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Abstract. Northern peatlands in permafrost regions con-
tain a large amount of organic carbon (C) in the soil. Cli-
mate warming and associated permafrost degradation are ex-
pected to have significant impacts on the C balance of these
ecosystems, but the magnitude is uncertain. We incorpo-
rated a permafrost model, Northern Ecosystem Soil Temper-
ature (NEST), into a biogeochemical model, DeNitrification-
DeComposition (DNDC), to model C dynamics in high-
latitude peatland ecosystems. The enhanced model was ap-
plied to assess effects of permafrost thaw on C fluxes of a
subarctic peatland at Stordalen, Sweden. DNDC simulated
soil freeze–thaw dynamics, net ecosystem exchange of CO2
(NEE), and CH4 fluxes across three typical land cover types,
which represent a gradient in the process of ongoing per-
mafrost thaw at Stordalen. Model results were compared
with multiyear field measurements, and the validation indi-
cates that DNDC was able to simulate observed differences
in seasonal soil thaw, NEE, and CH4 fluxes across the three
land cover types. Consistent with the results from field stud-
ies, the modeled C fluxes across the permafrost thaw gradient
demonstrate that permafrost thaw and the associated changes
in soil hydrology and vegetation not only increase net up-
take of C from the atmosphere but also increase the annual to
decadal radiative forcing impacts on climate due to increased
CH4 emissions. This study indicates the potential of utilizing
biogeochemical models, such as DNDC, to predict the soil
thermal regime in permafrost areas and to investigate impacts
of permafrost thaw on ecosystem C fluxes after incorporating
a permafrost component into the model framework.

1 Introduction

Northern peatlands are characterized by cold and wet condi-
tions that promote the accumulation of soil organic carbon
(SOC) (e.g., T. Johansson et al., 2006; Schuur et al., 2008).
These ecosystems have accumulated 473–621 Pg (1015 g)
carbon (C) since the Last Glacial Maximum (Yu et al., 2010),
with more than 277 Pg C stored in permafrost areas (Schuur
et al., 2008; Tarnocai et al., 2009). Although northern peat-
lands have generally acted as sinks of carbon dioxide (CO2)

in the past and in the current climate (e.g., Lund et al., 2010;
McGuire et al., 2009), peat C stocks may be released into
the atmosphere with climate warming, due to mobilization
of previously frozen C in permafrost soils and accelerated de-
composition of SOC (e.g., Frolking et al., 2011; McGuire et
al., 2009; Schuur et al., 2009, 2011). In addition, because of
prevailing anaerobic soil conditions, northern peatlands are
an important source of atmospheric methane (CH4), releas-
ing 31–65 Tg CH4 yr−1 (McGuire et al., 2009) and methane
emissions can change with permafrost thaw (Christensen et
al., 2004).

Pronounced warming has been observed in northern high
latitudes, with surface air temperature increased by approx-
imately 0.09◦C decade−1 during the 20th century (ACIA,
2005). More pronounced warming has been projected in this
region for the 21st century (IPCC, 2007). Many recent stud-
ies have argued that the rate or extent of permafrost degrada-
tion is increasing with climate warming in northern peatlands
(e.g., James et al., 2013; Payette et al., 2004; Quinton et al.,
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2011; Åkermanand Johansson, 2008). Permafrost thaw can
result in increases in active layer thickness (ALT; the thick-
ness of surface soil layer that freezes and thaws seasonally
above a year-round frozen layer) and cause land surface sub-
sidence, which in turn may cause changes in topography, soil
hydrology, and vegetation (e.g., Avis et al., 2011; M. Johans-
son et al., 2006; Schuur et al., 2008). These changes associ-
ated with permafrost degradation can significantly affect the
C cycle in northern ecosystems (e.g., Dorrepaal et al., 2009;
T. Johansson et al., 2006; McGuire et al., 2009; Schneider
von Diemling et al., 2012).

Although much concern has been placed on the C bal-
ance in permafrost ecosystems, large uncertainty still ex-
ists (e.g., Koven et al., 2011; McGuire et al., 2009; Schuur
et al., 2011). Northern peatlands are highly heterogeneous,
usually with varying characteristics of permafrost, topogra-
phy, hydrology, soil, and vegetation within close proximity
(Nungesser, 2003), which results in considerable variations
of C fluxes at local and landscape scales (e.g., Bäckstrand et
al., 2010; Lund et al., 2010; Sachs et al., 2010). Responses
of the C balance to permafrost degradation have been shown
to vary across different peatlands as well (Bäckstrand et al.,
2010). Therefore, it is an ongoing challenge to extrapolate
site-specific measurements to large regions.

Process-based models are effective tools to assess the im-
pacts of climate change on boreal ecosystems. Several large-
scale models have been enhanced by incorporating thermal,
hydrologic, vegetation, and biogeochemical processes in re-
lation to permafrost conditions and these models have been
applied to quantify the impacts of climate change on C fluxes
at regional and global scales (e.g., Schneider von Diemling
et al., 2012; Wania et al., 2009a, b; Zhuang et al., 2001, 2004,
2006). Predictions by large-scale models are generally done
at coarse spatial resolutions, and therefore they may be defi-
cient in considering the effects of local spatial heterogeneity.
By improperly considering fine-scale spatial heterogeneity in
vegetation and environmental conditions, systematic biases
may occur in simulations of permafrost degradation and C
fluxes (Bohn and Lettenmaier, 2010; Zhang et al., 2013). In
addition, the results based on coarse-scale modeling are dif-
ficult to validate by comparing with field observations and
uncertainty may arise in regional and global simulations due
to limited validation (Kirschke et al., 2013).

A process-based biogeochemical model, DeNitrification-
DeComposition (DNDC), was recently enhanced by incor-
porating a permafrost model, Northern Ecosystem Soil Tem-
perature (NEST), for predicting biogeochemistry in high lati-
tudes from plant communities to ecosystem scale. The model
was initially tested against one growing season of CH4 flux
data measured at a permafrost site in the Lena River delta,
Russia (Zhang et al., 2012). In this study, we applied the
enhanced model to assess effects of permafrost thaw on C
fluxes of a well-studied subarctic peatland at Stordalen, Swe-
den. The study peatland is located in a discontinuous per-
mafrost zone and consists of palsas – small, relatively dry

plateaus elevated 1 to a few meters due to subsurface ice
lenses (Williams and Smith, 1989) – and intervening low,
wetter areas. These palsas can expand and shrink in ex-
tent with relatively small variations in environmental con-
ditions such as temperatures or winter snow packs (Payette
et al., 2004), and represent one class of permafrost (Davis,
2001). Stordalen’s palsas are extremely vulnerable to chang-
ing climate and widespread degradation of permafrost is ex-
pected to occur (Åkerman and Johansson, 2008). DNDC sim-
ulated multiyear soil freeze–thaw dynamics, net ecosystem
exchange (NEE) of CO2, and CH4 fluxes across three typical
land cover types, which represent a gradient of permafrost
degradation in the study region. During simulations, differ-
ent soil hydrologic conditions and vegetation characteristics
of these land cover types were used as model inputs; there-
fore we focused on predicting the changes in soil thermal
dynamics and C cycling along with thawing. The model was
tested against long-term field measurements to verify its ap-
plicability for simulating the differences in the soil thermal
regime and C fluxes across a gradient of permafrost thaw.
Then we assessed the possible impacts of permafrost thaw
on C fluxes for the Stordalen peatland based on the multiyear
simulations. A validated simulation model provides a mech-
anism for not only interpreting observations but also predict-
ing the impacts of future climate change on greenhouse gas
emissions.

2 Methods and data

2.1 The study area and field observations

The study area is the Stordalen mire (68◦ 20′ N, 19◦03′ E;
351 m a.s.l.) located 10 km southeast of Abisko Scientific Re-
search Station (ANS) in northern Sweden. It is a subarctic
peatland with discontinuous permafrost. Peat formation at
the mire occurred at about 5000 cal BP (Rosswall et al., 1975;
Kokfelt et al., 2010). This area has a continental climate,
with an annual mean air temperature of 0.07◦C and an av-
erage annual precipitation of 308 mm from 1986 to 2006 ac-
cording to the observations at ANS (Callaghan et al., 2010).
Long-term climate records at ANS indicate that the annual
mean air temperature in this region has increased by 2.5◦C
from 1913 to 2006, significantly exceeding the 0◦C thresh-
old for the first time during the last few decades (Bäckstrand
et al., 2008; Callaghan et al., 2010). This warming has led to
a thicker active layer and permafrost disappearance in this
area (Åkerman and Johansson, 2008). The degradation of
permafrost has significantly affected surface topography, hy-
drology, and vegetation and thereby exerted a strong influ-
ence on the fluxes of CO2 and CH4 (Christensen et al., 2004;
T. Johansson et al., 2006; Malmer et al., 2005; Åkerman and
Johansson, 2008).

As in most peatlands in permafrost regions, Stordalen mire
has high spatial heterogeneity in topography (1–2 m relative
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differences in elevation). The topographic variability creates
small-scale (meters) environments with different soil mois-
ture and nutrient conditions that support different plant com-
munities (Rosswall et al., 1975; Bäckstrand et al., 2008). The
area can be broadly classified into three typical land cover
types (i.e., dry palsa, semiwet sphagnum, and wet eriopho-
rum; note that in this study the terms sphagnum and eriopho-
rum indicate land cover types instead of vegetation species).
The palsa sites of Stordalen are dry features underlain by
permafrost, with an ALT usually < 0.7 m in late summer;
the sphagnum sites are also underlain by permafrost, repre-
senting intermediate thaw features, with an ALT generally
thicker than 1.0 m in late summer, and are wetter than the
palsa with water table levels fluctuating close to the ground
surface; the eriophorum sites have no permafrost and are gen-
erally wetter than sphagnum, with water table levels con-
stantly near or above the ground surface (Bäckstrand et al.,
2008, 2010; Olefeldt and Roulet, 2012). They are also dif-
ferentiated by elevation, with palsa being highest, sphagnum
intermediate, and eriophorum lowest. Therefore these three
land cover types have different permafrost regimes and soil
water conditions, which support different vegetation com-
positions (Bäckstrand et al., 2008, 2010). During the last
three decades, there have been pronounced shifts in the ex-
tent of these three land cover types, with palsa being con-
verted intoSphagnum- or Eriophorum-dominated land cover
in the northern part of the Stordalen mire and both palsa and
sphagnum being converted intoEriophorum-dominated land
cover in the southern part of the mire (Christensen et al.,
2004; Malmer et al., 2005). These three land cover types can
be regarded as representing a gradient of permafrost degra-
dation (e.g., Malmer et al., 2005; T. Johansson et al., 2006;
Bäckstrand et al., 2010).

CO2 and CH4 fluxes were measured using automated
chambers at Stordalen from 2003 to 2009. NEE was mea-
sured at three sites (i.e., the palsa, sphagnum, and eriopho-
rum sites) to represent three typical land cover types, and
CH4 emissions were consistently observed at the sphagnum
and eriophorum sites, where water table levels were above
or near the peat surface (Bäckstrand et al., 2008, 2010). The
palsa site is relatively dry and its CH4 flux is near zero (Bäck-
strand et al., 2008). For each plot, an autochamber system
measured CO2 and total hydrocarbon (THC) fluxes every
3 h, and there were eight measurements per day. CH4 fluxes
were manually observed approximately three times per week
by taking samples from every chamber and these measure-
ments were used to quantify the proportion of CH4 in the
measured THC (Bäckstrand et al., 2008, 2010). Daily NEE
and CH4 fluxes were calculated as average values of eight
measurements. From 2003 to 2009, valid rates of daily NEE
were calculated for 85–213 days in a year based on the field
measurements. Daily CH4 fluxes were available for 79–116
days in a year, with an exception in 2006 when the instru-
ment was down (Bäckstrand et al., 2008, 2010). In addition,
soil thaw depth (measured to 90 cm) and water table depth

(WTD) were measured 3–5 times per week from early May
to mid-October each year (Bäckstrand et al., 2008). Daily
meteorological data, including air temperature, precipitation,
solar radiation, wind speed, as well as relative humidity, were
recorded at the ANS (Fig. 1). The technical details regard-
ing the measurements of NEE and CH4 fluxes, and the rel-
evant auxiliary variables were described by Bäckstrand et
al. (2008, 2010).

2.2 Modification of DNDC

2.2.1 Overview of the DNDC model

DNDC is a process-based model developed for quantifying
C sequestration as well as the emissions of carbon and nitro-
gen (N) gases from terrestrial ecosystems (Li et al., 1992a,
b, 2000; Stange et al., 2000; Zhang et al., 2002). The model
has incorporated a relatively complete suite of biophysical
and biogeochemical processes, which enables it to compute
the complex transport and transformations of C and N in ter-
restrial ecosystems under both aerobic and anaerobic condi-
tions.

DNDC is comprised of six interacting submodels: soil cli-
mate, plant growth, decomposition, nitrification, denitrifica-
tion, and fermentation. The soil climate, plant growth, and
decomposition submodels convert the primary drivers, such
as climate, soil properties, vegetation, and anthropogenic ac-
tivity, into soil environmental factors, such as soil temper-
ature and moisture, pH, redox potential (Eh), and substrate
concentrations. The nitrification, denitrification, and fermen-
tation submodels simulate C and N transformations that are
mediated by soil microbes and controlled by soil environ-
mental factors (Li, 2000; Li et al., 2012). In DNDC, NEE
is calculated as the difference between net primary produc-
tion (NPP) and soil microbial heterotrophic respiration (HR).
NPP is simulated at a daily time step by considering the ef-
fects of several environmental factors on plant growth, in-
cluding radiation, air temperature, soil moisture, and N avail-
ability. The model simulates the production of plant litter and
incorporates the plant litter into pools of soil organic mat-
ter (SOM). HR is calculated by simulating decomposition of
SOM. SOM is divided into four pools in DNDC, namely lit-
ter, microbes, humads, and passive humus. Each pool is fur-
ther divided into two or three subpools with specific C to
N (C/ N) ratios and decomposition rates. As a microbially
mediated process, decomposition of each SOM fraction de-
pends on its specific decomposition rate as well as soil ther-
mal and moisture conditions (Li et al., 2012). Methane flux
is predicted by modeling CH4 production, oxidation, and
transport processes. CH4 production is simulated by calculat-
ing substrate concentrations (i.e., electron donors and accep-
tors) resulting from decomposition of SOC as well as plant
root activities including exudation and respiration, and then
by tracking a series of reductive reactions between electron
donors (i.e., H2 and dissolved organic carbon) and acceptors
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Figure 1. Daily average air temperature, wind speed, precipita-
tion, and solar radiation from 2002 to 2009. Data were recorded
at Abisko Scientific Research Station (ANS).

(i.e., NO−

3 , Mn4+, Fe3+, SO2−

4 , and CO2). In DNDC, CH4
production and oxidation can occur simultaneously within a
soil layer but within relatively aerobic and anaerobic micro-
sites, whose volumetric fractions are defined by an Eh cal-
culator, a so-called “anaerobic balloon”, embedded in the
model framework (Li, 2007). Redox potential, temperature,
and pH, along with the concentrations of electron donors and
acceptors, are the major factors controlling the rates of CH4
production and oxidation. CH4 is transported from soil into
atmosphere via plant-mediated transport, ebullition, and dif-
fusion (Fumoto et al., 2008; Zhang et al., 2002).

2.2.2 Soil freeze–thaw and permafrost dynamics

Traditionally, DNDC simulated the soil thermal dynamics by
means of a relatively simple module without detailed pro-
cesses describing the soil thermal regime in the presence of
permafrost. It did not explicitly simulate energy exchange
within soil–vegetation–atmosphere system, snowpack ther-
mal dynamics, the presence of permafrost, or active layer
dynamics (Zhang et al., 2002). However, these processes or
environmental factors are important for characterizing the
permafrost regime, soil thermal dynamics, soil hydrology, or
C and N cycles in high latitudes (e.g., Riseborough et al.,
2008; Waelbroeck, 1993). In order to make DNDC more suit-
able for northern ecosystems, especially frozen soil condi-
tions, we incorporated a permafrost model, NEST, into the
model framework (Zhang et al., 2012). NEST is a process-
based model which simulates ground thermal dynamics, soil
freeze–thaw dynamics, and permafrost conditions (Zhang et
al., 2003). In NEST, soil temperature and the permafrost
thermal regime are calculated by solving the heat conduc-
tion equation, with the upper boundary condition determined
by surface energy balance and the lower boundary condi-
tion being defined as the geothermal heat flux. The effects

of climate, vegetation, snow pack, ground features, and hy-
drological conditions on the soil thermal regime are incor-
porated into the model on the basis of energy and water ex-
changes within soil–vegetation–atmosphere system (Zhang
et al., 2003, 2005). To ensure that DNDC simulates per-
mafrost environmental factors and biogeochemistry in syn-
chrony, NEST’s functions, which describe soil thermal and
hydrologic regimes, were embedded into the framework of
DNDC at the model code level. After coupling to NEST,
DNDC was able to simulate both the seasonal dynamics of
active layer and the long-term variations of permafrost as
well as their impacts on biogeochemical processes (Zhang
et al., 2012). Therefore, the model should better serve inves-
tigations of impacts of climate change on C fluxes in high-
latitude ecosystems.

2.3 Model application

We performed DNDC simulations for the three typical
Stordalen land cover types (palsa, sphagnum, and eriopho-
rum) from 2002 to 2009. Daily meteorological data (i.e.,
maximum, mean, and minimum air temperature, precipita-
tion, solar radiation, wind speed, and humidity) from 2002
to 2009 recorded at the ANS were collected to support the
simulations. All sites had a surface soil layer of peat (0.5 m)
overlying a silt soil layer (Rosswallet al., 1975; Rydeńet al.,
1980; Olefeldtet al., 2012). The peat had a bulk density of
0.15 g cm−3, SOC content of 0.5 kg C kg−1 SDW (soil dry
weight), total porosity of 0.9, field capacity of 0.4 (water-
filled pore space), wilting point of 0.15 (water-filled pore
space), and pH (H2O) of 5.0, according to observations from
Malmer and Wallén (1996), Rydén et al. (1980), and Öquist
and Svensson (2002). The local bedrock is granite (Rosswal-
let al., 1975) and a thermal conductivity of 2.9 W m−1 ◦C−1

was used (Clauser and Huenges, 1995). The geothermal heat
flux in the study region was estimated to be 0.06 W m−2 (Ma-
jorowicz and Wybraniec, 2011).

While the three land cover types share common conditions
regarding weather, geology, and soil during the simulations,
they differ in soil hydrologic conditions and vegetation char-
acteristics. In order to predict the dynamics of water table at
the sphagnum and eriophorum sites, DNDC used several pa-
rameters to estimate lateral flows, including surface inflow
rate, maximum water table depths for surface and ground
outflows, and surface and ground outflow rates (Zhang et
al., 2002). We estimated these parameters by comparing the
modeled and observed WTD (Table 1). To reduce the influ-
ence of WTD prediction error on soil thermal and biogeo-
chemical processes, the observed WTDs were used during
the simulations if the measurements were available, and the
simulated WTDs from this calibrated model were used to in-
terpolate daily values between observations. WTD observa-
tions at the sphagnum and eriophorum sites were made on
about one-third of the days across seven growing seasons
from 2003 to 2009. For the palsa site, we assumed that there
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Table 1. The hydrological parameters used for modeling lateral
flows∗.

Sites SIR SOD (m) SOR GOD (m) GOR

Sphagnum 1.0 0 1.0 0.25 0.01
Eriophorum 2.0 −0.05 0.3 0.05 0.01

∗ SIR, surface inflow rate, the fraction (m m−1) of rainfall (or water from snow
melt) flowing into the site from its surroundings; SOD, surface outflow depth, the
water table (WT) depth (positive for below ground and negative for above ground)
above which surface lateral outflow occurs; SOR, surface outflow rate, the fraction
(m m−1) of water above the SOD which will be lost as surface outflow per day;
GOD, ground outflow depth, the deepest WT depth above which ground outflow
occurs; GOR, ground outflow rate, the fraction (m m−1) of water above the GOD
which will be lost as ground outflow per day. These hydrological parameters were
determined by calibrating against data sets of water table depth.

is no surface lateral inflow and water will flow away each
day when the water table is above the land surface or wa-
ter infiltrates into frost table, based on local studies (Rydeń
et al., 1980). DNDC also requires phenological and physio-
logical parameters to simulate plant growth, including max-
imum biomass production and its partitioning to shoot and
root, vegetation C/ N ratio, required thermal degree days for
vegetation growth, plant water requirement, and an index of
biological N fixation. These parameters for the three land
cover types were determined either based on the literature
or as model defaults (Table 2).

To initialize the soil climate conditions, the soil thermal
and hydrological modules of DNDC were iteratively run by
using the climate data in 2002 until the simulated annual
mean soil temperature was stable. Then the vegetation and
soil biogeochemical modules were activated and the model
was run continuously from 2002 to 2009. (Note that soil ini-
tial conditions have only a small influence on DNDC out-
put as compared to other factors; therefore, although we did
not turn on the vegetation and soil biogeochemical modules
during the initialization of soil climate conditions, potential
errors in soil initial conditions due to this were small.) We
validated the model by using the measured soil thaw depth,
NEE, and CH4 fluxes; using the sign convention that positive
values represent net CO2 or CH4 emissions into the atmo-
sphere and negative fluxes represent net CO2 or CH4 uptake.
Two statistical indexes, the relative root-mean-squared error
(RRMSE, Eq. 1) and the correlation coefficient (R, equation
2), were used to quantity the accordance and correlation be-
tween model predictions and field observations (Moriasi et
al., 2007).

RRMSE=
100

|o|

√∑n
i=1 (pi − oi)

2

n
, (1)

R =

∑n
i=1 (oi − o)(pi − p)√∑n

i=1 (oi − o)2
∑n

i=1 (pi − p)2
. (2)

In both equations,oi and pi are the observed and simu-
lated values, respectively;o and p are their averages; and

n is the number of values. In addition, we decomposed
the root-mean-squared error into systematic and unsystem-
atic components by using the ordinary least-squares (OLS)
method (Willmott, 1982; Willmott et al., 1985). The sys-
tematic and unsystematic root-mean-squared errors (RMSES
and RMSEU) were calculated using Eqs. (3) and (4), respec-
tively:

RMSES =

√∑n
i=1 (p̂i − oi)

2

n
, (3)

RMSEU =

√∑n
i=1 (pi − p̂i)

2

n
. (4)

In both equations,̂pi is an OLS estimate ofpi and is derived
from the regression ofpi on oi by using the ordinary least-
squares method (Willmott, 1982; Willmott et al., 1985).

To quantify the differences of C fluxes for the three land
cover types across the permafrost thaw gradient, we ana-
lyzed the simulated annual NEE and CH4 fluxes from 2003
to 2009. The CH4 fluxes from dry palsa were assumed to be
zero (Bäckstrand et al., 2008). We calculated net emissions
of greenhouse gases (GHG) for the three land cover types as
CO2 equivalents by using a 100-year global warming poten-
tial (GWP) of 25 kg CO2-eq. kg−1 CH4 (IPCC, 2007). In ad-
dition, we estimated the possible impacts of permafrost thaw
on C fluxes and GHG emissions for the Stordalen mire based
on the model results and changes in the fractions of the three
land cover types from 1970 to 2000.

3 Results and analyses

3.1 Model validation

3.1.1 Thaw depth

Figure 2 shows the seasonal dynamics of the observed and
simulated thaw depth from 2003 to 2009. As field obser-
vations demonstrate, thaw rates varied across the three land
cover types. At the palsa site, the maximum thaw depth usu-
ally ranged from 45 to 60 cm during the summer seasons
from 2003 to 2009, while the soil was often thawed to greater
than 90 cm (i.e., below the maximum depth of observations)
by August or September at the sphagnum site and by June or
July at the eriophorum sites. Therefore, the thaw rates were
relatively slow, moderate, and rapid at the palsa, sphagnum,
and eriophorum sites, respectively. In comparison with the
observations, the DNDC model generally captured the differ-
ences of thaw depth across the three land cover types as well
as their seasonal dynamics (Fig. 2). The simulations showed
that the dry palsa site had an active layer thickness of around
55 cm. The thaw depth reached deeper than 100 cm by the
end of July to September at the semiwet sphagnum site and
by June or July at the wet eriophorum site.
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Table 2.The physiological parameters used for simulating plant growth.

Sites MPa SRFb C/ Nc TDDd WRe Vascularity NFIf

Palsa 1000 0.35/0.65 90 1500 100 0 1.0
Sphagnum 1200 0.7/0.3 90 1500 100 0 1.1
Eriophorum 2500 0.5/0.5 90 1500 100 1 1.5

a MP, the maximum productivity under optimum growing conditions (kg C ha−1). The values were estimated
from Rosswall et al. (1975), Malmer and Walleń (1996), and Malmer et al. (2005).
b SRF, the shoot and root fractions. The values were estimated from Ström and Christensen (2007) and Olsrud
and Christensen (2011). Note that the vegetation at the sphagnum site is not 100 % moss.
c C/ N, carbon-to-nitrogen ratio of the plant biomass. The values were estimated from Aerts et al. (1992, 2001).
d TDD, the required accumulated air temperature heat sum above a 0◦C threshold during the growing season
(unit: ◦C •day) for full vegetation growth.
e WR, amount of water required by the plant (g water g−1 dry matter).
f NFI, index of biological nitrogen fixation.

The model results demonstrated that rate of summer thaw
accelerated along the gradient of soil moisture. At the palsa
site, the modeled maximum thaw depth ranged between 50
and 60 cm during the summer seasons from 2003 to 2009,
while the soil was often thawed to greater than 90 cm by Au-
gust at the sphagnum site and by June or July at the erio-
phorum sites. Because water-filled pores have higher ther-
mal conductivity than air-filled pores, DNDC simulated the
low, moderate, and high values of thermal conductivity at the
dry palsa, semiwet sphagnum, and wet eriophorum sites, re-
spectively, which consequently resulted in the slow, moder-
ate, and fast rates of summer thaw at these three sites. This
explanation is consistent with the conclusion based on the
local field study (Rydén and Kostov, 1980). However, a few
discrepancies remained between the modeled and observed
results, primarily in the soil thaw dynamics at the sphagnum
site, where DNDC overestimated the thaw rate during the
late periods of soil thaw in most years (Fig. 2h–n). Never-
theless, the comparisons between the simulations and obser-
vations indicated that DNDC can reliably predict differences
in the dynamics of soil thaw at the three land cover types
at Stordalen, which is crucial for correctly simulating the im-
pacts of permafrost thaw on soil hydrology, plant growth, and
biogeochemical processes.

3.1.2 NEE

Figure 3a–g illustrate the observed and simulated daily NEE
at the palsa site. The daily observations were highly variable
and showed a clear seasonal cycle across 2003 to 2009, with
net CO2 uptake increasing in early summer, CO2 uptake most
days during mid-summer and net CO2 emissions in late sum-
mer and in autumn. In comparison with the measurements,
DNDC generally captured the magnitude and seasonal char-
acteristics of daily NEE, although discrepancies existed. The
R values were calculated for each year and ranged from 0.40
to 0.69 (Fig. 3a–g), indicating that there were significant cor-
relations between the simulated and observed daily NEE in
each year (P < 0.0001). Table 3 lists the observations and
simulations on the cumulative NEE for the seven growing

periods from 2003 to 2009. The observed cumulative NEE
ranged from−435 to−241 kg CO2-C ha−1 and the modeled
values ranged from−414 to−265 kg CO2-C ha−1. The cal-
culated RRMSE values varied between 3 and 25 % (mean:
13%) across the seven growing seasons and the discrepancies
between the simulations and observations were less than the
standard deviations of the observed cumulative NEE in each
year (Table 3). These results indicate that DNDC success-
fully simulated the cumulative NEE during growing seasons.

At the sphagnum site, the simulated and observed seasonal
variations of daily NEE were similar across 2004 to 2009.
Both the simulations and observations showed that net CO2
uptake increased in early summer, prevailed most days dur-
ing mid-summer, and decreased to net CO2 emissions in late
summer and in autumn (Fig. 3i–n). The similar patterns sug-
gest that the DNDC model generally captured the seasonal
fluctuations of daily NEE over 2004 to 2009, although dis-
crepancies existed in each year. However, it seems system-
atic biases appeared in 2003. For example, the field obser-
vations showed high net uptake rates of CO2 from 25 May
to 22 June in 2003, while the model predicted lower rates
(Fig. 3h), primarily because of limitations of low solar ra-
diation, air temperature (the mean was 6.0◦C between 25
May and 22 June), and soil temperature on plant productiv-
ity. Nonetheless, the modeled and observed daily NEE were
significantly correlated in all years (P < 0.001 in 2003 and
P < 0.0001 in other years), andR values ranged from 0.32
to 0.78 (Fig. 3h–n). The predicted cumulative NEE ranged
from −521 to−203 kg CO2-C ha−1 over seven growing sea-
sons. The results are consistent with the corresponding ob-
servations, which ranged from−525 to−212 kg CO2-C ha−1

(Table 3), with the discrepancies between the simulations and
observations close to or less than the standard deviations of
the observed cumulative NEE in each year. The values of
RRMSE ranged from 1 to 17 %, with a mean of 6 % over
2003 to 2009 (Table 3).

At the eriophorum site, both the simulated and observed
daily NEE showed similar seasonal patterns across the stud-
ied years, except for 2004 (Fig. 3o–u), with net CO2 uptake
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Figure 2. Simulated and observed seasonal dynamics of thaw depth at the palsa(a–g), sphagnum(h–n), and eriophorum(o–u) sites from
2003 to 2009. The entire soil layer was thawed at the beginning of field observations (in mid-June) at the eriophorum site in 2007(s).

increasing in early summer, CO2 uptake most days during
mid-summer and net CO2 emissions in late summer and in
autumn. TheR values ranged from 0.39 to 0.74, which indi-
cates significant (P < 0.0001) correlations between the mod-
eled and measured daily NEE in each year from 2003 to
2009. However, we also note systematic deviation between
the simulations and measurements in 2004. In this year, the
field observations showed persistent low net uptake rates of
CO2 during the period of late May to the end of June, while
the model predicted an increasing trend of net CO2 uptake
(Fig. 3p), because of increasing solar radiation, air tempera-
ture, soil temperature, and soil thaw depth. At the eriopho-
rum site, the observed daily uptake rates of CO2 were usu-
ally higher than that at the palsa and sphagnum sites during
summer (Fig. 3). The DNDC model captured the differences
across these three sites, and the magnitudes of the simulated
NEE were comparable with the corresponding observations.
The simulations of growing season cumulative NEE ranged

from −1078 to −365 kg CO2-C ha−1 from 2003 to 2009,
which were close to the observations (ranging from−1118 to
−270 kg CO2-C ha−1). The RRMSE values ranged from 1 to
35 % (mean: 15 %) over the period 2003 to 2009 (Table 3).
The discrepancies between the simulated and observed cu-
mulative NEE were less than the standard deviations of the
observations in each year from 2003 to 2007, which indi-
cates DNDC reliably simulated the growing season cumula-
tive NEE over these years. However, the discrepancies were
larger than the standard deviations of the observed cumula-
tive NEE in 2008 and 2009 (−571 vs.−471± 76 kg C ha−1

in 2008, and−365 vs.−270± 59 kg C ha−1 in 2009), sug-
gesting that the model may have overestimated the CO2 up-
take during the growing season in these 2 years.

3.1.3 Water table and CH4 fluxes

As shown in Fig. 4a–g, WTDs (with positive values for above
ground and negative values for below ground) fluctuated
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Table 3.Comparison of the modeled (M) and observed (O) net ecosystem exchanges (NEE, in kg C ha−1) of CO2 during growing periods
at the palsa, sphagnum, and eriophorum sitesa.

Year Palsa Sphagnum Eriophorum

Ob M RRMSEc O M RRMSE O M RRMSE

2003 −330[264] −414 25 −394[59] −326 17 −1118[219] −1078 4
2004 −241[269] −265 10 −441[73] −452 2 −815[449] −870 7
2005 −338[369] −347 3 −525[69] −521 1 −741[450] −980 32
2006 −386[283] −319 17 −356[27] −330 8 −1034[94] −1019 1
2007 −338[187] −353 4 −436[114] −424 3 −930[208] −980 5
2008 −399[263] −328 18 −264[79] −288 9 −471[76] −571 21
2009 −435[129] −380 13 −212[75] −203 4 −270[59] −365 35

a The growing period in this study is defined as the periods during which measurements of continuous net CO2 uptake were available. To calculate the total
NEE over the growing period in each year, fluxes for the days lacking measurements were determined using the arithmetic mean fluxes of the two closest days
when observations were performed. Daily fluxes from either direct measurements or gap filling were then summed up to calculate the growing period
cumulative NEE.
b Each figure number within brackets is the standard deviation of three (palsa and sphagnum) or two (eriophorum) replicate autochamber plots.
c RRMSE, relative root-mean-squared error, %.Figure 3 1142 
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Figure 3. Simulated and observed daily net ecosystem exchange (NEE) of CO2 (mg C m−2 day−1) at the palsa(a–g), sphagnum(h–n), and
eriophorum(o–u) sites from 2003 to 2009. The correlations between the simulated and observed daily NEE were significant for all cases
(P < 0.0001, except for(i), whereP < 0.001). The observed data are the means of three (palsa and sphagnum) or two (eriophorum) chamber
replicates and, for reasons of clarity, standard deviations are not shown. Note that the vertical axis scales for NEE are different across the
three sites.
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Figure 4. Simulated (lines) and observed (dots) water table dynamics(a–g), daily CH4 fluxes (mg C m−2 day−1) at the sphagnum(h–n)
and eriophorum(o–u) sites from 2003 to 2009. The correlations between the simulated and observed daily CH4 fluxes were significant for
all cases (P < 0.0001). The observed CH4 fluxes are the means of three (sphagnum) or two (eriophorum) chamber replicates and standard
deviations are not shown for reasons of clarity. Because of instrument problems (Bäckstrand et al., 2008), observed data were not used for
model evaluation in 2006. Note that the water table depths at both the sphagnum and eriophorum sites are shown in the panels(a–g)and the
vertical axis scales for CH4 fluxes are different between the two sites.

between−30 and 0 cm at the sphagnum site, while were gen-
erally near or above the ground surface at the eriophorum
site.

Figure 4h–n compare the observed and simulated daily
CH4 fluxes at the sphagnum site. As illustrated by Fig. 4h–
n, the simulated seasonal patterns of daily CH4 fluxes were
close to the observations during the six studied years from
2003 to 2009 (excluding 2006, which had no data), with
the highest peak appeared in August or September in both
the simulations and field measurements. In addition, DNDC
simulated small spikes of CH4 emission a few days after
snowmelt and during the post-growing season, which also

agreed with the observations (Fig. 4l–n). The simulated early
CH4 flux spikes were induced by snowmelt and thaw of sur-
face soil layer, which created water saturation in surface peat
and thereby supported CH4 production and emission. The
high fluxes predicted during the post-growing season oc-
curred during occasional thaw of the surface soil layer dur-
ing the early freezing stage, which provided pathways of re-
leasing for both newly produced methane and methane ac-
cumulated in the soil profile. TheR values ranged between
0.63 and 0.89 over the 6 years (Fig. 4h–n), which indicates
the simulated seasonal variation of daily CH4 fluxes was sig-
nificantly correlated with the observed seasonal variation in
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each year (P < 0.0001). The similar patterns and significant
correlations between the simulated and observed daily CH4
fluxes suggest that DNDC generally captured the observed
seasonal characteristics of CH4 fluxes, despite a few remain-
ing inconsistencies. The modeled results indicated that the
temporal patterns of CH4 fluxes were primarily controlled by
soil temperature and the changes of WTD at the sphagnum
site. Simulated daily CH4 fluxes were positively correlated
with soil temperature (P < 0.0001) when WTDs were closer
to the peat surface than−10 cm (Fig. 5a). Simulated daily
CH4 fluxes were also positively correlated with the WTDs
(P < 0.0001) if the mean of peat layer (0–50 cm) tempera-
ture was higher than 2.0◦C (Fig. 5b). Of the six tested sam-
pling periods, the simulated cumulative CH4 fluxes varied
from 12.7 to 35.7 kg CH4-C ha−1, comparable with the ob-
servations, which varied from 9.7 to 30.6 kg CH4-C ha−1 (Ta-
ble 4). The values of RRMSE ranged from 4 to 35 %, with a
mean of 21 % (Table 4). The comparison demonstrates that
the discrepancies between the simulated and observed cumu-
lative CH4 fluxes were close to or less than the standard de-
viations of the observations in each year.

At the eriophorum site, the observed CH4 fluxes usu-
ally started to increase early in the growing season, with
high peaks appearing between July and September. Then
the CH4 fluxes decreased during the rest of growing season
(Fig. 4o–u). The simulated seasonal patterns of daily CH4
fluxes were comparable with the observations, with a gen-
erally increasing trend from the early growing season un-
til mid-summer in each year, when the fluxes reached rel-
atively high levels. Then the simulated CH4 fluxes started
to decrease (Fig. 4o–u). The correlations between the mod-
eled and measured daily CH4 fluxes were statistically sig-
nificant (P < 0.0001) in each year, withR values ranging
from 0.47 to 0.89 over the 6 years. These results suggest
that DNDC approximately matched the observed daily CH4
fluxes over the six studied years from 2003 to 2009 (exclud-
ing 2006), although discrepancies existed in each year. How-
ever, it seems systematic biases existed in 2008. DNDC un-
derestimated the magnitudes of CH4 fluxes in 2008 and had a
relatively later onset of emissions than observations (Fig. 4t).
The modeled results demonstrated that the temporal patterns
of CH4 fluxes at the eriophorum site were mainly related to
the changes in soil temperature and the associated variations
of plant growth and soil decomposition, because of the in-
undated conditions at this site, which generated constantly
wet anaerobic conditions suitable for CH4 production. Sim-
ulated daily CH4 fluxes were positively correlated with soil
temperature (Fig. 5c,P < 0.0001), and we did not find any
correlation between the simulations of daily CH4 fluxes and
WTD (Fig. 5d). This conclusion is consistent with the field
results (e.g., Bäckstrand et al., 2008; Jackowicz-Korczyński
et al., 2010). As illustrated by Fig. 4h–u, the observed daily
CH4 fluxes at the eriophorum site were generally higher than
that at the sphagnum site. DNDC captured the differences
between these two sites. Of the six tested sampling peri-

ods, the observed cumulative CH4 fluxes ranged from 57.9
to 121 kg CH4-C ha−1, while the modeled results varied from
45.5 to 113 kg CH4-C ha−1. The RRMSE values ranged from
3 to 22 %, with a mean of 12 % across these six periods (Ta-
ble 4). The discrepancies between the simulations and ob-
servations were close to or less than the standard deviations
of the observed cumulative CH4 fluxes over the studied years
except for 2003 and 2008, which indicates a good accordance
between the simulations and observations of CH4 fluxes over
these years. However, the discrepancy was larger than the
standard deviation of the observed cumulative CH4 fluxes in
2003 and 2008 (76.4 vs. 91.8± 10.5 kg C ha−1 in 2003, and
45.3 vs. 57.9± 4.42 kg C ha−1 in 2008), suggesting that the
model may have underestimated the cumulative CH4 fluxes
in these 2 years.

3.2 Annual C fluxes and net greenhouse gas emissions

In this section, we review simulated annual (not growing sea-
son) NEE and CH4 fluxes at the palsa, sphagnum, and erio-
phorum sites from 2003 to 2009. The simulated annual total
NEE varied from−132 to+56.5 (palsa; mean:−50.9),−492
to −191 (sphagnum; mean:−342), and−1021 to −399
(eriophorum; mean:−793) kg CO2-C ha−1 yr−1, and inter-
annual variability of NEE increased with increasing magni-
tude (Fig. 6a). The predictions of annual total NEE were dif-
ferent across the palsa, sphagnum, and eriophorum sites and
primarily resulted from differences in environmental condi-
tions, including soil temperature, thaw regime (Fig. 2), soil
moisture content (Fig. 4a–g), and vegetation characteristics
(as indicated by the different physiological parameters used
for simulating plant growth, Table 2). DNDC predicted the
highest uptake rates of CO2 at the eriophorum site, primar-
ily due to (1) the highest value of the maximum produc-
tivity under optimum growing conditions (Table 2); (2) the
fastest soil thaw rate (Fig. 2), which was favorable for wa-
ter and nitrogen uptake; and (3) a permanently high water
table (Fig. 4a–g), which restricted soil heterotrophic respi-
ration and provided abundant water for plant transpiration.
The lowest rates of annual total NEE were simulated at the
palsa site, primarily because of (1) the lowest value of the
maximum productivity under optimum growing conditions
(Table 2), (2) the slowest soil thaw rate and limited summer
thaw depths (Fig. 2), and (3) a relatively dry soil which re-
stricted plant transpiration and was comparatively favorable
for soil decomposition.

From 2003 to 2009, the simulations of annual total CH4
fluxes ranged from 17.9 to 42.2 (sphagnum; mean: 32.8) and
72.2 to 125 (eriophorum; mean: 104) kg CH4-C ha−1 yr−1.
As with NEE simulations, interannual variability of CH4
fluxes increased with increasing annual means (Fig. 6a). The
annual total CH4 fluxes were different across the sphagnum
and eriophorum sites (Fig. 6a). Simulated CH4 fluxes were
higher at the eriophorum site than the sphagnum site due
to (1) increased rates of CH4 production due to higher soil
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Table 4. Comparison of the modeled (M) and observed (O) CH4 fluxes (in kg C ha−1) during six study periods at the sphagnum and
eriophorum sitesa.

Year Sphagnum Eriophorum

Ob M RRMSEc O M RRMSE

2003 17.2[5.2] 12.2 29 91.8[10.5] 76.4 17
2004 30.6[8.0] 24.3 21 121[14.7] 105 13
2005 25.1[4.7] 24.1 4 108[60.6] 101 7
2007 30.4[7.5] 35.7 18 116[22.2] 113 3
2008 9.7[4.2] 13.1 35 57.9[4.42] 45.3 22
2009 23.2[7.5] 27.5 18 111[21.7] 101 9

a The study period is the span during which continuous measurements of daily CH4 fluxes were
available. To calculate the total CH4 emissions over the sampling period in each year, fluxes for the
days lacking measurements were determined using the arithmetic mean fluxes of the two closest
days when observations were performed. Daily fluxes from either direct measurements or gap filling
were then summed up to calculate the cumulative CH4 emissions over the sampling period.
b Each figure number within brackets is the standard deviation of three (sphagnum) or two
(eriophorum) replicate autochamber plots.
c RRMSE, relative root-mean-squared error, %.Figure 5 1148 
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Figure 5.Relationships between simulated CH4 fluxes and average soil (0–50 cm) temperatures, as well as water table depths at the sphagnum
(a–b)and eriophorum(c–d)sites. The results shown in(a) and(c) are for periods with water table depth above−10 cm; the results shown in
(b) and(d) are for periods with average soil temperature (ST, 0–50 cm)> 2◦C. The relationships shown in(a), (b), and(c) were significant
(P < 0.0001).

temperature and faster thaw rate, (2) a higher water table that
supported CH4 production while restricting CH4 oxidation,
(3) higher plant growth rates and consequently more sub-
strates (e.g., CO2 and dissolved organic carbon) used for CH4
production, and (4) accelerated rates of CH4 transport due to
increased plant vascularity.

Annual net C fluxes were calculated as the sum of annual
total NEE and CH4 fluxes in this study (i.e., horizontal loss
of dissolved organic carbon was not considered). Because the
CH4 component was assumed to be zero at the palsa site,
the simulated annual net C fluxes were equal to annual NEE
(range:−132 to 56.5 kg C ha−1; mean:−50.9 kg C ha−1) at
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Figure 6. Simulated net ecosystem exchange (NEE) of CO2, CH4
fluxes, net carbon fluxes, and net emissions of greenhouse gases
(GHG) at the palsa, sphagnum, and eriophorum sites. The CH4
fluxes from the dry palsa site were assumed negligible (here 0),
based on field observations. Data are means of annual total fluxes
from 2003 to 2009. Vertical bars are standard deviations of annual
total fluxes from 2003 to 2009 and indicate interannual variations
of C gas fluxes.

this site. Simulations of annual net C fluxes ranged be-
tween−462 and−163 (mean:−309) and between−934
and −488 (mean:−689) kg C ha−1 at the sphagnum and
eriophorum sites, respectively, from 2003 to 2009. These
results illustrated that C uptake rates increased along the
permafrost thaw gradient at Stordalen (Fig. 6b). Net GHG
emissions, expressed as CO2 equivalents, were calculated
by considering more powerful radiative forcing potential of
CH4 than CO2 (25 times over a 100-year horizon). The
simulated annual GHG at the palsa site varied from−485
to 207 kg CO2-eq. ha−1 yr−1, with a mean of−186 kg CO2-
eq. ha−1 yr−1 from 2003 to 2009. At the sphagnum and
eriophorum sites, the annual GHG ranged from−806 to
377 and−849 to 1905 kg CO2-eq. ha−1 yr−1, respectively,
and the corresponding means were−162 and 562 kg CO2-
eq. ha−1 yr−1, respectively. Therefore, the modeled results
demonstrated that, for the wetter eriophorum site, higher
CH4 emissions offset its larger net C sink, and the palsa site

was a larger net sink of CO2 equivalents than the eriophorum
site (Fig. 6b).

3.3 Possible changes of C fluxes due to
permafrost thaw at Stordalen

Interpretation of aerial images of Stordalen showed that the
area of “hummock” (palsa) cover declined from 9.2 to 8.3 ha,
while the area of “semiwet” and “wet” (sphagnum) cover
increased from 6.0 to 6.2 ha, and “tall graminoid” (erio-
phorum) cover increased from 1.3 to 2.0 ha from 1970 to
2000 (Malmer et al., 2005; T. Johansson et al., 2006). These
changes in vegetation cover indicate a trend toward a wetter
ecosystem probably as a direct consequence of permafrost
thaw at Stordalen. Given that soil thaw rate accelerated under
wet conditions (Fig. 2), this trend toward a wetter ecosystem
(i.e., from palsa into sphagnum or eriophorum) may further
accelerate permafrost degradation. By applying the modeled
annual CO2 and CH4 fluxes to these changes in vegetation
cover areas, we estimated an increase of 578 kg C yr−1 (or
35 kg C ha−1 yr−1 for the study area of 16.5 ha) in CO2 up-
take and an increase of 79 kg C yr−1 (or 4.8 kg C ha−1 yr−1)

in CH4 emission from 1970 to 2000 at Stordalen. Using a
100-year GWP value for methane, the net impact due to
the vegetation change is a net CO2-equivalent emission of
527 kg CO2-eq. yr−1; in other words, the warming impact of
increased CH4 emission more than offsets the cooling impact
of increased CO2 uptake at the mire. If these fluxes from veg-
etation cover areas (1970 vs. 2000) were to persist for one
to two centuries, an analysis with a simple model of atmo-
spheric perturbation radiative forcing (Frolking et al., 2006)
shows that the different atmospheric lifetimes of CO2 and
CH4 are such that the CO2 sink would overcome the CH4
emissions in terms of instantaneous radiative forcing and the
climate impact of this vegetation change would eventually
switch to a net cooling after about 120 years. Note that the
simulated C fluxes over winter are not well constrained by
field data at this time.

4 Discussion

4.1 Validation of DNDC

In this study, we applied the new version of DNDC to simu-
late soil freeze–thaw dynamics and C fluxes across three typ-
ical land cover types (i.e., palsa, sphagnum, and eriophorum)
at Stordalen, Sweden, which are considered to represent a
gradient of permafrost thaw (T. Johansson et al., 2006; Bäck-
strand et al., 2010). Both field observations and DNDC simu-
lations showed significant differences in C fluxes across these
three land cover types and the simulated rates of seasonal cu-
mulative C fluxes were comparable with the corresponding
measurements for most cases (Tables 3 and 4). These results
indicate that the model successfully captured the differences
in C fluxes among these land cover types. In addition, the

Biogeosciences, 11, 4753–4770, 2014 www.biogeosciences.net/11/4753/2014/



J. Deng et al.: Assessing effects of permafrost thaw on C fluxes 4765

model generally captured the magnitudes and temporal dy-
namics of soil thaw, NEE, and CH4 fluxes (Figs. 2, 3, and
4). The model validation suggests that the enhanced DNDC
can potentially be used to predict impacts of permafrost thaw,
but cannot yet independently simulate subsequent changes in
soil hydrology and vegetation, which influence C dynamics
in northern peatlands. We also note some discrepancies be-
tween the modeled results and the field measurements.

Compared to daily observations of NEE, DNDC overesti-
mated CO2 uptake rates (i.e., predicted more negative NEE)
on a few days during the growing seasons (Fig. 3), which
may have resulted from over-prediction of photosynthesis,
causing DNDC to predict higher NPP. Because meteorolog-
ical data at the ANS (10 km northwest of Stordalen) were
used to support the simulations and photosynthesis is closely
related to climate factors, deviations in predicting daily vari-
ability in photosynthesis may be caused by lacking site-
specific data. Local observations also demonstrated that me-
teorological conditions were different between Stordalen and
ANS (Olefeldt and Roulet, 2012; Rydén, 1980). These differ-
ences inevitably affected model simulations of C fluxes. We
further calculated the RMSES and RMSEU for daily NEE
(Table 5). The results demonstrate that systematic errors ac-
counted for 11, 25, and 23 % of the mean-square errors in
daily NEE at the palsa, sphagnum, and eriophorum sites, re-
spectively. Therefore the discrepancies between the modeled
and measured NEE could be primarily attributed to random
components, including absence of site-specific data. How-
ever, we also note systematic discrepancies between the mod-
eled and observed NEE at both the sphagnum and eriopho-
rum sites. Inconsistent with field data in other years, high net
uptake rates of CO2 occurred at the sphagnum site during
the period of 25 May to 22 June in 2003 (Fig. 3h–n), even
though solar radiation, air temperature, and soil temperature
were low (Fig. 1) and soil thaw depth was shallow (Fig. 2h),
causing DNDC to predict lower uptake rates. At the eriopho-
rum site, the model predicted an increasing trend of net CO2
uptake (Fig. 3p) from late May to the end of June in 2004
because of the increases in solar radiation, air temperature,
and soil thaw depth, while the field observations showed per-
sistent low net CO2 uptake rates. Further studies are needed
to clarify the differences in seasonal characteristics of NEE
between 2003 and other years at the sphagnum site, as well
as the inconsistencies between the predictions and observa-
tions.

DNDC approximately matched the observed daily CH4
fluxes at both the sphagnum and eriophorum sites (Fig. 4).
However, we also note a few inconsistencies between the
simulations and observations (e.g., in 2003 at the sphag-
num site and in 2008 at the eriophorum site). Model pa-
rameters for soil and vegetation characteristics were derived
from a number of studies done at Stordalen since the Inter-
national Biosphere Program in the early 1970s (Sonesson
et al., 1980). Because these parameters have strong influ-
ences on soil climate, plant growth, and soil biogeochemistry

Table 5.The systematic and unsystematic root-mean-squared errors
(RMSES and RMSEU) between the modeled and observed daily net
ecosystem exchanges (NEE) of CO2 and CH4 fluxes at the palsa,
sphagnum, and eriophorum sites.

Sites NEE CH4 fluxes
(mg C m−2 day−1) (mg C m−2 day−1)

RMSES RMSEU RMSES RMSEU

Palsa 140 405
Sphagnum 119 206 4.7 8.4
Eriophorum 298 545 16.7 46.6

in DNDC, potential biases in inputs could affect model re-
sults, including CH4 fluxes. The calculations of RMSES and
RMSEU (Table 5) also demonstrate that most of the mean-
square errors in daily CH4 fluxes were attributable to random
errors, including deviations resulting from biases in model
inputs, at both the sphagnum (76 %) and eriophorum (89 %)
sites.

In addition, it should be noted that the modeled C fluxes
over winter periods remain uncertain because observations
utilized for model validation were primarily available during
growing seasons. DNDC simulations demonstrated that C
fluxes during non-growing season substantially contributed
to annual C fluxes at Stordalen. From 2003 to 2009, the
means of accumulated CO2 emissions over non-growing sea-
sons were 342, 32.8, and 101 kg CO2-C ha−1, respectively,
at the palsa, sphagnum, and eriophorum sites. Local field
studies also indicated that net CO2 emissions over winter
periods significantly contributed to annual NEE at both dry
and wet areas (Bäckstrand et al., 2010; Christensen et al.,
2012) and accumulation of net CO2 emissions during winter
may have made the dry palsa site a net annual CO2 source
(Bäckstrand et al., 2010). The simulations of average accu-
mulated CH4 fluxes over non-growing seasons were 9.8 and
13.8 kg CH4-C ha−1 at the sphagnum and eriophorum sites,
representing 30 and 13 % of mean annual emissions. In the
wet area dominated by tall graminoid vegetation, field mea-
surements demonstrated that CH4 emissions over winter ac-
counted for approximately 19 % of the annually emitted CH4
(Jackowicz-Korczýnski et al., 2010). These results indicate
that further tests are necessary to verify the model’s predic-
tions of C fluxes during winter periods.

Although the modeled C fluxes were tested against field
measurements with encouraging results, we note that un-
certainty may exist in simulating individual processes in C
transformations. For example, methane flux is predicted by
DNDC as the net result of CH4 production, oxidation, and
transport processes. Validating simulations of CH4 emission
against field measurements did not evaluate the DNDC’s sim-
ulation of these three processes individually. One approach
for testing/constraining simulation of the individual pro-
cesses is to include stable isotopes and isotope fractionation
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during the processes of methanogenesis (acetate fermenta-
tion and CO2 reduction), methane oxidation, and methane
transport (e.g., Chanton et al., 2005; Corbett et al., 2013).
This is planned for future model development.

4.2 Permafrost thaw and C fluxes

Our modeled results provide some indications on how
C fluxes will change with ongoing permafrost thaw at
Stordalen. If the palsa evolves into sphagnum or eriophorum
during permafrost thaw, the mire may be able to sequester
more atmospheric C, considering the higher rates of net C
uptake shown at the sphagnum or eriophorum sites (Fig. 6b).
However, increases of net C uptake were positively corre-
lated with increases of CH4 emissions across the thaw gradi-
ent at Stordalen (Fig. 6), indicating that permafrost thaw will
generate a tradeoff of GHG. If the net impact is calculated
using the GWP methodology (e.g., Shine et al., 1990), then
the balance depends on the relative rate of changes in CO2
uptake and CH4 emissions and the time horizon chosen for
the GWP calculation (e.g., Frolking and Roulet, 2007; Whit-
ing and Chanton, 2001).

By applying the modeled C fluxes to the areal changes
of land cover types at Stordalen, we estimated that the net
impact due to the vegetation change is a net CO2 equiva-
lent emission of 527 kg CO2-eq. yr−1 from 1970 to 2000 at
Stordalen. However, it should be noted that this result was
calculated by assuming constant annual emissions (equal to
the means simulated by DNDC from 2003 to 2009) between
1970 and 2000 and the modeled results showed obvious in-
terannual variability in both NEE and CH4 fluxes (Fig. 6),
and it is not known when during the period of 1970–2000 the
land cover change occurred. If the net impact is calculated
by considering the interannual variability of C fluxes, the es-
timation of a net CO2 equivalent emission from 1970 to 2000
is not significantly (P = 0.07) higher than zero. T. Johansson
et al. (2006) also used a 100-year GWP value for methane but
treated their “wet” cover somewhat differently – equivalent
to “semiwet” (sphagnum) for NEE due to similarity in veg-
etation composition, but with a higher value for CH4 emis-
sion as it was an inundated area. Because the “wet” area was
nearly 30 % of the study region and expanded from 1970 to
2000, T. Johansson et al. (2006) estimated that the mire was a
GHG source in terms of CO2 equivalents to the atmosphere,
and they reported an increase of 47 % in net radiative forc-
ing from 1970 to 2000 by considering the fluxes during the
growing season. Our analysis estimated that the mire was a
GHG sink due to a lower value for CH4 emission in “wet” ar-
eas, and yielded an overall decrease of 27 % in net radiative
cooling from 1970 to 2000. The differences and uncertainties
in these interpretations illustrate an important scaling chal-
lenge – how many land cover classes are needed and what
are the most important distinctions to consider? This can be
evaluated in future analyses by comparison of up-scaling flux
by aerial fractions of land cover with multiyear eddy covari-

ance tower fluxes. Flux towers are now operating at Stordalen
under the European Integrated Carbon Observation System
(ICOS) program (Paris et al., 2012).

4.3 Modeling impacts of permafrost thaw on C fluxes

The modeling of impacts of permafrost thaw on C fluxes is in
a very early stage, and much additional work is required for
a more complete treatment of all of the processes involved.
As shown in this and other studies (e.g., Olefeldt et al., 2013),
NEE and CH4 fluxes are strongly controlled by the soil water
regime and vegetation characteristics, which stresses the im-
portance of considering changes in soil hydrology and veg-
etation when predicting responses of C turnover to climate
change in permafrost ecosystems. Although changes in wet-
land cover and vegetation have been observed along with per-
mafrost degradation in northern peatlands (e.g., Goetz et al.,
2011; Smith et al., 2005), most modeling work that predicts
impacts of climate change on C turnover is based on static
distribution of wetlands and vegetation (Bohn and Letten-
maier, 2010). Therefore biases may result from neglecting
changes in the water table regime and vegetation transitions
along with permafrost thaw. In this study, we determined dif-
ferent soil water conditions for the three land cover types at
Stordalen by combining the observed WTD and the hydro-
logical module of DNDC. The required hydrological param-
eters were estimated by calibrating against WTD data sets
(Table 1). While these parameters were empirically deter-
mined, they are consistent with the general topography of
Stordalen, with the palsa surface elevated 0.5–2.0 m above
the eriophorum surface and the sphagnum surface at inter-
mediate elevation (Olefeldt and Roulet, 2012). However, it
should be noted that sufficient WTD data are required for
calibrating these hydrological parameters if the model is to
be applied to other peatlands. Although different WTD and
vegetation characteristics were used as inputs for different
land cover types to represent changes in soil water regime
and vegetation along with permafrost thaw at Stordalen, it
would be ideal to incorporate these changes dynamically into
the model’s framework for better understanding of how per-
mafrost thaw affect landscape wetness and how this in turn
affect vegetation and C fluxes. Our efforts of incorporating
a permafrost model should provide a sound approach for the
model to incorporate the processes related to changes in soil
water regime and vegetation along with permafrost thaw, al-
though important additional processes are needed in a com-
prehensive biogeochemical model that is fully functional for
northern ecosystems.

5 Conclusions

Climate warming and associated permafrost degradation are
expected to have significant impacts on the C balance of
permafrost ecosystems, but the magnitude is uncertain. We
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incorporated a permafrost model, NEST, into a biogeochem-
ical model, DNDC, to model C dynamics in high-latitude
ecosystems. The enhanced DNDC model was applied to as-
sess effects of permafrost thaw on C fluxes of a subarctic
peatland at Stordalen, Sweden. DNDC simulated soil freeze–
thaw dynamics and C fluxes across three typical land cover
types (i.e., palsa, sphagnum, and eriophorum) at Stordalen,
which span a gradient in the processes of permafrost thaw.
Model results were tested against multiyear field measure-
ments. The model validation indicates that DNDC was able
to capture differences in seasonal soil thaw, NEE, and CH4
fluxes across the palsa, sphagnum, and eriophorum sites at
Stordalen. In addition, the simulated magnitudes and tempo-
ral dynamics of soil thaw, NEE, and CH4 fluxes were in gen-
eral agreement with field measurements. Consistent with the
results from field studies, the modeled C fluxes across the
permafrost thaw gradient demonstrate that permafrost thaw
and the associated changes in soil hydrology and vegetation
not only increase net uptake of C from atmosphere but also
increase the radiative forcing impacts on climate due to in-
creased CH4 emission. By using the modeled annual C fluxes
and reported areas of vegetation cover in 1970 and 2000, we
estimated that the Stordalen mire was a net GHG sink (using
a 100-year GWP value for methane) and yielded an overall
decrease of 27 % in net radiative cooling from 1970 to 2000.
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