release around 30 Tg of methane (CH4) per year [Frolking et al., 2011]. The magnitude of CH4 emission varies widely depending on a variety of controls, including vegetation, temperature, and precipitation patterns; and peatlands can shift from net sources to net sinks of C from year to year [e.g., Carroll and Crill, 1997; Bubier et al., 2003; Roulet et al., 2007]. The net amount of CH4 released to the atmosphere depends on the difference between CH4 production in the saturated zone of the peat and CH4 oxidation in the unsaturated surface layer. High CH4 emissions occur when a concentration gradient allows for diffusion from belowground and when there is a mechanism for CH4 to be transported aboveground, either through plants or ebullition (bubbling).

[3] Sedges release high-quality carbon as root exudates, which promote CH4 production through the acetate fermentation pathway, and sites dominated by sedges have more acetate fermentation than Sphagnum-dominated sites [Bellisario et al., 1999; Popp et al., 1999; Prater et al., 2007; Rooney-Varga et al., 2007]. High CH4 emissions are correlated with periods of active plant growth and with autumnal litter fall, both of which are inputs of carbon [Wilson et al., 1989; Moore et al., 2011]. In addition, sedges provide a conduit to the atmosphere that bypasses the main zone of CH4 oxidation, making plant-associated transport the foremost method of CH4 release in sedge-dominated wetlands [Chanton, 2005].
years of clipping experiments, data have still only been collected during the growing season [e.g., King et al., 1998; Verville et al., 1998].

This study investigated the links between *Carex rostrata*, a circumboreal wetland sedge species found in North America, Asia, and Europe, and CH₄ fluxes from a temperate fen in the northeast U.S. during a 4 year clipping experiment. Data were collected from the month before the clipping experiment was implemented through 41 months after, covering four *C. rostrata* growing seasons in addition to including data from spring and fall months. We examined the clipping effect over 4 years with varying temperatures and levels of precipitation and also analyzed seasonal trends. In addition, we estimated the role of *C. rostrata* in CH₄ transport. We hypothesized that CH₄ emissions would always be highest from the *C. rostrata*-dominated plots, especially during the growing season, but that this effect would be mitigated during periods of low water table depth when sedge roots are in the unsaturated zone. In addition, we hypothesized that vegetation-assisted transport would be the main release of CH₄ from the *C. rostrata*-dominated plots.

2. Methods

2.1. Site Description

[Sallie’s Fen is a temperate, mineral-poor fen located in Barrington, New Hampshire (43°12.5′N, 71°3.5′W). This 1.7 ha peatland receives water from runoff, rainfall, and a small ephemeral stream that runs along the northern edge. The biologically active season runs from late April to October, with senescence of most deciduous plant species beginning in late August. The ground layer is dominated by Sphagnum moss species (e.g., *Sphagnum fallax* and *Sphagnum magellanicum*). Dominant vascular plants include ericaceous evergreen shrubs such as leatherleaf (*Chamaedaphne calyculata*), sheep laurel (*Kalmia angustifolia*), and cranberry (*Vaccinium oxycoccus* and *Vaccinium macrocarpon*), and deciduous shrubs such as speckled alder (*Alnus incana ssp. rugosa*) and highbush blueberry (*Vaccinium corymbosum*), as well as sedges (*Carex rostrata* and *Carex aquatilis*) and three-leaved Solomon’s-plume (*Maianthemum trifolium*). Red maple (*Acer rubrum*) is the dominant tree and lines the edges of the fen.

2.2. Experimental Design

[In April 2008, we inserted six aluminum collars (60 × 60 × 25 cm frames) into the northeast part of the fen, where *C. rostrata* is the dominant vascular plant species. Each plot had nearly 100% *Sphagnum* moss cover and other vegetation included *C. calyculata*, *V. oxycoccus*, *M. trifolium*, and *A. rubrum*. The collars were distributed in pairs such that each pair had comparable temperature and water table conditions. June 2008 served as a calibration period to determine the similarity of the plots prior to clipping.

On 2 July 2008, around the peak of the *C. rostrata* growing season, the aboveground *C. rostrata* was removed from one collar in each pair. *C. rostrata* plants were clipped to just below the *Sphagnum* surface. The remaining erenhythous stems were covered with small plastic bags filled with petroleum jelly and sealed at their base to prevent CH₄ and oxygen transport through the aerenchyma. The three remaining plots were left as undisturbed controls. Prior to CH₄ flux measurements, any *C. rostrata* stubble visible above the *Sphagnum* surface in the clipped plots was reclipped and resealed as needed. By 2010, *C. rostrata* growth in these plots was minimal and reclipping was rarely necessary.

2.3. Methane Flux Measurements

[Methane fluxes were measured once or twice per week from June through August and once or twice per month from September through November in 2008, 2009, 2010, and 2011. In 2010 and 2011, CH₄ fluxes were also measured weekly or twice-monthly from March through May, just after the emergence of green *C. rostrata* growth. Most fluxes in this study were measured in late morning: von Fischer et al. [2010] determined that CH₄ flux rates are generally stable over a 6 h time period and thus that an individual flux measurement can be representative of the daily rate of CH₄ emission through diffusive pathways. Fluxes were measured using a static chamber technique [e.g., Froliking and Crill, 1994]. A clear Teflon chamber measuring 60 × 60 × 90 cm (see Carroll and Crill [1997] for description) was placed in the grooved aluminum collars. The chambers contained fans to circulate the internal air and a climate control system to keep relative humidity and temperature close to ambient conditions. After placement, the chamber was left open for 5–10 min to minimize disturbance effects and allow the air inside the chamber to return to ambient conditions. To measure CH₄ flux, the chamber was closed and covered with a shroud designed to block out all light and to further minimize changes in temperature and relative humidity during the measurement period. Five 60 mL headspace samples were taken from inside the chamber every two minutes for a 10 min period using polypropylene syringes (BD, Franklin Lakes, New Jersey) equipped with three-way stopcocks. Ambient air outside the chambers was also sampled.

The air samples were analyzed on a Shimadzu GC-14A gas chromatograph equipped with a flame ionization detector (GC-FID) within 6 h. The GC-FID operates with the following conditions: 130°C injector and detector temperatures, 50°C column temperature, and an Ultra High Purity nitrogen carrier gas flow rate of 30 mL min⁻¹ through a 2 m × 1/8 inch o.d. stainless steel packed column (HayeSepQ 100/120). The GC-FID was calibrated using a standard of 1.8612 ppm CH₄ (2008–2010) or 3.266 ppm CH₄ (2010–2011). The standard error of 10 standard injections on any sampling day was less than 0.1%. Standards are breathing air cylinders calibrated against standards from NOAA’s Earth System Research Laboratory’s Global Monitoring Division’s Carbon Cycle Greenhouse Gases Group. Each sample was run twice and the average concentration was used for the final calculations. Fluxes were calculated as the slope of the linear regression of CH₄ concentration versus time. Nonlinear regressions, most likely due to chamber leakage, disturbance, or episodic ebullition, were discarded from subsequent analyses (approximately 10% of data). Nonlinearity was determined as data falling outside the 95% confidence level for linear regressions. Other discarded data included any measurements where the initial CH₄ concentration in the chamber was substantially above ambient concentrations and any negative fluxes because these were presumed to be due to disturbance from placing the chamber.

25
2.4. Peat Pore Water Methane Measurements

Two stainless steel sippers (3 mm diameter) were perforated at the end and inserted inside each collar in June 2008, adjacent to a C. rostrata plant, to sample peat pore water at 18 and 60 cm below the peat surface. Eighteen centimeters was determined to be the dominant rooting zone for C. rostrata, while 60 cm is presumably below the bulk of the C. rostrata roots and always below the water table. During dry periods, we were unable to collect 18 cm pore water for analysis. After flux measurements, any water in the sippers was drawn up and discarded, after which a 30 mL sample was drawn and stored in a plastic syringe. Peat pore water was collected during every sampling season except fall 2008.

To determine the dissolved CH4 concentration in the pore water samples, each syringe was filled with 30 mL of ambient air and shaken vigorously for 2 min to allow the dissolved CH4 to equilibrate with the air. Two 10 mL replicates of the headspace air were then immediately analyzed on a GC-FID that had been calibrated using 1000.6 ppm CH4 (Scott Specialty Gases, Plumsteadville, Pennsylvania). The average of these replicates was used as the sample concentration. Occasionally, samples were stored at 4°C for 24 h instead of being analyzed on the same day as collection. In these cases, the samples were returned to room temperature before being analyzed.

2.5. Carex rostrata Measurements

Every other week throughout summer 2008 and 2009 and spring through fall 2010 and 2011, C. rostrata Green Area Index (GAI) was measured in each plot using a technique similar to that described by Wilson et al. [2007]. Each C. rostrata leaf in the plots was measured and assigned to an approximate height class (0–20 cm, 21–40 cm, 41–60 cm, 61–80 cm, and 81+ cm). Widths of five C. rostrata leaves from each height class were measured. These widths were averaged together and multiplied by the midpoint of each height class and the number of leaves in that class to approximate C. rostrata GAI in each plot in m² C. rostrata per m² ground. C. rostrata GAI was linearly interpolated between measurement days. In addition, the maximum and minimum heights of C. rostrata green-leaf area were measured for 10 C. rostrata plants in three sections of the fen twice a month during the growing season for all years.

Following the initial clipping in 2008, the clipped C. rostrata leaves were dried and weighed for a biomass estimate. These weights were plotted with corresponding GAI measurements to give an equation for calculating biomass from GAI: C. rostrata dry biomass (g m⁻²) = 107.03 × C. rostrata GAI (m² m⁻²) + 14.04 ($R^2 = 0.98$). This equation was then used to approximate C. rostrata biomass in the unclipped collars.
2.6. Environmental Variables

[16] Meteorological data were collected continuously at Sallie’s Fen using an automated meteorological station located in the approximate center of the fen. Daily mean water table depth and air temperature from the met station were used in this analysis. When continuous temperature data were not available, we interpolated using a linear relationship with data from a secondary temperature probe ($R^2 = 0.91$).

[17] Perforated PVC wells were inserted next to each collar for water table measurements. Water table depth was measured manually relative to the peat surface on the same days as flux measurements. The average difference in water table depth at each collar relative to the continuous data was used to calculate collar water table depth between measurement days. Air and peat temperature, at the surface and at 10 cm below the peat surface, were manually measured at the same time as the CH$_4$ fluxes.

2.7. Data Analysis

[18] R Project for Statistical Computing (version 2.15.1) was used for all statistical analyses. For correlations and regressions, a natural-log transformation was used on the CH$_4$ flux data to more closely approximate a normal distribution. Pearson’s product moment correlation coefficients were calculated between ln CH$_4$ flux, 18 cm dissolved CH$_4$, 60 cm dissolved CH$_4$, C. rostrata GAI, water table depth, air temperature, and peat temperature. Correlations were calculated using all the data combined and then separating the data into control and clipped plots, but always including all 4 years. One-way analyses of variance (ANOVAs) were conducted between yearly means of water table depth and air temperature. Post-hoc analysis with Tukey’s Honestly Significant Difference (HSD) test was used to identify years with significant differences.

[19] Data were divided into seasons based on C. rostrata growth; C. rostrata begins to produce green leaves and grow rapidly in spring (1 March to 31 May), reaches maximum biomass in summer (1 June to 31 August), and senescence during the fall (1 September to 30 November). This allowed for analysis during the growing seasons to compare with other experiments, as well as investigation of effects during other major phenological periods, including green-up and senescence.

[20] Instances where a data point was missing for one collar in a pair were removed from the data set prior to statistical analysis (resulting in the exclusion of 41 out of 481 CH$_4$ fluxes and 36 out of 782 pore water CH$_4$ concentrations). This kept means from being skewed toward collars with fewer missing data.

[21] To determine the effect of treatment on CH$_4$ fluxes, dissolved CH$_4$ concentration, water table depth, or peat temperature across the entire experiment, paired t tests were conducted between the clipped collars and their corresponding control collar. One-way ANOVAs were conducted between yearly means of CH$_4$ fluxes and dissolved CH$_4$ concentration and Tukey’s HSD test was used to identify the significantly different means. To determine the interaction between treatment and season, a two-way repeated measures ANOVA was conducted using data from all 4 years, with season as a within-subject factor and treatment as a between-subject factor. Ratios of CH$_4$ flux between paired collars on a daily basis and averaged per collar for each measurement season. One-sample, one-sided t tests were used to determine which seasons had mean ratios that were significantly negative, implying a reduction of CH$_4$ flux from the clipped plots.

2.8. Methane Transport Estimates

[22] To estimate the role of C. rostrata in CH$_4$ emissions from Sallie’s Fen, we assumed that all CH$_4$ emitted from the clipped plots occurred through diffusion. The rate of diffusive flux can be approximated using a known gradient of CH$_4$ and the following equation

$$ F_{\text{diff}} = K_{\text{eff}} \frac{\Delta \text{CH}_4}{z} $$

where F_{diff} is the diffusive flux of CH$_4$, ΔCH_4 is the change in CH$_4$ concentration along the gradient, z is the depth of the layer, and K_{eff} is an effective diffusion coefficient that incorporates the net rates of CH$_4$ oxidation and diffusion at this site [Lerman, 1979]. The gradient was estimated using the difference between the 18 cm pore...
water CH₄ concentration and the ambient surface CH₄ concentration, which is a very coarse approximation. \(F_{\text{diff}} \) was assumed to equal the measured CH₄ flux from the clipped plots. \(K_{\text{eff}} \) was calculated using monthly means of CH₄ flux and dissolved CH₄ concentration and then averaged across the entire data set to get an effective diffusion coefficient of \(8.0 \pm 1.1 \times 10^{-3} \text{ m}^2 \text{ s}^{-1} \). This coefficient was assumed to be unaltered by treatment and the mean value was used to estimate monthly diffusive fluxes from the control plots, again using the simplified gradient from 18 cm to the peat surface. The mean monthly CH₄ flux from \textit{C. rostrata} transport was then approximated as the difference between the mean monthly flux and the estimated diffusive flux.

Table 2. Correlation Coefficients Among CH₄ Fluxes, \textit{C. rostrata} Green Area, and Environmental Variables Across All 4 Years

<table>
<thead>
<tr>
<th></th>
<th>ln CH₄ Flux</th>
<th>18 cm CH₄</th>
<th>60 cm CH₄</th>
<th>Carex GAI</th>
<th>Water Table Depth</th>
<th>Air Temperature</th>
<th>10 cm Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_{\text{diff}})</td>
<td>1</td>
<td>0.24⁺</td>
<td>−0.15⁻</td>
<td>0.43⁺</td>
<td>−0.05</td>
<td>0.54⁺</td>
<td>0.46⁺</td>
</tr>
<tr>
<td>(K_{\text{eff}})</td>
<td>Carex GAI</td>
<td>0.46⁻</td>
<td>0.13</td>
<td>−0.22⁻</td>
<td>1</td>
<td>0.04</td>
<td>0.46⁻</td>
</tr>
<tr>
<td></td>
<td>Clipped Plots</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.31⁻</td>
</tr>
<tr>
<td>(K_{\text{eff}})</td>
<td>ln CH₄ Flux</td>
<td>1</td>
<td>0.26⁺</td>
<td>−0.13</td>
<td>−0.12</td>
<td>0.67⁺</td>
<td>0.54⁺</td>
</tr>
</tbody>
</table>

⁺indicates significance at \(\alpha = 0.05 \).
⁻indicates significance at \(\alpha = 0.01 \).
⁻⁻indicates significance at \(\alpha = 0.001 \).

Units: \(\ln \text{CH}_4 \) flux (mg CH₄ m⁻² day⁻¹), pore water CH₄ (ppm CH₄), Carex GAI (m² m⁻²), water table depth (cm), temperature (°C).

Figure 2. Time series of differences (control minus treatment) between paired collars throughout all 4 years in (a) CH₄ fluxes, (b) 18 cm dissolved CH₄, and (c) 60 cm dissolved CH₄. Shading denotes spring, summer, and fall seasons.
3. Results

3.1. Hydrological and Temperature Conditions

[23] Depth to water table and the magnitude of seasonal fluctuations varied by year (Figures 1e–1h), resulting in significant \(P < 0.001 \) interannual variability in mean summer water table depth (Table 1). The year 2010 was very dry, with the mean summer water table averaging almost 33 cm below the peat surface, which was 11 to 26 cm deeper than in the other years (Table 1). Air temperature varied across the 4 years but followed the same general seasonal trend. The most interannual variability occurred during spring and fall, but 2011 had a mean summer air temperature of 23.8°C, which was 3.8 to 5.4°C higher than the mean temperatures for the other 3 years (Table 1). Mean summer air temperatures were significantly \(P < 0.05 \) different between most years (Table 1). Overall, 2008 was a wet summer with average temperatures, 2009 was cooler and slightly drier, 2010 was very dry with similar temperatures to 2008, and 2011 was the warmest year but between 2009 and 2010 in terms of moisture.

[24] Removing the sedges altered water table depth but had no significant effect on peat temperature. There was no significant difference in water table depth between the treatments in 2008, but for 2009 through 2011, the water table was significantly \(P < 0.05 \) higher in the clipped plots compared to their paired control plot by an average of 4 cm (Table 1).

3.2. Carex rostrata Growth

[25] In each year, C. rostrata began to produce green leaves in March or April and continued to grow throughout the summer. In 2008 and 2009, even though C. rostrata started senescing in mid-July to late July (around day 200), overall green-leaf area increased because new shoots continued to emerge (Figures 1e–1f). In 2010 and 2011, however, C. rostrata biomass in the control plots peaked in the beginning of July and tailed off through the summer and fall (Figures 1g–1h). The maximum height of C. rostrata was similar across all four summers (around 90 cm), but the maximum C. rostrata biomass in the control collars during the measurement period (as approximated by GAI) was much lower in summer 2008 and much higher in summer 2011 compared to the other years. Peak C. rostrata biomass during the growing season was estimated as 96 g m\(^{-2}\) in 2008, 172 g m\(^{-2}\) in 2009, 185 g m\(^{-2}\) in 2010, and 246 g m\(^{-2}\) in 2011 (Table 1). C. rostrata growth was significantly \(P < 0.001 \) correlated with both air temperature and peat temperature but not with water table depth (Table 2).

3.3. Comparison of Plots Prior to Experiment Implementation

[26] Plots were set up as spatially correlated pairs to ensure similar environmental conditions within a pair and reduce variability in fluxes, thus highlighting the treatment effect. Prior to clipping, CH\(_4\) fluxes ranged from 19.3 to 563.6 mg CH\(_4\) m\(^{-2}\) day\(^{-1}\) in the clipped collars and from 9.7 to 580.0 mg CH\(_4\) m\(^{-2}\) day\(^{-1}\) in the control collars (Figure 1a). On average, CH\(_4\) fluxes from the treatment collars prior to clipping were almost 40 mg CH\(_4\) m\(^{-2}\) day\(^{-1}\) higher than CH\(_4\) fluxes from the control collars, but the means were not significantly different \(P = 0.974 \). Despite the observed differences in CH\(_4\) flux magnitude, there were no similar trends in mean dissolved CH\(_4\) concentrations between the two sets of plots at either 18 or 60 cm below the peat surface during the preclipping period.

3.4. Treatment Effect on Methane Fluxes

[27] Over 4 years, CH\(_4\) fluxes after clipping ranged from 6.6 to 497.1 mg CH\(_4\) m\(^{-2}\) day\(^{-1}\) in the control collars, with a mean flux of 125.3 mg CH\(_4\) m\(^{-2}\) day\(^{-1}\) and from 1.8 to 322.2 mg CH\(_4\) m\(^{-2}\) day\(^{-1}\) in the clipped collars, with a mean flux of 74.4 mg CH\(_4\) m\(^{-2}\) day\(^{-1}\) (Figures 1a–1d). Across the entire experiment, CH\(_4\) fluxes from the control collars were significantly

Figure 3. Effect of clipping on CH\(_4\) flux for 2008 through 2011. The treatment ratio is the CH\(_4\) flux from each control collar divided by the CH\(_4\) flux from its paired clipped collar, minus one, so a value of zero is no treatment effect. Bars represent seasonal averages for each year and across all 4 years combined. Error bars represent standard error. Symbols indicate means that are significantly nonzero: * \(P < 0.05 \), ** \(P < 0.01 \), *** \(P < 0.001 \).
higher than from their paired clipped collar (Figure 2a). The treatment difference in CH4 flux magnitude varied throughout the experiment, with the largest average difference in CH4 flux between paired collars during the C. rostrata growing season occurring in 2010 (67.9 mg CH4 m\(^{-2}\) day\(^{-1}\)) and the smallest difference occurring in 2008 (42.8 mg CH4 m\(^{-2}\) day\(^{-1}\)). Across all measurement seasons, the largest difference occurred in fall 2009 (111.3 mg CH4 m\(^{-2}\) day\(^{-1}\)) and the smallest occurred in spring 2010 (14.5 mg CH4 m\(^{-2}\) day\(^{-1}\)).

After clipping in 2008, the mean CH4 flux over the remainder of the summer increased by 30% in the control plots and decreased by 22% in the clipped plots, though these responses were not significantly different from each other. Throughout the rest of the experiment, summer CH4 fluxes from the clipped plots were 10% less than fluxes from the control plots in 2008, 6% less in 2009, 30% less in 2010, and 33% less in 2011, though the average treatment effect was largest during the fall months (Figure 3). While summer clipped fluxes averaged between 67% and 94% of the magnitude of summer CH4 fluxes from the control plots, fall clipped fluxes ranged from 33% of control fluxes in 2009 to 75% in 2008. For individual years and seasons, there was a significant (P < 0.05) reduction of CH4 emissions from the clipped collars compared to their paired control collars in summer 2011 and fall 2009, 2010, and 2011 (Figure 3). Though both treatment (F\(_{1,420}, P < 0.001\)) and season (F\(_{2,420}, P < 0.001\)) significantly affected CH4 fluxes across the entire data set, there was no significant interaction between treatment and season.

Overall, CH4 flux was significantly (P < 0.001) positively correlated with C. rostrata green area, 18 cm pore water CH4 concentrations, and air and peat temperature (Table 2). CH4 flux from the control plots was also significantly (P < 0.05) correlated with water table depth, though there was no significant correlation between water table and fluxes from the clipped plots (Table 2). The control CH4 fluxes were more strongly correlated with pore water CH4 concentrations than the clipped CH4 fluxes were (Table 2), while the clipped fluxes were more strongly correlated with air temperature than the control fluxes were (Table 2), though these treatment effects were not significant. Even when the dissolved CH4 concentrations were similar between the treatments, the control plots still had higher CH4 fluxes and both control and treatment plots had strong linear correlations between 18 cm dissolved CH4 concentrations and flux (Figure 4a and Table 2). Between 40 and 70% of CH4
emissions from the control plots may occur through plant transport (Figure 4b). The ratio of CH$_4$ flux from the clipped plots compared to their paired control plots was not significantly correlated with water table depth or air temperature.

3.5. Treatment Effect on Pore Water Methane

Over 4 years, the concentration of dissolved CH$_4$ at 18 cm below the peat surface ranged from 199 to 10,625 ppm in the control collars with a mean concentration of 3192 ppm and from 107 to 10,710 ppm in the clipped collars with a mean concentration of 4099 ppm. After clipping in 2008, the mean dissolved CH$_4$ concentration at 18 cm below the peat surface increased by 105% from June (before clipping) to July and August (after clipping) in the clipped plots while the mean concentration in the control plots only increased by 35%, which was a significant treatment effect ($P < 0.05$). Across all 4 years, 18 cm dissolved CH$_4$ was significantly ($P < 0.001$) higher in the clipped plots compared to their paired controls (Figure 2b). Over 4 years, the concentration of dissolved CH$_4$ at 60 cm below the peat surface ranged from 35.8 to 38,245 ppm in the control collars with a mean concentration of 4872 ppm and from 21.0 to 51,921 ppm in the clipped collars with a mean concentration of 5268 ppm (Table 1). Clipping did not significantly affect 60 cm dissolved CH$_4$ concentrations (Figure 2c).

4. Discussion

4.1. Effect of Carex rostrata Clipping on Methane Emissions

As expected, summer CH$_4$ fluxes were generally higher from the control plots than from the clipped plots in all 4 years (Figure 2a) and clipping significantly reduced CH$_4$ flux across all four summers (Figure 3). In particular, a large effect was observed in summer 2008, directly after the initial clipping. Even though plots in both treatments experienced similar temperatures and water table levels throughout the initial treatment year (2008), CH$_4$ fluxes increased by 30% in the control plots from June (prechipping) to July and August (postclipping) but decreased by 22% in the clipped plots. Despite day-to-day variability in CH$_4$, after clipping there was a significant trend of larger fluxes occurring from the controls compared to the clipped collars (Figures 1 and 2a). Treatment had a significant effect across the entire data set, which indicates that clipping and sealing C. rostrata reduces overall CH$_4$ emissions from this peatland. A large percent of the annual CH$_4$ flux occurs during the peak growing season; vegetation-related controls most likely dominate annual fluxes and thus are important to consider in biogeochemical models [von Fischer et al., 2010]. Riutta et al. [2007] also concluded that plant community is very important in predicting CH$_4$ flux, even across otherwise homogenous sites, and Moore et al. [2011] found that vegetation was the most important predictor of individual CH$_4$ fluxes throughout their 5 year study.

Our results are consistent with those found in other sedge-removal experiments. For example, Kelker and Chanton [1997] and Waddington et al. [1996] both saw reductions in CH$_4$ flux when Carex species were removed from Canadian fens. Other studies observed a more pronounced response, with CH$_4$ emissions from clipped plots totaling only 3 to 40% of those from nearby control plots [Whiting and Chanton, 1992; King et al., 1998; Verville et al., 1998; Frenzel and Karofeld, 2000; Strack et al., 2006]. Frenzel and Karofeld [2000], in particular, saw a 97% decrease in CH$_4$ flux after clipping Scheuchzeria palustris and Eriophorum vaginatum. This variability may be related to the amount of sedge biomass removed in these experiments or to the particular sedge species [Ström et al., 2005].

Contrary to expectations, the effect of C. rostrata clipping, as shown by the ratio of CH$_4$ flux from the clipped plots compared to CH$_4$ flux from the control plots, did not vary with water table depth. Even though the water table was significantly higher in the clipped plots in 2009 through 2011, presumably because removing the sedges reduced evapotranspiration rates in the clipped plots, these later years still showed a stronger treatment effect on CH$_4$ emissions than the initial clipping year when the water table depths were the same in both treatments. Both control and clipped plots tended to have lower CH$_4$ emissions in drier years, but CH$_4$ fluxes were still higher from the control plots. This may be because C. rostrata has long rhizomes and roots that remain partially in the anoxic zone even when the water table is low [Hultgren, 1989a], as in summer 2010, so the plants could still enhance CH$_4$ emissions.

4.2. Seasonal Effects

Clipping C. rostrata significantly decreased summer CH$_4$ emissions across the experiment, but there was also a particularly strong effect of C. rostrata on fall (September through November) CH$_4$ emissions (Figure 3). The fall CH$_4$ emissions were usually larger in the control plots than in their paired clipped plots across all 4 years (Figure 2a), even though C. rostrata plants generally started to senesce during that time period (Figures 1e–1h). The ratios of CH$_4$ fluxes were generally higher in the clipped plots compared to their paired control plots was not significantly correlated with CH$_4$ emissions in September and October, presumably because reducing the sedges reduced evapotranspiration rates in the clipped plots, these later years still showed a stronger treatment effect on CH$_4$ emissions than the initial clipping year when the water table depths were the same in both treatments. Both control and clipped plots tended to have lower CH$_4$ emissions in drier years, but CH$_4$ fluxes were still higher from the control plots. This may be because C. rostrata has long rhizomes and roots that remain partially in the anoxic zone even when the water table is low [Hultgren, 1989a], as in summer 2010, so the plants could still enhance CH$_4$ emissions.

Our results are consistent with those found in other sedge-removal experiments. For example, Kelker and Chanton [1997] and Waddington et al. [1996] both saw reductions in CH$_4$ flux when Carex species were removed from Canadian fens. Other studies observed a more pronounced response, with CH$_4$ emissions from clipped plots totaling only 3 to 40% of those from nearby control plots [Whiting and Chanton, 1992; King et al., 1998; Verville et al., 1998; Frenzel and Karofeld, 2000; Strack et al., 2006]. Frenzel and Karofeld [2000], in particular, saw a 97% decrease in CH$_4$ flux after clipping Scheuchzeria palustris and Eriophorum vaginatum. This variability may be related to the amount of sedge biomass removed in these experiments or to the particular sedge species [Ström et al., 2005].
seasonal patterns that follow the belowground CH$_4$ concentration regardless of the presence of *C. rostrata* (Table 2).

4.3. Long-Term Effects and Interannual Variability

[36] Summer *C. rostrata* biomass was much lower in 2008 than in later years of the experiment (Table 1 and Figures 1e–1h). This is most likely related to *C. rostrata* shoot density; in 2008, the maximum *C. rostrata* density during the growing season was 336 green shoots per m2, compared to nearly double that the following year. Biomass may have slightly increased after measurements of *C. rostrata* growth ended in early August in 2008 and 2009, but given the lower number of shoots in 2008 and the fact that *Carex* reached the same maximum height in all years, 2008 almost certainly had the lowest *C. rostrata* biomass of all 4 years. When the CH$_4$ flux collars were inserted in April 2008, a 10 to 20 cm slit was cut into the peat, including through coarse and fine roots. Previous studies have indicated a loss of vascular-plant density as a result of collar insertion [Heijmans et al., 2004] and because one of the sources of new *C. rostrata* roots is horizontally growing rhizomes [Hultgren, 1989a], cutting through these structures may have had a large effect on the emergence of new shoots during the immediately following growing season. The largest peak in new *C. rostrata* shoots also generally occurs in the beginning of the growing season [Garham and Somers, 1973; Hultgren, 1989a; Saarinen, 1998] which was shortly after the collars were installed in 2008 and thus presumably when the disturbance effect was largest.

[37] Interannual variability in peat temperature and saturation can also affect the growth rate and maximum biomass of emergent *C. rostrata* [Garham and Somers, 1973; Hultgren, 1989b]. In 2008, the peat temperature remained below freezing until mid-April, which may have contributed to the lower overall *C. rostrata* biomass. Later spring flooding may have limited early shoot growth as well. The timing of *C. rostrata* senescence also varied between years, with brownning occurring earlier in 2010 and 2011. This may be a result of the low water table level throughout most of 2010 (and in 2011, to a lesser extent) (Figures 1e–1h), which can have a significant effect on *C. rostrata* height and leaf and root biomass [Kennedy et al., 2003]. Field observations also indicate that large interannual variations in water table can affect shoot length and density, with the shortest shoots observed in low water years and the tallest observed in high water years [Hultgren, 1989b].

[38] There was a stronger treatment effect on summer CH$_4$ emissions in the later years of the experiment compared to 2008 and 2009 (Figure 3). This may indicate that the system is approaching a steady state as residual effects of the experiment implementation are no longer affecting the clipped collars, which has been seen in other studies [e.g., Verville et al., 1998; Riutta, 2008]. In this experiment, the treatment difference may also have been limited in the first year after clipping due to an increase in available substrate from decomposing *C. rostrata* belowground. Sedge rhizomes start to decompose after only 4 days under anoxic conditions [Barclay and Crawford, 1982] and 10 to 45% of the total mass of *C. rostrata* roots and rhizomes decompose during the first 12 months after separation from the aboveground shoots [Scheffer and Aerts, 2000]. Increased substrate availability is consistent with the high concentrations of dissolved CH$_4$ around the *C. rostrata* rooting area in the clipped plots, especially because this trend was less apparent in the subsequent years of the experiment.

4.4. Carex rostrata as a Methane Transport Mechanism

[39] In July and August 2008, the clipping treatment significantly ($P < 0.05$) affected the concentration of rhizospheric dissolved CH$_4$; CH$_4$ concentrations more than doubled in the clipped plots, while control-plot concentrations increased by only 35%. An increase in dissolved CH$_4$ was expected because the late summer conditions are more favorable for methanogenesis [Treat et al., 2007], but the magnitude of the difference implies that clipping and sealing the *C. rostrata* plants had a substantial effect on the buildup of dissolved CH$_4$. Most likely, this indicates a disruption in the clipped plots; if CH$_4$ transport mechanisms were equal between the two treatments, then the higher dissolved-CH$_4$ concentrations in the clipped plots (Figure 2b) ought to have resulted in larger CH$_4$ emissions. Instead, daily CH$_4$ fluxes from the control plots were consistently higher across all 4 years (Figures 1a–1d, and 2a), implying that more CH$_4$ is transported in the presence of *C. rostrata*. This is consistent with results from other clipping experiments [e.g., Waddington et al., 1996] that also observed lower concentrations of dissolved CH$_4$ at sites with high CH$_4$ emissions and concluded that it was the result of the transport effect of aerenchymous vegetation. The higher dependence of CH$_4$ flux on pore water CH$_4$ in the control plots compared to the clipped plots (Figure 4a) also indicates that plant transport in these plots is likely to be supplementing diffusion. Similarly, fluxes were typically higher from the control plots than from the clipped plots, even when the dissolved CH$_4$ concentrations were similar (Figure 4a), again suggesting a substantial effect of plant transport. Given these data, we wanted to approximate the role of plant transport in enhancing CH$_4$ emissions from Sallie’s Fen.

[40] Methane emissions are the net result of production, oxidation, ebullition, diffusion through the peat, and plant transport. Some CH$_4$ may be removed from the peat via horizontal flow [Waddington and Roulet, 1997; Billett and Moore, 2007], but that should also be consistent within a pair and is probably very low at this site, except during large precipitation events. Enhanced CH$_4$ production in the control plots relative to the clipped plots is quite likely, given the volatile root exudates from the sedges, but does not explain why there is more 18 cm CH$_4$ in the clipped plots despite presumed lower production rates. The aerenchymous nature of sedges means that higher rates of CH$_4$ oxidation could be occurring in the control plots, but given the observed strong correlation between sedge cover and CH$_4$ flux (Table 2), this is most likely only a minor component of the sedge effects of CH$_4$ dynamics. At Sallie’s Fen, ebullition is responsible for less than 12% of the annual CH$_4$ emissions [Santoni et al., 2012], ebullition rates do not correlate with sedge fractional cover [Goodrich, 2010], and very few ebullition events occur during daytime [Goodrich et al., 2011], meaning that ebullition is unlikely to be a major component of the measured CH$_4$ emissions in this study. This leaves diffusion through the peat (in both sets of plots) and plant transport (in only the control plots) as the likely controls on the observed treatment differences in CH$_4$ flux.

[41] By approximating the monthly diffusive fluxes from the control collars, we estimated that 40 to 70% of the CH$_4$ emitted from Sallie’s Fen may occur through plant transport.
This range is comparable to that of Kutzbach et al. [2004] who estimated plant-mediated CH$_4$ flux to account for $66 \pm 20\%$ of total CH$_4$ emissions. King et al. [1998] also found that adding straw-like tubing to clipped plots increased CH$_4$ emissions substantially, to about half the magnitude of the CH$_4$ fluxes from the unclipped plots, which argues for the importance of vegetation-mediated transport in controlling CH$_4$ emissions from sedge-dominated systems. The estimated transport role of C. rostrata is largest in the summer months, but still substantial in September and October (Figure 4b). This may again indicate the importance of the presence of C. rostrata in controlling CH$_4$ emissions even during fall months when the plants are no longer actively growing. Moore et al. [2011] suggest this may be because the transport of CH$_4$ through sedges can continue in cooler months when peat and air temperature have less effect on CH$_4$ emissions. In addition, Carex species emit CH$_4$ from the plant base where leaves bundle together and thus vegetation height (i.e., the green area measurement in this study) may not be a factor in the ability of C. rostrata to transport CH$_4$ [Kelker and Chanton, 1997].

However, these are rough estimations and incorporate many simplifying assumption, especially by relying on the coarse resolution of the effective diffusion gradient, which may be the reason our estimated effective diffusion coefficient is several orders of magnitude larger than coefficients for CH$_4$ diffusion in saturated peat typically reported in the literature [e.g., Lerman, 1979; Rothfuss and Conrad, 1994; Arah and Stephen, 1998; Clymo and Bryant, 2008]. However, Sallie’s Fen is mainly unsaturated above 18 cm and our estimated coefficient is closer to reported CH$_4$ diffusion rates in air (e.g., $1.9–2.3 \times 10^{-5} \text{m}^2 \text{s}^{-1}$) [Arah and Stephen, 1998; Matsuura et al., 1998]. Diffusion through the unsaturated peat is also likely to be substantially affected by turbulent mixing, which may also explain our high estimated effective diffusion coefficient. In addition, because the clipped collars had a significantly higher water table depth, the diffusion rates may not actually be the same for both treatments. Nonetheless, the strong linear correlations between 18 cm CH$_4$ concentration and CH$_4$ flux across an order of magnitude in each variable (Figure 4a) indicate that an effective diffusion model is plausible. These approximations imply that it is likely that a substantial portion of the annual CH$_4$ emissions from Sallie’s Fen occur through plant transport and that this theory should be further investigated, using a more detailed CH$_4$ profile within the peat column to accurately characterize the actual diffusion rates within each treatment.

5. Conclusions

Over a 4 year clipping experiment, we observed a strong reduction in CH$_4$ flux from the clipped plots. Removing the aboveground C. rostrata biomass caused an immediate decrease in CH$_4$ emissions that persisted for the rest of the growing season and continued over the next 3 years of the study. There was a strong seasonal trend in CH$_4$ flux, with the largest treatment effects on CH$_4$ flux occurring in summer and fall, suggesting that a longer summer or warmer fall could lead to larger total CH$_4$ emissions. Overall, we observed a strong positive relationship between C. rostrata green area and CH$_4$ flux indicating that the presence of C. rostrata increases CH$_4$ emissions at Sallie’s Fen. We propose that plant transport is the driving mechanism behind this trend and may account for 40 to 70% of the total CH$_4$ flux at this site, but this theory needs further research to be conclusive. We also found a strong correlation between air temperature and CH$_4$ flux, regardless of the presence of C. rostrata.

[44] Peatlands are an important source of atmospheric CH$_4$ and changes in these ecosystems will result in positive or negative feedback to future climate. To have accurate predictions, controls on CH$_4$ emissions from peatlands need to be thoroughly understood and implemented in biogeochemical models. Models consistently predict warming for temperate and boreal peatlands [Frolking et al., 2011], which would potentially increase CH$_4$ emissions if saturation conditions do not change. Changes in seasonality, in particular, are likely to affect CH$_4$ emissions from sedge-dominated sites. Large interannual variability in vegetation distribution and biomass, water table depth, and temperature was observed in our study. Overall, these data indicate the importance of conducting experiments over a multiyear period in order to observe the likely long-term effects on the ecosystem, as opposed to just the initial disturbance effects, as well as the importance of measurements that span a range of environmental conditions.

Acknowledgments. This research was supported by a UNI-NAS Research and Discover Fellowship and a Mount Holyoke College HHMI Summer Research Fellowship (HHMI #5205134) to G. Noyce, NSF grants DEB 0346625 to J. Bubier and DEB 0316326 to P. Crill and R. Varner, and USDA grant 2011-67003-30373 to S. Frolking. We thank Patrick Crill (Stockholm University) for establishing the long-term research at Sallie’s Fen, Eduardo Miranda, Tom O’Dowd, Libby Szarkowski, and Brian Young for field and lab assistance, and Jack Dibb, Nicola Blake, and Sallie Whitlow for allowing access to Sallie’s Fen, as well as Nigel Roulet, Dennis Baldocchi, and an anonymous reviewer for their comments that improved the manuscript.

References

