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ABSTRACT

AN INVESTIGATION OF GENETIC VARIATION WITHIN NORTHWEST 

ATLANTIC PORPHYRA (BANGIALES, RHODOPHYTA) WITH SPECIFIC 

PHYLOGEOGRAPHIC ANALYSIS OF THE COMMON, ROCKY INTERTIDAL

SPECIES, PORPHYRA UMBILICALIS 

by

Brian William Teasdale 

University of New Hampshire, September, 2004

To investigate the phylogeography of the rocky intertidal red alga, Porphyra 

umbilicalis Kiitzing, a restriction fragment polymorphism assay (RFLP) of the ribulose 

bisphosphate carboxlase large subunit (rbcL) was developed to accurately distinguish P. 

umbilicalis from the other morphologically similar species in the North Atlantic. Initial 

screening of -800 Porphyra specimens resulted in the additional discovery of a cryptic 

Porphyra taxon.

The presence and variability of group-I introns of the ribosomal small subunit 

(SSU) were screened in North Atlantic species of Porphyra in order to assess whether 

they could be biogeographically informative. In an initial screening for the helix 50 

intron, using flanking primers with the Polymerase Chain Reaction, the intron was 

detected in some, but not all, individuals within populations and across species. The 

amplified intron also exhibited variable sizes between and within species. Sequence
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analysis of the helix 50 introns revealed conserved blocks of nucleotides between introns 

of different species and highly variable regions that were species-specific. Additional 

screenings of the ribosomal small subunit (SSU) from a collection of Northwest Atlantic 

Porphyra were conducted for the presence of the helices 21 and 50 introns. However, 

instead of using two flanking primers, the second screening used an internal primer 

(located within either the helix 50 or helix 21 intron) and a nearby flanking primer in the 

SSU.; Using these primers the frequency of detecting the intron in individual algal 

samples increased significantly (>90%). Although phylogenetic analysis of the helix 50 

intron in select Northwest Atlantic Porphyra are generally similar to previously reported 

SSU phylogenies, some differences in topology suggest that horizontal transmission of 

the intron between species may have occurred. In contrast to previous studies in which 

the helix 50 intron was detected only in fraction of the accessions, an intraspecific survey 

using combined external and internal primers detected the helix 50 intron in all 28 

samples of Porphyra umbilicalis collected across the geographic range of the species. A 

survey of P. umbilicalis also revealed that the helix 50 introns were present in two 

different sizes (710 bp and 1188 bp). The sequence of the larger version of the helix 50 

intron encodes a His-Cys open reading frame that has been associated with mobility of 

group-I introns in other organisms.

The Helix 50 group-I intron and internal transcribed spacer (ITS) regions of the 

SSU were investigated in order to reconstruct the biogeographic history P. umbilicalis 

since the last glacial maximum. Statistical parsimony was used to estimate gene 

genealogies at the population level. Based on the assumption that the last glacial 

maximum caused extinction of Northwest Atlantic P. umbilicalis populations, the ITS

xi
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variation patterns are in congruence with a postglacial recolonization event from 

European refugia. The group-I intron polymorphisms appear to confirm the ITS patterns, 

but a greater divergence between intron haplotypes indicate that the locus has a higher 

mutation rate than ITS, which increases its biogeographic resolution. A non-coding 

intergenic region between the mitochondrial cytochrome oxidase (cox) 2 and cox3 genes 

was also investigated but exhibited extremely low levels of intraspecific variation.

Finally, a hybrid capture method was used to isolate sequences containing 

dinucleotide repeats in a search for microsatellite markers for Porphyra umbilicalis. 

Sixteen clones were selected because they contained between 16 and 49 dinucleotide 

repeats with sufficient flanking sequence to design primers for PCR amplification of the 

locus. An initial screening of 16 primer pairs using six geographically distant P. 

umbilicalis isolates demonstrated that all microsatellite-containing loci isolated were 

monomorphic. However, several primer sets supported amplification of size variants in 

four related species (P. linearis, P. purpurea, P. leucosticta, and P. amplissima).

xii
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INTRODUCTION

Phylogeography, a sub-discipline of biogeography, is an area of study concerned 

with the processes and principles governing the geographic distributions of genealogical 

lineages, especially those within and among closely related species (Avise, 2000). This 

dissertation investigates genetic variation within the red algal genus Porphyra C. Agardh 

(Bangiophycidae, Rhodophyta), with emphasis upon the endemic North Atlantic taxon 

Porphyra umbilicalis (L.) Kiitzing. Overall, the goal of this study was to determine if 

contemporary geographic distributions and intraspecific genealogies could be used to 

track evolutionary footprints of this common North Atlantic red alga.

Porphyra or “nori” is one of the most extensively studied seaweeds due to its 

economic importance as a valuable food resource. Currently, it represents the most 

profitable marine algal aquaculture product, with nori being used for wrapping the near- 

ubiquitous sushi. In Japan, the nori market yields about 10 billions sheets of Porphyra 

annually with estimated annual sales of 1.8 billion U.S. dollars (Jensen, 1993). With 

increased production of nori in the Republic of Korea and China for “fish feed,” 

Porphyra makes up the majority of the 5.5-6.0 billion dollar seaweed industry (Saga and 

Kitade, 2002; McHugh, 2003). In addition to its food use, Porphyra has been shown to 

be a good source of taurine (Noda et al., 1975), which controls blood cholesterol levels 

(Tsujii et al, 1983). Additionally, Porphyra has become a commercial source of the red 

pigment r-phycoerythrin that is used as a fluorescent “tag” for DNA and microscopic 

evaluations.

1
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Recently, Saga and Kitade (2002) suggested that Porphyra be designated a model 

organism for genetic studies in the Rhodophyta, given that several of its biological 

features are typical of model organisms: Porphyra has a short, annual life cycle; a small 

number of chromosomes (2-7; Cole, 1990); and a small genome size (approximately 2.7- 

5.3x10s bp; Kapraun et al, 1991; Le Gall et al, 1993). The genome size is similar to that 

of the model angiosperm Arabidopsis thaliana (L.) Heynh.

Porphyra is classified in the family Bangiaceae, which includes only one other 

genus, Bangia. Approximately 140 species of Porphyra have been described (Silva,

1999; Yoshida et al., 1997), but recent taxonomic investigations (Brodie and Irvine,

1997; Broom et al., 2002; Klein et al., 2003; Kornmann and Sahling, 1991; Neefus et al., 

2002) suggest that this number is an underestimation of the diversity in the genus.

Despite its economic value, relatively little is known about the population genetics, 

phylogeny, and biogeography of Porphyra and other bangialean red algae.

Description of Porphyra umbilicalis

As it is unclear whether Friedrich T. Kiitzing or Carl Linnaeus first described 

Porphyra umbilicalis, different authorships of this species have been given including: 

Porphyra umbilicalis Kiitzing, P. umbilicalis (L.) Kiitzing, and P. umbilicalis (L.) J. 

Agardh. Based on Linneaus’s incorrect assignment of P. umbilicalis to the unrelated 

taxon, Ulva umbilicalis Linnaeus, Kiitzing appears to have first described P. umbilicalis, 

with his description of the taxon in the 1843 publication of Phycologia generalis (Silva, 

1999, Neefus, pers. comm.).

2
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The geographical distribution of Porphyra umbilicalis includes the western North 

Atlantic coast from Greenland, Hudson Bay, and Labrador to Virginia (Taylor, 1957; 

Zaneveld, 1972; South and Tittley, 1986; Bird and McLachlan, 1992; Sears, 2002), and 

along the eastern North Atlantic coast from Iceland and Norway south to the 

Mediterranean Sea (Bprgesen, 1903; Bird and McLachlan, 1992; Brodie et al, 1998; 

Brodie and Irvine, 2003). Porphyra umbilicalis has also been identified in the Caribbean 

(Taylor, 1960), southeast Atlantic (John et al., 1979), southwest Atlantic (Taylor, 1960), 

northwest Pacific (Perestenko, 1994), and northeast Pacific (Scagel, 1957). Based on 

recent assessments of P. umbilicalis collections by S. Lindstrom (pers. comm.) and 

misidentification of some samples that were collected for this dissertation it is assumed 

that the range of P. umbilicalis is limited to the North Atlantic. Thus, all putative P. 

umbilicalis samples collected outside of the North Atlantic should be closely scrutinized 

and re-evaluated for species identification.

Porphyra umbilicalis is found from the high supralittoral zone downwards to the 

mid-eulittoral zone. It appears throughout the year as an aseasonal annual (Conway, 

1964, Kommann and Sahling, 1991; Mathieson and Hehre, 1986). The macroscopic 

haploid phase consists of a monostromatic blade with dark olive-green coloration of 

variable gradations. The specific epithet umbilicalis is a Latin derivative of umbilicatus, 

meaning navel-shaped or having a small central depression or hollow. The thallus is 

typically rounded, has a central holdfast and a rubbery texture, and measures 30-85 pm, 

thick and as much as 35 cm long or wide (Bird and McLachlan, 1992; Sears, 2002; see 

Figure 1).

3
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Although most Porphyra species are generally considered to have a bi-phasic life 

history alternating between a gametophytic blade and a microscopic, shell-boring 

sporophytic “conchocelis” phase (Mitman and van der Meer, 1994), it has been suggested 

that P. umbilicalis might exhibit both a bi-phasic (Figure 2a) and a "direct" life history 

(Figure 2b). In the direct life history, blades are produced immediately after carpospore 

germination (Kommann and Sahling, 1991; Yarish, pers. comm). Adding to this 

uncertainty about its life history, P. umbilicalis has been considered dioecious, with 

separate male and female blades. However, Taylor (1957) described both monoecious 

and dioecious fronds. I believe most of the uncertainty that has occurred with respect to 

incongruities about the cytology, life history, ecology, and morphology of P. umbilicalis 

can be attributed to misidentification of this taxon. For example, P. umbilicalis has been 

confused with P. birdiae, P.leucosticta and P. purpurea in descriptions ofNorthwest 

Atlantic material (Bird and McLachlan, 1992, Neefus et al., 2002; Klein et al., 2003). 

Such problems usually occur when the thallus being studied is vegetative, while 

reproductive plants are more easily identifiable to species by their marginal "whitish" 

fringe, which distinguishes P. umbilicalis from P. purpurea and P. birdiae.

This dissertation consists of a series of related projects designed to evaluate the 

phylogeography of Porphyra umbilicalis in the North Atlantic. Each chapter is intended 

to stand alone, yet collectively they aim to enhance our understanding of the historical 

processes that may have led to the divergence of P. umbilicalis populations in the North 

Atlantic.

Chapter I describes a molecular assay that was developed based upon species- 

specific DNA markers in the chloroplast genome to assist in the sorting and identification

4
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of North Atlantic Porphyra. The content of this chapter was previously published in the 

Journal of Applied Phycology, volume 14, 2002. The methodology was essential to the 

phylogeographic studies that are outlined in Chapters II and III of this dissertation.

Chapter II describes an investigation of the distribution and evolution of group-I 

introns in the nuclear ribosomal small subunit gene (SSU) of North Atlantic Porphyra 

species, with particular emphasis upon intraspecific variation in P. umbilicalis. Initial 

studies of group-I introns in Porphyra (Oliveira and Ragan, 1994, Oliveira et al., 1995) 

suggested that their higher rate of variation, relative to SSU, might prove useful for 

population-level investigations. Thus, chapter II provides an important understanding of 

intron identification and variation within Porphyra. The above information was required 

before using group-I introns and the variable ribosomal internal transcribed spacer (ITS) 

sequences for subsequent phylogeographic analysis.

Chapter III addresses two main biogeographic goals: first, by analyzing samples 

that represented the documented range of Porphyra umbilicalis, a molecular approach 

was used to evaluate the species genetic cohesiveness between the northeast and 

northwest Atlantic. Second, molecular data were compared with spatial and temporal 

characteristics to see whether the phylogenetic history of this species is consistent with its 

current biogeography. Both nuclear (Group-I Intron, ITS) and mitochondrial genomes 

(cytochrome oxidase spacer) were used for these analyses, based on their use in previous 

algal population studies and because they are easily accessible molecular markers.

Finally, Chapter IV details the isolation of microsatellite loci from Porphyra 

umbilicalis. Large numbers of hypervariable microsatellite markers would provide more 

resolution for population genetic and phylogeographic studies as compared to nuclear and

5
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mitochondrial genes used in Chapter III. In this chapter, a size-selective hybridization 

method was used to enrich and isolate sequences containing CA, GA, or TA dinucleotide 

repeats. Microsatellite sequences with adequate flanking sequence for primer 

development and a repeat motif of > 16 were screened against six P. umbilicalis 

individuals and four other Porphyra species for polymorphism.

6
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Figure. 1. Photographic example of foliose haploid blade of Porphyra umbilicalis.

1
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Figure 2. Schematics of two life-history types attributed to Porphyra umbilicalis. a. bi- 
phasic life history; b. direct life history. These two life histories correspond to 
Kornmann's (1994) Type 2 and Type 3 designations respectively. Single or double-lined 
arrows connect haploid or diploid parts of the life history, respectively. (Drawing adapted 
from Kornmann, 1994)._______________________________________________________
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CHAPTER I.

A SIMPLE RESTRICTION FRAGMENT LENGTH POLYMORPHISM (RFLP) 

ASSAY TO DISCRIMINATE COMMON PORPHYRA (BANGIOPHYCEAE, 

RHODOPHYTA) TAX A FROM THE NORTHWEST ATLANTIC.1

Abstract

The identification of Porphyra species has historically been difficult because of 

the lack of distinguishing morphological and ecological characters. A restriction 

fragment length polymorphism (RFLP) assay was developed based on inter-specific 

sequence variation in the ribulose bisphosphate carboxylase oxygenase large subunit 

(rbcL) gene and rbcL-rbcS intergenic spacer, in order to provide a simple and effective 

tool for screening and sorting large collections of Porphyra from the Northwest Atlantic. 

A single restriction digest (Hae III) discriminates between multiple Porphyra species, 

including one cryptic taxon; an additional enzyme {Hind III) was necessary to distinguish 

between the closely related P. leucosticta and an introduced species P. yezoensis.

1 This chapter is revised from an article published in the Journal o f Applied Phycology ©2002 Kluwer. 
Teasdale, B; West, A; Taylor, H. A.; Klein, A.S. A simple restriction fragment length polymorphism 
(RFLP) assay to discriminate common Porphyra (Bangiophycease, Rhodophyta) taxa from the Northwest 
Atlantic. Vol. 14, no. 4, pp.293-298.
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Introduction

Species identification for the red algal genus Porphyra (Bangiophyceae, 

Rhodophyta) is difficult due to its simple morphology and lack of descriptive characters 

(Lindstrom and Cole, 1992). Although 133 species have been described for this genus, 

several recent accounts suggest that this is an underestimation (Yoshida et al., 1997), 

particularly with Porphyra from the Northwest Atlantic (Bird and McLachlan, 1992).

Typically, the taxonomy of Porphyra has primarily relied upon morphological 

characters, including thallus size, shape, color, thallus thickness, cell dimensions, 

distribution of fertile tissues, and sequences of reproductive cell divisions. Although 

fertile Northwest Atlantic species can be recognized using these characters, vegetative 

specimens may be ambiguous and they are often misidentified. Such a morphology- 

based taxonomy has resulted in instances where both monoecious and dioecious fronds 

are attributed to the same species of Porphyra (Taylor 1957; Bird and McLachlan 1992) 

and different karyotypes have been recorded from a single taxon (Kapraun et al., 1991; 

Lindstrom and Cole, 1992; Mitman 1992; Mitman and van der Meer, 1994; Wilkes et al., 

1999). The occurrence of such reproductive and cytological inconsistencies suggests the 

presence of significant variability within the taxon, either at an intra- or inter-specific 

level. Accordingly, Lindstrom and Cole (1993) recommend that at least one non- 

morphological diagnostic character should be used to verify the identification of 

individual specimens. DNA-based molecular markers are efficient and powerful tools for
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providing the high-resolution diagnostic characters required for detailed taxonomic 

identifications.

The present study assessed the usefulness of a restriction fragment length 

polymorphism (RFLP) screen as a reliable and objective method for sorting vegetative 

and reproductive thalli of the genus Porphyra from the Northwest Atlantic. RFLPs have 

proven to be successful for this type of analysis in higher plants such as bamboo (Friar 

and Kochert, 1991), in fungi (Hibbett and Vilgalys, 1991) and more recently in 

delineating species of marine seaweeds (Goff and Coleman, 1988; Stiller and Waaland, 

1993, 1996; Gonzalez et al., 1996; Candia et al., 1999). The plastid-encoded gene, 

ribulose bisphosphate carboxylase oxygenase (rbch) and the rbch-rbcS intergenic spacer 

exhibit high levels of sequence divergence and they have been shown to be 

phylogenetically informative in the Rhodophyta at the family, genus, and species levels 

(Freshwater et al., 1994, Brodie et al., 1998, Muller et al., 1998). In the present study we 

characterize RFLP patterns for rbcL and the rbcL-rbcS intergenic spacer in several 

common North Atlantic species of Porphyra including: P. amplissima (Kjell.) Setch. Et 

Hus in Hus, P. suborbiculata Kjellman, P. linearis Grev., P. leucosticta Thuret in Le Job, 

P. miniata (C. Agardh) C. Agardh, P. purpurea (Roth) C. Agardh, and P. umbilicalis (L.) 

Kiitz. In addition we describe the rbch  RFLP pattern for one cryptic Northwest Atlantic 

Porphyra taxon, Porphyra sp. Herring Cove, as well as one Asiatic species, P. yezoensis 

Ueda that was introduced to northern Maine for aquaculture in the mid 1990’s, and an 

eastern North Atlantic species P. dioica J.Brodie et L.M.Irvine that can easily be 

confused with P. purpurea.
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Most taxa examined in this study were originally described from European type 

material and there is uncertainty as to whether the names have been correctly applied in 

the Northwest Atlantic. Hence the accessions from this study are designated in quotes 

(e.g. P. ‘linearis’) unless the sample has been compared by molecular means to type or 

epitype material (Brodie et al., 1998).2

Materials and Methods

Taxa sampling.

All samples were obtained from attached individuals at ecologically different sites 

throughout New England and the Canadian Maritime Provinces (New Brunswick and 

Nova Scotia) with the exception of Porphyra dioica (Wales, United Kingdom). Site 

locations and corresponding herbarium accessions are described for each taxa in 

individual GenBank citations (Table 1). Provisional identifications to species were made 

based on morphology using a variety of taxonomic references: Bird and McLachlan 

(1992), Brodie and Irvine (1997), Coll and Cox (1977), Kornmann (1986, 1994), 

Kornmann and Sahling (1991), Schneider and Searles (1991), Sears (1998), and Taylor 

(1957). Additional information about the ecology and seasonal occurrence of different 

taxa helped in the initial sorting of field samples.

2 For convenience, the single quotes surrounding the specific epithet will be omitted in the remaining 
chapters.
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Samples of tissue (0.1-.25 g) were ground in liquid nitrogen and genomic DNA 

was extracted using a standard CTAB method as modified in Stiller and Waaland (1993).

DNA amplification, sequencing and restriction site mapping.

A 1481 bp fragment, from position 67 (amino acid 23) of the large subunit of 

rbcL through the rbcL-rbcS intergenic spacer to the first codon of the small subunit, was 

amplified in a M. J. Research PTC-100 DNA Thermocycler (M. J. Research, Waltham, 

MA). Polymerase chain reactions (PCR) were performed in 50 pL volumes that 

contained 1-2 pL genomic DNA, 0.2 mM of each dNTP, 0.2 mM Mg2+, 0.4 pL of Taq 

DNA polymerase ( 5 U * p L P r o m e g a ,  Madison, Wis.), and IX Magnesium Free 

Reaction Buffer B (Promega) with 0.4 pM of the F67 and rbc-spc amplification primers 

(see below). The amplification profile began with an initial denaturation step of 93 °C 

for 3 min and was followed by 29 cycles of 30 sec at 93 °C, 1 min at 45 °C, and 1.5 min 

at 72 °C. The amplification concluded with a final extension at 72 °C for 10 min. For 

the amplification of the target sequence, a forward primer, F67 (5’- 

TACGCTAAAATGGGTTACTG) was developed from overlapping sequence of an 

earlier universal rbcL primer F57 outlined by Hommersand et al. (1994). Using the 

Lasergene™ suite of programs (DNASTAR Inc., Madison, WI), the reverse primer rbc- 

spc (5’-CACTATTCTATGCTCCTTATTKTTAT) was designed to selectively amplify 

Porphyra species (Table 2). PCR amplified products were sequenced with an A B I373 

Automated Sequencer, using standard procedures as outlined in Germano and Klein 

(1999). All sequences were submitted to the EMBL/GenBank Nucleotide Sequence 

database. Sequences were imported into Map Draw™ (DNASTAR Inc.) in order to
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identify informative restriction sites for specific enzymes. Restriction digests using Hae 

III and Hind III were carried out according to the manufacturer’s specifications. Twenty 

pL of PCR product were used in each 40 pL reaction. Fragments of all restriction digests 

were separated by electrophoresis on 2% agarose gels containing 1 pg/ml ethidium 

bromide. Both ®X/HaeIII marker (Promega) and uncut F67/rbc-spc PCR product (1481 

bp fragment) were used as molecular weight standards to verify the size of the restriction 

fragments. All gels were visualized under UV light.

Results and Discussion

As Porphyra typically grows in association with a variety of other macroscopic 

and microscopic algae it is difficult to insure that contaminating organisms are removed 

prior to tissue extraction. To ensure that the PCR primers amplified the rbch and rbcL- 

rbcS spacer from Porphyra, and not contaminating algal DNAs (where both rbch and 

rbcS are encoded in a single transcriptional unit in the plastid), the rbc-spc reverse primer 

was designed. A sequence alignment of the rbch-rbcS spacer from eleven Porphyra taxa 

(P. ‘amplissima’, P. ‘dioica’,P . ‘drachii’ Feldmann, P. ‘insolita’ Kornmann et Sahling,

P. ‘leucosticta P. ‘linearis P. ‘miniata P. ‘pseudolinearis ’ Ueda, P. ‘purpurea P. 

‘umbilicalis’, P. ‘yezoensis’), with three members of the Porphyridiales (Galdieria 

palmate Sentsova, Cyanidium caldarium (Tilden) Geitler, Cyanidioschyzon merolae De 

Luca, Taddei et Varano); the advanced red alga Palmaria palmata (L.) Kuntze 

(Palmariales); and a pennate diatom, Cylindrotheca sp. Rabenh. (Bacilariales) were used 

in the rbc-spc primer development (Table 2). A summary of the spacer sequence 

alignment and the reverse complement of the genus specific primer rbc-spc are given in
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Table 2. A degenerate base was incorporated into the primer sequence to compensate for 

the variation between Porphyra taxa at position 59 in the spacer. Although highly 

specific for Porphyra, the F67 and rbc-spc primers should also amplify the target region 

in the filamentous red algae Bangia, a sister genus that is paraphyletic to Porphyra 

(Muller et al., 1998). To increase amplification efficiency, the forward primer (F67) was 

developed as an alternative to the universal F57 primer described by Hommersand et.al. 

(1994). With all Porphyra templates tested to date, PCR amplification using the F67 and 

rbc-spc primers produced a single amplicon of ca. 1481 bp.

An initial version of the RFLP assay was based on predicted Hae III restriction 

sites of 1000 bp rbcL fragments. With the development of new amplification primers 

(F67, rbc-spc), the assay was modified to use the larger rbcL amplification product. The 

modification produced larger restriction fragments that were easier to resolve on 

conventional agarose gels. The rbcL sequences were extended to at least 1381 bp of the 

148 lbp PCR product in order to verify that the sizes of the observed restriction fragments 

corresponded to polymorphisms predicted by DNA sequence. Because template DNAs 

were not available for some of the original accessions, the rbch sequences of some 

species were extended using additional individuals of the same species. Species identities 

were confirmed for each new algal sample by single pass sequencing over the common 

region between the new and old PCR products (Table 1).

Restriction enzymes were evaluated on the basis of their ability to discriminate 

between the Porphyra species of interest and the production of size fragments that could 

be easily resolved using standard agarose gel separation. The fragment sizes produced in 

each species from two restriction enzymes are summarized in Table 1. All rbch PCR
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products were initially screened with the Hae III enzyme where the sizes of the restriction 

fragments for each species were confirmed to those predicted by sequence analysis 

(Table 1, Figure 1). In order to distinguish all of the various taxa in this study, a second 

Hind III restriction digest was used to distinguish closely related taxa (i.e. Porphyra 

deucosticta’ and P. ‘yezoensis’).

The rbcL RFLP assay was used to screen Porphyra DNA templates from 

Northwest Atlantic samples that were initially identified morphologically. Of these 

samples, a collection of Porphyra samples identified as P. ‘umbilicalis ’ from Herring 

Cove, Nova Scotia produced a unique rbcL Hae III restriction pattern as compared to 

other taxa (Table 1, Figure 1). The rbcL and rbcL-rbcS spacer from the Herring Cove 

sample was sequenced (GenBank Accession AF319460) and used to verify the fragment 

sizes from the rbcL Hae III digest. The sequence of Porphyra sp. Herring Cove was 

distinct when compared to all Porphyra taxa for which rbcL sequence was available on 

GenBank [BLASTN 2.2.1;(April 13, 2001); Altschul et a i,  1997], Whether Porphyra sp. 

Herring Cove is a new species or is a new record of a species previously described in 

other geographical regions requires additional taxonomic comparisons and sequence 

information.

Application of RFLPs for species-level comparisons has been employed in several 

studies of the Rhodophyta using both nuclear and plastid DNA. Goff and Coleman 

(1988) used total plastid DNA to demonstrate the effectiveness and utility of whole 

plastid genome RFLP patterns to distinguish red algal genera and species. However, the

3 Porphyra sp. Herring Cove has since been recognized as a new species, Porphyra birdiae (Neefus et al., 

2002).
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separation of plastid DNA from nuclear DNA is a time-intensive and expensive process 

that will often include contaminating mitochondrial or plasmid DNA. Stiller and 

Waaland (1993) utilized RFLPs of the PCR amplified small subunit ribosomal RNA gene 

from fifteen Porphyra species to show how species-specific RFLP patterns were useful in 

phylogenetic analysis; these RFLP patterns later helped distinguish a new species, 

Porphyra rediviva (Stiller and Waaland, 1996). Recently, the internal transcribed spacer 

(ITS) of the nuclear ribosomal cistron has been utilized with RFLP analysis to delineate 

species within the Gracilariales (Goff et al., 1994) and more specifically to distinguish 

between morphotypes of Gracilaria chilensis (Candia et al., 1999).

I believe the high level of inter-specific sequence variation within the rbch gene, 

combined with the specificity of restriction enzymes provide another important tool for 

distinguishing morphologically similar taxa. The rbch restriction fragment patterns from 

this assay accurately identified all previously recorded Northwest Atlantic Porphyra taxa 

(Bird and McLachlan, 1992, Klein et al., 2003), plus the Asiatic species P. ‘yezoensis’ 

and the European P. ‘dioica’ (Figure 1). Concurrent research (West, 2001) has shown 

how the use of this molecular screen using high throughput DNA extraction and PCR 

amplification method facilitates DNA identification methods in conjunction with field 

ecology studies. Thus, the rbch  RFLP assay allows reliable identification of immature or 

vegetative Porphyra specimens, plus cryptic species, resulting in a more accurate 

assessment of ecological data.
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Table 1. Restriction size fragments (in base pairs) for Hae III and Hind III enzymes'

Taxon GenBank accession numbers Hae III lliml III

Porphyra 'amplissima' AF021034 237 1244 1481

Porphyra suborbiculata

AF078743, AF4I4593, 

AF4I4594 237 533 711 194 12X7

Porphyra ‘dioica ' AF08I291 99 216 337 382 447 101 138(1

Porphyra 'leucosticta ’

AF078744, AF414597,

AF414598 58 179 521 723 MSI

Porphyra 'linearis'

AF078745, AF414597, 

AF414598 216 482 783 101 1380

Porphyra 'miniata'

AF021033, AF414599, 

AF414600 237 521 723 626 855

Porphyra 'purpurea'

AY028536, AF414603, 

AF414604 179 1302 101 I3R0

Porphyra 'umbilicalis'

AF078747, AF414601, 

AF414602 482 999 101 1380

Porphyra 'yezoensis' AF021032 58 179 521 723 538 943

Porphyra sp. Herring Cove AF319460 237 395 849 1481

Predicted from the com bined sequences.
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Table 2. The rbc-spc primer location across different algal divisions. Shaded areas 
represent differences from the consensus sequence. The underlined bases of the primer 
correspond to the first codon of the rbcS gene.

Species GenBank#

Porphyra ‘urnbilicalis’ AJ010782

Porphyra ‘yezoensis’ AJ010783

Porphyra 'leucosticta' AJ010789

Porphyra ‘miniata’ AJ010786

Porphyra ‘linearis’ AJ010781

Porphyra ‘amplissima' AJ010780

Porphyra ‘purpurea’ AJ010776

Porphyra ‘drachii’ AJ010788

Porphyra ‘pseudolinearis’ AJ010787 

Porphyra ‘insolita’ AJ010778

Porphyra ‘dioica’ AJO10779

Galdieria palmate AB018008

Cyanidium caldarium Z21723

Cyanidioschyzon merolae D63675 

Cylindrotheca sp. M59080

Palmaria palmata U28421

RBC-SPC  PRIM ER 

COM PLEM ENT

A A G G A G C A T A . G A A T A G J G  

A A G G A G C A T A . G A A T A G J G  

A A G G A G C A T A . G A A T A G J G  

A A G G A G C A C A  . G A A T A G J G  

A A G G A G C A T A . G A A T A G J G  

A A G G A G C A T A . G A A T A G J G  

A A G G A G C A T A . G A A T A G J G  

A A G G A G C A T A . G A A T A G J G  

A A G G A G C A T A . G A A T A G J G  

A A G G A G C A T A . G A A T A G J G  

A A G G A G C A T A . G A A T A G J G  

\  \ G  G AG T  A T A . A A A C A G J G  

I j AAGG A g | a ’I C T C W  \  . . O J G  

A G T C A A A C T A T G  \ G A G J G  

A AG G A G $ A  tW I g  A A T A G J G  

A A G G A G T A T A . G A A T A G J G

A . . T A A M A A T . . A A G G A G C A T A . G A A T A G T G

C T T A  . T A A A A A T

T A A C A A TC T T A .

T A A C A A TC T T A

T A A C A A TC T T A  .

T A A A A A TC T T A .

T A A A A A TC T T A

C T T A  . T A A B A A T

C T T A  . T A A C A A T

T A A C A A TC T T A  .

C T T A T A A C A A T

T A A A A A TC T T A

T A A

A A C 1 A T

C T T A AliSA A T

C T T G C  t

- >  3'
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Figure 1. RFLP patterns of the Porphyra rbcL gene and rbcL-rbcS spacer (1481 bp) 
using the Hae III restriction enzyme. Lane 1= standard of OX 174 DNA cut with Hae III 
(ordinate numbers indicate DNA size). Lane 2= Porphyra ‘amplissima’; 3= P. ‘dioica 
4= P. ‘leucosticta’, 5 - P. ‘linearis’; 6= P. ‘miniata’\ 1 -  P. ‘p u r p u r e a 8 = P. 
‘suhorhiculata’\ 9= P. ‘umbilicalis’] 10= P. ‘yezoensis 11. cryptic Porphyra taxa from 
Herring Cove,Nova Scotia, 12. uncut DNA. The diffuse band at the end of each lane 
represents excess primer.
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CHAPTER II

DISTRIBUTION AND EVOLUTION OF VARIABLE GROUP IINTRONS IN THE 

SMALL RIBOSOMAL SUBUNIT OF NORTH ATLANTIC PORPHYRA.

Abstract

Several studies of the red algal order Bangiales have identified putative group-I 

introns at helices 21 and 50 of the nuclear ribosomal small subunit (SSU). To examine 

the utility of these introns for biogeographic studies in the red alga Porphyra, several 

populations of Northwest Atlantic species were screened for the presence of group-I 

introns in the SSU rDNA. In an initial screening for the helix 50 intron, using flanking 

primers with the Polymerase Chain Reaction, the intron was detected in some but not all 

individuals within populations and across species. The amplified intron also exhibited 

variable sizes between and within species. Sequence analysis of the helix 50 introns 

revealed conserved blocks of nucleotides between introns of different species and highly 

variable regions that were species-specific. Additional screenings of Porphyra SSUs 

were conducted for the presence of the helices 21 and 50 introns. Instead of two flanking 

primers, an internal primer (located within either the helix 50 or the helix 21 intron) and a 

nearby flanking primer in the SSU were used for PCR amplification. In these second 

screenings, the frequency of detecting the intron in individual algal samples increased 

significantly (>90%). Although phylogenetic analyses of the helix 50 intron in select 

Northwest Atlantic Porphyra are generally similar to previously reported SSU
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phylogenies, some differences in topology suggest that horizontal transmission of the 

intron between species may have occurred. In contrast to several previous studies, an 

intraspecific survey using combined external and internal primers detected the helix 50 

intron in all 28 specimens of Porphyra umbilicalis collected across the geographic range 

of the species. The survey also revealed that the helix 50 introns were present in two 

different sizes (710 bp and 1188 bp). The sequence of the larger version of the helix 50 

intron encodes a His-Cys open reading frame that has been associated with mobility of 

group-I introns in other organisms.
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Introduction

Porphyra (C. Agardh) is a red algal genus within the subclass Bangiophycidae. 

The genus includes several economically important species that are used extensively as a 

food source for humans. Porphyra has a wide geographic range that includes most cold 

temperate marine waters in both the Northern and Southern hemispheres (Yoshida et al., 

1997). Because of a limited range of morphological variability, the systematic 

relationships of Porphyra species are still unclear. The genus, as currently 

circumscribed, consists of 140 species (Silva, 1999; Yoshida et al., 1997), with only two 

examples of subgenera classification (i.e., Displastidia and Diploderma\ Krishnamurthy, 

1972; Kurogi, 1972). Porphyra has also been shown to be paraphyletic with the genus 

Bangia (Muller et al., 1998), suggesting the need for an overall re-evaluation of the 

phylogeny in the Bangiophycidae.

Recent molecular systematic studies using the nuclear ribosomal small subunit 

(SSU) and the chloroplasts ribulose bisphosphate carboxylase (rbch) genes have been 

used to clarify phylogenetic relationships for many Porphyra species (Oliveira et al., 

1995; Kunimoto et al. 1999; Broom et al. 2002; Klein et al., 2003; Lindstrom and 

Fredericq, 2003). Additional studies have examined more variable regions of DNA, 

thereby providing useful information regarding the phylogenetic relationships between 

closely related species. In previous phylogenetic studies of Porphyra the nuclear internal 

transcribed spacer (ITS) and/or ribosomal introns have been utilized (Kunimoto et al., 

1999; Muller et al., 2001; Broom et al., 2002). Introns represent variable noncoding 

regions that are flanked by conserved coding regions. A recent study of volvocine green
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-8algae estimated an intron substitution rate of approximately 3X10"  per bp position per 

year, which is about 10-fold higher than the synonymous substitution rate in protein- 

coding regions and about 150-fold higher than in the more conserved rRNA genes (Liss 

et al., 1997). Thus, introns may provide useful information about intraspecific 

phylogenetic relationships.

Using primers designed to anneal to the conserved coding regions, polymerase 

chain reaction (PCR) amplification can be directed across the more variable intron 

regions (Slade et al., 1993). The method has been called Exon Primed Intron Crossing 

PCR or EPIC-PCR (Palumbi and Baker, 1994) and has been the primary method 

employed for intron detection and amplification.

Ribosomal RNA genes, which are found in all eukaryotes, are present in multi­

copy repeats and localized in one or more chromosomal regions known as the nucleolar 

organizer (Long and Dawid, 1980). Each tandem repeat is composed of an 18S (SSU), 

5.8S, 2S, and 28S (LSU) rRNA gene organized as a single transcription unit. The 

"rDNA" loci are subject to concerted evolution, a process that preserves sequence 

homogeneity within the array, but allows the sequence of the entire array to change over 

time (Amheim, 1983). Concerted evolution in the rDNA locus is believed to be driven by 

the recombinational mechanism of unequal crossing over and gene conversion (Szostak 

and Wu, 1980; Coen et al., 1982; Dover et al., 1982; Dvorak et al., 1987). When 

concerted evolution occurs, the actual mutation rate of the multi-copy locus would be 

masked by this homogenizing mechanism. Additionally, some organisms exhibit 

incomplete homogenization of the repeats at the intra- and inter- individual levels.

Factors that can interfere with the homogenization process include polyploidy,
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hybridization, asexual reproduction, and the presence of the ribosomal cistrons on more 

than one chromosome. When the rDNA occurs on different chromosomes, as multiple 

nucleolar organizers, the rates of concerted evolution across non-homologous 

chromosomes are much slower and lead to more intra-individual heterogeneity. All of 

these factors have been documented in a diverse array of organisms (Bobbola et al., 

1992; Sang et al., 1995; Wendel et al., 1995), as well as in algal species (Serrao et al., 

1999; Fama et al., 2000). Examples of incomplete homogenization of the ribosomal 

repeats, including the organization of the ribosomal repeats in one or more nucleolar 

organizers have yet to be established in Porphyra.

The red algal order Bangiales contains introns in the nuclear-encoded small 

subunit ribosomal RNA (SSU) genes (Oliveira and Ragan, 1994; Oliveira et al., 1995; 

Muller et al., 1998, 2001). Self-splicing RNAs (also known as ribozymes or Group-I 

introns) have been extensively studied in diverse organisms, including eubacteria, fungi, 

plants, and protists (Belfort, 1991; Damberger and Gutell, 1994; Gargas et al., 1995; 

Hibbett, 1996; Yamada et al., 1994). Although group-I introns have been found in 

different genes (De Wachter et al. 1992; Gargas et al. 1995), the majority of more than 

1000 group-I introns interrupt the SSU rRNA gene of protists and fungi at common sites 

within conserved sequence regions (Haugen et al., 2003)4. The two most frequently 

found intron insertion sites of the SSU gene are at base pairs 516 and 1506 [according to 

SSU rDNA gene sequence numbering of Escherichia coli (Migula).Castellani and 

Chalmers], which also correspond to the predicted secondary structure of E. coli at 

helices 21 and 50. Group-I introns are characterized by a conserved primary and
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secondary RNA structure (Kruger et al., 1982; Cech, 1990), which has allowed further 

classification of these introns into sub-groups (Michel and Westhof, 1990; Suh et al., 

1999).

The secondary structure of group-I introns has primarily been investigated in the 

ciliated protozoa Tetrahymena thermophila Nanney and McCoy, which contains a group- 

I intron in the large subunit (LSU) of its rRNA (Michel et al., 1982; Michel and Westhof, 

1990; Cech et al., 1994). Figure 1 illustrates the secondary structure of a “typical” group- 

I intron. All group-I introns are characterized by nine base-paired regions (P1-P9) along 

with four (P, Q, R, S) highly conserved internal elements (Burke, 1988; Burke et al., 

1987). The sub-groups are based on conserved similarities, which are usually 

characterized by additional sequences or secondary structures. Muller et al. (2001) 

characterized the bangialean ribosomal introns as belonging to the IC1 subgroup, the 

most common type of group-I introns. Sub-group IC1 introns are characterized by a lack 

of stems between the P7 and P3’ regions, the presence of a composite P9 region, a 

sequence conservation at the edge of P2.1, P3, and P8, and a segment connecting P7 and 

P8 stems that starts with an extra U (Myllys et al., 1999). Since group-I introns are not 

found in all organisms, considerable research has been conducted to understand the 

phylogenetic history and inheritance patterns of these introns.

The origin and evolution of group-I introns in nuclear ribosomal rDNA genes has 

been widely studied. The sporadic and broad distribution of group-I introns in the small 

and large subunits of the rDNA repeats and organelle genes of a wide variety of 

organisms, including Porphyra, suggests that intron sequences are highly successful at

4 The higher incidence of group-I introns in rDNA genes may be biased towards the popular use of rDNA
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invading and maintaining themselves in eukaryotic genomes (Battacharya et al., 1994, 

1996a; Battacharya 1998, Friedl et al., 2000). A study by Battacharya et al. (2001) 

showed through a diverse phylogeny of eukaryotic group-ICl introns that the origin of a 

helix 21 intron in bangiophyte red algae and a brown alga (Aureoumbra lagunensis 

Stockwell, DeYoe, Hargraves et Johnson) were specifically related. They concluded that 

it is unlikely that the group-ICl introns in the SSU were vertically inherited from a 

common ancestor of the red algae and brown algae because these algal lineages do not 

share a close evolutionary relationship (Battacharya et al., 2001). Further, their analyses 

suggested that lateral transfer may establish new intron lineages in different organisms 

and that, over time, these sequences may evolve into distinct secondary structure variants. 

Battacharya et al. (2001) concluded that more detailed analysis of group-I introns will 

provide valuable comparative data to elucidate intron transfer mechanisms and to 

understand group-I intron evolutionary history.

Several studies of group-I introns in the SSU rDNA of algae have been conducted 

with the following taxa: the brown alga Aureoumbra lagunensis (Bhattacharya et al., 

2001); the green algae Ankistrodesmus stipitatus (Chodat) Komarkova-Legnerova 

(Davila-Aponte et al., 1991), Characium saccatum Filarsky, Dunaliella parva Lerche, D. 

salina (Dunal) Teodoresco (Wilcox et al., 1992), Chlorella ellipsoidea Gemeck (Huss, 

Seidel, and Kessler, unpublished), and Scenedesmus pupukensis (Haugen et al., 1999), 

including numerous members of the Zygnematales (Bhattacharya et al., 1994, 1996b). In 

the red algae (Rhodophyta), the Bangiales are the only order besides the 

Florideophycidae taxon Hildenbrandia rubra (Sommerfelt) Meneghini in which the

sequences in phylogenetic analysis.
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presence of SSU group-I introns has been documented (Ragan et al., 1993). Oliveira and 

Ragan (1994) described the occurrence of a group-ICl intron in the 18S ribosomal RNA 

genes at helix 50 of Porphyra spiralis var. amplifolia Oliveira et Coll that differed in size 

based on three distinct populations. Both a flanking primer set and a combination of 

external and internal (intron) primer sets were used to amplify the intron and determine 

its size. Oliveira and Ragan (1994) also showed that by manipulating amplification 

conditions, the group-I intron insertion was detected less frequently and the occurrence of 

a minor “intronless” band could be seen; they further suggested that this was due to 

differing levels or “copies” of the intron in the SSU rDNA repeats of some individuals.

Using EPIC PCR, Kunimoto et al. (1999) detected a helix 50 group-I intron 

during their analysis of the 18S rRNA gene in wild and cultured strains of Porphyra 

yezoensis Ueda. However, only seven of the fifteen specimens sampled showed an 

intron. Of those introns detected, there were some instances in which the intron 

sequences were identical to other individuals at the same collection site {i.e., collection 

sites at Nanaehama and Shinori), while in others they were different {i.e., Ogatsu site) 

based on variable numbers of base substitutions and insertions/deletions. Kunimoto et al. 

(1999) also found intron size variants between individuals of the same taxon, much like 

the size variants described in P. spiralis var. amplifolia (Oliviera and Ragan, 1994). 

Kunimoto et al. (1999) suggested that the size variants might be useful for delineating 

strains of P. yezoensis. However, the low-level detection rate of the intron (7/15 of helix 

50) implied a limited utility of introns for strain identification.

Broom et al. (2002) amplified the helix 21 and helix 50 introns from Porphyra 

suborbiculata Kjellman using EPIC primers. The helix 21 intron was present in all eight
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individuals examined, whereas the helix 50 intron was not detected in four samples from 

Mexico and Japan; they also found a size variant of the helix 21 intron in one of their 

populations. Broom et al. (2002) also observed intraspecific sequence variation in the 

helix 50 intron (nine gaps and five nucleotide substitutions); this was less sequence 

variation than that found by Kunimoto et al. (1999) in isolates of P. yezoensis5 (16 gaps 

and eight substitutions).

Muller et al. (2001) surveyed the helices 21 and 50 group-ICI introns in a large 

number of species of the Bangiales to evaluate their phylogenetic utility and use for 

biogeographic studies; EPIC primers were used to amplify both introns, which were 

subsequently sequenced for phylogenetic analysis. The results of their survey showed 

that certain individuals lacked either one or both of the two group-I introns and that when 

detected there were size variants at both inter- and intraspecific levels. The interspecific 

sequence variation between taxa for both introns ranged from 0-44.3%. Based on the 

intron and rRNA phylogenies of the same accessions, Muller et al. (2001) hypothesized 

that the ribosomal group-I introns were vertically inherited and frequently lost in recently 

radiated taxa. In contrast to the intraspecific or biogeographic utility of the rDNA introns 

proposed by both Oliveira and Ragan (1994) and Kunimoto et al. (1999), Muller et al. 

(2001) concluded that they were not useful for biogeographic analysis between or within 

species of Porphyra or Bangia.

Hibbett (1996) examined the utility of internal primers when amplifying group-I 

introns in members of the homobasidiomycetes (mushroom forming fungi). While 

developing a PCR assay for intron detection, he found that by using a combination of

5 Unequal sample sizes between the two studies may have had an effect on the number of difference
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internal intron primers and flanking primers in the SSU, introns that would otherwise go 

undetected by EPIC PCR were amplified. Hibbett (1996) described two instances of 

false negative results in his assay of Lentinellus ursinus (Fries) R. Kiihner and L. 

montanus O. K. Miller. He attributed the failure of the intron amplification (using EPIC 

primers) to low copy numbers of intron-containing rDNA repeats and an artifact of PCR 

called template preference. Artifacts such as short-allele dominace6 have been well- 

documented in studies of microsatellite DNAs, specifically in the red alga Gracilaria 

gracilis Steentoft, L.M. Irvine and Farnham (Wattier, et al., 1998). Hibbett (1996) 

concluded that for any study focusing on the distribution of introns, it is essential to use 

intron-specific PCR primers to assess their presence or absence, especially for related 

taxa that are known to contain the intron.

The present study builds on earlier work of North Atlantic Porphyra population 

genetics (Klein et al., 2003) by surveying a large collection of Porphyra for the presence 

of group-I introns in the SSU and characterizing their size, structure, and utility for 

phylogeographic studies.7 Because Hibbett (1996) showed that rDNA primers may fail 

to reveal intron-containing rDNA repeats when they are present at low copy number, both 

flanking (EPIC) and internal “intron-specific” PCR primers were developed and used to 

screen for the helix 50 (Escherichia coli numbering position 1506; cf. Muller et al., 2001) 

18S nuclear ribosomal intron that have previously been characterized in Porphyra. An 

additional amplification of the helix 21 intron (Escherichia coli numbering position 516;

detected.
6 Sefc et al. (2003) found: 1) PCR fragment size had a strong influence on microsatellite amplification and 
2) PCR primers designed to amplify smaller fragments had a higher chance of success and repeatability.
7 An initial survey of group-I introns was carried out between 1998-1999 by Andrew West, a M.S. student 
in Genetics at the University of New Hampshire.
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cf. Muller et al., 2001) was performed using both a flanking and internal (intron) primer 

to screen for intron presence and the usefulness of the internal primer for intron detection 

This paper describes a survey of ribosomal introns among several North Atlantic 

Porphyra taxa and the Asiatic species P. yezoensis-, it also shows how the application of 

intron-specific primers enhances the detection of the introns within the SSU ribosomal 

gene. Additionally, helix 50 group-I introns were sequenced from representative species 

to evaluate their phylogenetic value. A widespread biogeographical sampling was done 

in one species, Porphyra umbilicalis Kiitzing, in order to examine the intraspecific 

variation within the intron and to determine whether variation within the helix 50 intron 

would be useful for phylogeographic studies.

Materials and Methods

Blades of Porphyra were collected8 from various locations (Appendix A) along 

the coast of New England and the Canadian Maritime Provinces. All samples were 

visually identified to species following methods detailed in Klein et al. (2003) and 

morphological identifications were confirmed using molecular methods, including direct 

sequencing, species-specific PCR, or an RFLP assay using the chloroplast ribulose 

bisphosphate carboxylase (rbcL) gene (Chapter 1).

DNA extraction and amplification, plus sequencing o f introns

Individual blades of Porphyra were ground separately in liquid nitrogen and total 

DNA was extracted in one of two different ways. In most cases, a modified
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cetyltrimethlammonium bromide (CTAB) method (Stiller and Waaland, 1993) was 

employed. Unless otherwise specified, all reagents and steps were at room temperature, 

buffers were at pH 8.0, and centrifugation was at 16,000 X g in a microcentrifuge. That 

is, 0.1-0.25g of frozen tissue was ground with liquid N2 in a 1.5 ml Eppendorf tube using 

a micropestle. A CTAB isolation buffer (0.75 ml; 2% CTAB, 1.4M NaCl, 20mM EDTA, 

lOOmM Tris-HCl, 0.2% /? mercaptoethanol) was added to the tube, mixed and incubated 

at 60° C for 30 minutes. The DNA was then extracted with a 25:24:1 phenol, chloroform, 

isoamyl alcohol solution and centrifuged for 10 minutes. The aqueous phase was then 

mixed with 24:1 chloroform, isoamyl alcohol, and again centrifuged for 10 minutes. The 

aqueous phase was then transferred to a fresh tube containing an equal volume of 

isopropanol, mixed, incubated for 30 minutes, and centrifuged for 5 minutes. The 

resulting pellet was carefully drained, washed with 1 ml 76% ethanol, 10 mM ammonium 

acetate, and resuspended in 50 pi of 10 mM Tris/1 mM EDTA. A second DNA 

extraction method was performed using the Puregene® DNA Isolation Kit fbr plant tissue 

(#D5500A; Gentra Systems, Minneapolis, MN) to extract all P. umbilicalis samples (see 

Chapter III; Table 1) used in the intraspecific analysis.

Purified DNA samples (5-10 ng/pl) were either aliquoted into 96 well microtiter 

plates for high throughput analysis or individually in 0.2 pL thin-walled tubes for 

polymerase chain reaction (PCR). High throughput screening was obtained by 

transferring 4 pL of template DNA to separate 96 well plates and performing PCR using 

primers specific for the locus to be amplified (SSU group-I introns or the rbcL gene).

8 Except for the Porphyra umbilicalis intraspecific analysis, all samples for this study were collected by Dr. 
Arthur Mathieson and Dr. Chris Neefus of the University of New Hampshire, as well as Dr. Charles Yarish 
of the University of Connecticut.
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Samples were screened for SSU introns using either a flanking {porintl; porint2) set of 

primers or a combined flanking and internal primer (porintS; porint6) set (Table 1;

Figure 2). Reagents for each 50pL reaction contained IX Magnesium Free Reaction 

Buffer B (Promega, Madison WI), 0.2 mM each dNTP (Promega), 0.5 units of Taq DNA 

polymerase (Promega), 0.4 pM each primer, and variable MgCl2 concentrations 

(depending on primer set) given in Table 2. All amplifications were carried out in an MJ 

Research PTC-100 Programmable Thermal Controller (Watertown MA) with 

amplification profiles for each primer set given in Table 2. PCR products were 

visualized using gel electrophoresis. Flanking primers for the helix 50 intron were 

designed in Primer Select (Lasergene™, DNASTAR, Madison, WI) from approximately 

950 bp of SSU rDNA sequence previously generated from Porphyra leucosticta Thuret in 

Le Jol., P. umbilicalis, P. linearis Grev., P. dioica J. Brodie et L. Irvine, P. suborbiculata 

Kjellman, P. miniata (C. Agardh) C. Agardh, P. purpurea (Roth) C. Agardh (Table 3; 

Klein et al., 2003), and P. spiralis var. amplifolia Oliveira and Coll (GenBank 

Accessions L26175-L26177; Oliveira and Ragan, 1994).

The sequences of the helix 50 intron for individual accessions of Porphyra 

linearis, P. leucosticta, P. miniata, P. suborbiculata, P. purpurea and P. dioica, plus 28 

different geographic isolates of P. umbilicalis were determined. The collection site of 

each sample, representative herbarium specimen (if available) and the corresponding 

GenBank Accession information are given in Table 3, except for the P. umbilicalis 

samples that are given in Table 1 of Chapter 3. Each intron sequenced was amplified 

twice in independent PCR reactions. The PCR products were separated on 0.9% low 

melting point agarose (Life Technologies, Gaithersburg, MD) by gel electrophoresis,
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excised from the gel, and digested with agarase according to the manufacturer’s 

directions (Sigma, St. Louis, MO). Cycle sequencing was done according to 

manufacturer’s instructions using the ABI PRISM Taq DyeDeoxy Terminator Cycle 

Sequencing Kit with AmpliTaq DNA Polymerase (P/N 401384; Perkin Elmer, Foster 

City, CA) using 10 pmol of primer and 30-90 ng of template DNA. The reaction 

products were separated and analyzed on an ABI PRISM 377 Automated Sequencer 

(UNH Sequencing Facility). Sequences were generated with ABI DNA Sequencing 

Software version 2.1.1 and edited using SeqEd Software (version 1.0.2; ABI, Foster City, 

CA). Both strands were sequenced for the helix 50 intron for each species. Contiguous 

sequences were assembled and aligned using SeqMan (DNASTAR) algorithms. GenBank 

Accessions for sequenced samples are given in Table 3.

Alignment o f helix 50 group-I introns and phylogenetic analyses

Initial alignments of the helix 50 group-I intron sequences from select Porphyra 

taxa were made using the Clustal algorithm in Megalign (DNASTAR). The intron 

sequences were manually aligned in Bioedit Vers. 5.0.6 (North Carolina State 

University), which is an alignment program that can incorporate secondary structure 

information. The computer alignments were compared to secondary-structure models 

with the aid of a group-I intron database (Damberger and Gutell, 1994), conserved base- 

paired segments or “P” domains (Michel and Westhof, 1990) and the secondary structure 

folding program mfold version 3.0 (Mathews et al., 1999). The group-ICl intron of 

Hildenbrandia rubra (Sommerfelt) Meneghini (GenBank Accession #L19345, Ragan et 

al., 1993) was used as an outgroup in the phylogenetic analyses.
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Phylogenetic inference by maximum parsimony analyses was performed using 

PAUP (Swofford et a l, 1998; vers. 4.0b 10, Sinauer Associates, 2002), with a full 

heuristic search strategy that first involved 200 replicates with RANDOM taxon addition 

with the tree-bisection-reconnection (TBR) branch-swapping algorithm. Initial searches 

found the 10 shortest trees; which were then used as starting trees in searches that used 

TBR branch-swapping from which only the most parsimonious tree was saved. Gaps 

were treated as missing data. To assess support for the inferred relationships, bootstrap 

analyses (Felsenstein, 1985) were conducted with 1000 replicates.

Based on prior work by Wheeler and Honeycutt (1988), who showed that paired 

nucleotides forming stem regions appear to undergo compensatory mutations that 

maintain secondary structure, a weighted parsimony analysis was done using the 

stem/loop definitions described in Soltis and Soltis (1998) with stem bases assigned a 

weight of 1 and loop bases a weight of 2. A weighted bootstrap parsimony search was 

conducted as previously detailed with the equally weighted characters.

To test for data set incongruence between the Helix 50 group I intron dataset and 

a previously published SSU phylogeny of North Atlantic Porphyra (Klein et al., 2003),. 

The SSU dataset was re-analyzed using the same taxa used in the group-I phylogeny for 

comparison purposes. A partition homogeneity test (PHT; Swofford, 1998), also known 

as an incongruence-length difference (ILD; Farris et al., 1994, 1995), was performed 

using PAUP*. Only those taxa that were available for both data sets were examined. A 

random addition heuristic search was conducted using 100 replicates; the resulting P- 

value determined the probability of rejecting the null hypothesis of congruence (or 

homogeneity) of the two data sets.
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Intraspecific Survey o f the helix 50 Intron and Alignment

An additional survey of twenty-eight Porphyra umbilicalis individuals was done 

using a flanking primer (H50-1) and an internal intron primer (H50-2), which was 

designed to be exactly complimentary to this taxon for the Helix 50 intron. To determine 

the exact intron insertion points, which are located near the 3’ end of SSU (Table 1, 

Figure 2), a second set of flanking amplification primers (H50-FL and UMB-ITS-1) were 

developed to extend the amplified region into the adjacent internal transcribed spacer. 

The rDNA-intron regions of all individuals were amplified by PCR, they were than 

sequenced9, and aligned as described previously with the interspecific alignment of the 

helix 50 introns. A secondary structure diagram was created for P. umbilicalis using the 

computer drawing program Adobe Illustrator (Adobe Systems Inc., San Jose, CA). The 

diagram was based on the secondary structure information obtained manually from P. 

umbilicalis sequence using comparative sequence analysis (Cech, 1988), which is based 

on the covariance involved in maintaining Watson-Crick base-pairing within a potential 

secondary structure helix. The secondary structure features from ambiguous regions of 

the P. umbilicalis sequence were resolved using the secondary structure folding program 

mfold version 3.0 (Mathew et al., 1999). The secondary structure was than compared to 

the published alignments of conserved “P” domains from group-I introns (Michel and 

Westhof, 1990), and finally compared to secondary structure diagrams of similar 

Porphyra group-ICl introns described in the previously mentioned intron database 

(Damberger and Gutell, 1994).
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Results

Amplification survey o f introns

A total of 715 individuals representing 88 collection sites and nine different 

species were screened for the presence of the helix 50 intron with flanking primers porint 

1+2 (EPIC). All samples were scored according to the size of the intron after flanking 

sequences were subtracted (i.e., the 730 bp amplification product contained a 555 bp 

intron). Table 4 shows the results of the primer screen with data for each helix 50 intron 

size class. Porphyra dioica and P. yezoensis10 both have unique size variants of the 

intron, while other species seem to share size variants or have multiple size introns in the 

helix 50 position. Species that were not heavily sampled (n <6: P. dioica, P. 

suborbiculata, and P. yezoensis) are also listed in Table 4. There were no apparent 

patterns (size, presence or absence of the helix 50 intron) differentiating populations of 

the same species. Figure 3 represents a subset of 96 samples from the Porphyra survey. 

Several different amplification products were observed from various templates. Variable 

size introns occurred (Figure 3), where the amplified fragments (including flanking 18S 

sequence) were -730 bp, 820 bp, and 1250 bp. The 820 bp fragment was specific to 

Porphyra purpurea (lanes 1, 27-28, 30, 32-33), whereas the 730 and 1250 bp fragments 

amplified only in P. linearis. In two samples (Figure 3; lanes 50 and 74), flanking 

primers amplified three different size bands from the individual P. linearis template, 

including common fragment sizes and a weak 1000 bp amplification product. 

Interestingly, the EPIC amplification of P. umbilicalis in this subset (Figure 3; lanes 11-

9Because of the internal primer location, the introns amplified by the H50-1 and H50-2 primer pair lack 
-100  bp at the 3’ end.
10 Porphyra yezoensis has both unique, shared and multiple size variants of the Helix 50 intron.
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14; 17-19; 52-54; 56-58; 84-85; 87-91) produced fragments only in the 174 bp size range, 

the size predicted if no introns were present at the helix 50 position in the 18S rRNA 

gene. The low molecular weight fragment (-174 bp) appears as part of a doublet (see 

arrow in Figure 3), while the other band beneath it represents a primer dimer. To confirm 

that the amplified fragments were in fact products of the 18S gene, the ends of the 

fragments were sequenced. The sequence data confirmed placement of the intron at the 

expected insertion site, with complementary 18S sequence at the ends of the amplified 

fragments (Figure 4).

Subsequently, a subset of the original Porphyra collection (Table 4; Appendix A) 

was examined with an internal and flanking primer pair (porint 5+6) to evaluate whether 

the original screen had detected all helix 50 introns. Figure 5 shows the number of 

samples that screened positive for the intron with either primer set. Of the three species 

that showed low intron occurrence in the EPIC screen (i.e., P. umbilicalis, P. miniata, 

and P. amplissima) there was a substantial increase in the detection of the helix 50 intron 

using an internal intron primer: 2=>7 P. amplissima (an increased detection of five introns 

using the internal intron primer); 1=>4 P. miniata', 1=>27 P. umbilicalis. Porphyra 

umbilicalis appears to have very low occurrence of the helix 50 intron in rDNA genes as 

detected by flanking primers (1/200), plus relatively high occurrence with the 

internal/flanking primer pair (81.8%). By contrast, the combination of flanking and 

internal primers, porint5 and porint6, failed to amplify the helix 50 intron from a single 

sample of P. suborbiculata.

Using the same individuals from the initial helix 50 screen, an additional subset of 

88 individuals from all nine Porphyra species was screened for the helix 21 intron; the
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PCR primers again represented an intron-specific and a rDNA-specific primer (int5pr-l 

and int5pr-2, Figure 2). The helix 21 intron was detected at high levels in all species, 

except P. miniata. In five of the nine species (P. leucosticta, P. yezoensis, P. umbilicalis, 

P. dioica, and P. suborbiculata) the helix 21 intron was detected in every individual 

screened (see Figure 6).

Intron characteristics and Phylogenetic analyses

The helix 50 introns were sequenced for samples representing each species and 

compared to published data. Sequence data indicated that similarly sized introns could 

vary at the sequence level, with highly variable loop domains and highly conserved stem 

domains. The variable and conserved regions were identified by aligning the helix 50 

intron sequences according to secondary structure; 544 bases could be aligned in 

conserved domains. The P, Q, R, and S functional core domains were highly conserved 

across all Porphyra species and only slightly different for the outgroup Hildenbrandia 

rubra. The conserved P domains or “stem” regions showed minimal variation between 

species and were easily aligned by eye, except for the P8 region that showed high levels 

of variation between taxa (Figure 4).

Of the 544 nucleotide positions aligned, 143 were parsimony-informative, 

primarily from the variable loop domains. Heuristic searches using equal weighting of all 

characters found 1 minimal-length tree of 495 steps (consistency index [Cl] =.8566; 

retention index [RI] = 0.690). The strict consensus of the most parsimonious tree is given 

in Figure 7a. Using the red alga Hildenbrandia rubra as an outgroup for phylogenetic 

analysis, the seven North Atlantic Porphyra species form two well-supported clades.
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Porphyra suborbiculata, P. purpurea, and P. miniata form the first clade (bootstrap 

value= 99%). The sister clade includes all other Porphyra taxa in the analysis: P. 

umbilicalis, P. dioica, P. linearis, and P. leucosticta (bootstrap value= 80%).

Parsimony analyses that differentially weighted stem versus loop bases did not 

change the overall topology of the phylogenetic trees. The major difference between the 

bootstrap trees of the weighted analysis and that of equal weighting was stronger 

bootstrap support of species relationships in the weighted phylogram (see Figure 7a). In 

general, differential weighting of stems versus loops did not substantially alter the results 

obtained using equal weighting of characters.

Figure 7b is a phylogenetic analysis of 910 bases of the SSU for the same 

Porphyra taxa that were analyzed for the helix 50 group-I intron (Figure 7a). The SSU 

phylogeny showed strong bootstrap support for two main clades; the first clade 

containing P. carolinensis, P. leucosticta, and P. miniata; and a second clade that 

includes P. dioica, P. linearis, P. umbilicalis, and P. purpurea. The partition 

homogeneity test between the group I intron and SSU datasets found the two datasets to 

be incongruent with P  = 0.010000.

Sequence divergence within the Helix 50 intron o f Porphyra umbilicalis

A fragment of approximately 548 bp from the 5' half of the helix 50 group-I 

ribosomal intron was amplified from all 28 of the Porphyra umbilicalis collected for 

intraspecific analysis (see Chapter 3). These partial intron amplification products were 

sequenced (GenBank Accessions: AY347883-AY347910). The intron sequences (18 

European, 10 North American) were easy to align with considerable sequence
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conservation being shown in the computer-generated alignment (with CLUSTAL; 

Appendix 4). The only size variation between amplification products resulted from the 

presence of a lbp insertion at alignment position 510 in isolate IRE la  and NHP3. Since 

all twenty-eight amplification products represented only a fragment of the total intron 

size, full length intron sequences for P. umbilicalis were obtained from four of the taxa 

using a reverse 3' primer in the adjacent internal transcribed spacer (ITS) region. In 

addition, gel-band sizing was used in tandem with other Porphyra (P. umbilicalis and P. 

purpurea, as referenced previously) group-I Helix 50 introns and 18S ribosomal 

sequences for accurate size and positioning of all P. umbilicalis isolates. The full size of 

the intron was ~710 bp. Although all P. umbilicalis sequences were easily aligned, there 

was a significant degree of sequence variation between different Porphyra umbilicalis 

isolates. Analysis of this variation revealed sequence divergence between the North 

American and European populations (Appendix 4, Chapter 3).

Amplification of the helix 50 intron in four Northeast Atlantic Porphyra 

umbilicalis specimens using the H50-1 and H50-2 primers produced a second larger 

amplification product (1188 bp) for the intron (GenBank Accessions: AY613848- 

AY613851). Alignment of both the smaller and larger intron sequences showed that the 

difference was due to the addition of a 478 bp insertion near the 5 ’ end relative to the 

smaller intron. Three of these four individuals (AY613849-AY613851) contained both 

size classes of the helix 50 intron, which are aligned in Figure 8 (the 710 bp helix 50 

amplification product was not detected in the fourth individual). In addition to the 478 bp 

insert in the larger helix 50 intron, there were sequence similarities between the different 

size classes (see shading, Figure 8). A pairwise sequence comparison between both
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introns in all three individuals showed that the smaller intron (Intron 1) had 96.2-100% 

sequence similarity among the 710 bp size introns and the larger intron had 99.8-100% 

sequence similarity among the 1188 bp introns. Strikingly, there was only 93.1-94.2% 

sequence similarity between the two size classes (Table 6).

The proposed secondary structure model for the 710 bp Porphyra umbilicalis 

helix 50 group-I intron is shown in Figure 9 and was based on isolate IRE la. It does not 

include the 478 bp insertion found in the 5’ region of the larger version of the helix 50 

intron

His-Cys Box

The large size variant of the group-I intron found during the intraspecific survey 

of Porphyra umbilicalis populations appears to contain a homing-endonuclease open 

reading frame (ORF) as described in Haugen et al. (1999) and Muller el al. (2001). After 

conducting a search of the sequences using the National Center for Biotechnology 

Information (NCBI) ORF Finder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html), the 1188 

bp introns were found to contain an open reading frame (ORF) on the complementary 

strand to that encoding the SSU rRNA (Figure 10). The 155 amino acid ORF was 

compared to other protein coding sequences in GenBank using BLASTP (Altschul et al., 

1997; vers. 2.2.8; 3-21-2004), with all search results suggesting that this extended region 

encodes a putative His-Cys Box endonuclease. The amino acid sequences from all four of 

the large size variants were aligned to similar sequences predicted from the Helix 50 

ribosomal intron in the Bangiophyceae (Porphyra spiralis, Acc. L26177; and Bangia 

atropurpurea, Acc. 36066) as well as the endonuclease 1-Ppol (Acc. L03183). The
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alignment (Figure 11) showed that one of the P. umbilicalis samples (IRE-2) contained 

the His-Cys Box motif and conserved residues proposed to be directly involved in zinc 

binding and the active site of the endonuclease (Haugen et al., 1991; Figure 11). The 

amino acid sequence for IRE-2 was identical in 14 amino acids with that of the l-Ppo I 

endonuclease. The amino-acid sequence for the His-Cys box in the other three P. 

umbilicalis samples were less conserved compared to l-Ppol with only 12 amino acids 

being identical. In addition, the three less-conserved sequences terminated prematurely 

at amino acid position 105 (Figure 12) relative to IRE-2 because of nucleotide change 

that resulted in the formation of a stop codon (TAG) instead of the amino acid Glutamine 

(GAG). However, sequence information from all three revealed retention of the His-Cys 

box motif and the putative endonuclease stop codon further downstream (Figures 11 and 

12).

Discussion

The distributions of helices 50 and 21 group-I ribosomal introns within North 

Atlantic Porphyra were assessed in the present study using PCR amplification and 

sequencing. The results support the following assertions: 1) EPIC and/or non-species 

specific primer design underestimates the presence of group-I introns in members of the 

Bangiales; 2) the rDNA repeats within an individual Porphyra appear to be 

heterogeneous for the presence or absence of the Helix 50 group-I intron; and 3) rDNA 

group-I introns may exist in all species of Porphyra. The results are strikingly different 

from an earlier assessment of ribosomal group-I intron distribution in the Bangiales by 

Muller et al. (2001), suggesting the need for a re-evaluation of their results.
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Helix 50 and Helix 21 Intron Distribution in North Atlantic Porphyra taxa

The results of the surveys for helices 50 and 21 group-I intron in Northwest 

Atlantic Porphyra confirm the importance of using an internal primer with a 

corresponding flanking primer for detection of ribosomal introns as documented in fungi 

by Hibbett (1996). Several previous studies of introns in Porphyra relied primarily on 

amplification using flanking or EPIC primers. For example, in their study of Bangia and 

Porphyra rDNA Muller et al. (2001) detected the helix 50 intron in 39 individuals from a 

total sample size of 60 (about 65%). Similarly, Kunimoto et al. (1999) detected the helix 

50 intron in seven of the 15 (46%) P. yezoensis isolates they sampled. By contrast, my 

data indicated that incorporating an internal primer in combination with a flanking primer 

increased detection of the helix 50 intron in eight of nine Porphyra species screened; the 

difference in detection rates suggests that previous studies likely encountered false 

negatives when they failed to detect the helix 50 intron in samples (Stiller and Waaland, 

1993). Most noticeable from my results was the increased detection of the intron using 

the combination of an intron-internal primer and an external primer as compared to using 

only flanking (EPIC) primers; detection increased >75% for P. umbilicalis and >45% for 

P. amplissima. Porphyra suborbiculata was an exception as the single sample tested 

with the internal/flanking primer combination showed no amplification. A more 

extensive intron survey is needed to evaluate the effectiveness of the porint5/porint6 

primer set in this and other species. Alternatively, the internal primer used in this study 

for multiple species may not have been optimized for individual species and therefore 

resulted in false negatives.
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Interestingly, Hibbett’s (1996) studies of Basidiomycetes showed that even with 

the internal intron amplification primers, 34 of 39 species surveyed still appear to lack a 

ribosomal intron. Of the five species showing presence of an intron, three species were 

from a single genus, Lentinellus, and a fourth from a closely related species Clavicornia 

pyxidata (see Figure 5 in Hibbett, 1996). Based on these observations a potential 

drawback to Hibbett’s intron assay may have been the use of only one set of flanking 

(SRlc  and NS6) and intron-specific primers (943a and 943b) for all 39 species of 

Homobasidiomycetes instead of optimizing an intron-specific primer for each species or 

genus.

The results presented here suggest that successful amplification of the intron is 

highly dependent on where the internal primer is placed within the intron. Although the 

internal porint 6 primer showed a substantial increase in intron detection and 

amplification, the results of the intraspecific survey of the helix 50 group-I intron using 

the more specific H50-2 internal primer in Porphyra umbilicalis showed that all 

individuals were positive for the intron and in some individuals more than one size 

variant of the helix 50 intron existed. Hence, my results contrast those of Muller et al. 

(2001) where only 25% of the P. umbilicalis samples were found to contain the helix 50 

intron. Although most internal intron primers have been developed in the conserved core 

regions (i.e., P, Q, R, S) to be used with multiple species, it appears that these may not be 

the optimal locations for primer design and successful PCR amplification; thus, the 

conserved regions for each “species” should be considered when developing each primer 

set.
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Additional support for intron detection using both flanking and internal intron 

primers was seen by the results of the helix 21 intron screen. Successful amplification of 

the helix 21 intron occurred in 100% of the samples for five species and approximately a 

50-60% increase in detection for all remaining species with the exception of Porphyra 

miniata. In the four individuals of P. miniata screened, there was no detection of a helix 

21 intron. Based on previous studies that have detected the helix 21 group-I intron in P. 

miniata (Muller et al., 2001), the lack of the intron’s detection in this study may be due to 

an incompatible internal intron primer and reiterates the earlier suggestion of the need to 

develop specific intron primers for each species.

The present observations lead to the hypothesis that introns may exist in every 

Porphyra individual but detecting the introns may be hindered by factors such as short 

allele dominance11 (e.g. for EPIC PCR; Wattier et al., 1998; Sefc et al., 2003), and lack 

of a perfect match between the primer and template may hinder the successful “capture” 

of these introns by PCR as shown in this study.. Although no quantitative analysis was 

done to determine how many copies of the small ribosomal subunit in any one individual 

might contain a ribosomal intron, it can be speculated that increased intron detection in 

certain individuals DNAs may indicate that certain Porphyra isolates have a higher level 

of introns in copies of their rDNA. As suggested by Hibbett (1996) it would be useful to 

determine the relative frequency of intron-containing and intron-lacking rDNA repeats, 

possibly by quantitative densitometry of Southern blots of genomic DNA probed with 

rDNA sequences that flank the intron.
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Intraspecific intron variation

Oliveira and Ragan (1994) suggested that ribosomal introns maybe a potential 

species and biogeographic marker, while Muller et al. (2001) dismissed this idea because 

many of their samples had lacked an intron. The present study suggests that the 

conclusion of Muller et al. (2001) may have been premature; my intraspecific survey 

demonstrated that the helix 50 group-I intron was found in all Porphyra umbilicalis 

samples across a large geographic range. Successful amplification of the intron within all 

members of a species or population may therefore have biogeographic utility based on 

the higher mutation rate found within self-splicing group-I introns as compared to rDNA 

and the internal transcribed spacer (see Chapter 3). Even more interesting is the 

occurrence of multiple size introns within the same P. umbilicalis individual. The three 

examples from this study suggest that multiple forms of the intron within an individual 

may be a common occurrence in P. umbilicalis and that gene conversion mechanisms 

may not be homogenizing all rDNA cistrons. The observations that helix 50 introns of 

similar size are more similar at a sequence level between different algal accessions than 

within an individual could be used to model mechanisms of both horizontal transmission 

and pseudogene evolution as outlined below.

ORFs Coding fo r  His-Cys Box Endonucleases

For horizontal transmission of introns to occur there must be mechanisms at either 

the RNA or DNA level to promote intron insertion. Currently, intron movement is 

hypothesized to occur at both levels (Belfort and Perlman, 1995). At the RNA level, a

11 Where smaller fragments have been shown to have a higher rate of successful amplification during the
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reversal of the self-splicing process could cause reinsertion of the intron into an intronless 

allele of the gene (in this case a copy of rDNA) or at a heterologous site of the same gene 

(Roman and Woodson 1995; Roman et al., 1999; Woodson and Cech, 1989). Intron 

spread at the DNA level (and specific to my analysis of ORF containing introns in 

Porphyra umbilicalis) depends on the expression of intron-encoded enzymes, called 

homing endonucleases (Lambowitz and Belfort, 1993; Johansen et al., 1997; Belfort and 

Roberts 1997). The homing activity refers to the intron’s ability to move horizontally 

into an intron-less allele of the same genome or into a new genome. One group or 

“family” of these endonucleases that are made up exclusively of nuclear-encoded 

enzymes are characterized by a conserved His-Cys box motif (Johansen et al., 1993). 

Finally, if horizontal transfer is occurring within Porphyra or Eukaryota in general it 

must have a vector to allow such a transmission. Bhattacharya, Friedl, and Damberger 

(1996a) reported that based on phylogenetic evidence, the 1512 ribosomal intron of the 

SSU in green algae may be of viral origin. It is unclear how widespread viruses are 

among marine algae, but it has long been known that they may act as potential vectors of 

nucleic acids. If a virus is capable of infecting very closely related taxa such as the 

Porphyra in this study, it is most likely also capable of transferring nucleic acids 

horizontally between various hosts.

The analysis of the 1188 bp introns in some populations (GenBank Accessions 

AY613848-AY613851) of Porphyra umbilicalis revealed ORFs for His-Cys box 

endonucleases. Similar to the results of other studies on bangialean group-I introns, the 

ORF-containing introns only appear to contain the insertion within the PI region (Haugen

initial cycles of the PCR, and hence outcompete the longer template throughout the overall reaction.
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et a l, 1999; Muller et al., 2001). The sporadic distribution of ORF-containing and ORF- 

free introns within monophyletic groups suggest strong selection against ORFs coding for 

endonucleases thereby resulting in increased loss of the ORFs (De Jonchheere 1994; 

Muscarella and Vogt 1993). The ORFs found in the four individuals from this study 

show two different types of His-Cys box retentions. Only one (IRE-2; Accession 

AY613848) of the four ORF-containing P. umbilicalis individuals contained all of the 

conserved zinc binding and active site residues associated with the l-Ppol endonuclease. 

Isolate IRE-2 also appears to have an extended C-terminal end when compared to other 

endonuclease-like sequences (Haugen et al., 1999) from Bangiophyceae helix 50 group-I 

introns. Unlike in Haugen et al. (1999), no frameshifts were apparent in any of the P. 

umbilicalis ORF sequences. However, the remaining three P. umbilicalis isolates did 

show a higher degree of polymorphism in their sequence compared to both IRE-2 and the 

His-Cys box motif of the endonuclease I-Ppol, resulting in a premature stop codon and 

loss of two I-Ppol conserved amino acids {HI 10, N119).

Based on reports that nuclear homing endonucleases generate double-strand 

breaks at intron-lacking rDNA alleles (Johansen et al., 1997; Elde et al., 1999) and are 

lethal when expressed in yeast (Lin and Vogt, 1998), Haugen et al. (1999) suggested that 

selection was occurring against functional forms of these genes. The observed truncation 

at the C-terminus and polymorphisms I found in the less-conserved Porphyra umbilicalis 

sequences (Figures 11 and 12) may therefore represent nonfunctional pseudogenes.

Additional analysis is needed to investigate whether all Porphyra taxa contain 

copies of the ORF containing introns. If the His-Cys ORF represented a pseudogene in 

the sampled individuals, a lack of functional constraints would suggest a region that
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would show high rates of mutation. However, the amino acid sequence of the His-Cys 

box motif is well conserved in Porphyra and other taxa in which they have been found 

(Muller et a l, 2001; Haugen et al., 1999). The pairwise comparison between the different 

intra-individual intron types (containing the ORF or not) in Table 6 showed a higher 

sequence similarity (99.8-100%) between the ORF-containing introns when compared to 

the ORF-lacking introns. The lack of variation found between the ORF-containing 

introns may indicate that these sequences have functional constraints acting upon them 

compared to the more variable introns that do not contain or have lost the homing 

endonuclease ORF region. Unfortunately, intron size variants were not found in IRE-2, 

the only individual exhibiting an ORF region highly conserved with the Ppo-I 

endonuclease gene. It could be speculated that group-I introns such as the one found in 

IRE-2 may show the highest sequence conservation because of the high retention of its 

endonuclease active sites.

Introns as sources o f phylogenetic information

Before introns can be evaluated for their phylogenetic informativeness in the 

Bangiophyceae, there must be a consistent and reliable method for identifying a taxon at 

the species level. Since members of the genus Porphyra are difficult to identify in the 

field due to the lack of distinguishing morphological characters and cryptic diversity, 

samples can be misidentified (Klein et al., 2003; Lindstrom and Cole, 1993). The impact 

of incorrect identification can have significant implications in phylogenetics. For 

example, when the consensus sequence for the P. umbilicalis helix 50 intron from the 28 

geographically different isolates in this study were aligned with the two published
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examples of the P. umbilicalis helix 50 introns in the GenBank database (GenBank 

Accessions: AF172602, AF318959), both sequences showed a low level of similarity 

(21% and 30%, respectively) to those obtained in this study (GenBank Accessions: 

AY347883-AY347909). The degree of differentiation suggests that AF172602 and 

AF318959 came from other Porphyra species and that these algal accessions from which 

the introns were amplified were incorrectly identified. One of these sequences 

(AF172602) was used in the phylogenetic analysis of the SSU and ribosomal group-I 

introns resulting in a discordant relationship with other P. umbilicalis isolates used in that 

study (see Muller et al., 2001). In contrast to the work of Muller and coworkers, my 

study used an independent molecular assay (RFLP Assay, Chapter 1) to confirm the 

Porphyra species identification. Accurate species identification increases the confidence 

of further extrapolation of the submitted sequences for phylogenetic comparisons.

The helix 50 intron phylogeny from this study was compared to the SSU gene tree 

constructed previously for these species (see Figure 3 in Klein et al., 2003). The intron 

phylogeny is more limited but the overall topology is similar to the SSU gene tree (Figure 

7b). However, in the intron phylogeny Porphyra purpurea and P. leucosticta are 

grouped with different clades. Although other minor changes in topology occur, these 

two taxa “jump” highly supported branches (100% bootstrap) in the SSU phylogeny. 

Another contradiction is the relationship of a P. umbilicalis—P. dioica—P. linearis 

clade. The SSU phylogenetic analysis by Klein et al. (2003) suggested that P. linearis 

and P. umbilicalis shared a recent common ancestor. However, the helix 50 intron 

phylogeny contrasts with the other gene tree phylogenies, indicating that P. dioica and P. 

umbilicalis are more closely related than P. linearis and P. umbilicalis.
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The disagreements between the different gene trees might be explained by the 

theory of horizontal transfer (Oliveira and Ragan, 1994; Li, 1997). Muller et al. (2001) 

suggested that the ribosomal introns in the Bangiales were present prior to species 

radiation and therefore vertical inheritance was exhibited by the intron phylogenies. 

Although the results from this study also show similarity between the SSU and intron 

phylogenies they are not identical and suggest some instances of horizontal transmission 

may have occurred. The results of the partition homogeneity test suggest that the SSU 

and group I intron data sets are exhibiting different phylogenetic signals. Although, the 

two data sets may be evolving at different mutation rates, a paraphyletic phylogeny was 

found in the group-I intron data set that is consistent with datasets from which horizontal 

transmission has occurred. An alternative explanation to the lack of congruence found 

between the two data sets is saturation (phylogenetic signal is overwhelmed by multiple 

changes at each site), where saturated data could increase variance in branch lengths 

potentially increasing the chances of long-branch attraction and an incorrect phylogeny 

(Felsenstein, 1978).

The mobility and/or immobility of introns may be related to the putative 

endonuclease ORFs found within group-I introns. A phylogenetic comparison (Haugen 

et al., 1999) of ORF-containing Helix 50 group-I introns from four Porphyra and Bangia 

individuals found that the endonuclease-like protein sequences showed a pattern of 

horizontal transfer whereas the remaining intron core sequence showed a pattern 

consistent with long-term vertical transmission. Therefore, group-I introns containing an 

endonuclease motif may show patterns of mobility and a phylogenetic history linked to 

the origin of the intron and putative endonuclease instead of the host organism {i.e.,
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Porphyra), whereas non-functioning forms or ORF-lacking forms of the intron could 

provide phylogenetic information for the host species such as recent biogeographical 

radiation. In other words, if some group-I introns have lost self-splicing and re-insertion 

capabilities because of selective pressure, the intron may exhibit long-term retention 

within the rDNA. If immobile forms of the intron exist within Porphyra in tandem with 

putative mobile forms (IRE2) than it would be consistent with predominantly vertical and 

rare instances of horizontal transmission.

Muller et al. (2001) also believed that the lack of introns in some individuals was 

due to multiple losses over time and that the more “derived” a taxon was, the higher the 

incidence of intron absence. Again, the intron surveys from my study suggest that their 

lack of detection may be an artifact of the PCR amplification procedure, which would 

explain the inconsistent detection of the intron in previous studies (Kunimoto et al., 1999; 

Muller et al., 2001), and that presence or absence of introns is probably not a 

phylogenetically informative character. Another important observation from my study 

that suggest the phylogenetic results of Muller et al. (2001) may be incorrect is the 

amplification of genetically different forms of the Helix 50 intron within an individual. 

The group-I intron phylogenies of Muller et al. (2001) did not discriminate between the 

different forms that may be found within a single individual. The results from the 

Porphyra umbilicalis study suggest that group-I introns lacking the putative endonuclease 

ORFs may not be suitable for phylogenetic studies based upon two factors. First, the 

majority of ribosomal introns amplified in the Porphyra umbilicalis study lacked an 

endonuclease-like ORF region. Whether or not short- allele dominance plays a role in 

the amplification of the shorter intron is still unclear and ORF-containing introns may
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still exist within the same individual. Second, ORF-containing introns are more 

genetically similar to other ORF-containing introns than they are to an ORF-lacking 

intron within the same isolate, which indicates that the two forms of group-I introns are 

diverging at different rates. If phylogenies are constructed using ribosomal intron 

sequence without discriminating between the two forms of the intron, a skewed topology 

will result. A possible example of this artifact may be illustrated with the Bangia 

fuscopurpurea (Dillwyn) Lyngbye helix 21 intron phylogeny (see 516 intron phylogeny 

in Fig. 5 from Muller et al., 2001), where the two His-Cys Box containing intron 

sequences (GenBank Accessions AF172560; AF172561) group together and differentiate 

them from the other five B. fuscopurpurea specimens in the phylogeny.

Conclusions

The existence and catalytic properties of group-I introns have been well- 

documented throughout the Eukaryota along with the observation that group-I introns are 

lost frequently in nature based on their presence or absence in closely related taxa (Muller 

et al., 2001; Bhattacharya et al., 1996a; Van Oppen, et al., 1993). The subgroup IC1 

(Michel and Westhof, 1990) nuclear-encoded rDNA group-I introns are the most widely 

studied form of these introns and they were chosen for this study to investigate their 

distributional patterns in North Atlantic members of the red algal genus Porphyra. Hence 

a primary goal of this study was to confirm previous distributional patterns and to 

evaluate the usefulness of the ribosomal group-I intron for determining intraspecific 

phylogenetic relationships.
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My studies confirm the earlier observations of several investigators that group-I 

introns are widespread in the small ribosomal subunit of Porphyra (Oliveira and Ragan 

1994; Kunimoto et al. 1999; Oliveira et al. 1995; Muller et al. 1998, 2001; Broom et al 

2003). However, screening for these introns with a combination of internal and flanking 

primers detected them at higher frequencies than previously documented. My study also 

gives new insights for detecting these introns and how they may increase our ability to 

utilize and understand these loci in the Bangiales. The intraspecific analysis of P. 

umbilicalis also points to strong evidence that specimens thought to lack introns may 

actually have them. That is, the introns may exist in low copy number and therefore go 

undetected in conventional PCR screens because of template preference or because 

primers have not been optimized for intron detection. Although this study uncovered 

only four examples of helix 50 introns containing the His-Cys box ORF, the incidence of 

their detection might also be improved by more specific amplification methods (i.e., 

developing a primer in the His-Cys box region). Finally, the presence or absence of 

introns is probably not an informative character for phylogenetic studies as previously 

hypothesized by Muller et al. (2001). Hence intron-based phylogenies within the 

Bangiophycidae should be re-evaluated and the use of introns for biogeographic and 

intra-specific investigations still may be possible if the introns are present in all 

specimens and if only sequences without the His-Cys regions are used.
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Figure 1. General diagrammatic model of a conserved stem-loop secondary structure 
derived from the RNA sequence of self-splicing group-I introns. Italicized letters 
represent the core conserved regions (P, Q, R, S) found in all group-I introns. (P= stem 
regions, L= loop regions.) Illustration adapted from Cech (1990).
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Table 1. List of primers (label; sequence) used for ribosomal group I intron amplification 
and DNA sequencing in species of Porphyra.

Primer Label 5 '-Primer sequence-3'
Helix 50 INTRON
Porint 1 TGTACACACCGCCCGTC
Porint 2 CTGATCCTTCTGCAGGTTC ACCT AC
Porint 5 TTGGGGGCATTCGTATTTCAT
Porint 6 GGCTGC A A AGGCTTCGGT A
H50-1 G A AGG AG A AGTCGT A AC A AGGTTT
H50-2 CAGGGGACCGACTGTCTCTTA
H50-FL GAGGAAGGAGAAGTCGTAACAA
UMB-ITS1-R TATCCACCGTTAAGAGTTGTAT

Helix 21 INTRON
Int5prl AGGCGAACCTTCAGAGACT
Int5pr2 CAGACAAATCACTCCACCAA
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Table 2. PCR profiles.

Region Primers Fragment
size

Reaction
volume
(pL)

Taq units MgC12
(mM)

Annealing
temperature
°C

Annealing
time

Extension
time

Cycles

Helix 50 porint 1 &porint2 variable 50 4 2.5 56.0 1 min 1 min 35
Helix 50 porint5&porint6 variable 50 1 2.25 54.3 1 min 1 min 30
Helix 50 H501&H502 -471/949 50 2 1.75 56.5 1 min 1 min 36

Helix50 and ITS1 H50FL&UMBITSR -1016/1494 50 2 2.0 55.0 1 min 1 min, 30
sec

30

Helix 21 Int5prl &int5pr2 variable 50 1 2.0 56.0 1 min 1 min 35

LT\
00



Figure 2. The 18S ribosomal subunit showing the relative positions of coding regions 
(white boxed areas), noncoding regions (double lines), and PCR amplification and 
sequencing primers. Dotted arrows represent internal (intron) PCR primers. Triangles 
represent group I introns.
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Table 3. Porphyra helix 50 ribosomal introns sequenced for phylogenetic and intraspecific 
analysis. l=Used in phylogenetic analysis; 2= Used in intraspecific analysis; 3= contains His-Cys ORF 
motif.

Hodgdon Date GenBank Accession Numbers
_  . Herbarium# Collected , ,  , .
Genus, spec.es Geographic origin 18S rDNA Helix 50

Intron
P. dioica1 N.A. 4/4/1998 North of Aberystwyth, Wales, UK - AY573850
P. leucosticta1 67142 5/17/1997 Montauk Pt., NY - AY573853
P. linearis1 60868; 2/18/1996 South Bristol, ME; Klein et. al.,2003 AY573852
P. miniata1 65301 6/23/1996 Fink Cove, Nova Scotia, Canada Klein et al., 2003 AY573855
P.
suborbiculata1

N.A. 5/20/1998 Masonboro, North Carolina
- AY573851

P. purpurea1 65186 11/1/1996 Ross Island, New Brunswick, 
Canada

Klein et al., 2003 AY573854

P. umbilicalis11 76580 8/28/2000 Clare Island, County Mayo, Ireland - AY347910
P.umbilicalis2

N.A. Variable
Variable (See Chapter 3)

-
AY347883-
AY347909

P. umbilicalisJ
N.A. Variable

Variable (See Chapter 3)
-

AY613848-
AY613851
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Table 4. Initial screening for the Helix 50 intron from North Atlantic Porphyra 
collections using flanking primers porintl and porint2. A dash (-) signifies no intron 
amplification.

Intron Size C h i^ s

#Sites N 425 725 825 1075 645 555
%

w/intron

Porphyra umbilicalis 25 200 - f i i i l i ! - J f S S S I S - i l i ' f l S S ! 0.5

Porphyra leucosticta 12 143 - - 4 80 58.7

Porphyra purpurea 19 127 - 1 1 ,1 8 1 3 J l l l l l l ! 62 53.5

Porphyra linearis 13 109 - .i l f i l j l 4 - 85 89.9

Porphyra amplissima 6 65 - l l l l l l l S - i l i l f : - f § g s | l l l 1.5

Porphyra miniata 3 31 - B i S - ! t i § § 3 l | 1 j f | ;T j l p 6..5

Porphyra sp. 3 18 - I f l S l i i - l l B I I I I I I 8 i t l S S 88.9

Porphyra yezoensis 3 11 4 I f l S l l l l - i i l l l l S S - t s s l l l l 72.7

Porphyra dioica 2 6 - J l l l l l l - ■ l l i l l l - l E S I S S l 100.0

Porphyra suborbiculata 2 5 - f i l l l l i l l l l - i i i s i i l l 4 80.0

Total 88 715 4 6 7 12 79 ISO 40.3
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Figure 3. An agarose gel (Plate #6) of 96 Porphyra samples illustrating an initial 
amplification of Helix 50 introns with flanking primers porint 1 and porint2 from 96 
Porphyra samples (see Table 4 for reference). The lanes show variable size introns and 
templates that lacked intron amplification (appearing as the top band of a doublet). The 
first lane (M) in each series is a PhiX/HAE  III DNA size marker. Numbers attached to 
arrows represent amplification size class and actual intron size (parentheses) in bp.

M I 2 3 4 5 6 7 8 9 1 0 1 1  12 13 14 15 lf» 17 IS 19 20
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820 (645) 733 (555)

174 (0)
t i immm’mmm

l — a — B
28 2 9 3 0  31 32 33 .14 35 36 37 38 39 40

M 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
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Table 5. Sample information for Plate 6 (see Figure 4) extracted from Appendix A 
including corresponding DNA number, species designation, collection site, and intron 
amplification size(s).

Plate # DNA ID Species Collection Site Date Collected Insertion Size
1 606 P. 'purpurea' Orr's Island, ME 2/3/96 820
2 608 P. 'purpurea' Orr's Island, ME 2/3/96
3 609 P. 'linearis' Rachel Carson Salt Pond Preserve, Bristol, ME 2/1/96 730
4 610 P. 'linearis' Rachel Carson Salt Pond Preserve, Bristol, ME 2/1/96 730
5 611 P. 'linearis' Rachel Carson Salt Pond Preserve, Bristol, ME 2/1/96 730
6 612 P. 'linearis' Rachel Carson Salt Pond Preserve, Bristol, ME 2/1/96 730
7 613 P. 'linearis' Rachel Carson Salt Pond Preserve, Bristol, ME 2/1/96 730
S 614 P. 'linearis' Rachel Carson Salt Pond Preserve, Bristol, ME 2/1/96 1250
9 615 P. 'linearis' Rachel Carson Salt Pond Preserve, Bristol, ME 2/1/96 1250
10 616 P. 'linearis' Rachel Carson Salt Pond Preserve, Bristol, ME 2/1/96 730
11 617 P. 'umbilicalis' Peak's Island, Casco Bay, ME 3/23/96
12 618 P. 'umbilicalis' Peak's Island, Casco Bay, ME 3/23/96
13 619 P. 'umbilicalis' Peak's Island, Casco Bay, ME 3/23/96
14 620 P. 'umbilicalis' Peak's Island, Casco Bay, ME 3/23/96
15 621 P. 'umbilicalis' Peak's Island, Casco Bay, ME 3/23/96
16 NA + control - -

17 622 P. 'umbilicalis' Peak's Island, Casco Bay, ME 3/23/96
18 623 P. 'umbilicalis' Peak’s Island, Casco Bay, ME 3/23/96
19 624 P. 'umbilicalis' Peak's Island, Casco Bay, ME 3/23/96
20 625 P. 'linearis' Old Soaker, Mount Desert Island, ME 2/22/96
21 626 P. 'linearis' Old Soaker, Mount Desert Island, ME 2/22/96 730
22 627 P. 'linearis' Old Soaker, Mount Desert Island, ME 2/22/96 730
23 628 P. 'linearis' Old Soaker, Mount Desert Island, ME 2/22/96
24 629 P. 'linearis' Old Soaker, Mount Desert Island, ME 2/22/96 730
25 630 P. 'linearis' Old Soaker, Mount Desert Island, ME 2/22/96 730
26 632 P. 'linearis' Old Soaker, Mount Desert Island, ME 2/22/96
27 633 P. 'purpurea' Stonington Town Deck, Deer Isle, ME 3/25/96 820
28 634 P. 'purpurea' Stonington Town Deck, Deer Isle, ME 3/25/96 820
29 635 P. ’purpurea’ Stonington Town Deck, Deer Isle, ME 3/25/96
30 636 P. 'purpurea' Stonington Town Deck, Deer Isle, ME 3/25/96 820
31 637 P. 'purpurea' Stonington Town Deck, Deer Isle, ME 3/25/96
32 638 P. 'purpurea' Stonington Town Deck, Deer Isle, ME 3/25/96 820
33 639 P. 'purpurea' Stonington Town Deck, Deer Isle, ME 3/25/96 820
34 640 P. 'purpurea' Stonington Town Deck, Deer Isle, ME 3/25/96
35 641 P. 'linearis' Pemaquid Point, Bristol, ME 2/1/96
36 642 P. 'linearis' Pemaquid Point, Bristol, ME 2/1/96
37 NA + control - -

38 647 P. 'linearis' Pemaquid Point, Bristol, ME 2/1/96
39 646 P. 'linearis' Pemaquid Point, Bristol, ME 2/1/96 730
40 645 P. 'linearis' Pemaquid Point, Bristol, ME 2/1/96 730
41 644 P. 'linearis' Pemaquid Point, Bristol, ME 2/1/96
42 643 P. 'linearis' Pemaquid Point, Bristol, ME 2/1/96
43 648 P. 'linearis' Pemaquid Point, Bristol, ME 2/1/96 730
44 649 P. ’linearis' Reid State Park, ME 2/10/96 730
45 650 P. 'linearis' Reid State Park, ME 2/10/96 730
46 651 P. 'linearis' Reid State Park, ME 2/10/96
47 652 P. 'linearis' Reid State Park, ME 2/10/96
48 653 P. 'linearis' Reid State Park, ME 2/10/96
49 654 P. 'linearis' Reid State Park, ME 2/10/96 730
50 655 P. 'linearis' Reid State Park, ME 2/10/96 1250-1000-730
51 656 P. 'linearis' Reid State Park, ME 2/10/96 730
52 657 P. 'umbilicalis' Pine Point, ME 2/3/96
53 658 P. 'umbilicalis' Pine Point, ME 2/3/96
54 659 P. 'umbilicalis' Pine Point, ME 2/3/96
55 660 P. 'umbilicalis' Pine Point, ME 2/3/96
56 661 P. 'umbilicalis' Pine Point, ME 2/3/96
57 662 P. 'umbilicalis' Pine Point, ME 2/3/96
58 664 P. 'umbilicalis' Pine Point, ME 2/3/96
59 665 P. 'linearis' Rye Harbor, NH 2/3/96 730
60 667 P. 'linearis' Rye Harbor, NH 2/3/96 730
61 668 P. 'linearis' Rye Harbor, NH 2/3/96 730
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62 669 P. 'linearis'
63 670 P. linearis'
64 NA + control
65 671 P. 'linearis'
66 672 P. 'purpurea'
67 673 P. 'purpurea'
68 674 P. 'purpurea'
69 675 P. 'purpurea'
70 676 P. 'purpurea'
71 677 P. 'purpurea'
72 678 P. 'purpurea'
73 679 P. 'linearis'
74 680 P. linearis'
75 681 P. 'purpurea'
76 682 P. 'purpurea'
77 683 P. 'purpurea'
78 663 P. umbilicalis
79 684 P. 'purpurea'
80 685 P. 'purpurea'
81 686 P. 'purpurea'
82 867 P. 'purpurea'
83 688 P. 'purpurea'
84 689 P. 'umbilicalis'
85 690 P. 'umbilicalis'
86 691 P. 'umbilicalis'
87 692 P. 'umbilicalis'
88 693 P. 'umbilicalis'
89 694 P. 'umbilicalis'
90 695 P. 'umbilicalis'
91 696 P. 'umbilicalis'
92 697 P. 'linearis'
93 698 P. 'linearis'
94 699 P. 'linearis'
95 700 P. linearis’
96 701 P. 'linearis'

Rye Harbor, NH 
Rye Harbor, NH

Rye Harbor, NH
Yarmouth Harbor, Nova Scotia, Canada 
Yarmouth Harbor, Nova Scotia, Canada 
Yarmouth Harbor, Nova Scotia, Canada 
Yarmouth Harbor, Nova Scotia, Canada 
Yarmouth Harbor, Nova Scotia, Canada 
Yarmouth Harbor, Nova Scotia, Canada 
Yarmouth Harbor, Nova Scotia, Canada 
Rye Harbor, NH 
Rye Harbor, NH
Stonington Town Deck, Deer Isle, ME 
Stonington Town Deck, Deer Isle, ME 
Stonington Town Deck, Deer Isle, ME 
Pine Point, ME
Stonington Town Deck, Deer Isle, ME 
Stonington Town Deck, Deer Isle, ME 
Stonington Town Deck, Deer Isle, ME 
Stonington Town Deck, Deer Isle, ME 
Stonington Town Deck, Deer Isle, ME 
Campobello Bridge, ME and Canada 
Campobello Bridge, ME and Canada 
Campobello Bridge, ME and Canada 
Campobello Bridge, ME and Canada 
Campobello Bridge, ME and Canada 
Campobello Bridge, ME and Canada 
Campobello Bridge, ME and Canada 
Campobello Bridge, ME and Canada 
Rye Harbor, NH 
Rye Harbor, NH 
Rye Harbor, NH 
Rye Harbor, NH 
Rye Harbor, NH

2/3/96 730
2/3/96 730

2/3/96
9/28/96 820
9/28/96 820
9/28/96 820
9/28/96 820
9/28/96
9/28/96 820
9/28/96
2/3/96 730
2/3/96 1250-1000-730
3/25/96 820
3/25/96 820
3/25/96
2/3/96
3/25/96
3/25/96 820
3/25/96 820
3/25/96 820
3/25/96 820
10/7/95
10/7/95
10/7/95
10/7/95
10/7/95
10/7/95
10/7/95
10/7/95

730
730
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Figure 4. Multiple sequence alignment of the Helix 50 group-I intron in New England Porphyra species using ClustalW. Locations of 
conserved P (1-9) regions are annotated above alignment and core elements are shaded, lowercase -  SSU ribosomal sequence, • = 
intron insertion point.

OS

PI

- - t n a -  - - t c g t a a c a a g n t» T T - G C T A ...............................AGGCAACAGAAAACAGACTATCATGGACATGCAACCAATCGACCACCCATGTCGGCCACCA

---g t  a a c a a g g t  •  TT - GCTA----------------------------------------AGGCAACAGAAA------------------------------------------------------------------------------CGTCGAT A

- - g a g a a g tc g t a a c a a g g t» T T - G C T A -----------------------AGGCAACAGAA-------------------------------------------------------------------------------------------GTCTCTT

- - g a g a a g t c g t a a c a a g g t  »TT - -  CCA-----------------------AG--TATAGAAGA----------------------- GAACATGCA-------------------------- TGATGT------------------

Porphyra suborbiculata a  a g tc g ta a c a a g g t« T T T G C C G T A T C C ----------------- ACAC------------------ AGT-------------------------GCGA- -A -------------------------------CGTTTCTC-

Porphyra purpurea  ------- g a a g t c g t a a c a a g g t • T T  -  -CCGTAATTTGTGGATAGACACC- -AAACCGAATCGTCAAAGACG-ACGA- -AGTT------------------ TG--------------------

Porphyra miniata  aggagaag tcg taacaaggt»T T T G C C G T A T T T T G T G G A T G G A C -----------------------------TGGCAAGGA- G- GC------------CC------------------ CGCCGCCCCCCT

Hildenbrandia rubra  ------------------------------------ g t» T T T ----------ATCCTATGGA---------------------------------------------------------------------------------------------------------------------------------

Porphyra umbilicalis 

Porphyra dioica 

Porphyra linearis 

Porphyra leucosticta

Porphyra umbilicalis 

Porphyra dioica 

Porphyra linearis 

Porphyra leucosticta 

Porphyra suborbiculata 

Porphyra purpurea 

Porphyra miniata 

Hildenbrandia rubra

P V  P2
GCGTTGTCCATGAAGAATGGCCTTCTGTGGGAAACACTTAC - CGAAGCCTTTGCAGCCCGA - - AAGGGTG - GCGAT - CGCGACTTAT - ATAAACAA - - A - 

GCGTTGTCCATGAAGAATGACCTTCTGTGGGAAACACTTAC - CGAAGCCTTTGCAGCCCGA - - AAGGGTG - GCGAT - CGCGACTTAT - ATAAACAA - - A -

GCATCATC - ATGA ATGGCCTTCTGTGGGAAACGCTTAC-CGAAGCCTTTGCAGCCCGA--AAGGGTG-GCGAT-CGCGACTTGTCAAAAACAA--T-

--------------------------- GAATGTCCTTCTGTGGGAAGCGCTTAC-CGAAGCCTTTGCAGCCCGA- - AAGGGTGCGCGAT - CGCGACT - AT - -AAAACAA- -AA

--------------------- G----------- ATCCTTTCGCAGGAAA-ACGTACACGAAGCCTTTGCAGCCCGAT-AAGGGTGCACAGTACGCGACT---------------CTAA--AA

----------------- GTG----------- GTCCTTCCGTGGGAAG - ACGTACACGAAGCCTTTGCAGCCCGA- - AAGGGTGCACAGACCGCGACT---------------ATAA - - A -

GC-------------CACG----------CTCCTTCCGTAGGAAA - ACGTACATGAAGCCTTTGCGGCCCGA - - AAGGGTGCACAGTGCGCGACT---------------ATAA - - A -

----------------------------------------------------------' AGCCTTTGCAGCCCGATGAAGGGTGGGCGCT - CGCGACT AG - - ATAAATAATGAC
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Porphyra umbilicalis GAATCGACTTG--------- AATGCAAGTGGCGGGCGAGCTCATCGGACCGGAGAGAAGAATCTGGCGCCATTCTACATTGAGTGAGTTGTCTGCACGCCCTTT

Porphyra dioica GAATCGACTTG--------- AATGCAAGTGGCGGGCGCGCTCATCGGACCGGAGAGAACAATCTGGCGCCATTTTATATTGAGTGACTTGTCTGCACGCCCTTT

Porphyra linearis GAATCGGCTTG--------- AATGCAAGCAGCGGAC------------------------------------------------------------------------------------------------------------------------- ---------- ----------

Porphyra leucosticta GAATCGACTTG AATGCAAGCGGCGGATA------------------------------ GAAGCACA--------------GCCA------------------------------------- GCCAGCCCGCTTCTT

Porphyra suborbiculata CACTGAGACTGTGGTCAATGCAAGCGGCGG------------------- T-G --TG G A G A G -- ............................................  TTTGCCT-----CGCTTC--

Porphyra purpurea  TACTGTTTCTGTGGTCAATGCAAGCAGCGG------------------- TGG - - TGG------------------------------------------------------------------   TCC-GCCCGA

Porphyra miniata TACTGATCCTGTGGTCAACGCAAGCAGCGG------------------ TA G --TG G------------------- GCCT-----TGGC--------

Hildenbrandia rubra GAAT- - GCCTGA------- AATGCAAGCGGCGGA---------------------------------------------------------------------------------  -ACATC--------------------------------------------------

OV P 2 ‘ P3 P4

Porphyra umbilicalis  AAAATGGCGGGATGGCAATTTT--------GCACAAGCATTAGGGTGCCTTATCCTTCCGGTTTGTCGAACTGCGTGTCAGCTGCGACTTTCTCAAATTGCGG

Porphyra dioica AAAATGGCGGGACGGCATTTTT--------GCACAAGTATTAGGGTGCCTTGTCCTTCCGGTTCGTCGAACTGCGTGTCAGCTGCAACTTTCTCAAATTGCGG

Porphyra linearis --------------------------------------TTTT--------G---------------------------------------------------------------------------------------------- GTCAGCTGCGACTTTCTCAAATTGCGG

Porphyra leucosticta ------------------------------------------------------------------------------------------------------------------------------------------------------------ CAGCCGCGACTTTCTCAAATTGCGG

Porphyra suborbiculata AACGGGGCGG------------------------CACACACACACACA---------------------------- C  A --------------------------------------CAGCTGCGACTTTCTCAAATTGCGG

Porphyra purpurea  AAAAGGGCGGGAGAA------------------------G C -C----------------------------------------------------A--------------------------------------CAGCTGCGACTTTCTCAAATTGCGG

Porphyra miniata --------- GGCGGGGGGACTTTTTTCCCCCGC- CGC-CG------------------------------CCCTCTA------------------------------------ CAGCTGCAACTTTCTCAAATTGCGG

Hildenbrandia rubra - ............ - ----------  TCTT---------------------------- TTAGGGTG---------------------------- TTTG------------------------------- GCCGCGATCTTCTCAAATTGCG6
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P5

o\-j

Porphyra umbilicalis 

Porphyra dioica 

Porphyra linearis 

Porphyra leucosticta 

Porphyra suborbiculata 

Porphyra purpurea 

Porphyra miniata 

Hildenbrandia rubra

CCTAAA---- GCCG- GGAGATACCGCGGCCGCTTG GA- -TTAACACGCGGCGC-AGCAGCCAGGGGTAGTGCCCCTGCGGATGGTAAAAA

GAAAAC- - CCTAAA---- GCCG-GGAGATACCGCGGCCGCTTG GA- - TTAACACGCGGCGC- AGCAGC- AGGGGTAGTGCCCTTGTGGATGGTAAAAA

GAACAC- -CCTAAA- - -GCCG-AGAGATACCGCGGTTCCGTG- - -GACATAAACACGGAGCGC-AGCAGC-AAGGGTAACGCCCCTGCGGATGGTAACAA

'  ’ CCTAAA---- GTCA-GAAGATACCGCGGCATCTTG GACA ACAAGATGTGC - AGCAGC - ATGGGTAGTGCCCTTGTGGAAGGTAAAAA

SAACAC--CCTAAA---- GTCG-ACAGATACCGCGGCCTATGGCGAAACGCTATCG GGTGCCAGCAGTC-GGGGTAGTGCCCTGATGGATGGTAACAA

GAATAC -  -  CCTAAA---- GTCA - ACAGATACCGCGGCTCGACGCGAAACG TCG GGTGC - AGCAGTT -  GGGGTAGCGCCCTGATGGAAGGTAAAAA

GAACAC- - CCTAAA---- GCCA - GCAAATACCGCGGCCTGACGGACAACG - - - TCG - - - GGTGC - AGCAGTC - GGGGTAGTTCCCTGACGGATGGTAATAA

■. ■ :TCAAATTGGCCGTAAAGACACCGCGGCTC -TTGTG - GAC AACACAGAGTGC - AGCAGGC - GGGGTAGCACCCTGCTGGATGGTAACAG

Porphyra umbilicalis 

Porphyra dioica 

Porphyra linearis 

Porphyra leucosticta 

Porphyra suborbiculata 

Porphyra purpurea 

Porphyra miniata 

Hildenbrandia rubra

P 5 ’ P 4 ’ P6

CTCTCTCGGATG--------------------------------------CGAGTTCGTAA----------CGGCTCACAA TGGGC - - AATCCGCAGCCAAGCTCC - - CGTTTCTCCCTT

CTCTCTCGGATG-    ------------------------------ CGAGTTCGTAA----------- CGGCTCACAA TGGGC- -AATCCGCAGCCAAGCTCC- -CGTTTCTCCCTT

CTCTCTCGGATAA---------------- TTGTTTTTACAA------------------------ACAAGACATGGGC -  - AATCCGCAGCCAAGCTCC------GTTT------CCTG

CTCTTCTGAATGGATA...............................CCCCCCCCTTGTGG----------AGGGTGG- - AGA- ATGGGC- -AATCCGCAGCCAAGCTCC- -CGACTCTC T

CTCTGTCGAATGGACAAGCCAGCTTCTCTCTCTCTTTCTGAGAAAGATGGCTCGAAA ATGGGC - -AATCGGCAGCCAAGCCTC - TAAGGTCT---------

CTCTGTTGAAT TGA------------------------TCGTCTTCATGG------------CG--TCAA ATGGGC--AATCCGCAGCCAAGCTCCGCCAAGTC------------

CTTTGTTGGATAG- CAA................ CCCCCCTCTTGGG----- GGTG- - -CGA----------ATGGGC- -AATCCGCAGCCAAGCTCCGCCAAGACT----------

ATCTTTCG--------------------------------------------------------------- GACACGGGCCTAATCCGCAGCCAASGTCCGTAG-C
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Porphyra umbilicalis 

Porphyra dioica 

Porphyra linearis 

Porphyra leucosticta 

Porphyra suborbiculata 

Porphyra purpurea 

Porphyra miniata 

Hildenbrandia rubra

P 6 ’ P7 P 3 ’ P8 P 8’ J8/7 P7'

GCGTGG - CA GGGA------ GGAGGAGAAGGTTCACAGACTGTAAGGGAAGGGGTG -  TCTC - - CGCACAAA ACGGGGGGCGCTTAAGAGACAGTCG

GCGTGG-CA GGGA------ GGAGGAGAAGGTTCACAGACTGTAAGGGAAGGGGTG-TCTC- -CGCACAAA- - -ACGGGGG-CGCTTAAGAGACAGTCG

GCA - GG - CATTCTGGCA------- GGTGGAGAAGGTTCACAGACTGTAAGGGAAGGGGTACTTTT - - TGC - CAAACG - GCGGAGCGTGCTTAAGAGACAGTCG

GTATGA-------------------------------- GTGGAGAAGGTTCACAGACTGTAAGGGAAAGGGTAATC------- CGTA-------------- ATGGAGAG - -  CTTAAGAGACAGTCG

- -  - T -  -TCATCT- - -TGAC-TAGGGGGAAAGGTTCACAGACTGTAAGGGAAGGGGTTCTTTCACTGAA-AAAGG ..............GCTTAAGAGACAGTCG :

 ACCATATCGGTAGC- TGGAG- - - AAGGTTCACAGACXGTAAGGGAAGGGGT TTTTTCATGTAAAAA-------------------- GCTTAAGAGACAGTCG'

 TGACCGTCTTTG-----------GGAG AAGGTTCACAGACTGAAAGGGAAGGGGTCCTTTTTTTATATAGG------------------------- GCTTAAGAGACAGTCG

GCAT---------- TTTTGTTAGTGCGTCGGAGAAGG: 1 ■ 'A ... \  "-.V." iC '_: sAGGGAAGGGGT------------ TCGCACTTGTGTGCGG GCTTAAGAGACAGTCG

Ov
00

Porphyra umbilicalis 

Porphyra dioica 

Porphyra linearis 

Porphyra leucosticta 

Porphyra suborbiculata 

Porphyra purpurea 

Porphyra miniata 

Hildenbrandia rubra

P9 P 9 ‘

GTCCC - CTGCGAAAGCAGTGTTCC-------GTGGAGGACGG - TGGCCGCGAAG - GCGGTTACCTG - AGAGC - CACGGGAGTCCCCATG - -A ----------------------

GTCCC - CTGCGAAAGCAGTGTTCC-------GTGGAGGACGG - TGTCCGCGAAG- GCGGTTACCTG - AGAGC - CACGGGAGTCCC - ATG - -A -----------------------

GTCCC - CTGCGAAAGCAGTGTTCC-------GTGGAGGACGG - TGTCCGCGAAG - GCGGTTACCTG - AGAGC - CACGGGAGTCCC - ATG - -A -----------------------

GTCCC -  CTGCGAGAGCAGAGTTCT-------GGGAAGGAAGGGCATTC - TGAAA - AGGAGCGTCTGGAGAGT - CTCAGAAGCCTTGATACCA-----------------------

GTCCC -  CTGCGAAAGCAGAGTCT CAG - AA - GAGGAA - - GGCGCTTATGAAAAGTAGGCG - CTGGAGAGC - TCTGGGAGCCT ACTTG - -

GTCCC-CTGCGAAAGCAGTGTCTCA- -TGTGAGGAA- -GGCGCCCATTAAAAGTGAGCG-CTGGAGAGC-CATGAGAGCCCCTGTGTCGTCCGGCTTGCC

GTCCC -  CTGCGAAAGCAGTGTCTCAA- TG - GAGAAA - - GTTACCCATGAAAAGTGGGAA - CTGGAGAGC - CTTGAGAGTT-------------------------------TTGCC

GTCCCTCTGTGAGAGCAGAGTTCCGGGTTTGAGGAAGGTGCGCCGCCGACAAATGGGCCACCAGAGAGCGCCTGGAGA GTCGTGTGTTTTGC -
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Porphyra umbilicalis --------------- ------------------------------------------------GGG-ATGGGTAGTTTCTCA- GATATCGAAAACGAACACAAACGTTCCGTAGGTGAACCTGCGGAAGGAT

Porphyra dioica ------- --------------------------------------------------------GGG - ATGGGTAGTTTCTCA - GATATCGAAA - CGAACACAA -  CGTTCCGTAGGTGAACCTGCAGAAGG - -

Porphyra linearis  --------------------------------------------------------------- GGG-ATGGGTAGTTTCTCA-GATATCGAAA-CGAACACAA-CGTTCCGTAGGTGAACCTGCAGAAGGAT

Porphyra leucosticta --------------------------------------------------------------- AGG- -TGG-TAGTTTCC-------------------------------- AATACAA-CGTTCCGTAGGTGAACCTGCAGAAGGA-

Porphyra suborbiculata ----------------------------------------------------- TAGGCGGG-A--------- AGTTTTCC------------AAAACAATCA- CAC GTTCCGTAGGTGAACCTGCAGAAGG- -

Porphyra purpurea  AAATATTGGTGGCTGTACGGCTC----------AGCGGG - - TGGAGAGTTTTCCTTGATAATGAGAAACAACAC------- GTTCCGTAGGTGAACCTGCAGAA-------

Porphyra miniata  AAG------------- GACAATGCGTCCCCTCTGGGCAAG-ACGGTTAGTTTTCC------------AAGAAAATCAACAC--------GTTCCGTAGGTGAACCTGCAGAAGGAT

H i I  denbrandi a rubra GGGTGTTTGCGG ATAACTC------------GCGCGCGTGATTGGCTTTTC-----------------------------------------------------------------------TGAAC-------------- GGAAT

CT\
Porphyra umbilicalis C----------

Porphyra dioica  -----------

Porphyra linearis  CAGA--

Porphyra leucosticta -----------

Porphyra suborbiculata -----------

Porphyra purpurea  -----------

Porphyra miniata  CAGA--

Hildenbrandia rubra CAAAAA



Figure 5. Percent comparison of successful H50 Intron Amplification in a sub-sample 
(Total N=181) of the Porphyra Survey Using Flanking Primers (porint 1+2) and Intron 
Specific Primers {porint 5+6). Table represents number of samples screened for each 
taxon.
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Figure 6. Amplification results of Helix 21 Group-I introns using the Int5prl and Int5pr2 
primer pair from a survey of 88 Porphyra individuals. Table represents actual data.
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Figure 7a. Phylogram of Helix 50 Group-I Intron using Maximum Parsimony analysis. 
Numbers represent bootstrap support from resampling of 1000 replicates. Parentheses= 
bootstrap support from weighted analysis.
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Figure 7b. Phylogram generated from 910 bp from the SSU of the rRNA gene in 
Porphyra using Maximum Parsimony analysis. Numbers represent bootstrap support 
from resampling of 1000 replicates (recalculated from data given in Klein et al., 2003).
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Figure 8. Sequence alignment of the Helix 50 Group-I intron in three Porphyra umbilicalis individuals. Each individual contained 
two different size variations of the inton based on the presence and absence of a His-Cys homing endonculease ORF near the 5’ end of 
the intron (see bp position 88).
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Table 6. Percent sequence similarity between helix 50 introns without a His-Cys ORF 
(Intron 1) and introns with the insertion (Intron 2) in three individuals of Porphyra 
umbilicalis that contain both types. The ORF was not included in the percent identity 
calculation.

Porphyra umbilicalis isolate NWY7(1) NWY8(1) ENG 1(1) NWY7(2) NWY8(2) ENG 1(2)
NWY7-Intron 1 
NWY8-Intron 1 
ENG 1-Intron 1 
NWY7-Intron 2 
NWY8-Intron 2 
ENG1- Intron 2

100
96.2 96.2
94.2 94.2 93.3
94.2 94.2 93.3
93.9 93.9 93.1

100
99.8
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Figure 9. The proposed secondary structure of Helix 50 group-I intron in P. umbilicalis with secondary 
structure annotations (Burke et al, 1987; Michel and Westhof, 1990) as follows. P, Q, R, and S represent 
regions of highly conserved sequence motifs. P1-P9 annotations represent sequential base pairing regions. 
lowercase letters= 18S rRNA; uppercase= intron RNA
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Figure 10. The 453 bp PI extension sequence from Porphyra umbilicalis isolate 
(GenBank #). The ORF sequence is shown in uppercase, flanking sequence in lowercase 
letters, with the corresponding amino-acid sequences given above the ORF. Nucleotides 
corresponding to the conserved U:G pair in P I, which define the 5’-splice site, are in 
bold. Note that the ORF is located on the complementary strand.

t t t g c t a a g g c a c t a a a a c a g a c t a t c a t g g a c a t g c a a c c a a t c g a c c a c c c a t g t c g t c c a c c t t c a a g c g a a t c c c t

* Q P Y G P E G E L P T D I N G H V R
cgtttactttctatcgttcataCTACTGCGGGTAACCAGGCTCACCCTCCAGGGGGGTGTCGATGTTACCATGCACGCGA

i c q p q h l ĉT n h d p h d k f h d c y q r t k n v r
ATGCACTGCGGCTGATGAAGACAGTTGTGGTCCGGGTGGTCTTTGAAATGGTCGCAGTATTGTCGCGTCTTGTTGACCCT

E T E F V L H Q P N V C A G R H C R H S A Q E G E V
CTCGGTTTCAAAGACCAAATGCTGCGGGTTCACACAGGCACCCCGATGACAACGGTGAGACGCTTGTTCCCCTTCGACAG

P V R G A N F I C A V V H G Y Y K R G H L R L Q V Y G
GGACACGACCAGCGTTGAAGATGCAGGCGACGACGTGACCGTAGTACTTACGGCCATGCAAGCGCAGCTGCACATAACCA

A P K V V A Y N T R Y C S F T G I R F A M P T H A D L
GCAGGTTTCACCACAGCGTAGTTAGTTCTGTAGCAGCTAAACGTACCAATGCGAAATGCCATGGGAGTATGCGCGTCAAG

A A M A R A L L A P N N Y A A Y N N V D I A N D M
AGCGGCCATAGCCCTGGCGAGCAAGGCGGGATTGTTGTAGGCGGCATAATTGTTGACGTCGATAGCGTTGTCCATgaaga

a t g a c c t t c t g t g g g a a a c a c t t a c c g a a g
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Figure 11. Similar putative endonuclease sequences from the Bangiophyceae in the 
Helix 50 ribosomal group-I intron. The amino acid sequence of the Porphyra umbilicalis 
intron ORF found in four individuals (Pumb) is aligned to the corresponding sequences 
from Porphyra spiralis (Psp 1), and Bangia atropurpurea (Bat 1) as given in Haugen et 
al. (1999). Identical positions are indicated by dots, deletions by dashes. The His-Cys 
box motif (bold line) is compared to the homing endonuclease l-Ppol. Conserved 
residues proposed to be directly involved in zinc binding (C100, C l05, HI 10, C l25,
C l32, H I34, C l38) and the active site (H98, N 119) of the I-Ppol endonuclease (Flick et 
al., 1998) are indicated by shading.

PUMB_IRE2 M D N A I D V N N Y A A Y N N P A L L A R A M A A L D A H T
PUMB_NWY 7 .................................D T . . . F ............................................ V .........................................
PUMB_NWY8 .................................  D T . . . F    V............... .....
PUMB_ENG1 .................................  D T . . . F    V............... .....

PUMB_IRE2 P M A F R I G T F S C Y R T N Y A V V K P A G Y V Q L R L H
P s p  1  Y Q
BAT 1 . . . . M . I  D
P U M B _N W Y 7.......................................................................................................N . . .  S . . . .  M .
PUMB_NWY 8 .......................................................................................................N . . .  S . . . .  M .
PUMB ENG1 ...................................................................................................

PUMB IR E2 G R K Y Y G H V V A c I  F N A G R V P V E G E 0 A S R H
P s p  1 . T . . C . I I V A V A A T E . L . L P . E T
BAT 1 . . . c . L I s T . A A F N . L . T . E
1-Ppo I  
PUMB NWY7 I  . . . . . . L F V .

L

PUMB NWY8 I  . . . . . . L P V .
PUMB ENG1 I  . . . . . . L R V .

H98 CJ 00

PUMB IRE2 R G A V N P Q I L V F E T E R V K T R Q Y D H F K D H
Psp 1 N A K . K A 1 . T L S G D L 1 S I R L M R N
BAT 1 N A K L I M A . S G D * 1 S L R L N
I-Ppo I N T R H L 1 . C W S L D D If G N W - P G
PUMB NWY7 . L . S H N L
PUMB NWY8 . L S H N L
PUMB ENG1 . L S H N L

C105 H 1W N U 9 C125

PUMB IRE2 P D H N « L Q P 0 I R V H G N I D T P L E G E P G Y P 0
Psp 1 E f  k s T . V *
BAT 1 E F K 1 V . E H T 0 T *
I-Ppo I N G G 1 V A V V L Q P L Y G G A T V A P Q
PUMB NWY7 1 S
PUMB NWY8 1 S
PUMB ENG1 S

C132 H134 C138

PUMB_IRE2 . *
Psp 1 
BAT 1
I-Ppo I R G S H F V V *  
PUMB_NWY7 . *
PUMB_NWY 8 . *
PUMB ENG1 . *
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Figure 12. The amino acid and nucleotide alignment of ORFs in four individuals of 
Porphyra umbilicalis. Amino acid changes differing from isolate IRE-2 are boxed. A 
change in amino acid at position 105 (bold) resulted in a stop codon in NWY7, NWY8, 
and ENG1.

M D N A D V N N Y A A Y N N P A L L A R A M A A L D A H T M A R

ATG GAC AAC GCT ATC GAC GTC AAC AAT TAT GCC GCC TAC AAC AAT CCC GCC TTG CTC GCC AGG GCT ATG GCC GCT CTT GAC GCG CAT ACT CCC ATG GCA TTT CGC
M D N A D V D T Y A A F N N P A L L A R V M A A L D A H T P M A F R

ATG GAC AAC GCT ATC GAC GTC GAC ACT TAT GCC GCC TTC AAT AAT CCC GCC TTG CTC GCA AGA GTT ATG GCC GCT CTT GAC GCG CAT ACT CCC ATG GCA T t t CGC
M D N A D V D T Y A A F N N A L L A R V M A A L D A H T M A F R

ATG GAC AAC GCT ATC GAC GTC GAC ACT TAT GCC GCC TTC AAT AAT CCC GCC TTG CTC GCA AGA GTT ATG GCC GCT CTT GAC GCG CAT ACT CCC ATG GCA TTT CGC
M D N A D V T Y A A F N N A L L A R V M A A L D A H T M A F R

ATG GAC AAC GCT ATC GAC GTC GAC ACT TAT GCC GCC TTC AAT AAT CCC GCC TTG CTC GCA AGA (TTT ATG GCC GCT CTT GAC GCG CAT ACT CCC ATG GCA TTT CGC

40 50 60 70

I G T F C Y R T N Y A V V K P A G Y V Q L R L H G R Y Y G H V V A

ATT GGT ACG IT T AGC TGC TAC AGA ACT AAC TAC GCT GTC, GTG AAA CCT GCT GGT TAT GTG CAG CTG CGC TTG CAT GGC CGT A AG TAC TAC GGT CAC GTC GTC GCC
I G T F C Y R T N Y A V V N P A G S V Q L R M H G R I Y Y G H V V A

ATT GGT ACG TTT AGC TGC TAC AGA ACT AAC TAC GCT GTG GTA AAC CCT GCT GGT TCC GTG CAG CTG CGC ATG CAT GGC CGT ATT TAC TAC GGT CAC GTC GTC GCC
I G T F S C Y R T N Y A V V N P A G S V Q L R M H G R I Y Y G H V V A

ATT GGT ACG TTT AGC TGC TAC AGA ACT AAC TAC GCT GTG GTA AAC CCT GCT GGT TCC GTG CAG CTG CGC ATG CAT GGC CGT ATT TAC TAC. GGT CAC GTC GTC GCC
I G T F S C Y R T N Y A V V N P A G S V Q L R M H G R I Y Y G H V V A

ATT GGT ACG TTT AGC TGC TAC AGA ACT AAC TAC GCT GTG GTA AAC CCT GCT GGT TCC GTG CAG CTG CGC ATG CAT GGC CGT ATT TAC TAC GGT CAC GTA GTC GCC

PUMB NWY8

PUMB ENG1

105
F E i T  E PUNjB_IRE2

TGC ATC TTC AAC GCT GGT CGT GTC CCT GTC GAA GGG GAA CAA GCG TCT CAC CGT TGT CAT CGG GGT GCC TGT GTG AAC CCG CAG CAT TTG GTC I T T  GAA'"A'CC" GAG '
C F N A G R V P L E R E Q V S H R C H R G A C V N Q L L V F T PUMB NWY7

TGC ATC TTT AAC GCT GGT CGT GTC CCT CTC GAA AGG GAA CAA GTG TCT CAC CGA TGT CAT CGA GGT GCC TGT GTG AAC CCG CAA CTT TTG GTT TTT GAA ACC TAG
C F N A G R V P L E R E Q V S H R C H R G A C V N Q L L V F T PUMB. NWY8

TGC ATC TTT AAC GCT GGT CGT GTC CCT CTC GAA AGG GAA CAA GTG TCT CAC CGA TGT CAT CGA GGT GCC TGT GTG AAC CCG CAA CTT TTG GTT TTT GAA ACC TAG
C F N A G R V P L R E Q V S H R C H R G A C V N Q L L V T PUMB. ENG1

TGC ATC TTT AAC GCT GGT CGT GTC CCT CTC GAA AGG GAA CAA CTG TCT CAC CGA TGT CAT CGA GGT GCC TGT GTG AAC CCG CAA CTT TTG GTT TTT GAA ACC TAG

1 1 0 1 2 0 1 3 0 1 4 0

R V N K T Q Y C D H F K D H P D H N C L H Q P Q C R V H G N D T PUMB. IR E 2
AGG GTC AAC AAG ACG CGA CAA TAC TGC GAC CAT TTC AAA GAC CAC CCG GAC CAC AAC TGT CTT CAT CAG CCG CAG TGC ATT CGC GTG CAT GGT AAC ATC GAC ACC

R V S K T R H Y C N L F K D H P D H N C L H Q P Q C R V H G N D T PUMB..NWY7
AGG GTG AGT AAG ACG CGA CAT TAC TGC AAC CTT TTC AAG GAC CAC CCG GAC CAC AAC TGT CTT CAC CAG CCG CAG TGC ATT CGC GTG CAT GGT AAC ATC GAC ACC

R V S K T R H Y C N L F K D H P D H N C L H Q P Q C R V H G N D T PUMB._NWY8
AGG GTG AGT AAG ACG CGA CAT TAC TGC AAC CTT TTC AAG GAC CAC CCG GAC CAC AAC TGT CTT CAC CAG CCG CAG TGC ATT CGC GTG CAT GGT AAC ATC GAC ACC

R V S K T R H Y C N L F K D H P D H N C L H Q Q C R V H G N D T PUMB._ENG1
AGG GTG AGT AAG ACG CGA CAT TAC TGC M C -CTT TTC AAG GAC CAC CCG GAC CAC AAC TGT CTT CAC CAG CCG CAG TGC ATT CGC GTG CAT GGT AAC ATC GAC ACC

L G E G Y Q
CCC CTG GAG GGT GAG CCT GGT TAC CCG CAG

P L G E G Y S Q
CCC CTG GAG GGT GAG CCT GGT TAC TCG CAA

P L G G Y S Q
CCC CTG GAG GGT GAG CCT GGT TAC TCG CAA

P L G E G Y S Q
CCC CTG GAG GGT GAG CCT GGT TAC TCG CAA

PUMB_IRE2 

PUMB_NWY7 

PUMB_NWY8 

PUMB ENG1

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER III

GENETIC VARIATION AND BIOGEOGRAPHICAL BOUNDARIES WITHIN 

PORPHYRA UMBILICALIS (BANGIOPHYCIDAE, RHODOPHYTA).

Abstract

Information about historical periods of climate change can provide a framework 

for investigating how marine communities may have adapted to changes both 

geographically and ecologically. The spatial distribution of variable haplotypes from the 

nuclear ribosomal DNA internal transcribed spacer region (ITS1-5.8S-ITS2) and a 

ribosomal DNA group-I intron from the obligate, rocky intertidal red alga, Porphyra 

umbilicalis Kutzing were used to reconstruct its biogeographic history since the last 

glacial maximum in the North Atlantic. Haplotype distributions from European and 

North American samples representing the range of P. umbilicalis are consistent with the 

hypothesis that North American populations were extirpated during the last glacial 

maximum and subsequently recolonized from European donor populations. A non­

coding intergenic region between the mitochondrial cytochrome oxidase (cox)2 and cox3 

genes was also investigated but because it exhibited extremely low levels of intraspecific 

variation, the spacer was not useful for testing phylogeographic hypotheses.
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Introduction

The North Atlantic is primarily a cold-temperate biogeographical region (Briggs, 

1974; Hoek, 1975; Liming, 1990) with the southern bi-continental boundaries of Cape 

Hatteras, (North Carolina, USA) and the English Channel (Europe) and corresponding 

northern boundaries at the Strait of Belle Isle (Newfoundland, Canada) and the Barents 

Sea at Kola fjord (Finland) (Hooper et a i,  2002; Liming, 1990). The North Atlantic 

coastlines contain diverse assemblages of intertidal marine organisms including 

macroalgae, many of which are endemic to the cold-temperate habitats of the North 

Atlantic. Of these seaweeds, many are common to both the eastern and western coasts of 

the North Atlantic. However, the degree of endemism between the coasts contrasts 

significantly with Europe exhibiting both higher species diversity and number of 

endemics versus the Northwest Atlantic. Hoek (1975) attributed most of the 

discontinuities and differences between the two coasts to the degree of the Pleistocene 

glaciation; that is, although these coastlines share many similarities (i.e., substrata, 

surface seawater isotherms), the historical events that influenced current seaweed 

distribution contrast significantly. For North Atlantic intertidal marine communities, the 

last glacial maximum of -20,000 years ago ( McIntyre et al., 1976; Holder et al., 1999) is 

thought to have been especially harsh for obligate rocky intertidal species on the North 

American coast (Ingolfsson, 1992; Riggs et al., 1996; Wares and Cunningham, 2001).

The last Pleistocene glaciation would have displaced many species from their original 

(pre-glaciation) habitat since the availability of hard substrata was limited beyond the 

southernmost extent of the glaciers at Long Island Sound, except for a few off-shore reefs
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(Ingolfsson, 1992; Riggs et a l ,  1996). For many cold-temperate seaweeds, attachment to 

hard substrata is a requirement for survival and this change in available habitat probably 

resulted in localized extirpation. Additionally, it is probable that a steep temperature 

gradient existed below the glaciation that would inhibit the survival of arctic and cold- 

temperate species (van den Hoek and Breeman, 1990). If extirpation occurred, then most 

of the current Northwest Atlantic rocky intertidal species were probably recruited from 

European "donor" populations where the Pleistocene glaciation was less severe and hard- 

substratum was more available (Vermeij, 1991; van Oppen et al., 1995).

Ingolfsson (1992) was the first to look at marine organisms that required rocky 

substrata for attachment and recruitment in the North Atlantic. His comparison of species 

composition in Northern Norway, Iceland, and the Canadian Maritimes suggested that the 

last two communities are impoverished subsets of the rocky shore fauna of Northern 

Norway; this observation is in agreement with a hypothesis of post-glacial dispersal of 

marine organisms from Europe. Based on van den Hoek and Breeman's (1990) 

comparison of seaweeds from the cold temperate Northeast Atlantic with the cold 

temperate Northwest Atlantic, Ingolfsson (1992) speculated that rocky shore algae in the 

North Atlantic should present a similar picture to his study of marine animals.

Wares and Cunningham (2001) revisited the post-glacial recolonization 

hypothesis for rocky, intertidal species using mitochondrial DNA sequences from three 

cold-temperate obligate rocky intertidal species (Semibalanus balanoides L., barnacle; 

Nucella lapillus L. and Littorina obtusata L., gastropods), as well as three generalist 

species (Asterias rubens L., sea star; Mytilus edulis L., mussel; and Idotea balthica 

Pallas, isopod). Using allelic diversity measurements and estimated lineage-specific
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mutation rates, they provided evidence supporting the hypothesis that some obligate 

rocky intertidal taxa had colonized New England from European populations. Their 

work also suggested that in some of these organisms, life history traits, including 

mechanisms of dispersal, might have played an important role in organisms surviving the 

drastic changes associated with the last glacial maximum. The study was followed by a 

more detailed investigation of Asterias (Wares, 2001a), using both the cytochrome 

oxidase I mitochondrial gene and a fragment of the nuclear ribosomal internal transcribed 

spacer. The results of this analysis suggested an initial vicariance of Asterias populations 

during the formation of the Labrador Current 3.0 million years ago (Ma) followed by 

recent recolonization of the Northwest Atlantic populations from a European source 

population.

In contrast, an alternative hypothesis of post-Pleistocene recolonization by Wilce 

(unpubl., in South, 1983) attributed the low endemism of shore algae on the western 

coasts of the Atlantic to a one-way post-glacial exchange of species by the Paleo-Gulf 

Stream (Cronin, 1980) from America to Europe. Wilce emphasized that the Gulf Stream 

is a more effective vector for transporting cold-temperate species than for species 

migrating in the east-west direction. His hypothesis adds one more factor besides 

glaciation and substratum barriers to the differences in species richness between the two 

continents.

The large-scale biogeographic patterns observed today can be linked to vicariant 

events of the past such as fragmentation of continents, emergence of land barriers, and 

extreme shifts in global temperature (i.e., glaciation events) through phylogeographic
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studies (Avise, 2000). Porphyra umbilicalis Kiitzing., an obligate12, rocky-intertidal red 

alga (Bird and McLachlan,1992) is a suitable species to test these models of historical 

migration following glaciation. The species has a cold-temperate distribution in the 

North Atlantic (North America, Greenland, Iceland and Europe), it requires a hard 

substratum for attachment, and resides in an intertidal environment that would have been 

severely impacted by ice sheets. Additionally, the species’ North Atlantic boundaries are 

unclear because it is frequently confused with similar taxa such as P. purpurea (Roth) C. 

Agardh, P. birdiae Neefus et Mathieson, and P. insolita P. Kornmann et P.-H. Sahling 

(Bird and McLachlan, 1992; Mitman and van der Meer, 1994; Klein et al., 2003).

Based upon the hypothesis that substratum requirements played a major role in 

the species’ historical biogeography, genetic differences were examined among Porphyra 

umbilicalis isolates to describe the post-glacial recolonization of the species in New 

England and the Canadian Maritimes. The DNA sequences from both the mitochondrial 

(cox2-cox3 spacer) and nuclear genomes (ITS 1 and 2 spacer region; SSU rDNA Helix 50 

group-I intron) were used to examine the patterns of intraspecific variation within P. 

umbilicalis.

The mitochondrial encoded cox2-cox3 (COX) intergenic spacer region separates 

the cytochrome oxidase subunits 2 and 3 (cox2/cox3) genes. The spacer has been used to 

examine intraspecific variation in animals and has proven to be a useful, highly variable 

molecular marker. The variation found in COX spacer region is not as great in plant 

mitochondrial DNA, which may explain its scarcity of use in studies of other

12 Records of an epiphytic form, Porphyra umbilicalis forma epiphytica F.S.Collins (1903), are here treated 

as Porphyra leucosticta, based on personal observations and a review of the literature.
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photosynthetic organisms such as marine algae. However, the large evolutionary 

divergence between marine red algae and land plants (Baldauf et a i,  2000) should 

encourage examination of the mitochondria as a candidate organelle for variable markers. 

Recent work in the Rhodophyta has shown that the COX region is variable within 

populations of the red algae Caloglossa leprieurii (Montagne) G. Martens and 

Caulacanthus ustulatus (Mertens ex Turner) Kiitzing (Zucarello et al., 1999, 2002).

The nuclear ribosomal DNA (rDNA) internal transcribed spacer regions (ITS 1 

and 2) separate three ribosomal genes (18S-5.8S-26S) in the rDNA cistron of eukaryotes. 

Though the biological function of the internal transcribed spacers is not fully understood, 

there is evidence that they may play a role in rRNA processing (Sande et a i ,  1992). 

Internal transcribed spacer regions have been shown to evolve at a rapid rate (Bakker et 

al., 1995) and are therefore useful in resolving differences between closely related 

species or different populations within species (Wares, 2001b). In marine algae, ITS 

regions have been utilized in biogeographic studies to support theories of dispersal 

direction and postglacial recolonization in the Rhodophyta (van Oppen et al., 1995; 

Rueness and Rueness, 2000; Marston and Villard-Bohnsack, 2002), Phaeophyta (van 

Oppen et al., 1993), and the Chlorophyta (van Oppen et al., 1993; Bakker et al., 1995; 

Olsen et al., 1998; and Kooistra et al., 2002). One caveat to using ITS regions is the 

occurrence of high levels of intra-individual polymorphism in a number of plant and algal 

species (Bobola et al., 1992; Serrao et al., 1999; Fama et a l, 2000) due to incomplete 

homogenization of ribosomal arrays under concerted evolution (Dover et al., 1982). 

Recent studies examining ITS variation in Porphyra suggest its usefulness for
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intraspecific studies of cultured strains (Kunimoto et al., 1999a) and for phylogenetic 

evaluations (Broom et al., 2002).

Group-I introns are found throughout many distantly related organisms, including 

green algae, ciliates, myxomycetes, fungi, filose amoeba, euglenids and rhodophytes 

(Bhattacharya et a i,  1994, 1996a,b; Saldanha etal., 1993; Damberger and Gutell, 1994, 

Muller et al., 2001; Busse and Preisfeld, 2003). Several studies on group-I introns in the 

small subunit of the ribosomal repeat within Bangiales (Oliveira et al., 1995; Kunimoto 

et al., 1999) have suggested the possibility of using group-I introns for intraspecific 

investigations such as strain identification, biogeographical boundaries and 

phylogeography. The present study represents the first investigation of ribosomal group-I 

intron variation within Porphyra to test phylogeographic hypotheses.

Sequence variation for the mitochondrial COX, nuclear ribosomal ITS 1 and ITS2, 

and a ribosomal group-I intron found within Helix 50 of the 18S gene (see Chapter 2; 

also known as Intron 1506 in Muller et al., 1998, 2001) were surveyed across the 

geographical range of Porphyra umbilicalis populations from the Northwest and 

Northeast Atlantic, plus the North Sea. The corresponding sequences were also obtained 

from the closely related P. mumfordii Lindstrom et Cole, P. linearis Grev. and P. dioica 

J. Brodie et L.M. Irvine (Klein et al., 2003; Lindstrom and Fredericq, 2003). The data 

were used in tandem with spatial and historical biogeography information to test 

phylogeographic hypotheses on the post-glacial recolonization of obligate, rocky 

intertidal organisms such as the cosmopolitan red alga P. umbilicalis. The present study 

was also intended to re-examine the current range and species designation of this alga in 

the North Atlantic.
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Materials and Methods

Sample collections.

The specimens used in this study were freshly collected, obtained as herbarium 

samples, or from silica-gel dried specimens. Table 1 lists the collection, voucher, and 

GenBank information for each sample. Silica-gel specimens were usually not adequate 

in size for herbarium vouchers and were used only for DNA extraction. Thirty-four 

samples of Porphyra umbilicalis were collected (18 European; 16 North American) from 

twenty nine geographical locations (Table 1, Figure 1).

In addition, samples of Porphyra mumfordii, P. linearis, and P. dioica were 

included in this study. All samples were verified for identification by a species-specific 

RFLP assay (Teasdale et al., 2002; Chapter 1). The following DNA sequences from 

other studies were included in various analyses: sequences for the ITS region (Porphyra 

umbilicalis: AJ318959; AB017088, Kunimoto et al., 1999), 18S 1506 intron ribosomal 

intron (Porphyra purpurea: AF172588, Muller et al., 2001) and 18S ribosomal sequence 

(P. umbilicalis: L36049, L26202, Oliveira et al., 1995; AB013179, Kunimoto et al., 

1999). The mitochondrial genome of P. purpurea (GenBank Accession NC002007; 

Burger et al., 1999) was used in the alignment and characterization of the COX region for 

this study.

DNA extraction.

Tissue samples (0.03-0.25 g) were ground in a 1.5 ml microcentrifuge tube using 

liquid nitrogen and a micropestle. Genomic DNA was extracted either by a standard
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CTAB method modified by Stiller and Waaland (1993) or by using the Puregene® DNA 

Isolation Kit for plant tissue (#D5500A; Gentra Systems, Minneapolis, Minnesota); the 

samples were either stored at 4° C (short-term) or -80° C (long-term).

Amplification and sequencing.

The ITS1-5.8S-ITS2 region was PCR amplified using a forward primer JBITS7 

(Table 2) as prescribed in Broom et al. (2002) and a universal reverse primer AB28 

(Table 2; Steane et al., 1991). Polymerase chain reactions (PCR) were performed in 50 

pL volumes that contained 1-2 pL (25-75 ng) genomic DNA, 0.2 mM of each dNTP, 2.0 

mM Mg2+, IX Magnesium Free Reaction Buffer B (Promega, Madison, WI), 0.4 pM of 

each primer, and 0.4 pL Taq DNA Polymerase (5 U p L  '1, Promega). The amplification 

profile was as follows: 1 cycle of 3 min at 94; 34 cycles of 1 min at 46°C, 1.5 min at 72° 

C, 30 s at 94° C; 1 cycle of 1 min at 45° C; 1 cycle of 10 min at 72° C; ending with a hold 

cycle at 10 °C. Two additional sequencing primers (ITS1-R and ITS2-F) were used for 

sequence determination (Table 2).

For the ribosomal group-I intron analyses, two sets of primers (H50-1 and H50-2) 

and LNT-5FL and ITS1-R (Table 2; Figure 1 in Chapter II) were designed based on 

Porphyra SSU sequences (Klein et al., 2003) and flanking ITS1 sequence (see above). 

PCR reactions were performed in 50pL volumes under identical reagent conditions of the 

ITS (see above). The amplification profile for the H50 primers were as follows: 1 cycle 

of 3 min at 94° C; 35 cycles of 1 min at 55° C, 1 min at 72° C, 30 s at 94° C; 1 cycle of 1 

min at 55° C; 1 cycle of 10 min at 72° C; ending with a hold cycle at 10° C. The INT- 

5FL/ITS1-R primers were used with the H50 profile, with the exception of a longer
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extension time at 72 °C at 1 min 30 s. The amplification product from the H50-1 and 

H50-2 primers were used for intron sequence comparison, whereas the INT-5FL and 

ITS1-R primers were specific for P. umbilicalis and used to determine intron size and 

insertion sites by amplifying the full size intron and flanking areas of the rDNA and 

adjoining ITS1 spacer.

The cox2-cox3 spacer regions were amplified using the degenerate primer pair 

cox2-for and cox3-rev (Table 2; Zuccarello et al., 1999). Polymerase chain reaction 

(PCR) amplifications were done in 50 pL volumes using the following final 

concentrations: IX Taq reaction buffer (Promega), 100 pM of each dNTP, 1.8 mM 

MgCl2 , 0.5 pM of each primer, 0.4 units of Taq DNA polymerase (Promega), and 25-75 

ng of template DNA. The following reaction profile was used: 1 cycle of 4 min at 94° C; 

5 cycles of 1 min 93° C, 1 min 45° C, 1 min 72° C; 30 cycles of 30 s 93° C, 30 s 55° C, 

30 s 72° C; 1 cycle for 15 min 72° C, and a hold cycle at 10° C (Zuccarello et. al, 1999).

All PCR amplifications were performed using a PTC-100 MJ Research DNA 

Thermalcycler (Watertown, MA). For each set of reactions, a control sample containing 

all reagents but template DNA was included as a test for contamination.

The PCR-product from each individual was separated by size using 

electrophoresis in a 0.9% low melting point agarose gel and bands were visualized by 

Ethidium bromide staining. Sizes were estimated using a $>XJHaeIII (Promega) DNA 

ladder under UV light. The amplified bands were excised from the gel and treated with 5 

U agarase (Sigma®, St. Louis, Mo.) per 100 pL gel with a 1 h incubation at 37°C before 

use in direct sequencing reactions.
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Cycle sequencing was done using a Perkin Elmer ABI Dye Terminator Cycle 

Sequencing Kit (Applied Biosystems, Inc., Foster City, CA), while sequencing reactions 

were performed on a thermocycler using the profiles recommended by the manufacturer. 

Cycle sequencing products were ethanol precipitated and separated on a Perkin Elmer 

ABI377 Automated Sequencer at the Hubbard Genome Center Sequencing Facility 

(University of New Hampshire, Durham, U.S.A). All sequences were assembled using 

the program Seqman. The sequences were then aligned for phylogenetic analyses using 

Megalign, both of which are part of the Lasergene suite of programs (DNASTAR Inc. 

Madison, WI).

Cloning o f ITS

Purified PCR fragments were used to test for intra-individual variation in ITS. 

The ITS fragments were cloned using the pGEM®-T Easy Vector System (Promega) 

following manufacturer's instructions. Plasmid DNA was isolated using the Qiagen mini- 

prep kit (Qiagen Inc., Valencia, CA, U.S.A).

Haplotype diversity

Haplotype diversity (h , Nei, 1987) and its sampling variance were calculated for 

each continental population for both ITS and intron sequences using Arlequin vers.

2 .001.
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Phylogenetic analysis

Intraspecific genealogies were inferred in Porphyra umbilicalis for both ITS and 

Helix 50 group-I intron using the phylogenetic criteria of Maximum Parsimony (MP), 

Maximum-Likelihood (ML), and Statistical Parsimony (SP). The MP algorithm looks for 

trees that require the fewest changes to explain the differences observed in the taxa under 

study (Nei, 1987). The MP method is generally used when sequence heterogeneity is low 

and when mutational rates are different (i.e. transitions vs. tranversions). A disadvantage 

of using the MP method is it can generate numerous trees with the same score. Whereas 

the ML algorithm, which identifies neighbor pairs that minimize the total length of a tree 

and evaluates the probability that the chosen evolutionary model (tree) has generated the 

observed data, results in only one “best” tree (Nei, 1987; Felsenstein, 1988). Finally, the 

SP method was specifically designed for estimating intraspecific haplotype trees 

(Templeton et al. 1992). Since the MP model minimizes the total number of mutational 

steps in the tree under a neutral model of intraspecific evolution, it is unlikely for 

haplotypes that are separated by only one or very few nucleotide differences to have 

multiple mutational hits at the few sites by which they differ. The SP algorithm thereby 

makes a correction in the MP assumptions and gives precedence to connections between 

haplotypes (Clement et al., 2000).

Using the software TCS (Clement et al., 2000), Statistical Parsimony initially 

defines the uncorrected distance above which the parsimony criterion is violated with 

more than 5% probability. Subsequently, all connections are established among 

haplotypes starting with the smallest distances and ending either when all haplotypes are 

connected or the distance corresponding to the parsimony limit has been reached.
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Intraspecific unrooted cladograms (parsimony networks) based on the SP procedure have 

been shown to have greater statistical power and accuracy when there are limited 

numbers of variable sites (Templeton et a l ,  1992; Crandall, 1994; Clement et al., 2000), 

as is commonly found in biogeographic studies. The network for each locus was 

compared with the topology of the ML and MP phylogenies (estimated in PAUP* 4.0; 

Swofford, 1998) to ensure concordance; the best-fit ML model for each dataset 

(Cunningham et al., 1998) was determined using ModelTest (Posada and Crandall,

1998). Searches were performed with stepwise addition (simple addition sequence) and 

TBR branch swapping with zero-length branches collapsed.

Rooting techniques

Based on sequence similarity, the Pacific taxa Porphyra mumfordii was used to 

create a rooted phylogram employing both MP and ML for determining a basal North 

Atlantic clade within Porphyra umbilicalis. Alternatively, each haplotype in the statistical 

parsimony network was assigned a so-called “outgroup probability” (Donnely and 

Tavare, 1986; Castelloe and Templeton, 1994), TCS version 1.13 (Clement et al., 2000). 

The likelihood value is calculated as a function of the position of the haplotypes in the 

network, its frequency, and its number of connections with neighbor haplotypes.

Lineage-Specific Estimates o f Mutation Rate

Estimates of clade divergence for Porphyra umbilicalis within the North Atlantic 

require an estimate of the mutation rate (p). Because phylogenetic and paleontological 

evidence suggests that P. umbilicalis diverged from its closest ancestral sister-taxon P.
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mumfordii during the trans-Arctic interchange about 3.5 Ma (Teasdale et. al., 2000; 

Lindstrom and Fredericq, 2003; Lindstrom, 2001; Vermeij, 1991), this date was used to 

calibrate the divergence between the two closely related North Pacific and North Atlantic 

species. Therefore, the ML estimates of the internal branch length separating the sister 

taxa/populations from the Pacific and Atlantic were used to estimate the appropriate 

amount of divergence per site (Edwards and Beerli, 2000). The measure represents the 

net nucleotide divergence, d  (Nei and Li, 1979), and it allows a calculation of the 

mutation rate as p = (1/2) d  / (3.5 X 106 years) using the trans-Arctic divergence estimate 

discussed above. Because prior investigations on intron mutation rates are limited, only 

ITS sequences were used for estimating the time of clade divergence.

Results

The location for samples used in this study and GenBank accession numbers for 

sequence data for COX, ITS, and group-I intron sequences are given in Table 1. The 

distributions of these collection sites in North America and Europe are shown in Figure 1. 

In some cases, herbarium vouchers were not available or could not be made from the 

material provided by other collectors.

Several additional reference sequences of Porphyra umbilicalis in GenBank (both 

the ITS and Helix 50 intron) were not used in my analyses as they showed limited 

sequence similarity with the sequences documented here. Overall the “P. umbilicalis’'’ 

ITS accession AJ318959 was approximately 57-62.5% similar to my samples, which was 

below the -77%  similarity found in the interspecific comparison between P. mumfordii 

and P. umbilicalis. Similarly, the P. umbilicalis Helix 50 intron accessions AF172573
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and AF172602 showed sequence similarities of 18.5-37.4% when compared to this 

study’s sequences. The relative comparisons of the intron sequences again show very 

low sequence identity in contrast to a comparison of P. umbilicalis samples and its sister 

species P. mumfordii (65-70% sequence similarity). The large separation between the 

reference sequences and my data suggest that AF172573, AF172602, and A J318959 

probably represent other taxa than P. umbilicalis.

COX sequences

Complete sequences for the COX region were obtained from five Northwest 

Atlantic and five Northeast Atlantic Porphyra umbilicalis accessions (also used in the 

ITS and intron analyses). The COX sequences from two additional taxa were sequenced 

for interspecific comparisons (P. dioica and P. mumfordii). The length of the amplified 

region after editing was approximately 291 base pairs (bp) among the taxa and included 

the 3' end of the cox2 gene (118 bp), the intergenic spacer region (166-167 bp; Appendix 

B), and the 5' end of the cox3 gene (6-7 bp). The sequences of all 12 taxa were aligned 

easily and were found to be identical in length for the intergenic spacer, except for a 1 bp 

size difference in P. dioica.

Sequence variation for COX in ten Porphyra umbilicalis individuals used in this 

sequence comparison was limited to single nucleotide differences in two individuals 

(ENG1, NWY4). The North Pacific taxon P. mumfordii shared identical spacer sequence 

with eight P. umbilicalis specimens (see Haplotype A, Table 3). The two other Porphyra 

species used in the alignment, P. dioica and P. purpurea (GenBank # NC002007; Burger
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et al., 1999) diverged from the P. umbilicalis/P. mumfordii consensus sequence by 

approximately 8-9% of the total base pairs (Table 3).

ITS 1 and 2 sequences

The universal primers JBITS and AB28 (Table 2) were used to amplify across the 

entire ITS1-5.8S- ITS2 region of the ribosomal repeat. In many samples, this 

amplification produced several DNA fragments of different sizes, including the band of 

expected size. The extraneous bands presumably resulted from the amplification of other 

DNA templates contaminating Porphyra umbilicalis. A number of recurring bands (two 

main size classes) that did not correspond to the predicted size of the Porphyra ITS were 

sequenced and submitted to a BLASTn search [BLASTN 2.2.4; (October 17, 2002); 

Altschul et a i,  1997]. The results of this search showed high sequence similarity (size 

class 1: -420 bp) to the ITS 1 region from the copepod, Lepeophtheirus salmonis Krpyer, 

(BLASTN E Value = 2e~38; GenBank Accession AF043980; Shinn et al., 1999) and the 

endophytic sporophytic stage of the green algaAcrosiphonia coalita (Ruprecht) Scagel, 

Garbary, Golden and Hawkes (Size Class 2:490 bp;BLASTN E Value = 0.0; GenBank 

Accession AF047682.1; Sussmann et al., 1999).

The degree of intra-individual ITS variation was determined from five clones of 

Porphyra umbilicalis isolate NHP-2 (New Hampshire) and another eight clones from the 

geographically distinct P. umbilicalis isolate NWY-3b (Norway). The intra-individual 

sequence variation from an alignment of 927 bp had ranges of 0.0-0.3 % in the NHP-2 

specimen and 0.0-0.2% in the NWY-3b specimen. The single nucleotide polymorphisms
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were randomly distributed among the clones and can probably be ascribed to artifactual 

point mutations from Taq amplification.

The entire sequence of the ITS1-5.8S-ITS2 region was determined from 34 

individuals of Porphyra umbilicalis collected at 29 locations within the North Atlantic 

(including the North Sea) to evaluate the amount of intraspecific variation across its wide 

geographical range. The length of ITS1 is between 274 and 275 bp depending upon the 

presence of an indel (insertion or deletion) at alignment position 91 (Appendix C). 

Additionally, the ITS1-5.8S-1TS2 region was amplified and sequenced for P. purpurea, 

P. dioica, P. birdiae, and P. mumfordii to provide outgroups for phylogenetic analysis. 

However, high levels of sequence divergence between the outgroup taxa prevented 

confident alignment of the first three taxa with P. umbilicalis. Only ITS sequence from 

P. mumfordii exhibited a high degree of sequence similarity, allowing successful 

alignment with P. umbilicalis.

The length of the ITS1 region in Porphyra umbilicalis ranged from 274 to 275 bp 

due to the presence of an indel at bp position 91. The 5.8S rDNA coding region was 

160bp long and identical for all P. umbilicalis accessions, except for a single point 

mutation found in NBK-1. The length of ITS2 showed more variation, ranging from 507 

and 515 bp, primarily due to a single 5 bp deletion in IRE-2 (Ireland) and two indels 

common in two distinct haplotypes. Other sequence variation over the -950 bp ITS 1- 

5.8S-ITS2 region was limited to twenty-two single nucleotide substitutions, eleven of 

which were unique to a single individual; thus, they were not parsimony informative.

In the phylogenetic analyses of ITS sequences, the unrooted cladograms for both 

MP (Figure 2) and ML (data not shown) showed similar haplotype relationships with
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significant bootstrap resampling, which supported four primary Porphyra umbilicalis 

haplotypes. When the same populations are rooted with an outgroup in ML (Figure 3) or 

by coalescence in the Statistical Parsimony Network (Figure 4), the relationship between 

North American samples either remains close or is lacking expected intermediate 

haplotypes, respectively. Figure 3 shows that the North American haplotypes have 

limited divergence from six European haplotypes within a well supported clade (Clade I). 

Besides the mixed composition of haplotypes (e.g., both North American and European) 

in this clade, the divergence in this mixed clade showed a reduced level of missing 

haplotypes when compared to the other exclusively European clade (Clade II, Figure 3).

Intron Sequences

Appendix D shows an alignment of 28 geographic isolates of Porphyra 

umbilicalis (18 European, 10 North American) for the ribosomal group-I intron at Helix 

50 in the nuclear SSU, with these representing a subset of the samples analyzed for their 

ITS sequence. The full-length intron sequence of IRE-la and gel-band sizing was used in 

tandem with other Porphyra (P. umbilicalis; P. purpurea; as referenced previously) 

group-I Helix 50 introns and 18S ribosomal sequences for accurate size and positioning. 

The full size of the intron was -710 bp. For the phylogenetic analysis, a smaller sized 

PCR amplification of the intron using H50-1 and H50-2 primers resulted in a -548 bp 

fragment with the only size variation occurring with the presence of an indel at alignment 

position 510 (Appendix D). Other sequence variation over the 548 bp intron fragment 

included 53 nucleotide substitutions, 18 of which were unique to a single individual and 

not parsimony informative. An additional group-I intron size variant was weakly
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amplified at the same insertion point in several samples (ENG1, IRE2, NWY7, NWY8). 

The size variants contained a -478 bp insertion (position 64; Appendix D) and were not 

included in the phylogenetic analyses (see Chapter II).

The intron analyses were consistent with many observations found with the ITS 

results. It is evident based on the number of polymorphisms, that the Helix 50 intron is 

diverging at a considerably higher rate (-2.5 fold higher) than the ITS spacer regions. 

The unrooted Maximum Parsimony cladogram of the group-I intron exhibits more 

divergence of both European and North American haplotypes when compared to the 

unrooted MP cladogram for ITS (Figure 5). The SP network (Figure 6) confirms the 

clade separation seen in ITS but also exhibits larger divergence between the North 

American haplotypes and the mixed-European haplotypes than seen in ITS (Clade I, 

Figure 3) based on missing haplotypes assumed by coalescence theory.

Phylogeographic Analysis

Haplotype networks representing the complete datasets for ITS and the Helix 50 

group-I introns in Porphyra umbilicalis are shown in Figures 4 and 6. Because outgroup 

rooting is not reliable for intraspecific genealogies (Castelloe and Templeton, 1994), the 

most likely root haplotypes are indicated on each network (asterisk see Figures 4,6). The 

root haplotype in ITS was the largest common haplotype in the SP network, being 

exclusively European in origin. The ancestral haplotype contained samples from Norway 

(NWY1,2,4,5,6), England (ENG2, ENG4) and the Republic of Ireland (IREla). 

Consistent with the ITS root haplotype, the Helix 50 group-I intron SP analysis also 

calculated a root haplotype containing NWY1 and NWY4-6. Because of increased
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sequence variation in the group-I intron, ENG2, ENG4, and IRE-la did not fall into the 

dominant, root haplotype.

Haplotypes Diversity and Mutation Rate Estimates

Haplotype diversities (h) of North American and European populations are shown 

in Table 4. North American populations showed lower haplotype diversity than 

European populations for both ITS and group-I intron sequences.

The internal branch length (based on best-fit maximum-likelihood model F81, no 

rate variaton) separating Porphyra umbilicalis from P. mumfordii for the ITS data was 

0.03274, with a standard error of ± .0001 (calculated from Figure 3). The ITS data under 

the F81 ML model did not reject a molecular clock model, which implies that the 

different haplotypes are diverging at a constant rate. Using the calibration date of 3.5 Ma 

(the estimated time the trans-arctic interchange was closed), the ITS region has a 

theoretical mutation rate of p=4.67 X 10"9 (substitutions per site per generation).

Analysis of the branch length showing the first split of North American haplotypes from 

European haplotypes indicates that the event may be quite recent with an estimated time 

to most recent common ancestor [TMRCA] = 1.28 X 105 years or an estimated 

divergence between European and North American haplotypes within the last 128,000 

years. The "older" root clade appears to predate the last glacial maximum.

Discussion

Large-scale biogeographic studies in some seaweeds have been problematic due 

to the lack of morphological characters that are needed for taxonomic identification and
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species delimitation. While the advent of DNA-molecular methods has allowed 

considerable progress in macro-geographic studies of marine animals, comparable 

genetic loci (i.e., hypervariable regions in animal mitochondria) in seaweeds have not 

shown the same levels of resolution and thus have limited the number of biogeographic 

studies.

In this study, the genetic diversity of North Atlantic populations of Porphyra 

umbilicalis was assessed using ITS, ribosomal intron and COX spacer sequences. Both 

ITS and COX have been successfully used to estimate intra-specific levels of genetic 

diversity in red algae (Patwary 1993; van Oppen et al., 1995; Vis and Sheath 1997; 

Zuccarello et al., 1999; Marston and Villalard-Bohnsack, 2002). Analysis of ITS and 

group-I intron sequences throughout the species range of P. umbilicalis revealed regional 

differences. By contrast, the mitochondrial COX region showed no significant 

intraspecific variation and only low levels of interspecific variation among the four 

Porphyra taxa used for comparison. The limited variation in the mitochondrial spacer 

suggests that the mitochondrial genome in the Bangiaceae may be under very different 

evolutionary constraints than the members of the Florideophyceae that have been 

surveyed to date (Zuccarello et al., 2000). Although not useful for biogeographic studies, 

the 8-9% variation found between P. umbilicalis and P. dioica and between P. 

umbilicalis and P. purpurea in the COX region suggest that this locus is useful for 

confirming topologies for a genus-wide phylogeny. The comparatively high sequence 

similarity of this region between P. umbilicalis and P. mumfordii (see Table 2) supports a 

close relationship between these two taxa as previously calculated using rbcL sequence
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data (Lindstrom and Fredericq, 2003); it also justifies using P. mumfordii as the closest 

known relative to P. umbilicalis.

The ITS region and group-I intron sequence data have previously been 

investigated in other Porphyra species, and they can be used as a baseline comparison of 

sequence divergence in P. umbilicalis and P. mumfordii. Studies by Kunimoto et al. 

(1999) and Broom et al. (2002) on P. yezoensis and P. suborbiculata, respectively, used 

regions of the ITS spacer and group-I introns to investigate the molecular divergence and 

taxonomic status of their representative taxa. Both studies showed comparable levels of 

intraspecific sequence similarities in ITS1 (P. yezoensis, 96-100%; P. suborbiculata, 

94.6-100%). Kunimoto et al. (1999) also looked at the interspecific differences at ITS1 

between P. yezoensis and P. tenera Kjellman, two closely related species, and found 88- 

90% sequence similarity. Furthermore, the level of sequence similarity between P. 

yezoensis and a specimen of P. umbilicalis (Nahant, MA; AB013179) was much lower 

(38-44% sequence similarity). The ITS variation in my samples is similar to their results 

with ITS1 sequence similarity between all P. umbilicalis isolates of 96.3-100% and 

interspecific similarity between P. umbilicalis and P. mumfordii of 77.7-79.2%. Together 

these analyses suggest that an individual species in the genus Porphyra has roughly 4-5% 

base pair variation in the ITS region. Interestingly, there is slightly higher variation in 

the ITS2 (P. umbilicalis', 95.9-100%) when compared to ITS1. The ITS2 was not 

examined in earlier studies and I feel that because of the small size of the entire ITS 

region, both the ITS1 and ITS2 regions should be analyzed together to enhance the 

statistical significance of phylogenetic analyses. The high level of sequence similarity 

between geographically distinct Porphyra umbilicalis samples from this study provide
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additional information for ascertaining the current distributional range of P. umbilicalis 

and its phylogenetic relationship to P. mumfordii as well as other closely related species.

Impact o f Glacial Events

The primary goal of this study was to test the hypothesis that glaciation effects 

upon rocky, intertidal marine seaweeds in the Northwest Atlantic were severe and 

resulted in the extirpation of organisms that required rocky substrata for attachment and 

recruitment. Since Porphyra umbilicalis is considered to be an obligate, rocky intertidal 

species (Bird and McLachlan, 1992), historical phylogeography may help to explain the 

current distribution of populations of this alga and its possible recolonization routes in the 

North Atlantic. An analysis of genealogical patterns within P. umbilicalis fits the 

following models: 1) a recent range expansion and; 2) that North American populations 

are descendants of a recent colonization from Europe that probably followed the last 

glacial maximum (about 20,000 BP).

Using data from the ITS region it would appear that all North American 

haplotypes are closely related to many European haplotypes, depicted as Clade I in 

Figure 3. Phylogenetic analysis using statistical parsimony further resolves these 

relationships by suggesting that the haplotype consisting of samples NBK2, MAE1, 

MAS1, and NY1 should also be found in European populations with increased sampling. 

The assumption that this haplotype exists on both sides of the North Atlantic would 

explain the divergence of the three European samples from this haplotype (Figure 4). 

Based on the bootstrap support of MP and ML analysis, the two Norwegian samples 

NWY 3a,b were not included in this mixed North American and European clade (Figure
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3). This suggests NWY 3 a,b are an intermediate haplotype and possible source 

population for postglacial recolonization to North America. The addition of a second set 

of exclusively European haplotypes (Clade II, Figure 3) confirms the calculations of 

diversity (h) that show an increased number of European haplotypes compared to North 

America (Table 4). The lower allelic diversity found within North American Porphyra 

umbilicalis compared to the diversity calculated for European samples provides another 

indicator of recent range expansion (Hewitt, 1996; Austerlitz et al., 1997, Wares and 

Cunningham, 2001). The observation becomes significant when evaluating the larger 

divergence between North American and European haplotypes for intron data (see 

below), where more genetic variation exists between members of the geographically 

mixed clade (Clade I), presumably due to a relaxed selection rate. However, a reduced 

degree of allelic diversity for the intron sequence is again seen among the North 

American populations.

Coalescent theory was used to predict that NWY 1 was the most ancestral ITS 

haplotype. The result is consistent with the hypothesis that European populations gave 

rise to extant Western North Atlantic populations of Porphyra umbilicalis after 

Pleistocene glaciation events. The ITS analyses suggest that the TMRCA between 

European and North American isolates of P. umbilicalis was within the last 125,000 

years, probably as a result of isolation during the glacial periods of the Pleistocene.

Clade II (Figure 3), which is made up of only European haplotypes, represents a much 

older separation and probably does not represent recolonization haplotypes. However, 

haplotypes NWY3a and NWY3b provide intermediate haplotypes that appear to link 

Clade I and Clade II. Based on the SP network and ML tree, a Norwegian donor
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haplotype related to the NWY3a,b haplotype supports bi-directional dispersal southward 

to other parts of Europe and westward as the seed population for North America.

Norway has previously been supported as a likely donor refugium of marine organisms 

for post-Pleistocene dispersal in the North Atlantic (Ingolfsson, 1992).

Although the Helix 50 group-I intron sequences were not used in estimating times 

of divergence, they provided valuable information in understanding and confirming ITS 

haplotype relationships and providing an alternate set of data (perhaps not independently) 

from the same individuals for analysis and comparison. The most obvious result of the 

intron analysis is the separation of European from North American haplotypes (Figures 5 

and 6). The degree of divergence between European and North American populations 

suggests that geographical isolation is the primary factor influencing the Helix 50 intron 

haplotype relationships and that gene flow is occurring at a higher rate within than 

between continental populations. A hypothesis explaining this divergence is that the 

higher rate of mutations occurring within the group-I intron has decreased the historical 

resolution of the haplotype relationships found in the slower evolving ITS. However, 

like ITS the North American intron haplotypes show lower overall diversity when 

compared to European accessions. The lower haplotype diversity is consistent with the 

hypothesis that North American Porphyra umbilicalis populations have been recently 

colonized (within the last 125,000 years) versus Europe.

When the results of statistical parsimony analyses of the ITS region and the Helix 

50 intron are compared to some of the criteria set forth by Wares and Cunningham (2001) 

in substantiating a recolonization event, the analyses generally support the theory that 

Northern Europe was a donor population for Porphyra umbilicalis in the Northwest

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Atlantic for the following reasons: 1) both the ITS and Helix 50 intron showed lower 

haplotype diversity in North America; 2) the ancestral P. umbilicalis haplotype was 

related to members of the exclusive European Clade II; 3) the divergence between many 

European and North American haplotypes in Clade I is small and gives support for shared 

haplotypes between the two distant geographic regions; and 4) haplotypes NWY3a and 

NWY3b appear to be intermediate between European and North American populations 

and are perhaps closely related to the source haplotype of a North American 

recolonization event.

Although the results of this study can be used to support postglacial expansion 

events, an alternative hypothesis is also consistent with some but not all of my 

observations. If North American populations were not extirpated but instead existed in 

glacial refugia, extant North American Porphyra umbilicalis would still be expected to 

exhibit significantly lower haplotype diversity than the less severely impacted European 

populations. So although the results of the ITS and group-I intron statistical parsimony 

analyses show distinct haplotype clustering by geographical location, the lack of shared 

haplotypes along with the estimate of divergence time for the most recent common 

ancestor between the European and North American alleles do not rule out the alternative 

hypothesis of recolonization of New England and the Canadian Maritimes from a North 

American glacial refugia. Additionally, the assumption that available rocky intertidal 

habitat was not available at the last glacial maximum in North America for P. umbilicalis 

could be disputed; for instance, lower sea levels (~150m) may have exposed consolidated 

sediments on the continental shelf (Riggs et al., 1996), which could act as habitat for P. 

umbilicalis.
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Since no shared haplotypes were found in either the ITS or intron datasets, 

interpretation of the root haplotypes and the assumptions and implications of coalescent 

theory that was used to support the root haplotypes becomes important. Coalescent 

theory describes the genealogical branching process backwards in time until a single 

common ancestral gene sequence is estimated using parameters such as likelihood 

estimation of divergence rates and migration rates (Knowles and Maddison, 2002; Li, 

1997). The TCS program used in this study to estimate the root haplotype is based on 

coalescent assumptions of allele genealogy. An important assumption in coalescent 

models for historical inference is that a simple population history is assumed in contrast 

to other models that try to distinguish an array of historical processes..

Given the length of time that hypothetical North American refugia and European 

refugia would have been separated due to unfavorable climatic conditions during glacial 

maxima, simulations by Johnson et al. (2000) indicate that the likelihood of observing 

shared alleles between these populations today is small if gene flow was not maintained., 

and in fact no share haplotypes were detected in this study. Furthermore if separate 

refugia for P. umbilicalis had existed in North America and Europe, this would generate 

greater divergence among alleles from each population. In my study, the statistical 

parsimony networks of the intron and ITS show that the haplotypes are less diverged in 

North America than in Europe. In summary, the results show that the root haplotypes for 

both ITS and the helix 50 intron were European, and that the haplotype divergences for 

both loci were greater in Europe than in North America, which are consistent with the 

hypothesis that the obligate rocky intertidal species P. umbilicalis recolonized North 

America from an European refugium after the last glacial maximum.
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Species Range

The rDNA ITS, COX, and Helix 50 intron data demonstrate that all of the 

Porphyra umbilicalis populations examined in this study represent a distinct species that 

exhibits a unique molecular profile. The variable ribosomal ITS and intron sequence data 

have led to the discrimination of two well supported clades and have provided a 

molecular baseline for the species range of P. umbilicalis that may be used to confirm 

whether new accessions fall within this taxon. An interesting question arises as to the 

differences between the two most divergent clades (Clade I, III; Figure 3) and whether 

they may be precursors to a speciation event based on geographic isolation.

The inherent high levels of sequence variation within these accessions of 

Porphyra umbilicalis for both ITS and the ribosomal intron are consistent with the 

species-specific RFLP assay based on rbcL (Chapter One). The results also bring up an 

important observation that may affect previous phylogenetic analyses of these loci.

During comparative sequence analysis of P. umbilicalis ITS and the Helix 50 intron, 

three GenBank accessions were found that were incompatible with the species 

designation in this study based on sequence similarity: GenBank Accession A J318959 

for the ITS region (Antoine and Fleurence, 2003) and 1506 intron accessions AF172573 

and AF172602 (Muller et al., 2001). Because previous studies did not utilize a species- 

specific molecular assay for sample identification and samples included in this study 

were obtained by multiple collectors and showed high degrees of sequence similarity, I 

conclude that GenBank accessions AJ318959, AF172573, and AF172602 are not P. 

umbilicalis, but other mis-identified Porphyra taxa that have been mis-identified.
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Issues o f Contamination

The amplification of extraneous fragments from mixed DNA templates (total 

genomic DNA extractions from Porphyra umbilicalis) and identification of the 

corresponding contaminating organisms resulted in two potentially important 

observations. Foremost, the appearance of multiple bands during ITS amplification was 

not unexpected and is considered a common phenomenon and problem when using 

universal or non-species specific PCR primers. There are also inherent problems of 

epiphytic and endophytic organisms associated with field collections of marine 

macroalgae (and other biological samples for ecological studies). Together these two 

factors can produce false positive banding patterns for the target taxon when there are 

mixed DNA templates. Such a problem is of particular concern when analyzing markers 

produced from PCR using short, non-specific oligonucleotide primers such as randomly 

amplified polymorphic DNAs (RAPDs) or inter-simple sequence repeats (ISSRs) because 

of the non-specificity of the universal PCR primers and the inherent problems of 

epiphytic and endophytic organisms associated with field collections of marine 

macroalgae.

The contamination problems may have been alleviated or reduced by culturing 

each sample to reduce epiphytic and endophytic organisms that may have been attached 

to the isolate, but for this study culturing was both time and cost prohibitive.

The other observation involving contaminants occurred when examining the sequences of 

the non-specific bands that consistently appeared in the ITS amplifications. Surprisingly, 

one of these sequences was found to have high sequence similarity with the green alga
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Acrosiphonia coalita. It has been reported that Porphyra may be a suitable host for the 

endophytic sporophyte phase of Acrosiphonia, previously identified as Chlorochytrium 

inclusum and Codiolum petrocelidis (UBC Herbarium specimen A39186 in Sussmann 

and Dewreede, 2002). However a recent study looking for Acrosiphonia endophytes in 

28 Porphyra samples based on ITS sequence data failed to detect the endophyte in all of 

their samples and Porphyra was subsequently ruled out as a possible host (Sussmann et 

al., 1999; Sussmann and DeWreede, 2002). An alternative green algal endophyte species 

is a possible explanation to this result. For example, West et al. (1988) described a 

unicellular green endophyte, Chlorochytrium porphyrae, specifically found in Porphyra. 

Although the conspecificity of these organisms remains speculative, the results suggest 

that vegetative thalli of Porphyra umbilicalis are frequently contaminated by green algal 

endophytes and thus should not be excluded as a possible host for either of the previously 

mentioned Chlorochytrium species. The only other recurring band resulting from a 

contaminating organism was from the sea louse Lepeophtheirus salmonis, with all of the 

molecular work and sequence information derived from European populations. 

Interestingly, only European P. umbilicalis isolates exhibited these contaminating bands.

Assumptions and Limitations

When trying to interpret the phylogeography of an organism, it is important to 

outline the main assumptions being made and how they limit the interpretation of results. 

One of the primary concerns in this study is the use of only one locus for estimating 

divergence times and substitution rates. Although ITS has been extensively studied, 

additional loci may provide more reliable or advantageous data for historical
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biogeographic studies of marine algae. Organelle DNA such as mitochondrial or 

chloroplast DNA have advantages of not undergoing recombination and having a smaller 

effective population size (Avise et al., 1987). Unfortunately, these organelles have not 

shown the same level of variability in protists (i.e., mitochondrial cox spacer; this study) 

as they have in animals (mitochondria) or plants (chloroplast).

My analyses further assumed that the trans-arctic interchange was the most likely 

time of dispersal between the Pacific and Atlantic Ocean with subsequent vicariant 

speciation occurring as the Arctic Ocean froze and the Bering Strait closed during the 

glacial periods. Under this assumption, the estimation of the mutation rates in ITS was 

based on the further assumption that North Atlantic and North Pacific taxa diverged 3.5 

million years ago, the estimated time since the submergence of the Bering land bridge. 

Although this date was based on fossil evidence, dates of 6.4 million years ago have also 

been proposed for this vicariant event (Vermeij, 1991; Marincovich and Gladenkov, 

1999). My data set is limited in it is not possible to resolve which ocean (Pacific or 

Atlantic) was the origin of the most common ancestor (TMCA) for P. umbilicalis and P. 

mumfordii. However, a deeper phylogenetic reconstruction of Porphyra from both the 

Atlantic and Pacific Oceans may provide useful information on invasion direction 

(Lindstrom, 2001).

Finally, the use of the coalescent model in the statistical parsimony network to 

estimate a root haplotype assumes that the ancestral haplotype still remains in the 

population and is often the most common haplotype. The assumptions are just such and 

if incorrectly interpreted they could alter some of the observations and conclusions from 

this study.
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Conclusions

In conclusion, the ITS and ribosomal group-I introns show utility for 

phylogeographic and population-level studies in Porphyra. The apparently higher rate of 

mutation within the intron and presence of multiple intron sizes within a single individual 

(see Chapter 2) decreases the utility of this locus for the goal of understanding the 

historical biogeography of Porphyra umbilicalis in the North Atlantic. However, the 

intron data does confirm much of the clade formation and root probabilities seen in the 

ITS data. As more information becomes available on intron evolution and mutation rates 

it may become possible to utilize rDNA intron sequence comparisons more effectively in 

biogeographic analyses.
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Table 1. Collection locations of Porphyra specimens sequenced for this study. Map # corresponds to geographical location (see 
Figure 1). * = not available

P. umbilicalis

Cox Spacer ITS1-5.8S-ITS2

P. umbilicalis 28

P. umbilicalis 29

M ap# Code Location Coordinates Date Collector Herb# Genbank Genbank
1 ENG-1 North Island, Cook St. Pier 8/2/95 D. Birkett/JB170 AY316138 AY322113
2 ENG-2 Sidmouth, Devon, England 50°41',3”15'W 3/24/00 J. Brodie/JB222 76784 - AY322114
3 ENG-3 Overstrand, England 52°56, 1°20E 11/8/00 J. Brodie/JB247 76783 - AY322115
2 ENG-4 Sidmouth, Devon, England 50°41',3"15’W 1/21/00 J. Brodie/JB218 76578 AY316137 AY322116
4 IRE-la Clare Island, County Mayo 53°4679°5TW 8/28/00 F. Rindisi 76580 - AY322118
4 ERE-lb Clare Island, County Mayo 53°46'/9°5rW 8/28/00 F. Rindisi 76580 - AY322119
4 IRE-2 Clare Island, County Mayo 53°46'/9°5rW 8/28/00 F. Rindisi 76580 - AY322120
5 NWY-1 Finnoy, NW of Alesund 62°47'/6°30'E 10/8/02 J. Rueness 76577 - AY322123
6 NWY-2 Ona, NW of Alesund 62°5276°34'E 10/9/02 J. Rueness 76577 - AY322124
7 NWY-3a Golten, Island of Sotra 60°1875°4'58E 9/21/02 K. Sjotun * AY316140 AY322125
7 NWY-3b Golten, Island of Sotra 60°1875°4'58E 9/21/02 K. Sjotun * AY322126
8 NWY-4 Southern Norway 59°02'538",10°1777" 3/6/01 A. Pedersen 76579 AY316139 AY322127
9 NWY-5 Southern Norway 58T6'40",08°32'24" 3/6/01 A. Pedersen 76579 - AY322128
10 NWY-6 Southern Norway 58°05'68'',08°12'65" 3/6/01 A. Pedersen 76579 - AY322129
11 NWY-7 Southern Norway 58°02'88",06°47'750" 3/6/01 A. Pedersen 76579 - AY322130
12 NWY-8 Southern Norway 58°28'72'',05o49'60'' 3/6/01 A. Pedersen 76579 - AY322131
13 GNY-la Helgoland, North Sea 54°12,7°53E 10/15/02 A. Wagner * - AY322121
13 GNY-lb Helgoland, North Sea 54°12,7°53E 10/15/02 A. Wagner * - AY322122
14 PRT-1 Praia da Luz, Porto 37°06,8°40W 9/4/00 R. Pereira 74036 AY316136 AY322117
15 NBK-1 St. Martins, New Brunswick 45°21,65°32 7/10/02 T. Bray 76582 AY316144 AY322133
16 NBK-2 Dipper Harbor, New Brunswick 45° 05'50",66<!24’80, 7/11/02 T. Bray * - AY322134
17 NVS-1 Port George, Nova Scotia 44°57,65w04 7/22/02 T. Bray 76581 AY316145 AY322132
18 MAE-1 Campobello Bridge, Maine 44°52,66w69 10/7/96 A. Mathieson * AY316142 AY322135
19 MAE-2 Parsons Beach, Maine 44°51,68w69 2/4/96 A. Mathieson 72329 - AY322136
20 MAE-3 Peaks Island, Casco Bay, Maine 43°39,70°12 7/8/95 A. Mathieson * AY322137
21 MAE-4 Two Lights State Park, Maine 43°38,70°16 1/28/96 A. Mathieson * AY316143 AY322138
22 MAE-5 Diamond Island, Casco Bay, ME 43°39,70°12 6/3/00 A. Mathieson, E. Hehre 71678 - AY322139
23 NHP-1 North Wallis Sands, NH 43°01,70°44 7/14/02 B. Teasdale * AY316141 AY322140
24 NHP-2 Jaffrey Point, NH 43° 03' 70° 43' 7/15/02 B. Teasdale * - AY322141
25 NHP-3 Hampton Beach, NH 42°54,70°49 7/15/02 B. Teasdale * - AY322142
26 NHP-4 Rye Harbor, NH 42°59,70°46 7/15/02 B. Teasdale * - AY322143
27 NHP-5 Dover Point, NH 43nl2, 70w53 8/25/98 D. West 71783 - AY322144

28 MA-1 Gloucester, MA 42.63179 N,70.68342 
W 9/22/97 C. Neefus 68821 - AY322145

29 NY-1 Shinnecock Inlet, Long Island, NY 40 50 52,72 28 70 6/15/99 E.J. Hehre 69771 - AY322116

Group-I
Intron

Genbank

AY347883
AY347884
AY347885
AY347909
AY347910
AY347887
AY347888
AY347897
AY347898
AY347904
AY347905
AY347906
AY347901
AY347908
AY347899
AY347900
AY347886

AY347907
AY347894
AY347895

AY347889
AY347890
AY347891
AY347892
AY347893
AY347896
AY347902
AY347903
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Table 1 continued. Collection locations of Porphyra specimens sequenced for this study. Map # corresponds to geographical location 
(see Figure 1). * = not available

P. linearis n.a n.a Millstone Point, CT 41° 18' 72° 10' 8/14/96 C. Yarish CT 7-1 AY316148 - -
P. mumfordii n.a n.a Orlebar Point, British Columbia 49 12.20 123 49.20 * S. Lindstrom - AY316146 - -

P. dioica n.a. n.a. Sidmouth, Devon 50“41',3?15'W 7/29/99 J. Brodie - AY316147 - -

P.birdiiae n.a. n.a Herring Cove, Nova Scotia n.a. 9/28/96 A. Mathieson - pending - -
P.purpurea n.a. n.a. Ross Island, New Brunswick n.a. 11/1/96 A. Mathieson 65186 pending - -

too



Figure 1. Geographical sampling locations of Porphyra umbilicalis. Species identities 
were confirmed by RFLP assay of the rbcL and rbch-rbcS spacer region. A= North 
American sites, B= European sites. Note: Number groupings represent sampling regions 
and not identical sample locations; see Table 1 fo r  specific locations.
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Table 2. A list of amplification and sequencing primers for this study.

Primer Label________________ 5'-Primer sequence-3'_______________________ Reference
ITS
JBITS GTAGGTGAACCTGCGGAAGG Broom et al., 2002
AB28 CCCCGGGATCCATATGCTTAAGTTCAGCGGGT Steane et al. ,  1991
ITS-R GAAACTGCGGTATCCTGTCGT This study
ITS-F T ATCCACCGTTAAGAGTTGTAT "

INTRON
H50-1 G AAGG AG AAGTCGT A AC A AGGTTT This study
H50-2 CAGGGGACCGACTGTCTCTTA t t

H50-FL GAGGAAGGAGAAGTCGTAACAA t t

H50-4 CTGATCCTTCTGCAGGTTCACCTAC t t

PU-INT-3 TCCCTTACAGTCTGTGAACCTT t t

PU-INT-5 CATTTAGAGGAAGGAGAAGTCGT t t

COX
cox2-for GTACCWTCTTTDRGRRKDAAATGTGATGC Zuccarello et al., 1999
cox3-rev GG ATCT ACW AG ATGR A A A W GG ATGTC Zuccarello et al., 1999
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Table 3. Sequence divergence between the mtDNA cox2-cox3 spacer and three outgroup 
species as Kimura 2-parameter distances (upper diagonal) and absolute differences (lower 
diagonal).

Species No. of ind.
COX

Haplotype A B C D E
P. umbilicalis, 
P. mumfordii 8/1 A - .00606 .00606 .08378 .09684

P. umbilicalis (ENG1) 1 B 1 - .01220 .09082 .10393

P. umbilicalis (NWY4) 1 C 1 2 - .07683 .10393

Porphyra dioica 1 D 13 14 12 - .15478

Porphyra purpurea 1 E 15 16 16 23 -
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Figure 2. Single most parsimonious tree of the 947 bp region of ITS from Porphyra 
umbilicalis isolates using the evolutionary criterion of Maximum Parsimony. Tree 
lengths 27 steps, CI= 1.00, RI= 1.00, RC= 1.00. Numbers represent bootstrap support 
values (1000 bootstrap resamplings)
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Figure 3. Phylogram of ITS sequence from Porphyra umbilicalis isolates using the 
Maximum-Likelihood (ML) algorithmn with Porphyra mumfordii as the outgroup. ML 
settings followed the best-fit model corresponding to the K80 (K2P) model. Bootstrap 
values (numbers in bold) represent 100 replicates with 884 characters resampled in each 
replicate. ML branch lengths are given in parentheses and represent the degree of 
divergence per site.
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Figure 4. Statistical Parsimony Network depicting the phylogenetic relationships among, 
and geographical assignment of, all P. umbilicalis ITS haplotypes found throughout its 
range in the North Atlantic: white, European; grey, North American. Missing 
intermediate haplotypes are designated by darkened circles. The size of each circle is 
proportional to the corresponding heplotype frequency. Asterick (*) corresponds to 
haplotype with highest rooting probability based on coalescence/TCS analysis.
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Figure 5. Unrooted cladogram of Helix 50 group-I intron from Porphyra umbilicalis 
isolates determined using the evolutionary criterion of Maximum Parsimony.
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Figure 6. Statistical Parsimony Network depicting the phylogenetic relationships among, 
and geographical assignment of, all P. umbilicalis group-I intron haplotypes found 
throughout its range in the North Atlantic: white, European; grey, North American. 
Missing intermediate haplotypes are designated by darkened circles. The size of each 
circle is proportional to the corresponding haplotype frequency. Asterisk (*) corresponds 
to haplotype with highest rooting probability based on coalescence/TCS analysis.
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Table 4. Comparisons of haplotype diversity (h, Nei 1987) for the ITS and ribosomal 
Helix 50 group-I intron in different populations of Porphyra umbilicalis.

Locus/Population Haplotype 
diversity (h)

o2

ITS
European 0.8947 0.0437
North American 0.5556 0.0745
Helix 50 group-I Intron
European 0.7524 0.0918
North American 0.5556 0.0902
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CHAPTER IV

ISOLATION OF MICROSATELLITES FROM PORPHYRA UMBILICALIS.

Abstract

A hybrid capture method was used to isolate sequences containing dinucleotide 

repeats in a search for microsatellite markers in the red alga Porphyra umbilicalis. The 

resulting genomic libraries were moderately enriched with 22.4% of clones containing 

CA, GA, or TA microsatellite repeats, respectively. The number of repeats ranged from 

4 -52 with an average of 14. Sixteen clones contained between 16 and 49 dinucleotide 

repeats with sufficient flanking sequence to design primers for PCR amplification of the 

locus. An initial screening of 16 primer pairs using six geographically distant Porphyra 

umbilicalis isolates along with four related species (P. linearis, P. purpurea, P. 

leucosticta, and P. amplissima) demonstrated that all microsatellite containing loci 

isolated in this study were monomorphic in P. umbilicalis. However, several 

microsatellite primer sets supported amplification of fragments with size variation in 

other species. The present study demonstrated the advantages and problems associated 

with a size-selective hybrid capture method for isolating microsatellite loci in P. 

umbilicalis and the unexpected level of monomorphism exhibited by each locus between 

different populations of this alga in comparison to similar microsatellite isolation studies 

of other marine algae.
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Introduction

The study of the impact of Pleistocene ice ages on the distribution and population 

genetic structure of North Atlantic flora and fauna has been a relatively new area of 

investigation (Hewitt 1996, 2000, 2001; Vendramin et al., 1998). The usual approach to 

deciphering the effect of history on current biogeographical distributions has been to 

investigate patterns of genetic structure and gene flow found within and among extant 

populations at both a regional and local scale. Although patterns of postglacial 

expansion, glacial refugia and genetic structure have been described for many terrestrial 

species, most marine studies have concentrated on benthic invertebrates and fish (Brown 

et al., 2001; Wares 2001a, 2002; Wares and Cunningham 2001). To date there have only 

been three population genetic studies of marine algae in relation to the Last Glacial 

Maximum (LGM), occurring 18,000-20,000 years ago, with all three primarily 

concentrating on Baltic Sea populations (Fucus serratus L., Coyer et al., 2003;

Ceramium tenuicome (Kiitzing) Waern, Gabrielson et al., 2002; Phycodrys rubens (L.) 

Batters, van Oppen et al., 1995).

Porphyra umbilicalis Kiitzing is a prominent red algal species along the North 

Atlantic coast, occurring in Northern Europe, Greenland, the Northeastern United States, 

and Canada (see Chapter 2). In Chapter 3 ,1 compared the restriction fragment length 

polymorphism patterns for the rbcL gene in Northwest and Northeast Atlantic P. 

umbilicalis individuals and confirmed these samples were conspecific on both coasts. 

Hence, P. umbilicalis populations constitute a continuous, amphi-Atlantic species.

Porphyra umbilicalis is an excellent species for addressing population and 

phytogeography questions related to the effect of the Pleistocene glaciation. First, the
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species is considered to have a cosmopolitan distribution and is found in most open 

coastal and estuarine habitats throughout the North Atlantic (Mathieson and Hehre, 1986; 

Brodie et al., 1996). Second, many of its current habitats were covered during the 

Pleistocene glaciations and these regenerated populations may thus provide insights into 

historical recolonization patterns. Recent studies have suggested ice expansion during 

the last glaciation forced many seaweeds southward into small ice-free refugia (Hoek and 

Breeman, 1990; Dawson, 1992), causing extreme population bottlenecks. Van Oppen et 

al. (1995) examined this hypothesis using the red alga Phycodrys rubens, comparing 

nuclear ribosomal DNA internal transcribed spacer (ITS) sequences and found significant 

divergence between eastern Atlantic and North Sea populations. Additionally, they 

found distinct thermal responses between these two populations and concluded that they 

were once isolated, even though the present-day distribution is continuous in the North 

Atlantic and Arctic oceans. By extending the conclusions of van Oppen et al. (1995), the 

North Atlantic populations of Porphyra umbilicalis may have experienced a similar 

history of “population bottlenecks.” Third, the species is primarily an obligate rocky- 

intertidal organism requiring a hard substrata to attach and survive. Based on this 

requirement for a rocky substratum, the lack of available refugia along the coastlines of 

North America may have alternatively caused a continental extripation of this species, 

with current North American distributions coming from European donor populations. 

Understanding the allelic diversity that exists within Porphyra umbilicalis can provide 

valuable information on the historical sequence of fragmentation and expansion, as well 

as the pattern of gene exchange between existing populations.
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Currently, the genetic structure of seaweed populations is poorly understood 

(Coyer et al., 1997). Previous population studies involving the red alga Porphyra have 

employed isozymes to study the genetic structure of P. yezoensis Ueda (Miura et al.,

1978; Fujio et al., 1985). Both studies showed extensive variation at isozyme loci, 

suggesting the existence of subpopulations in Porphyra yezoensis. Fujio et al. (1985) 

further hypothesized that extensive selfing and asexual propagation may explain the high 

levels of genetic differentiation and variability in these haploid plants. Hence, they 

concluded that more detailed studies concerning population structure were warranted. 

Unfortunately, isozyme studies in marine macroalgae have not always been definitive due 

to a combination of unreliable markers and/or a low level of polymorphism (Innes, 1984; 

Sosa et al. 1996; Williams and di Fiori, 1996). A variety of hypervariable markers have 

been employed with macroalgae for population genetic and phylogeographic studies. 

Randomly Amplified Polymorphic DNAs (RAPDs), Amplified Fragment Length 

Polymorphisms (AFLPs), and Intersimple Sequence Repeats (ISSRs) are based on PCR 

amplification of small amounts of DNAs. While these three types of markers are 

relatively inexpensive means to screen for polymorphisms between individuals and 

populations, they all suffer from problems of reproducibility. RAPDs and AFLPs are 

also dominant alleles that are not as informative as codominant genetic markers for 

various measures of population differentiation as some other markers. Another significant 

problem with RAPDs, ISSRs and AFLPs is that small amounts of contaminating DNA 

templates (i.e. from endophytes or epiphytes) may amplify as 'rare' alleles, confounding 

the population statistics (Wattier and Maggs 2001).
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More recently, population studies with the brown algae Fucus (Coyer et al., 2002) 

and Postelsia palmaeformis Ruprecht (Whitmer, 2002), plus the red alga Gracilaria 

gracilis (Stackhouse) Steentoft, L.M. Irvine et Farnham (Wattier, et al., 1997) have 

shown that microsatellites are an appropriate genetic tool to characterize population 

structure and to address many taxonomic and phylogenetic issues within morphologically 

or genetically diverse algal species. Microsatellites are expected to be very useful tools 

for accessing post-glacial recolonization pathways (Vendramin et al., 1998) as well as 

provide fundamental knowledge about marine species conservation. Microsatellites are 

short stretches ( l - 8 bp) of DNA arrayed as tandem repeats that are scattered throughout 

the genomes of prokaryotic and eukaryotic organisms (Jarne and Lagoda 1996). 

Microsatellite variation is assumed to follow a mechanism of adding and subtracting a 

single repeat to or from the current allele with equal probability. Such a mechanism of 

microsatellite variation has been described as the stepwise mutation model, that considers 

similar-sized alleles as less-different in terms of mutational steps than alleles with larger 

differences in size and that this process of mutation has a memory (Jame and Lagoda,

1996). Based on this, genetic distances and population parameters based on 

microsatellite markers may be correctly estimated. Simulation studies of microsatellites 

have provided linear relationships between genetic distance based on the size differences 

of the microsatellite and the time of divergence (Di Rienzo et al., 1994, Feldman et al.,

1997). While they are time-consuming and expensive to develop, microsatellite markers 

are codominant, reproducible, and permit high sample throughput (Wattier and Maggs 

2001).
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Several researchers in the Klein laboratory at the University of New Hampshire 

have utilized diverse molecular methods, including allele specific polymerase chain 

reaction (PCR) of the ribosomal small subunit (SSU; Klein et al. 2003), restriction 

fragment length polymorphisms (RFLP, Teasdale et al. 2002), and rbcL gene sequences, 

to distinguish many North Atlantic Porphyra taxa, including P. umbilicalis (Klein et al., 

2003; see also Chapter 1). As mentioned previously, the usefulness of these methods in 

evaluating intra-specific population genetics is limited due to the low levels of sequence 

variation in these conservative genes. Recent work with ribosomal group-I introns (see 

Chapter 2) and internal transcribed spacers regions (Chapter 3) have shown increased 

levels of nucleotide variation that may be useful for large-scale biogeographic analyses. 

However, these loci are still inadequate for high-resolution studies of population genetic 

structures.

The objective of this study was to isolate microsatellite-containing loci from 

Porphyra umbilicalis. If successful, these markers would then be used to differentiate 

between Northwest and Northeast Atlantic populations in order to better understand the 

population genetic structure of red algae within the North Atlantic.

Materials and Methods

Sample collection and DNA extraction

Porphyra umbilicalis blade tissue was collected from one individual at Jaffrey 

Point New Hampshire. The samples were rinsed and cleaned of visible epiphytes. The 

blades were incubated for two weeks in a 20 gallon tank at 4°C in artificial seawater 

(Instant Ocean® from Aquarium Systems Inc., Mentor, OH) containing O.lSm g^L 1
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germanium dioxide according to Markham and Hagmeir (1982) to reduce the diatom 

load. The DNAs were extracted from 1 gram tissue fragments using a modified CTAB 

extraction protocol by Apt and Grossman (1993), which included a CsCl 

ultracentrifugation step for DNA purification. The DNAs were confirmed as Porphyra 

umbilicalis using a restriction fragment length polymorphism assay developed for species 

discrimination between all known Northwest Atlantic Porphyra species (see Chapter 1).

Microsatellite Isolation

A rapid microsatellite isolation protocol used for the Tilapia Genome (Carleton et 

al., 2002) was adapted for Porphyra umbilicalis. Genomic DNA was initially cut by the 

restriction enzyme Sau3Al. The genomic DNA digestion was separated by size using 

agarose gel electrophoresis and the gel region containing the 400-900 base pair fragments 

was excised. Adapters (A=5 ’ -GATCGTCGACGGTACCGAATTCT-3 ’ ;B=5 ’ - 

GTCAAGAATTCGGTACCGTCGAC-3’) were ligated to the ends of the size-specific 

DNA fragments using T4 DNA polymerase, which were then used as annealing sites for 

PCR primers. PCR was performed increasing the number of copies of all DNAs for the 

desired fragment size. The DNA was then denatured and hybridized to a biotinylated 

probe as the initial step in isolating the microsatellites. The probes selected for this work 

contained complimentary dinucleotide motifs (either [AT] i5, [GA] 15. or [GT] 15), which 

were chosen because of their prevalence in eukaryotic genomes and because dinucleotide 

repeats have higher mutation rates than other microsatellite motifs (Lagercrantz et al., 

1993). The hybridized probe/microsatellite complexes were isolated from background 

DNAs using streptavidin-bound magnetic beads (Dynal Corp., Oslo, Norway), according
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to manufacturer’s instructions. The selected DNA was again amplified by PCR to 

increase the copy number of microsatellite-containing DNAs and cloned into a pGEM-T 

bacterial plasmid vector (Promega, Madison, WI) using high efficiency JM109 

(Promega) competent cells for transformation according to manufacturer’s directions. A 

transformation efficiency of 1.8-4.5 X 108 cfu/pg DNA was calculated from all three 

microsatellite isolations when using a 1:1 molar ratio of insert DNA to vector.

Blue/white screening identified bacterial colonies containing inserts. Insert-containing 

colonies were cultured overnight in 4 ml of LB (Luria-Bertrani) medium. QLAprep® Spin 

Miniprep Kits (Qiagen, Valencia, CA) were used to isolate the plasmids according to 

manufacturer’s instructions.

The plasmid DNAs containing the microsatellite inserts were sequenced using the 

ABI DYEnamic™ ET terminator cycle sequencing kit on an ABI 377 Automated 

Sequencer (Applied Biosystems, Foster City, CA) at the UNH Sequencing Facility. The 

forward and reverse M13 primers as well as SP6  and T7 primers were used. Sequence 

analysis was performed using the SeqEd software program (vers. 1.0.3; Applied 

Biosystems) in order to identify microsatellite loci. The Lasergene Software

(SiPrimerSelect was used to develop primer pairs for microsatellite sequences with >16 

uninterrupted repeats. The polymerase chain reaction was performed using unlabeled 

primers for selected microsatellite containing loci and the products were separated by 

electrophoresis on 3% agarose gels.
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Screening microsatellites fo r  polymorphism

Template DNA from six Porphyra umbilicalis individuals (Klein Laboratory 

Porphyra DNA Accessions: 103, 163, 426, 451, 499, 1009), the closely related species P. 

linearis Grev. (# 710) and three other Porphyra species: P. leucosticta Thuret in Le Jol. 

(#593), P. purpurea (Roth) C. Agardh (#555), and P. amplissima (Kjell.) Setch. et Hus in 

Hus (#465) were used to screen for microsatellite polymorphisms. The geographic 

locations for each DNA accession used in the screening are given in Table 1. The DNAs 

were extracted directly from haploid blades as described previously in Chapters 2 and 3.

Polymerase chain reactions (50 pL total volume) contained 1 pL of each genomic 

DNA template, 50 mM KC1, lOmM Tris-HCl, 2.0 mM MgCl2, 0.8mM dNTPs, 0.4pM of 

each primer, and 0.8U Taq polymerase (Promega). Each PCR was performed with a 

PTC-100™ thermocycler (MJ Research, Watertown, MA). All reactions were performed 

using a standard Hot Start protocol (DAquila et al., 1991). The cycling parameters 

included an initial denaturation step of 5 minutes at 94°C, followed by 39 cycles of 30 

seconds at the annealing temperature (Table 2), a 30-second extension at 72°C, and 

denaturation for 30 seconds at 94°C, with a final extension at 60°C for 90 minutes to 

promote uniform A-tailing of amplicons (Applied Biosystems, 1995). Amplicons were 

separated by electrophoresis on 3% agarose gels at ~4V/cm, and than stained with 

Ethidium bromide and photographed.

Based on results from the high resolution agarose gels, three primer pairs sets 

(clone #: B12, D131, and D134) were chosen for GeneScan analysis. Flourescent-labeled 

forward primers were ordered for each primer set (Table 1). Following PCR, lOpL from 

each reaction was loaded onto a 3% agarose gel and separated by electrophoresis at
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~4V/cm for 1.5 hours. Based upon the brightness of each band, samples were diluted 

from 0-5 fold with TE. For allele sizing, 1.25|iL from each diluted reaction was mixed 

with 1.75pL 5:1 deionized formamide: loading dye and 0.25|lL GeneScan™-500 ROX™ 

size standard (Applied Biosystems, Warrington, UK), denatured for 2 minutes at 94°C, 

and immediately placed on ice. One microliter of each sample mixture was loaded onto a 

6 % denaturing polyacrylamide gel. Electrophoresis was carried out for six hours on an 

ABI373A automated DNA sequencer. Gels were analyzed using ABI GeneScan™ 

software version 3.1.

Results

Microsatellite-containing loci

Size-selective microsatellite isolation was performed three times during the 

course of this study. The first partial library was probed with GT 15 dinucleotide probe 

and contained 195 positive clones from which 81 clones were sequenced based on the 

size or presence of the insert. The second library was again enriched by hybridization 

with GT15; it contained 125 positive clones of which 48 were sequenced. Finally, a third 

partial library was probed with a combination of a GA 15 and TA 15 oligonucleotides, of 

which 54 inserts were sequenced. Of the 183 clones sequenced from all three partial 

genomic libraries, -22.4%  (41 clones) contained simple or compound microsatellites 

with 8  or more repeats. Of these 41 clones, only 16 (39%) had sufficient length (>16 

uninterupted repeats) and flanking sequence to design primers.

Screening o f  microsatellite loci
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Primers were designed for the 16 loci. While all the primer pairs supported 

amplification of plasmid DNA, only 10 amplified genomic DNA (Table 2, Appendix E). 

The 10 primer pairs supported amplification of DNA from six geographically disperse 

accessions of Porphyra umbilicalis and for at least three of four other Porphyra taxa 

screened (Table 2). Figure 1 is an example of the amplification results using the B71 

primer pair. The B 71 primer pair produced a fragment in the predicted size range for P. 

umbilicalis templates as well as the amplification of the closely related Porphyra taxon,

P. linearis. The primer set developed for microsatellite loci TA18 is the only example 

that supported fragment amplification in all species, resulting in what appears to be 

different size bands in the other species (Figure 2). Small differences in some banding 

patterns prompted a secondary screening with three loci (TA18, D134, GA5) using higher 

resolution polyacrylamide gels with fluorescent-labeled primers to accurately verify 

polymorphism that might exist. However, TA18 amplified fragments from six different 

P. umbilicalis templates ran with a uniform size distribution, indicating these samples 

were monomorphic for the TA18 locus as seen in the polyacrylamide GeneScan gel 

picture for loci TA18 (Figure 3). Thus GeneScan analysis established that the ambiguous 

banding patterns seen in the agarose gels were probably caused by the overloading of 

DNA in the individual lanes.

Discussion

The development of microsatellite loci has been accomplished in the red alga 

Gracilaria gracilis (Wattier et al., 1997; Luo et al., 1999), the fucoids (Coyer et al.,
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2002; Olsen et al., 2002; Engel et al., 2003), kelps (Billot et al. 1998; Whitmer 2002; 

Wallace et al., submitted), and members of the green algae (Van der Strate et al. 2000; 

Alstrom-Rapaport and Leskinen, 2002). The abundance and polymorphism of 

microsatellite-containing loci in all of these studies have been less than those found in 

higher plants and animals (Wang et al., 1994; Wattier and Maggs, 2001; Olsen et al., 

2002). The present study utilized a size-selective dinucleotide enriched library to 

improve the isolation of microsatellites from Porphyra umbilicalis.

The present study of single-locus microsatellite genetic markers in Porphyra 

umbilicalis identified 10 microsatellite-containing loci with no allelic variation. Previous 

studies have shown that allelic polymorphisms in microsatellites have been linked to the 

number of uninterrupted repeats in the sequenced clone; in addition it has been observed 

that a low number of repeats are associated with lower levels of polymorphism (Weber, 

1990; Yang et al., 1994; Valdes et al., 1993). My results could not confirm these 

observations because both uninterrupted and interrupted microsatellites with repeat 

motifs > 1 6  were shown to be monomorphic; this may be related to the low number of 

loci screened or to differences in the mutation rate for microsatellites in Porphyra versus 

other organisms.

Of the 16 pairs of primers that were developed for microsatellite screening, six 

did not amplify genomic DNA but did amplify in the cloned vector DNA. The most 

plausible explanation for this result is that the positive clone may contain chimeric DNA, 

a PCR artifact. During the PCR amplification steps that are used to enrich for single 

sequence repeats (SSRs), the DNA polymerase may jump between different 

microsatellite-containing templates to create a chimeric DNA (Bradley and Hillis, 1997).
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The Carleton et al. (2002) protocol for microsatellite cloning addressed some possible 

solutions associated with the formation of chimeras (use of a proofreading DNA 

polymerase, reduction of PCR cycles during microsatellite enrichment). However, 

although the recommended modifications of the protocol were employed in the present 

study, the level of putative chimeric (6/16) sequences among the Porphyra microsatellite- 

containing loci suggests that chimeric clones are still being produced in the hybrid- 

capture microsatellite cloning procedure.

The number of insert-containing clones sequenced in this study (183) was in the 

same order of magnitude to most other published microsatellite isolation studies 

involving marine algae (Table 3). Of the insert-containing clones, 22.4% had 

microsatellite-containing loci containing motifs of > 16 repeats. Similar studies by 

Wallace et al. (unpublished), Billot et al. (1998), and Luo et al. (1999) exhibited similar 

or lower rates of microsatellite detection in their studies. In several of the studies that 

reported details of microsatellite cloning, chimeric clones were also problematic (i.e., 

Wallace et al., submitted; Luo et al. 1999, Engel et al., 2003). A noticeable difference 

between the present study and the other macroalgal microsatellite isolation studies, with 

the exception of Wallace et al. (unpublished), is the number of primers that were 

developed for microsatellite-containing inserts. Based on the present study’s criteria to 

restrict primer development to clones with a repeat motif >16 dinucleotide repeats and 

the avoidance of imperfect or “interrupted” microsatellite sequences for primer design, a 

large number of sequences were omitted from further investigation. Interestingly, many 

of the microsatellite studies in algae have isolated the majority of their polymorphic 

microsatellites from imperfect repeat motifs (i.e., Billot et al., 1998; Luo et al., 1999;
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Engel et al., 2003) or have an equal amount of both perfect and imperfect repeat motifs 

{i.e., Wattier et al., 1997; Olsen et al., 2002; Wallace et al., unpublished).

The main difference in this study versus other macroalgal microsatellite studies 

(Table 3) is the failure to detect polymorphic loci in Porphyra umbilicalis. Although it is 

unclear why my isolation method resulted in primarily monomorphic loci, I have two 

hypotheses: 1 ) the number of microsatellite sequences for primer development and 

screening needed to be increased; and 2 ) P. umbilicalis is uniquely lacking a large 

number of polymorphic microsatellite regions within its genome. Regarding the first 

hypothesis, prior studies with algae have shown that polymorphic microsatellites occur in 

the three major algal divisions (Rhodophyta, Chlorophyta, Phaeophyta) and are therefore 

likely to exist in Porphyra umbilicalis. A re-evaluation and analysis of smaller and 

imperfect microsatellite motifs may increase the chances of isolating polymorphic loci. 

For the second hypothesis, if the DNA polymerases of P. umbilicalis have inherently 

slower mutation rates, then the frequency of polymorphisms would also show a reduction 

compared to microsatellite mutation rates in other organisms. With respect to the second 

hypothesis, it is interesting to note that the level of intraspecific mitochondrial cox2-3 

spacer variation was much lower for Porphyra than has been observed in the 

Florideophyceae (Chapter III).

Although I isolated microsatellite-containing loci from Porphyra umbilicalis, 

their monomorphic nature prevented any application to population or biogeographic 

analysis. Alternative methods for microsatellite enrichment of dinucleotide repeats are 

suggested for continued work with Porphyra with the following goals: (1) to reduce the 

level of chimeric sequences (possible by avoiding PCR-based approaches for isolating
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microsatellite-containing loci); (2 ) to utilize both imperfect and shorter repeats when 

pooling sequences for primer development. Alternatively, primers could be designed for 

any trinucleotide repeats found within the Expressed Sequence Tag (EST) expression 

library database of P. yezoensis and screened for polymorphism. It is worthwhile to note 

the primers for several of these loci (B71, GA5, TA18) that amplified bands of different 

sizes in other Porphyra taxa may be useful tools for molecular identification of Porphyra 

species.
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Table 1. List of Porphyra used to screen microsatellite loci DNA ID= numbering 
system used for genomic DNA accessions in Dr. Klein’s laboratory at the University of 
New Hampshire.

Organism DNA ID Sample location Date
Porphyra umbilicalis 103 Fort Williams, Portland Head, Maine 01/28/1996
Porphyra umbilicalis 163 Two Lights State Park, Maine 01/28/1996
Porphyra umbilicalis 426 Schooner Point, Mount Desert Island, Maine 02/22/1996
Porphyra umbilicalis 451 West Quoddy Head, Maine 02/24/1996
Porphyra umbilicalis 499 East Point, Nahant, MA 10/19/1996
Porphyra umbilicalis 1009 Dover Point, NH 02/23/1998
Porphyra linearis 710 Rye Harbor, NH unknown
Porphyra leucosticta 593 Rachel Carson Salt Pond Reserve, Bristol, Maine 02/02/1996
Porphyra purpurea 555 Lighthouse Cove, Dipper Harbor, NB, Canada 11/02/1996
Porphyra amplissima 465 (cultured conchocelis)- Univ. of Connecticut n.a.
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Table 2. Characteristics of the ten monomorphic microsatellites from Porphyra umbilicalis including DNA ID, primer sequences, 
band size, repeat motif, screening method, and other species that showed amplification products. The nucleotide sequence for each 
clone is given in Appendix E.

4^
Os

Clone ID Forward Primer (5'—>3') Reverse Primer (5’—>3') Expected 
product size

Microsatellite Annealing
Temperature

Screening
method

Other
Porphyra
species0

B63 GCCGGATTGCGTGGTT ATG AGCCCTGAGTGCCTTGTGC 184 GT16 53 agaroseb
B71 GTTGATGCTTGTGGCTTGAGAGG CGGATTGTGCGGTGATGTG 132 c a 22 53.0 agarose 1

B73 GCGAGTGGCATAGAATGACT CAGCACGTGT ACCCCT ACTG 161 g t 16 58 agarose

D131 GGTCGCGCCCGCT ATTTTG CATGACCTGCCGCCTGTGAG 174 c t I6 51.5 agarose,
polyacrylamide0

D134 GGCAACGACCGGTCGAAACACATC CTGCGCCGGACGGGGCATTCTAC 183 a c 2, 49.5 agarose,
polyacrylamide0

GA5 CCGGATTGTCTGTGCTTCTCT GCATCGCTCTCC ACACT ATC AT 302 GAis 53.5 agarose 1 , 2

TA17 AAATTCTTGCCTTTGCTCCTT GCCACGCCAGACCAAATTGAC 176 TC24AC8TC14 52.0 agarose
TA18 GAGACGGCTT AATTTGCGATG AGGGTGAGCGCGCTCTCTTTC 291 GA38 58.0 agarose,

polyacrylamide0

1 ,2 ,3,4

TA45-50-54 TGTCGTCGTGACAAGTCGC ACCCT AACTCT AACCCTCCC 320 GT49 55.0 agarose

TA56 CGCGGAGTTCTAATAGTTGTG ACGCGGGCCAAGGTGTATTTC 311 g t 32 55.9 agarose

a. Four other Porphyra species were used to screen probably microsatellite loci. 1 -P . linearis', 2-P . leucosticta', 3-P . purpurea and 4-P . amplissima.
b. 3% Metaphor agarose gels
c. 6% denaturing polyacrylamide gels
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Table 3. The results of the microsatellite isolation method for Porphyra umbilicalis and other studies involving marine algae. Note:? = 
undetermined or not disclosed.

This study Wallace et al. (in 
submission)

Wattier et al., 
1997

Billot et al., 1998 Luo eta l., 1999 C. Alstrom- 
Rapaport and 
Leskinen, 2002

Olsen etal., 
2002

Engel etal., 
2003

Species of origin
Porphyra
umbilicalis
(Rhodophyta)

Fucus spiralis 
(Phaeophyta)

Gracilaria
gracilis
(Rhodophyta)

Laminaria
digitata
(Phaeophyta)

Gracilaria
gracilis
(Rhodophyta)

Enteromorpha
intestinalis
(Chlorophyta)

Ascophyllum
nodosum
(Phaeophyta)

F. vesiculosus. F. 
serratus. A. 
nodousm 
(Phaeophyta)

Total Clones Sequenced 183 293 66 216 225 6 300 96

No. sequenced clones 
containing repeat motifs 5  x 41

(x=16)
63

(x=16)
? 48

(x=10)
23

(x=?)
5

(x=8)
9 59

(x=?)
No. of primer pairs 
developed 16 12 4 42 23 5 70 28

No. of putative chimeric 
sequences or inadequate 
amplification 6 4 ? ? 7 0 ? 6

No. of simple microsatellites 9 5 2 3 3 4 3 2
No. of imperfect 
microsatellites 1 3 2 7 6 1 3 8

No. of monomorphic 
microsatellites 10 4 2 ? 7 0 9 3

No. of polymorphic 
microsatellites 0 4 2 10 9 5 6 9



Figure 1. A representative result of monomorphic microsatellite loci in test samples. The 
analysis below shows a 3% agarose gel with the amplification results of microsatellite 
loci B71. Lane 1 = d>X174DNA///ae III with the sizes of some fragments labeled in base 
pairs; 2-7 = Porphyra umbilicalis; 8  = P. linearis; 9 = P. leucosticta; 10= P. purpurea; 11 
= P. amplissima; 12 = negative control (Tris EDTA).
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1353 -j 
1078-1 
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Figure 2. A 3  % agarose gel that show PCR amplification patterns of the TA 18 
microsatellite locus.. Lane 1 = OX174DNA///ae III with the sizes of some fragments 
labeled in base pairs; 2-8 = Porphyra umbilicalis', 9 = P. linearis; 10 = P. leucosticta; 11 
P. purpurea; 12 = P. amplissima; 13 = negative control (Tris EDTA).Note: Lane 2 
corresponds to P. umbilicalis plasmid DNA.
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Figure 3. A section from a polyacrylamide GeneScan gel showing the amplification 
results from microsatellite loci TA18 in six previously screened Porphyra umbilicalis 
individuals and the original plasmid isolated DNA. The lanes are staggered with odd 
numbers pre-run for 5 minutes to avoid contamination by nearby even lanes. Therefore, 
all lanes in this picture are showing the same size band (-291 bp), blue bands = 
microsatellite loci, red bands= ROX size standard. Lane 1 = isolate # 103; 2 = 163; 3 = 
426; 4 = 499; 5 = 1009; 6  = 451; 7 = positive control (plasmid DNA).
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APPENDIX A

DNA Species Location Collection
date

1 P. 'leucosticta' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
2 P. leucosticta' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
3 P. leucosticta' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
4 P. 'leucosticta' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
5 P. 'amplissima' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
6 P. 'amplissima' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
1 P. 'amplissima' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
8 P. 'amplissima' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
9 P. ’amplissima’ Gove Point, Cobscook Bay, Lubec, ME 7/8/95

10 P. 'amplissima' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
11 P. 'amplissima' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
12 P. 'amplissima' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
13 P. 'leucosticta' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
14 P. leucosticta' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
15 P. 'leucosticta' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
16 P. leucosticta' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
17 P. leucosticta' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
18 P. 'leucosticta' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
19 P. 'leucosticta' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
20 P. 'leucosticta' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
21 P. 'leucosticta' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
22 P. 'leucosticta' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
23 P. 'leucosticta' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
24 P. 'leucosticta' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
25 P. 'amplissima' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
26 P. 'leucosticta' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
27 P. 'leucosticta' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
28 P. 'leucosticta' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
29 P. 'leucosticta' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
30 P. leucosticta' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
31 P. 'leucosticta' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
32 P. 'leucosticta' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
33 P. 'leucosticta' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
34 P. 'leucosticta' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
35 P. leucosticta' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
36 P. 'leucosticta' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
37 P. 'amplissima' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
38 P. 'amplissima' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
39 P. 'amplissima' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
40 P. 'amplissima' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
41 P. 'amplissima' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
42 P. 'amplissima' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
43 P. 'amplissima' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
44 P. 'amplissima' Gove Point, Cobscook Bay, Lubec, ME 7/8/95
45 P. 'linearis' Seapoint, ME 2/14/96
46 P. 'linearis' Seapoint, ME 2/14/96
47 P. 'linearis' Seapoint, ME 2/14/96
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48 P. 'linearis' Seapoint, ME 2/14/96
49 P. 'linearis' Seapoint, ME 2/14/96
50 P. 'linearis' Seapoint, ME 2/14/96
51 P. 'linearis' Seapoint, ME 2/14/96
52 P. 'linearis' Seapoint, ME 2/14/96
53 P. 'linearis' Bristol, ME 2/18/96
54 P. 'linearis' Bristol, ME 2/18/96
55 P. 'linearis' South Bristol, ME 2/18/96
56 P. 'linearis' South Bristol, ME 2/18/96
57 P. 'linearis' South Bristol, ME 2/18/96
58 P. 'linearis' South Bristol, ME 2/18/96
59 P. 'linearis' South Bristol, ME 2/18/96
60 P. 'linearis' South Bristol, ME 2/18/96
61 P. 'umbilicalis' Sand Beach, Mount Desert Island, ME 2/22/96
62 P. 'umbilicalis' Sand Beach, Mount Desert Island, ME 2/22/96
63 P. 'umbilicalis' Bagaduce Falls, ME 3/22/96
64 P. 'umbilicalis' Bagaduce Falls, ME 3/22/96
65 P. 'umbilicalis'(\in) Red Point, Swans Island, ME 3/12/96
66 P. 'umbilicalis'Qm) Red Point, Swans Island, ME 3/12/96
61 P. 'purpurea' Leighton Cove, Whiting, ME 3/27/96
68 P. 'purpurea' Leighton Cove, Whiting, ME 3/27/96
69 P. 'amplissima' cultured conchocelis N/A
70 P. 'amplissima' cultured conchocelis N/A
71 P. 'amplissima' cultured conchocelis N/A
72 P. 'amplissima' cultured conchocelis N/A
73 P. 'carolinsus' Waterford, CT 11/3/95
74 P. 'carolinsus' Waterford, CT 11/3/95
15 P. 'carolinsus' Waterford, CT 12/3/95
16 P. 'carolinsus' Waterford, CT 12/3/95
77 P. 'amplissima' Eastport, ME 7/8/95
78 P. 'amplissima' Eastport, ME 7/8/95
79 P. 'amplissima' Eastport, ME 7/8/95
80 P. 'amplissima' Eastport, ME 7/8/95
81 P. 'amplissima' Eastport, ME 7/8/95
82 P. 'amplissima' Eastport, ME 7/8/95
83 P. 'amplissima' Eastport, ME 7/8/95
84 P. 'amplissima' Eastport, ME 7/8/95
85 P. 'amplissima' Eastport, ME 7/8/95
86 P. 'amplissima' Eastport, ME 7/8/95
87 P. 'amplissima' Eastport, ME 7/8/95
88 P. 'amplissima' Eastport, ME 7/8/95
89 P. 'amplissima' Eastport, ME 7/8/95
90 P. 'amplissima' Eastport, ME 7/8/95
91 P. 'amplissima' Eastport, ME 7/8/95
92 P. 'amplissima' Eastport, ME 7/8/95
93 P. 'amplissima' Eastport, ME 7/8/95
94 P. 'amplissima' Eastport, ME 7/8/95
95 P. 'amplissima' Eastport, ME 7/8/95
96 P. 'amplissima' Eastport, ME 7/8/95
97 P. 'amplissima' Eastport, ME 7/8/95
98 P. 'amplissima' Eastport, ME 7/8/95
99 P. 'amplissima' Eastport, ME 7/8/95

100 P. 'amplissima' Eastport, ME 7/8/95
101 P. 'amplissima' Eastport, ME 7/8/95
102 P. 'umbilicalis' Fort Williams, Portland Flead, ME 1/27/96
103 P. 'umbilicalis' Fort Williams, Portland Flead, ME 1/27/96
104 P. 'umbilicalis' Fort Williams, Portland Head, ME 1/27/96
105 P. 'umbilicalis' Fort Williams, Portland Head, ME 1/27/96
106 P. 'umbilicalis' Fort Williams, Portland Head, ME 1/27/96
107 P. 'umbilicalis' Fort Williams, Portland Head, ME 1/27/96
108 P. 'umbilicalis' Fort W illiam s, P ortland  H ead, M E 1/27/96
109 P. 'umbilicalis' Fort Williams, Portland Head, ME 1/27/96
110 P. 'linearis' Newagen, South Port Island, ME 2/18/96
111 P. 'linearis' Newagen, South Port Island, ME 2/18/96
112 P. 'linearis' Newagen, South Port Island, ME 2/18/96
113 P. 'linearis' Newagen, South Port Island, ME 2/18/96
114 P. 'linearis' Newagen, South Port Island, ME 2/18/96
115 P. 'linearis' Newagen, South Port Island, ME 2/18/96
116 P. 'linearis' Newagen, South Port Island, ME 2/18/96
117 P. 'umbilicalis' Camp Ellis, ME 2/6/96
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118 P. 'umbilicalis' Camp Ellis, ME 2/6/96
119 P. 'umbilicalis' Camp Ellis, ME 2/6/96
120 P. 'umbilicalis' Camp Ellis, ME 2/6/96
121 P. 'umbilicalis' Camp Ellis, ME 2/6/96
122 P. 'umbilicalis' Camp Ellis, ME 2/6/96
123 P. 'umbilicalis' Camp Ellis, ME 2/6/96
124 P. 'umbilicalis' Camp Ellis, ME 2/6/96
125 P. 'umbilicalis' Camp Ellis, ME 2/6/96
126 P. 'umbilicalis' Camp Ellis, ME 2/6/96
127 P. 'umbilicalis' Camp Ellis, ME 2/6/96
128 P. 'umbilicalis' Camp Ellis, ME 2/6/96
129 P. 'umbilicalis' Camp Ellis, ME 2/6/96
130 P. 'umbilicalis' Camp Ellis, ME 2/6/96
131 P. 'umbilicalis' Camp Ellis, ME 2/6/96
132 P. 'linearis' Newagen, South Port Island, ME 2/19/96
133 P. 'linearis' Newagen, South Port Island, ME 2/19/96
134 P. 'linearis' Newagen, South Port Island, ME 2/19/96
135 P. 'linearis' Newagen, South Port Island, ME 2/19/96
136 P. 'linearis' Newagen, South Port Island, ME 2/19/96
137 P. 'linearis' Newagen, South Port Island, ME 2/19/96
138 P. 'linearis' Newagen, South Port Island, ME 2/19/96
139 P. 'linearis' Newagen, South Port Island, ME 2/19/96
140 P. 'linearis' Newagen, South Port Island, ME 2/19/96
141 P. 'linearis' Newagen, South Port Island, ME 2/19/96
142 P. 'linearis' Newagen, South Port Island, ME 2/19/96
143 P. 'linearis' Newagen, South Port Island, ME 2/19/96
144 P. 'linearis' Newagen, South Port Island, ME 2/19/96
145 P. 'linearis' Newagen, South Port Island, ME 2/19/96
146 P. 'linearis' Newagen, South Port Island, ME 2/19/96
147 P. 'leucosticta' Eastport, ME 7/8/95
148 P. 'leucosticta' Eastport, ME 7/8/95
149 P. 'leucosticta' Eastport, ME 7/8/95
150 P. 'leucosticta' Eastport, ME 7/8/95
151 P. 'leucosticta' Eastport, ME 7/8/95
152 P. 'leucosticta' Eastport, ME 7/8/95
153 P. 'leucosticta' Eastport, ME 7/8/95
154 P. 'leucosticta' Eastport, ME 7/8/95
155 P. 'leucosticta' Eastport, ME 7/8/95
156 P. 'leucosticta' Eastport, ME 7/8/95
157 P. 'leucosticta' Eastport, ME 7/8/95
158 P. 'leucosticta' Eastport, ME 7/8/95
159 P. 'leucosticta' Eastport, ME 7/8/95
160 P. 'leucosticta' Eastport, ME 7/8/95
161 P. 'leucosticta' Eastport, ME 7/8/95
162 P. 'umbilicalis' Two Lights State Park, ME 1/22/96
163 P. 'umbilicalis' Two Lights State Park, ME 1/22/96
164 P. 'umbilicalis' Two Lights State Park, ME 1/22/96
165 P. 'umbilicalis' Two Lights State Park, ME 1/22/96
166 P. 'umbilicalis' Two Lights State Park, ME 1/22/96
167 P. 'umbilicalis' Two Lights State Park, ME 1/22/96
168 P. 'umbilicalis' Two Lights State Park, ME 1/22/96
169 P. 'umbilicalis' Two Lights State Park, ME 1/22/96
170 P. 'umbilicalis' Two Lights State Park, ME 1/22/96
171 P. 'umbilicalis' Two Lights State Park, ME 1/22/96
172 P. 'umbilicalis' Two Lights State Park, ME 1/22/96
173 P. 'umbilicalis' Two Lights State Park, ME 1/22/96
174 P. 'umbilicalis' Two Lights State Park, ME 1/22/96
175 P. 'umbilicalis' Two Lights State Park, ME 1/22/96
176 P. 'umbilicalis' Two Lights State Park, ME 1/22/96
192 P. 'umbilicalis' Cape Elizabeth, ME 1/26/96
193 P. 'umbilicalis' C ape E lizabeth , M E 1/26/96
194 P. 'umbilicalis' Cape Elizabeth, ME 1/26/96
195 P. 'umbilicalis' Cape Elizabeth, ME 1/26/96
196 P. 'umbilicalis' Cape Elizabeth, ME 1/26/96
197 P. 'umbilicalis' Cape Elizabeth, ME 1/26/96
198 P. 'umbilicalis' Cape Elizabeth, ME 1/26/96
199 P. 'umbilicalis' Cape Elizabeth, ME 1/26/96
200 P. 'umbilicalis' Cape Elizabeth, ME 1/26/96
201 P. 'umbilicalis' Cape Elizabeth, ME 1/26/96
202 P. 'umbilicalis' Cape Elizabeth, ME 1/26/96
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203 P.
204 P.
205 P.
206 P.
222 P.
223 P.
224 P.
225 P.
226 P.
227 P.
228 P.
229 P.
230 P.
231 P.
232 P.
233 P.
234 P.
235 P.
236 P.
268 P.
269 P.
270 P.
271 P.
272 P.
273 P.
274 P.
275 P.
276 P.
277 P.
278 P.
279 P.
280 P.
281 P.
282 P.
310 P.
311 P.
312 P.
313 P.
314 P.
315 P.
316 P.
317 P.
318 P.
319 P.
320 P.
321 P.
322 P.
323 P.
324 P.
325 P.
326 P.
327 P.
328 P.
329 P.
330 P.
331 P.
332 P.
333 P.
334 P.
335 P.
336 P.
337 P.
338 P.
339 P.
348 P.
349 P.
350 P.
351 P.
352 P.
353 P.

'umbilicalis'
'umbilicalis'
'umbilicalis'
'umbilicalis'
'umbilicalis'
'umbilicalis'
'umbilicalis'
'umbilicalis'
'umbilicalis'
'umbilicalis'
'umbilicalis'
'umbilicalis'
'umbilicalis'
'umbilicalis'
'umbilicalis'
'umbilicalis'
'umbilicalis'
'umbilicalis'
'umbilicalis'
'umbilicalis'
'umbilicalis'
'umbilicalis'
'umbilicalis'
'umbilicalis'
'umbilicalis'
'umbilicalis'
'umbilicalis'
'umbilicalis'
'umbilicalis'
'umbilicalis'
'umbilicalis'
'umbilicalis'
'umbilicalis'
'umbilicalis'
'miniata'
'miniata'
'miniata'
'miniata'
'miniata'
'miniata'
'miniata'
'miniata'
'leucosticta'
'leucosticta'
'leucosticta'
'leucosticta'
'leucosticta'
'leucosticta'
'leucosticta'
'leucosticta'
'leucosticta'
'leucosticta'
'leucosticta'
'leucosticta'
'leucosticta'
'leucosticta'
'leucosticta'
'leucosticta'
'leucosticta'
'leucosticta'
'leucosticta'
'leucosticta'
'leucosticta'
'leucosticta'
'leucosticta'
'leucosticta'
'leucosticta'
'leucosticta'
'leucosticta'
'leucosticta'

Cape Elizabeth, ME 
Cape Elizabeth, ME 
Cape Elizabeth, ME 
Cape Elizabeth, ME 
Higgins Beach, ME 
Higgins Beach, ME 
Higgins Beach, ME 
Higgins Beach, ME 
Higgins Beach, ME 
Higgins Beach, ME 
Higgins Beach, ME 
Higgins Beach, ME 
Higgins Beach, ME 
Higgins Beach, ME 
Higgins Beach, ME 
Higgins Beach, ME 
Higgins Beach, ME 
Higgins Beach, ME 
Higgins Beach, ME 
Parson’s Beach, ME 
Parson’s Beach, ME 
Parson's Beach, ME 
Parson's Beach, ME 
Parson's Beach, ME 
Parson's Beach, ME 
Parson's Beach, ME 
Parson’s Beach, ME 
Parson's Beach, ME 
Parson's Beach, ME 
Parson's Beach, ME 
Parson's Beach, ME 
Parson's Beach, ME 
Parson's Beach, ME 
Parson's Beach, ME 
Fink Cove, Nova Scotia, 
Fink Cove, Nova Scotia, 
Fink Cove, Nova Scotia, 
Fink Cove, Nova Scotia, 
Fink Cove, Nova Scotia, 
Fink Cove, Nova Scotia, 
Fink Cove, Nova Scotia, 
Fink Cove, Nova Scotia, 
Jamestown, R1 
Jamestown, RI 
Jamestown, Rl 
Jamestown, RI 
Jamestown, Rl 
Jamestown, Rl 
Jamestown, RI 
Jamestown, RI 
Jamestown, RI 
Jamestown, RI 
Jamestown, RI 
Jamestown, RI 
Jamestown, RI 
Jamestown, RI 
Jamestown, RI 
Jamestown, RI 
Jamestown, RI 
Jamestown, RI 
Jamestown, RI 
Jamestown, RI 
Jamestown, RI 
Jamestown, RI 
Jamestown, RI 
Jamestown, RI 
Jamestown, RI 
Jamestown, RI 
Jamestown, RI 
Jamestown, RI

Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada

1/26/96
1/26/96
1/26/96
1/26/96
1/26/96
1/26/96
1/26/96
1/26/96
1/26/96
1/26/96
1/26/96
1/26/96
1/26/96
1/26/96
1/26/96
1/26/96
1/26/96
1/26/96
1/26/96
2/4/96
2/4/96
2/4/96
2/4/96
2/4/96
2/4/96
2/4/96
2/4/96
2/4/96
2/4/96
2/4/96
2/4/96
2/4/96
2/4/96
2/4/96

6/13/96
6/13/96
6/13/96
6/13/96
6/13/96
6/13/96
6/13/96
6/13/96
6/13/96
6/13/96
6/13/96
6/13/96
6/13/96
6/13/96
6/13/96
6/13/96
6/13/96
6/13/96
6/ 13/96
6/13/96
6/13/96
6/13/96
6/13/96
6/13/96
6/13/96
6/13/96
6/13/96
6/13/96
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354 P. 'leucosticta' Jamestown, Rl 6/13/96
355 P. 'leucosticta' Jamestown, Rl 6/13/96
356 P. 'leucosticta' Jamestown, RI 6/13/96
357 P. leucosticta' Jamestown, RI 6/13/96
358 P. leucosticta' Jamestown, RI 6/13/96
359 P. 'leucosticta' Jamestown, RI 6/13/96
360 P. 'leucosticta' Jamestown, Rl 6/13/96
361 P. 'leucosticta' Jamestown, RI 6/13/96
362 P. 'leucosticta' Jamestown, RI 6/13/96
378 P. 'leucosticta' Charlestown, RI 6/13/96
319 P. leucosticta' Charlestown, RI 6/13/96
380 P. leucosticta' Charlestown, RI 6/13/96
381 P. 'leucosticta' Charlestown, Rl 6/13/96
382 P. 'leucosticta' Charlestown, RI 6/13/96
383 P. 'leucosticta' Charlestown, RI 6/13/96
384 P. leucosticta' Charlestown, RI 6/13/96
385 P. 'leucosticta' Charlestown, RI 6/13/96
386 P. 'leucosticta' Charlestown, RI 6/13/96
387 P. 'leucosticta' Charlestown, RI 6/13/96
388 P. 'leucosticta' Charlestown, RI 6/13/96
389 P. leucosticta' Charlestown, Rl 6/13/96
390 P. 'leucosticta' Charlestown, Rl 6/13/96
391 P. 'miniata' Fink Cove, Nova Scotia, Canada 6/23/96
392 P. 'miniata' Fink Cove, Nova Scotia, Canada 6/23/96
393 P. 'miniata' Fink Cove, Nova Scotia, Canada 6/23/96
394 P. 'miniata' Fink Cove, Nova Scotia, Canada 6/23/96
395 P. 'miniata' Fink Cove, Nova Scotia, Canada 6/23/96
396 P. 'miniata' Fink Cove, Nova Scotia, Canada 6/23/96
397 P. 'miniata' Fink Cove, Nova Scotia, Canada 6/23/96
398 P. 'miniata' Fink Cove, Nova Scotia, Canada 6/23/96
399 P. 'miniata' Fink Cove, Nova Scotia, Canada 6/23/96
400 P. 'miniata' Fink Cove, Nova Scotia, Canada 6/23/96
401 P. 'miniata' Fink Cove, Nova Scotia, Canada 6/23/96
402 P. 'miniata' Fink Cove, Nova Scotia, Canada 6/23/96
403 P. 'miniata' Fink Cove, Nova Scotia, Canada 6/23/96
404 P. 'miniata' Fink Cove, Nova Scotia, Canada 6/23/96
405 P. 'miniata' Fink Cove, Nova Scotia, Canada 6/23/96
419 P. 'umbilicalis' Schooner Point, Mount Desert Island, ME 2/22/96
420 P. 'umbilicalis' Schooner Point, Mount Desert Island, ME 2/22/96
421 P. 'umbilicalis' Schooner Point, Mount Desert Island, ME 2/22/96
422 P. 'umbilicalis' Schooner Point, Mount Desert Island, ME 2/22/96
423 P. 'umbilicalis' Schooner Point, Mount Desert Island, ME 2/22/96
424 P. 'umbilicalis' Schooner Point, Mount Desert Island, ME 2/22/96
425 P. 'umbilicalis' Schooner Point, Mount Desert Island, ME 2/22/96
426 P. 'umbilicalis' Schooner Point, Mount Desert Island, ME 2/22/96
427 P. 'umbilicalis' Schooner Point, Mount Desert Island, ME 2/22/96
428 P. 'umbilicalis' Schooner Point, Mount Desert Island, ME 2/22/96
429 P. 'umbilicalis' Schooner Point, Mount Desert Island, ME 2/22/96
430 P. 'umbilicalis' Schooner Point, Mount Desert Island, ME 2/22/96
431 P. 'umbilicalis' Schooner Point, Mount Desert Island, ME 2/22/96
432 P. 'umbilicalis' Schooner Point, Mount Desert Island, ME 2/22/96
433 P. 'umbilicalis' Schooner Point, Mount Desert Island, ME 2/22/96
449 P. 'umbilicalis' West Quoddy Flead, ME 2/24/96
450 P. 'umbilicalis' West Quoddy Head, ME 2/24/96
451 P. 'umbilicalis' West Quoddy Head, ME 2/24/96
452 P. 'umbilicalis' West Quoddy Head, ME 2/24/96
453 P. 'umbilicalis' West Quoddy Head, ME 2/24/96
454 P. 'umbilicalis' West Quoddy Head, ME 2/24/96
455 P. 'umbilicalis' West Quoddy Head, ME 2/24/96
456 P. 'umbilicalis' West Quoddy Head, ME 2/24/96
457 P. 'umbilicalis' West Quoddy Head, ME 2/24/96
458 P. 'umbilicalis' West Quoddy Head, ME 2/24/96
459 P. 'umbilicalis' West Quoddy Head, ME 2/24/96
460 P. 'umbilicalis' West Quoddy Head, ME 2/24/96
461 P. 'umbilicalis' West Quoddy Head, ME 2/24/96
462 P. 'umbilicalis' West Quoddy Head, ME 2/24/96
463 P. 'umbilicalis' West Quoddy Head, ME 2/24/96
464 P. 'amplissima' cultured blades N/A
465 P. 'amplissima' cultured conchocelis N/A
466 P. 'amplissima' cultured conchocelis N/A
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467 P. 'amplissima' cultured conchocelis N/A
468 P. 'amplissima' cultured conchocelis N/A
469 P. 'amplissima' cultured conchocelis N/A
470 P. 'amplissima' cultured blades N/A
471 P. 'umbilicalis' cultured blades N/A
472 P. 'umbilicalis' cultured blades N/A
473 P. 'umbilicalis' cultured blades N/A
474 P. 'linearis' cultured conchocelis N/A
475 P. 'linearis' cultured conchocelis N/A
476 P. 'yezoensis' cultured conchocelis N/A
477 P. 'yezoensis' cultured blades N/A
478 P. 'yezoensis' cultured conchocelis N/A
479 P. 'umbilicalis' cultured blades N/A
480 P. 'umbilicalis' cultured blades N/A
481 P. 'umbilicalis'
482 P. 'umbilicalis'
483 P. 'umbilicalis' cultured blades N/A
484 P. 'umbilicalis' cultured blades N/A
485 P. 'linearis' cultured conchocelis N/A
486 P. 'linearis' cultured conchocelis N/A
487 P. 'linearis'
488 P. 'linearis'
489 P. 'purpurea' Thomas Point, Great Bay, Newington, NH 9/25/96
490 P. 'purpurea' Thomas Point, Great Bay, Newington, NH 9/25/96
491 P. 'purpurea' Thomas Point, Great Bay, Newington, NH 9/25/96
492 P. 'purpurea' Thomas Point, Great Bay, Newington, NH 9/25/96
493 P. 'purpurea' Thomas Point, Great Bay, Newington, NH 9/25/96
494 P. 'purpurea' Thomas Point, Great Bay, Newington, NH 9/25/96
495 P. 'purpurea' Thomas Point, Great Bay, Newington, NH 9/25/96
496 P. 'purpurea' Thomas Point, Great Bay, Newington, NH 9/25/96
498 P. 'umbilicalis' East Point, Nahant, MA 10/18/96
499 P. 'umbilicalis' East Point, Nahant, MA 10/18/96
500 P. 'umbilicalis' East Point, Nahant, MA 10/18/96
501 P. 'umbilicalis' East Point, Nahant, MA 10/18/96
503 P. 'umbilicalis' East Point, Nahant, MA 10/18/96

>04A P. 'umbilicalis' East Point, Nahant, MA 10/18/96
504B P. 'umbilicalis' Seawall, Mount Desert Island, ME 2/23/96

505 P. 'umbilicalis' Seawall, Mount Desert Island, ME 2/23/96
506 P. 'umbilicalis' Seawall, Mount Desert Island, ME 2/23/96
507 P. 'umbilicalis' Seawall, Mount Desert Island, ME 2/23/96
508 P. 'umbilicalis' Seawall, Mount Desert Island, ME 2/23/96
509 P. 'purpurea' Starboard, ME 2/24/96
510 P. 'purpurea' Starboard, ME 2/24/96
511 P. 'purpurea' Starboard, ME 2/24/96
512 P. ’purpurea' Starboard, ME 2/24/96
513 P.'purpurea' Starboard, ME 2/24/96
514 P. 'linearis' Red Point Swan's Island, ME 3/12/96
515 P. 'linearis' Red Point Swan's Island, ME 3/12/96
516 P. 'linearis' Red Point Swan's Island, ME 3/12/96
517 P. 'linearis' Red Point Swan’s Island, ME 3/12/96
518 P. 'linearis' Red Point Swan's Island, ME 3/12/96
519 P. 'yezoensis'
520 P. 'yezoensis'
521 P. 'yezoensis'
522 P. 'yezoensis'
523 P. 'purpurea' R. Friedman Field Station, Cobscook Bay, ME 3/24/96
524 P. 'purpurea' R. Friedman Field Station, Cobscook Bay, ME 3/24/96
525 P. 'purpurea' R. Friedman Field Station, Cobscook Bay, ME 3/24/96
526 P. 'purpurea' R. Friedman Field Station, Cobscook Bay, ME 3/24/96
527 P. 'purpurea' R. Friedman Field Station, Cobscook Bay, ME 3/24/96
528 P. 'purpurea' R . Friedm an F ield  Station , C obscook  B ay, M E 3/24/96
529 P. 'purpurea' R. Friedman Field Station, Cobscook Bay, ME 3/24/96
530 P. 'purpurea' R. Friedman Field Station, Cobscook Bay, ME 3/24/96
532 P.'purpurea' R. Friedman Field Station, Cobscook Bay, ME 3/24/96
533 P. 'purpurea'(ltuc) Lighthouse Cove, Dipper Harbor, 

New Brunswick, Canada
11/1/96

534 P. 'purpurea'lleuc) Lighthouse Cove, Dipper Harbor, 
New Brunswick, Canada

11/1/96

535 P. 'purpurea'lleuc) Lighthouse Cove, Dipper Harbor, 
New Brunswick, Canada

11/1/96
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536 P. 'purpureaXleuc) Lighthouse Cove, Dipper Harbor, 
New Brunswick, Canada

11/1/96

537 P. 'purpureaXleuc) Lighthouse Cove, Dipper Harbor, 
New Brunswick, Canada

11/1/96

538 P. ’purpureaXleuc) Lighthouse Cove, Dipper Harbor, 
New Brunswick, Canada

11/1/96

539 P. 'purpureaXleuc) Lighthouse Cove, Dipper Harbor, 
New Brunswick, Canada

11/1/96

540 P. 'purpureaXleuc) Lighthouse Cove, Dipper Harbor, 
New Brunswick, Canada

11/1/96

541 P. 'purpureaXleuc) Lighthouse Cove, Dipper Harbor, 
New Brunswick, Canada

11/1/96

542 P. ’purpurea'(leuc) Lighthouse Cove, Dipper Harbor, 
New Brunswick, Canada

11/1/96

543 P. 'purpurea' Ross Island Shore, Grand Harbor, 
New Brunswick, Canada

11/2/96

544 P. 'purpurea' Ross Island Shore, Grand Harbor, 11/2/96
New Brunswick, Canada

545 P. 'purpurea' Ross Island Shore, Grand Harbor, 
New Brunswick, Canada

11/2/96

546 P. 'purpurea' Ross Island Shore, Grand Harbor, 
New Brunswick, Canada

11/2/96

547 P. 'purpurea' Ross Island Shore, Grand Harbor, 
New Brunswick, Canada

11/2/96

548 P. 'purpurea' Ross Island Shore, Grand Harbor, 
New Brunswick, Canada

11/2/96

549 P. 'purpurea' Ross Island Shore, Grand Harbor, 
New Brunswick, Canada

11/2/96

550 P. 'purpurea' Ross Island Shore, Grand Harbor, 
New Brunswick, Canada

11/2/96

551 P. 'purpurea' Ross Island Shore, Grand Harbor, 
New Brunswick, Canada

11/2/96

552 P. 'purpurea' Ross Island Shore, Grand Harbor, 
New Brunswick, Canada

11/2/96

553 P. 'purpurea' Lighthouse Cove, Dipper Harbor, 
New Brunswick, Canada

11/1/96

554 P. 'purpurea' Lighthouse Cove, Dipper Harbor, 
New Brunswick, Canada

11/1/96

555 P. \purpurea’ Lighthouse Cove, Dipper Harbor, 
New Brunswick, Canada

11/1/96

556 P. 'purpurea' Lighthouse Cove, Dipper Harbor, 
New Brunswick, Canada

11/1/96

557 P. 'purpurea' Lighthouse Cove, Dipper Harbor, 
New Brunswick, Canada

11/1/96

558 P. 'purpurea' Lighthouse Cove, Dipper Harbor, 
New Brunswick, Canada

11/1/96

559 P. 'purpurea' Lighthouse Cove, Dipper Harbor, 
New Brunswick, Canada

11/1/96

560 P. 'purpurea' Lighthouse Cove, Dipper Harbor, 
New Brunswick, Canada

11/1/96

561 P. 'purpurea' Lighthouse Cove, Dipper Harbor, 
New Brunswick, Canada

11/1/96

562 P. 'purpurea' Lighthouse Cove, Dipper Harbor, 
New Brunswick, Canada

11/1/96

563 P. 'purpurea' Lighthouse Cove, Dipper Harbor, 
New Brunswick, Canada

11/1/96

564 P. 'purpurea' Lighthouse Cove, Dipper Harbor, 
New Brunswick, Canada

11/1/96

565 P. 'purpurea' Lighthouse Cove, Dipper Harbor, 
New Brunswick, Canada

11/1/96

566 P. 'purpurea ' L igh thouse C ove, D ipper H arbor, 
New Brunswick, Canada

11/1/96

567 P. 'purpurea' Lighthouse Cove, Dipper Harbor, 
New Brunswick, Canada

11/1/96

568 P. 'purpurea' Lighthouse Cove, Dipper Harbor, 
New Brunswick, Canada

11/1/96

569 P. 'purpurea' Herring Cove, Nova Scotia, Canada 9/28/96
570 P. 'purpurea' Herring Cove, Nova Scotia, Canada 9/28/96
571 P. 'purpurea' Herring Cove, Nova Scotia, Canada 9/28/96
572 P. 'purpurea' Herring Cove, Nova Scotia, Canada 9/28/96
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573 P. 'purpurea' Herring Cove, Nova Scotia, Canada 9/28/96
574 P. 'purpurea' Herring Cove, Nova Scotia, Canada 9/28/96
575 P. 'purpurea' Herring Cove, Nova Scotia, Canada 9/28/96
576 P. 'purpurea' Herring Cove, Nova Scotia, Canada 9/28/96
577 P. 'purpurea' Avonport, Nova Scotia, Canada 9/30/96
578 P. 'purpurea' Avonport, Nova Scotia, Canada 9/30/96
579 P. 'purpurea' Avonport, Nova Scotia, Canada 9/30/96
580 P. 'purpurea' Avonport, Nova Scotia, Canada 9/30/96
581 P. 'purpurea' Avonport, Nova Scotia, Canada 9/30/96
582 P. 'purpurea' Avonport, Nova Scotia, Canada 9/30/96
583 P. 'purpurea' Avonport, Nova Scotia, Canada 9/30/96
584 P. 'purpurea' Avonport, Nova Scotia, Canada 9/30/96
585 P. 'leucosticta' Pemaquid Point 8/8/96
586 P. 'leucosticta' Pemaquid Point 8/8/96
587 P. 'leucosticta' Pemaquid Point 8/8/96
588 P. 'leucosticta' Pemaquid Point 8/8/96
589 P. 'leucosticta' Two Lights State Park, ME 8/17/96
590 P. 'leucosticta' Two Lights State Park, ME 8/17/96
591 P. 'leucosticta' Two Lights State Park, ME 8/17/96
592 P. 'leucosticta' Two Lights State Park, ME 8/17/96
593 P. 'leucosticta' Rachel Carson Salt Pond Preserve, Bristol, ME 8/9/96
594 P. 'leucosticta' Rachel Carson Salt Pond Preserve, Bristol, ME 8/9/96
595 P. 'leucosticta' Rachel Carson Salt Pond Preserve, Bristol, ME 8/9/96
596 P. 'leucosticta' Rachel Carson Salt Pond Preserve, Bristol, ME 8/9/96
597 P. 'umbilicalis' Reid State Park, ME 8/8/96
598 P. 'umbilicalis' Reid State Park, ME 8/8/96
599 P. 'umbilicalis' Reid State Park, ME 8/8/96
600 P. 'umbilicalis' Reid State Park, ME 8/8/96
601 P. 'purpurea' Orr's Island, ME 2/3/96
602 P. 'purpurea' Orr's Island, ME 2/3/96
603 P. 'purpurea' Orr's Island, ME 2/3/96
604 P. 'purpurea' Orr’s Island, ME 2/3/96
605 P. 'purpurea' Orr's Island, ME 2/3/96
606 P. 'purpurea' Orr's Island, ME 2/3/96
607 P. 'purpurea' Orr's Island, ME 2/3/96
608 P. 'purpurea' Orr's Island, ME 2/3/96
609 P. 'linearis' Rachel Carson Salt Pond Preserve, Bristol, ME 2/1/96
610 P. 'linearis' Rachel Carson Salt Pond Preserve, Bristol, ME 2/1/96
611 P. 'linearis' Rachel Carson Salt Pond Preserve, Bristol, ME 2/1/96
612 P. 'linearis' Rachel Carson Salt Pond Preserve, Bristol, ME 2/1/96
613 P. 'linearis' Rachel Carson Salt Pond Preserve, Bristol, ME 2/1/96
614 P. 'linearis' Rachel Carson Salt Pond Preserve, Bristol, ME 2/1/96
615 P. 'linearis' Rachel Carson Salt Pond Preserve, Bristol, ME 2/1/96
616 P. 'linearis' Rachel Carson Salt Pond Preserve, Bristol, ME 2/1/96
617 P. 'umbilicalis' Peak's Island, Casco Bay, ME 3/23/96
618 P. 'umbilicalis' Peak's Island, Casco Bay, ME 3/23/96
619 P. 'umbilicalis' Peak’s Island, Casco Bay, ME 3/23/96
620 P. 'umbilicalis' Peak’s Island, Casco Bay, ME 3/23/96
621 P. 'umbilicalis' Peak's Island, Casco Bay, ME 3/23/96
622 P. 'umbilicalis' Peak's Island, Casco Bay, ME 3/23/96
623 P. 'umbilicalis' Peak's Island, Casco Bay, ME 3/23/96
624 P. 'umbilicalis' Peak's Island, Casco Bay, ME 3/23/96
625 P. 'linearis' Old Soaker, Mount Desert Island, ME 2/22/96
626 P. 'linearis' Old Soaker, Mount Desert Island, ME 2/22/96
627 P. 'linearis' Old Soaker, Mount Desert Island, ME 2/22/96
628 P. 'linearis' Old Soaker, Mount Desert Island, ME 2/22/96
629 P. 'linearis' Old Soaker, Mount Desert Island, ME 2/22/96
630 P. 'linearis' Old Soaker, Mount Desert Island, ME 2/22/96
631 P. 'linearis' Old Soaker, Mount Desert Island, ME 2/22/96
632 P. 'linearis' Old Soaker, Mount Desert Island, ME 2/22/96
633 P. 'purpurea' Stonington Town Deck, Deer Isle, ME 3/25/96
634 P. 'purpurea' Stonington Town Deck, Deer Isle, ME 3/25/96
635 P. 'purpurea' Stonington Town Deck, Deer Isle, ME 3/25/96
636 P. 'purpurea' Stonington Town Deck, Deer Isle, ME 3/25/96
637 P. 'purpurea' Stonington Town Deck, Deer Isle, ME 3/25/96
638 P. 'purpurea' Stonington Town Deck, Deer Isle, ME 3/25/96
639 P. 'purpurea' Stonington Town Deck, Deer Isle, ME 3/25/96
640 P. 'purpurea' Stonington Town Deck, Deer Isle, ME 3/25/96
641 P. 'linearis' Pemaquid Point, Bristol, ME 2/1/96
642 P. 'linearis' Pemaquid Point, Bristol, ME 2/1/96
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643 P. 'linearis' Pemaquid Point, Bristol, ME 2/1/96
644 P. 'linearis' Pemaquid Point, Bristol, ME 2/1/96
645 P. 'linearis' Pemaquid Point, Bristol, ME 2/1/96
646 P. 'linearis' Pemaquid Point, Bristol, ME 2/1/96
647 P. 'linearis' Pemaquid Point, Bristol, ME 2/1/96
648 P. 'linearis' Pemaquid Point, Bristol, ME 2/1/96
649 P. 'linearis' Reid State Park, ME 2/10/96
650 P. 'linearis' Reid State Park, ME 2/10/96
651 P. 'linearis' Reid State Park, ME 2/10/96
652 P. 'linearis' Reid State Park, ME 2/10/96
653 P. 'linearis' Reid State Park, ME 2/10/96
654 P. 'linearis' Reid State Park, ME 2/10/96
655 P. 'linearis' Reid State Park, ME 2/10/96
656 P. 'linearis' Reid State Park, ME 2/10/96
657 P. 'umbilicalis' Pine Point, ME 2/3/96
658 P. 'umbilicalis' Pine Point, ME 2/3/96
659 P. 'umbilicalis' Pine Point, ME 2/3/96
660 P. 'umbilicalis' Pine Point, ME 2/3/96
661 P. 'umbilicalis' Pine Point, ME 2/3/96
662 P. 'umbilicalis' Pine Point, ME 2/3/96
663 P. 'umbilicalis' Pine Point, ME 2/3/96
664 P. 'umbilicalis' Pine Point, ME 2/3/96
665 P. 'linearis' Rye Harbor, NH 2/3/96
666 P. 'linearis'- Rye Harbor, NH 2/3/96
667 P. 'linearis' Rye Harbor, NH 2/3/96
668 P. 'linearis' Rye Harbor, NH 2/3/96
669 P. 'linearis' Rye Harbor, NH 2/3/96
670 P. 'linearis' Rye Harbor, NH 2/3/96
671 P. 'linearis' Rye Harbor, NH 2/3/96
672 P. 'linearis' Rye Harbor, NH 2/3/96
673 P. 'purpurea' Yarmouth Harbor, Nova Scotia, Canada 9/28/96
674 P. 'purpurea' Yarmouth Harbor, Nova Scotia, Canada 9/28/96
675 P. 'purpurea' Yarmouth Harbor, Nova Scotia, Canada 9/28/96
676 P. 'purpurea' Yarmouth Harbor, Nova Scotia, Canada 9/28/96
677 P. 'purpurea' Yarmouth Harbor, Nova Scotia, Canada 9/28/96
678 P. 'purpurea' Yarmouth Harbor, Nova Scotia, Canada 9/28/96
679 P. 'purpurea' Yarmouth Harbor, Nova Scotia, Canada 9/28/96
680 P. 'purpurea' Yarmouth Harbor, Nova Scotia, Canada 9/28/96
681 P. 'purpurea' Stonington Town Deck, Deer Isle, ME 3/25/96
682 P. 'purpurea' Stonington Town Deck, Deer Isle, ME 3/25/96
683 P. 'purpurea' Stonington Town Deck, Deer Isle, ME 3/25/96
684 P. 'purpurea' Stonington Town Deck, Deer Isle, ME 3/25/96
685 P. 'purpurea' Stonington Town Deck, Deer Isle, ME 3/25/96
686 P. 'purpurea' Stonington Town Deck, Deer Isle, ME 3/25/96
867 P. 'purpurea' Stonington Town Deck, Deer Isle, ME 3/25/96
688 P. 'purpurea' Stonington Town Deck, Deer Isle, ME 3/25/96
689 P. 'umbilicalis' Campobello Bridge, ME and Canada 10/7/95
690 P. 'umbilicalis' Campobello Bridge, ME and Canada 10/7/95
691 P. 'umbilicalis' Campobello Bridge, ME and Canada 10/7/95
692 P. 'umbilicalis' Campobello Bridge, ME and Canada 10/7/95
693 P. 'umbilicalis' Campobello Bridge, ME and Canada 10/7/95
694 P. 'umbilicalis' Campobello Bridge, ME and Canada 10/7/95
695 P. 'umbilicalis' Campobello Bridge, ME and Canada 10/7/95
696 P. 'umbilicalis' Campobello Bridge, ME and Canada 10/7/95
697 P. '/means'/thick form Rye Harbor, NH
698 P. 'linearis'lthick form Rye Harbor, NH
699 P. ’/means'/thick form Rye Harbor, NH
700 P. Vmeam’/thick form Rye Harbor, NH
701 P. ’/means'/thick form Rye Harbor, NH
702 P. Vmeam'/thick form Rye Harbor, NH
703 P  '/means'/thick form Rye Harbor, NH
704 P. 'linearis'/tiack form Rye Harbor, NH
705 P. 'linearis'/thin form Rye Harbor, NH
706 P. '/meam'/thin form Rye Harbor, NH
707 P. Ymeam'/thin form Rye Harbor, NH
708 P. 'linearis'/thin form Rye Harbor, NH
709 P. 'linearis'!thin form Rye Harbor, NH
710 P. 'linearis'I thin form Rye Harbor, NH
711 P. 7meari.v'/thin form Rye Harbor, NH
712 P. 'linearis’/thin form Rye Harbor, NH
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713 P. 'umbilicalis' Pine Point, ME 2/6/96
714 P. 'umbilicalis' Pine Point, ME 2/6/96
715 P. 'umbilicalis' Pine Point, ME 2/6/96
716 P. 'umbilicalis' Pine Point, ME 2/6/96
717 P. 'umbilicalis' Pine Point, ME 2/6/96
718 P. 'umbilicalis' Pine Point, ME 2/6/96
719 P. 'umbilicalis' Pine Point, ME 2/6/96
720 P. 'umbilicalis' Pine Point, ME 2/6/96
721 P. 'umbilicalis' Eastport, ME 7/8/95
722 P. 'umbilicalis' Eastport, ME 7/8/95
723 P. 'umbilicalis' Eastport, ME 7/8/95
724 P. 'umbilicalis' Campobello Bridge, ME and Canada 10/7/95
725 P. 'umbilicalis' Campobello Bridge, ME and Canada 10/7/95
726 P. 'umbilicalis' Campobello Bridge, ME and Canada 10/7/95
727 P. 'umbilicalis' Campobello Bridge, ME and Canada 10/7/95
728 P. 'umbilicalis' Campobello Bridge, ME and Canada 10/7/95
729 P. 'umbilicalis' Campobello Bridge, ME and Canada 10/7/95
730 P. 'umbilicalis' Campobello Bridge, ME and Canada 10/7/95
731 P. 'umbilicalis' Campobello Bridge, ME and Canada 10/7/95
732 P. 'purpurea' Stonington Town Deck, Deer Isle, ME 3/25/96
733 P. 'purpurea' Stonington Town Deck, Deer Isle, ME 3/25/96
734 P. 'purpurea' Stonington Town Deck, Deer Isle, ME 3/25/96
735 P. 'purpurea' Stonington Town Deck, Deer Isle, ME 3/25/96
736 P. 'purpurea' Stonington Town Deck, Deer Isle, ME 3/25/96
737 P. 'purpurea' Stonington Town Deck, Deer Isle, ME 3/25/96
738 P. 'purpurea' Stonington Town Deck, Deer Isle, ME 3/25/96
739 P. 'purpurea' Stonington Town Deck, Deer Isle, ME 3/25/96
740 P. 'umbilicalis' Parson’s Beach, ME 4/7/97
741 P. 'umbilicalis' Parson's Beach, ME 4/7/97
742 P. 'umbilicalis' Parson's Beach, ME 4/7/97
743 P. 'umbilicalis' Parson's Beach, ME 4/7/97
744 P. 'umbilicalis' Parson's Beach, ME 4/7/97
745 P. 'umbilicalis' Parson's Beach, ME 4/7/97
746 P. 'umbilicalis' Parson's Beach, ME 4/7/97
747 P. 'umbilicalis' Parson's Beach, ME 4/7/97
748 P. 'umbilicalis' Herring Cove, Nova Scotia, Canada 9/28/96
749 P. 'umbilicalis' Herring Cove, Nova Scotia, Canada 9/28/96
750 P. 'umbilicalis' Herring Cove, Nova Scotia, Canada 9/28/96
751 P. 'umbilicalis' Herring Cove, Nova Scotia, Canada 9/28/96
752 P. 'umbilicalis' Herring Cove, Nova Scotia, Canada 9/28/96
753 P. 'umbilicalis' Herring Cove, Nova Scotia, Canada 9/28/96
754 P. 'umbilicalis' Herring Cove, Nova Scotia, Canada 9/28/96
755 P. 'umbilicalis' Herring Cove, Nova Scotia, Canada 9/28/96
756 P. 'leucosticta' New Meadows Rivers @ Lehman Hway, 

West Bath, ME
3/29/97

757 P. 'leucosticta' New Meadows Rivers @ Lehman Hway, 
West Bath, ME

3/29/97

758 P. 'leucosticta' New Meadows Rivers @ Lehman Hway, 
West Bath, ME

3/29/97

759 P. 'leucosticta' New Meadows Rivers @ Lehman Hway, 
West Bath, ME

3/29/97

760 P. 'leucosticta' New Meadows Rivers @ Lehman Hway, 
West Bath, ME

3/29/97

761 P. 'leucosticta' New Meadows Rivers @ Lehman Hway, 
West Bath, ME

3/29/97

762 P. 'leucosticta' New Meadows Rivers @ Lehman Hway, 
West Bath, ME

3/29/97

763 P. 'leucosticta' New Meadows Rivers @ Lehman Hway, 
West Bath, ME

3/29/97

764 P. 'amplissima' Cape Elizabeth Light, ME 4/2/97
765 P  'amplissima' C ape E lizabeth  L ight, M E 4/2/97
766 P. 'amplissima' Cape Elizabeth Light, ME 4/2/97
767 P. 'amplissima' Cape Elizabeth Light, ME 4/2/97
768 P. 'amplissima' Cape Elizabeth Light, ME 4/2/97
769 P. 'amplissima' Cape Elizabeth Light, ME 4/2/97
770 P. 'amplissima' Cape Elizabeth Light, ME 4/2/97
111 P. 'amplissima' Cape Elizabeth Light, ME 4/2/97
772 P. 'amplissima' Five Islands on Sheepscot River 6/19/96
773 P. 'amplissima' Five Islands on Sheepscot River 6/19/96
774 P. 'amplissima' Five Islands on Sheepscot River 6/19/96
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775 P. 'amplissima' Five Islands on Sheepscot River 6/19/96
776 P. 'amplissima' Five Islands on Sheepscot River 6/19/96
111 P. 'amplissima' Five Islands on Sheepscot River 6/19/96
778 P. 'amplissima' Five Islands on Sheepscot River 6/19/96
779 P. 'amplissima' Five Islands on Sheepscot River 6/19/96
780 P. 'amplissima' Damariscotta River, Christmas Cove, 

S. Bristol, ME
5/18/96

781 P. 'amplissima' Damariscotta River, Christmas Cove, 5/18/96
S. Bristol, ME

782 P. 'amplissima' Damariscotta River, Christmas Cove, 
S. Bristol, ME

5/18/96

783 P. 'amplissima' Damariscotta River, Christmas Cove, 5/18/96
S. Bristol, ME

784 P. 'amplissima' Damariscotta River, Christmas Cove, 5/18/96
S. Bristol, ME

785 P. 'amplissima' Damariscotta River, Christmas Cove, 
S. Bristol, ME

5/18/96

786 P. 'amplissima' Damariscotta River, Christmas Cove, 
S. Bristol, ME

5/18/96

787 P. 'amplissima' Damariscotta River, Christmas Cove, 5/18/96
S. Bristol, ME

788 P. 'umbilicalis' Cape Elizabeth Light, ME 4/2/97
789 P. 'umbilicalis' Cape Elizabeth Light, ME 4/2/97
790 P. 'umbilicalis' Cape Elizabeth Light, ME 4/2/97
791 P. 'umbilicalis' Cape Elizabeth Light, ME 4/2/97
792 P. 'umbilicalis' Cape Elizabeth Light, ME 4/2/97
793 P. 'umbilicalis' Cape Elizabeth Light, ME 4/2/97
794 P. 'umbilicalis' Cape Elizabeth Light, ME 4/2/97
795 P. 'umbilicalis' Cape Elizabeth Light, ME 4/2/97
796 P. 'leucosticta' Montauk Point, NY 5/7/97
191 P. 'leucosticta' Montauk Point, NY 5/7/97
798 P. 'leucosticta' Montauk Point, NY 5/7/97
799 P. 'leucosticta' Montauk Point, NY 5/7/97
800 P. 'leucosticta' Montauk Point, NY 5/7/97
801 P. 'leucosticta' Montauk Point, NY 5/7/97
802 P. 'leucosticta' Montauk Point, NY 5/7/97
803 P. 'leucosticta' Montauk Point, NY 5/7/97
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Appendix B. 
A nucleotide alignment of the cytochrome oxidase 2-3 (COX) spacer region between ten different isolates of Porphyra umbilicalis and 
P. mumfordii, P. dioica, and P. purpurea.

A A A TT A A T A T T T T  T G G C T A  A C G G T T  AT G CGT AT A T C T  T T  A A CA CA  AAT A T T T C T T  T T  AAGT CT A T T  A AT CT T T  T T  T T  T A T Maioritv 1-------------------------------------- ,--------------------------------------- ,------------------------------------- ,--------------------------------------- ,----------------------------------------- ,----------------------------------------- ,--------------------------------------r

1,0 30 3,0 4,0 5,0 6,0 70 8,0

180...... .....................................................................................................................................................................................................................................................................................  PRT1
156...... .....................................................................................................................................................................................................................................................................................  ENG4
137  G ........................................................................................................................................................................................................................................................  ENG1
176...... .....................................................................................................................................................................................................................................................................................  NWY4
153 .....................................................................................................................................................................................................................................................................................  NWY3b
183 .....................................................................................................................................................................................................................................................................................  NHP1a
167 .....................................................................................................................................................................................................................................................................................  MAE1
174...... .....................................................................................................................................................................................................................................................................................  MAE4
172...... .....................................................................................................................................................................................................................................................................................  NBK1
144...... .....................................................................................................................................................................................................................................................................................  NVS1
175   P_mumfordii
163...... ..............................................A ............................................................................................................................................. G ............................................ T ......................C . . . P_dioica
1 ............................................. A .....................................................C ...................................................................................... C ............................................................................... Ppurp urea

M  T T T  G G A TT A  AT CC AA A A T A T T T A  A C G C  AT CT A GTA  A A A T T  A T T  AA AAAA AACA AA AA A G C G C T  C T T A  ACAA ACGA  G C G C T  Maioritv ,---------------------------------------,--------------------------------------- ,------------------------------------- ,--------------------------------------- ,----------------------------------------- ,----------------------------------------- ,--------------------------------------r

i z  9,0 190 1J0 190 190 1fl0 190 190
260 .....................................................................................................................................................................................................................................................................................  PRT1
236 .....................................................................................................................................................................................................................................................................................  ENG4
217 .....................................................................................................................................................................................................................................................................................  ENG1
256 .........................................................................................................................................................................................................................................................T ........................  NWY4
233 .....................................................................................................................................................................................................................................................................................  NWY3b
263 .....................................................................................................................................................................................................................................................................................  NHP1a
247 .....................................................................................................................................................................................................................................................................................  MAE1
254 ...................................................................................................................................................................................................................................................................................... MAE4
252 .....................................................................................................................................................................................................................................................................................  NBK1
224 .....................................................................................................................................................................................................................................................................................  NVS1
255   P_mumfordii
243 . . . .  A . C A  A. . G .......................................C ................................. T  T .  . ...T ...................... P_dioica
81  G. . . . C ...................................................A .....................C ...............CT A ................................. T ................................................................G ............................  Ppurpurea

T T T T A A  Majority

340 .................. PRT1
316 .................. ENG4
297 .................. ENG1
336 .................. NWY4
313 .................. NWY3b
343 NHP1a
327 .................. MAE1
334 .................. MAE4
332 .................. NBK1
304 .................. NVS1
335   P_mumfordii
323 .................. P_dioica
161 . A AA . . Ppurpurea
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Appendix C.
Alignment and variation of the ITS1-5.8S-ITS2 Region of Porphyra umbilicalis from different geographical regions.

A C A A A C T G T T G A G A A C A C A C A C A C A C G C G A A T C G G T T G A G A C A T C T C T T T T T C T A T A A T A A C A C C T C A T A T A C A T T G C T T T C T A A A A G A A -  C A A A C G T T C T C C T T G C T G C G C A G T T G G C G T C C T T  
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Appendix D 
18S ribosmal Group I intron sequence alignment in geographically distinct isolates of Porphyra umbilicalis.

G C T A A G G C A A C A G A A A A C A G A C T A T C A T G G A C A T G C A A C C A A T C G A C C A C C C A T G T C G G C C A C C A G C G T T G T C C A T G A A G A A T G A C C T T C T G T G G G A A A C A C T T A C C G A A G C C T T T G C A G  M 
■" "  -1--------------------------------r  ■  1---------------------------1---------------------------------1-------------------------------- i--------------------------------1-------------------------------- i—  ■  1 ■ i ■ ■ 1 i r

1,0 ^ 0  3,0 4,0 5,0 6,0 7,0 8,0 9,0 1p0  1 }0  1£0
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APPENDIX E

B63 (CA-20)
GCCGGATTGCGTGGTTATGTGCAATTTAATAAATACACACACACACACACACACACACACACACACACACACACATTG
GAAAAAACGAAGACAAGAAAGTGTTAGTGCAGTAGCTACCGCCCGAGATAATCTAGAGAATAGATTTTCAAGGAAGC
AGAGAGGGAAGCACAAGGCACTCAGGGCT

B71 (GT-24)
GTTGATGCTTGTGGCTTGAGAGGCGGATGACCATCTATGAGGTTATGTGTACATTTGTGTGTGTGTGTGTGTGTGTGTGT
GTGTGTGTGTGTGTGTGTGTGTGTATTCAATTGCACATCACCGCACAATCCG

B73 (CA8-CT-CA14)
GCGAGTGGCATAGAATGACTAGGATGACACGGCCGGATTGCGTGGTTATGTGCAGTTTAATAAATACAACACACACAC
ACACTCACACACACACACACACACACACACACACGCACACACACAGAGGACACACAACACCCCAGTAGGGGTACACG
TGCTGCTG

D131 (GT11)
GGTCGCGCCCGCTATTTTGTTGTTCCTCGCCTTGGCGAGTTTCTCTGCATTGTGTGTATTGTCATATATTTCGTGTGTGTT
TGTGTGTGTGTGTGTGTGTGTgtTTGTGCGAGCCTTTTTGTCTGCCTCGTTTGGTGATTCGTGTTTATTGTCTGCCTTGTGT
GTCTCGCCGTGCCTCACAGGCGGCAGGTCATG

D134 (GT-20)
GGCAACGACCGGTCGAAACACATCCCCAGATTCGGAGCAGCACCCATCTCCGCAACGTACTTGCCGGGCGCTCGCCGC
CGCGCGGTCCGAAATCTTCGGCTCAGTTCCCACTCAGCGGGAAACCAGCCGAAGATTTGTGTGTGTGTGTGTGTGTGTG
TGTGTGTGTGTGTGTGTGTGGCGTGACGGTGGTGGGGGAGGTTGCGGTGGTGGGAGTGTGCAAGCGAAGCAGCGACTG
CCGCAGAGCCGAAAAAGTAGAATGCCCCGTCCGGCGCAG

GA5 (GA-58)
CCGGATTGTCTGTGCTTCTCTCGTCTCTCAACAATCCATCCATTATCATTGGAACARAGWYTSTGCCARARARAAMWAR 
WGtAWGAGAGAGAGAGAGAGAGagagagagagagagagagagagagagagAGAGAGcAGAGAGAGAGAGAGAGAGAGAGAGAGA 
GAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAgagagagaTAGAAGTACGAAGAAAGAAAWACAGAAAGTAGTAGGAT 
GT ACCTGCGCTGAGACTGTTTAAT AG AAACGAAGAGTTCC ATGAT AGTGTGG AGAGCG ATGC

TA17
AAATTCTTGCCTTTGCTCCTTTTTATAAAAGTATATTATATTTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCT
CTCTCTCACACACACACACACACTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCCCTCTCTCTCTATAAAATCGTCAATTTG
GTCTGGC

TA18
GAGACGGCTTAATTTGCGATGGAAAGTAXAAGTTTCCCACGACAAACACGTCGGGCGCTATGCGGGGGCAAGGGCGCG
GGGATGTGTGTGTACGTGTGTGTGTGTGTGTGCGCGCGCGCGTGTGTGATGGGGGCAAGAGAGAGAGAGAGAGAGAG
AGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAAAGAGAGAGAGAGAG
GGAGGGAGGGGGGGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAAAGAGAGCGCGCTCACCCT

TA45
TCGTCGTGACAAGTCGCCTCATCGCGTTTCGGAATGGCTTCCGCGAGCCGGCCAAGGTGCgtGTGTGTGTGTGTGTGTGT
GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGtGgT
GTGTGGTGTGTGGTGTGTGGTGTGTGTGTGCGTGTGTATGTGTGTTTGTTTGTGTGTGTGTGCGTGTGTGTGTGTGTGTG
TGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTTAGGGCTAGGGTTAGGGTTAGGGAGGGTTAGAGTTAGGGTTA
GGGT

TA56
CGCGGAGTTCTAATAGTTGTGTGTGCGCGCAAGCCTGTGTGTTTGTTTGGTTGTGTGTTTGCGTGTTTGTGTGTGTGTGT
GTGTGTGCGCGCGTGTGTGAGGGGGTGCGCACGTGGTTTTTTTTTTGTGTCTGTGTATGTATGTATGTATGTGTGTGTAT
GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGCGCGCGCGCGCGCGT
GCTACGTGTAGCGCGTGCGCGATAAAGAGACTGCGAGAGAATTTGAGAGCGAAATACACCTTGGCCCGCGT
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